xref: /linux/arch/powerpc/mm/book3s64/hash_utils.c (revision 415e915fdfc775ad0c6675fde1008f6f43dd6251)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 #include <linux/pgtable.h>
39 
40 #include <asm/debugfs.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/page.h>
45 #include <asm/types.h>
46 #include <linux/uaccess.h>
47 #include <asm/machdep.h>
48 #include <asm/prom.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63 #include <asm/pte-walk.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/ultravisor.h>
66 
67 #include <mm/mmu_decl.h>
68 
69 #include "internal.h"
70 
71 
72 #ifdef DEBUG
73 #define DBG(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG(fmt...)
76 #endif
77 
78 #ifdef DEBUG_LOW
79 #define DBG_LOW(fmt...) udbg_printf(fmt)
80 #else
81 #define DBG_LOW(fmt...)
82 #endif
83 
84 #define KB (1024)
85 #define MB (1024*KB)
86 #define GB (1024L*MB)
87 
88 /*
89  * Note:  pte   --> Linux PTE
90  *        HPTE  --> PowerPC Hashed Page Table Entry
91  *
92  * Execution context:
93  *   htab_initialize is called with the MMU off (of course), but
94  *   the kernel has been copied down to zero so it can directly
95  *   reference global data.  At this point it is very difficult
96  *   to print debug info.
97  *
98  */
99 
100 static unsigned long _SDR1;
101 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
102 EXPORT_SYMBOL_GPL(mmu_psize_defs);
103 
104 u8 hpte_page_sizes[1 << LP_BITS];
105 EXPORT_SYMBOL_GPL(hpte_page_sizes);
106 
107 struct hash_pte *htab_address;
108 unsigned long htab_size_bytes;
109 unsigned long htab_hash_mask;
110 EXPORT_SYMBOL_GPL(htab_hash_mask);
111 int mmu_linear_psize = MMU_PAGE_4K;
112 EXPORT_SYMBOL_GPL(mmu_linear_psize);
113 int mmu_virtual_psize = MMU_PAGE_4K;
114 int mmu_vmalloc_psize = MMU_PAGE_4K;
115 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
116 #ifdef CONFIG_SPARSEMEM_VMEMMAP
117 int mmu_vmemmap_psize = MMU_PAGE_4K;
118 #endif
119 int mmu_io_psize = MMU_PAGE_4K;
120 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
121 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
122 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
123 u16 mmu_slb_size = 64;
124 EXPORT_SYMBOL_GPL(mmu_slb_size);
125 #ifdef CONFIG_PPC_64K_PAGES
126 int mmu_ci_restrictions;
127 #endif
128 #ifdef CONFIG_DEBUG_PAGEALLOC
129 static u8 *linear_map_hash_slots;
130 static unsigned long linear_map_hash_count;
131 static DEFINE_SPINLOCK(linear_map_hash_lock);
132 #endif /* CONFIG_DEBUG_PAGEALLOC */
133 struct mmu_hash_ops mmu_hash_ops;
134 EXPORT_SYMBOL(mmu_hash_ops);
135 
136 /*
137  * These are definitions of page sizes arrays to be used when none
138  * is provided by the firmware.
139  */
140 
141 /*
142  * Fallback (4k pages only)
143  */
144 static struct mmu_psize_def mmu_psize_defaults[] = {
145 	[MMU_PAGE_4K] = {
146 		.shift	= 12,
147 		.sllp	= 0,
148 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
149 		.avpnm	= 0,
150 		.tlbiel = 0,
151 	},
152 };
153 
154 /*
155  * POWER4, GPUL, POWER5
156  *
157  * Support for 16Mb large pages
158  */
159 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
160 	[MMU_PAGE_4K] = {
161 		.shift	= 12,
162 		.sllp	= 0,
163 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
164 		.avpnm	= 0,
165 		.tlbiel = 1,
166 	},
167 	[MMU_PAGE_16M] = {
168 		.shift	= 24,
169 		.sllp	= SLB_VSID_L,
170 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
171 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
172 		.avpnm	= 0x1UL,
173 		.tlbiel = 0,
174 	},
175 };
176 
177 /*
178  * 'R' and 'C' update notes:
179  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
180  *     create writeable HPTEs without C set, because the hcall H_PROTECT
181  *     that we use in that case will not update C
182  *  - The above is however not a problem, because we also don't do that
183  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
184  *     do the right thing and thus we don't have the race I described earlier
185  *
186  *    - Under bare metal,  we do have the race, so we need R and C set
187  *    - We make sure R is always set and never lost
188  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
189  */
190 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
191 {
192 	unsigned long rflags = 0;
193 
194 	/* _PAGE_EXEC -> NOEXEC */
195 	if ((pteflags & _PAGE_EXEC) == 0)
196 		rflags |= HPTE_R_N;
197 	/*
198 	 * PPP bits:
199 	 * Linux uses slb key 0 for kernel and 1 for user.
200 	 * kernel RW areas are mapped with PPP=0b000
201 	 * User area is mapped with PPP=0b010 for read/write
202 	 * or PPP=0b011 for read-only (including writeable but clean pages).
203 	 */
204 	if (pteflags & _PAGE_PRIVILEGED) {
205 		/*
206 		 * Kernel read only mapped with ppp bits 0b110
207 		 */
208 		if (!(pteflags & _PAGE_WRITE)) {
209 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
210 				rflags |= (HPTE_R_PP0 | 0x2);
211 			else
212 				rflags |= 0x3;
213 		}
214 	} else {
215 		if (pteflags & _PAGE_RWX)
216 			rflags |= 0x2;
217 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
218 			rflags |= 0x1;
219 	}
220 	/*
221 	 * We can't allow hardware to update hpte bits. Hence always
222 	 * set 'R' bit and set 'C' if it is a write fault
223 	 */
224 	rflags |=  HPTE_R_R;
225 
226 	if (pteflags & _PAGE_DIRTY)
227 		rflags |= HPTE_R_C;
228 	/*
229 	 * Add in WIG bits
230 	 */
231 
232 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
233 		rflags |= HPTE_R_I;
234 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
235 		rflags |= (HPTE_R_I | HPTE_R_G);
236 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
237 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
238 	else
239 		/*
240 		 * Add memory coherence if cache inhibited is not set
241 		 */
242 		rflags |= HPTE_R_M;
243 
244 	rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
245 	return rflags;
246 }
247 
248 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
249 		      unsigned long pstart, unsigned long prot,
250 		      int psize, int ssize)
251 {
252 	unsigned long vaddr, paddr;
253 	unsigned int step, shift;
254 	int ret = 0;
255 
256 	shift = mmu_psize_defs[psize].shift;
257 	step = 1 << shift;
258 
259 	prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
260 
261 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
262 	    vstart, vend, pstart, prot, psize, ssize);
263 
264 	/* Carefully map only the possible range */
265 	vaddr = ALIGN(vstart, step);
266 	paddr = ALIGN(pstart, step);
267 	vend  = ALIGN_DOWN(vend, step);
268 
269 	for (; vaddr < vend; vaddr += step, paddr += step) {
270 		unsigned long hash, hpteg;
271 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
272 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
273 		unsigned long tprot = prot;
274 		bool secondary_hash = false;
275 
276 		/*
277 		 * If we hit a bad address return error.
278 		 */
279 		if (!vsid)
280 			return -1;
281 		/* Make kernel text executable */
282 		if (overlaps_kernel_text(vaddr, vaddr + step))
283 			tprot &= ~HPTE_R_N;
284 
285 		/*
286 		 * If relocatable, check if it overlaps interrupt vectors that
287 		 * are copied down to real 0. For relocatable kernel
288 		 * (e.g. kdump case) we copy interrupt vectors down to real
289 		 * address 0. Mark that region as executable. This is
290 		 * because on p8 system with relocation on exception feature
291 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
292 		 * in order to execute the interrupt handlers in virtual
293 		 * mode the vector region need to be marked as executable.
