xref: /linux/arch/powerpc/math-emu/udivmodti4.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* This has so very few changes over libgcc2's __udivmoddi4 it isn't funny.  */
2 
3 #include <math-emu/soft-fp.h>
4 
5 #undef count_leading_zeros
6 #define count_leading_zeros  __FP_CLZ
7 
8 void
9 _fp_udivmodti4(_FP_W_TYPE q[2], _FP_W_TYPE r[2],
10 	       _FP_W_TYPE n1, _FP_W_TYPE n0,
11 	       _FP_W_TYPE d1, _FP_W_TYPE d0)
12 {
13   _FP_W_TYPE q0, q1, r0, r1;
14   _FP_I_TYPE b, bm;
15 
16   if (d1 == 0)
17     {
18 #if !UDIV_NEEDS_NORMALIZATION
19       if (d0 > n1)
20 	{
21 	  /* 0q = nn / 0D */
22 
23 	  udiv_qrnnd (q0, n0, n1, n0, d0);
24 	  q1 = 0;
25 
26 	  /* Remainder in n0.  */
27 	}
28       else
29 	{
30 	  /* qq = NN / 0d */
31 
32 	  if (d0 == 0)
33 	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
34 
35 	  udiv_qrnnd (q1, n1, 0, n1, d0);
36 	  udiv_qrnnd (q0, n0, n1, n0, d0);
37 
38 	  /* Remainder in n0.  */
39 	}
40 
41       r0 = n0;
42       r1 = 0;
43 
44 #else /* UDIV_NEEDS_NORMALIZATION */
45 
46       if (d0 > n1)
47 	{
48 	  /* 0q = nn / 0D */
49 
50 	  count_leading_zeros (bm, d0);
51 
52 	  if (bm != 0)
53 	    {
54 	      /* Normalize, i.e. make the most significant bit of the
55 		 denominator set.  */
56 
57 	      d0 = d0 << bm;
58 	      n1 = (n1 << bm) | (n0 >> (_FP_W_TYPE_SIZE - bm));
59 	      n0 = n0 << bm;
60 	    }
61 
62 	  udiv_qrnnd (q0, n0, n1, n0, d0);
63 	  q1 = 0;
64 
65 	  /* Remainder in n0 >> bm.  */
66 	}
67       else
68 	{
69 	  /* qq = NN / 0d */
70 
71 	  if (d0 == 0)
72 	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
73 
74 	  count_leading_zeros (bm, d0);
75 
76 	  if (bm == 0)
77 	    {
78 	      /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
79 		 conclude (the most significant bit of n1 is set) /\ (the
80 		 leading quotient digit q1 = 1).
81 
82 		 This special case is necessary, not an optimization.
83 		 (Shifts counts of SI_TYPE_SIZE are undefined.)  */
84 
85 	      n1 -= d0;
86 	      q1 = 1;
87 	    }
88 	  else
89 	    {
90 	      _FP_W_TYPE n2;
91 
92 	      /* Normalize.  */
93 
94 	      b = _FP_W_TYPE_SIZE - bm;
95 
96 	      d0 = d0 << bm;
97 	      n2 = n1 >> b;
98 	      n1 = (n1 << bm) | (n0 >> b);
99 	      n0 = n0 << bm;
100 
101 	      udiv_qrnnd (q1, n1, n2, n1, d0);
102 	    }
103 
104 	  /* n1 != d0...  */
105 
106 	  udiv_qrnnd (q0, n0, n1, n0, d0);
107 
108 	  /* Remainder in n0 >> bm.  */
109 	}
110 
111       r0 = n0 >> bm;
112       r1 = 0;
113 #endif /* UDIV_NEEDS_NORMALIZATION */
114     }
115   else
116     {
117       if (d1 > n1)
118 	{
119 	  /* 00 = nn / DD */
120 
121 	  q0 = 0;
122 	  q1 = 0;
123 
124 	  /* Remainder in n1n0.  */
125 	  r0 = n0;
126 	  r1 = n1;
127 	}
128       else
129 	{
130 	  /* 0q = NN / dd */
131 
132 	  count_leading_zeros (bm, d1);
133 	  if (bm == 0)
134 	    {
135 	      /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
136 		 conclude (the most significant bit of n1 is set) /\ (the
137 		 quotient digit q0 = 0 or 1).
138 
139 		 This special case is necessary, not an optimization.  */
140 
141 	      /* The condition on the next line takes advantage of that
142 		 n1 >= d1 (true due to program flow).  */
143 	      if (n1 > d1 || n0 >= d0)
144 		{
145 		  q0 = 1;
146 		  sub_ddmmss (n1, n0, n1, n0, d1, d0);
147 		}
148 	      else
149 		q0 = 0;
150 
151 	      q1 = 0;
152 
153 	      r0 = n0;
154 	      r1 = n1;
155 	    }
156 	  else
157 	    {
158 	      _FP_W_TYPE m1, m0, n2;
159 
160 	      /* Normalize.  */
161 
162 	      b = _FP_W_TYPE_SIZE - bm;
163 
164 	      d1 = (d1 << bm) | (d0 >> b);
165 	      d0 = d0 << bm;
166 	      n2 = n1 >> b;
167 	      n1 = (n1 << bm) | (n0 >> b);
168 	      n0 = n0 << bm;
169 
170 	      udiv_qrnnd (q0, n1, n2, n1, d1);
171 	      umul_ppmm (m1, m0, q0, d0);
172 
173 	      if (m1 > n1 || (m1 == n1 && m0 > n0))
174 		{
175 		  q0--;
176 		  sub_ddmmss (m1, m0, m1, m0, d1, d0);
177 		}
178 
179 	      q1 = 0;
180 
181 	      /* Remainder in (n1n0 - m1m0) >> bm.  */
182 	      sub_ddmmss (n1, n0, n1, n0, m1, m0);
183 	      r0 = (n1 << b) | (n0 >> bm);
184 	      r1 = n1 >> bm;
185 	    }
186 	}
187     }
188 
189   q[0] = q0; q[1] = q1;
190   r[0] = r0, r[1] = r1;
191 }
192