xref: /linux/arch/powerpc/mm/book3s64/hash_utils.c (revision 4c9f4865f4604744d4f1a43db22ac6ec9dc8e587)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 #include <linux/pgtable.h>
39 
40 #include <asm/debugfs.h>
41 #include <asm/interrupt.h>
42 #include <asm/processor.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/page.h>
46 #include <asm/types.h>
47 #include <linux/uaccess.h>
48 #include <asm/machdep.h>
49 #include <asm/prom.h>
50 #include <asm/io.h>
51 #include <asm/eeh.h>
52 #include <asm/tlb.h>
53 #include <asm/cacheflush.h>
54 #include <asm/cputable.h>
55 #include <asm/sections.h>
56 #include <asm/copro.h>
57 #include <asm/udbg.h>
58 #include <asm/code-patching.h>
59 #include <asm/fadump.h>
60 #include <asm/firmware.h>
61 #include <asm/tm.h>
62 #include <asm/trace.h>
63 #include <asm/ps3.h>
64 #include <asm/pte-walk.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/ultravisor.h>
67 
68 #include <mm/mmu_decl.h>
69 
70 #include "internal.h"
71 
72 
73 #ifdef DEBUG
74 #define DBG(fmt...) udbg_printf(fmt)
75 #else
76 #define DBG(fmt...)
77 #endif
78 
79 #ifdef DEBUG_LOW
80 #define DBG_LOW(fmt...) udbg_printf(fmt)
81 #else
82 #define DBG_LOW(fmt...)
83 #endif
84 
85 #define KB (1024)
86 #define MB (1024*KB)
87 #define GB (1024L*MB)
88 
89 /*
90  * Note:  pte   --> Linux PTE
91  *        HPTE  --> PowerPC Hashed Page Table Entry
92  *
93  * Execution context:
94  *   htab_initialize is called with the MMU off (of course), but
95  *   the kernel has been copied down to zero so it can directly
96  *   reference global data.  At this point it is very difficult
97  *   to print debug info.
98  *
99  */
100 
101 static unsigned long _SDR1;
102 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
103 EXPORT_SYMBOL_GPL(mmu_psize_defs);
104 
105 u8 hpte_page_sizes[1 << LP_BITS];
106 EXPORT_SYMBOL_GPL(hpte_page_sizes);
107 
108 struct hash_pte *htab_address;
109 unsigned long htab_size_bytes;
110 unsigned long htab_hash_mask;
111 EXPORT_SYMBOL_GPL(htab_hash_mask);
112 int mmu_linear_psize = MMU_PAGE_4K;
113 EXPORT_SYMBOL_GPL(mmu_linear_psize);
114 int mmu_virtual_psize = MMU_PAGE_4K;
115 int mmu_vmalloc_psize = MMU_PAGE_4K;
116 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
117 #ifdef CONFIG_SPARSEMEM_VMEMMAP
118 int mmu_vmemmap_psize = MMU_PAGE_4K;
119 #endif
120 int mmu_io_psize = MMU_PAGE_4K;
121 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
122 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
123 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
124 u16 mmu_slb_size = 64;
125 EXPORT_SYMBOL_GPL(mmu_slb_size);
126 #ifdef CONFIG_PPC_64K_PAGES
127 int mmu_ci_restrictions;
128 #endif
129 #ifdef CONFIG_DEBUG_PAGEALLOC
130 static u8 *linear_map_hash_slots;
131 static unsigned long linear_map_hash_count;
132 static DEFINE_SPINLOCK(linear_map_hash_lock);
133 #endif /* CONFIG_DEBUG_PAGEALLOC */
134 struct mmu_hash_ops mmu_hash_ops;
135 EXPORT_SYMBOL(mmu_hash_ops);
136 
137 /*
138  * These are definitions of page sizes arrays to be used when none
139  * is provided by the firmware.
140  */
141 
142 /*
143  * Fallback (4k pages only)
144  */
145 static struct mmu_psize_def mmu_psize_defaults[] = {
146 	[MMU_PAGE_4K] = {
147 		.shift	= 12,
148 		.sllp	= 0,
149 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
150 		.avpnm	= 0,
151 		.tlbiel = 0,
152 	},
153 };
154 
155 /*
156  * POWER4, GPUL, POWER5
157  *
158  * Support for 16Mb large pages
159  */
160 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
161 	[MMU_PAGE_4K] = {
162 		.shift	= 12,
163 		.sllp	= 0,
164 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
165 		.avpnm	= 0,
166 		.tlbiel = 1,
167 	},
168 	[MMU_PAGE_16M] = {
169 		.shift	= 24,
170 		.sllp	= SLB_VSID_L,
171 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
172 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
173 		.avpnm	= 0x1UL,
174 		.tlbiel = 0,
175 	},
176 };
177 
178 /*
179  * 'R' and 'C' update notes:
180  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
181  *     create writeable HPTEs without C set, because the hcall H_PROTECT
182  *     that we use in that case will not update C
183  *  - The above is however not a problem, because we also don't do that
184  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
185  *     do the right thing and thus we don't have the race I described earlier
186  *
187  *    - Under bare metal,  we do have the race, so we need R and C set
188  *    - We make sure R is always set and never lost
189  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
190  */
191 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
192 {
193 	unsigned long rflags = 0;
194 
195 	/* _PAGE_EXEC -> NOEXEC */
196 	if ((pteflags & _PAGE_EXEC) == 0)
197 		rflags |= HPTE_R_N;
198 	/*
199 	 * PPP bits:
200 	 * Linux uses slb key 0 for kernel and 1 for user.
201 	 * kernel RW areas are mapped with PPP=0b000
202 	 * User area is mapped with PPP=0b010 for read/write
203 	 * or PPP=0b011 for read-only (including writeable but clean pages).
204 	 */
205 	if (pteflags & _PAGE_PRIVILEGED) {
206 		/*
207 		 * Kernel read only mapped with ppp bits 0b110
208 		 */
209 		if (!(pteflags & _PAGE_WRITE)) {
210 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
211 				rflags |= (HPTE_R_PP0 | 0x2);
212 			else
213 				rflags |= 0x3;
214 		}
215 	} else {
216 		if (pteflags & _PAGE_RWX)
217 			rflags |= 0x2;
218 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
219 			rflags |= 0x1;
220 	}
221 	/*
222 	 * We can't allow hardware to update hpte bits. Hence always
223 	 * set 'R' bit and set 'C' if it is a write fault
224 	 */
225 	rflags |=  HPTE_R_R;
226 
227 	if (pteflags & _PAGE_DIRTY)
228 		rflags |= HPTE_R_C;
229 	/*
230 	 * Add in WIG bits
231 	 */
232 
233 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
234 		rflags |= HPTE_R_I;
235 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
236 		rflags |= (HPTE_R_I | HPTE_R_G);
237 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
238 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
239 	else
240 		/*
241 		 * Add memory coherence if cache inhibited is not set
242 		 */
243 		rflags |= HPTE_R_M;
244 
245 	rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
246 	return rflags;
247 }
248 
249 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
250 		      unsigned long pstart, unsigned long prot,
251 		      int psize, int ssize)
252 {
253 	unsigned long vaddr, paddr;
254 	unsigned int step, shift;
255 	int ret = 0;
256 
257 	shift = mmu_psize_defs[psize].shift;
258 	step = 1 << shift;
259 
260 	prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
261 
262 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
263 	    vstart, vend, pstart, prot, psize, ssize);
264 
265 	/* Carefully map only the possible range */
266 	vaddr = ALIGN(vstart, step);
267 	paddr = ALIGN(pstart, step);
268 	vend  = ALIGN_DOWN(vend, step);
269 
270 	for (; vaddr < vend; vaddr += step, paddr += step) {
271 		unsigned long hash, hpteg;
272 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
273 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
274 		unsigned long tprot = prot;
275 		bool secondary_hash = false;
276 
277 		/*
278 		 * If we hit a bad address return error.
279 		 */
280 		if (!vsid)
281 			return -1;
282 		/* Make kernel text executable */
283 		if (overlaps_kernel_text(vaddr, vaddr + step))
284 			tprot &= ~HPTE_R_N;
285 
286 		/*
287 		 * If relocatable, check if it overlaps interrupt vectors that
288 		 * are copied down to real 0. For relocatable kernel
289 		 * (e.g. kdump case) we copy interrupt vectors down to real
290 		 * address 0. Mark that region as executable. This is
291 		 * because on p8 system with relocation on exception feature
292 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
293 		 * in order to execute the interrupt handlers in virtual
294 		 * mode the vector region need to be marked as executable.
