xref: /linux/arch/powerpc/lib/sstep.c (revision 89aca4753eb451a48f65a12b02640365dba3d4ea)
1 /*
2  * Single-step support.
3  *
4  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
20 
21 extern char system_call_common[];
22 
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK	0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK	0x87c0ffff
28 #endif
29 
30 /* Bits in XER */
31 #define XER_SO		0x80000000U
32 #define XER_OV		0x40000000U
33 #define XER_CA		0x20000000U
34 #define XER_OV32	0x00080000U
35 #define XER_CA32	0x00040000U
36 
37 #ifdef CONFIG_PPC_FPU
38 /*
39  * Functions in ldstfp.S
40  */
41 extern void get_fpr(int rn, double *p);
42 extern void put_fpr(int rn, const double *p);
43 extern void get_vr(int rn, __vector128 *p);
44 extern void put_vr(int rn, __vector128 *p);
45 extern void load_vsrn(int vsr, const void *p);
46 extern void store_vsrn(int vsr, void *p);
47 extern void conv_sp_to_dp(const float *sp, double *dp);
48 extern void conv_dp_to_sp(const double *dp, float *sp);
49 #endif
50 
51 #ifdef __powerpc64__
52 /*
53  * Functions in quad.S
54  */
55 extern int do_lq(unsigned long ea, unsigned long *regs);
56 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57 extern int do_lqarx(unsigned long ea, unsigned long *regs);
58 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59 		    unsigned int *crp);
60 #endif
61 
62 #ifdef __LITTLE_ENDIAN__
63 #define IS_LE	1
64 #define IS_BE	0
65 #else
66 #define IS_LE	0
67 #define IS_BE	1
68 #endif
69 
70 /*
71  * Emulate the truncation of 64 bit values in 32-bit mode.
72  */
73 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74 							unsigned long val)
75 {
76 #ifdef __powerpc64__
77 	if ((msr & MSR_64BIT) == 0)
78 		val &= 0xffffffffUL;
79 #endif
80 	return val;
81 }
82 
83 /*
84  * Determine whether a conditional branch instruction would branch.
85  */
86 static nokprobe_inline int branch_taken(unsigned int instr,
87 					const struct pt_regs *regs,
88 					struct instruction_op *op)
89 {
90 	unsigned int bo = (instr >> 21) & 0x1f;
91 	unsigned int bi;
92 
93 	if ((bo & 4) == 0) {
94 		/* decrement counter */
95 		op->type |= DECCTR;
96 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 			return 0;
98 	}
99 	if ((bo & 0x10) == 0) {
100 		/* check bit from CR */
101 		bi = (instr >> 16) & 0x1f;
102 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 			return 0;
104 	}
105 	return 1;
106 }
107 
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109 				       unsigned long ea, int nb)
110 {
111 	if (!user_mode(regs))
112 		return 1;
113 	if (__access_ok(ea, nb, USER_DS))
114 		return 1;
115 	if (__access_ok(ea, 1, USER_DS))
116 		/* Access overlaps the end of the user region */
117 		regs->dar = USER_DS.seg;
118 	else
119 		regs->dar = ea;
120 	return 0;
121 }
122 
123 /*
124  * Calculate effective address for a D-form instruction
125  */
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 					      const struct pt_regs *regs)
128 {
129 	int ra;
130 	unsigned long ea;
131 
132 	ra = (instr >> 16) & 0x1f;
133 	ea = (signed short) instr;		/* sign-extend */
134 	if (ra)
135 		ea += regs->gpr[ra];
136 
137 	return ea;
138 }
139 
140 #ifdef __powerpc64__
141 /*
142  * Calculate effective address for a DS-form instruction
143  */
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 					       const struct pt_regs *regs)
146 {
147 	int ra;
148 	unsigned long ea;
149 
150 	ra = (instr >> 16) & 0x1f;
151 	ea = (signed short) (instr & ~3);	/* sign-extend */
152 	if (ra)
153 		ea += regs->gpr[ra];
154 
155 	return ea;
156 }
157 
158 /*
159  * Calculate effective address for a DQ-form instruction
160  */
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 					       const struct pt_regs *regs)
163 {
164 	int ra;
165 	unsigned long ea;
166 
167 	ra = (instr >> 16) & 0x1f;
168 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
169 	if (ra)
170 		ea += regs->gpr[ra];
171 
172 	return ea;
173 }
174 #endif /* __powerpc64 */
175 
176 /*
177  * Calculate effective address for an X-form instruction
178  */
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 					      const struct pt_regs *regs)
181 {
182 	int ra, rb;
183 	unsigned long ea;
184 
185 	ra = (instr >> 16) & 0x1f;
186 	rb = (instr >> 11) & 0x1f;
187 	ea = regs->gpr[rb];
188 	if (ra)
189 		ea += regs->gpr[ra];
190 
191 	return ea;
192 }
193 
194 /*
195  * Return the largest power of 2, not greater than sizeof(unsigned long),
196  * such that x is a multiple of it.
197  */
198 static nokprobe_inline unsigned long max_align(unsigned long x)
199 {
200 	x |= sizeof(unsigned long);
201 	return x & -x;		/* isolates rightmost bit */
202 }
203 
204 static nokprobe_inline unsigned long byterev_2(unsigned long x)
205 {
206 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
207 }
208 
209 static nokprobe_inline unsigned long byterev_4(unsigned long x)
210 {
211 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
213 }
214 
215 #ifdef __powerpc64__
216 static nokprobe_inline unsigned long byterev_8(unsigned long x)
217 {
218 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
219 }
220 #endif
221 
222 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
223 {
224 	switch (nb) {
225 	case 2:
226 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
227 		break;
228 	case 4:
229 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
230 		break;
231 #ifdef __powerpc64__
232 	case 8:
233 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234 		break;
235 	case 16: {
236 		unsigned long *up = (unsigned long *)ptr;
237 		unsigned long tmp;
238 		tmp = byterev_8(up[0]);
239 		up[0] = byterev_8(up[1]);
240 		up[1] = tmp;
241 		break;
242 	}
243 #endif
244 	default:
245 		WARN_ON_ONCE(1);
246 	}
247 }
248 
249 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250 					    unsigned long ea, int nb,
251 					    struct pt_regs *regs)
252 {
253 	int err = 0;
254 	unsigned long x = 0;
255 
256 	switch (nb) {
257 	case 1:
258 		err = __get_user(x, (unsigned char __user *) ea);
259 		break;
260 	case 2:
261 		err = __get_user(x, (unsigned short __user *) ea);
262 		break;
263 	case 4:
264 		err = __get_user(x, (unsigned int __user *) ea);
265 		break;
266 #ifdef __powerpc64__
267 	case 8:
268 		err = __get_user(x, (unsigned long __user *) ea);
269 		break;
270 #endif
271 	}
272 	if (!err)
273 		*dest = x;
274 	else
275 		regs->dar = ea;
276 	return err;
277 }
278 
279 /*
280  * Copy from userspace to a buffer, using the largest possible
281  * aligned accesses, up to sizeof(long).