294 		 */
295 		if ((PHYSICAL_START > MEMORY_START) &&
296 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
297 				tprot &= ~HPTE_R_N;
298 
299 		hash = hpt_hash(vpn, shift, ssize);
300 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
301 
302 		BUG_ON(!mmu_hash_ops.hpte_insert);
303 repeat:
304 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
305 					       HPTE_V_BOLTED, psize, psize,
306 					       ssize);
307 		if (ret == -1) {
308 			/*
309 			 * Try to to keep bolted entries in primary.
310 			 * Remove non bolted entries and try insert again
311 			 */
312 			ret = mmu_hash_ops.hpte_remove(hpteg);
313 			if (ret != -1)
314 				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
315 							       HPTE_V_BOLTED, psize, psize,
316 							       ssize);
317 			if (ret == -1 && !secondary_hash) {
318 				secondary_hash = true;
319 				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
320 				goto repeat;
321 			}
322 		}
323 
324 		if (ret < 0)
325 			break;
326 
327 		cond_resched();
328 #ifdef CONFIG_DEBUG_PAGEALLOC
329 		if (debug_pagealloc_enabled() &&
330 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
331 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
332 #endif /* CONFIG_DEBUG_PAGEALLOC */
333 	}
334 	return ret < 0 ? ret : 0;
335 }
336 
337 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
338 		      int psize, int ssize)
339 {
340 	unsigned long vaddr;
341 	unsigned int step, shift;
342 	int rc;
343 	int ret = 0;
344 
345 	shift = mmu_psize_defs[psize].shift;
346 	step = 1 << shift;
347 
348 	if (!mmu_hash_ops.hpte_removebolted)
349 		return -ENODEV;
350 
351 	/* Unmap the full range specificied */
352 	vaddr = ALIGN_DOWN(vstart, step);
353 	for (;vaddr < vend; vaddr += step) {
354 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
355 		if (rc == -ENOENT) {
356 			ret = -ENOENT;
357 			continue;
358 		}
359 		if (rc < 0)
360 			return rc;
361 	}
362 
363 	return ret;
364 }
365 
366 static bool disable_1tb_segments = false;
367 
368 static int __init parse_disable_1tb_segments(char *p)
369 {
370 	disable_1tb_segments = true;
371 	return 0;
372 }
373 early_param("disable_1tb_segments", parse_disable_1tb_segments);
374 
375 static int __init htab_dt_scan_seg_sizes(unsigned long node,
376 					 const char *uname, int depth,
377 					 void *data)
378 {
379 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
380 	const __be32 *prop;
381 	int size = 0;
382 
383 	/* We are scanning "cpu" nodes only */
384 	if (type == NULL || strcmp(type, "cpu") != 0)
385 		return 0;
386 
387 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
388 	if (prop == NULL)
389 		return 0;
390 	for (; size >= 4; size -= 4, ++prop) {
391 		if (be32_to_cpu(prop[0]) == 40) {
392 			DBG("1T segment support detected\n");
393 
394 			if (disable_1tb_segments) {
395 				DBG("1T segments disabled by command line\n");
396 				break;
397 			}
398 
399 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
400 			return 1;
401 		}
402 	}
403 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
404 	return 0;
405 }
406 
407 static int __init get_idx_from_shift(unsigned int shift)
408 {
409 	int idx = -1;
410 
411 	switch (shift) {
412 	case 0xc:
413 		idx = MMU_PAGE_4K;
414 		break;
415 	case 0x10:
416 		idx = MMU_PAGE_64K;
417 		break;
418 	case 0x14:
419 		idx = MMU_PAGE_1M;
420 		break;
421 	case 0x18:
422 		idx = MMU_PAGE_16M;
423 		break;
424 	case 0x22:
425 		idx = MMU_PAGE_16G;
426 		break;
427 	}
428 	return idx;
429 }
430 
431 static int __init htab_dt_scan_page_sizes(unsigned long node,
432 					  const char *uname, int depth,
433 					  void *data)
434 {
435 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
436 	const __be32 *prop;
437 	int size = 0;
438 
439 	/* We are scanning "cpu" nodes only */
440 	if (type == NULL || strcmp(type, "cpu") != 0)
441 		return 0;
442 
443 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
444 	if (!prop)
445 		return 0;
446 
447 	pr_info("Page sizes from device-tree:\n");
448 	size /= 4;
449 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
450 	while(size > 0) {
451 		unsigned int base_shift = be32_to_cpu(prop[0]);
452 		unsigned int slbenc = be32_to_cpu(prop[1]);
453 		unsigned int lpnum = be32_to_cpu(prop[2]);
454 		struct mmu_psize_def *def;
455 		int idx, base_idx;
456 
457 		size -= 3; prop += 3;
458 		base_idx = get_idx_from_shift(base_shift);
459 		if (base_idx < 0) {
460 			/* skip the pte encoding also */
461 			prop += lpnum * 2; size -= lpnum * 2;
462 			continue;
463 		}
464 		def = &mmu_psize_defs[base_idx];
465 		if (base_idx == MMU_PAGE_16M)
466 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
467 
468 		def->shift = base_shift;
469 		if (base_shift <= 23)
470 			def->avpnm = 0;
471 		else
472 			def->avpnm = (1 << (base_shift - 23)) - 1;
473 		def->sllp = slbenc;
474 		/*
475 		 * We don't know for sure what's up with tlbiel, so
476 		 * for now we only set it for 4K and 64K pages
477 		 */
478 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
479 			def->tlbiel = 1;
480 		else
481 			def->tlbiel = 0;
482 
483 		while (size > 0 && lpnum) {
484 			unsigned int shift = be32_to_cpu(prop[0]);
485 			int penc  = be32_to_cpu(prop[1]);
486 
487 			prop += 2; size -= 2;
488 			lpnum--;
489 
490 			idx = get_idx_from_shift(shift);
491 			if (idx < 0)
492 				continue;
493 
494 			if (penc == -1)
495 				pr_err("Invalid penc for base_shift=%d "
496 				       "shift=%d\n", base_shift, shift);
497 
498 			def->penc[idx] = penc;
499 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
500 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
501 				base_shift, shift, def->sllp,
502 				def->avpnm, def->tlbiel, def->penc[idx]);
503 		}
504 	}
505 
506 	return 1;
507 }
508 
509 #ifdef CONFIG_HUGETLB_PAGE
510 /*
511  * Scan for 16G memory blocks that have been set aside for huge pages
512  * and reserve those blocks for 16G huge pages.
513  */
514 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
515 					const char *uname, int depth,
516 					void *data) {
517 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
518 	const __be64 *addr_prop;
519 	const __be32 *page_count_prop;
520 	unsigned int expected_pages;
521 	long unsigned int phys_addr;
522 	long unsigned int block_size;
523 
524 	/* We are scanning "memory" nodes only */
525 	if (type == NULL || strcmp(type, "memory") != 0)
526 		return 0;
527 
528 	/*
529 	 * This property is the log base 2 of the number of virtual pages that
530 	 * will represent this memory block.
531 	 */
532 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
533 	if (page_count_prop == NULL)
534 		return 0;
535 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
536 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
537 	if (addr_prop == NULL)
538 		return 0;
539 	phys_addr = be64_to_cpu(addr_prop[0]);
540 	block_size = be64_to_cpu(addr_prop[1]);
541 	if (block_size != (16 * GB))
542 		return 0;
543 	printk(KERN_INFO "Huge page(16GB) memory: "
544 			"addr = 0x%lX size = 0x%lX pages = %d\n",
545 			phys_addr, block_size, expected_pages);
546 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
547 		memblock_reserve(phys_addr, block_size * expected_pages);
548 		pseries_add_gpage(phys_addr, block_size, expected_pages);
549 	}
550 	return 0;
551 }
552 #endif /* CONFIG_HUGETLB_PAGE */
553 
554 static void mmu_psize_set_default_penc(void)
555 {
556 	int bpsize, apsize;
557 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
558 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
559 			mmu_psize_defs[bpsize].penc[apsize] = -1;
560 }
561 
562 #ifdef CONFIG_PPC_64K_PAGES
563 
564 static bool might_have_hea(void)
565 {
566 	/*
567 	 * The HEA ethernet adapter requires awareness of the
568 	 * GX bus. Without that awareness we can easily assume
569 	 * we will never see an HEA ethernet device.
