1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Single-step support. 4 * 5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM 6 */ 7 #include <linux/kernel.h> 8 #include <linux/kprobes.h> 9 #include <linux/ptrace.h> 10 #include <linux/prefetch.h> 11 #include <asm/sstep.h> 12 #include <asm/processor.h> 13 #include <linux/uaccess.h> 14 #include <asm/cpu_has_feature.h> 15 #include <asm/cputable.h> 16 #include <asm/disassemble.h> 17 18 #ifdef CONFIG_PPC64 19 /* Bits in SRR1 that are copied from MSR */ 20 #define MSR_MASK 0xffffffff87c0ffffUL 21 #else 22 #define MSR_MASK 0x87c0ffff 23 #endif 24 25 /* Bits in XER */ 26 #define XER_SO 0x80000000U 27 #define XER_OV 0x40000000U 28 #define XER_CA 0x20000000U 29 #define XER_OV32 0x00080000U 30 #define XER_CA32 0x00040000U 31 32 #ifdef CONFIG_VSX 33 #define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe)) 34 #endif 35 36 #ifdef CONFIG_PPC_FPU 37 /* 38 * Functions in ldstfp.S 39 */ 40 extern void get_fpr(int rn, double *p); 41 extern void put_fpr(int rn, const double *p); 42 extern void get_vr(int rn, __vector128 *p); 43 extern void put_vr(int rn, __vector128 *p); 44 extern void load_vsrn(int vsr, const void *p); 45 extern void store_vsrn(int vsr, void *p); 46 extern void conv_sp_to_dp(const float *sp, double *dp); 47 extern void conv_dp_to_sp(const double *dp, float *sp); 48 #endif 49 50 #ifdef __powerpc64__ 51 /* 52 * Functions in quad.S 53 */ 54 extern int do_lq(unsigned long ea, unsigned long *regs); 55 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1); 56 extern int do_lqarx(unsigned long ea, unsigned long *regs); 57 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1, 58 unsigned int *crp); 59 #endif 60 61 #ifdef __LITTLE_ENDIAN__ 62 #define IS_LE 1 63 #define IS_BE 0 64 #else 65 #define IS_LE 0 66 #define IS_BE 1 67 #endif 68 69 /* 70 * Emulate the truncation of 64 bit values in 32-bit mode. 71 */ 72 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr, 73 unsigned long val) 74 { 75 if ((msr & MSR_64BIT) == 0) 76 val &= 0xffffffffUL; 77 return val; 78 } 79 80 /* 81 * Determine whether a conditional branch instruction would branch. 82 */ 83 static nokprobe_inline int branch_taken(unsigned int instr, 84 const struct pt_regs *regs, 85 struct instruction_op *op) 86 { 87 unsigned int bo = (instr >> 21) & 0x1f; 88 unsigned int bi; 89 90 if ((bo & 4) == 0) { 91 /* decrement counter */ 92 op->type |= DECCTR; 93 if (((bo >> 1) & 1) ^ (regs->ctr == 1)) 94 return 0; 95 } 96 if ((bo & 0x10) == 0) { 97 /* check bit from CR */ 98 bi = (instr >> 16) & 0x1f; 99 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1)) 100 return 0; 101 } 102 return 1; 103 } 104 105 static nokprobe_inline long address_ok(struct pt_regs *regs, 106 unsigned long ea, int nb) 107 { 108 if (!user_mode(regs)) 109 return 1; 110 if (access_ok((void __user *)ea, nb)) 111 return 1; 112 if (access_ok((void __user *)ea, 1)) 113 /* Access overlaps the end of the user region */ 114 regs->dar = TASK_SIZE_MAX - 1; 115 else 116 regs->dar = ea; 117 return 0; 118 } 119 120 /* 121 * Calculate effective address for a D-form instruction 122 */ 123 static nokprobe_inline unsigned long dform_ea(unsigned int instr, 124 const struct pt_regs *regs) 125 { 126 int ra; 127 unsigned long ea; 128 129 ra = (instr >> 16) & 0x1f; 130 ea = (signed short) instr; /* sign-extend */ 131 if (ra) 132 ea += regs->gpr[ra]; 133 134 return ea; 135 } 136 137 #ifdef __powerpc64__ 138 /* 139 * Calculate effective address for a DS-form instruction 140 */ 141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr, 142 const struct pt_regs *regs) 143 { 144 int ra; 145 unsigned long ea; 146 147 ra = (instr >> 16) & 0x1f; 148 ea = (signed short) (instr & ~3); /* sign-extend */ 149 if (ra) 150 ea += regs->gpr[ra]; 151 152 return ea; 153 } 154 155 /* 156 * Calculate effective address for a DQ-form instruction 157 */ 158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr, 159 const struct pt_regs *regs) 160 { 161 int ra; 162 unsigned long ea; 163 164 ra = (instr >> 16) & 0x1f; 165 ea = (signed short) (instr & ~0xf); /* sign-extend */ 166 if (ra) 167 ea += regs->gpr[ra]; 168 169 return ea; 170 } 171 #endif /* __powerpc64 */ 172 173 /* 174 * Calculate effective address for an X-form instruction 175 */ 176 static nokprobe_inline unsigned long xform_ea(unsigned int instr, 177 const struct pt_regs *regs) 178 { 179 int ra, rb; 180 unsigned long ea; 181 182 ra = (instr >> 16) & 0x1f; 183 rb = (instr >> 11) & 0x1f; 184 ea = regs->gpr[rb]; 185 if (ra) 186 ea += regs->gpr[ra]; 187 188 return ea; 189 } 190 191 /* 192 * Calculate effective address for a MLS:D-form / 8LS:D-form 193 * prefixed instruction 194 */ 195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr, 196 unsigned int suffix, 197 const struct pt_regs *regs) 198 { 199 int ra, prefix_r; 200 unsigned int dd; 201 unsigned long ea, d0, d1, d; 202 203 prefix_r = GET_PREFIX_R(instr); 204 ra = GET_PREFIX_RA(suffix); 205 206 d0 = instr & 0x3ffff; 207 d1 = suffix & 0xffff; 208 d = (d0 << 16) | d1; 209 210 /* 211 * sign extend a 34 bit number 212 */ 213 dd = (unsigned int)(d >> 2); 214 ea = (signed int)dd; 215 ea = (ea << 2) | (d & 0x3); 216 217 if (!prefix_r && ra) 218 ea += regs->gpr[ra]; 219 else if (!prefix_r && !ra) 220 ; /* Leave ea as is */ 221 else if (prefix_r) 222 ea += regs->nip; 223 224 /* 225 * (prefix_r && ra) is an invalid form. Should already be 226 * checked for by caller! 227 */ 228 229 return ea; 230 } 231 232 /* 233 * Return the largest power of 2, not greater than sizeof(unsigned long), 234 * such that x is a multiple of it. 235 */ 236 static nokprobe_inline unsigned long max_align(unsigned long x) 237 { 238 x |= sizeof(unsigned long); 239 return x & -x; /* isolates rightmost bit */ 240 } 241 242 static nokprobe_inline unsigned long byterev_2(unsigned long x) 243 { 244 return ((x >> 8) & 0xff) | ((x & 0xff) << 8); 245 } 246 247 static nokprobe_inline unsigned long byterev_4(unsigned long x) 248 { 249 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) | 250 ((x & 0xff00) << 8) | ((x & 0xff) << 24); 251 } 252 253 #ifdef __powerpc64__ 254 static nokprobe_inline unsigned long byterev_8(unsigned long x) 255 { 256 return (byterev_4(x) << 32) | byterev_4(x >> 32); 257 } 258 #endif 259 260 static nokprobe_inline void do_byte_reverse(void *ptr, int nb) 261 { 262 switch (nb) { 263 case 2: 264 *(u16 *)ptr = byterev_2(*(u16 *)ptr); 265 break; 266 case 4: 267 *(u32 *)ptr = byterev_4(*(u32 *)ptr); 268 break; 269 #ifdef __powerpc64__ 270 case 8: 271 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr); 272 break; 273 case 16: { 274 unsigned long *up = (unsigned long *)ptr; 275 unsigned long tmp; 276 tmp = byterev_8(up[0]); 277 up[0] = byterev_8(up[1]); 278 up[1] = tmp; 279 break; 280 } 281 case 32: { 282 unsigned long *up = (unsigned long *)ptr; 283 unsigned long tmp; 284 285 tmp = byterev_8(up[0]); 286 up[0] = byterev_8(up[3]); 287 up[3] = tmp; 288 tmp = byterev_8(up[2]); 289 up[2] = byterev_8(up[1]); 290 up[1] = tmp; 291 break; 292 } 293 294 #endif 295 default: 296 WARN_ON_ONCE(1); 297 } 298 } 299 300 static __always_inline int 301 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) 302 { 303 unsigned long x = 0; 304 305 switch (nb) { 306 case 1: 307 unsafe_get_user(x, (unsigned char __user *)ea, Efault); 308 break; 309 case 2: 310 unsafe_get_user(x, (unsigned short __user *)ea, Efault); 311 break; 312 case 4: 313 unsafe_get_user(x, (unsigned int __user *)ea, Efault); 314 break; 315 #ifdef __powerpc64__ 316 case 8: 317 unsafe_get_user(x, (unsigned long __user *)ea, Efault); 318 break; 319 #endif 320 } 321 *dest = x; 322 return 0; 323 324 Efault: 325 regs->dar = ea; 326 return -EFAULT; 327 } 328 329 static nokprobe_inline int 330 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) 331 { 332 int err; 333 334 if (is_kernel_addr(ea)) 335 return __read_mem_aligned(dest, ea, nb, regs); 336 337 if (user_read_access_begin((void __user *)ea, nb)) { 338 err = __read_mem_aligned(dest, ea, nb, regs); 339 user_read_access_end(); 340 } else { 341 err = -EFAULT; 342 regs->dar = ea; 343 } 344 345 return err; 346 } 347 348 /* 349 * Copy from userspace to a buffer, using the largest possible 350 * aligned accesses, up to sizeof(long). 351 */ 352 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 353 { 354 int c; 355 356 for (; nb > 0; nb -= c) { 357 c = max_align(ea); 358 if (c > nb) 359 c = max_align(nb); 360 switch (c) { 361 case 1: 362 unsafe_get_user(*dest, (u8 __user *)ea, Efault); 363 break; 364 case 2: 365 unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault); 366 break; 367 case 4: 368 unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault); 369 break; 370 #ifdef __powerpc64__ 371 case 8: 372 unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault); 373 break; 374 #endif 375 } 376 dest += c; 377 ea += c; 378 } 379 return 0; 380 381 Efault: 382 regs->dar = ea; 383 return -EFAULT; 384 } 385 386 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 387 { 388 int err; 389 390 if (is_kernel_addr(ea)) 391 return __copy_mem_in(dest, ea, nb, regs); 392 393 if (user_read_access_begin((void __user *)ea, nb)) { 394 err = __copy_mem_in(dest, ea, nb, regs); 395 user_read_access_end(); 396 } else { 397 err = -EFAULT; 398 regs->dar = ea; 399 } 400 401 return err; 402 } 403 404 static nokprobe_inline int read_mem_unaligned(unsigned long *dest, 405 unsigned long ea, int nb, 406 struct pt_regs *regs) 407 { 408 union { 409 unsigned long ul; 410 u8 b[sizeof(unsigned long)]; 411 } u; 412 int i; 413 int err; 414 415 u.ul = 0; 416 i = IS_BE ? sizeof(unsigned long) - nb : 0; 417 err = copy_mem_in(&u.b[i], ea, nb, regs); 418 if (!err) 419 *dest = u.ul; 420 return err; 421 } 422 423 /* 424 * Read memory at address ea for nb bytes, return 0 for success 425 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. 426 * If nb < sizeof(long), the result is right-justified on BE systems. 427 */ 428 static int read_mem(unsigned long *dest, unsigned long ea, int nb, 429 struct pt_regs *regs) 430 { 431 if (!address_ok(regs, ea, nb)) 432 return -EFAULT; 433 if ((ea & (nb - 1)) == 0) 434 return read_mem_aligned(dest, ea, nb, regs); 435 return read_mem_unaligned(dest, ea, nb, regs); 436 } 437 NOKPROBE_SYMBOL(read_mem); 438 439 static __always_inline int 440 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) 441 { 442 switch (nb) { 443 case 1: 444 unsafe_put_user(val, (unsigned char __user *)ea, Efault); 445 break; 446 case 2: 447 unsafe_put_user(val, (unsigned short __user *)ea, Efault); 448 break; 449 case 4: 450 unsafe_put_user(val, (unsigned int __user *)ea, Efault); 451 break; 452 #ifdef __powerpc64__ 453 case 8: 454 unsafe_put_user(val, (unsigned long __user *)ea, Efault); 455 break; 456 #endif 457 } 458 return 0; 459 460 Efault: 461 regs->dar = ea; 462 return -EFAULT; 463 } 464 465 static nokprobe_inline int 466 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) 467 { 468 int err; 469 470 if (is_kernel_addr(ea)) 471 return __write_mem_aligned(val, ea, nb, regs); 472 473 if (user_write_access_begin((void __user *)ea, nb)) { 474 err = __write_mem_aligned(val, ea, nb, regs); 475 user_write_access_end(); 476 } else { 477 err = -EFAULT; 478 regs->dar = ea; 479 } 480 481 return err; 482 } 483 484 /* 485 * Copy from a buffer to userspace, using the largest possible 486 * aligned accesses, up to sizeof(long). 