282  */
283 static int nokprobe_inline copy_mem_in(u8 *dest, unsigned long ea, int nb,
284 				       struct pt_regs *regs)
285 {
286 	int err = 0;
287 	int c;
288 
289 	for (; nb > 0; nb -= c) {
290 		c = max_align(ea);
291 		if (c > nb)
292 			c = max_align(nb);
293 		switch (c) {
294 		case 1:
295 			err = __get_user(*dest, (unsigned char __user *) ea);
296 			break;
297 		case 2:
298 			err = __get_user(*(u16 *)dest,
299 					 (unsigned short __user *) ea);
300 			break;
301 		case 4:
302 			err = __get_user(*(u32 *)dest,
303 					 (unsigned int __user *) ea);
304 			break;
305 #ifdef __powerpc64__
306 		case 8:
307 			err = __get_user(*(unsigned long *)dest,
308 					 (unsigned long __user *) ea);
309 			break;
310 #endif
311 		}
312 		if (err) {
313 			regs->dar = ea;
314 			return err;
315 		}
316 		dest += c;
317 		ea += c;
318 	}
319 	return 0;
320 }
321 
322 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323 					      unsigned long ea, int nb,
324 					      struct pt_regs *regs)
325 {
326 	union {
327 		unsigned long ul;
328 		u8 b[sizeof(unsigned long)];
329 	} u;
330 	int i;
331 	int err;
332 
333 	u.ul = 0;
334 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
335 	err = copy_mem_in(&u.b[i], ea, nb, regs);
336 	if (!err)
337 		*dest = u.ul;
338 	return err;
339 }
340 
341 /*
342  * Read memory at address ea for nb bytes, return 0 for success
343  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
344  * If nb < sizeof(long), the result is right-justified on BE systems.
345  */
346 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347 			      struct pt_regs *regs)
348 {
349 	if (!address_ok(regs, ea, nb))
350 		return -EFAULT;
351 	if ((ea & (nb - 1)) == 0)
352 		return read_mem_aligned(dest, ea, nb, regs);
353 	return read_mem_unaligned(dest, ea, nb, regs);
354 }
355 NOKPROBE_SYMBOL(read_mem);
356 
357 static nokprobe_inline int write_mem_aligned(unsigned long val,
358 					     unsigned long ea, int nb,
359 					     struct pt_regs *regs)
360 {
361 	int err = 0;
362 
363 	switch (nb) {
364 	case 1:
365 		err = __put_user(val, (unsigned char __user *) ea);
366 		break;
367 	case 2:
368 		err = __put_user(val, (unsigned short __user *) ea);
369 		break;
370 	case 4:
371 		err = __put_user(val, (unsigned int __user *) ea);
372 		break;
373 #ifdef __powerpc64__
374 	case 8:
375 		err = __put_user(val, (unsigned long __user *) ea);
376 		break;
377 #endif
378 	}
379 	if (err)
380 		regs->dar = ea;
381 	return err;
382 }
383 
384 /*
385  * Copy from a buffer to userspace, using the largest possible
386  * aligned accesses, up to sizeof(long).
387  */
388 static int nokprobe_inline copy_mem_out(u8 *dest, unsigned long ea, int nb,
389 					struct pt_regs *regs)
390 {
391 	int err = 0;
392 	int c;
393 
394 	for (; nb > 0; nb -= c) {
395 		c = max_align(ea);
396 		if (c > nb)
397 			c = max_align(nb);
398 		switch (c) {
399 		case 1:
400 			err = __put_user(*dest, (unsigned char __user *) ea);
401 			break;
402 		case 2:
403 			err = __put_user(*(u16 *)dest,
404 					 (unsigned short __user *) ea);
405 			break;
406 		case 4:
407 			err = __put_user(*(u32 *)dest,
408 					 (unsigned int __user *) ea);
409 			break;
410 #ifdef __powerpc64__
411 		case 8:
412 			err = __put_user(*(unsigned long *)dest,
413 					 (unsigned long __user *) ea);
414 			break;
415 #endif
416 		}
417 		if (err) {
418 			regs->dar = ea;
419 			return err;
420 		}
421 		dest += c;
422 		ea += c;
423 	}
424 	return 0;
425 }
426 
427 static nokprobe_inline int write_mem_unaligned(unsigned long val,
428 					       unsigned long ea, int nb,
429 					       struct pt_regs *regs)
430 {
431 	union {
432 		unsigned long ul;
433 		u8 b[sizeof(unsigned long)];
434 	} u;
435 	int i;
436 
437 	u.ul = val;
438 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
439 	return copy_mem_out(&u.b[i], ea, nb, regs);
440 }
441 
442 /*
443  * Write memory at address ea for nb bytes, return 0 for success
444  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
445  */
446 static int write_mem(unsigned long val, unsigned long ea, int nb,
447 			       struct pt_regs *regs)
448 {
449 	if (!address_ok(regs, ea, nb))
450 		return -EFAULT;
451 	if ((ea & (nb - 1)) == 0)
452 		return write_mem_aligned(val, ea, nb, regs);
453 	return write_mem_unaligned(val, ea, nb, regs);
454 }
455 NOKPROBE_SYMBOL(write_mem);
456 
457 #ifdef CONFIG_PPC_FPU
458 /*
459  * These access either the real FP register or the image in the
460  * thread_struct, depending on regs->msr & MSR_FP.
461  */
462 static int do_fp_load(struct instruction_op *op, unsigned long ea,
463 		      struct pt_regs *regs, bool cross_endian)
464 {
465 	int err, rn, nb;
466 	union {
467 		int i;
468 		unsigned int u;
469 		float f;
470 		double d[2];
471 		unsigned long l[2];
472 		u8 b[2 * sizeof(double)];
473 	} u;
474 
475 	nb = GETSIZE(op->type);
476 	if (!address_ok(regs, ea, nb))
477 		return -EFAULT;
478 	rn = op->reg;
479 	err = copy_mem_in(u.b, ea, nb, regs);
480 	if (err)
481 		return err;
482 	if (unlikely(cross_endian)) {
483 		do_byte_reverse(u.b, min(nb, 8));
484 		if (nb == 16)
485 			do_byte_reverse(&u.b[8], 8);
486 	}
487 	preempt_disable();
488 	if (nb == 4) {
489 		if (op->type & FPCONV)
490 			conv_sp_to_dp(&u.f, &u.d[0]);
491 		else if (op->type & SIGNEXT)
492 			u.l[0] = u.i;
493 		else
494 			u.l[0] = u.u;
495 	}
496 	if (regs->msr & MSR_FP)
497 		put_fpr(rn, &u.d[0]);
498 	else
499 		current->thread.TS_FPR(rn) = u.l[0];
500 	if (nb == 16) {
501 		/* lfdp */
502 		rn |= 1;
503 		if (regs->msr & MSR_FP)
504 			put_fpr(rn, &u.d[1]);
505 		else
506 			current->thread.TS_FPR(rn) = u.l[1];
507 	}
508 	preempt_enable();
509 	return 0;
510 }
511 NOKPROBE_SYMBOL(do_fp_load);
512 
513 static int do_fp_store(struct instruction_op *op, unsigned long ea,
514 		       struct pt_regs *regs, bool cross_endian)
515 {
516 	int rn, nb;
517 	union {
518 		unsigned int u;
519 		float f;
520 		double d[2];
521 		unsigned long l[2];
522 		u8 b[2 * sizeof(double)];
523 	} u;
524 
525 	nb = GETSIZE(op->type);
526 	if (!address_ok(regs, ea, nb))
527 		return -EFAULT;
528 	rn = op->reg;
529 	preempt_disable();
530 	if (regs->msr & MSR_FP)
531 		get_fpr(rn, &u.d[0]);
532 	else
533 		u.l[0] = current->thread.TS_FPR(rn);
534 	if (nb == 4) {
535 		if (op->type & FPCONV)
536 			conv_dp_to_sp(&u.d[0], &u.f);
537 		else
538 			u.u = u.l[0];
539 	}
540 	if (nb == 16) {
541 		rn |= 1;
542 		if (regs->msr & MSR_FP)
543 			get_fpr(rn, &u.d[1]);
544 		else
545 			u.l[1] = current->thread.TS_FPR(rn);
546 	}
547 	preempt_enable();
548 	if (unlikely(cross_endian)) {
549 		do_byte_reverse(u.b, min(nb, 8));
550 		if (nb == 16)
551 			do_byte_reverse(&u.b[8], 8);
552 	}
553 	return copy_mem_out(u.b, ea, nb, regs);
