1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2005, Paul Mackerras, IBM Corporation. 4 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation. 5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/mm_types.h> 10 #include <linux/mm.h> 11 #include <linux/stop_machine.h> 12 13 #include <asm/sections.h> 14 #include <asm/mmu.h> 15 #include <asm/tlb.h> 16 #include <asm/firmware.h> 17 18 #include <mm/mmu_decl.h> 19 20 #include <trace/events/thp.h> 21 22 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE)) 23 #warning Limited user VSID range means pagetable space is wasted 24 #endif 25 26 #ifdef CONFIG_SPARSEMEM_VMEMMAP 27 /* 28 * vmemmap is the starting address of the virtual address space where 29 * struct pages are allocated for all possible PFNs present on the system 30 * including holes and bad memory (hence sparse). These virtual struct 31 * pages are stored in sequence in this virtual address space irrespective 32 * of the fact whether the corresponding PFN is valid or not. This achieves 33 * constant relationship between address of struct page and its PFN. 34 * 35 * During boot or memory hotplug operation when a new memory section is 36 * added, physical memory allocation (including hash table bolting) will 37 * be performed for the set of struct pages which are part of the memory 38 * section. This saves memory by not allocating struct pages for PFNs 39 * which are not valid. 40 * 41 * ---------------------------------------------- 42 * | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES| 43 * ---------------------------------------------- 44 * 45 * f000000000000000 c000000000000000 46 * vmemmap +--------------+ +--------------+ 47 * + | page struct | +--------------> | page struct | 48 * | +--------------+ +--------------+ 49 * | | page struct | +--------------> | page struct | 50 * | +--------------+ | +--------------+ 51 * | | page struct | + +------> | page struct | 52 * | +--------------+ | +--------------+ 53 * | | page struct | | +--> | page struct | 54 * | +--------------+ | | +--------------+ 55 * | | page struct | | | 56 * | +--------------+ | | 57 * | | page struct | | | 58 * | +--------------+ | | 59 * | | page struct | | | 60 * | +--------------+ | | 61 * | | page struct | | | 62 * | +--------------+ | | 63 * | | page struct | +-------+ | 64 * | +--------------+ | 65 * | | page struct | +-----------+ 66 * | +--------------+ 67 * | | page struct | No mapping 68 * | +--------------+ 69 * | | page struct | No mapping 70 * v +--------------+ 71 * 72 * ----------------------------------------- 73 * | RELATION BETWEEN STRUCT PAGES AND PFNS| 74 * ----------------------------------------- 75 * 76 * vmemmap +--------------+ +---------------+ 77 * + | page struct | +-------------> | PFN | 78 * | +--------------+ +---------------+ 79 * | | page struct | +-------------> | PFN | 80 * | +--------------+ +---------------+ 81 * | | page struct | +-------------> | PFN | 82 * | +--------------+ +---------------+ 83 * | | page struct | +-------------> | PFN | 84 * | +--------------+ +---------------+ 85 * | | | 86 * | +--------------+ 87 * | | | 88 * | +--------------+ 89 * | | | 90 * | +--------------+ +---------------+ 91 * | | page struct | +-------------> | PFN | 92 * | +--------------+ +---------------+ 93 * | | | 94 * | +--------------+ 95 * | | | 96 * | +--------------+ +---------------+ 97 * | | page struct | +-------------> | PFN | 98 * | +--------------+ +---------------+ 99 * | | page struct | +-------------> | PFN | 100 * v +--------------+ +---------------+ 101 */ 102 /* 103 * On hash-based CPUs, the vmemmap is bolted in the hash table. 