295 		 */
296 		if ((PHYSICAL_START > MEMORY_START) &&
297 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
298 				tprot &= ~HPTE_R_N;
299 
300 		hash = hpt_hash(vpn, shift, ssize);
301 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
302 
303 		BUG_ON(!mmu_hash_ops.hpte_insert);
304 repeat:
305 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
306 					       HPTE_V_BOLTED, psize, psize,
307 					       ssize);
308 		if (ret == -1) {
309 			/*
310 			 * Try to to keep bolted entries in primary.
311 			 * Remove non bolted entries and try insert again
312 			 */
313 			ret = mmu_hash_ops.hpte_remove(hpteg);
314 			if (ret != -1)
315 				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
316 							       HPTE_V_BOLTED, psize, psize,
317 							       ssize);
318 			if (ret == -1 && !secondary_hash) {
319 				secondary_hash = true;
320 				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
321 				goto repeat;
322 			}
323 		}
324 
325 		if (ret < 0)
326 			break;
327 
328 		cond_resched();
329 #ifdef CONFIG_DEBUG_PAGEALLOC
330 		if (debug_pagealloc_enabled() &&
331 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
332 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
333 #endif /* CONFIG_DEBUG_PAGEALLOC */
334 	}
335 	return ret < 0 ? ret : 0;
336 }
337 
338 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
339 		      int psize, int ssize)
340 {
341 	unsigned long vaddr;
342 	unsigned int step, shift;
343 	int rc;
344 	int ret = 0;
345 
346 	shift = mmu_psize_defs[psize].shift;
347 	step = 1 << shift;
348 
349 	if (!mmu_hash_ops.hpte_removebolted)
350 		return -ENODEV;
351 
352 	/* Unmap the full range specificied */
353 	vaddr = ALIGN_DOWN(vstart, step);
354 	for (;vaddr < vend; vaddr += step) {
355 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
356 		if (rc == -ENOENT) {
357 			ret = -ENOENT;
358 			continue;
359 		}
360 		if (rc < 0)
361 			return rc;
362 	}
363 
364 	return ret;
365 }
366 
367 static bool disable_1tb_segments = false;
368 
369 static int __init parse_disable_1tb_segments(char *p)
370 {
371 	disable_1tb_segments = true;
372 	return 0;
373 }
374 early_param("disable_1tb_segments", parse_disable_1tb_segments);
375 
376 static int __init htab_dt_scan_seg_sizes(unsigned long node,
377 					 const char *uname, int depth,
378 					 void *data)
379 {
380 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
381 	const __be32 *prop;
382 	int size = 0;
383 
384 	/* We are scanning "cpu" nodes only */
385 	if (type == NULL || strcmp(type, "cpu") != 0)
386 		return 0;
387 
388 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
389 	if (prop == NULL)
390 		return 0;
391 	for (; size >= 4; size -= 4, ++prop) {
392 		if (be32_to_cpu(prop[0]) == 40) {
393 			DBG("1T segment support detected\n");
394 
395 			if (disable_1tb_segments) {
396 				DBG("1T segments disabled by command line\n");
397 				break;
398 			}
399 
400 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
401 			return 1;
402 		}
403 	}
404 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
405 	return 0;
406 }
407 
408 static int __init get_idx_from_shift(unsigned int shift)
409 {
410 	int idx = -1;
411 
412 	switch (shift) {
413 	case 0xc:
414 		idx = MMU_PAGE_4K;
415 		break;
416 	case 0x10:
417 		idx = MMU_PAGE_64K;
418 		break;
419 	case 0x14:
420 		idx = MMU_PAGE_1M;
421 		break;
422 	case 0x18:
423 		idx = MMU_PAGE_16M;
424 		break;
425 	case 0x22:
426 		idx = MMU_PAGE_16G;
427 		break;
428 	}
429 	return idx;
430 }
431 
432 static int __init htab_dt_scan_page_sizes(unsigned long node,
433 					  const char *uname, int depth,
434 					  void *data)
435 {
436 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
437 	const __be32 *prop;
438 	int size = 0;
439 
440 	/* We are scanning "cpu" nodes only */
441 	if (type == NULL || strcmp(type, "cpu") != 0)
442 		return 0;
443 
444 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
445 	if (!prop)
446 		return 0;
447 
448 	pr_info("Page sizes from device-tree:\n");
449 	size /= 4;
450 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
451 	while(size > 0) {
452 		unsigned int base_shift = be32_to_cpu(prop[0]);
453 		unsigned int slbenc = be32_to_cpu(prop[1]);
454 		unsigned int lpnum = be32_to_cpu(prop[2]);
455 		struct mmu_psize_def *def;
456 		int idx, base_idx;
457 
458 		size -= 3; prop += 3;
459 		base_idx = get_idx_from_shift(base_shift);
460 		if (base_idx < 0) {
461 			/* skip the pte encoding also */
462 			prop += lpnum * 2; size -= lpnum * 2;
463 			continue;
464 		}
465 		def = &mmu_psize_defs[base_idx];
466 		if (base_idx == MMU_PAGE_16M)
467 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
468 
469 		def->shift = base_shift;
470 		if (base_shift <= 23)
471 			def->avpnm = 0;
472 		else
473 			def->avpnm = (1 << (base_shift - 23)) - 1;
474 		def->sllp = slbenc;
475 		/*
476 		 * We don't know for sure what's up with tlbiel, so
477 		 * for now we only set it for 4K and 64K pages
478 		 */
479 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
480 			def->tlbiel = 1;
481 		else
482 			def->tlbiel = 0;
483 
484 		while (size > 0 && lpnum) {
485 			unsigned int shift = be32_to_cpu(prop[0]);
486 			int penc  = be32_to_cpu(prop[1]);
487 
488 			prop += 2; size -= 2;
489 			lpnum--;
490 
491 			idx = get_idx_from_shift(shift);
492 			if (idx < 0)
493 				continue;
494 
495 			if (penc == -1)
496 				pr_err("Invalid penc for base_shift=%d "
497 				       "shift=%d\n", base_shift, shift);
498 
499 			def->penc[idx] = penc;
500 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
501 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
502 				base_shift, shift, def->sllp,
503 				def->avpnm, def->tlbiel, def->penc[idx]);
504 		}
505 	}
506 
507 	return 1;
508 }
509 
510 #ifdef CONFIG_HUGETLB_PAGE
511 /*
512  * Scan for 16G memory blocks that have been set aside for huge pages
513  * and reserve those blocks for 16G huge pages.
514  */
515 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
516 					const char *uname, int depth,
517 					void *data) {
518 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
519 	const __be64 *addr_prop;
520 	const __be32 *page_count_prop;
521 	unsigned int expected_pages;
522 	long unsigned int phys_addr;
523 	long unsigned int block_size;
524 
525 	/* We are scanning "memory" nodes only */
526 	if (type == NULL || strcmp(type, "memory") != 0)
527 		return 0;
528 
529 	/*
530 	 * This property is the log base 2 of the number of virtual pages that
531 	 * will represent this memory block.
532 	 */
533 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
534 	if (page_count_prop == NULL)
535 		return 0;
536 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
537 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
538 	if (addr_prop == NULL)
539 		return 0;
540 	phys_addr = be64_to_cpu(addr_prop[0]);
541 	block_size = be64_to_cpu(addr_prop[1]);
542 	if (block_size != (16 * GB))
543 		return 0;
544 	printk(KERN_INFO "Huge page(16GB) memory: "
545 			"addr = 0x%lX size = 0x%lX pages = %d\n",
546 			phys_addr, block_size, expected_pages);
547 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
548 		memblock_reserve(phys_addr, block_size * expected_pages);
549 		pseries_add_gpage(phys_addr, block_size, expected_pages);
550 	}
551 	return 0;
552 }
553 #endif /* CONFIG_HUGETLB_PAGE */
554 
555 static void mmu_psize_set_default_penc(void)
556 {
557 	int bpsize, apsize;
558 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
559 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
560 			mmu_psize_defs[bpsize].penc[apsize] = -1;
561 }
562 
563 #ifdef CONFIG_PPC_64K_PAGES
564 
565 static bool might_have_hea(void)
566 {
567 	/*
568 	 * The HEA ethernet adapter requires awareness of the
569 	 * GX bus. Without that awareness we can easily assume
570 	 * we will never see an HEA ethernet device.