487 */ 488 static __always_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 489 { 490 int c; 491 492 for (; nb > 0; nb -= c) { 493 c = max_align(ea); 494 if (c > nb) 495 c = max_align(nb); 496 switch (c) { 497 case 1: 498 unsafe_put_user(*dest, (u8 __user *)ea, Efault); 499 break; 500 case 2: 501 unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault); 502 break; 503 case 4: 504 unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault); 505 break; 506 #ifdef __powerpc64__ 507 case 8: 508 unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault); 509 break; 510 #endif 511 } 512 dest += c; 513 ea += c; 514 } 515 return 0; 516 517 Efault: 518 regs->dar = ea; 519 return -EFAULT; 520 } 521 522 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 523 { 524 int err; 525 526 if (is_kernel_addr(ea)) 527 return __copy_mem_out(dest, ea, nb, regs); 528 529 if (user_write_access_begin((void __user *)ea, nb)) { 530 err = __copy_mem_out(dest, ea, nb, regs); 531 user_write_access_end(); 532 } else { 533 err = -EFAULT; 534 regs->dar = ea; 535 } 536 537 return err; 538 } 539 540 static nokprobe_inline int write_mem_unaligned(unsigned long val, 541 unsigned long ea, int nb, 542 struct pt_regs *regs) 543 { 544 union { 545 unsigned long ul; 546 u8 b[sizeof(unsigned long)]; 547 } u; 548 int i; 549 550 u.ul = val; 551 i = IS_BE ? sizeof(unsigned long) - nb : 0; 552 return copy_mem_out(&u.b[i], ea, nb, regs); 553 } 554 555 /* 556 * Write memory at address ea for nb bytes, return 0 for success 557 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. 558 */ 559 static int write_mem(unsigned long val, unsigned long ea, int nb, 560 struct pt_regs *regs) 561 { 562 if (!address_ok(regs, ea, nb)) 563 return -EFAULT; 564 if ((ea & (nb - 1)) == 0) 565 return write_mem_aligned(val, ea, nb, regs); 566 return write_mem_unaligned(val, ea, nb, regs); 567 } 568 NOKPROBE_SYMBOL(write_mem); 569 570 #ifdef CONFIG_PPC_FPU 571 /* 572 * These access either the real FP register or the image in the 573 * thread_struct, depending on regs->msr & MSR_FP. 574 */ 575 static int do_fp_load(struct instruction_op *op, unsigned long ea, 576 struct pt_regs *regs, bool cross_endian) 577 { 578 int err, rn, nb; 579 union { 580 int i; 581 unsigned int u; 582 float f; 583 double d[2]; 584 unsigned long l[2]; 585 u8 b[2 * sizeof(double)]; 586 } u; 587 588 nb = GETSIZE(op->type); 589 if (nb > sizeof(u)) 590 return -EINVAL; 591 if (!address_ok(regs, ea, nb)) 592 return -EFAULT; 593 rn = op->reg; 594 err = copy_mem_in(u.b, ea, nb, regs); 595 if (err) 596 return err; 597 if (unlikely(cross_endian)) { 598 do_byte_reverse(u.b, min(nb, 8)); 599 if (nb == 16) 600 do_byte_reverse(&u.b[8], 8); 601 } 602 preempt_disable(); 603 if (nb == 4) { 604 if (op->type & FPCONV) 605 conv_sp_to_dp(&u.f, &u.d[0]); 606 else if (op->type & SIGNEXT) 607 u.l[0] = u.i; 608 else 609 u.l[0] = u.u; 610 } 611 if (regs->msr & MSR_FP) 612 put_fpr(rn, &u.d[0]); 613 else 614 current->thread.TS_FPR(rn) = u.l[0]; 615 if (nb == 16) { 616 /* lfdp */ 617 rn |= 1; 618 if (regs->msr & MSR_FP) 619 put_fpr(rn, &u.d[1]); 620 else 621 current->thread.TS_FPR(rn) = u.l[1]; 622 } 623 preempt_enable(); 624 return 0; 625 } 626 NOKPROBE_SYMBOL(do_fp_load); 627 628 static int do_fp_store(struct instruction_op *op, unsigned long ea, 629 struct pt_regs *regs, bool cross_endian) 630 { 631 int rn, nb; 632 union { 633 unsigned int u; 634 float f; 635 double d[2]; 636 unsigned long l[2]; 637 u8 b[2 * sizeof(double)]; 638 } u; 639 640 nb = GETSIZE(op->type); 641 if (nb > sizeof(u)) 642 return -EINVAL; 643 if (!address_ok(regs, ea, nb)) 644 return -EFAULT; 645 rn = op->reg; 646 preempt_disable(); 647 if (regs->msr & MSR_FP) 648 get_fpr(rn, &u.d[0]); 649 else 650 u.l[0] = current->thread.TS_FPR(rn); 651 if (nb == 4) { 652 if (op->type & FPCONV) 653 conv_dp_to_sp(&u.d[0], &u.f); 654 else 655 u.u = u.l[0]; 656 } 657 if (nb == 16) { 658 rn |= 1; 659 if (regs->msr & MSR_FP) 660 get_fpr(rn, &u.d[1]); 661 else 662 u.l[1] = current->thread.TS_FPR(rn); 663 } 664 preempt_enable(); 665 if (unlikely(cross_endian)) { 666 do_byte_reverse(u.b, min(nb, 8)); 667 if (nb == 16) 668 do_byte_reverse(&u.b[8], 8); 669 } 670 return copy_mem_out(u.b, ea, nb, regs); 671 } 672 NOKPROBE_SYMBOL(do_fp_store); 673 #endif 674 675 #ifdef CONFIG_ALTIVEC 676 /* For Altivec/VMX, no need to worry about alignment */ 677 static nokprobe_inline int do_vec_load(int rn, unsigned long ea, 678 int size, struct pt_regs *regs, 679 bool cross_endian) 680 { 681 int err; 682 union { 683 __vector128 v; 684 u8 b[sizeof(__vector128)]; 685 } u = {}; 686 687 if (size > sizeof(u)) 688 return -EINVAL; 689 690 if (!address_ok(regs, ea & ~0xfUL, 16)) 691 return -EFAULT; 692 /* align to multiple of size */ 693 ea &= ~(size - 1); 694 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs); 695 if (err) 696 return err; 697 if (unlikely(cross_endian)) 698 do_byte_reverse(&u.b[ea & 0xf], min_t(size_t, size, sizeof(u))); 699 preempt_disable(); 700 if (regs->msr & MSR_VEC) 701 put_vr(rn, &u.v); 702 else 703 current->thread.vr_state.vr[rn] = u.v; 704 preempt_enable(); 705 return 0; 706 } 707 708 static nokprobe_inline int do_vec_store(int rn, unsigned long ea, 709 int size, struct pt_regs *regs, 710 bool cross_endian) 711 { 712 union { 713 __vector128 v; 714 u8 b[sizeof(__vector128)]; 715 } u; 716 717 if (size > sizeof(u)) 718 return -EINVAL; 719 720 if (!address_ok(regs, ea & ~0xfUL, 16)) 721 return -EFAULT; 722 /* align to multiple of size */ 723 ea &= ~(size - 1); 724 725 preempt_disable(); 726 if (regs->msr & MSR_VEC) 727 get_vr(rn, &u.v); 728 else 729 u.v = current->thread.vr_state.vr[rn]; 730 preempt_enable(); 731 if (unlikely(cross_endian)) 732 do_byte_reverse(&u.b[ea & 0xf], min_t(size_t, size, sizeof(u))); 733 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs); 734 } 735 #endif /* CONFIG_ALTIVEC */ 736 737 #ifdef __powerpc64__ 738 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea, 739 int reg, bool cross_endian) 740 { 741 int err; 742 743 if (!address_ok(regs, ea, 16)) 744 return -EFAULT; 745 /* if aligned, should be atomic */ 746 if ((ea & 0xf) == 0) { 747 err = do_lq(ea, ®s->gpr[reg]); 748 } else { 749 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs); 750 if (!err) 751 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs); 752 } 753 if (!err && unlikely(cross_endian)) 754 do_byte_reverse(®s->gpr[reg], 16); 755 return err; 756 } 757 758 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea, 759 int reg, bool cross_endian) 760 { 761 int err; 762 unsigned long vals[2]; 763 764 if (!address_ok(regs, ea, 16)) 765 return -EFAULT; 766 vals[0] = regs->gpr[reg]; 767 vals[1] = regs->gpr[reg + 1]; 768 if (unlikely(cross_endian)) 769 do_byte_reverse(vals, 16); 770 771 /* if aligned, should be atomic */ 772 if ((ea & 0xf) == 0) 773 return do_stq(ea, vals[0], vals[1]); 774 775 err = write_mem(vals[IS_LE], ea, 8, regs); 776 if (!err) 777 err = write_mem(vals[IS_BE], ea + 8, 8, regs); 778 return err; 779 } 780 #endif /* __powerpc64 */ 781 782 #ifdef CONFIG_VSX 783 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg, 784 const void *mem, bool rev) 785 { 786 int size, read_size; 787 int i, j; 788 const unsigned int *wp; 789 const unsigned short *hp; 790 const unsigned char *bp; 791 792 size = GETSIZE(op->type); 793 reg->d[0] = reg->d[1] = 0; 794 795 switch (op->element_size) { 796 case 32: 797 /* [p]lxvp[x] */ 798 case 16: 799 /* whole vector; lxv[x] or lxvl[l] */ 800 if (size == 0) 801 break; 802 memcpy(reg, mem, size); 803 if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) 804 rev = !rev; 805 if (rev) 806 do_byte_reverse(reg, size); 807 break; 808 case 8: 809 /* scalar loads, lxvd2x, lxvdsx */ 810 read_size = (size >= 8) ? 8 : size; 811 i = IS_LE ? 8 : 8 - read_size; 812 memcpy(®->b[i], mem, read_size); 813 if (rev) 814 do_byte_reverse(®->b[i], 8); 815 if (size < 8) { 816 if (op->type & SIGNEXT) { 817 /* size == 4 is the only case here */ 818 reg->d[IS_LE] = (signed int) reg->d[IS_LE]; 819 } else if (op->vsx_flags & VSX_FPCONV) { 820 preempt_disable(); 821 conv_sp_to_dp(®->fp[1 + IS_LE], 822 ®->dp[IS_LE]); 823 preempt_enable(); 824 } 825 } else { 826 if (size == 16) { 827 unsigned long v = *(unsigned long *)(mem + 8); 828 reg->d[IS_BE] = !rev ? v : byterev_8(v); 829 } else if (op->vsx_flags & VSX_SPLAT) 830 reg->d[IS_BE] = reg->d[IS_LE]; 831 } 832 break; 833 case 4: 834 /* lxvw4x, lxvwsx */ 835 wp = mem; 836 for (j = 0; j < size / 4; ++j) { 837 i = IS_LE ? 3 - j : j; 838 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++); 839 } 840 if (op->vsx_flags & VSX_SPLAT) { 841 u32 val = reg->w[IS_LE ? 3 : 0]; 842 for (; j < 4; ++j) { 843 i = IS_LE ? 3 - j : j; 844 reg->w[i] = val; 845 } 846 } 847 break; 848 case 2: 849 /* lxvh8x */ 850 hp = mem; 851 for (j = 0; j < size / 2; ++j) { 852 i = IS_LE ? 7 - j : j; 853 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++); 854 } 855 break; 856 case 1: 857 /* lxvb16x */ 858 bp = mem; 859 for (j = 0; j < size; ++j) { 860 i = IS_LE ? 15 - j : j; 861 reg->b[i] = *bp++; 862 } 863 break; 864 } 865 } 866 EXPORT_SYMBOL_GPL(emulate_vsx_load); 867 NOKPROBE_SYMBOL(emulate_vsx_load); 868 869 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg, 870 void *mem, bool rev) 871 { 872 int size, write_size; 873 int i, j; 874 union vsx_reg buf; 875 unsigned int *wp; 876 unsigned short *hp; 877 unsigned char *bp; 878 879 size = GETSIZE(op->type); 880 881 switch (op->element_size) { 882 case 32: 883 /* [p]stxvp[x] */ 884 if (size == 0) 885 break; 886 if (rev) { 887 /* reverse 32 bytes */ 888 union vsx_reg buf32[2]; 889 buf32[0].d[0] = byterev_8(reg[1].d[1]); 890 buf32[0].d[1] = byterev_8(reg[1].d[0]); 891 buf32[1].d[0] = byterev_8(reg[0].d[1]); 892 buf32[1].d[1] = byterev_8(reg[0].d[0]); 893 memcpy(mem, buf32, size); 894 } else { 895 memcpy(mem, reg, size); 896 } 897 break; 898 case 16: 899 /* stxv, stxvx, stxvl, stxvll */ 900 if (size == 0) 901 break; 902 if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) 903 rev = !rev; 904 if (rev) { 905 /* reverse 16 bytes */ 906 buf.d[0] = byterev_8(reg->d[1]); 907 buf.d[1] = byterev_8(reg->d[0]); 908 reg = &buf; 909 } 910 memcpy(mem, reg, size); 911 break; 912 case 8: 913 /* scalar stores, stxvd2x */ 914 write_size = (size >= 8) ? 8 : size; 915 i = IS_LE ? 8 : 8 - write_size; 916 if (size < 8 && op->vsx_flags & VSX_FPCONV) { 917 buf.d[0] = buf.d[1] = 0; 918 preempt_disable(); 919 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]); 920 preempt_enable(); 921 reg = &buf; 922 } 923 memcpy(mem, ®->b[i], write_size); 924 if (size == 16) 925 memcpy(mem + 8, ®->d[IS_BE], 8); 926 if (unlikely(rev)) { 927 do_byte_reverse(mem, write_size); 928 if (size == 16) 929 do_byte_reverse(mem + 8, 8); 930 } 931 break; 932 case 4: 933 /* stxvw4x */ 934 wp = mem; 935 for (j = 0; j < size / 4; ++j) { 936 i = IS_LE ? 3 - j : j; 937 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]); 938 } 939 break; 940 case 2: 941 /* stxvh8x */ 942 hp = mem; 943 for (j = 0; j < size / 2; ++j) { 944 i = IS_LE ? 7 - j : j; 945 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]); 946 } 947 break; 948 case 1: 949 /* stvxb16x */ 950 bp = mem; 951 for (j = 0; j < size; ++j) { 952 i = IS_LE ? 