554 }
555 NOKPROBE_SYMBOL(do_fp_store);
556 #endif
557 
558 #ifdef CONFIG_ALTIVEC
559 /* For Altivec/VMX, no need to worry about alignment */
560 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561 				       int size, struct pt_regs *regs,
562 				       bool cross_endian)
563 {
564 	int err;
565 	union {
566 		__vector128 v;
567 		u8 b[sizeof(__vector128)];
568 	} u = {};
569 
570 	if (!address_ok(regs, ea & ~0xfUL, 16))
571 		return -EFAULT;
572 	/* align to multiple of size */
573 	ea &= ~(size - 1);
574 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575 	if (err)
576 		return err;
577 	if (unlikely(cross_endian))
578 		do_byte_reverse(&u.b[ea & 0xf], size);
579 	preempt_disable();
580 	if (regs->msr & MSR_VEC)
581 		put_vr(rn, &u.v);
582 	else
583 		current->thread.vr_state.vr[rn] = u.v;
584 	preempt_enable();
585 	return 0;
586 }
587 
588 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589 					int size, struct pt_regs *regs,
590 					bool cross_endian)
591 {
592 	union {
593 		__vector128 v;
594 		u8 b[sizeof(__vector128)];
595 	} u;
596 
597 	if (!address_ok(regs, ea & ~0xfUL, 16))
598 		return -EFAULT;
599 	/* align to multiple of size */
600 	ea &= ~(size - 1);
601 
602 	preempt_disable();
603 	if (regs->msr & MSR_VEC)
604 		get_vr(rn, &u.v);
605 	else
606 		u.v = current->thread.vr_state.vr[rn];
607 	preempt_enable();
608 	if (unlikely(cross_endian))
609 		do_byte_reverse(&u.b[ea & 0xf], size);
610 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
611 }
612 #endif /* CONFIG_ALTIVEC */
613 
614 #ifdef __powerpc64__
615 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616 				      int reg, bool cross_endian)
617 {
618 	int err;
619 
620 	if (!address_ok(regs, ea, 16))
621 		return -EFAULT;
622 	/* if aligned, should be atomic */
623 	if ((ea & 0xf) == 0) {
624 		err = do_lq(ea, &regs->gpr[reg]);
625 	} else {
626 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
627 		if (!err)
628 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
629 	}
630 	if (!err && unlikely(cross_endian))
631 		do_byte_reverse(&regs->gpr[reg], 16);
632 	return err;
633 }
634 
635 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636 				       int reg, bool cross_endian)
637 {
638 	int err;
639 	unsigned long vals[2];
640 
641 	if (!address_ok(regs, ea, 16))
642 		return -EFAULT;
643 	vals[0] = regs->gpr[reg];
644 	vals[1] = regs->gpr[reg + 1];
645 	if (unlikely(cross_endian))
646 		do_byte_reverse(vals, 16);
647 
648 	/* if aligned, should be atomic */
649 	if ((ea & 0xf) == 0)
650 		return do_stq(ea, vals[0], vals[1]);
651 
652 	err = write_mem(vals[IS_LE], ea, 8, regs);
653 	if (!err)
654 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655 	return err;
656 }
657 #endif /* __powerpc64 */
658 
659 #ifdef CONFIG_VSX
660 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661 		      const void *mem, bool rev)
662 {
663 	int size, read_size;
664 	int i, j;
665 	const unsigned int *wp;
666 	const unsigned short *hp;
667 	const unsigned char *bp;
668 
669 	size = GETSIZE(op->type);
670 	reg->d[0] = reg->d[1] = 0;
671 
672 	switch (op->element_size) {
673 	case 16:
674 		/* whole vector; lxv[x] or lxvl[l] */
675 		if (size == 0)
676 			break;
677 		memcpy(reg, mem, size);
678 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679 			rev = !rev;
680 		if (rev)
681 			do_byte_reverse(reg, 16);
682 		break;
683 	case 8:
684 		/* scalar loads, lxvd2x, lxvdsx */
685 		read_size = (size >= 8) ? 8 : size;
686 		i = IS_LE ? 8 : 8 - read_size;
687 		memcpy(&reg->b[i], mem, read_size);
688 		if (rev)
689 			do_byte_reverse(&reg->b[i], 8);
690 		if (size < 8) {
691 			if (op->type & SIGNEXT) {
692 				/* size == 4 is the only case here */
693 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694 			} else if (op->vsx_flags & VSX_FPCONV) {
695 				preempt_disable();
696 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
697 					      &reg->dp[IS_LE]);
698 				preempt_enable();
699 			}
700 		} else {
701 			if (size == 16) {
702 				unsigned long v = *(unsigned long *)(mem + 8);
703 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
704 			} else if (op->vsx_flags & VSX_SPLAT)
705 				reg->d[IS_BE] = reg->d[IS_LE];
706 		}
707 		break;
708 	case 4:
709 		/* lxvw4x, lxvwsx */
710 		wp = mem;
711 		for (j = 0; j < size / 4; ++j) {
712 			i = IS_LE ? 3 - j : j;
713 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
714 		}
715 		if (op->vsx_flags & VSX_SPLAT) {
716 			u32 val = reg->w[IS_LE ? 3 : 0];
717 			for (; j < 4; ++j) {
718 				i = IS_LE ? 3 - j : j;
719 				reg->w[i] = val;
720 			}
721 		}
722 		break;
723 	case 2:
724 		/* lxvh8x */
725 		hp = mem;
726 		for (j = 0; j < size / 2; ++j) {
727 			i = IS_LE ? 7 - j : j;
728 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
729 		}
730 		break;
731 	case 1:
732 		/* lxvb16x */
733 		bp = mem;
734 		for (j = 0; j < size; ++j) {
735 			i = IS_LE ? 15 - j : j;
736 			reg->b[i] = *bp++;
737 		}
738 		break;
739 	}
740 }
741 EXPORT_SYMBOL_GPL(emulate_vsx_load);
742 NOKPROBE_SYMBOL(emulate_vsx_load);
743 
744 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745 		       void *mem, bool rev)
746 {
747 	int size, write_size;
748 	int i, j;
749 	union vsx_reg buf;
750 	unsigned int *wp;
751 	unsigned short *hp;
752 	unsigned char *bp;
753 
754 	size = GETSIZE(op->type);
755 
756 	switch (op->element_size) {
757 	case 16:
758 		/* stxv, stxvx, stxvl, stxvll */
759 		if (size == 0)
760 			break;
761 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762 			rev = !rev;
763 		if (rev) {
764 			/* reverse 16 bytes */
765 			buf.d[0] = byterev_8(reg->d[1]);
766 			buf.d[1] = byterev_8(reg->d[0]);
767 			reg = &buf;
768 		}
769 		memcpy(mem, reg, size);
770 		break;
771 	case 8:
772 		/* scalar stores, stxvd2x */
773 		write_size = (size >= 8) ? 8 : size;
774 		i = IS_LE ? 8 : 8 - write_size;
775 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776 			buf.d[0] = buf.d[1] = 0;
777 			preempt_disable();
778 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
779 			preempt_enable();
780 			reg = &buf;
781 		}
782 		memcpy(mem, &reg->b[i], write_size);
783 		if (size == 16)
784 			memcpy(mem + 8, &reg->d[IS_BE], 8);
785 		if (unlikely(rev)) {
786 			do_byte_reverse(mem, write_size);
787 			if (size == 16)
788 				do_byte_reverse(mem + 8, 8);
789 		}
790 		break;
791 	case 4:
792 		/* stxvw4x */
793 		wp = mem;
794 		for (j = 0; j < size / 4; ++j) {
795 			i = IS_LE ? 3 - j : j;
796 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
797 		}
798 		break;
799 	case 2:
800 		/* stxvh8x */
801 		hp = mem;
802 		for (j = 0; j < size / 2; ++j) {
803 			i = IS_LE ? 7 - j : j;
804 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