571 	 */
572 #ifdef CONFIG_IBMEBUS
573 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
574 		firmware_has_feature(FW_FEATURE_SPLPAR);
575 #else
576 	return false;
577 #endif
578 }
579 
580 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
581 
582 static void __init htab_scan_page_sizes(void)
583 {
584 	int rc;
585 
586 	/* se the invalid penc to -1 */
587 	mmu_psize_set_default_penc();
588 
589 	/* Default to 4K pages only */
590 	memcpy(mmu_psize_defs, mmu_psize_defaults,
591 	       sizeof(mmu_psize_defaults));
592 
593 	/*
594 	 * Try to find the available page sizes in the device-tree
595 	 */
596 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
597 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
598 		/*
599 		 * Nothing in the device-tree, but the CPU supports 16M pages,
600 		 * so let's fallback on a known size list for 16M capable CPUs.
601 		 */
602 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
603 		       sizeof(mmu_psize_defaults_gp));
604 	}
605 
606 #ifdef CONFIG_HUGETLB_PAGE
607 	if (!hugetlb_disabled && !early_radix_enabled() ) {
608 		/* Reserve 16G huge page memory sections for huge pages */
609 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
610 	}
611 #endif /* CONFIG_HUGETLB_PAGE */
612 }
613 
614 /*
615  * Fill in the hpte_page_sizes[] array.
616  * We go through the mmu_psize_defs[] array looking for all the
617  * supported base/actual page size combinations.  Each combination
618  * has a unique pagesize encoding (penc) value in the low bits of
619  * the LP field of the HPTE.  For actual page sizes less than 1MB,
620  * some of the upper LP bits are used for RPN bits, meaning that
621  * we need to fill in several entries in hpte_page_sizes[].
622  *
623  * In diagrammatic form, with r = RPN bits and z = page size bits:
624  *        PTE LP     actual page size
625  *    rrrr rrrz		>=8KB
626  *    rrrr rrzz		>=16KB
627  *    rrrr rzzz		>=32KB
628  *    rrrr zzzz		>=64KB
629  *    ...
630  *
631  * The zzzz bits are implementation-specific but are chosen so that
632  * no encoding for a larger page size uses the same value in its
633  * low-order N bits as the encoding for the 2^(12+N) byte page size
634  * (if it exists).
635  */
636 static void init_hpte_page_sizes(void)
637 {
638 	long int ap, bp;
639 	long int shift, penc;
640 
641 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
642 		if (!mmu_psize_defs[bp].shift)
643 			continue;	/* not a supported page size */
644 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
645 			penc = mmu_psize_defs[bp].penc[ap];
646 			if (penc == -1 || !mmu_psize_defs[ap].shift)
647 				continue;
648 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
649 			if (shift <= 0)
650 				continue;	/* should never happen */
651 			/*
652 			 * For page sizes less than 1MB, this loop
653 			 * replicates the entry for all possible values
654 			 * of the rrrr bits.
655 			 */
656 			while (penc < (1 << LP_BITS)) {
657 				hpte_page_sizes[penc] = (ap << 4) | bp;
658 				penc += 1 << shift;
659 			}
660 		}
661 	}
662 }
663 
664 static void __init htab_init_page_sizes(void)
665 {
666 	bool aligned = true;
667 	init_hpte_page_sizes();
668 
669 	if (!debug_pagealloc_enabled()) {
670 		/*
671 		 * Pick a size for the linear mapping. Currently, we only
672 		 * support 16M, 1M and 4K which is the default
673 		 */
674 		if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
675 		    (unsigned long)_stext % 0x1000000) {
676 			if (mmu_psize_defs[MMU_PAGE_16M].shift)
677 				pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
678 			aligned = false;
679 		}
680 
681 		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
682 			mmu_linear_psize = MMU_PAGE_16M;
683 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
684 			mmu_linear_psize = MMU_PAGE_1M;
685 	}
686 
687 #ifdef CONFIG_PPC_64K_PAGES
688 	/*
689 	 * Pick a size for the ordinary pages. Default is 4K, we support
690 	 * 64K for user mappings and vmalloc if supported by the processor.
691 	 * We only use 64k for ioremap if the processor
692 	 * (and firmware) support cache-inhibited large pages.
693 	 * If not, we use 4k and set mmu_ci_restrictions so that
694 	 * hash_page knows to switch processes that use cache-inhibited
695 	 * mappings to 4k pages.
696 	 */
697 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
698 		mmu_virtual_psize = MMU_PAGE_64K;
699 		mmu_vmalloc_psize = MMU_PAGE_64K;
700 		if (mmu_linear_psize == MMU_PAGE_4K)
701 			mmu_linear_psize = MMU_PAGE_64K;
702 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
703 			/*
704 			 * When running on pSeries using 64k pages for ioremap
705 			 * would stop us accessing the HEA ethernet. So if we
706 			 * have the chance of ever seeing one, stay at 4k.
707 			 */
708 			if (!might_have_hea())
709 				mmu_io_psize = MMU_PAGE_64K;
710 		} else
711 			mmu_ci_restrictions = 1;
712 	}
713 #endif /* CONFIG_PPC_64K_PAGES */
714 
715 #ifdef CONFIG_SPARSEMEM_VMEMMAP
716 	/*
717 	 * We try to use 16M pages for vmemmap if that is supported
718 	 * and we have at least 1G of RAM at boot
719 	 */
720 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
721 	    memblock_phys_mem_size() >= 0x40000000)
722 		mmu_vmemmap_psize = MMU_PAGE_16M;
723 	else
724 		mmu_vmemmap_psize = mmu_virtual_psize;
725 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
726 
727 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
728 	       "virtual = %d, io = %d"
729 #ifdef CONFIG_SPARSEMEM_VMEMMAP
730 	       ", vmemmap = %d"
731 #endif
732 	       "\n",
733 	       mmu_psize_defs[mmu_linear_psize].shift,
734 	       mmu_psize_defs[mmu_virtual_psize].shift,
735 	       mmu_psize_defs[mmu_io_psize].shift
736 #ifdef CONFIG_SPARSEMEM_VMEMMAP
737 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
738 #endif
739 	       );
740 }
741 
742 static int __init htab_dt_scan_pftsize(unsigned long node,
743 				       const char *uname, int depth,
744 				       void *data)
745 {
746 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
747 	const __be32 *prop;
748 
749 	/* We are scanning "cpu" nodes only */
750 	if (type == NULL || strcmp(type, "cpu") != 0)
751 		return 0;
752 
753 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
754 	if (prop != NULL) {
755 		/* pft_size[0] is the NUMA CEC cookie */
756 		ppc64_pft_size = be32_to_cpu(prop[1]);
757 		return 1;
758 	}
759 	return 0;
760 }
761 
762 unsigned htab_shift_for_mem_size(unsigned long mem_size)
763 {
764 	unsigned memshift = __ilog2(mem_size);
765 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
766 	unsigned pteg_shift;
767 
768 	/* round mem_size up to next power of 2 */
769 	if ((1UL << memshift) < mem_size)
770 		memshift += 1;
771 
772 	/* aim for 2 pages / pteg */
773 	pteg_shift = memshift - (pshift + 1);
774 
775 	/*
776 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
777 	 * size permitted by the architecture.