570 	 */
571 #ifdef CONFIG_IBMEBUS
572 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
573 		firmware_has_feature(FW_FEATURE_SPLPAR);
574 #else
575 	return false;
576 #endif
577 }
578 
579 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
580 
581 static void __init htab_scan_page_sizes(void)
582 {
583 	int rc;
584 
585 	/* se the invalid penc to -1 */
586 	mmu_psize_set_default_penc();
587 
588 	/* Default to 4K pages only */
589 	memcpy(mmu_psize_defs, mmu_psize_defaults,
590 	       sizeof(mmu_psize_defaults));
591 
592 	/*
593 	 * Try to find the available page sizes in the device-tree
594 	 */
595 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
596 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
597 		/*
598 		 * Nothing in the device-tree, but the CPU supports 16M pages,
599 		 * so let's fallback on a known size list for 16M capable CPUs.
600 		 */
601 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
602 		       sizeof(mmu_psize_defaults_gp));
603 	}
604 
605 #ifdef CONFIG_HUGETLB_PAGE
606 	if (!hugetlb_disabled && !early_radix_enabled() ) {
607 		/* Reserve 16G huge page memory sections for huge pages */
608 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
609 	}
610 #endif /* CONFIG_HUGETLB_PAGE */
611 }
612 
613 /*
614  * Fill in the hpte_page_sizes[] array.
615  * We go through the mmu_psize_defs[] array looking for all the
616  * supported base/actual page size combinations.  Each combination
617  * has a unique pagesize encoding (penc) value in the low bits of
618  * the LP field of the HPTE.  For actual page sizes less than 1MB,
619  * some of the upper LP bits are used for RPN bits, meaning that
620  * we need to fill in several entries in hpte_page_sizes[].
621  *
622  * In diagrammatic form, with r = RPN bits and z = page size bits:
623  *        PTE LP     actual page size
624  *    rrrr rrrz		>=8KB
625  *    rrrr rrzz		>=16KB
626  *    rrrr rzzz		>=32KB
627  *    rrrr zzzz		>=64KB
628  *    ...
629  *
630  * The zzzz bits are implementation-specific but are chosen so that
631  * no encoding for a larger page size uses the same value in its
632  * low-order N bits as the encoding for the 2^(12+N) byte page size
633  * (if it exists).
634  */
635 static void init_hpte_page_sizes(void)
636 {
637 	long int ap, bp;
638 	long int shift, penc;
639 
640 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
641 		if (!mmu_psize_defs[bp].shift)
642 			continue;	/* not a supported page size */
643 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
644 			penc = mmu_psize_defs[bp].penc[ap];
645 			if (penc == -1 || !mmu_psize_defs[ap].shift)
646 				continue;
647 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
648 			if (shift <= 0)
649 				continue;	/* should never happen */
650 			/*
651 			 * For page sizes less than 1MB, this loop
652 			 * replicates the entry for all possible values
653 			 * of the rrrr bits.
654 			 */
655 			while (penc < (1 << LP_BITS)) {
656 				hpte_page_sizes[penc] = (ap << 4) | bp;
657 				penc += 1 << shift;
658 			}
659 		}
660 	}
661 }
662 
663 static void __init htab_init_page_sizes(void)
664 {
665 	bool aligned = true;
666 	init_hpte_page_sizes();
667 
668 	if (!debug_pagealloc_enabled()) {
669 		/*
670 		 * Pick a size for the linear mapping. Currently, we only
671 		 * support 16M, 1M and 4K which is the default
672 		 */
673 		if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
674 		    (unsigned long)_stext % 0x1000000) {
675 			if (mmu_psize_defs[MMU_PAGE_16M].shift)
676 				pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
677 			aligned = false;
678 		}
679 
680 		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
681 			mmu_linear_psize = MMU_PAGE_16M;
682 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
683 			mmu_linear_psize = MMU_PAGE_1M;
684 	}
685 
686 #ifdef CONFIG_PPC_64K_PAGES
687 	/*
688 	 * Pick a size for the ordinary pages. Default is 4K, we support
689 	 * 64K for user mappings and vmalloc if supported by the processor.
690 	 * We only use 64k for ioremap if the processor
691 	 * (and firmware) support cache-inhibited large pages.
692 	 * If not, we use 4k and set mmu_ci_restrictions so that
693 	 * hash_page knows to switch processes that use cache-inhibited
694 	 * mappings to 4k pages.
695 	 */
696 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
697 		mmu_virtual_psize = MMU_PAGE_64K;
698 		mmu_vmalloc_psize = MMU_PAGE_64K;
699 		if (mmu_linear_psize == MMU_PAGE_4K)
700 			mmu_linear_psize = MMU_PAGE_64K;
701 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
702 			/*
703 			 * When running on pSeries using 64k pages for ioremap
704 			 * would stop us accessing the HEA ethernet. So if we
705 			 * have the chance of ever seeing one, stay at 4k.
706 			 */
707 			if (!might_have_hea())
708 				mmu_io_psize = MMU_PAGE_64K;
709 		} else
710 			mmu_ci_restrictions = 1;
711 	}
712 #endif /* CONFIG_PPC_64K_PAGES */
713 
714 #ifdef CONFIG_SPARSEMEM_VMEMMAP
715 	/*
716 	 * We try to use 16M pages for vmemmap if that is supported
717 	 * and we have at least 1G of RAM at boot
718 	 */
719 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
720 	    memblock_phys_mem_size() >= 0x40000000)
721 		mmu_vmemmap_psize = MMU_PAGE_16M;
722 	else
723 		mmu_vmemmap_psize = mmu_virtual_psize;
724 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
725 
726 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
727 	       "virtual = %d, io = %d"
728 #ifdef CONFIG_SPARSEMEM_VMEMMAP
729 	       ", vmemmap = %d"
730 #endif
731 	       "\n",
732 	       mmu_psize_defs[mmu_linear_psize].shift,
733 	       mmu_psize_defs[mmu_virtual_psize].shift,
734 	       mmu_psize_defs[mmu_io_psize].shift
735 #ifdef CONFIG_SPARSEMEM_VMEMMAP
736 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
737 #endif
738 	       );
739 }
740 
741 static int __init htab_dt_scan_pftsize(unsigned long node,
742 				       const char *uname, int depth,
743 				       void *data)
744 {
745 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
746 	const __be32 *prop;
747 
748 	/* We are scanning "cpu" nodes only */
749 	if (type == NULL || strcmp(type, "cpu") != 0)
750 		return 0;
751 
752 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
753 	if (prop != NULL) {
754 		/* pft_size[0] is the NUMA CEC cookie */
755 		ppc64_pft_size = be32_to_cpu(prop[1]);
756 		return 1;
757 	}
758 	return 0;
759 }
760 
761 unsigned htab_shift_for_mem_size(unsigned long mem_size)
762 {
763 	unsigned memshift = __ilog2(mem_size);
764 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
765 	unsigned pteg_shift;
766 
767 	/* round mem_size up to next power of 2 */
768 	if ((1UL << memshift) < mem_size)
769 		memshift += 1;
770 
771 	/* aim for 2 pages / pteg */
772 	pteg_shift = memshift - (pshift + 1);
773 
774 	/*
775 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
776 	 * size permitted by the architecture.