805 		}
806 		break;
807 	case 1:
808 		/* stvxb16x */
809 		bp = mem;
810 		for (j = 0; j < size; ++j) {
811 			i = IS_LE ? 15 - j : j;
812 			*bp++ = reg->b[i];
813 		}
814 		break;
815 	}
816 }
817 EXPORT_SYMBOL_GPL(emulate_vsx_store);
818 NOKPROBE_SYMBOL(emulate_vsx_store);
819 
820 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821 				       unsigned long ea, struct pt_regs *regs,
822 				       bool cross_endian)
823 {
824 	int reg = op->reg;
825 	u8 mem[16];
826 	union vsx_reg buf;
827 	int size = GETSIZE(op->type);
828 
829 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830 		return -EFAULT;
831 
832 	emulate_vsx_load(op, &buf, mem, cross_endian);
833 	preempt_disable();
834 	if (reg < 32) {
835 		/* FP regs + extensions */
836 		if (regs->msr & MSR_FP) {
837 			load_vsrn(reg, &buf);
838 		} else {
839 			current->thread.fp_state.fpr[reg][0] = buf.d[0];
840 			current->thread.fp_state.fpr[reg][1] = buf.d[1];
841 		}
842 	} else {
843 		if (regs->msr & MSR_VEC)
844 			load_vsrn(reg, &buf);
845 		else
846 			current->thread.vr_state.vr[reg - 32] = buf.v;
847 	}
848 	preempt_enable();
849 	return 0;
850 }
851 
852 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853 					unsigned long ea, struct pt_regs *regs,
854 					bool cross_endian)
855 {
856 	int reg = op->reg;
857 	u8 mem[16];
858 	union vsx_reg buf;
859 	int size = GETSIZE(op->type);
860 
861 	if (!address_ok(regs, ea, size))
862 		return -EFAULT;
863 
864 	preempt_disable();
865 	if (reg < 32) {
866 		/* FP regs + extensions */
867 		if (regs->msr & MSR_FP) {
868 			store_vsrn(reg, &buf);
869 		} else {
870 			buf.d[0] = current->thread.fp_state.fpr[reg][0];
871 			buf.d[1] = current->thread.fp_state.fpr[reg][1];
872 		}
873 	} else {
874 		if (regs->msr & MSR_VEC)
875 			store_vsrn(reg, &buf);
876 		else
877 			buf.v = current->thread.vr_state.vr[reg - 32];
878 	}
879 	preempt_enable();
880 	emulate_vsx_store(op, &buf, mem, cross_endian);
881 	return  copy_mem_out(mem, ea, size, regs);
882 }
883 #endif /* CONFIG_VSX */
884 
885 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
886 {
887 	int err;
888 	unsigned long i, size;
889 
890 #ifdef __powerpc64__
891 	size = ppc64_caches.l1d.block_size;
892 	if (!(regs->msr & MSR_64BIT))
893 		ea &= 0xffffffffUL;
894 #else
895 	size = L1_CACHE_BYTES;
896 #endif
897 	ea &= ~(size - 1);
898 	if (!address_ok(regs, ea, size))
899 		return -EFAULT;
900 	for (i = 0; i < size; i += sizeof(long)) {
901 		err = __put_user(0, (unsigned long __user *) (ea + i));
902 		if (err) {
903 			regs->dar = ea;
904 			return err;
905 		}
906 	}
907 	return 0;
908 }
909 NOKPROBE_SYMBOL(emulate_dcbz);
910 
911 #define __put_user_asmx(x, addr, err, op, cr)		\
912 	__asm__ __volatile__(				\
913 		"1:	" op " %2,0,%3\n"		\
914 		"	mfcr	%1\n"			\
915 		"2:\n"					\
916 		".section .fixup,\"ax\"\n"		\
917 		"3:	li	%0,%4\n"		\
918 		"	b	2b\n"			\
919 		".previous\n"				\
920 		EX_TABLE(1b, 3b)			\
921 		: "=r" (err), "=r" (cr)			\
922 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
923 
924 #define __get_user_asmx(x, addr, err, op)		\
925 	__asm__ __volatile__(				\
926 		"1:	"op" %1,0,%2\n"			\
927 		"2:\n"					\
928 		".section .fixup,\"ax\"\n"		\
929 		"3:	li	%0,%3\n"		\
930 		"	b	2b\n"			\
931 		".previous\n"				\
932 		EX_TABLE(1b, 3b)			\
933 		: "=r" (err), "=r" (x)			\
934 		: "r" (addr), "i" (-EFAULT), "0" (err))
935 
936 #define __cacheop_user_asmx(addr, err, op)		\
937 	__asm__ __volatile__(				\
938 		"1:	"op" 0,%1\n"			\
939 		"2:\n"					\
940 		".section .fixup,\"ax\"\n"		\
941 		"3:	li	%0,%3\n"		\
942 		"	b	2b\n"			\
943 		".previous\n"				\
944 		EX_TABLE(1b, 3b)			\
945 		: "=r" (err)				\
946 		: "r" (addr), "i" (-EFAULT), "0" (err))
947 
948 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949 				    struct instruction_op *op)
950 {
951 	long val = op->val;
952 
953 	op->type |= SETCC;
954 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955 #ifdef __powerpc64__
956 	if (!(regs->msr & MSR_64BIT))
957 		val = (int) val;
958 #endif
959 	if (val < 0)
960 		op->ccval |= 0x80000000;
961 	else if (val > 0)
962 		op->ccval |= 0x40000000;
963 	else
964 		op->ccval |= 0x20000000;
965 }
966 
967 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
968 {
969 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970 		if (val)
971 			op->xerval |= XER_CA32;
972 		else
973 			op->xerval &= ~XER_CA32;
974 	}
975 }
976 
977 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978 				     struct instruction_op *op, int rd,
979 				     unsigned long val1, unsigned long val2,
980 				     unsigned long carry_in)
981 {
982 	unsigned long val = val1 + val2;
983 
984 	if (carry_in)
985 		++val;
986 	op->type = COMPUTE + SETREG + SETXER;
987 	op->reg = rd;
988 	op->val = val;
989 #ifdef __powerpc64__
990 	if (!(regs->msr & MSR_64BIT)) {
991 		val = (unsigned int) val;
992 		val1 = (unsigned int) val1;
993 	}
994 #endif
995 	op->xerval = regs->xer;
996 	if (val < val1 || (carry_in && val == val1))
997 		op->xerval |= XER_CA;
998 	else
999 		op->xerval &= ~XER_CA;
1000 
1001 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002 			(carry_in && (unsigned int)val == (unsigned int)val1));
1003 }
1004 
1005 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006 					  struct instruction_op *op,
1007 					  long v1, long v2, int crfld)
1008 {
1009 	unsigned int crval, shift;
1010 
1011 	op->type = COMPUTE + SETCC;
1012 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1013 	if (v1 < v2)
1014 		crval |= 8;
1015 	else if (v1 > v2)
1016 		crval |= 4;
1017 	else
1018 		crval |= 2;
1019 	shift = (7 - crfld) * 4;
1020 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1021 }
1022 
1023 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024 					    struct instruction_op *op,
1025 					    unsigned long v1,
1026 					    unsigned long v2, int crfld)
1027 {
1028 	unsigned int crval, shift;
1029 
1030 	op->type = COMPUTE + SETCC;
1031 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1032 	if (v1 < v2)
1033 		crval |= 8;
1034 	else if (v1 > v2)
1035 		crval |= 4;
1036 	else
1037 		crval |= 2;
1038 	shift = (7 - crfld) * 4;
1039 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1040 }
1041 
1042 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043 				    struct instruction_op *op,
1044 				    unsigned long v1, unsigned long v2)
1045 {
1046 	unsigned long long out_val, mask;
1047 	int i;
1048 
1049 	out_val = 0;
1050 	for (i = 0; i < 8; i++) {
1051 		mask = 0xffUL << (i * 8);
1052 		if ((v1 & mask) == (v2 & mask))
1053 			out_val |= mask;
1054 	}
1055 	op->val = out_val;
1056 }
1057 
1058 /*
1059  * The size parameter is used to adjust the equivalent popcnt instruction.