778 	 */
779 	return max(pteg_shift + 7, 18U);
780 }
781 
782 static unsigned long __init htab_get_table_size(void)
783 {
784 	/*
785 	 * If hash size isn't already provided by the platform, we try to
786 	 * retrieve it from the device-tree. If it's not there neither, we
787 	 * calculate it now based on the total RAM size
788 	 */
789 	if (ppc64_pft_size == 0)
790 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
791 	if (ppc64_pft_size)
792 		return 1UL << ppc64_pft_size;
793 
794 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
795 }
796 
797 #ifdef CONFIG_MEMORY_HOTPLUG
798 static int resize_hpt_for_hotplug(unsigned long new_mem_size)
799 {
800 	unsigned target_hpt_shift;
801 
802 	if (!mmu_hash_ops.resize_hpt)
803 		return 0;
804 
805 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
806 
807 	/*
808 	 * To avoid lots of HPT resizes if memory size is fluctuating
809 	 * across a boundary, we deliberately have some hysterisis
810 	 * here: we immediately increase the HPT size if the target
811 	 * shift exceeds the current shift, but we won't attempt to
812 	 * reduce unless the target shift is at least 2 below the
813 	 * current shift
814 	 */
815 	if (target_hpt_shift > ppc64_pft_size ||
816 	    target_hpt_shift < ppc64_pft_size - 1)
817 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
818 
819 	return 0;
820 }
821 
822 int hash__create_section_mapping(unsigned long start, unsigned long end,
823 				 int nid, pgprot_t prot)
824 {
825 	int rc;
826 
827 	if (end >= H_VMALLOC_START) {
828 		pr_warn("Outside the supported range\n");
829 		return -1;
830 	}
831 
832 	resize_hpt_for_hotplug(memblock_phys_mem_size());
833 
834 	rc = htab_bolt_mapping(start, end, __pa(start),
835 			       pgprot_val(prot), mmu_linear_psize,
836 			       mmu_kernel_ssize);
837 
838 	if (rc < 0) {
839 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
840 					      mmu_kernel_ssize);
841 		BUG_ON(rc2 && (rc2 != -ENOENT));
842 	}
843 	return rc;
844 }
845 
846 int hash__remove_section_mapping(unsigned long start, unsigned long end)
847 {
848 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
849 				     mmu_kernel_ssize);
850 
851 	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
852 		pr_warn("Hash collision while resizing HPT\n");
853 
854 	return rc;
855 }
856 #endif /* CONFIG_MEMORY_HOTPLUG */
857 
858 static void __init hash_init_partition_table(phys_addr_t hash_table,
859 					     unsigned long htab_size)
860 {
861 	mmu_partition_table_init();
862 
863 	/*
864 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
865 	 * For now, UPRT is 0 and we have no segment table.
866 	 */
867 	htab_size =  __ilog2(htab_size) - 18;
868 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
869 	pr_info("Partition table %p\n", partition_tb);
870 }
871 
872 static void __init htab_initialize(void)
873 {
874 	unsigned long table;
875 	unsigned long pteg_count;
876 	unsigned long prot;
877 	phys_addr_t base = 0, size = 0, end;
878 	u64 i;
879 
880 	DBG(" -> htab_initialize()\n");
881 
882 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
883 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
884 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
885 		printk(KERN_INFO "Using 1TB segments\n");
886 	}
887 
888 	if (stress_slb_enabled)
889 		static_branch_enable(&stress_slb_key);
890 
891 	/*
892 	 * Calculate the required size of the htab.  We want the number of
893 	 * PTEGs to equal one half the number of real pages.
894 	 */
895 	htab_size_bytes = htab_get_table_size();
896 	pteg_count = htab_size_bytes >> 7;
897 
898 	htab_hash_mask = pteg_count - 1;
899 
900 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
901 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
902 		/* Using a hypervisor which owns the htab */
903 		htab_address = NULL;
904 		_SDR1 = 0;
905 #ifdef CONFIG_FA_DUMP
906 		/*
907 		 * If firmware assisted dump is active firmware preserves
908 		 * the contents of htab along with entire partition memory.
909 		 * Clear the htab if firmware assisted dump is active so
910 		 * that we dont end up using old mappings.
911 		 */
912 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
913 			mmu_hash_ops.hpte_clear_all();
914 #endif
915 	} else {
916 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
917 
918 #ifdef CONFIG_PPC_CELL
919 		/*
920 		 * Cell may require the hash table down low when using the
921 		 * Axon IOMMU in order to fit the dynamic region over it, see
922 		 * comments in cell/iommu.c
923 		 */
924 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
925 			limit = 0x80000000;
926 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
927 		}
928 #endif /* CONFIG_PPC_CELL */
929 
930 		table = memblock_phys_alloc_range(htab_size_bytes,
931 						  htab_size_bytes,
932 						  0, limit);
933 		if (!table)
934 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
935 			      &htab_size_bytes, &limit);
936 
937 		DBG("Hash table allocated at %lx, size: %lx\n", table,
938 		    htab_size_bytes);
939 
940 		htab_address = __va(table);
941 
942 		/* htab absolute addr + encoded htabsize */
943 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
944 
945 		/* Initialize the HPT with no entries */
946 		memset((void *)table, 0, htab_size_bytes);
947 
948 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
949 			/* Set SDR1 */
950 			mtspr(SPRN_SDR1, _SDR1);
951 		else
952 			hash_init_partition_table(table, htab_size_bytes);
953 	}
954 
955 	prot = pgprot_val(PAGE_KERNEL);
956 
957 #ifdef CONFIG_DEBUG_PAGEALLOC
958 	if (debug_pagealloc_enabled()) {
959 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
960 		linear_map_hash_slots = memblock_alloc_try_nid(
961 				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
962 				ppc64_rma_size,	NUMA_NO_NODE);
963 		if (!linear_map_hash_slots)
964 			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
965 			      __func__, linear_map_hash_count, &ppc64_rma_size);
966 	}
967 #endif /* CONFIG_DEBUG_PAGEALLOC */
968 
969 	/* create bolted the linear mapping in the hash table */
970 	for_each_mem_range(i, &base, &end) {
971 		size = end - base;
972 		base = (unsigned long)__va(base);
973 
974 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
975 		    base, size, prot);
976 
977 		if ((base + size) >= H_VMALLOC_START) {
978 			pr_warn("Outside the supported range\n");
979 			continue;
980 		}
981 
982 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
983 				prot, mmu_linear_psize, mmu_kernel_ssize));
984 	}
985 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
986 
987 	/*
988 	 * If we have a memory_limit and we've allocated TCEs then we need to
989 	 * explicitly map the TCE area at the top of RAM. We also cope with the
990 	 * case that the TCEs start below memory_limit.
991 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
992 	 * for either 4K or 16MB pages.
993 	 */
994 	if (tce_alloc_start) {
995 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
996 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
997 
998 		if (base + size >= tce_alloc_start)
999 			tce_alloc_start = base + size + 1;
1000 
1001 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1002 					 __pa(tce_alloc_start), prot,
1003 					 mmu_linear_psize, mmu_kernel_ssize));
1004 	}
1005 
1006 
1007 	DBG(" <- htab_initialize()\n");
1008 }
1009 #undef KB
1010 #undef MB
1011 
1012 void __init hash__early_init_devtree(void)
1013 {
1014 	/* Initialize segment sizes */
1015 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1016 
1017 	/* Initialize page sizes */
1018 	htab_scan_page_sizes();
1019 }
1020 
1021 static struct hash_mm_context init_hash_mm_context;
1022 void __init hash__early_init_mmu(void)
1023 {
1024 #ifndef CONFIG_PPC_64K_PAGES
1025 	/*
1026 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1027 	 * do the following:
1028 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1029 	 *
1030 	 * Where the slot number is between 0-15, and values of 8-15 indicate
1031 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1032 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1033 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1034 	 * with a BUILD_BUG_ON().