15 - j : j; 953 *bp++ = reg->b[i]; 954 } 955 break; 956 } 957 } 958 EXPORT_SYMBOL_GPL(emulate_vsx_store); 959 NOKPROBE_SYMBOL(emulate_vsx_store); 960 961 static nokprobe_inline int do_vsx_load(struct instruction_op *op, 962 unsigned long ea, struct pt_regs *regs, 963 bool cross_endian) 964 { 965 int reg = op->reg; 966 int i, j, nr_vsx_regs; 967 u8 mem[32]; 968 union vsx_reg buf[2]; 969 int size = GETSIZE(op->type); 970 971 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs)) 972 return -EFAULT; 973 974 nr_vsx_regs = max(1ul, size / sizeof(__vector128)); 975 emulate_vsx_load(op, buf, mem, cross_endian); 976 preempt_disable(); 977 if (reg < 32) { 978 /* FP regs + extensions */ 979 if (regs->msr & MSR_FP) { 980 for (i = 0; i < nr_vsx_regs; i++) { 981 j = IS_LE ? nr_vsx_regs - i - 1 : i; 982 load_vsrn(reg + i, &buf[j].v); 983 } 984 } else { 985 for (i = 0; i < nr_vsx_regs; i++) { 986 j = IS_LE ? nr_vsx_regs - i - 1 : i; 987 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0]; 988 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1]; 989 } 990 } 991 } else { 992 if (regs->msr & MSR_VEC) { 993 for (i = 0; i < nr_vsx_regs; i++) { 994 j = IS_LE ? nr_vsx_regs - i - 1 : i; 995 load_vsrn(reg + i, &buf[j].v); 996 } 997 } else { 998 for (i = 0; i < nr_vsx_regs; i++) { 999 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1000 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v; 1001 } 1002 } 1003 } 1004 preempt_enable(); 1005 return 0; 1006 } 1007 1008 static nokprobe_inline int do_vsx_store(struct instruction_op *op, 1009 unsigned long ea, struct pt_regs *regs, 1010 bool cross_endian) 1011 { 1012 int reg = op->reg; 1013 int i, j, nr_vsx_regs; 1014 u8 mem[32]; 1015 union vsx_reg buf[2]; 1016 int size = GETSIZE(op->type); 1017 1018 if (!address_ok(regs, ea, size)) 1019 return -EFAULT; 1020 1021 nr_vsx_regs = max(1ul, size / sizeof(__vector128)); 1022 preempt_disable(); 1023 if (reg < 32) { 1024 /* FP regs + extensions */ 1025 if (regs->msr & MSR_FP) { 1026 for (i = 0; i < nr_vsx_regs; i++) { 1027 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1028 store_vsrn(reg + i, &buf[j].v); 1029 } 1030 } else { 1031 for (i = 0; i < nr_vsx_regs; i++) { 1032 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1033 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0]; 1034 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1]; 1035 } 1036 } 1037 } else { 1038 if (regs->msr & MSR_VEC) { 1039 for (i = 0; i < nr_vsx_regs; i++) { 1040 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1041 store_vsrn(reg + i, &buf[j].v); 1042 } 1043 } else { 1044 for (i = 0; i < nr_vsx_regs; i++) { 1045 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1046 buf[j].v = current->thread.vr_state.vr[reg - 32 + i]; 1047 } 1048 } 1049 } 1050 preempt_enable(); 1051 emulate_vsx_store(op, buf, mem, cross_endian); 1052 return copy_mem_out(mem, ea, size, regs); 1053 } 1054 #endif /* CONFIG_VSX */ 1055 1056 static __always_inline int __emulate_dcbz(unsigned long ea) 1057 { 1058 unsigned long i; 1059 unsigned long size = l1_dcache_bytes(); 1060 1061 for (i = 0; i < size; i += sizeof(long)) 1062 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault); 1063 1064 return 0; 1065 1066 Efault: 1067 return -EFAULT; 1068 } 1069 1070 int emulate_dcbz(unsigned long ea, struct pt_regs *regs) 1071 { 1072 int err; 1073 unsigned long size = l1_dcache_bytes(); 1074 1075 ea = truncate_if_32bit(regs->msr, ea); 1076 ea &= ~(size - 1); 1077 if (!address_ok(regs, ea, size)) 1078 return -EFAULT; 1079 1080 if (is_kernel_addr(ea)) { 1081 err = __emulate_dcbz(ea); 1082 } else if (user_write_access_begin((void __user *)ea, size)) { 1083 err = __emulate_dcbz(ea); 1084 user_write_access_end(); 1085 } else { 1086 err = -EFAULT; 1087 } 1088 1089 if (err) 1090 regs->dar = ea; 1091 1092 1093 return err; 1094 } 1095 NOKPROBE_SYMBOL(emulate_dcbz); 1096 1097 #define __put_user_asmx(x, addr, err, op, cr) \ 1098 __asm__ __volatile__( \ 1099 ".machine push\n" \ 1100 ".machine power8\n" \ 1101 "1: " op " %2,0,%3\n" \ 1102 ".machine pop\n" \ 1103 " mfcr %1\n" \ 1104 "2:\n" \ 1105 ".section .fixup,\"ax\"\n" \ 1106 "3: li %0,%4\n" \ 1107 " b 2b\n" \ 1108 ".previous\n" \ 1109 EX_TABLE(1b, 3b) \ 1110 : "=r" (err), "=r" (cr) \ 1111 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err)) 1112 1113 #define __get_user_asmx(x, addr, err, op) \ 1114 __asm__ __volatile__( \ 1115 ".machine push\n" \ 1116 ".machine power8\n" \ 1117 "1: "op" %1,0,%2\n" \ 1118 ".machine pop\n" \ 1119 "2:\n" \ 1120 ".section .fixup,\"ax\"\n" \ 1121 "3: li %0,%3\n" \ 1122 " b 2b\n" \ 1123 ".previous\n" \ 1124 EX_TABLE(1b, 3b) \ 1125 : "=r" (err), "=r" (x) \ 1126 : "r" (addr), "i" (-EFAULT), "0" (err)) 1127 1128 #define __cacheop_user_asmx(addr, err, op) \ 1129 __asm__ __volatile__( \ 1130 "1: "op" 0,%1\n" \ 1131 "2:\n" \ 1132 ".section .fixup,\"ax\"\n" \ 1133 "3: li %0,%3\n" \ 1134 " b 2b\n" \ 1135 ".previous\n" \ 1136 EX_TABLE(1b, 3b) \ 1137 : "=r" (err) \ 1138 : "r" (addr), "i" (-EFAULT), "0" (err)) 1139 1140 static nokprobe_inline void set_cr0(const struct pt_regs *regs, 1141 struct instruction_op *op) 1142 { 1143 long val = op->val; 1144 1145 op->type |= SETCC; 1146 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000); 1147 if (!(regs->msr & MSR_64BIT)) 1148 val = (int) val; 1149 if (val < 0) 1150 op->ccval |= 0x80000000; 1151 else if (val > 0) 1152 op->ccval |= 0x40000000; 1153 else 1154 op->ccval |= 0x20000000; 1155 } 1156 1157 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val) 1158 { 1159 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1160 if (val) 1161 op->xerval |= XER_CA32; 1162 else 1163 op->xerval &= ~XER_CA32; 1164 } 1165 } 1166 1167 static nokprobe_inline void add_with_carry(const struct pt_regs *regs, 1168 struct instruction_op *op, int rd, 1169 unsigned long val1, unsigned long val2, 1170 unsigned long carry_in) 1171 { 1172 unsigned long val = val1 + val2; 1173 1174 if (carry_in) 1175 ++val; 1176 op->type = COMPUTE | SETREG | SETXER; 1177 op->reg = rd; 1178 op->val = val; 1179 val = truncate_if_32bit(regs->msr, val); 1180 val1 = truncate_if_32bit(regs->msr, val1); 1181 op->xerval = regs->xer; 1182 if (val < val1 || (carry_in && val == val1)) 1183 op->xerval |= XER_CA; 1184 else 1185 op->xerval &= ~XER_CA; 1186 1187 set_ca32(op, (unsigned int)val < (unsigned int)val1 || 1188 (carry_in && (unsigned int)val == (unsigned int)val1)); 1189 } 1190 1191 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs, 1192 struct instruction_op *op, 1193 long v1, long v2, int crfld) 1194 { 1195 unsigned int crval, shift; 1196 1197 op->type = COMPUTE | SETCC; 1198 crval = (regs->xer >> 31) & 1; /* get SO bit */ 1199 if (v1 < v2) 1200 crval |= 8; 1201 else if (v1 > v2) 1202 crval |= 4; 1203 else 1204 crval |= 2; 1205 shift = (7 - crfld) * 4; 1206 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); 1207 } 1208 1209 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs, 1210 struct instruction_op *op, 1211 unsigned long v1, 1212 unsigned long v2, int crfld) 1213 { 1214 unsigned int crval, shift; 1215 1216 op->type = COMPUTE | SETCC; 1217 crval = (regs->xer >> 31) & 1; /* get SO bit */ 1218 if (v1 < v2) 1219 crval |= 8; 1220 else if (v1 > v2) 1221 crval |= 4; 1222 else 1223 crval |= 2; 1224 shift = (7 - crfld) * 4; 1225 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); 1226 } 1227 1228 static nokprobe_inline void do_cmpb(const struct pt_regs *regs, 1229 struct instruction_op *op, 1230 unsigned long v1, unsigned long v2) 1231 { 1232 unsigned long long out_val, mask; 1233 int i; 1234 1235 out_val = 0; 1236 for (i = 0; i < 8; i++) { 1237 mask = 0xffUL << (i * 8); 1238 if ((v1 & mask) == (v2 & mask)) 1239 out_val |= mask; 1240 } 1241 op->val = out_val; 1242 } 1243 1244 /* 1245 * The size parameter is used to adjust the equivalent popcnt instruction. 1246 * popcntb = 8, popcntw = 32, popcntd = 64 1247 */ 1248 static nokprobe_inline void do_popcnt(const struct pt_regs *regs, 1249 struct instruction_op *op, 1250 unsigned long v1, int size) 1251 { 1252 unsigned long long out = v1; 1253 1254 out -= (out >> 1) & 0x5555555555555555ULL; 1255 out = (0x3333333333333333ULL & out) + 1256 (0x3333333333333333ULL & (out >> 2)); 1257 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL; 1258 1259 if (size == 8) { /* popcntb */ 1260 op->val = out; 1261 return; 1262 } 1263 out += out >> 8; 1264 out += out >> 16; 1265 if (size == 32) { /* popcntw */ 1266 op->val = out & 0x0000003f0000003fULL; 1267 return; 1268 } 1269 1270 out = (out + (out >> 32)) & 0x7f; 1271 op->val = out; /* popcntd */ 1272 } 1273 1274 #ifdef CONFIG_PPC64 1275 static nokprobe_inline void do_bpermd(const struct pt_regs *regs, 1276 struct instruction_op *op, 1277 unsigned long v1, unsigned long v2) 1278 { 1279 unsigned char perm, idx; 1280 unsigned int i; 1281 1282 perm = 0; 1283 for (i = 0; i < 8; i++) { 1284 idx = (v1 >> (i * 8)) & 0xff; 1285 if (idx < 64) 1286 if (v2 & PPC_BIT(idx)) 1287 perm |= 1 << i; 1288 } 1289 op->val = perm; 1290 } 1291 #endif /* CONFIG_PPC64 */ 1292 /* 1293 * The size parameter adjusts the equivalent prty instruction. 1294 * prtyw = 32, prtyd = 64 1295 */ 1296 static nokprobe_inline void do_prty(const struct pt_regs *regs, 1297 struct instruction_op *op, 1298 unsigned long v, int size) 1299 { 1300 unsigned long long res = v ^ (v >> 8); 1301 1302 res ^= res >> 16; 1303 if (size == 32) { /* prtyw */ 1304 op->val = res & 0x0000000100000001ULL; 1305 return; 1306 } 1307 1308 res ^= res >> 32; 1309 op->val = res & 1; /*prtyd */ 1310 } 1311 1312 static nokprobe_inline int trap_compare(long v1, long v2) 1313 { 1314 int ret = 0; 1315 1316 if (v1 < v2) 1317 ret |= 0x10; 1318 else if (v1 > v2) 1319 ret |= 0x08; 1320 else 1321 ret |= 0x04; 1322 if ((unsigned long)v1 < (unsigned long)v2) 1323 ret |= 0x02; 1324 else if ((unsigned long)v1 > (unsigned long)v2) 1325 ret |= 0x01; 1326 return ret; 1327 } 1328 1329 /* 1330 * Elements of 32-bit rotate and mask instructions. 1331 */ 1332 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \ 1333 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb))) 1334 #ifdef __powerpc64__ 1335 #define MASK64_L(mb) (~0UL >> (mb)) 1336 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me)) 1337 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb))) 1338 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32)) 1339 #else 1340 #define DATA32(x) (x) 1341 #endif 1342 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x)) 1343 1344 /* 1345 * Decode an instruction, and return information about it in *op 1346 * without changing *regs. 1347 * Integer arithmetic and logical instructions, branches, and barrier 1348 * instructions can be emulated just using the information in *op. 1349 * 1350 * Return value is 1 if the instruction can be emulated just by 1351 * updating *regs with the information in *op, -1 if we need the 1352 * GPRs but *regs doesn't contain the full register set, or 0 1353 * otherwise. 