104 * 105 */ 106 int __meminit hash__vmemmap_create_mapping(unsigned long start, 107 unsigned long page_size, 108 unsigned long phys) 109 { 110 int rc; 111 112 if ((start + page_size) >= H_VMEMMAP_END) { 113 pr_warn("Outside the supported range\n"); 114 return -1; 115 } 116 117 rc = htab_bolt_mapping(start, start + page_size, phys, 118 pgprot_val(PAGE_KERNEL), 119 mmu_vmemmap_psize, mmu_kernel_ssize); 120 if (rc < 0) { 121 int rc2 = htab_remove_mapping(start, start + page_size, 122 mmu_vmemmap_psize, 123 mmu_kernel_ssize); 124 BUG_ON(rc2 && (rc2 != -ENOENT)); 125 } 126 return rc; 127 } 128 129 #ifdef CONFIG_MEMORY_HOTPLUG 130 void hash__vmemmap_remove_mapping(unsigned long start, 131 unsigned long page_size) 132 { 133 int rc = htab_remove_mapping(start, start + page_size, 134 mmu_vmemmap_psize, 135 mmu_kernel_ssize); 136 BUG_ON((rc < 0) && (rc != -ENOENT)); 137 WARN_ON(rc == -ENOENT); 138 } 139 #endif 140 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 141 142 /* 143 * map_kernel_page currently only called by __ioremap 144 * map_kernel_page adds an entry to the ioremap page table 145 * and adds an entry to the HPT, possibly bolting it 146 */ 147 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot) 148 { 149 pgd_t *pgdp; 150 p4d_t *p4dp; 151 pud_t *pudp; 152 pmd_t *pmdp; 153 pte_t *ptep; 154 155 BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE); 156 if (slab_is_available()) { 157 pgdp = pgd_offset_k(ea); 158 p4dp = p4d_offset(pgdp, ea); 159 pudp = pud_alloc(&init_mm, p4dp, ea); 160 if (!pudp) 161 return -ENOMEM; 162 pmdp = pmd_alloc(&init_mm, pudp, ea); 163 if (!pmdp) 164 return -ENOMEM; 165 ptep = pte_alloc_kernel(pmdp, ea); 166 if (!ptep) 167 return -ENOMEM; 168 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot)); 169 } else { 170 /* 171 * If the mm subsystem is not fully up, we cannot create a 172 * linux page table entry for this mapping. Simply bolt an 173 * entry in the hardware page table. 174 * 175 */ 176 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot), 177 mmu_io_psize, mmu_kernel_ssize)) { 178 printk(KERN_ERR "Failed to do bolted mapping IO " 179 "memory at %016lx !\n", pa); 180 return -ENOMEM; 181 } 182 } 183 184 smp_wmb(); 185 return 0; 186 } 187 188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 189 190 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, 191 pmd_t *pmdp, unsigned long clr, 192 unsigned long set) 193 { 194 __be64 old_be, tmp; 195 unsigned long old; 196 197 #ifdef CONFIG_DEBUG_VM 198 WARN_ON(!hash__pmd_trans_huge(*pmdp)); 199 assert_spin_locked(pmd_lockptr(mm, pmdp)); 200 #endif 201 202 __asm__ __volatile__( 203 "1: ldarx %0,0,%3\n\ 204 and. %1,%0,%6\n\ 205 bne- 1b \n\ 206 andc %1,%0,%4 \n\ 207 or %1,%1,%7\n\ 208 stdcx. %1,0,%3 \n\ 209 bne- 1b" 210 : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp) 211 : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp), 212 "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set)) 213 : "cc" ); 214 215 old = be64_to_cpu(old_be); 216 217 trace_hugepage_update_pmd(addr, old, clr, set); 218 if (old & H_PAGE_HASHPTE) 219 hpte_do_hugepage_flush(mm, addr, pmdp, old); 220 return old; 221 } 222 223 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, 224 pmd_t *pmdp) 225 { 226 pmd_t pmd; 227 228 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 229 VM_BUG_ON(pmd_trans_huge(*pmdp)); 230 231 pmd = *pmdp; 232 pmd_clear(pmdp); 233 /* 234 * Wait for all pending hash_page to finish. This is needed 235 * in case of subpage collapse. When we collapse normal pages 236 * to hugepage, we first clear the pmd, then invalidate all 237 * the PTE entries. The assumption here is that any low level 238 * page fault will see a none pmd and take the slow path that 239 * will wait on mmap_lock. But we could very well be in a 240 * hash_page with local ptep pointer value. Such a hash page 241 * can result in adding new HPTE entries for normal subpages. 242 * That means we could be modifying the page content as we 243 * copy them to a huge page. So wait for parallel hash_page 244 * to finish before invalidating HPTE entries. We can do this 245 * by sending an IPI to all the cpus and executing a dummy 246 * function there. 247 */ 248 serialize_against_pte_lookup(vma->vm_mm); 249 /* 250 * Now invalidate the hpte entries in the range 251 * covered by pmd. This make sure we take a 252 * fault and will find the pmd as none, which will 253 * result in a major fault which takes mmap_lock and 254 * hence wait for collapse to complete. Without this 255 * the __collapse_huge_page_copy can result in copying 256 * the old content. 