777 	 */
778 	return max(pteg_shift + 7, 18U);
779 }
780 
781 static unsigned long __init htab_get_table_size(void)
782 {
783 	/*
784 	 * If hash size isn't already provided by the platform, we try to
785 	 * retrieve it from the device-tree. If it's not there neither, we
786 	 * calculate it now based on the total RAM size
787 	 */
788 	if (ppc64_pft_size == 0)
789 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
790 	if (ppc64_pft_size)
791 		return 1UL << ppc64_pft_size;
792 
793 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
794 }
795 
796 #ifdef CONFIG_MEMORY_HOTPLUG
797 static int resize_hpt_for_hotplug(unsigned long new_mem_size)
798 {
799 	unsigned target_hpt_shift;
800 
801 	if (!mmu_hash_ops.resize_hpt)
802 		return 0;
803 
804 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
805 
806 	/*
807 	 * To avoid lots of HPT resizes if memory size is fluctuating
808 	 * across a boundary, we deliberately have some hysterisis
809 	 * here: we immediately increase the HPT size if the target
810 	 * shift exceeds the current shift, but we won't attempt to
811 	 * reduce unless the target shift is at least 2 below the
812 	 * current shift
813 	 */
814 	if (target_hpt_shift > ppc64_pft_size ||
815 	    target_hpt_shift < ppc64_pft_size - 1)
816 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
817 
818 	return 0;
819 }
820 
821 int hash__create_section_mapping(unsigned long start, unsigned long end,
822 				 int nid, pgprot_t prot)
823 {
824 	int rc;
825 
826 	if (end >= H_VMALLOC_START) {
827 		pr_warn("Outside the supported range\n");
828 		return -1;
829 	}
830 
831 	resize_hpt_for_hotplug(memblock_phys_mem_size());
832 
833 	rc = htab_bolt_mapping(start, end, __pa(start),
834 			       pgprot_val(prot), mmu_linear_psize,
835 			       mmu_kernel_ssize);
836 
837 	if (rc < 0) {
838 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
839 					      mmu_kernel_ssize);
840 		BUG_ON(rc2 && (rc2 != -ENOENT));
841 	}
842 	return rc;
843 }
844 
845 int hash__remove_section_mapping(unsigned long start, unsigned long end)
846 {
847 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
848 				     mmu_kernel_ssize);
849 
850 	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
851 		pr_warn("Hash collision while resizing HPT\n");
852 
853 	return rc;
854 }
855 #endif /* CONFIG_MEMORY_HOTPLUG */
856 
857 static void __init hash_init_partition_table(phys_addr_t hash_table,
858 					     unsigned long htab_size)
859 {
860 	mmu_partition_table_init();
861 
862 	/*
863 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
864 	 * For now, UPRT is 0 and we have no segment table.
865 	 */
866 	htab_size =  __ilog2(htab_size) - 18;
867 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
868 	pr_info("Partition table %p\n", partition_tb);
869 }
870 
871 static void __init htab_initialize(void)
872 {
873 	unsigned long table;
874 	unsigned long pteg_count;
875 	unsigned long prot;
876 	phys_addr_t base = 0, size = 0, end;
877 	u64 i;
878 
879 	DBG(" -> htab_initialize()\n");
880 
881 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
882 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
883 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
884 		printk(KERN_INFO "Using 1TB segments\n");
885 	}
886 
887 	if (stress_slb_enabled)
888 		static_branch_enable(&stress_slb_key);
889 
890 	/*
891 	 * Calculate the required size of the htab.  We want the number of
892 	 * PTEGs to equal one half the number of real pages.
893 	 */
894 	htab_size_bytes = htab_get_table_size();
895 	pteg_count = htab_size_bytes >> 7;
896 
897 	htab_hash_mask = pteg_count - 1;
898 
899 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
900 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
901 		/* Using a hypervisor which owns the htab */
902 		htab_address = NULL;
903 		_SDR1 = 0;
904 #ifdef CONFIG_FA_DUMP
905 		/*
906 		 * If firmware assisted dump is active firmware preserves
907 		 * the contents of htab along with entire partition memory.
908 		 * Clear the htab if firmware assisted dump is active so
909 		 * that we dont end up using old mappings.
910 		 */
911 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
912 			mmu_hash_ops.hpte_clear_all();
913 #endif
914 	} else {
915 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
916 
917 #ifdef CONFIG_PPC_CELL
918 		/*
919 		 * Cell may require the hash table down low when using the
920 		 * Axon IOMMU in order to fit the dynamic region over it, see
921 		 * comments in cell/iommu.c
922 		 */
923 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
924 			limit = 0x80000000;
925 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
926 		}
927 #endif /* CONFIG_PPC_CELL */
928 
929 		table = memblock_phys_alloc_range(htab_size_bytes,
930 						  htab_size_bytes,
931 						  0, limit);
932 		if (!table)
933 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
934 			      &htab_size_bytes, &limit);
935 
936 		DBG("Hash table allocated at %lx, size: %lx\n", table,
937 		    htab_size_bytes);
938 
939 		htab_address = __va(table);
940 
941 		/* htab absolute addr + encoded htabsize */
942 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
943 
944 		/* Initialize the HPT with no entries */
945 		memset((void *)table, 0, htab_size_bytes);
946 
947 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
948 			/* Set SDR1 */
949 			mtspr(SPRN_SDR1, _SDR1);
950 		else
951 			hash_init_partition_table(table, htab_size_bytes);
952 	}
953 
954 	prot = pgprot_val(PAGE_KERNEL);
955 
956 #ifdef CONFIG_DEBUG_PAGEALLOC
957 	if (debug_pagealloc_enabled()) {
958 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
959 		linear_map_hash_slots = memblock_alloc_try_nid(
960 				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
961 				ppc64_rma_size,	NUMA_NO_NODE);
962 		if (!linear_map_hash_slots)
963 			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
964 			      __func__, linear_map_hash_count, &ppc64_rma_size);
965 	}
966 #endif /* CONFIG_DEBUG_PAGEALLOC */
967 
968 	/* create bolted the linear mapping in the hash table */
969 	for_each_mem_range(i, &base, &end) {
970 		size = end - base;
971 		base = (unsigned long)__va(base);
972 
973 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
974 		    base, size, prot);
975 
976 		if ((base + size) >= H_VMALLOC_START) {
977 			pr_warn("Outside the supported range\n");
978 			continue;
979 		}
980 
981 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
982 				prot, mmu_linear_psize, mmu_kernel_ssize));
983 	}
984 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
985 
986 	/*
987 	 * If we have a memory_limit and we've allocated TCEs then we need to
988 	 * explicitly map the TCE area at the top of RAM. We also cope with the
989 	 * case that the TCEs start below memory_limit.
990 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
991 	 * for either 4K or 16MB pages.
992 	 */
993 	if (tce_alloc_start) {
994 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
995 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
996 
997 		if (base + size >= tce_alloc_start)
998 			tce_alloc_start = base + size + 1;
999 
1000 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1001 					 __pa(tce_alloc_start), prot,
1002 					 mmu_linear_psize, mmu_kernel_ssize));
1003 	}
1004 
1005 
1006 	DBG(" <- htab_initialize()\n");
1007 }
1008 #undef KB
1009 #undef MB
1010 
1011 void __init hash__early_init_devtree(void)
1012 {
1013 	/* Initialize segment sizes */
1014 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1015 
1016 	/* Initialize page sizes */
1017 	htab_scan_page_sizes();
1018 }
1019 
1020 static struct hash_mm_context init_hash_mm_context;
1021 void __init hash__early_init_mmu(void)
1022 {
1023 #ifndef CONFIG_PPC_64K_PAGES
1024 	/*
1025 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1026 	 * do the following:
1027 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1028 	 *
1029 	 * Where the slot number is between 0-15, and values of 8-15 indicate
1030 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1031 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1032 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1033 	 * with a BUILD_BUG_ON().