1354 */ 1355 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs, 1356 ppc_inst_t instr) 1357 { 1358 #ifdef CONFIG_PPC64 1359 unsigned int suffixopcode, prefixtype, prefix_r; 1360 #endif 1361 unsigned int opcode, ra, rb, rc, rd, spr, u; 1362 unsigned long int imm; 1363 unsigned long int val, val2; 1364 unsigned int mb, me, sh; 1365 unsigned int word, suffix; 1366 long ival; 1367 1368 word = ppc_inst_val(instr); 1369 suffix = ppc_inst_suffix(instr); 1370 1371 op->type = COMPUTE; 1372 1373 opcode = ppc_inst_primary_opcode(instr); 1374 switch (opcode) { 1375 case 16: /* bc */ 1376 op->type = BRANCH; 1377 imm = (signed short)(word & 0xfffc); 1378 if ((word & 2) == 0) 1379 imm += regs->nip; 1380 op->val = truncate_if_32bit(regs->msr, imm); 1381 if (word & 1) 1382 op->type |= SETLK; 1383 if (branch_taken(word, regs, op)) 1384 op->type |= BRTAKEN; 1385 return 1; 1386 case 17: /* sc */ 1387 if ((word & 0xfe2) == 2) 1388 op->type = SYSCALL; 1389 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && 1390 (word & 0xfe3) == 1) { /* scv */ 1391 op->type = SYSCALL_VECTORED_0; 1392 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1393 goto unknown_opcode; 1394 } else 1395 op->type = UNKNOWN; 1396 return 0; 1397 case 18: /* b */ 1398 op->type = BRANCH | BRTAKEN; 1399 imm = word & 0x03fffffc; 1400 if (imm & 0x02000000) 1401 imm -= 0x04000000; 1402 if ((word & 2) == 0) 1403 imm += regs->nip; 1404 op->val = truncate_if_32bit(regs->msr, imm); 1405 if (word & 1) 1406 op->type |= SETLK; 1407 return 1; 1408 case 19: 1409 switch ((word >> 1) & 0x3ff) { 1410 case 0: /* mcrf */ 1411 op->type = COMPUTE + SETCC; 1412 rd = 7 - ((word >> 23) & 0x7); 1413 ra = 7 - ((word >> 18) & 0x7); 1414 rd *= 4; 1415 ra *= 4; 1416 val = (regs->ccr >> ra) & 0xf; 1417 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd); 1418 return 1; 1419 1420 case 16: /* bclr */ 1421 case 528: /* bcctr */ 1422 op->type = BRANCH; 1423 imm = (word & 0x400)? regs->ctr: regs->link; 1424 op->val = truncate_if_32bit(regs->msr, imm); 1425 if (word & 1) 1426 op->type |= SETLK; 1427 if (branch_taken(word, regs, op)) 1428 op->type |= BRTAKEN; 1429 return 1; 1430 1431 case 18: /* rfid, scary */ 1432 if (regs->msr & MSR_PR) 1433 goto priv; 1434 op->type = RFI; 1435 return 0; 1436 1437 case 150: /* isync */ 1438 op->type = BARRIER | BARRIER_ISYNC; 1439 return 1; 1440 1441 case 33: /* crnor */ 1442 case 129: /* crandc */ 1443 case 193: /* crxor */ 1444 case 225: /* crnand */ 1445 case 257: /* crand */ 1446 case 289: /* creqv */ 1447 case 417: /* crorc */ 1448 case 449: /* cror */ 1449 op->type = COMPUTE + SETCC; 1450 ra = (word >> 16) & 0x1f; 1451 rb = (word >> 11) & 0x1f; 1452 rd = (word >> 21) & 0x1f; 1453 ra = (regs->ccr >> (31 - ra)) & 1; 1454 rb = (regs->ccr >> (31 - rb)) & 1; 1455 val = (word >> (6 + ra * 2 + rb)) & 1; 1456 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) | 1457 (val << (31 - rd)); 1458 return 1; 1459 } 1460 break; 1461 case 31: 1462 switch ((word >> 1) & 0x3ff) { 1463 case 598: /* sync */ 1464 op->type = BARRIER + BARRIER_SYNC; 1465 #ifdef __powerpc64__ 1466 switch ((word >> 21) & 3) { 1467 case 1: /* lwsync */ 1468 op->type = BARRIER + BARRIER_LWSYNC; 1469 break; 1470 case 2: /* ptesync */ 1471 op->type = BARRIER + BARRIER_PTESYNC; 1472 break; 1473 } 1474 #endif 1475 return 1; 1476 1477 case 854: /* eieio */ 1478 op->type = BARRIER + BARRIER_EIEIO; 1479 return 1; 1480 } 1481 break; 1482 } 1483 1484 rd = (word >> 21) & 0x1f; 1485 ra = (word >> 16) & 0x1f; 1486 rb = (word >> 11) & 0x1f; 1487 rc = (word >> 6) & 0x1f; 1488 1489 switch (opcode) { 1490 #ifdef __powerpc64__ 1491 case 1: 1492 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 1493 goto unknown_opcode; 1494 1495 prefix_r = GET_PREFIX_R(word); 1496 ra = GET_PREFIX_RA(suffix); 1497 rd = (suffix >> 21) & 0x1f; 1498 op->reg = rd; 1499 op->val = regs->gpr[rd]; 1500 suffixopcode = get_op(suffix); 1501 prefixtype = (word >> 24) & 0x3; 1502 switch (prefixtype) { 1503 case 2: 1504 if (prefix_r && ra) 1505 return 0; 1506 switch (suffixopcode) { 1507 case 14: /* paddi */ 1508 op->type = COMPUTE | PREFIXED; 1509 op->val = mlsd_8lsd_ea(word, suffix, regs); 1510 goto compute_done; 1511 } 1512 } 1513 break; 1514 case 2: /* tdi */ 1515 if (rd & trap_compare(regs->gpr[ra], (short) word)) 1516 goto trap; 1517 return 1; 1518 #endif 1519 case 3: /* twi */ 1520 if (rd & trap_compare((int)regs->gpr[ra], (short) word)) 1521 goto trap; 1522 return 1; 1523 1524 #ifdef __powerpc64__ 1525 case 4: 1526 /* 1527 * There are very many instructions with this primary opcode 1528 * introduced in the ISA as early as v2.03. However, the ones 1529 * we currently emulate were all introduced with ISA 3.0 1530 */ 1531 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1532 goto unknown_opcode; 1533 1534 switch (word & 0x3f) { 1535 case 48: /* maddhd */ 1536 asm volatile(PPC_MADDHD(%0, %1, %2, %3) : 1537 "=r" (op->val) : "r" (regs->gpr[ra]), 1538 "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); 1539 goto compute_done; 1540 1541 case 49: /* maddhdu */ 1542 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) : 1543 "=r" (op->val) : "r" (regs->gpr[ra]), 1544 "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); 1545 goto compute_done; 1546 1547 case 51: /* maddld */ 1548 asm volatile(PPC_MADDLD(%0, %1, %2, %3) : 1549 "=r" (op->val) : "r" (regs->gpr[ra]), 1550 "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); 1551 goto compute_done; 1552 } 1553 1554 /* 1555 * There are other instructions from ISA 3.0 with the same 1556 * primary opcode which do not have emulation support yet. 1557 */ 1558 goto unknown_opcode; 1559 #endif 1560 1561 case 7: /* mulli */ 1562 op->val = regs->gpr[ra] * (short) word; 1563 goto compute_done; 1564 1565 case 8: /* subfic */ 1566 imm = (short) word; 1567 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1); 1568 return 1; 1569 1570 case 10: /* cmpli */ 1571 imm = (unsigned short) word; 1572 val = regs->gpr[ra]; 1573 #ifdef __powerpc64__ 1574 if ((rd & 1) == 0) 1575 val = (unsigned int) val; 1576 #endif 1577 do_cmp_unsigned(regs, op, val, imm, rd >> 2); 1578 return 1; 1579 1580 case 11: /* cmpi */ 1581 imm = (short) word; 1582 val = regs->gpr[ra]; 1583 #ifdef __powerpc64__ 1584 if ((rd & 1) == 0) 1585 val = (int) val; 1586 #endif 1587 do_cmp_signed(regs, op, val, imm, rd >> 2); 1588 return 1; 1589 1590 case 12: /* addic */ 1591 imm = (short) word; 1592 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); 1593 return 1; 1594 1595 case 13: /* addic. */ 1596 imm = (short) word; 1597 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); 1598 set_cr0(regs, op); 1599 return 1; 1600 1601 case 14: /* addi */ 1602 imm = (short) word; 1603 if (ra) 1604 imm += regs->gpr[ra]; 1605 op->val = imm; 1606 goto compute_done; 1607 1608 case 15: /* addis */ 1609 imm = ((short) word) << 16; 1610 if (ra) 1611 imm += regs->gpr[ra]; 1612 op->val = imm; 1613 goto compute_done; 1614 1615 case 19: 1616 if (((word >> 1) & 0x1f) == 2) { 1617 /* addpcis */ 1618 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1619 goto unknown_opcode; 1620 imm = (short) (word & 0xffc1); /* d0 + d2 fields */ 1621 imm |= (word >> 15) & 0x3e; /* d1 field */ 1622 op->val = regs->nip + (imm << 16) + 4; 1623 goto compute_done; 1624 } 1625 op->type = UNKNOWN; 1626 return 0; 1627 1628 case 20: /* rlwimi */ 1629 mb = (word >> 6) & 0x1f; 1630 me = (word >> 1) & 0x1f; 1631 val = DATA32(regs->gpr[rd]); 1632 imm = MASK32(mb, me); 1633 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm); 1634 goto logical_done; 1635 1636 case 21: /* rlwinm */ 1637 mb = (word >> 6) & 0x1f; 1638 me = (word >> 1) & 0x1f; 1639 val = DATA32(regs->gpr[rd]); 1640 op->val = ROTATE(val, rb) & MASK32(mb, me); 1641 goto logical_done; 1642 1643 case 23: /* rlwnm */ 1644 mb = (word >> 6) & 0x1f; 1645 me = (word >> 1) & 0x1f; 1646 rb = regs->gpr[rb] & 0x1f; 1647 val = DATA32(regs->gpr[rd]); 1648 op->val = ROTATE(val, rb) & MASK32(mb, me); 1649 goto logical_done; 1650 1651 case 24: /* ori */ 1652 op->val = regs->gpr[rd] | (unsigned short) word; 1653 goto logical_done_nocc; 1654 1655 case 25: /* oris */ 1656 imm = (unsigned short) word; 1657 op->val = regs->gpr[rd] | (imm << 16); 1658 goto logical_done_nocc; 1659 1660 case 26: /* xori */ 1661 op->val = regs->gpr[rd] ^ (unsigned short) word; 1662 goto logical_done_nocc; 1663 1664 case 27: /* xoris */ 1665 imm = (unsigned short) word; 1666 op->val = regs->gpr[rd] ^ (imm << 16); 1667 goto logical_done_nocc; 1668 1669 case 28: /* andi. */ 1670 op->val = regs->gpr[rd] & (unsigned short) word; 1671 set_cr0(regs, op); 1672 goto logical_done_nocc; 1673 1674 case 29: /* andis. */ 1675 imm = (unsigned short) word; 1676 op->val = regs->gpr[rd] & (imm << 16); 1677 set_cr0(regs, op); 1678 goto logical_done_nocc; 1679 1680 #ifdef __powerpc64__ 1681 case 30: /* rld* */ 1682 mb = ((word >> 6) & 0x1f) | (word & 0x20); 1683 val = regs->gpr[rd]; 1684 if ((word & 0x10) == 0) { 1685 sh = rb | ((word & 2) << 4); 1686 val = ROTATE(val, sh); 1687 switch ((word >> 2) & 3) { 1688 case 0: /* rldicl */ 1689 val &= MASK64_L(mb); 1690 break; 1691 case 1: /* rldicr */ 1692 val &= MASK64_R(mb); 1693 break; 1694 case 2: /* rldic */ 1695 val &= MASK64(mb, 63 - sh); 1696 break; 1697 case 3: /* rldimi */ 1698 imm = MASK64(mb, 63 - sh); 1699 val = (regs->gpr[ra] & ~imm) | 1700 (val & imm); 1701 } 1702 op->val = val; 1703 goto logical_done; 1704 } else { 1705 sh = regs->gpr[rb] & 0x3f; 1706 val = ROTATE(val, sh); 1707 switch ((word >> 1) & 7) { 1708 case 0: /* rldcl */ 1709 op->val = val & MASK64_L(mb); 1710 goto logical_done; 1711 case 1: /* rldcr */ 1712 op->val = val & MASK64_R(mb); 1713 goto logical_done; 1714 } 1715 } 1716 #endif 1717 op->type = UNKNOWN; /* illegal instruction */ 1718 return 0; 1719 1720 case 31: 1721 /* isel occupies 32 minor opcodes */ 1722 if (((word >> 1) & 0x1f) == 15) { 1723 mb = (word >> 6) & 0x1f; /* bc field */ 1724 val = (regs->ccr >> (31 - mb)) & 1; 1725 val2 = (ra) ? regs->gpr[ra] : 0; 1726 1727 op->val = (val) ? val2 : regs->gpr[rb]; 1728 goto compute_done; 1729 } 1730 1731 switch ((word >> 1) & 0x3ff) { 1732 case 4: /* tw */ 1733 if (rd == 0x1f || 1734 (rd & trap_compare((int)regs->gpr[ra], 1735 (int)regs->gpr[rb]))) 1736 goto trap; 1737 return 1; 1738 #ifdef __powerpc64__ 1739 case 68: /* td */ 1740 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb])) 1741 goto trap; 1742 return 1; 1743 #endif 1744 case 83: /* mfmsr */ 1745 if (regs->msr & MSR_PR) 1746 goto priv; 1747 op->type = MFMSR; 1748 op->reg = rd; 1749 return 0; 1750 case 146: /* mtmsr */ 1751 if (regs->msr & MSR_PR) 1752 goto priv; 1753 op->type = MTMSR; 1754 op->reg = rd; 1755 op->val = 0xffffffff & ~(MSR_ME | MSR_LE); 1756 return 0; 1757 #ifdef CONFIG_PPC64 1758 case 178: /* mtmsrd */ 1759 if (regs->msr & MSR_PR) 1760 goto priv; 1761 op->type = MTMSR; 1762 op->reg = rd; 1763 /* only MSR_EE and MSR_RI get changed if bit 15 set */ 1764 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */ 1765 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL; 1766 op->val = imm; 1767 return 0; 1768 #endif 1769 1770 case 19: /* mfcr */ 1771 imm = 0xffffffffUL; 1772 if ((word >> 20) & 1) { 1773 imm = 0xf0000000UL; 1774 for (sh = 0; sh < 8; ++sh) { 1775 if (word & (0x80000 >> sh)) 1776 break; 1777 imm >>= 4; 1778 } 1779 } 1780 op->val = regs->ccr & imm; 1781 goto compute_done; 1782 1783 case 128: /* setb */ 1784 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1785 goto unknown_opcode; 1786 /* 1787 * 'ra' encodes the CR field number (bfa) in the top 3 bits. 1788 * Since each CR field is 4 bits, 1789 * we can simply mask off the bottom two bits (bfa * 4) 1790 * to yield the first bit in the CR field. 1791 */ 1792 ra = ra & ~0x3; 1793 /* 'val' stores bits of the CR field (bfa) */ 1794 val = regs->ccr >> (CR0_SHIFT - ra); 1795 /* checks if the LT bit of CR field (bfa) is set */ 1796 if (val & 8) 1797 op->val = -1; 1798 /* checks if the GT bit of CR field (bfa) is set */ 1799 else if (val & 4) 1800 op->val = 1; 1801 else 1802 op->val = 0; 1803 goto compute_done; 1804 1805 case 144: /* mtcrf */ 1806 op->type = COMPUTE + SETCC; 1807 imm = 0xf0000000UL; 1808 val = regs->gpr[rd]; 1809 op->ccval = regs->ccr; 1810 for (sh = 0; sh < 8; ++sh) { 1811 if (word & (0x80000 >> sh)) 1812 op->ccval = (op->ccval & ~imm) | 1813 (val & imm); 1814 imm >>= 4; 1815 } 1816 return 1; 1817 1818 case 339: /* mfspr */ 1819 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0); 1820 op->type = MFSPR; 1821 op->reg = rd; 1822 op->spr = spr; 1823 if (spr == SPRN_XER || spr == SPRN_LR || 1824 spr == SPRN_CTR) 1825 return 1; 1826 return 0; 1827 1828 case 467: /* mtspr */ 1829 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0); 1830 op->type = MTSPR; 1831 op->val = regs->gpr[rd]; 1832 op->spr = spr; 1833 if (spr == SPRN_XER || spr == SPRN_LR || 1834 spr == SPRN_CTR) 1835 return 1; 1836 return 0; 1837 1838 /* 1839 * Compare instructions 1840 */ 1841 case 0: /* cmp */ 1842 val = regs->gpr[ra]; 1843 val2 = regs->gpr[rb]; 1844 #ifdef __powerpc64__ 1845 if ((rd & 1) == 0) { 1846 /* word (32-bit) compare */ 1847 val = (int) val; 1848 val2 = (int) val2; 1849 } 1850 #endif 1851 do_cmp_signed(regs, op, val, val2, rd >> 2); 1852 return 1; 1853 1854 case 32: /* cmpl */ 1855 val = regs->gpr[ra]; 1856 val2 = regs->gpr[rb]; 1857 #ifdef __powerpc64__ 1858 if ((rd & 1) == 0) { 1859 /* word (32-bit) compare */ 1860 val = (unsigned int) val; 1861 val2 = (unsigned int) val2; 