257 */ 258 flush_hash_table_pmd_range(vma->vm_mm, &pmd, address); 259 return pmd; 260 } 261 262 /* 263 * We want to put the pgtable in pmd and use pgtable for tracking 264 * the base page size hptes 265 */ 266 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 267 pgtable_t pgtable) 268 { 269 pgtable_t *pgtable_slot; 270 271 assert_spin_locked(pmd_lockptr(mm, pmdp)); 272 /* 273 * we store the pgtable in the second half of PMD 274 */ 275 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD; 276 *pgtable_slot = pgtable; 277 /* 278 * expose the deposited pgtable to other cpus. 279 * before we set the hugepage PTE at pmd level 280 * hash fault code looks at the deposted pgtable 281 * to store hash index values. 282 */ 283 smp_wmb(); 284 } 285 286 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 287 { 288 pgtable_t pgtable; 289 pgtable_t *pgtable_slot; 290 291 assert_spin_locked(pmd_lockptr(mm, pmdp)); 292 293 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD; 294 pgtable = *pgtable_slot; 295 /* 296 * Once we withdraw, mark the entry NULL. 297 */ 298 *pgtable_slot = NULL; 299 /* 300 * We store HPTE information in the deposited PTE fragment. 301 * zero out the content on withdraw. 302 */ 303 memset(pgtable, 0, PTE_FRAG_SIZE); 304 return pgtable; 305 } 306 307 /* 308 * A linux hugepage PMD was changed and the corresponding hash table entries 309 * neesd to be flushed. 310 */ 311 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr, 312 pmd_t *pmdp, unsigned long old_pmd) 313 { 314 int ssize; 315 unsigned int psize; 316 unsigned long vsid; 317 unsigned long flags = 0; 318 319 /* get the base page size,vsid and segment size */ 320 #ifdef CONFIG_DEBUG_VM 321 psize = get_slice_psize(mm, addr); 322 BUG_ON(psize == MMU_PAGE_16M); 323 #endif 324 if (old_pmd & H_PAGE_COMBO) 325 psize = MMU_PAGE_4K; 326 else 327 psize = MMU_PAGE_64K; 328 329 if (!is_kernel_addr(addr)) { 330 ssize = user_segment_size(addr); 331 vsid = get_user_vsid(&mm->context, addr, ssize); 332 WARN_ON(vsid == 0); 333 } else { 334 vsid = get_kernel_vsid(addr, mmu_kernel_ssize); 335 ssize = mmu_kernel_ssize; 336 } 337 338 if (mm_is_thread_local(mm)) 339 flags |= HPTE_LOCAL_UPDATE; 340 341 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags); 342 } 343 344 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm, 345 unsigned long addr, pmd_t *pmdp) 346 { 347 pmd_t old_pmd; 348 pgtable_t pgtable; 349 unsigned long old; 350 pgtable_t *pgtable_slot; 351 352 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); 353 old_pmd = __pmd(old); 354 /* 355 * We have pmd == none and we are holding page_table_lock. 356 * So we can safely go and clear the pgtable hash 357 * index info. 358 */ 359 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD; 360 pgtable = *pgtable_slot; 361 /* 362 * Let's zero out old valid and hash index details 363 * hash fault look at them. 364 */ 365 memset(pgtable, 0, PTE_FRAG_SIZE); 366 return old_pmd; 367 } 368 369 int hash__has_transparent_hugepage(void) 370 { 371 372 if (!mmu_has_feature(MMU_FTR_16M_PAGE)) 373 return 0; 374 /* 375 * We support THP only if PMD_SIZE is 16MB. 376 */ 377 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT) 378 return 0; 379 /* 380 * We need to make sure that we support 16MB hugepage in a segment 381 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE 382 * of 64K. 383 */ 384 /* 385 * If we have 64K HPTE, we will be using that by default 386 */ 387 if (mmu_psize_defs[MMU_PAGE_64K].shift && 388 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1)) 389 return 0; 390 /* 391 * Ok we only have 4K HPTE 392 */ 393 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1) 394 return 0; 395 396 return 1; 397 } 398 EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage); 399 400 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 401 402 #ifdef CONFIG_STRICT_KERNEL_RWX 403 404 struct