1035 	 */
1036 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1037 #endif /* CONFIG_PPC_64K_PAGES */
1038 
1039 	htab_init_page_sizes();
1040 
1041 	/*
1042 	 * initialize page table size
1043 	 */
1044 	__pte_frag_nr = H_PTE_FRAG_NR;
1045 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1046 	__pmd_frag_nr = H_PMD_FRAG_NR;
1047 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1048 
1049 	__pte_index_size = H_PTE_INDEX_SIZE;
1050 	__pmd_index_size = H_PMD_INDEX_SIZE;
1051 	__pud_index_size = H_PUD_INDEX_SIZE;
1052 	__pgd_index_size = H_PGD_INDEX_SIZE;
1053 	__pud_cache_index = H_PUD_CACHE_INDEX;
1054 	__pte_table_size = H_PTE_TABLE_SIZE;
1055 	__pmd_table_size = H_PMD_TABLE_SIZE;
1056 	__pud_table_size = H_PUD_TABLE_SIZE;
1057 	__pgd_table_size = H_PGD_TABLE_SIZE;
1058 	/*
1059 	 * 4k use hugepd format, so for hash set then to
1060 	 * zero
1061 	 */
1062 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1063 	__pud_val_bits = HASH_PUD_VAL_BITS;
1064 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1065 
1066 	__kernel_virt_start = H_KERN_VIRT_START;
1067 	__vmalloc_start = H_VMALLOC_START;
1068 	__vmalloc_end = H_VMALLOC_END;
1069 	__kernel_io_start = H_KERN_IO_START;
1070 	__kernel_io_end = H_KERN_IO_END;
1071 	vmemmap = (struct page *)H_VMEMMAP_START;
1072 	ioremap_bot = IOREMAP_BASE;
1073 
1074 #ifdef CONFIG_PCI
1075 	pci_io_base = ISA_IO_BASE;
1076 #endif
1077 
1078 	/* Select appropriate backend */
1079 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1080 		ps3_early_mm_init();
1081 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1082 		hpte_init_pseries();
1083 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1084 		hpte_init_native();
1085 
1086 	if (!mmu_hash_ops.hpte_insert)
1087 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1088 
1089 	/*
1090 	 * Initialize the MMU Hash table and create the linear mapping
1091 	 * of memory. Has to be done before SLB initialization as this is
1092 	 * currently where the page size encoding is obtained.
1093 	 */
1094 	htab_initialize();
1095 
1096 	init_mm.context.hash_context = &init_hash_mm_context;
1097 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1098 
1099 	pr_info("Initializing hash mmu with SLB\n");
1100 	/* Initialize SLB management */
1101 	slb_initialize();
1102 
1103 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1104 			&& cpu_has_feature(CPU_FTR_HVMODE))
1105 		tlbiel_all();
1106 }
1107 
1108 #ifdef CONFIG_SMP
1109 void hash__early_init_mmu_secondary(void)
1110 {
1111 	/* Initialize hash table for that CPU */
1112 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1113 
1114 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1115 			mtspr(SPRN_SDR1, _SDR1);
1116 		else
1117 			set_ptcr_when_no_uv(__pa(partition_tb) |
1118 					    (PATB_SIZE_SHIFT - 12));
1119 	}
1120 	/* Initialize SLB */
1121 	slb_initialize();
1122 
1123 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1124 			&& cpu_has_feature(CPU_FTR_HVMODE))
1125 		tlbiel_all();
1126 
1127 #ifdef CONFIG_PPC_MEM_KEYS
1128 	if (mmu_has_feature(MMU_FTR_PKEY))
1129 		mtspr(SPRN_UAMOR, default_uamor);
1130 #endif
1131 }
1132 #endif /* CONFIG_SMP */
1133 
1134 /*
1135  * Called by asm hashtable.S for doing lazy icache flush
1136  */
1137 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1138 {
1139 	struct page *page;
1140 
1141 	if (!pfn_valid(pte_pfn(pte)))
1142 		return pp;
1143 
1144 	page = pte_page(pte);
1145 
1146 	/* page is dirty */
1147 	if (!test_bit(PG_dcache_clean, &page->flags) && !PageReserved(page)) {
1148 		if (trap == 0x400) {
1149 			flush_dcache_icache_page(page);
1150 			set_bit(PG_dcache_clean, &page->flags);
1151 		} else
1152 			pp |= HPTE_R_N;
1153 	}
1154 	return pp;
1155 }
1156 
1157 #ifdef CONFIG_PPC_MM_SLICES
1158 static unsigned int get_paca_psize(unsigned long addr)
1159 {
1160 	unsigned char *psizes;
1161 	unsigned long index, mask_index;
1162 
1163 	if (addr < SLICE_LOW_TOP) {
1164 		psizes = get_paca()->mm_ctx_low_slices_psize;
1165 		index = GET_LOW_SLICE_INDEX(addr);
1166 	} else {
1167 		psizes = get_paca()->mm_ctx_high_slices_psize;
1168 		index = GET_HIGH_SLICE_INDEX(addr);
1169 	}
1170 	mask_index = index & 0x1;
1171 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1172 }
1173 
1174 #else
1175 unsigned int get_paca_psize(unsigned long addr)
1176 {
1177 	return get_paca()->mm_ctx_user_psize;
1178 }
1179 #endif
1180 
1181 /*
1182  * Demote a segment to using 4k pages.
1183  * For now this makes the whole process use 4k pages.
1184  */
1185 #ifdef CONFIG_PPC_64K_PAGES
1186 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1187 {
1188 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1189 		return;
1190 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1191 	copro_flush_all_slbs(mm);
1192 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1193 
1194 		copy_mm_to_paca(mm);
1195 		slb_flush_and_restore_bolted();
1196 	}
1197 }
1198 #endif /* CONFIG_PPC_64K_PAGES */
1199 
1200 #ifdef CONFIG_PPC_SUBPAGE_PROT
1201 /*
1202  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1203  * Userspace sets the subpage permissions using the subpage_prot system call.
1204  *
1205  * Result is 0: full permissions, _PAGE_RW: read-only,
1206  * _PAGE_RWX: no access.
1207  */
1208 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1209 {
1210 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1211 	u32 spp = 0;
1212 	u32 **sbpm, *sbpp;
1213 
1214 	if (!spt)
1215 		return 0;
1216 
1217 	if (ea >= spt->maxaddr)
1218 		return 0;
1219 	if (ea < 0x100000000UL) {
1220 		/* addresses below 4GB use spt->low_prot */
1221 		sbpm = spt->low_prot;
1222 	} else {
1223 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1224 		if (!sbpm)
1225 			return 0;
1226 	}
1227 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1228 	if (!sbpp)
1229 		return 0;
1230 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1231 
1232 	/* extract 2-bit bitfield for this 4k subpage */
1233 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1234 
1235 	/*
1236 	 * 0 -> full premission
1237 	 * 1 -> Read only
1238 	 * 2 -> no access.
1239 	 * We return the flag that need to be cleared.
1240 	 */
1241 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1242 	return spp;
1243 }
1244 
1245 #else /* CONFIG_PPC_SUBPAGE_PROT */
1246 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1247 {
1248 	return 0;
1249 }
1250 #endif
1251 
1252 void hash_failure_debug(unsigned long ea, unsigned long access,
1253 			unsigned long vsid, unsigned long trap,
1254 			int ssize, int psize, int lpsize, unsigned long pte)
1255 {
1256 	if (!printk_ratelimit())
1257 		return;
1258 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1259 		ea, access, current->comm);
1260 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1261 		trap, vsid, ssize, psize, lpsize, pte);
1262 }
1263 
1264 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1265 			     int psize, bool user_region)
1266 {
1267 	if (user_region) {
1268 		if (psize != get_paca_psize(ea)) {
1269 			copy_mm_to_paca(mm);
1270 			slb_flush_and_restore_bolted();
1271 		}
1272 	} else if (get_paca()->vmalloc_sllp !=
1273 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1274 		get_paca()->vmalloc_sllp =
1275 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1276 		slb_vmalloc_update();
1277 	}
1278 }
1279 
1280 /*
1281  * Result code is:
1282  *  0 - handled
1283  *  1 - normal page fault
1284  * -1 - critical hash insertion error
1285  * -2 - access not permitted by subpage protection mechanism
1286  */
1287 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1288 		 unsigned long access, unsigned long trap,
1289 		 unsigned long flags)
1290 {
1291 	bool is_thp;
1292 	pgd_t *pgdir;
1293 	unsigned long vsid;
1294 	pte_t *ptep;
1295 	unsigned hugeshift;
1296 	int rc, user_region = 0;
1297 	int psize, ssize;
1298 
1299 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1300 		ea, access, trap);
1301 	trace_hash_fault(ea, access, trap);
1302 
1303 	/* Get region & vsid */
1304 	switch (get_region_id(ea)) {
1305 	case USER_REGION_ID:
1306 		user_region = 1;
1307 		if (! mm) {
1308 			DBG_LOW(" user region with no mm !\n");
1309 			rc = 1;
1310 			goto bail;
1311 		}
1312 		psize = get_slice_psize(mm, ea);
1313 		ssize = user_segment_size(ea);
1314 		vsid = get_user_vsid(&mm->context, ea, ssize);
1315 		break;
1316 	case VMALLOC_REGION_ID:
1317 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1318 		psize = mmu_vmalloc_psize;
1319 		ssize = mmu_kernel_ssize;
1320 		flags |= HPTE_USE_KERNEL_KEY;
1321 		break;
1322 
1323 	case IO_REGION_ID:
1324 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1325 		psize = mmu_io_psize;
1326 		ssize = mmu_kernel_ssize;
1327 		flags |= HPTE_USE_KERNEL_KEY;
1328 		break;
1329 	default:
1330 		/*
1331 		 * Not a valid range
1332 		 * Send the problem up to do_page_fault()
1333 		 */
1334 		rc = 1;
1335 		goto bail;
1336 	}
1337 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1338 
1339 	/* Bad address. */
1340 	if (!vsid) {
1341 		DBG_LOW("Bad address!\n");
1342 		rc = 1;
1343 		goto bail;
1344 	}
1345 	/* Get pgdir */
1346 	pgdir = mm->pgd;
1347 	if (pgdir == NULL) {
1348 		rc = 1;
1349 		goto bail;
1350 	}
1351 
1352 	/* Check CPU locality */
1353 	if (user_region && mm_is_thread_local(mm))
1354 		flags |= HPTE_LOCAL_UPDATE;
1355 
1356 #ifndef CONFIG_PPC_64K_PAGES
1357 	/*
1358 	 * If we use 4K pages and our psize is not 4K, then we might
1359 	 * be hitting a special driver mapping, and need to align the
1360 	 * address before we fetch the PTE.