1862 } 1863 #endif 1864 do_cmp_unsigned(regs, op, val, val2, rd >> 2); 1865 return 1; 1866 1867 case 508: /* cmpb */ 1868 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]); 1869 goto logical_done_nocc; 1870 1871 /* 1872 * Arithmetic instructions 1873 */ 1874 case 8: /* subfc */ 1875 add_with_carry(regs, op, rd, ~regs->gpr[ra], 1876 regs->gpr[rb], 1); 1877 goto arith_done; 1878 #ifdef __powerpc64__ 1879 case 9: /* mulhdu */ 1880 asm("mulhdu %0,%1,%2" : "=r" (op->val) : 1881 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1882 goto arith_done; 1883 #endif 1884 case 10: /* addc */ 1885 add_with_carry(regs, op, rd, regs->gpr[ra], 1886 regs->gpr[rb], 0); 1887 goto arith_done; 1888 1889 case 11: /* mulhwu */ 1890 asm("mulhwu %0,%1,%2" : "=r" (op->val) : 1891 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1892 goto arith_done; 1893 1894 case 40: /* subf */ 1895 op->val = regs->gpr[rb] - regs->gpr[ra]; 1896 goto arith_done; 1897 #ifdef __powerpc64__ 1898 case 73: /* mulhd */ 1899 asm("mulhd %0,%1,%2" : "=r" (op->val) : 1900 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1901 goto arith_done; 1902 #endif 1903 case 75: /* mulhw */ 1904 asm("mulhw %0,%1,%2" : "=r" (op->val) : 1905 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1906 goto arith_done; 1907 1908 case 104: /* neg */ 1909 op->val = -regs->gpr[ra]; 1910 goto arith_done; 1911 1912 case 136: /* subfe */ 1913 add_with_carry(regs, op, rd, ~regs->gpr[ra], 1914 regs->gpr[rb], regs->xer & XER_CA); 1915 goto arith_done; 1916 1917 case 138: /* adde */ 1918 add_with_carry(regs, op, rd, regs->gpr[ra], 1919 regs->gpr[rb], regs->xer & XER_CA); 1920 goto arith_done; 1921 1922 case 200: /* subfze */ 1923 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L, 1924 regs->xer & XER_CA); 1925 goto arith_done; 1926 1927 case 202: /* addze */ 1928 add_with_carry(regs, op, rd, regs->gpr[ra], 0L, 1929 regs->xer & XER_CA); 1930 goto arith_done; 1931 1932 case 232: /* subfme */ 1933 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L, 1934 regs->xer & XER_CA); 1935 goto arith_done; 1936 #ifdef __powerpc64__ 1937 case 233: /* mulld */ 1938 op->val = regs->gpr[ra] * regs->gpr[rb]; 1939 goto arith_done; 1940 #endif 1941 case 234: /* addme */ 1942 add_with_carry(regs, op, rd, regs->gpr[ra], -1L, 1943 regs->xer & XER_CA); 1944 goto arith_done; 1945 1946 case 235: /* mullw */ 1947 op->val = (long)(int) regs->gpr[ra] * 1948 (int) regs->gpr[rb]; 1949 1950 goto arith_done; 1951 #ifdef __powerpc64__ 1952 case 265: /* modud */ 1953 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1954 goto unknown_opcode; 1955 op->val = regs->gpr[ra] % regs->gpr[rb]; 1956 goto compute_done; 1957 #endif 1958 case 266: /* add */ 1959 op->val = regs->gpr[ra] + regs->gpr[rb]; 1960 goto arith_done; 1961 1962 case 267: /* moduw */ 1963 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1964 goto unknown_opcode; 1965 op->val = (unsigned int) regs->gpr[ra] % 1966 (unsigned int) regs->gpr[rb]; 1967 goto compute_done; 1968 #ifdef __powerpc64__ 1969 case 457: /* divdu */ 1970 op->val = regs->gpr[ra] / regs->gpr[rb]; 1971 goto arith_done; 1972 #endif 1973 case 459: /* divwu */ 1974 op->val = (unsigned int) regs->gpr[ra] / 1975 (unsigned int) regs->gpr[rb]; 1976 goto arith_done; 1977 #ifdef __powerpc64__ 1978 case 489: /* divd */ 1979 op->val = (long int) regs->gpr[ra] / 1980 (long int) regs->gpr[rb]; 1981 goto arith_done; 1982 #endif 1983 case 491: /* divw */ 1984 op->val = (int) regs->gpr[ra] / 1985 (int) regs->gpr[rb]; 1986 goto arith_done; 1987 #ifdef __powerpc64__ 1988 case 425: /* divde[.] */ 1989 asm volatile(PPC_DIVDE(%0, %1, %2) : 1990 "=r" (op->val) : "r" (regs->gpr[ra]), 1991 "r" (regs->gpr[rb])); 1992 goto arith_done; 1993 case 393: /* divdeu[.] */ 1994 asm volatile(PPC_DIVDEU(%0, %1, %2) : 1995 "=r" (op->val) : "r" (regs->gpr[ra]), 1996 "r" (regs->gpr[rb])); 1997 goto arith_done; 1998 #endif 1999 case 755: /* darn */ 2000 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2001 goto unknown_opcode; 2002 switch (ra & 0x3) { 2003 case 0: 2004 /* 32-bit conditioned */ 2005 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val)); 2006 goto compute_done; 2007 2008 case 1: 2009 /* 64-bit conditioned */ 2010 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val)); 2011 goto compute_done; 2012 2013 case 2: 2014 /* 64-bit raw */ 2015 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val)); 2016 goto compute_done; 2017 } 2018 2019 goto unknown_opcode; 2020 #ifdef __powerpc64__ 2021 case 777: /* modsd */ 2022 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2023 goto unknown_opcode; 2024 op->val = (long int) regs->gpr[ra] % 2025 (long int) regs->gpr[rb]; 2026 goto compute_done; 2027 #endif 2028 case 779: /* modsw */ 2029 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2030 goto unknown_opcode; 2031 op->val = (int) regs->gpr[ra] % 2032 (int) regs->gpr[rb]; 2033 goto compute_done; 2034 2035 2036 /* 2037 * Logical instructions 2038 */ 2039 case 26: /* cntlzw */ 2040 val = (unsigned int) regs->gpr[rd]; 2041 op->val = ( val ? __builtin_clz(val) : 32 ); 2042 goto logical_done; 2043 #ifdef __powerpc64__ 2044 case 58: /* cntlzd */ 2045 val = regs->gpr[rd]; 2046 op->val = ( val ? __builtin_clzl(val) : 64 ); 2047 goto logical_done; 2048 #endif 2049 case 28: /* and */ 2050 op->val = regs->gpr[rd] & regs->gpr[rb]; 2051 goto logical_done; 2052 2053 case 60: /* andc */ 2054 op->val = regs->gpr[rd] & ~regs->gpr[rb]; 2055 goto logical_done; 2056 2057 case 122: /* popcntb */ 2058 do_popcnt(regs, op, regs->gpr[rd], 8); 2059 goto logical_done_nocc; 2060 2061 case 124: /* nor */ 2062 op->val = ~(regs->gpr[rd] | regs->gpr[rb]); 2063 goto logical_done; 2064 2065 case 154: /* prtyw */ 2066 do_prty(regs, op, regs->gpr[rd], 32); 2067 goto logical_done_nocc; 2068 2069 case 186: /* prtyd */ 2070 do_prty(regs, op, regs->gpr[rd], 64); 2071 goto logical_done_nocc; 2072 #ifdef CONFIG_PPC64 2073 case 252: /* bpermd */ 2074 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]); 2075 goto logical_done_nocc; 2076 #endif 2077 case 284: /* xor */ 2078 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]); 2079 goto logical_done; 2080 2081 case 316: /* xor */ 2082 op->val = regs->gpr[rd] ^ regs->gpr[rb]; 2083 goto logical_done; 2084 2085 case 378: /* popcntw */ 2086 do_popcnt(regs, op, regs->gpr[rd], 32); 2087 goto logical_done_nocc; 2088 2089 case 412: /* orc */ 2090 op->val = regs->gpr[rd] | ~regs->gpr[rb]; 2091 goto logical_done; 2092 2093 case 444: /* or */ 2094 op->val = regs->gpr[rd] | regs->gpr[rb]; 2095 goto logical_done; 2096 2097 case 476: /* nand */ 2098 op->val = ~(regs->gpr[rd] & regs->gpr[rb]); 2099 goto logical_done; 2100 #ifdef CONFIG_PPC64 2101 case 506: /* popcntd */ 2102 do_popcnt(regs, op, regs->gpr[rd], 64); 2103 goto logical_done_nocc; 2104 #endif 2105 case 538: /* cnttzw */ 2106 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2107 goto unknown_opcode; 2108 val = (unsigned int) regs->gpr[rd]; 2109 op->val = (val ? __builtin_ctz(val) : 32); 2110 goto logical_done; 2111 #ifdef __powerpc64__ 2112 case 570: /* cnttzd */ 2113 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2114 goto unknown_opcode; 2115 val = regs->gpr[rd]; 2116 op->val = (val ? __builtin_ctzl(val) : 64); 2117 goto logical_done; 2118 #endif 2119 case 922: /* extsh */ 2120 op->val = (signed short) regs->gpr[rd]; 2121 goto logical_done; 2122 2123 case 954: /* extsb */ 2124 op->val = (signed char) regs->gpr[rd]; 2125 goto logical_done; 2126 #ifdef __powerpc64__ 2127 case 986: /* extsw */ 2128 op->val = (signed int) regs->gpr[rd]; 2129 goto logical_done; 2130 #endif 2131 2132 /* 2133 * Shift instructions 2134 */ 2135 case 24: /* slw */ 2136 sh = regs->gpr[rb] & 0x3f; 2137 if (sh < 32) 2138 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL; 2139 else 2140 op->val = 0; 2141 goto logical_done; 2142 2143 case 536: /* srw */ 2144 sh = regs->gpr[rb] & 0x3f; 2145 if (sh < 32) 2146 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh; 2147 else 2148 op->val = 0; 2149 goto logical_done; 2150 2151 case 792: /* sraw */ 2152 op->type = COMPUTE + SETREG + SETXER; 2153 sh = regs->gpr[rb] & 0x3f; 2154 ival = (signed int) regs->gpr[rd]; 2155 op->val = ival >> (sh < 32 ? sh : 31); 2156 op->xerval = regs->xer; 2157 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0)) 2158 op->xerval |= XER_CA; 2159 else 2160 op->xerval &= ~XER_CA; 2161 set_ca32(op, op->xerval & XER_CA); 2162 goto logical_done; 2163 2164 case 824: /* srawi */ 2165 op->type = COMPUTE + SETREG + SETXER; 2166 sh = rb; 2167 ival = (signed int) regs->gpr[rd]; 2168 op->val = ival >> sh; 2169 op->xerval = regs->xer; 2170 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) 2171 op->xerval |= XER_CA; 2172 else 2173 op->xerval &= ~XER_CA; 2174 set_ca32(op, op->xerval & XER_CA); 2175 goto logical_done; 2176 2177 #ifdef __powerpc64__ 2178 case 27: /* sld */ 2179 sh = regs->gpr[rb] & 0x7f; 2180 if (sh < 64) 2181 op->val = regs->gpr[rd] << sh; 2182 else 2183 op->val = 0; 2184 goto logical_done; 2185 2186 case 539: /* srd */ 2187 sh = regs->gpr[rb] & 0x7f; 2188 if (sh < 64) 2189 op->val = regs->gpr[rd] >> sh; 2190 else 2191 op->val = 0; 2192 goto logical_done; 2193 2194 case 794: /* srad */ 2195 op->type = COMPUTE + SETREG + SETXER; 2196 sh = regs->gpr[rb] & 0x7f; 2197 ival = (signed long int) regs->gpr[rd]; 2198 op->val = ival >> (sh < 64 ? sh : 63); 2199 op->xerval = regs->xer; 2200 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0)) 2201 op->xerval |= XER_CA; 2202 else 2203 op->xerval &= ~XER_CA; 2204 set_ca32(op, op->xerval & XER_CA); 2205 goto logical_done; 2206 2207 case 826: /* sradi with sh_5 = 0 */ 2208 case 827: /* sradi with sh_5 = 1 */ 2209 op->type = COMPUTE + SETREG + SETXER; 2210 sh = rb | ((word & 2) << 4); 2211 ival = (signed long int) regs->gpr[rd]; 2212 op->val = ival >> sh; 2213 op->xerval = regs->xer; 2214 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) 2215 op->xerval |= XER_CA; 2216 else 2217 op->xerval &= ~XER_CA; 2218 set_ca32(op, op->xerval & XER_CA); 2219 goto logical_done; 2220 2221 case 890: /* extswsli with sh_5 = 0 */ 2222 case 891: /* extswsli with sh_5 = 1 */ 2223 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2224 goto unknown_opcode; 2225 op->type = COMPUTE + SETREG; 2226 sh = rb | ((word & 2) << 4); 2227 val = (signed int) regs->gpr[rd]; 2228 if (sh) 2229 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh); 2230 else 2231 op->val = val; 2232 goto logical_done; 2233 2234 #endif /* __powerpc64__ */ 2235 2236 /* 2237 * Cache instructions 2238 */ 2239 case 54: /* dcbst */ 2240 op->type = MKOP(CACHEOP, DCBST, 0); 2241 op->ea = xform_ea(word, regs); 2242 return 0; 2243 2244 case 86: /* dcbf */ 2245 op->type = MKOP(CACHEOP, DCBF, 0); 2246 op->ea = xform_ea(word, regs); 2247 return 0; 2248 2249 case 246: /* dcbtst */ 2250 op->type = MKOP(CACHEOP, DCBTST, 0); 2251 op->ea = xform_ea(word, regs); 2252 op->reg = rd; 2253 return 0; 2254 2255 case 278: /* dcbt */ 2256 op->type = MKOP(CACHEOP, DCBTST, 0); 2257 op->ea = xform_ea(word, regs); 2258 op->reg = rd; 2259 return 0; 2260 2261 case 982: /* icbi */ 2262 op->type = MKOP(CACHEOP, ICBI, 0); 2263 op->ea = xform_ea(word, regs); 2264 return 0; 2265 2266 case 1014: /* dcbz */ 2267 op->type = MKOP(CACHEOP, DCBZ, 0); 2268 op->ea = xform_ea(word, regs); 2269 return 0; 2270 } 2271 break; 2272 } 2273 2274 /* 2275 * Loads and stores. 