1034 	 */
1035 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1036 #endif /* CONFIG_PPC_64K_PAGES */
1037 
1038 	htab_init_page_sizes();
1039 
1040 	/*
1041 	 * initialize page table size
1042 	 */
1043 	__pte_frag_nr = H_PTE_FRAG_NR;
1044 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1045 	__pmd_frag_nr = H_PMD_FRAG_NR;
1046 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1047 
1048 	__pte_index_size = H_PTE_INDEX_SIZE;
1049 	__pmd_index_size = H_PMD_INDEX_SIZE;
1050 	__pud_index_size = H_PUD_INDEX_SIZE;
1051 	__pgd_index_size = H_PGD_INDEX_SIZE;
1052 	__pud_cache_index = H_PUD_CACHE_INDEX;
1053 	__pte_table_size = H_PTE_TABLE_SIZE;
1054 	__pmd_table_size = H_PMD_TABLE_SIZE;
1055 	__pud_table_size = H_PUD_TABLE_SIZE;
1056 	__pgd_table_size = H_PGD_TABLE_SIZE;
1057 	/*
1058 	 * 4k use hugepd format, so for hash set then to
1059 	 * zero
1060 	 */
1061 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1062 	__pud_val_bits = HASH_PUD_VAL_BITS;
1063 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1064 
1065 	__kernel_virt_start = H_KERN_VIRT_START;
1066 	__vmalloc_start = H_VMALLOC_START;
1067 	__vmalloc_end = H_VMALLOC_END;
1068 	__kernel_io_start = H_KERN_IO_START;
1069 	__kernel_io_end = H_KERN_IO_END;
1070 	vmemmap = (struct page *)H_VMEMMAP_START;
1071 	ioremap_bot = IOREMAP_BASE;
1072 
1073 #ifdef CONFIG_PCI
1074 	pci_io_base = ISA_IO_BASE;
1075 #endif
1076 
1077 	/* Select appropriate backend */
1078 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1079 		ps3_early_mm_init();
1080 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1081 		hpte_init_pseries();
1082 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1083 		hpte_init_native();
1084 
1085 	if (!mmu_hash_ops.hpte_insert)
1086 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1087 
1088 	/*
1089 	 * Initialize the MMU Hash table and create the linear mapping
1090 	 * of memory. Has to be done before SLB initialization as this is
1091 	 * currently where the page size encoding is obtained.
1092 	 */
1093 	htab_initialize();
1094 
1095 	init_mm.context.hash_context = &init_hash_mm_context;
1096 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1097 
1098 	pr_info("Initializing hash mmu with SLB\n");
1099 	/* Initialize SLB management */
1100 	slb_initialize();
1101 
1102 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1103 			&& cpu_has_feature(CPU_FTR_HVMODE))
1104 		tlbiel_all();
1105 }
1106 
1107 #ifdef CONFIG_SMP
1108 void hash__early_init_mmu_secondary(void)
1109 {
1110 	/* Initialize hash table for that CPU */
1111 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1112 
1113 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1114 			mtspr(SPRN_SDR1, _SDR1);
1115 		else
1116 			set_ptcr_when_no_uv(__pa(partition_tb) |
1117 					    (PATB_SIZE_SHIFT - 12));
1118 	}
1119 	/* Initialize SLB */
1120 	slb_initialize();
1121 
1122 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1123 			&& cpu_has_feature(CPU_FTR_HVMODE))
1124 		tlbiel_all();
1125 
1126 #ifdef CONFIG_PPC_MEM_KEYS
1127 	if (mmu_has_feature(MMU_FTR_PKEY))
1128 		mtspr(SPRN_UAMOR, default_uamor);
1129 #endif
1130 }
1131 #endif /* CONFIG_SMP */
1132 
1133 /*
1134  * Called by asm hashtable.S for doing lazy icache flush
1135  */
1136 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1137 {
1138 	struct page *page;
1139 
1140 	if (!pfn_valid(pte_pfn(pte)))
1141 		return pp;
1142 
1143 	page = pte_page(pte);
1144 
1145 	/* page is dirty */
1146 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1147 		if (trap == 0x400) {
1148 			flush_dcache_icache_page(page);
1149 			set_bit(PG_arch_1, &page->flags);
1150 		} else
1151 			pp |= HPTE_R_N;
1152 	}
1153 	return pp;
1154 }
1155 
1156 #ifdef CONFIG_PPC_MM_SLICES
1157 static unsigned int get_paca_psize(unsigned long addr)
1158 {
1159 	unsigned char *psizes;
1160 	unsigned long index, mask_index;
1161 
1162 	if (addr < SLICE_LOW_TOP) {
1163 		psizes = get_paca()->mm_ctx_low_slices_psize;
1164 		index = GET_LOW_SLICE_INDEX(addr);
1165 	} else {
1166 		psizes = get_paca()->mm_ctx_high_slices_psize;
1167 		index = GET_HIGH_SLICE_INDEX(addr);
1168 	}
1169 	mask_index = index & 0x1;
1170 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1171 }
1172 
1173 #else
1174 unsigned int get_paca_psize(unsigned long addr)
1175 {
1176 	return get_paca()->mm_ctx_user_psize;
1177 }
1178 #endif
1179 
1180 /*
1181  * Demote a segment to using 4k pages.
1182  * For now this makes the whole process use 4k pages.
1183  */
1184 #ifdef CONFIG_PPC_64K_PAGES
1185 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1186 {
1187 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1188 		return;
1189 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1190 	copro_flush_all_slbs(mm);
1191 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1192 
1193 		copy_mm_to_paca(mm);
1194 		slb_flush_and_restore_bolted();
1195 	}
1196 }
1197 #endif /* CONFIG_PPC_64K_PAGES */
1198 
1199 #ifdef CONFIG_PPC_SUBPAGE_PROT
1200 /*
1201  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1202  * Userspace sets the subpage permissions using the subpage_prot system call.
1203  *
1204  * Result is 0: full permissions, _PAGE_RW: read-only,
1205  * _PAGE_RWX: no access.
1206  */
1207 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1208 {
1209 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1210 	u32 spp = 0;
1211 	u32 **sbpm, *sbpp;
1212 
1213 	if (!spt)
1214 		return 0;
1215 
1216 	if (ea >= spt->maxaddr)
1217 		return 0;
1218 	if (ea < 0x100000000UL) {
1219 		/* addresses below 4GB use spt->low_prot */
1220 		sbpm = spt->low_prot;
1221 	} else {
1222 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1223 		if (!sbpm)
1224 			return 0;
1225 	}
1226 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1227 	if (!sbpp)
1228 		return 0;
1229 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1230 
1231 	/* extract 2-bit bitfield for this 4k subpage */
1232 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1233 
1234 	/*
1235 	 * 0 -> full premission
1236 	 * 1 -> Read only
1237 	 * 2 -> no access.
1238 	 * We return the flag that need to be cleared.