1060  * popcntb = 8, popcntw = 32, popcntd = 64
1061  */
1062 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063 				      struct instruction_op *op,
1064 				      unsigned long v1, int size)
1065 {
1066 	unsigned long long out = v1;
1067 
1068 	out -= (out >> 1) & 0x5555555555555555;
1069 	out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
1070 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;
1071 
1072 	if (size == 8) {	/* popcntb */
1073 		op->val = out;
1074 		return;
1075 	}
1076 	out += out >> 8;
1077 	out += out >> 16;
1078 	if (size == 32) {	/* popcntw */
1079 		op->val = out & 0x0000003f0000003f;
1080 		return;
1081 	}
1082 
1083 	out = (out + (out >> 32)) & 0x7f;
1084 	op->val = out;	/* popcntd */
1085 }
1086 
1087 #ifdef CONFIG_PPC64
1088 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1089 				      struct instruction_op *op,
1090 				      unsigned long v1, unsigned long v2)
1091 {
1092 	unsigned char perm, idx;
1093 	unsigned int i;
1094 
1095 	perm = 0;
1096 	for (i = 0; i < 8; i++) {
1097 		idx = (v1 >> (i * 8)) & 0xff;
1098 		if (idx < 64)
1099 			if (v2 & PPC_BIT(idx))
1100 				perm |= 1 << i;
1101 	}
1102 	op->val = perm;
1103 }
1104 #endif /* CONFIG_PPC64 */
1105 /*
1106  * The size parameter adjusts the equivalent prty instruction.
1107  * prtyw = 32, prtyd = 64
1108  */
1109 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1110 				    struct instruction_op *op,
1111 				    unsigned long v, int size)
1112 {
1113 	unsigned long long res = v ^ (v >> 8);
1114 
1115 	res ^= res >> 16;
1116 	if (size == 32) {		/* prtyw */
1117 		op->val = res & 0x0000000100000001;
1118 		return;
1119 	}
1120 
1121 	res ^= res >> 32;
1122 	op->val = res & 1;	/*prtyd */
1123 }
1124 
1125 static nokprobe_inline int trap_compare(long v1, long v2)
1126 {
1127 	int ret = 0;
1128 
1129 	if (v1 < v2)
1130 		ret |= 0x10;
1131 	else if (v1 > v2)
1132 		ret |= 0x08;
1133 	else
1134 		ret |= 0x04;
1135 	if ((unsigned long)v1 < (unsigned long)v2)
1136 		ret |= 0x02;
1137 	else if ((unsigned long)v1 > (unsigned long)v2)
1138 		ret |= 0x01;
1139 	return ret;
1140 }
1141 
1142 /*
1143  * Elements of 32-bit rotate and mask instructions.
1144  */
1145 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1146 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1147 #ifdef __powerpc64__
1148 #define MASK64_L(mb)	(~0UL >> (mb))
1149 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1150 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1151 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1152 #else
1153 #define DATA32(x)	(x)
1154 #endif
1155 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1156 
1157 /*
1158  * Decode an instruction, and return information about it in *op
1159  * without changing *regs.
1160  * Integer arithmetic and logical instructions, branches, and barrier
1161  * instructions can be emulated just using the information in *op.
1162  *
1163  * Return value is 1 if the instruction can be emulated just by
1164  * updating *regs with the information in *op, -1 if we need the
1165  * GPRs but *regs doesn't contain the full register set, or 0
1166  * otherwise.
1167  */
1168 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1169 		  unsigned int instr)
1170 {
1171 	unsigned int opcode, ra, rb, rd, spr, u;
1172 	unsigned long int imm;
1173 	unsigned long int val, val2;
1174 	unsigned int mb, me, sh;
1175 	long ival;
1176 
1177 	op->type = COMPUTE;
1178 
1179 	opcode = instr >> 26;
1180 	switch (opcode) {
1181 	case 16:	/* bc */
1182 		op->type = BRANCH;
1183 		imm = (signed short)(instr & 0xfffc);
1184 		if ((instr & 2) == 0)
1185 			imm += regs->nip;
1186 		op->val = truncate_if_32bit(regs->msr, imm);
1187 		if (instr & 1)
1188 			op->type |= SETLK;
1189 		if (branch_taken(instr, regs, op))
1190 			op->type |= BRTAKEN;
1191 		return 1;
1192 #ifdef CONFIG_PPC64
1193 	case 17:	/* sc */
1194 		if ((instr & 0xfe2) == 2)
1195 			op->type = SYSCALL;
1196 		else
1197 			op->type = UNKNOWN;
1198 		return 0;
1199 #endif
1200 	case 18:	/* b */
1201 		op->type = BRANCH | BRTAKEN;
1202 		imm = instr & 0x03fffffc;
1203 		if (imm & 0x02000000)
1204 			imm -= 0x04000000;
1205 		if ((instr & 2) == 0)
1206 			imm += regs->nip;
1207 		op->val = truncate_if_32bit(regs->msr, imm);
1208 		if (instr & 1)
1209 			op->type |= SETLK;
1210 		return 1;
1211 	case 19:
1212 		switch ((instr >> 1) & 0x3ff) {
1213 		case 0:		/* mcrf */
1214 			op->type = COMPUTE + SETCC;
1215 			rd = 7 - ((instr >> 23) & 0x7);
1216 			ra = 7 - ((instr >> 18) & 0x7);
1217 			rd *= 4;
1218 			ra *= 4;
1219 			val = (regs->ccr >> ra) & 0xf;
1220 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1221 			return 1;
1222 
1223 		case 16:	/* bclr */
1224 		case 528:	/* bcctr */
1225 			op->type = BRANCH;
1226 			imm = (instr & 0x400)? regs->ctr: regs->link;
1227 			op->val = truncate_if_32bit(regs->msr, imm);
1228 			if (instr & 1)
1229 				op->type |= SETLK;
1230 			if (branch_taken(instr, regs, op))
1231 				op->type |= BRTAKEN;
1232 			return 1;
1233 
1234 		case 18:	/* rfid, scary */
1235 			if (regs->msr & MSR_PR)
1236 				goto priv;
1237 			op->type = RFI;
1238 			return 0;
1239 
1240 		case 150:	/* isync */
1241 			op->type = BARRIER | BARRIER_ISYNC;
1242 			return 1;
1243 
1244 		case 33:	/* crnor */
1245 		case 129:	/* crandc */
1246 		case 193:	/* crxor */
1247 		case 225:	/* crnand */
1248 		case 257:	/* crand */
1249 		case 289:	/* creqv */
1250 		case 417:	/* crorc */
1251 		case 449:	/* cror */
1252 			op->type = COMPUTE + SETCC;
1253 			ra = (instr >> 16) & 0x1f;
1254 			rb = (instr >> 11) & 0x1f;
1255 			rd = (instr >> 21) & 0x1f;
1256 			ra = (regs->ccr >> (31 - ra)) & 1;
1257 			rb = (regs->ccr >> (31 - rb)) & 1;
1258 			val = (instr >> (6 + ra * 2 + rb)) & 1;
1259 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1260 				(val << (31 - rd));
1261 			return 1;
1262 		}
1263 		break;
1264 	case 31:
1265 		switch ((instr >> 1) & 0x3ff) {
1266 		case 598:	/* sync */
1267 			op->type = BARRIER + BARRIER_SYNC;
1268 #ifdef __powerpc64__
1269 			switch ((instr >> 21) & 3) {
1270 			case 1:		/* lwsync */
1271 				op->type = BARRIER + BARRIER_LWSYNC;
1272 				break;
1273 			case 2:		/* ptesync */
1274 				op->type = BARRIER + BARRIER_PTESYNC;
1275 				break;
1276 			}
1277 #endif
1278 			return 1;
1279 
1280 		case 854:	/* eieio */