2276 */ 2277 op->type = UNKNOWN; 2278 op->update_reg = ra; 2279 op->reg = rd; 2280 op->val = regs->gpr[rd]; 2281 u = (word >> 20) & UPDATE; 2282 op->vsx_flags = 0; 2283 2284 switch (opcode) { 2285 case 31: 2286 u = word & UPDATE; 2287 op->ea = xform_ea(word, regs); 2288 switch ((word >> 1) & 0x3ff) { 2289 case 20: /* lwarx */ 2290 op->type = MKOP(LARX, 0, 4); 2291 break; 2292 2293 case 150: /* stwcx. */ 2294 op->type = MKOP(STCX, 0, 4); 2295 break; 2296 2297 #ifdef CONFIG_PPC_HAS_LBARX_LHARX 2298 case 52: /* lbarx */ 2299 op->type = MKOP(LARX, 0, 1); 2300 break; 2301 2302 case 694: /* stbcx. */ 2303 op->type = MKOP(STCX, 0, 1); 2304 break; 2305 2306 case 116: /* lharx */ 2307 op->type = MKOP(LARX, 0, 2); 2308 break; 2309 2310 case 726: /* sthcx. */ 2311 op->type = MKOP(STCX, 0, 2); 2312 break; 2313 #endif 2314 #ifdef __powerpc64__ 2315 case 84: /* ldarx */ 2316 op->type = MKOP(LARX, 0, 8); 2317 break; 2318 2319 case 214: /* stdcx. */ 2320 op->type = MKOP(STCX, 0, 8); 2321 break; 2322 2323 case 276: /* lqarx */ 2324 if (!((rd & 1) || rd == ra || rd == rb)) 2325 op->type = MKOP(LARX, 0, 16); 2326 break; 2327 2328 case 182: /* stqcx. */ 2329 if (!(rd & 1)) 2330 op->type = MKOP(STCX, 0, 16); 2331 break; 2332 #endif 2333 2334 case 23: /* lwzx */ 2335 case 55: /* lwzux */ 2336 op->type = MKOP(LOAD, u, 4); 2337 break; 2338 2339 case 87: /* lbzx */ 2340 case 119: /* lbzux */ 2341 op->type = MKOP(LOAD, u, 1); 2342 break; 2343 2344 #ifdef CONFIG_ALTIVEC 2345 /* 2346 * Note: for the load/store vector element instructions, 2347 * bits of the EA say which field of the VMX register to use. 2348 */ 2349 case 7: /* lvebx */ 2350 op->type = MKOP(LOAD_VMX, 0, 1); 2351 op->element_size = 1; 2352 break; 2353 2354 case 39: /* lvehx */ 2355 op->type = MKOP(LOAD_VMX, 0, 2); 2356 op->element_size = 2; 2357 break; 2358 2359 case 71: /* lvewx */ 2360 op->type = MKOP(LOAD_VMX, 0, 4); 2361 op->element_size = 4; 2362 break; 2363 2364 case 103: /* lvx */ 2365 case 359: /* lvxl */ 2366 op->type = MKOP(LOAD_VMX, 0, 16); 2367 op->element_size = 16; 2368 break; 2369 2370 case 135: /* stvebx */ 2371 op->type = MKOP(STORE_VMX, 0, 1); 2372 op->element_size = 1; 2373 break; 2374 2375 case 167: /* stvehx */ 2376 op->type = MKOP(STORE_VMX, 0, 2); 2377 op->element_size = 2; 2378 break; 2379 2380 case 199: /* stvewx */ 2381 op->type = MKOP(STORE_VMX, 0, 4); 2382 op->element_size = 4; 2383 break; 2384 2385 case 231: /* stvx */ 2386 case 487: /* stvxl */ 2387 op->type = MKOP(STORE_VMX, 0, 16); 2388 break; 2389 #endif /* CONFIG_ALTIVEC */ 2390 2391 #ifdef __powerpc64__ 2392 case 21: /* ldx */ 2393 case 53: /* ldux */ 2394 op->type = MKOP(LOAD, u, 8); 2395 break; 2396 2397 case 149: /* stdx */ 2398 case 181: /* stdux */ 2399 op->type = MKOP(STORE, u, 8); 2400 break; 2401 #endif 2402 2403 case 151: /* stwx */ 2404 case 183: /* stwux */ 2405 op->type = MKOP(STORE, u, 4); 2406 break; 2407 2408 case 215: /* stbx */ 2409 case 247: /* stbux */ 2410 op->type = MKOP(STORE, u, 1); 2411 break; 2412 2413 case 279: /* lhzx */ 2414 case 311: /* lhzux */ 2415 op->type = MKOP(LOAD, u, 2); 2416 break; 2417 2418 #ifdef __powerpc64__ 2419 case 341: /* lwax */ 2420 case 373: /* lwaux */ 2421 op->type = MKOP(LOAD, SIGNEXT | u, 4); 2422 break; 2423 #endif 2424 2425 case 343: /* lhax */ 2426 case 375: /* lhaux */ 2427 op->type = MKOP(LOAD, SIGNEXT | u, 2); 2428 break; 2429 2430 case 407: /* sthx */ 2431 case 439: /* sthux */ 2432 op->type = MKOP(STORE, u, 2); 2433 break; 2434 2435 #ifdef __powerpc64__ 2436 case 532: /* ldbrx */ 2437 op->type = MKOP(LOAD, BYTEREV, 8); 2438 break; 2439 2440 #endif 2441 case 533: /* lswx */ 2442 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f); 2443 break; 2444 2445 case 534: /* lwbrx */ 2446 op->type = MKOP(LOAD, BYTEREV, 4); 2447 break; 2448 2449 case 597: /* lswi */ 2450 if (rb == 0) 2451 rb = 32; /* # bytes to load */ 2452 op->type = MKOP(LOAD_MULTI, 0, rb); 2453 op->ea = ra ? regs->gpr[ra] : 0; 2454 break; 2455 2456 #ifdef CONFIG_PPC_FPU 2457 case 535: /* lfsx */ 2458 case 567: /* lfsux */ 2459 op->type = MKOP(LOAD_FP, u | FPCONV, 4); 2460 break; 2461 2462 case 599: /* lfdx */ 2463 case 631: /* lfdux */ 2464 op->type = MKOP(LOAD_FP, u, 8); 2465 break; 2466 2467 case 663: /* stfsx */ 2468 case 695: /* stfsux */ 2469 op->type = MKOP(STORE_FP, u | FPCONV, 4); 2470 break; 2471 2472 case 727: /* stfdx */ 2473 case 759: /* stfdux */ 2474 op->type = MKOP(STORE_FP, u, 8); 2475 break; 2476 2477 #ifdef __powerpc64__ 2478 case 791: /* lfdpx */ 2479 op->type = MKOP(LOAD_FP, 0, 16); 2480 break; 2481 2482 case 855: /* lfiwax */ 2483 op->type = MKOP(LOAD_FP, SIGNEXT, 4); 2484 break; 2485 2486 case 887: /* lfiwzx */ 2487 op->type = MKOP(LOAD_FP, 0, 4); 2488 break; 2489 2490 case 919: /* stfdpx */ 2491 op->type = MKOP(STORE_FP, 0, 16); 2492 break; 2493 2494 case 983: /* stfiwx */ 2495 op->type = MKOP(STORE_FP, 0, 4); 2496 break; 2497 #endif /* __powerpc64 */ 2498 #endif /* CONFIG_PPC_FPU */ 2499 2500 #ifdef __powerpc64__ 2501 case 660: /* stdbrx */ 2502 op->type = MKOP(STORE, BYTEREV, 8); 2503 op->val = byterev_8(regs->gpr[rd]); 2504 break; 2505 2506 #endif 2507 case 661: /* stswx */ 2508 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f); 2509 break; 2510 2511 case 662: /* stwbrx */ 2512 op->type = MKOP(STORE, BYTEREV, 4); 2513 op->val = byterev_4(regs->gpr[rd]); 2514 break; 2515 2516 case 725: /* stswi */ 2517 if (rb == 0) 2518 rb = 32; /* # bytes to store */ 2519 op->type = MKOP(STORE_MULTI, 0, rb); 2520 op->ea = ra ? regs->gpr[ra] : 0; 2521 break; 2522 2523 case 790: /* lhbrx */ 2524 op->type = MKOP(LOAD, BYTEREV, 2); 2525 break; 2526 2527 case 918: /* sthbrx */ 2528 op->type = MKOP(STORE, BYTEREV, 2); 2529 op->val = byterev_2(regs->gpr[rd]); 2530 break; 2531 2532 #ifdef CONFIG_VSX 2533 case 12: /* lxsiwzx */ 2534 op->reg = rd | ((word & 1) << 5); 2535 op->type = MKOP(LOAD_VSX, 0, 4); 2536 op->element_size = 8; 2537 break; 2538 2539 case 76: /* lxsiwax */ 2540 op->reg = rd | ((word & 1) << 5); 2541 op->type = MKOP(LOAD_VSX, SIGNEXT, 4); 2542 op->element_size = 8; 2543 break; 2544 2545 case 140: /* stxsiwx */ 2546 op->reg = rd | ((word & 1) << 5); 2547 op->type = MKOP(STORE_VSX, 0, 4); 2548 op->element_size = 8; 2549 break; 2550 2551 case 268: /* lxvx */ 2552 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2553 goto unknown_opcode; 2554 op->reg = rd | ((word & 1) << 5); 2555 op->type = MKOP(LOAD_VSX, 0, 16); 2556 op->element_size = 16; 2557 op->vsx_flags = VSX_CHECK_VEC; 2558 break; 2559 2560 case 269: /* lxvl */ 2561 case 301: { /* lxvll */ 2562 int nb; 2563 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2564 goto unknown_opcode; 2565 op->reg = rd | ((word & 1) << 5); 2566 op->ea = ra ? regs->gpr[ra] : 0; 2567 nb = regs->gpr[rb] & 0xff; 2568 if (nb > 16) 2569 nb = 16; 2570 op->type = MKOP(LOAD_VSX, 0, nb); 2571 op->element_size = 16; 2572 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) | 2573 VSX_CHECK_VEC; 2574 break; 2575 } 2576 case 332: /* lxvdsx */ 2577 op->reg = rd | ((word & 1) << 5); 2578 op->type = MKOP(LOAD_VSX, 0, 8); 2579 op->element_size = 8; 2580 op->vsx_flags = VSX_SPLAT; 2581 break; 2582 2583 case 333: /* lxvpx */ 2584 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2585 goto unknown_opcode; 2586 op->reg = VSX_REGISTER_XTP(rd); 2587 op->type = MKOP(LOAD_VSX, 0, 32); 2588 op->element_size = 32; 2589 break; 2590 2591 case 364: /* lxvwsx */ 2592 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2593 goto unknown_opcode; 2594 op->reg = rd | ((word & 1) << 5); 2595 op->type = MKOP(LOAD_VSX, 0, 4); 2596 op->element_size = 4; 2597 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC; 2598 break; 2599 2600 case 396: /* stxvx */ 2601 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2602 goto unknown_opcode; 2603 op->reg = rd | ((word & 1) << 5); 2604 op->type = MKOP(STORE_VSX, 0, 16); 2605 op->element_size = 16; 2606 op->vsx_flags = VSX_CHECK_VEC; 2607 break; 2608 2609 case 397: /* stxvl */ 2610 case 429: { /* stxvll */ 2611 int nb; 2612 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2613 goto unknown_opcode; 2614 op->reg = rd | ((word & 1) << 5); 2615 op->ea = ra ? regs->gpr[ra] : 0; 2616 nb = regs->gpr[rb] & 0xff; 2617 if (nb > 16) 2618 nb = 16; 2619 op->type = MKOP(STORE_VSX, 0, nb); 2620 op->element_size = 16; 2621 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) | 2622 VSX_CHECK_VEC; 2623 break; 2624 } 2625 case 461: /* stxvpx */ 2626 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2627 goto unknown_opcode; 2628 op->reg = VSX_REGISTER_XTP(rd); 2629 op->type = MKOP(STORE_VSX, 0, 32); 2630 op->element_size = 32; 2631 break; 2632 case 524: /* lxsspx */ 2633 op->reg = rd | ((word & 1) << 5); 2634 op->type = MKOP(LOAD_VSX, 0, 4); 2635 op->element_size = 8; 2636 op->vsx_flags = VSX_FPCONV; 2637 break; 2638 2639 case 588: /* lxsdx */ 2640 op->reg = rd | ((word & 1) << 5); 2641 op->type = MKOP(LOAD_VSX, 0, 8); 2642 op->element_size = 8; 2643 break; 2644 2645 case 652: /* stxsspx */ 2646 op->reg = rd | ((word & 1) << 5); 2647 op->type = MKOP(STORE_VSX, 0, 4); 2648 op->element_size = 8; 2649 op->vsx_flags = VSX_FPCONV; 2650 break; 2651 2652 case 716: /* stxsdx */ 2653 op->reg = rd | ((word & 1) << 5); 2654 op->type = MKOP(STORE_VSX, 0, 8); 2655 op->element_size = 8; 2656 break; 2657 2658 case 780: /* lxvw4x */ 2659 op->reg = rd | ((word & 1) << 5); 2660 op->type = MKOP(LOAD_VSX, 0, 16); 2661 op->element_size = 4; 2662 break; 2663 2664 case 781: /* lxsibzx */ 2665 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2666 goto unknown_opcode; 2667 op->reg = rd | ((word & 1) << 5); 2668 op->type = MKOP(LOAD_VSX, 0, 1); 2669 op->element_size = 8; 2670 op->vsx_flags = VSX_CHECK_VEC; 2671 break; 2672 2673 case 812: /* lxvh8x */ 2674 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2675 goto unknown_opcode; 2676 op->reg = rd | ((word & 1) << 5); 2677 op->type = MKOP(LOAD_VSX, 0, 16); 2678 op->element_size = 2; 2679 op->vsx_flags = VSX_CHECK_VEC; 2680 break; 2681 2682 case 813: /* lxsihzx */ 2683 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2684 goto unknown_opcode; 2685 op->reg = rd | ((word & 1) << 5); 2686 op->type = MKOP(LOAD_VSX, 0, 2); 2687 op->element_size = 8; 2688 op->vsx_flags = VSX_CHECK_VEC; 2689 break; 2690 2691 case 844: /* lxvd2x */ 2692 op->reg = rd | ((word & 1) << 5); 2693 op->type = MKOP(LOAD_VSX, 0, 16); 2694 op->element_size = 8; 2695 break; 2696 2697 case 876: /* lxvb16x */ 2698 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2699 goto unknown_opcode; 2700 op->reg = rd | ((word & 1) << 5); 2701 op->type = MKOP(LOAD_VSX, 0, 16); 2702 op->element_size = 1; 2703 op->vsx_flags = VSX_CHECK_VEC; 2704 break; 2705 2706 case 908: /* stxvw4x */ 2707 op->reg = rd | ((word & 1) << 5); 2708 op->type = MKOP(STORE_VSX, 0, 16); 2709 op->element_size = 4; 2710 break; 2711 2712 case 909: /* stxsibx */ 2713 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2714 goto unknown_opcode; 2715 op->reg = rd | ((word & 1) << 5); 2716 op->type = MKOP(STORE_VSX, 0, 1); 2717 op->element_size = 8; 2718 op->vsx_flags = VSX_CHECK_VEC; 2719 break; 2720 2721 case 940: /* stxvh8x */ 2722 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2723 goto unknown_opcode; 2724 op->reg = rd | ((word & 1) << 5); 2725 op->type = MKOP(STORE_VSX, 0, 16); 2726 op->element_size = 2; 2727 op->vsx_flags = VSX_CHECK_VEC; 2728 break; 2729 2730 case 941: /* stxsihx */ 2731 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2732 goto unknown_opcode; 2733 op->reg = rd | ((word & 1) << 5); 2734 op->type = MKOP(STORE_VSX, 0, 2); 2735 op->element_size = 8; 2736 op->vsx_flags = VSX_CHECK_VEC; 2737 break; 2738 2739 case 972: /* stxvd2x */ 2740 op->reg = rd | ((word & 1) << 5); 2741 op->type = MKOP(STORE_VSX, 0, 16); 2742 op->element_size = 8; 2743 break; 2744 2745 case 1004: /* stxvb16x */ 2746 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2747 goto unknown_opcode; 2748 op->reg = rd | ((word & 1) << 5); 2749 op->type = MKOP(STORE_VSX, 0, 16); 2750 op->element_size = 1; 2751 op->vsx_flags = VSX_CHECK_VEC; 2752 break; 2753 2754 #endif /* CONFIG_VSX */ 2755 } 2756 break; 2757 2758 case 32: /* lwz */ 2759 case 33: /* lwzu */ 2760 op->type = MKOP(LOAD, u, 4); 2761 op->ea = dform_ea(word, regs); 2762 break; 2763 2764 case 34: /* lbz */ 2765 case 35: /* lbzu */ 2766 op->type = MKOP(LOAD, u, 1); 2767 op->ea = dform_ea(word, regs); 2768 break; 2769 2770 case 36: /* stw */ 2771 case 37: /* stwu */ 2772 op->type = MKOP(STORE, u, 4); 2773 op->ea = dform_ea(word, regs); 2774 break; 2775 2776 case 38: /* stb */ 2777 case 39: /* stbu */ 2778 op->type = MKOP(STORE, u, 1); 2779 op->ea = dform_ea(word, regs); 2780 break; 2781 2782 case 40: /* lhz */ 2783 case 41: /* lhzu */ 2784 op->type = MKOP(LOAD, u, 2); 2785 op->ea = dform_ea(word, regs); 2786 break; 2787 2788 case 42: /* lha */ 2789 case 43: /* lhau */ 2790 op->type = MKOP(LOAD, SIGNEXT | u, 2); 2791 op->ea = dform_ea(word, regs); 2792 break; 2793 2794 case 44: /* sth */ 2795 case 45: /* sthu */ 2796 op->type = MKOP(STORE, u, 2); 2797 op->ea = dform_ea(word, regs); 2798 break; 2799 2800 case 46: /* lmw */ 2801 if (ra >= rd) 2802 break; /* invalid form, ra in range to load */ 2803 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd)); 2804 op->ea = dform_ea(word, regs); 2805 break; 2806 2807 case 47: /* stmw */ 2808 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd)); 2809 op->ea = dform_ea(word, regs); 2810 break; 2811 2812 #ifdef CONFIG_PPC_FPU 2813 case 48: /* lfs */ 2814 case 49: /* lfsu */ 2815 op->type = MKOP(LOAD_FP, u | FPCONV, 4); 2816 op->ea = dform_ea(word, regs); 2817 break; 2818 2819 case 50: /* lfd */ 2820 case 51: /* lfdu */ 2821 op->type = MKOP(LOAD_FP, u, 8); 2822 op->ea = dform_ea(word, regs); 2823 break; 2824 2825 case 52: /* stfs */ 2826 case 53: /* stfsu */ 2827 op->type = MKOP(STORE_FP, u | FPCONV, 4); 2828 op->ea = dform_ea(word, regs); 2829 break; 2830 2831 case 54: /* stfd */ 2832 case 55: /* stfdu */ 2833 op->type = MKOP(STORE_FP, u, 8); 2834 op->ea = dform_ea(word, regs); 2835 break; 2836 #endif 2837 2838 #ifdef __powerpc64__ 2839 case 56: /* lq */ 2840 if (!((rd & 1) || (rd == ra))) 2841 op->type = MKOP(LOAD, 0, 16); 2842 op->ea = dqform_ea(word, regs); 2843 break; 2844 #endif 2845 2846 #ifdef CONFIG_VSX 2847 case 57: /* lfdp, lxsd, lxssp */ 2848 op->ea = dsform_ea(word, regs); 2849 switch (word & 3) { 2850 case 0: /* lfdp */ 2851 if (rd & 1) 2852 break; /* reg must be even */ 2853 op->type = MKOP(LOAD_FP, 0, 16); 2854 break; 2855 case 2: /* lxsd */ 2856 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2857 goto unknown_opcode; 2858 op->reg = rd + 32; 2859 op->type = MKOP(LOAD_VSX, 0, 8); 2860 op->element_size = 8; 2861 op->vsx_flags = VSX_CHECK_VEC; 2862 break; 2863 case 3: /* lxssp */ 2864 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2865 goto unknown_opcode; 2866 op->reg = rd + 32; 2867 op->type = MKOP(LOAD_VSX, 0, 4); 2868 op->element_size = 8; 2869 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 2870 break; 2871 } 2872 break; 2873 #endif /* CONFIG_VSX */ 2874 2875 #ifdef __powerpc64__ 2876 case 58: /* ld[u], lwa */ 2877 op->ea = dsform_ea(word, regs); 2878 switch (word & 3) { 2879 case 0: /* ld */ 2880 op->type = MKOP(LOAD, 0, 8); 2881 break; 2882 case 1: /* ldu */ 2883 op->type = MKOP(LOAD, UPDATE, 8); 2884 break; 2885 case 2: /* lwa */ 2886 op->type = MKOP(LOAD, SIGNEXT, 4); 2887 break; 2888 } 2889 break; 2890 #endif 2891 2892 #ifdef CONFIG_VSX 2893 case 6: 2894 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2895 goto unknown_opcode; 2896 op->ea = dqform_ea(word, regs); 2897 op->reg = VSX_REGISTER_XTP(rd); 2898 op->element_size = 32; 2899 switch (word & 0xf) { 2900 case 0: /* lxvp */ 2901 op->type = MKOP(LOAD_VSX, 0, 32); 2902 break; 2903 case 1: /* stxvp */ 2904 op->type = MKOP(STORE_VSX, 0, 32); 2905 break; 2906 } 2907 break; 2908 2909 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */ 2910 switch (word & 7) { 2911 case 0: /* stfdp with LSB of DS field = 0 */ 2912 case 4: /* stfdp with LSB of DS field = 1 */ 2913 op->ea = dsform_ea(word, regs); 2914 op->type = MKOP(STORE_FP, 0, 16); 2915 break; 2916 2917 case 1: /* lxv */ 2918 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2919 goto unknown_opcode; 2920 op->ea = dqform_ea(word, regs); 2921 if (word & 8) 2922 op->reg = rd + 32; 2923 op->type = MKOP(LOAD_VSX, 0, 16); 2924 op->element_size = 16; 2925 op->vsx_flags = VSX_CHECK_VEC; 2926 break; 2927 2928 case 2: /* stxsd with LSB of DS field = 0 */ 2929 case 6: /* stxsd with LSB of DS field = 1 */ 2930 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2931 goto unknown_opcode; 2932 op->ea = dsform_ea(word, regs); 2933 op->reg = rd + 32; 2934 op->type = MKOP(STORE_VSX, 0, 8); 2935 op->element_size = 8; 2936 op->vsx_flags = VSX_CHECK_VEC; 2937 break; 2938 2939 case 3: /* stxssp with LSB of DS field = 0 */ 2940 case 7: /* stxssp with LSB of DS field = 1 */ 2941 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2942 goto unknown_opcode; 2943 op->ea = dsform_ea(word, regs); 2944 op->reg = rd + 32; 2945 op->type = MKOP(STORE_VSX, 0, 4); 2946 op->element_size = 8; 2947 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 2948 break; 2949 2950 case 5: /* stxv */ 2951 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2952 goto unknown_opcode; 2953 op->ea = dqform_ea(word, regs); 2954 if (word & 8) 2955 op->reg = rd + 32; 2956 op->type = MKOP(STORE_VSX, 0, 16); 2957 op->element_size = 16; 2958 op->vsx_flags = VSX_CHECK_VEC; 2959 break; 2960 } 2961 break; 2962 #endif /* CONFIG_VSX */ 2963 2964 #ifdef __powerpc64__ 2965 case 62: /* std[u] */ 2966 op->ea = dsform_ea(word, regs); 2967 switch (word & 3) { 2968 case 0: /* std */ 2969 op->type = MKOP(STORE, 0, 8); 2970 break; 2971 case 1: /* stdu */ 2972 op->type = MKOP(STORE, UPDATE, 8); 2973 break; 2974 case 2: /* stq */ 2975 if (!(rd & 1)) 2976 op->type = MKOP(STORE, 0, 16); 2977 break; 2978 } 2979 break; 2980 case 1: /* Prefixed instructions */ 2981 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2982 goto unknown_opcode; 2983 2984 prefix_r = GET_PREFIX_R(word); 2985 ra = GET_PREFIX_RA(suffix); 2986 op->update_reg = ra; 2987 rd = (suffix >> 21) & 0x1f; 2988 op->reg = rd; 2989 op->val = regs->gpr[rd]; 2990 2991 suffixopcode = get_op(suffix); 2992 prefixtype = (word >> 24) & 0x3; 2993 switch (prefixtype) { 2994 case 0: /* Type 00 Eight-Byte Load/Store */ 2995 if (prefix_r && ra) 2996 break; 2997 op->ea = mlsd_8lsd_ea(word, suffix, regs); 2998 switch (suffixopcode) { 2999 case 41: /* plwa */ 3000 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4); 3001 break; 3002 #ifdef CONFIG_VSX 3003 case 42: /* plxsd */ 3004 op->reg = rd + 32; 3005 op->type = MKOP(LOAD_VSX, PREFIXED, 8); 3006 op->element_size = 8; 3007 op->vsx_flags = VSX_CHECK_VEC; 3008 break; 3009 case 43: /* plxssp */ 3010 op->reg = rd + 32; 3011 op->type = MKOP(LOAD_VSX, PREFIXED, 4); 3012 op->element_size = 8; 3013 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 3014 break; 3015 case 46: /* pstxsd */ 3016 op->reg = rd + 32; 3017 op->type = MKOP(STORE_VSX, PREFIXED, 8); 3018 op->element_size = 8; 3019 op->vsx_flags = VSX_CHECK_VEC; 3020 break; 3021 case 47: /* pstxssp */ 3022 op->reg = rd + 32; 3023 op->type = MKOP(STORE_VSX, PREFIXED, 4); 3024 op->element_size = 8; 3025 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 3026 break; 3027 case 51: /* plxv1 */ 3028 op->reg += 32; 3029 fallthrough; 3030 case 50: /* plxv0 */ 3031 op->type = MKOP(LOAD_VSX, PREFIXED, 16); 3032 op->element_size = 16; 3033 op->vsx_flags = VSX_CHECK_VEC; 3034 break; 3035 case 55: /* pstxv1 */ 3036 op->reg = rd + 32; 3037 fallthrough; 3038 case 54: /* pstxv0 */ 3039 op->type = MKOP(STORE_VSX, PREFIXED, 16); 3040 op->element_size = 16; 3041 op->vsx_flags = VSX_CHECK_VEC; 3042 break; 3043 #endif /* CONFIG_VSX */ 3044 case 56: /* plq */ 3045 op->type = MKOP(LOAD, PREFIXED, 16); 3046 break; 3047 case 57: /* pld */ 3048 op->type = MKOP(LOAD, PREFIXED, 8); 3049 break; 3050 #ifdef CONFIG_VSX 3051 case 58: /* plxvp */ 3052 op->reg = VSX_REGISTER_XTP(rd); 3053 op->type = MKOP(LOAD_VSX, PREFIXED, 32); 3054 op->element_size = 32; 3055 break; 3056 #endif /* CONFIG_VSX */ 3057 case 60: /* pstq */ 3058 op->type = MKOP(STORE, PREFIXED, 16); 3059 break; 3060 case 61: /* pstd */ 3061 op->type = MKOP(STORE, PREFIXED, 8); 3062 break; 3063 #ifdef CONFIG_VSX 3064 case 62: /* pstxvp */ 3065 op->reg = VSX_REGISTER_XTP(rd); 3066 op->type = MKOP(STORE_VSX, PREFIXED, 32); 3067 op->element_size = 32; 3068 break; 3069 #endif /* CONFIG_VSX */ 3070 } 3071 break; 3072 case 1: /* Type 01 Eight-Byte Register-to-Register */ 3073 break; 3074 case 2: /* Type 10 Modified Load/Store */ 3075 if (prefix_r && ra) 3076 break; 3077 op->ea = mlsd_8lsd_ea(word, suffix, regs); 3078 switch (suffixopcode) { 3079 case 32: /* plwz */ 3080 op->type = MKOP(LOAD, PREFIXED, 4); 3081 break; 3082 case 34: /* plbz */ 3083 op->type = MKOP(LOAD, PREFIXED, 1); 3084 break; 3085 case 36: /* pstw */ 3086 op->type = MKOP(STORE, PREFIXED, 4); 3087 break; 3088 case 38: /* pstb */ 3089 op->type = MKOP(STORE, PREFIXED, 1); 3090 break; 3091 case 40: /* plhz */ 3092 op->type = MKOP(LOAD, PREFIXED, 2); 3093 break; 3094 case 42: /* plha */ 3095 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2); 3096 break; 3097 case 44: /* psth */ 3098 op->type = MKOP(STORE, PREFIXED, 2); 3099 break; 3100 case 48: /* plfs */ 3101 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4); 3102 break; 3103 case 50: /* plfd */ 3104 op->type = MKOP(LOAD_FP, PREFIXED, 8); 3105 break; 3106 case 52: /* pstfs */ 3107 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4); 3108 break; 3109 case 54: /* pstfd */ 3110 op->type = MKOP(STORE_FP, PREFIXED, 8); 3111 break; 3112 } 3113 break; 3114 case 3: /* Type 11 Modified Register-to-Register */ 3115 break; 3116 } 3117 #endif /* __powerpc64__ */ 3118 3119 } 3120 3121 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) { 3122 switch (GETTYPE(op->type)) { 3123 case LOAD: 3124 if (ra == rd) 3125 goto unknown_opcode; 3126 fallthrough; 3127 case STORE: 3128 case LOAD_FP: 3129 case STORE_FP: 3130 if (ra == 0) 3131 goto unknown_opcode; 3132 } 3133 } 3134 3135 #ifdef CONFIG_VSX 3136 if ((GETTYPE(op->type) == LOAD_VSX || 3137 GETTYPE(op->type) == STORE_VSX) && 3138 !cpu_has_feature(CPU_FTR_VSX)) { 3139 return -1; 3140 } 3141 #endif /* CONFIG_VSX */ 3142 3143 return 0; 3144 3145 unknown_opcode: 3146 op->type = UNKNOWN; 3147 return 0; 3148 3149 logical_done: 3150 if (word & 1) 3151 set_cr0(regs, op); 3152 logical_done_nocc: 3153 op->reg = ra; 3154 op->type |= SETREG; 3155 return 1; 3156 3157 arith_done: 3158 if (word & 1) 3159 set_cr0(regs, op); 3160 compute_done: 3161 op->reg = rd; 3162 op->type |= SETREG; 3163 return 1; 3164 3165 priv: 3166 op->type = INTERRUPT | 0x700; 3167 op->val = SRR1_PROGPRIV; 3168 return 0; 3169 3170 trap: 3171 op->type = INTERRUPT | 0x700; 3172 op->val = SRR1_PROGTRAP; 3173 return 0; 3174 } 3175 EXPORT_SYMBOL_GPL(analyse_instr); 3176 NOKPROBE_SYMBOL(analyse_instr); 3177 3178 /* 3179 * For PPC32 we always use stwu with r1 to change the stack pointer. 3180 * So this emulated store may corrupt the exception frame, now we 3181 * have to provide the exception frame trampoline, which is pushed 3182 * below the kprobed function stack. So we only update gpr[1] but 3183 * don't emulate the real store operation. We will do real store 3184 * operation safely in exception return code by checking this flag. 3185 */ 3186 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs) 3187 { 3188 /* 3189 * Check if we already set since that means we'll 3190 * lose the previous value. 