1361 	 *
1362 	 * It could also be a hugepage mapping, in which case this is
1363 	 * not necessary, but it's not harmful, either.
1364 	 */
1365 	if (psize != MMU_PAGE_4K)
1366 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1367 #endif /* CONFIG_PPC_64K_PAGES */
1368 
1369 	/* Get PTE and page size from page tables */
1370 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1371 	if (ptep == NULL || !pte_present(*ptep)) {
1372 		DBG_LOW(" no PTE !\n");
1373 		rc = 1;
1374 		goto bail;
1375 	}
1376 
1377 	/*
1378 	 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1379 	 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1380 	 *
1381 	 * We can safely use the return pte address in rest of the function
1382 	 * because we do set H_PAGE_BUSY which prevents further updates to pte
1383 	 * from generic code.
1384 	 */
1385 	access |= _PAGE_PRESENT | _PAGE_PTE;
1386 
1387 	/*
1388 	 * Pre-check access permissions (will be re-checked atomically
1389 	 * in __hash_page_XX but this pre-check is a fast path
1390 	 */
1391 	if (!check_pte_access(access, pte_val(*ptep))) {
1392 		DBG_LOW(" no access !\n");
1393 		rc = 1;
1394 		goto bail;
1395 	}
1396 
1397 	if (hugeshift) {
1398 		if (is_thp)
1399 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1400 					     trap, flags, ssize, psize);
1401 #ifdef CONFIG_HUGETLB_PAGE
1402 		else
1403 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1404 					      flags, ssize, hugeshift, psize);
1405 #else
1406 		else {
1407 			/*
1408 			 * if we have hugeshift, and is not transhuge with
1409 			 * hugetlb disabled, something is really wrong.
1410 			 */
1411 			rc = 1;
1412 			WARN_ON(1);
1413 		}
1414 #endif
1415 		if (current->mm == mm)
1416 			check_paca_psize(ea, mm, psize, user_region);
1417 
1418 		goto bail;
1419 	}
1420 
1421 #ifndef CONFIG_PPC_64K_PAGES
1422 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1423 #else
1424 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1425 		pte_val(*(ptep + PTRS_PER_PTE)));
1426 #endif
1427 	/* Do actual hashing */
1428 #ifdef CONFIG_PPC_64K_PAGES
1429 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1430 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1431 		demote_segment_4k(mm, ea);
1432 		psize = MMU_PAGE_4K;
1433 	}
1434 
1435 	/*
1436 	 * If this PTE is non-cacheable and we have restrictions on
1437 	 * using non cacheable large pages, then we switch to 4k
1438 	 */
1439 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1440 		if (user_region) {
1441 			demote_segment_4k(mm, ea);
1442 			psize = MMU_PAGE_4K;
1443 		} else if (ea < VMALLOC_END) {
1444 			/*
1445 			 * some driver did a non-cacheable mapping
1446 			 * in vmalloc space, so switch vmalloc
1447 			 * to 4k pages
1448 			 */
1449 			printk(KERN_ALERT "Reducing vmalloc segment "
1450 			       "to 4kB pages because of "
1451 			       "non-cacheable mapping\n");
1452 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1453 			copro_flush_all_slbs(mm);
1454 		}
1455 	}
1456 
1457 #endif /* CONFIG_PPC_64K_PAGES */
1458 
1459 	if (current->mm == mm)
1460 		check_paca_psize(ea, mm, psize, user_region);
1461 
1462 #ifdef CONFIG_PPC_64K_PAGES
1463 	if (psize == MMU_PAGE_64K)
1464 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1465 				     flags, ssize);
1466 	else
1467 #endif /* CONFIG_PPC_64K_PAGES */
1468 	{
1469 		int spp = subpage_protection(mm, ea);
1470 		if (access & spp)
1471 			rc = -2;
1472 		else
1473 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1474 					    flags, ssize, spp);
1475 	}
1476 
1477 	/*
1478 	 * Dump some info in case of hash insertion failure, they should
1479 	 * never happen so it is really useful to know if/when they do
1480 	 */
1481 	if (rc == -1)
1482 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1483 				   psize, pte_val(*ptep));
1484 #ifndef CONFIG_PPC_64K_PAGES
1485 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1486 #else
1487 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1488 		pte_val(*(ptep + PTRS_PER_PTE)));
1489 #endif
1490 	DBG_LOW(" -> rc=%d\n", rc);
1491 
1492 bail:
1493 	return rc;
1494 }
1495 EXPORT_SYMBOL_GPL(hash_page_mm);
1496 
1497 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1498 	      unsigned long dsisr)
1499 {
1500 	unsigned long flags = 0;
1501 	struct mm_struct *mm = current->mm;
1502 
1503 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1504 	    (get_region_id(ea) == IO_REGION_ID))
1505 		mm = &init_mm;
1506 
1507 	if (dsisr & DSISR_NOHPTE)
1508 		flags |= HPTE_NOHPTE_UPDATE;
1509 
1510 	return hash_page_mm(mm, ea, access, trap, flags);
1511 }
1512 EXPORT_SYMBOL_GPL(hash_page);
1513 
1514 DECLARE_INTERRUPT_HANDLER_RET(__do_hash_fault);
1515 DEFINE_INTERRUPT_HANDLER_RET(__do_hash_fault)
1516 {
1517 	unsigned long ea = regs->dar;
1518 	unsigned long dsisr = regs->dsisr;
1519 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1520 	unsigned long flags = 0;
1521 	struct mm_struct *mm;
1522 	unsigned int region_id;
1523 	long err;
1524 
1525 	region_id = get_region_id(ea);
1526 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1527 		mm = &init_mm;
1528 	else
1529 		mm = current->mm;
1530 
1531 	if (dsisr & DSISR_NOHPTE)
1532 		flags |= HPTE_NOHPTE_UPDATE;
1533 
1534 	if (dsisr & DSISR_ISSTORE)
1535 		access |= _PAGE_WRITE;
1536 	/*
1537 	 * We set _PAGE_PRIVILEGED only when
1538 	 * kernel mode access kernel space.
1539 	 *
1540 	 * _PAGE_PRIVILEGED is NOT set
1541 	 * 1) when kernel mode access user space
1542 	 * 2) user space access kernel space.
1543 	 */
1544 	access |= _PAGE_PRIVILEGED;
1545 	if (user_mode(regs) || (region_id == USER_REGION_ID))
1546 		access &= ~_PAGE_PRIVILEGED;
1547 
1548 	if (regs->trap == 0x400)
1549 		access |= _PAGE_EXEC;
1550 
1551 	err = hash_page_mm(mm, ea, access, regs->trap, flags);
1552 	if (unlikely(err < 0)) {
1553 		// failed to instert a hash PTE due to an hypervisor error
1554 		if (user_mode(regs)) {
1555 			if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1556 				_exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1557 			else
1558 				_exception(SIGBUS, regs, BUS_ADRERR, ea);
1559 		} else {
1560 			bad_page_fault(regs, SIGBUS);
1561 		}
1562 		err = 0;
1563 	}
1564 
1565 	return err;
1566 }
1567 
1568 /*
1569  * The _RAW interrupt entry checks for the in_nmi() case before
1570  * running the full handler.