1281 			op->type = BARRIER + BARRIER_EIEIO;
1282 			return 1;
1283 		}
1284 		break;
1285 	}
1286 
1287 	/* Following cases refer to regs->gpr[], so we need all regs */
1288 	if (!FULL_REGS(regs))
1289 		return -1;
1290 
1291 	rd = (instr >> 21) & 0x1f;
1292 	ra = (instr >> 16) & 0x1f;
1293 	rb = (instr >> 11) & 0x1f;
1294 
1295 	switch (opcode) {
1296 #ifdef __powerpc64__
1297 	case 2:		/* tdi */
1298 		if (rd & trap_compare(regs->gpr[ra], (short) instr))
1299 			goto trap;
1300 		return 1;
1301 #endif
1302 	case 3:		/* twi */
1303 		if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1304 			goto trap;
1305 		return 1;
1306 
1307 	case 7:		/* mulli */
1308 		op->val = regs->gpr[ra] * (short) instr;
1309 		goto compute_done;
1310 
1311 	case 8:		/* subfic */
1312 		imm = (short) instr;
1313 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1314 		return 1;
1315 
1316 	case 10:	/* cmpli */
1317 		imm = (unsigned short) instr;
1318 		val = regs->gpr[ra];
1319 #ifdef __powerpc64__
1320 		if ((rd & 1) == 0)
1321 			val = (unsigned int) val;
1322 #endif
1323 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1324 		return 1;
1325 
1326 	case 11:	/* cmpi */
1327 		imm = (short) instr;
1328 		val = regs->gpr[ra];
1329 #ifdef __powerpc64__
1330 		if ((rd & 1) == 0)
1331 			val = (int) val;
1332 #endif
1333 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1334 		return 1;
1335 
1336 	case 12:	/* addic */
1337 		imm = (short) instr;
1338 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1339 		return 1;
1340 
1341 	case 13:	/* addic. */
1342 		imm = (short) instr;
1343 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1344 		set_cr0(regs, op);
1345 		return 1;
1346 
1347 	case 14:	/* addi */
1348 		imm = (short) instr;
1349 		if (ra)
1350 			imm += regs->gpr[ra];
1351 		op->val = imm;
1352 		goto compute_done;
1353 
1354 	case 15:	/* addis */
1355 		imm = ((short) instr) << 16;
1356 		if (ra)
1357 			imm += regs->gpr[ra];
1358 		op->val = imm;
1359 		goto compute_done;
1360 
1361 	case 19:
1362 		if (((instr >> 1) & 0x1f) == 2) {
1363 			/* addpcis */
1364 			imm = (short) (instr & 0xffc1);	/* d0 + d2 fields */
1365 			imm |= (instr >> 15) & 0x3e;	/* d1 field */
1366 			op->val = regs->nip + (imm << 16) + 4;
1367 			goto compute_done;
1368 		}
1369 		op->type = UNKNOWN;
1370 		return 0;
1371 
1372 	case 20:	/* rlwimi */
1373 		mb = (instr >> 6) & 0x1f;
1374 		me = (instr >> 1) & 0x1f;
1375 		val = DATA32(regs->gpr[rd]);
1376 		imm = MASK32(mb, me);
1377 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1378 		goto logical_done;
1379 
1380 	case 21:	/* rlwinm */
1381 		mb = (instr >> 6) & 0x1f;
1382 		me = (instr >> 1) & 0x1f;
1383 		val = DATA32(regs->gpr[rd]);
1384 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1385 		goto logical_done;
1386 
1387 	case 23:	/* rlwnm */
1388 		mb = (instr >> 6) & 0x1f;
1389 		me = (instr >> 1) & 0x1f;
1390 		rb = regs->gpr[rb] & 0x1f;
1391 		val = DATA32(regs->gpr[rd]);
1392 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1393 		goto logical_done;
1394 
1395 	case 24:	/* ori */
1396 		op->val = regs->gpr[rd] | (unsigned short) instr;
1397 		goto logical_done_nocc;
1398 
1399 	case 25:	/* oris */
1400 		imm = (unsigned short) instr;
1401 		op->val = regs->gpr[rd] | (imm << 16);
1402 		goto logical_done_nocc;
1403 
1404 	case 26:	/* xori */
1405 		op->val = regs->gpr[rd] ^ (unsigned short) instr;
1406 		goto logical_done_nocc;
1407 
1408 	case 27:	/* xoris */
1409 		imm = (unsigned short) instr;
1410 		op->val = regs->gpr[rd] ^ (imm << 16);
1411 		goto logical_done_nocc;
1412 
1413 	case 28:	/* andi. */
1414 		op->val = regs->gpr[rd] & (unsigned short) instr;
1415 		set_cr0(regs, op);
1416 		goto logical_done_nocc;
1417 
1418 	case 29:	/* andis. */
1419 		imm = (unsigned short) instr;
1420 		op->val = regs->gpr[rd] & (imm << 16);
1421 		set_cr0(regs, op);
1422 		goto logical_done_nocc;
1423 
1424 #ifdef __powerpc64__
1425 	case 30:	/* rld* */
1426 		mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1427 		val = regs->gpr[rd];
1428 		if ((instr & 0x10) == 0) {
1429 			sh = rb | ((instr & 2) << 4);
1430 			val = ROTATE(val, sh);
1431 			switch ((instr >> 2) & 3) {
1432 			case 0:		/* rldicl */
1433 				val &= MASK64_L(mb);
1434 				break;
1435 			case 1:		/* rldicr */
1436 				val &= MASK64_R(mb);
1437 				break;
1438 			case 2:		/* rldic */
1439 				val &= MASK64(mb, 63 - sh);
1440 				break;
1441 			case 3:		/* rldimi */
1442 				imm = MASK64(mb, 63 - sh);
1443 				val = (regs->gpr[ra] & ~imm) |
1444 					(val & imm);
1445 			}
1446 			op->val = val;
1447 			goto logical_done;
1448 		} else {
1449 			sh = regs->gpr[rb] & 0x3f;
1450 			val = ROTATE(val, sh);
1451 			switch ((instr >> 1) & 7) {
1452 			case 0:		/* rldcl */
1453 				op->val = val & MASK64_L(mb);
1454 				goto logical_done;
1455 			case 1:		/* rldcr */
1456 				op->val = val & MASK64_R(mb);
1457 				goto logical_done;
1458 			}
1459 		}
1460 #endif
1461 		op->type = UNKNOWN;	/* illegal instruction */
1462 		return 0;
1463 
1464 	case 31:
1465 		/* isel occupies 32 minor opcodes */
1466 		if (((instr >> 1) & 0x1f) == 15) {
1467 			mb = (instr >> 6) & 0x1f; /* bc field */
1468 			val = (regs->ccr >> (31 - mb)) & 1;
1469 			val2 = (ra) ? regs->gpr[ra] : 0;
1470 
1471 			op->val = (val) ? val2 : regs->gpr[rb];
1472 			goto compute_done;
1473 		}
1474 
1475 		switch ((instr >> 1) & 0x3ff) {
1476 		case 4:		/* tw */
1477 			if (rd == 0x1f ||
1478 			    (rd & trap_compare((int)regs->gpr[ra],
1479 					       (int)regs->gpr[rb])))
1480 				goto trap;
1481 			return 1;
1482 #ifdef __powerpc64__
1483 		case 68:	/* td */
1484 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1485 				goto trap;
1486 			return 1;
1487 #endif
1488 		case 83:	/* mfmsr */
1489 			if (regs->msr & MSR_PR)
1490 				goto priv;
1491 			op->type = MFMSR;
1492 			op->reg = rd;
1493 			return 0;
1494 		case 146:	/* mtmsr */
1495 			if (regs->msr & MSR_PR)
1496 				goto priv;
1497 			op->type = MTMSR;
1498 			op->reg = rd;
1499 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1500 			return 0;
1501 #ifdef CONFIG_PPC64
1502 		case 178:	/* mtmsrd */
1503 			if (regs->msr & MSR_PR)
1504 				goto priv;
1505 			op->type = MTMSR;
1506 			op->reg = rd;