3191 */ 3192 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE)); 3193 set_thread_flag(TIF_EMULATE_STACK_STORE); 3194 return 0; 3195 } 3196 3197 static nokprobe_inline void do_signext(unsigned long *valp, int size) 3198 { 3199 switch (size) { 3200 case 2: 3201 *valp = (signed short) *valp; 3202 break; 3203 case 4: 3204 *valp = (signed int) *valp; 3205 break; 3206 } 3207 } 3208 3209 static nokprobe_inline void do_byterev(unsigned long *valp, int size) 3210 { 3211 switch (size) { 3212 case 2: 3213 *valp = byterev_2(*valp); 3214 break; 3215 case 4: 3216 *valp = byterev_4(*valp); 3217 break; 3218 #ifdef __powerpc64__ 3219 case 8: 3220 *valp = byterev_8(*valp); 3221 break; 3222 #endif 3223 } 3224 } 3225 3226 /* 3227 * Emulate an instruction that can be executed just by updating 3228 * fields in *regs. 3229 */ 3230 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op) 3231 { 3232 unsigned long next_pc; 3233 3234 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type)); 3235 switch (GETTYPE(op->type)) { 3236 case COMPUTE: 3237 if (op->type & SETREG) 3238 regs->gpr[op->reg] = op->val; 3239 if (op->type & SETCC) 3240 regs->ccr = op->ccval; 3241 if (op->type & SETXER) 3242 regs->xer = op->xerval; 3243 break; 3244 3245 case BRANCH: 3246 if (op->type & SETLK) 3247 regs->link = next_pc; 3248 if (op->type & BRTAKEN) 3249 next_pc = op->val; 3250 if (op->type & DECCTR) 3251 --regs->ctr; 3252 break; 3253 3254 case BARRIER: 3255 switch (op->type & BARRIER_MASK) { 3256 case BARRIER_SYNC: 3257 mb(); 3258 break; 3259 case BARRIER_ISYNC: 3260 isync(); 3261 break; 3262 case BARRIER_EIEIO: 3263 eieio(); 3264 break; 3265 #ifdef CONFIG_PPC64 3266 case BARRIER_LWSYNC: 3267 asm volatile("lwsync" : : : "memory"); 3268 break; 3269 case BARRIER_PTESYNC: 3270 asm volatile("ptesync" : : : "memory"); 3271 break; 3272 #endif 3273 } 3274 break; 3275 3276 case MFSPR: 3277 switch (op->spr) { 3278 case SPRN_XER: 3279 regs->gpr[op->reg] = regs->xer & 0xffffffffUL; 3280 break; 3281 case SPRN_LR: 3282 regs->gpr[op->reg] = regs->link; 3283 break; 3284 case SPRN_CTR: 3285 regs->gpr[op->reg] = regs->ctr; 3286 break; 3287 default: 3288 WARN_ON_ONCE(1); 3289 } 3290 break; 3291 3292 case MTSPR: 3293 switch (op->spr) { 3294 case SPRN_XER: 3295 regs->xer = op->val & 0xffffffffUL; 3296 break; 3297 case SPRN_LR: 3298 regs->link = op->val; 3299 break; 3300 case SPRN_CTR: 3301 regs->ctr = op->val; 3302 break; 3303 default: 3304 WARN_ON_ONCE(1); 3305 } 3306 break; 3307 3308 default: 3309 WARN_ON_ONCE(1); 3310 } 3311 regs_set_return_ip(regs, next_pc); 3312 } 3313 NOKPROBE_SYMBOL(emulate_update_regs); 3314 3315 /* 3316 * Emulate a previously-analysed load or store instruction. 3317 * Return values are: 3318 * 0 = instruction emulated successfully 3319 * -EFAULT = address out of range or access faulted (regs->dar 3320 * contains the faulting address) 3321 * -EACCES = misaligned access, instruction requires alignment 3322 * -EINVAL = unknown operation in *op 3323 */ 3324 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op) 3325 { 3326 int err, size, type; 3327 int i, rd, nb; 3328 unsigned int cr; 3329 unsigned long val; 3330 unsigned long ea; 3331 bool cross_endian; 3332 3333 err = 0; 3334 size = GETSIZE(op->type); 3335 type = GETTYPE(op->type); 3336 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE); 3337 ea = truncate_if_32bit(regs->msr, op->ea); 3338 3339 switch (type) { 3340 case LARX: 3341 if (ea & (size - 1)) 3342 return -EACCES; /* can't handle misaligned */ 3343 if (!address_ok(regs, ea, size)) 3344 return -EFAULT; 3345 err = 0; 3346 val = 0; 3347 switch (size) { 3348 #ifdef CONFIG_PPC_HAS_LBARX_LHARX 3349 case 1: 3350 __get_user_asmx(val, ea, err, "lbarx"); 3351 break; 3352 case 2: 3353 __get_user_asmx(val, ea, err, "lharx"); 3354 break; 3355 #endif 3356 case 4: 3357 __get_user_asmx(val, ea, err, "lwarx"); 3358 break; 3359 #ifdef __powerpc64__ 3360 case 8: 3361 __get_user_asmx(val, ea, err, "ldarx"); 3362 break; 3363 case 16: 3364 err = do_lqarx(ea, ®s->gpr[op->reg]); 3365 break; 3366 #endif 3367 default: 3368 return -EINVAL; 3369 } 3370 if (err) { 3371 regs->dar = ea; 3372 break; 3373 } 3374 if (size < 16) 3375 regs->gpr[op->reg] = val; 3376 break; 3377 3378 case STCX: 3379 if (ea & (size - 1)) 3380 return -EACCES; /* can't handle misaligned */ 3381 if (!address_ok(regs, ea, size)) 3382 return -EFAULT; 3383 err = 0; 3384 switch (size) { 3385 #ifdef __powerpc64__ 3386 case 1: 3387 __put_user_asmx(op->val, ea, err, "stbcx.", cr); 3388 break; 3389 case 2: 3390 __put_user_asmx(op->val, ea, err, "sthcx.", cr); 3391 break; 3392 #endif 3393 case 4: 3394 __put_user_asmx(op->val, ea, err, "stwcx.", cr); 3395 break; 3396 #ifdef __powerpc64__ 3397 case 8: 3398 __put_user_asmx(op->val, ea, err, "stdcx.", cr); 3399 break; 3400 case 16: 3401 err = do_stqcx(ea, regs->gpr[op->reg], 3402 regs->gpr[op->reg + 1], &cr); 3403 break; 3404 #endif 3405 default: 3406 return -EINVAL; 3407 } 3408 if (!err) 3409 regs->ccr = (regs->ccr & 0x0fffffff) | 3410 (cr & 0xe0000000) | 3411 ((regs->xer >> 3) & 0x10000000); 3412 else 3413 regs->dar = ea; 3414 break; 3415 3416 case LOAD: 3417 #ifdef __powerpc64__ 3418 if (size == 16) { 3419 err = emulate_lq(regs, ea, op->reg, cross_endian); 3420 break; 3421 } 3422 #endif 3423 err = read_mem(®s->gpr[op->reg], ea, size, regs); 3424 if (!err) { 3425 if (op->type & SIGNEXT) 3426 do_signext(®s->gpr[op->reg], size); 3427 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV)) 3428 do_byterev(®s->gpr[op->reg], size); 3429 } 3430 break; 3431 3432 #ifdef CONFIG_PPC_FPU 3433 case LOAD_FP: 3434 /* 3435 * If the instruction is in userspace, we can emulate it even 3436 * if the VMX state is not live, because we have the state 3437 * stored in the thread_struct. If the instruction is in 3438 * the kernel, we must not touch the state in the thread_struct. 3439 */ 3440 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) 3441 return 0; 3442 err = do_fp_load(op, ea, regs, cross_endian); 3443 break; 3444 #endif 3445 #ifdef CONFIG_ALTIVEC 3446 case LOAD_VMX: 3447 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) 3448 return 0; 3449 err = do_vec_load(op->reg, ea, size, regs, cross_endian); 3450 break; 3451 #endif 3452 #ifdef CONFIG_VSX 3453 case LOAD_VSX: { 3454 unsigned long msrbit = MSR_VSX; 3455 3456 /* 3457 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX 3458 * when the target of the instruction is a vector register. 3459 */ 3460 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) 3461 msrbit = MSR_VEC; 3462 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) 3463 return 0; 3464 err = do_vsx_load(op, ea, regs, cross_endian); 3465 break; 3466 } 3467 #endif 3468 case LOAD_MULTI: 3469 if (!address_ok(regs, ea, size)) 3470 return -EFAULT; 3471 rd = op->reg; 3472 for (i = 0; i < size; i += 4) { 3473 unsigned int v32 = 0; 3474 3475 nb = size - i; 3476 if (nb > 4) 3477 nb = 4; 3478 err = copy_mem_in((u8 *) &v32, ea, nb, regs); 3479 if (err) 3480 break; 3481 if (unlikely(cross_endian)) 3482 v32 = byterev_4(v32); 3483 regs->gpr[rd] = v32; 3484 ea += 4; 3485 /* reg number wraps from 31 to 0 for lsw[ix] */ 3486 rd = (rd + 1) & 0x1f; 3487 } 3488 break; 3489 3490 case STORE: 3491 #ifdef __powerpc64__ 3492 if (size == 16) { 3493 err = emulate_stq(regs, ea, op->reg, cross_endian); 3494 break; 3495 } 3496 #endif 3497 if ((op->type & UPDATE) && size == sizeof(long) && 3498 op->reg == 1 && op->update_reg == 1 && 3499 !(regs->msr & MSR_PR) && 3500 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) { 3501 err = handle_stack_update(ea, regs); 3502 break; 3503 } 3504 if (unlikely(cross_endian)) 3505 do_byterev(&op->val, size); 3506 err = write_mem(op->val, ea, size, regs); 3507 break; 3508 3509 #ifdef CONFIG_PPC_FPU 3510 case STORE_FP: 3511 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) 3512 return 0; 3513 err = do_fp_store(op, ea, regs, cross_endian); 3514 break; 3515 #endif 3516 #ifdef CONFIG_ALTIVEC 3517 case STORE_VMX: 3518 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) 3519 return 0; 3520 err = do_vec_store(op->reg, ea, size, regs, cross_endian); 3521 break; 3522 #endif 3523 #ifdef CONFIG_VSX 3524 case STORE_VSX: { 3525 unsigned long msrbit = MSR_VSX; 3526 3527 /* 3528 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX 3529 * when the target of the instruction is a vector register. 3530 */ 3531 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) 3532 msrbit = MSR_VEC; 3533 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) 3534 return 0; 3535 err = do_vsx_store(op, ea, regs, cross_endian); 3536 break; 3537 } 3538 #endif 3539 case STORE_MULTI: 3540 if (!address_ok(regs, ea, size)) 3541 return -EFAULT; 3542 rd = op->reg; 3543 for (i = 0; i < size; i += 4) { 3544 unsigned int v32 = regs->gpr[rd]; 3545 3546 nb = size - i; 3547 if (nb > 4) 3548 nb = 4; 3549 if (unlikely(cross_endian)) 3550 v32 = byterev_4(v32); 3551 err = copy_mem_out((u8 *) &v32, ea, nb, regs); 3552 if (err) 3553 break; 3554 ea += 4; 3555 /* reg number wraps from 31 to 0 for stsw[ix] */ 3556 rd = (rd + 1) & 0x1f; 3557 } 3558 break; 3559 3560 default: 3561 return -EINVAL; 3562 } 3563 3564 if (err) 3565 return err; 3566 3567 if (op->type & UPDATE) 3568 regs->gpr[op->update_reg] = op->ea; 3569 3570 return 0; 3571 } 3572 NOKPROBE_SYMBOL(emulate_loadstore); 3573 3574 /* 3575 * Emulate instructions that cause a transfer of control, 3576 * loads and stores, and a few other instructions. 3577 * Returns 1 if the step was emulated, 0 if not, 3578 * or -1 if the instruction is one that should not be stepped, 3579 * such as an rfid, or a mtmsrd that would clear MSR_RI. 3580 */ 3581 int emulate_step(struct pt_regs *regs, ppc_inst_t instr) 3582 { 3583 struct instruction_op op; 3584 int r, err, type; 3585 unsigned long val; 3586 unsigned long ea; 3587 3588 r = analyse_instr(&op, regs, instr); 3589 if (r < 0) 3590 return r; 3591 if (r > 0) { 3592 emulate_update_regs(regs, &op); 3593 return 1; 3594 } 3595 3596 err = 0; 3597 type = GETTYPE(op.type); 3598 3599 if (OP_IS_LOAD_STORE(type)) { 3600 err = emulate_loadstore(regs, &op); 3601 if (err) 3602 return 0; 3603 goto instr_done; 3604 } 3605 3606 switch (type) { 3607 case CACHEOP: 3608 ea = truncate_if_32bit(regs->msr, op.ea); 3609 if (!address_ok(regs, ea, 8)) 3610 return 0; 3611 switch (op.type & CACHEOP_MASK) { 3612 case DCBST: 3613 __cacheop_user_asmx(ea, err, "dcbst"); 3614 break; 3615 case DCBF: 3616 __cacheop_user_asmx(ea, err, "dcbf"); 3617 break; 3618 case DCBTST: 3619 if (op.reg == 0) 3620 prefetchw((void *) ea); 3621 break; 3622 case DCBT: 3623 if (op.reg == 0) 3624 prefetch((void *) ea); 3625 break; 3626 case ICBI: 3627 __cacheop_user_asmx(ea, err, "icbi"); 3628 break; 3629 case DCBZ: 3630 err = emulate_dcbz(ea, regs); 3631 break; 3632 } 3633 if (err) { 3634 regs->dar = ea; 3635 return 0; 3636 } 3637 goto instr_done; 3638 3639 case MFMSR: 3640 regs->gpr[op.reg] = regs->msr & MSR_MASK; 3641 goto instr_done; 3642 3643 case MTMSR: 3644 val = regs->gpr[op.reg]; 3645 if ((val & MSR_RI) == 0) 3646 /* can't step mtmsr[d] that would clear MSR_RI */ 3647 return -1; 3648 /* here op.val is the mask of bits to change */ 3649 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val)); 3650 goto instr_done; 3651 3652 case SYSCALL: /* sc */ 3653 /* 3654 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't 3655 * single step a system call instruction: 3656 * 3657 * Successful completion for an instruction means that the 3658 * instruction caused no other interrupt. Thus a Trace 3659 * interrupt never occurs for a System Call or System Call 3660 * Vectored instruction, or for a Trap instruction that 3661 * traps. 3662 */ 3663 return -1; 3664 case SYSCALL_VECTORED_0: /* scv 0 */ 3665 return -1; 3666 case RFI: 3667 return -1; 3668 } 3669 return 0; 3670 3671 instr_done: 3672 regs_set_return_ip(regs, 3673 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type))); 3674 return 1; 3675 } 3676 NOKPROBE_SYMBOL(emulate_step); 3677