change_memory_parms { 405 unsigned long start, end, newpp; 406 unsigned int step, nr_cpus; 407 atomic_t master_cpu; 408 atomic_t cpu_counter; 409 }; 410 411 // We'd rather this was on the stack but it has to be in the RMO 412 static struct change_memory_parms chmem_parms; 413 414 // And therefore we need a lock to protect it from concurrent use 415 static DEFINE_MUTEX(chmem_lock); 416 417 static void change_memory_range(unsigned long start, unsigned long end, 418 unsigned int step, unsigned long newpp) 419 { 420 unsigned long idx; 421 422 pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n", 423 start, end, newpp, step); 424 425 for (idx = start; idx < end; idx += step) 426 /* Not sure if we can do much with the return value */ 427 mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize, 428 mmu_kernel_ssize); 429 } 430 431 static int notrace chmem_secondary_loop(struct change_memory_parms *parms) 432 { 433 unsigned long msr, tmp, flags; 434 int *p; 435 436 p = &parms->cpu_counter.counter; 437 438 local_irq_save(flags); 439 hard_irq_disable(); 440 441 asm volatile ( 442 // Switch to real mode and leave interrupts off 443 "mfmsr %[msr] ;" 444 "li %[tmp], %[MSR_IR_DR] ;" 445 "andc %[tmp], %[msr], %[tmp] ;" 446 "mtmsrd %[tmp] ;" 447 448 // Tell the master we are in real mode 449 "1: " 450 "lwarx %[tmp], 0, %[p] ;" 451 "addic %[tmp], %[tmp], -1 ;" 452 "stwcx. %[tmp], 0, %[p] ;" 453 "bne- 1b ;" 454 455 // Spin until the counter goes to zero 456 "2: ;" 457 "lwz %[tmp], 0(%[p]) ;" 458 "cmpwi %[tmp], 0 ;" 459 "bne- 2b ;" 460 461 // Switch back to virtual mode 462 "mtmsrd %[msr] ;" 463 464 : // outputs 465 [msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p) 466 : // inputs 467 [p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR) 468 : // clobbers 469 "cc", "xer" 470 ); 471 472 local_irq_restore(flags); 473 474 return 0; 475 } 476 477 static int change_memory_range_fn(void *data) 478 { 479 struct change_memory_parms *parms = data; 480 481 // First CPU goes through, all others wait. 482 if (atomic_xchg(&parms->master_cpu, 1) == 1) 483 return chmem_secondary_loop(parms); 484 485 // Wait for all but one CPU (this one) to call-in 486 while (atomic_read(&parms->cpu_counter) > 1) 487 barrier(); 488 489 change_memory_range(parms->start, parms->end, parms->step, parms->newpp); 490 491 mb(); 492 493 // Signal the other CPUs that we're done 494 atomic_dec(&parms->cpu_counter); 495 496 return 0; 497 } 498 499 static bool hash__change_memory_range(unsigned long start, unsigned long end, 500 unsigned long newpp) 501 { 502 unsigned int step, shift; 503 504 shift = mmu_psize_defs[mmu_linear_psize].shift; 505 step = 1 << shift; 506 507 start = ALIGN_DOWN(start, step); 508 end = ALIGN(end, step); // aligns up 509 510 if (start >= end) 511 return false; 512 513 if (firmware_has_feature(FW_FEATURE_LPAR)) { 514 mutex_lock(&chmem_lock); 515 516 chmem_parms.start = start; 517 chmem_parms.end = end; 518 chmem_parms.step = step; 519 chmem_parms.newpp = newpp; 520 atomic_set(&chmem_parms.master_cpu, 0); 521 522 cpus_read_lock(); 523 524 atomic_set(&chmem_parms.cpu_counter, num_online_cpus()); 525 526 // Ensure state is consistent before we call the other CPUs 527 mb(); 528 529 stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms, 530 cpu_online_mask); 531 532 cpus_read_unlock(); 533 mutex_unlock(&chmem_lock); 534 } else 535 change_memory_range(start, end, step, newpp); 536 537 return true; 538 } 539 540 void hash__mark_rodata_ro(void) 541 { 542 unsigned long start, end, pp; 543 544 start = (unsigned long)_stext; 545 end = (unsigned long)__end_rodata; 546 547 pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY); 548 549 WARN_ON(!hash__change_memory_range(start, end, pp)); 550 } 551 552 void hash__mark_initmem_nx(void) 553 { 554 unsigned long start, end, pp; 555 556 start = (unsigned long)__init_begin; 557 end = (unsigned long)__init_end; 558 559 pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY); 560 561 WARN_ON(!hash__change_memory_range(start, end, pp)); 562 } 563 #endif 564