1571  */
1572 DEFINE_INTERRUPT_HANDLER_RAW(do_hash_fault)
1573 {
1574 	unsigned long dsisr = regs->dsisr;
1575 	long err;
1576 
1577 	if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT)))
1578 		goto page_fault;
1579 
1580 	/*
1581 	 * If we are in an "NMI" (e.g., an interrupt when soft-disabled), then
1582 	 * don't call hash_page, just fail the fault. This is required to
1583 	 * prevent re-entrancy problems in the hash code, namely perf
1584 	 * interrupts hitting while something holds H_PAGE_BUSY, and taking a
1585 	 * hash fault. See the comment in hash_preload().
1586 	 *
1587 	 * We come here as a result of a DSI at a point where we don't want
1588 	 * to call hash_page, such as when we are accessing memory (possibly
1589 	 * user memory) inside a PMU interrupt that occurred while interrupts
1590 	 * were soft-disabled.  We want to invoke the exception handler for
1591 	 * the access, or panic if there isn't a handler.
1592 	 */
1593 	if (unlikely(in_nmi())) {
1594 		do_bad_page_fault_segv(regs);
1595 		return 0;
1596 	}
1597 
1598 	err = __do_hash_fault(regs);
1599 	if (err) {
1600 page_fault:
1601 		err = hash__do_page_fault(regs);
1602 	}
1603 
1604 	return err;
1605 }
1606 
1607 #ifdef CONFIG_PPC_MM_SLICES
1608 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1609 {
1610 	int psize = get_slice_psize(mm, ea);
1611 
1612 	/* We only prefault standard pages for now */
1613 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1614 		return false;
1615 
1616 	/*
1617 	 * Don't prefault if subpage protection is enabled for the EA.
1618 	 */
1619 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1620 		return false;
1621 
1622 	return true;
1623 }
1624 #else
1625 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1626 {
1627 	return true;
1628 }
1629 #endif
1630 
1631 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1632 			 bool is_exec, unsigned long trap)
1633 {
1634 	unsigned long vsid;
1635 	pgd_t *pgdir;
1636 	int rc, ssize, update_flags = 0;
1637 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1638 	unsigned long flags;
1639 
1640 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1641 
1642 	if (!should_hash_preload(mm, ea))
1643 		return;
1644 
1645 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1646 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1647 
1648 	/* Get Linux PTE if available */
1649 	pgdir = mm->pgd;
1650 	if (pgdir == NULL)
1651 		return;
1652 
1653 	/* Get VSID */
1654 	ssize = user_segment_size(ea);
1655 	vsid = get_user_vsid(&mm->context, ea, ssize);
1656 	if (!vsid)
1657 		return;
1658 
1659 #ifdef CONFIG_PPC_64K_PAGES
1660 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1661 	 * a 64K kernel), then we don't preload, hash_page() will take
1662 	 * care of it once we actually try to access the page.
1663 	 * That way we don't have to duplicate all of the logic for segment
1664 	 * page size demotion here
1665 	 * Called with  PTL held, hence can be sure the value won't change in
1666 	 * between.
1667 	 */
1668 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1669 		return;
1670 #endif /* CONFIG_PPC_64K_PAGES */
1671 
1672 	/*
1673 	 * __hash_page_* must run with interrupts off, as it sets the
1674 	 * H_PAGE_BUSY bit. It's possible for perf interrupts to hit at any
1675 	 * time and may take a hash fault reading the user stack, see
1676 	 * read_user_stack_slow() in the powerpc/perf code.
1677 	 *
1678 	 * If that takes a hash fault on the same page as we lock here, it
1679 	 * will bail out when seeing H_PAGE_BUSY set, and retry the access
1680 	 * leading to an infinite loop.
1681 	 *
1682 	 * Disabling interrupts here does not prevent perf interrupts, but it
1683 	 * will prevent them taking hash faults (see the NMI test in
1684 	 * do_hash_page), then read_user_stack's copy_from_user_nofault will
1685 	 * fail and perf will fall back to read_user_stack_slow(), which
1686 	 * walks the Linux page tables.
1687 	 *
1688 	 * Interrupts must also be off for the duration of the
1689 	 * mm_is_thread_local test and update, to prevent preempt running the
1690 	 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1691 	 */
1692 	local_irq_save(flags);
1693 
1694 	/* Is that local to this CPU ? */
1695 	if (mm_is_thread_local(mm))
1696 		update_flags |= HPTE_LOCAL_UPDATE;
1697 
1698 	/* Hash it in */
1699 #ifdef CONFIG_PPC_64K_PAGES
1700 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1701 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1702 				     update_flags, ssize);
1703 	else
1704 #endif /* CONFIG_PPC_64K_PAGES */
1705 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1706 				    ssize, subpage_protection(mm, ea));
1707 
1708 	/* Dump some info in case of hash insertion failure, they should
1709 	 * never happen so it is really useful to know if/when they do
1710 	 */
1711 	if (rc == -1)
1712 		hash_failure_debug(ea, access, vsid, trap, ssize,
1713 				   mm_ctx_user_psize(&mm->context),
1714 				   mm_ctx_user_psize(&mm->context),
1715 				   pte_val(*ptep));
1716 
1717 	local_irq_restore(flags);
1718 }
1719 
1720 /*
1721  * This is called at the end of handling a user page fault, when the
1722  * fault has been handled by updating a PTE in the linux page tables.
1723  * We use it to preload an HPTE into the hash table corresponding to
1724  * the updated linux PTE.
1725  *
1726  * This must always be called with the pte lock held.
1727  */
1728 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1729 		      pte_t *ptep)
1730 {
1731 	/*
1732 	 * We don't need to worry about _PAGE_PRESENT here because we are
1733 	 * called with either mm->page_table_lock held or ptl lock held
1734 	 */
1735 	unsigned long trap;
1736 	bool is_exec;
1737 
1738 	if (radix_enabled())
1739 		return;
1740 
1741 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1742 	if (!pte_young(*ptep) || address >= TASK_SIZE)
1743 		return;
1744 
1745 	/*
1746 	 * We try to figure out if we are coming from an instruction
1747 	 * access fault and pass that down to __hash_page so we avoid
1748 	 * double-faulting on execution of fresh text. We have to test
1749 	 * for regs NULL since init will get here first thing at boot.
1750 	 *
1751 	 * We also avoid filling the hash if not coming from a fault.
1752 	 */
1753 
1754 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1755 	switch (trap) {
1756 	case 0x300:
1757 		is_exec = false;
1758 		break;
1759 	case 0x400:
1760 		is_exec = true;
1761 		break;
1762 	default:
1763 		return;
1764 	}
1765 
1766 	hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1767 }
1768 
1769 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1770 static inline void tm_flush_hash_page(int local)
1771 {
1772 	/*
1773 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1774 	 * page back to a block device w/PIO could pick up transactional data
1775 	 * (bad!) so we force an abort here. Before the sync the page will be
1776 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1777 	 * kernel uses a page from userspace without unmapping it first, it may
1778 	 * see the speculated version.
1779 	 */
1780 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1781 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1782 		tm_enable();
1783 		tm_abort(TM_CAUSE_TLBI);
1784 	}
1785 }
1786 #else
1787 static inline void tm_flush_hash_page(int local)
1788 {
1789 }
1790 #endif
1791 
1792 /*
1793  * Return the global hash slot, corresponding to the given PTE, which contains
1794  * the HPTE.