1239 	 */
1240 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1241 	return spp;
1242 }
1243 
1244 #else /* CONFIG_PPC_SUBPAGE_PROT */
1245 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1246 {
1247 	return 0;
1248 }
1249 #endif
1250 
1251 void hash_failure_debug(unsigned long ea, unsigned long access,
1252 			unsigned long vsid, unsigned long trap,
1253 			int ssize, int psize, int lpsize, unsigned long pte)
1254 {
1255 	if (!printk_ratelimit())
1256 		return;
1257 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1258 		ea, access, current->comm);
1259 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1260 		trap, vsid, ssize, psize, lpsize, pte);
1261 }
1262 
1263 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1264 			     int psize, bool user_region)
1265 {
1266 	if (user_region) {
1267 		if (psize != get_paca_psize(ea)) {
1268 			copy_mm_to_paca(mm);
1269 			slb_flush_and_restore_bolted();
1270 		}
1271 	} else if (get_paca()->vmalloc_sllp !=
1272 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1273 		get_paca()->vmalloc_sllp =
1274 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1275 		slb_vmalloc_update();
1276 	}
1277 }
1278 
1279 /*
1280  * Result code is:
1281  *  0 - handled
1282  *  1 - normal page fault
1283  * -1 - critical hash insertion error
1284  * -2 - access not permitted by subpage protection mechanism
1285  */
1286 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1287 		 unsigned long access, unsigned long trap,
1288 		 unsigned long flags)
1289 {
1290 	bool is_thp;
1291 	enum ctx_state prev_state = exception_enter();
1292 	pgd_t *pgdir;
1293 	unsigned long vsid;
1294 	pte_t *ptep;
1295 	unsigned hugeshift;
1296 	int rc, user_region = 0;
1297 	int psize, ssize;
1298 
1299 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1300 		ea, access, trap);
1301 	trace_hash_fault(ea, access, trap);
1302 
1303 	/* Get region & vsid */
1304 	switch (get_region_id(ea)) {
1305 	case USER_REGION_ID:
1306 		user_region = 1;
1307 		if (! mm) {
1308 			DBG_LOW(" user region with no mm !\n");
1309 			rc = 1;
1310 			goto bail;
1311 		}
1312 		psize = get_slice_psize(mm, ea);
1313 		ssize = user_segment_size(ea);
1314 		vsid = get_user_vsid(&mm->context, ea, ssize);
1315 		break;
1316 	case VMALLOC_REGION_ID:
1317 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1318 		psize = mmu_vmalloc_psize;
1319 		ssize = mmu_kernel_ssize;
1320 		flags |= HPTE_USE_KERNEL_KEY;
1321 		break;
1322 
1323 	case IO_REGION_ID:
1324 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1325 		psize = mmu_io_psize;
1326 		ssize = mmu_kernel_ssize;
1327 		flags |= HPTE_USE_KERNEL_KEY;
1328 		break;
1329 	default:
1330 		/*
1331 		 * Not a valid range
1332 		 * Send the problem up to do_page_fault()
1333 		 */
1334 		rc = 1;
1335 		goto bail;
1336 	}
1337 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1338 
1339 	/* Bad address. */
1340 	if (!vsid) {
1341 		DBG_LOW("Bad address!\n");
1342 		rc = 1;
1343 		goto bail;
1344 	}
1345 	/* Get pgdir */
1346 	pgdir = mm->pgd;
1347 	if (pgdir == NULL) {
1348 		rc = 1;
1349 		goto bail;
1350 	}
1351 
1352 	/* Check CPU locality */
1353 	if (user_region && mm_is_thread_local(mm))
1354 		flags |= HPTE_LOCAL_UPDATE;
1355 
1356 #ifndef CONFIG_PPC_64K_PAGES
1357 	/*
1358 	 * If we use 4K pages and our psize is not 4K, then we might
1359 	 * be hitting a special driver mapping, and need to align the
1360 	 * address before we fetch the PTE.
1361 	 *
1362 	 * It could also be a hugepage mapping, in which case this is
1363 	 * not necessary, but it's not harmful, either.
1364 	 */
1365 	if (psize != MMU_PAGE_4K)
1366 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1367 #endif /* CONFIG_PPC_64K_PAGES */
1368 
1369 	/* Get PTE and page size from page tables */
1370 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1371 	if (ptep == NULL || !pte_present(*ptep)) {
1372 		DBG_LOW(" no PTE !\n");
1373 		rc = 1;
1374 		goto bail;
1375 	}
1376 
1377 	/*
1378 	 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1379 	 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1380 	 *
1381 	 * We can safely use the return pte address in rest of the function
1382 	 * because we do set H_PAGE_BUSY which prevents further updates to pte
1383 	 * from generic code.
1384 	 */
1385 	access |= _PAGE_PRESENT | _PAGE_PTE;
1386 
1387 	/*
1388 	 * Pre-check access permissions (will be re-checked atomically
1389 	 * in __hash_page_XX but this pre-check is a fast path
1390 	 */
1391 	if (!check_pte_access(access, pte_val(*ptep))) {
1392 		DBG_LOW(" no access !\n");
1393 		rc = 1;
1394 		goto bail;
1395 	}
1396 
1397 	if (hugeshift) {
1398 		if (is_thp)
1399 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1400 					     trap, flags, ssize, psize);
1401 #ifdef CONFIG_HUGETLB_PAGE
1402 		else
1403 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1404 					      flags, ssize, hugeshift, psize);
1405 #else
1406 		else {
1407 			/*
1408 			 * if we have hugeshift, and is not transhuge with
1409 			 * hugetlb disabled, something is really wrong.
1410 			 */
1411 			rc = 1;
1412 			WARN_ON(1);
1413 		}
1414 #endif
1415 		if (current->mm == mm)
1416 			check_paca_psize(ea, mm, psize, user_region);
1417 
1418 		goto bail;
1419 	}
1420 
1421 #ifndef CONFIG_PPC_64K_PAGES
1422 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1423 #else
1424 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1425 		pte_val(*(ptep + PTRS_PER_PTE)));
1426 #endif
1427 	/* Do actual hashing */
1428 #ifdef CONFIG_PPC_64K_PAGES
1429 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1430 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1431 		demote_segment_4k(mm, ea);
1432 		psize = MMU_PAGE_4K;
1433 	}
1434 
1435 	/*
1436 	 * If this PTE is non-cacheable and we have restrictions on
1437 	 * using non cacheable large pages, then we switch to 4k
1438 	 */
1439 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1440 		if (user_region) {
1441 			demote_segment_4k(mm, ea);
1442 			psize = MMU_PAGE_4K;
1443 		} else if (ea < VMALLOC_END) {
1444 			/*
1445 			 * some driver did a non-cacheable mapping
1446 			 * in vmalloc space, so switch vmalloc
1447 			 * to 4k pages
1448 			 */
1449 			printk(KERN_ALERT "Reducing vmalloc segment "
1450 			       "to 4kB pages because of "
1451 			       "non-cacheable mapping\n");
1452 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1453 			copro_flush_all_slbs(mm);
1454 		}
1455 	}
1456 
1457 #endif /* CONFIG_PPC_64K_PAGES */
1458 
1459 	if (current->mm == mm)
1460 		check_paca_psize(ea, mm, psize, user_region);
1461 
1462 #ifdef CONFIG_PPC_64K_PAGES
1463 	if (psize == MMU_PAGE_64K)
1464 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1465 				     flags, ssize);
1466 	else
1467 #endif /* CONFIG_PPC_64K_PAGES */
1468 	{
1469 		int spp = subpage_protection(mm, ea);
1470 		if (access & spp)
1471 			rc = -2;
1472 		else
1473 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1474 					    flags, ssize, spp);
1475 	}
1476 
1477 	/*
1478 	 * Dump some info in case of hash insertion failure, they should
1479 	 * never happen so it is really useful to know if/when they do
1480 	 */
1481 	if (rc == -1)
1482 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1483 				   psize, pte_val(*ptep));
1484 #ifndef CONFIG_PPC_64K_PAGES
1485 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1486 #else
1487 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1488 		pte_val(*(ptep + PTRS_PER_PTE)));
1489 #endif
1490 	DBG_LOW(" -> rc=%d\n", rc);
1491 
1492 bail:
1493 	exception_exit(prev_state);
1494 	return rc;
1495 }
1496 EXPORT_SYMBOL_GPL(hash_page_mm);
1497 
1498 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1499 	      unsigned long dsisr)
1500 {
1501 	unsigned long flags = 0;
1502 	struct mm_struct *mm = current->mm;
1503 
1504 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1505 	    (get_region_id(ea) == IO_REGION_ID))
1506 		mm = &init_mm;
1507 
1508 	if (dsisr & DSISR_NOHPTE)
1509 		flags |= HPTE_NOHPTE_UPDATE;
1510 
1511 	return hash_page_mm(mm, ea, access, trap, flags);
1512 }
1513 EXPORT_SYMBOL_GPL(hash_page);
1514 
1515 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
1516 		unsigned long msr)
1517 {
1518 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1519 	unsigned long flags = 0;
1520 	struct mm_struct *mm = current->mm;
1521 	unsigned int region_id = get_region_id(ea);
1522 
1523 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1524 		mm = &init_mm;
1525 
1526 	if (dsisr & DSISR_NOHPTE)
1527 		flags |= HPTE_NOHPTE_UPDATE;
1528 
1529 	if (dsisr & DSISR_ISSTORE)
1530 		access |= _PAGE_WRITE;
1531 	/*
1532 	 * We set _PAGE_PRIVILEGED only when
1533 	 * kernel mode access kernel space.