1507 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1508 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1509 			imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1510 			op->val = imm;
1511 			return 0;
1512 #endif
1513 
1514 		case 19:	/* mfcr */
1515 			imm = 0xffffffffUL;
1516 			if ((instr >> 20) & 1) {
1517 				imm = 0xf0000000UL;
1518 				for (sh = 0; sh < 8; ++sh) {
1519 					if (instr & (0x80000 >> sh))
1520 						break;
1521 					imm >>= 4;
1522 				}
1523 			}
1524 			op->val = regs->ccr & imm;
1525 			goto compute_done;
1526 
1527 		case 144:	/* mtcrf */
1528 			op->type = COMPUTE + SETCC;
1529 			imm = 0xf0000000UL;
1530 			val = regs->gpr[rd];
1531 			op->ccval = regs->ccr;
1532 			for (sh = 0; sh < 8; ++sh) {
1533 				if (instr & (0x80000 >> sh))
1534 					op->ccval = (op->ccval & ~imm) |
1535 						(val & imm);
1536 				imm >>= 4;
1537 			}
1538 			return 1;
1539 
1540 		case 339:	/* mfspr */
1541 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1542 			op->type = MFSPR;
1543 			op->reg = rd;
1544 			op->spr = spr;
1545 			if (spr == SPRN_XER || spr == SPRN_LR ||
1546 			    spr == SPRN_CTR)
1547 				return 1;
1548 			return 0;
1549 
1550 		case 467:	/* mtspr */
1551 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1552 			op->type = MTSPR;
1553 			op->val = regs->gpr[rd];
1554 			op->spr = spr;
1555 			if (spr == SPRN_XER || spr == SPRN_LR ||
1556 			    spr == SPRN_CTR)
1557 				return 1;
1558 			return 0;
1559 
1560 /*
1561  * Compare instructions
1562  */
1563 		case 0:	/* cmp */
1564 			val = regs->gpr[ra];
1565 			val2 = regs->gpr[rb];
1566 #ifdef __powerpc64__
1567 			if ((rd & 1) == 0) {
1568 				/* word (32-bit) compare */
1569 				val = (int) val;
1570 				val2 = (int) val2;
1571 			}
1572 #endif
1573 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1574 			return 1;
1575 
1576 		case 32:	/* cmpl */
1577 			val = regs->gpr[ra];
1578 			val2 = regs->gpr[rb];
1579 #ifdef __powerpc64__
1580 			if ((rd & 1) == 0) {
1581 				/* word (32-bit) compare */
1582 				val = (unsigned int) val;
1583 				val2 = (unsigned int) val2;
1584 			}
1585 #endif
1586 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1587 			return 1;
1588 
1589 		case 508: /* cmpb */
1590 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1591 			goto logical_done_nocc;
1592 
1593 /*
1594  * Arithmetic instructions
1595  */
1596 		case 8:	/* subfc */
1597 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1598 				       regs->gpr[rb], 1);
1599 			goto arith_done;
1600 #ifdef __powerpc64__
1601 		case 9:	/* mulhdu */
1602 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1603 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1604 			goto arith_done;
1605 #endif
1606 		case 10:	/* addc */
1607 			add_with_carry(regs, op, rd, regs->gpr[ra],
1608 				       regs->gpr[rb], 0);
1609 			goto arith_done;
1610 
1611 		case 11:	/* mulhwu */
1612 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1613 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1614 			goto arith_done;
1615 
1616 		case 40:	/* subf */
1617 			op->val = regs->gpr[rb] - regs->gpr[ra];
1618 			goto arith_done;
1619 #ifdef __powerpc64__
1620 		case 73:	/* mulhd */
1621 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1622 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1623 			goto arith_done;
1624 #endif
1625 		case 75:	/* mulhw */
1626 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1627 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1628 			goto arith_done;
1629 
1630 		case 104:	/* neg */
1631 			op->val = -regs->gpr[ra];
1632 			goto arith_done;
1633 
1634 		case 136:	/* subfe */
1635 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1636 				       regs->gpr[rb], regs->xer & XER_CA);
1637 			goto arith_done;
1638 
1639 		case 138:	/* adde */
1640 			add_with_carry(regs, op, rd, regs->gpr[ra],
1641 				       regs->gpr[rb], regs->xer & XER_CA);
1642 			goto arith_done;
1643 
1644 		case 200:	/* subfze */
1645 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1646 				       regs->xer & XER_CA);
1647 			goto arith_done;
1648 
1649 		case 202:	/* addze */
1650 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1651 				       regs->xer & XER_CA);
1652 			goto arith_done;
1653 
1654 		case 232:	/* subfme */
1655 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1656 				       regs->xer & XER_CA);
1657 			goto arith_done;
1658 #ifdef __powerpc64__
1659 		case 233:	/* mulld */
1660 			op->val = regs->gpr[ra] * regs->gpr[rb];
1661 			goto arith_done;
1662 #endif
1663 		case 234:	/* addme */
1664 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1665 				       regs->xer & XER_CA);
1666 			goto arith_done;
1667 
1668 		case 235:	/* mullw */
1669 			op->val = (long)(int) regs->gpr[ra] *
1670 				(int) regs->gpr[rb];
1671 
1672 			goto arith_done;
1673 
1674 		case 266:	/* add */
1675 			op->val = regs->gpr[ra] + regs->gpr[rb];
1676 			goto arith_done;
1677 #ifdef __powerpc64__
1678 		case 457:	/* divdu */
1679 			op->val = regs->gpr[ra] / regs->gpr[rb];
1680 			goto arith_done;
1681 #endif
1682 		case 459:	/* divwu */
1683 			op->val = (unsigned int) regs->gpr[ra] /
1684 				(unsigned int) regs->gpr[rb];
1685 			goto arith_done;
1686 #ifdef __powerpc64__
1687 		case 489:	/* divd */
1688 			op->val = (long int) regs->gpr[ra] /
1689 				(long int) regs->gpr[rb];
1690 			goto arith_done;
1691 #endif
1692 		case 491:	/* divw */
1693 			op->val = (int) regs->gpr[ra] /
1694 				(int) regs->gpr[rb];
1695 			goto arith_done;
1696 
1697 
1698 /*
1699  * Logical instructions
1700  */
1701 		case 26:	/* cntlzw */
1702 			op->val = __builtin_clz((unsigned int) regs->gpr[rd]);
1703 			goto logical_done;
1704 #ifdef __powerpc64__
1705 		case 58:	/* cntlzd */
1706 			op->val = __builtin_clzl(regs->gpr[rd]);
1707 			goto logical_done;
1708 #endif
1709 		case 28:	/* and */
1710 			op->val = regs->gpr[rd] & regs->gpr[rb];
1711 			goto logical_done;
1712 
1713 		case 60:	/* andc */
1714 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1715 			goto logical_done;
1716 
1717 		case 122:	/* popcntb */
1718 			do_popcnt(regs, op, regs->gpr[rd], 8);
1719 			goto logical_done_nocc;
1720 
1721 		case 124:	/* nor */
1722 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1723 			goto logical_done;
1724 
1725 		case 154:	/* prtyw */
1726 			do_prty(regs, op, regs->gpr[rd], 32);
1727 			goto logical_done_nocc;