1795  */
1796 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1797 		int ssize, real_pte_t rpte, unsigned int subpg_index)
1798 {
1799 	unsigned long hash, gslot, hidx;
1800 
1801 	hash = hpt_hash(vpn, shift, ssize);
1802 	hidx = __rpte_to_hidx(rpte, subpg_index);
1803 	if (hidx & _PTEIDX_SECONDARY)
1804 		hash = ~hash;
1805 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1806 	gslot += hidx & _PTEIDX_GROUP_IX;
1807 	return gslot;
1808 }
1809 
1810 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1811 		     unsigned long flags)
1812 {
1813 	unsigned long index, shift, gslot;
1814 	int local = flags & HPTE_LOCAL_UPDATE;
1815 
1816 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1817 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1818 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1819 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1820 		/*
1821 		 * We use same base page size and actual psize, because we don't
1822 		 * use these functions for hugepage
1823 		 */
1824 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1825 					     ssize, local);
1826 	} pte_iterate_hashed_end();
1827 
1828 	tm_flush_hash_page(local);
1829 }
1830 
1831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1832 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1833 			 pmd_t *pmdp, unsigned int psize, int ssize,
1834 			 unsigned long flags)
1835 {
1836 	int i, max_hpte_count, valid;
1837 	unsigned long s_addr;
1838 	unsigned char *hpte_slot_array;
1839 	unsigned long hidx, shift, vpn, hash, slot;
1840 	int local = flags & HPTE_LOCAL_UPDATE;
1841 
1842 	s_addr = addr & HPAGE_PMD_MASK;
1843 	hpte_slot_array = get_hpte_slot_array(pmdp);
1844 	/*
1845 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1846 	 * we will find the below NULL. This happens when we do
1847 	 * split_huge_pmd
1848 	 */
1849 	if (!hpte_slot_array)
1850 		return;
1851 
1852 	if (mmu_hash_ops.hugepage_invalidate) {
1853 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1854 						 psize, ssize, local);
1855 		goto tm_abort;
1856 	}
1857 	/*
1858 	 * No bluk hpte removal support, invalidate each entry
1859 	 */
1860 	shift = mmu_psize_defs[psize].shift;
1861 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1862 	for (i = 0; i < max_hpte_count; i++) {
1863 		/*
1864 		 * 8 bits per each hpte entries
1865 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1866 		 */
1867 		valid = hpte_valid(hpte_slot_array, i);
1868 		if (!valid)
1869 			continue;
1870 		hidx =  hpte_hash_index(hpte_slot_array, i);
1871 
1872 		/* get the vpn */
1873 		addr = s_addr + (i * (1ul << shift));
1874 		vpn = hpt_vpn(addr, vsid, ssize);
1875 		hash = hpt_hash(vpn, shift, ssize);
1876 		if (hidx & _PTEIDX_SECONDARY)
1877 			hash = ~hash;
1878 
1879 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1880 		slot += hidx & _PTEIDX_GROUP_IX;
1881 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1882 					     MMU_PAGE_16M, ssize, local);
1883 	}
1884 tm_abort:
1885 	tm_flush_hash_page(local);
1886 }
1887 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1888 
1889 void flush_hash_range(unsigned long number, int local)
1890 {
1891 	if (mmu_hash_ops.flush_hash_range)
1892 		mmu_hash_ops.flush_hash_range(number, local);
1893 	else {
1894 		int i;
1895 		struct ppc64_tlb_batch *batch =
1896 			this_cpu_ptr(&ppc64_tlb_batch);
1897 
1898 		for (i = 0; i < number; i++)
1899 			flush_hash_page(batch->vpn[i], batch->pte[i],
1900 					batch->psize, batch->ssize, local);
1901 	}
1902 }
1903 
1904 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1905 			   unsigned long pa, unsigned long rflags,
1906 			   unsigned long vflags, int psize, int ssize)
1907 {
1908 	unsigned long hpte_group;
1909 	long slot;
1910 
1911 repeat:
1912 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1913 
1914 	/* Insert into the hash table, primary slot */
1915 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1916 					psize, psize, ssize);
1917 
1918 	/* Primary is full, try the secondary */
1919 	if (unlikely(slot == -1)) {
1920 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1921 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1922 						vflags | HPTE_V_SECONDARY,
1923 						psize, psize, ssize);
1924 		if (slot == -1) {
1925 			if (mftb() & 0x1)
1926 				hpte_group = (hash & htab_hash_mask) *
1927 						HPTES_PER_GROUP;
1928 
1929 			mmu_hash_ops.hpte_remove(hpte_group);
1930 			goto repeat;
1931 		}
1932 	}
1933 
1934 	return slot;
1935 }
1936 
1937 #ifdef CONFIG_DEBUG_PAGEALLOC
1938 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1939 {
1940 	unsigned long hash;
1941 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1942 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1943 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
1944 	long ret;
1945 
1946 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1947 
1948 	/* Don't create HPTE entries for bad address */
1949 	if (!vsid)
1950 		return;
1951 
1952 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1953 				    HPTE_V_BOLTED,
1954 				    mmu_linear_psize, mmu_kernel_ssize);
1955 
1956 	BUG_ON (ret < 0);
1957 	spin_lock(&linear_map_hash_lock);
1958 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1959 	linear_map_hash_slots[lmi] = ret | 0x80;
1960 	spin_unlock(&linear_map_hash_lock);
1961 }
1962 
1963 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1964 {
1965 	unsigned long hash, hidx, slot;
1966 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1967 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1968 
1969 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1970 	spin_lock(&linear_map_hash_lock);
1971 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1972 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1973 	linear_map_hash_slots[lmi] = 0;
1974 	spin_unlock(&linear_map_hash_lock);
1975 	if (hidx & _PTEIDX_SECONDARY)
1976 		hash = ~hash;
1977 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1978 	slot += hidx & _PTEIDX_GROUP_IX;
1979 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1980 				     mmu_linear_psize,
1981 				     mmu_kernel_ssize, 0);
1982 }
1983 
1984 void __kernel_map_pages(struct page *page, int numpages, int enable)
1985 {
1986 	unsigned long flags, vaddr, lmi;
1987 	int i;
1988 
1989 	local_irq_save(flags);
1990 	for (i = 0; i < numpages; i++, page++) {
1991 		vaddr = (unsigned long)page_address(page);
1992 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1993 		if (lmi >= linear_map_hash_count)
1994 			continue;
1995 		if (enable)
1996 			kernel_map_linear_page(vaddr, lmi);
1997 		else
1998 			kernel_unmap_linear_page(vaddr, lmi);
1999 	}
2000 	local_irq_restore(flags);
2001 }
2002 #endif /* CONFIG_DEBUG_PAGEALLOC */
2003 
2004 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2005 				phys_addr_t first_memblock_size)
2006 {
2007 	/*
2008 	 * We don't currently support the first MEMBLOCK not mapping 0
2009 	 * physical on those processors
2010 	 */
2011 	BUG_ON(first_memblock_base != 0);
2012 
2013 	/*
2014 	 * On virtualized systems the first entry is our RMA region aka VRMA,
2015 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
2016 	 * on real mode access.
2017 	 *
2018 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
2019 	 * to avoid some funky things such as RTAS bugs etc...
2020 	 *
2021 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
2022 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2023 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2024 	 * for virtual real mode addressing and so it doesn't make sense to
2025 	 * have an area larger than 1TB as it can't be addressed.
2026 	 */
2027 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2028 		ppc64_rma_size = first_memblock_size;
2029 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2030 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2031 		else
2032 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
2033 					       1UL << SID_SHIFT_1T);
2034 
2035 		/* Finally limit subsequent allocations */
2036 		memblock_set_current_limit(ppc64_rma_size);
2037 	} else {
2038 		ppc64_rma_size = ULONG_MAX;
2039 	}
2040 }
2041 
2042 #ifdef CONFIG_DEBUG_FS
2043 
2044 static int hpt_order_get(void *data, u64 *val)
2045 {
2046 	*val = ppc64_pft_size;
2047 	return 0;
2048 }
2049 
2050 static int hpt_order_set(void *data, u64 val)
2051 {
2052 	int ret;
2053 
2054 	if (!mmu_hash_ops.resize_hpt)
2055 		return -ENODEV;
2056 
2057 	cpus_read_lock();
2058 	ret = mmu_hash_ops.resize_hpt(val);
2059 	cpus_read_unlock();
2060 
2061 	return ret;
2062 }
2063 
2064 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2065 
2066 static int __init hash64_debugfs(void)
2067 {
2068 	debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root, NULL,
2069 			    &fops_hpt_order);
2070 	return 0;
2071 }
2072 machine_device_initcall(pseries, hash64_debugfs);
2073 #endif /* CONFIG_DEBUG_FS */
2074 
2075 void __init print_system_hash_info(void)
2076 {
2077 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2078 
2079 	if (htab_hash_mask)
2080 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2081 }
2082