1534 	 *
1535 	 * _PAGE_PRIVILEGED is NOT set
1536 	 * 1) when kernel mode access user space
1537 	 * 2) user space access kernel space.
1538 	 */
1539 	access |= _PAGE_PRIVILEGED;
1540 	if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1541 		access &= ~_PAGE_PRIVILEGED;
1542 
1543 	if (trap == 0x400)
1544 		access |= _PAGE_EXEC;
1545 
1546 	return hash_page_mm(mm, ea, access, trap, flags);
1547 }
1548 
1549 #ifdef CONFIG_PPC_MM_SLICES
1550 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1551 {
1552 	int psize = get_slice_psize(mm, ea);
1553 
1554 	/* We only prefault standard pages for now */
1555 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1556 		return false;
1557 
1558 	/*
1559 	 * Don't prefault if subpage protection is enabled for the EA.
1560 	 */
1561 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1562 		return false;
1563 
1564 	return true;
1565 }
1566 #else
1567 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1568 {
1569 	return true;
1570 }
1571 #endif
1572 
1573 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1574 			 bool is_exec, unsigned long trap)
1575 {
1576 	unsigned long vsid;
1577 	pgd_t *pgdir;
1578 	int rc, ssize, update_flags = 0;
1579 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1580 	unsigned long flags;
1581 
1582 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1583 
1584 	if (!should_hash_preload(mm, ea))
1585 		return;
1586 
1587 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1588 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1589 
1590 	/* Get Linux PTE if available */
1591 	pgdir = mm->pgd;
1592 	if (pgdir == NULL)
1593 		return;
1594 
1595 	/* Get VSID */
1596 	ssize = user_segment_size(ea);
1597 	vsid = get_user_vsid(&mm->context, ea, ssize);
1598 	if (!vsid)
1599 		return;
1600 
1601 #ifdef CONFIG_PPC_64K_PAGES
1602 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1603 	 * a 64K kernel), then we don't preload, hash_page() will take
1604 	 * care of it once we actually try to access the page.
1605 	 * That way we don't have to duplicate all of the logic for segment
1606 	 * page size demotion here
1607 	 * Called with  PTL held, hence can be sure the value won't change in
1608 	 * between.
1609 	 */
1610 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1611 		return;
1612 #endif /* CONFIG_PPC_64K_PAGES */
1613 
1614 	/*
1615 	 * __hash_page_* must run with interrupts off, as it sets the
1616 	 * H_PAGE_BUSY bit. It's possible for perf interrupts to hit at any
1617 	 * time and may take a hash fault reading the user stack, see
1618 	 * read_user_stack_slow() in the powerpc/perf code.
1619 	 *
1620 	 * If that takes a hash fault on the same page as we lock here, it
1621 	 * will bail out when seeing H_PAGE_BUSY set, and retry the access
1622 	 * leading to an infinite loop.
1623 	 *
1624 	 * Disabling interrupts here does not prevent perf interrupts, but it
1625 	 * will prevent them taking hash faults (see the NMI test in
1626 	 * do_hash_page), then read_user_stack's copy_from_user_nofault will
1627 	 * fail and perf will fall back to read_user_stack_slow(), which
1628 	 * walks the Linux page tables.
1629 	 *
1630 	 * Interrupts must also be off for the duration of the
1631 	 * mm_is_thread_local test and update, to prevent preempt running the
1632 	 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1633 	 */
1634 	local_irq_save(flags);
1635 
1636 	/* Is that local to this CPU ? */
1637 	if (mm_is_thread_local(mm))
1638 		update_flags |= HPTE_LOCAL_UPDATE;
1639 
1640 	/* Hash it in */
1641 #ifdef CONFIG_PPC_64K_PAGES
1642 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1643 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1644 				     update_flags, ssize);
1645 	else
1646 #endif /* CONFIG_PPC_64K_PAGES */
1647 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1648 				    ssize, subpage_protection(mm, ea));
1649 
1650 	/* Dump some info in case of hash insertion failure, they should
1651 	 * never happen so it is really useful to know if/when they do
1652 	 */
1653 	if (rc == -1)
1654 		hash_failure_debug(ea, access, vsid, trap, ssize,
1655 				   mm_ctx_user_psize(&mm->context),
1656 				   mm_ctx_user_psize(&mm->context),
1657 				   pte_val(*ptep));
1658 
1659 	local_irq_restore(flags);
1660 }
1661 
1662 /*
1663  * This is called at the end of handling a user page fault, when the
1664  * fault has been handled by updating a PTE in the linux page tables.
1665  * We use it to preload an HPTE into the hash table corresponding to
1666  * the updated linux PTE.
1667  *
1668  * This must always be called with the pte lock held.
1669  */
1670 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1671 		      pte_t *ptep)
1672 {
1673 	/*
1674 	 * We don't need to worry about _PAGE_PRESENT here because we are
1675 	 * called with either mm->page_table_lock held or ptl lock held
1676 	 */
1677 	unsigned long trap;
1678 	bool is_exec;
1679 
1680 	if (radix_enabled())
1681 		return;
1682 
1683 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1684 	if (!pte_young(*ptep) || address >= TASK_SIZE)
1685 		return;
1686 
1687 	/*
1688 	 * We try to figure out if we are coming from an instruction
1689 	 * access fault and pass that down to __hash_page so we avoid
1690 	 * double-faulting on execution of fresh text. We have to test
1691 	 * for regs NULL since init will get here first thing at boot.
1692 	 *
1693 	 * We also avoid filling the hash if not coming from a fault.
1694 	 */
1695 
1696 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1697 	switch (trap) {
1698 	case 0x300:
1699 		is_exec = false;
1700 		break;
1701 	case 0x400:
1702 		is_exec = true;
1703 		break;
1704 	default:
1705 		return;
1706 	}
1707 
1708 	hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1709 }
1710 
1711 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1712 static inline void tm_flush_hash_page(int local)
1713 {
1714 	/*
1715 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1716 	 * page back to a block device w/PIO could pick up transactional data
1717 	 * (bad!) so we force an abort here. Before the sync the page will be
1718 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1719 	 * kernel uses a page from userspace without unmapping it first, it may
1720 	 * see the speculated version.
1721 	 */
1722 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1723 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1724 		tm_enable();
1725 		tm_abort(TM_CAUSE_TLBI);
1726 	}
1727 }
1728 #else
1729 static inline void tm_flush_hash_page(int local)
1730 {
1731 }
1732 #endif
1733 
1734 /*
1735  * Return the global hash slot, corresponding to the given PTE, which contains
1736  * the HPTE.
1737  */
1738 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1739 		int ssize, real_pte_t rpte, unsigned int subpg_index)
1740 {
1741 	unsigned long hash, gslot, hidx;
1742 
1743 	hash = hpt_hash(vpn, shift, ssize);
1744 	hidx = __rpte_to_hidx(rpte, subpg_index);
1745 	if (hidx & _PTEIDX_SECONDARY)
1746 		hash = ~hash;
1747 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1748 	gslot += hidx & _PTEIDX_GROUP_IX;
1749 	return gslot;
1750 }
1751 
1752 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1753 		     unsigned long flags)
1754 {
1755 	unsigned long index, shift, gslot;
1756 	int local = flags & HPTE_LOCAL_UPDATE;
1757 
1758 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1759 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1760 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1761 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1762 		/*
1763 		 * We use same base page size and actual psize, because we don't
1764 		 * use these functions for hugepage
1765 		 */
1766 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1767 					     ssize, local);
1768 	} pte_iterate_hashed_end();
1769 
1770 	tm_flush_hash_page(local);
1771 }
1772 
1773 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1774 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1775 			 pmd_t *pmdp, unsigned int psize, int ssize,
1776 			 unsigned long flags)
1777 {
1778 	int i, max_hpte_count, valid;
1779 	unsigned long s_addr;
1780 	unsigned char *hpte_slot_array;
1781 	unsigned long hidx, shift, vpn, hash, slot;
1782 	int local = flags & HPTE_LOCAL_UPDATE;
1783 
1784 	s_addr = addr & HPAGE_PMD_MASK;
1785 	hpte_slot_array = get_hpte_slot_array(pmdp);
1786 	/*
1787 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1788 	 * we will find the below NULL. This happens when we do
1789 	 * split_huge_pmd
1790 	 */
1791 	if (!hpte_slot_array)
1792 		return;
1793 
1794 	if (mmu_hash_ops.hugepage_invalidate) {
1795 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1796 						 psize, ssize, local);
1797 		goto tm_abort;
1798 	}
1799 	/*
1800 	 * No bluk hpte removal support, invalidate each entry
1801 	 */
1802 	shift = mmu_psize_defs[psize].shift;
1803 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1804 	for (i = 0; i < max_hpte_count; i++) {
1805 		/*
1806 		 * 8 bits per each hpte entries
1807 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1808 		 */
1809 		valid = hpte_valid(hpte_slot_array, i);
1810 		if (!valid)
1811 			continue;
1812 		hidx =  hpte_hash_index(hpte_slot_array, i);
1813 
1814 		/* get the vpn */
1815 		addr = s_addr + (i * (1ul << shift));
1816 		vpn = hpt_vpn(addr, vsid, ssize);
1817 		hash = hpt_hash(vpn, shift, ssize);
1818 		if (hidx & _PTEIDX_SECONDARY)
1819 			hash = ~hash;
1820 
1821 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1822 		slot += hidx & _PTEIDX_GROUP_IX;
1823 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1824 					     MMU_PAGE_16M, ssize, local);
1825 	}
1826 tm_abort:
1827 	tm_flush_hash_page(local);
1828 }
1829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1830 
1831 void flush_hash_range(unsigned long number, int local)
1832 {
1833 	if (mmu_hash_ops.flush_hash_range)
1834 		mmu_hash_ops.flush_hash_range(number, local);
1835 	else {
1836 		int i;
1837 		struct ppc64_tlb_batch *batch =
1838 			this_cpu_ptr(&ppc64_tlb_batch);
1839 
1840 		for (i = 0; i < number; i++)
1841 			flush_hash_page(batch->vpn[i], batch->pte[i],
1842 					batch->psize, batch->ssize, local);
1843 	}
1844 }
1845 
1846 /*
1847  * low_hash_fault is called when we the low level hash code failed
1848  * to instert a PTE due to an hypervisor error
1849  */
1850 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1851 {
1852 	enum ctx_state prev_state = exception_enter();
1853 
1854 	if (user_mode(regs)) {
1855 #ifdef CONFIG_PPC_SUBPAGE_PROT
1856 		if (rc == -2)
1857 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1858 		else
1859 #endif
1860 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1861 	} else
1862 		bad_page_fault(regs, address, SIGBUS);
1863 
1864 	exception_exit(prev_state);
1865 }
1866 
1867 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1868 			   unsigned long pa, unsigned long rflags,
1869 			   unsigned long vflags, int psize, int ssize)
1870 {
1871 	unsigned long hpte_group;
1872 	long slot;
1873 
1874 repeat:
1875 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1876 
1877 	/* Insert into the hash table, primary slot */
1878 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1879 					psize, psize, ssize);
1880 
1881 	/* Primary is full, try the secondary */
1882 	if (unlikely(slot == -1)) {
1883 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1884 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1885 						vflags | HPTE_V_SECONDARY,
1886 						psize, psize, ssize);
1887 		if (slot == -1) {
1888 			if (mftb() & 0x1)
1889 				hpte_group = (hash & htab_hash_mask) *
1890 						HPTES_PER_GROUP;
1891 
1892 			mmu_hash_ops.hpte_remove(hpte_group);
1893 			goto repeat;
1894 		}
1895 	}
1896 
1897 	return slot;
1898 }
1899 
1900 #ifdef CONFIG_DEBUG_PAGEALLOC
1901 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1902 {
1903 	unsigned long hash;
1904 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1905 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1906 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
1907 	long ret;
1908 
1909 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1910 
1911 	/* Don't create HPTE entries for bad address */
1912 	if (!vsid)
1913 		return;
1914 
1915 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1916 				    HPTE_V_BOLTED,
1917 				    mmu_linear_psize, mmu_kernel_ssize);
1918 
1919 	BUG_ON (ret < 0);
1920 	spin_lock(&linear_map_hash_lock);
1921 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1922 	linear_map_hash_slots[lmi] = ret | 0x80;
1923 	spin_unlock(&linear_map_hash_lock);
1924 }
1925 
1926 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1927 {
1928 	unsigned long hash, hidx, slot;
1929 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1930 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1931 
1932 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1933 	spin_lock(&linear_map_hash_lock);
1934 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1935 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1936 	linear_map_hash_slots[lmi] = 0;
1937 	spin_unlock(&linear_map_hash_lock);
1938 	if (hidx & _PTEIDX_SECONDARY)
1939 		hash = ~hash;
1940 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1941 	slot += hidx & _PTEIDX_GROUP_IX;
1942 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1943 				     mmu_linear_psize,
1944 				     mmu_kernel_ssize, 0);
1945 }
1946 
1947 void __kernel_map_pages(struct page *page, int numpages, int enable)
1948 {
1949 	unsigned long flags, vaddr, lmi;
1950 	int i;
1951 
1952 	local_irq_save(flags);
1953 	for (i = 0; i < numpages; i++, page++) {
1954 		vaddr = (unsigned long)page_address(page);
1955 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1956 		if (lmi >= linear_map_hash_count)
1957 			continue;
1958 		if (enable)
1959 			kernel_map_linear_page(vaddr, lmi);
1960 		else
1961 			kernel_unmap_linear_page(vaddr, lmi);
1962 	}
1963 	local_irq_restore(flags);
1964 }
1965 #endif /* CONFIG_DEBUG_PAGEALLOC */
1966 
1967 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1968 				phys_addr_t first_memblock_size)
1969 {
1970 	/*
1971 	 * We don't currently support the first MEMBLOCK not mapping 0
1972 	 * physical on those processors
1973 	 */
1974 	BUG_ON(first_memblock_base != 0);
1975 
1976 	/*
1977 	 * On virtualized systems the first entry is our RMA region aka VRMA,
1978 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
1979 	 * on real mode access.
1980 	 *
1981 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
1982 	 * to avoid some funky things such as RTAS bugs etc...
1983 	 *
1984 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
1985 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1986 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1987 	 * for virtual real mode addressing and so it doesn't make sense to
1988 	 * have an area larger than 1TB as it can't be addressed.
1989 	 */
1990 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1991 		ppc64_rma_size = first_memblock_size;
1992 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1993 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1994 		else
1995 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
1996 					       1UL << SID_SHIFT_1T);
1997 
1998 		/* Finally limit subsequent allocations */
1999 		memblock_set_current_limit(ppc64_rma_size);
2000 	} else {
2001 		ppc64_rma_size = ULONG_MAX;
2002 	}
2003 }
2004 
2005 #ifdef CONFIG_DEBUG_FS
2006 
2007 static int hpt_order_get(void *data, u64 *val)
2008 {
2009 	*val = ppc64_pft_size;
2010 	return 0;
2011 }
2012 
2013 static int hpt_order_set(void *data, u64 val)
2014 {
2015 	int ret;
2016 
2017 	if (!mmu_hash_ops.resize_hpt)
2018 		return -ENODEV;
2019 
2020 	cpus_read_lock();
2021 	ret = mmu_hash_ops.resize_hpt(val);
2022 	cpus_read_unlock();
2023 
2024 	return ret;
2025 }
2026 
2027 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2028 
2029 static int __init hash64_debugfs(void)
2030 {
2031 	debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root, NULL,
2032 			    &fops_hpt_order);
2033 	return 0;
2034 }
2035 machine_device_initcall(pseries, hash64_debugfs);
2036 #endif /* CONFIG_DEBUG_FS */
2037 
2038 void __init print_system_hash_info(void)
2039 {
2040 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2041 
2042 	if (htab_hash_mask)
2043 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2044 }
2045