1728 
1729 		case 186:	/* prtyd */
1730 			do_prty(regs, op, regs->gpr[rd], 64);
1731 			goto logical_done_nocc;
1732 #ifdef CONFIG_PPC64
1733 		case 252:	/* bpermd */
1734 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1735 			goto logical_done_nocc;
1736 #endif
1737 		case 284:	/* xor */
1738 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1739 			goto logical_done;
1740 
1741 		case 316:	/* xor */
1742 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1743 			goto logical_done;
1744 
1745 		case 378:	/* popcntw */
1746 			do_popcnt(regs, op, regs->gpr[rd], 32);
1747 			goto logical_done_nocc;
1748 
1749 		case 412:	/* orc */
1750 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1751 			goto logical_done;
1752 
1753 		case 444:	/* or */
1754 			op->val = regs->gpr[rd] | regs->gpr[rb];
1755 			goto logical_done;
1756 
1757 		case 476:	/* nand */
1758 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1759 			goto logical_done;
1760 #ifdef CONFIG_PPC64
1761 		case 506:	/* popcntd */
1762 			do_popcnt(regs, op, regs->gpr[rd], 64);
1763 			goto logical_done_nocc;
1764 #endif
1765 		case 922:	/* extsh */
1766 			op->val = (signed short) regs->gpr[rd];
1767 			goto logical_done;
1768 
1769 		case 954:	/* extsb */
1770 			op->val = (signed char) regs->gpr[rd];
1771 			goto logical_done;
1772 #ifdef __powerpc64__
1773 		case 986:	/* extsw */
1774 			op->val = (signed int) regs->gpr[rd];
1775 			goto logical_done;
1776 #endif
1777 
1778 /*
1779  * Shift instructions
1780  */
1781 		case 24:	/* slw */
1782 			sh = regs->gpr[rb] & 0x3f;
1783 			if (sh < 32)
1784 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1785 			else
1786 				op->val = 0;
1787 			goto logical_done;
1788 
1789 		case 536:	/* srw */
1790 			sh = regs->gpr[rb] & 0x3f;
1791 			if (sh < 32)
1792 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1793 			else
1794 				op->val = 0;
1795 			goto logical_done;
1796 
1797 		case 792:	/* sraw */
1798 			op->type = COMPUTE + SETREG + SETXER;
1799 			sh = regs->gpr[rb] & 0x3f;
1800 			ival = (signed int) regs->gpr[rd];
1801 			op->val = ival >> (sh < 32 ? sh : 31);
1802 			op->xerval = regs->xer;
1803 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1804 				op->xerval |= XER_CA;
1805 			else
1806 				op->xerval &= ~XER_CA;
1807 			set_ca32(op, op->xerval & XER_CA);
1808 			goto logical_done;
1809 
1810 		case 824:	/* srawi */
1811 			op->type = COMPUTE + SETREG + SETXER;
1812 			sh = rb;
1813 			ival = (signed int) regs->gpr[rd];
1814 			op->val = ival >> sh;
1815 			op->xerval = regs->xer;
1816 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1817 				op->xerval |= XER_CA;
1818 			else
1819 				op->xerval &= ~XER_CA;
1820 			set_ca32(op, op->xerval & XER_CA);
1821 			goto logical_done;
1822 
1823 #ifdef __powerpc64__
1824 		case 27:	/* sld */
1825 			sh = regs->gpr[rb] & 0x7f;
1826 			if (sh < 64)
1827 				op->val = regs->gpr[rd] << sh;
1828 			else
1829 				op->val = 0;
1830 			goto logical_done;
1831 
1832 		case 539:	/* srd */
1833 			sh = regs->gpr[rb] & 0x7f;
1834 			if (sh < 64)
1835 				op->val = regs->gpr[rd] >> sh;
1836 			else
1837 				op->val = 0;
1838 			goto logical_done;
1839 
1840 		case 794:	/* srad */
1841 			op->type = COMPUTE + SETREG + SETXER;
1842 			sh = regs->gpr[rb] & 0x7f;
1843 			ival = (signed long int) regs->gpr[rd];
1844 			op->val = ival >> (sh < 64 ? sh : 63);
1845 			op->xerval = regs->xer;
1846 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1847 				op->xerval |= XER_CA;
1848 			else
1849 				op->xerval &= ~XER_CA;
1850 			set_ca32(op, op->xerval & XER_CA);
1851 			goto logical_done;
1852 
1853 		case 826:	/* sradi with sh_5 = 0 */
1854 		case 827:	/* sradi with sh_5 = 1 */
1855 			op->type = COMPUTE + SETREG + SETXER;
1856 			sh = rb | ((instr & 2) << 4);
1857 			ival = (signed long int) regs->gpr[rd];
1858 			op->val = ival >> sh;
1859 			op->xerval = regs->xer;
1860 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1861 				op->xerval |= XER_CA;
1862 			else
1863 				op->xerval &= ~XER_CA;
1864 			set_ca32(op, op->xerval & XER_CA);
1865 			goto logical_done;
1866 #endif /* __powerpc64__ */
1867 
1868 /*
1869  * Cache instructions
1870  */
1871 		case 54:	/* dcbst */
1872 			op->type = MKOP(CACHEOP, DCBST, 0);
1873 			op->ea = xform_ea(instr, regs);
1874 			return 0;
1875 
1876 		case 86:	/* dcbf */
1877 			op->type = MKOP(CACHEOP, DCBF, 0);
1878 			op->ea = xform_ea(instr, regs);
1879 			return 0;
1880 
1881 		case 246:	/* dcbtst */
1882 			op->type = MKOP(CACHEOP, DCBTST, 0);
1883 			op->ea = xform_ea(instr, regs);
1884 			op->reg = rd;
1885 			return 0;
1886 
1887 		case 278:	/* dcbt */
1888 			op->type = MKOP(CACHEOP, DCBTST, 0);
1889 			op->ea = xform_ea(instr, regs);
1890 			op->reg = rd;
1891 			return 0;
1892 
1893 		case 982:	/* icbi */
1894 			op->type = MKOP(CACHEOP, ICBI, 0);
1895 			op->ea = xform_ea(instr, regs);
1896 			return 0;
1897 
1898 		case 1014:	/* dcbz */
1899 			op->type = MKOP(CACHEOP, DCBZ, 0);
1900 			op->ea = xform_ea(instr, regs);
1901 			return 0;
1902 		}
1903 		break;
1904 	}
1905 
1906 /*
1907  * Loads and stores.
1908  */
1909 	op->type = UNKNOWN;
1910 	op->update_reg = ra;
1911 	op->reg = rd;
1912 	op->val = regs->gpr[rd];
1913 	u = (instr >> 20) & UPDATE;
1914 	op->vsx_flags = 0;
1915 
1916 	switch (opcode) {
1917 	case 31:
1918 		u = instr & UPDATE;
1919 		op->ea = xform_ea(instr, regs);
1920 		switch ((instr >> 1) & 0x3ff) {
1921 		case 20:	/* lwarx */
1922 			op->type = MKOP(LARX, 0, 4);
1923 			break;
1924 
1925 		case 150:	/* stwcx. */
1926 			op->type = MKOP(STCX, 0, 4);
1927 			break;
1928 
1929 #ifdef __powerpc64__
1930 		case 84:	/* ldarx */
1931 			op->type = MKOP(LARX, 0, 8);
1932 			break;
1933 
1934 		case 214:	/* stdcx. */
1935 			op->type = MKOP(STCX, 0, 8);
1936 			break;
1937 
1938 		case 52:	/* lbarx */
1939 			op->type = MKOP(LARX, 0, 1);
1940 			break;
1941 
1942 		case 694:	/* stbcx. */
1943 			op->type = MKOP(STCX, 0, 1);
1944 			break;
1945 
1946 		case 116:	/* lharx */
1947 			op->type = MKOP(LARX, 0, 2);
1948 			break;
1949 
1950 		case 726:	/* sthcx. */
1951 			op->type = MKOP(STCX, 0, 2);
1952 			break;
1953 
1954 		case 276:	/* lqarx */
1955 			if (!((rd & 1) || rd == ra || rd == rb))
1956 				op->type = MKOP(LARX, 0, 16);
1957 			break;
1958 
1959 		case 182:	/* stqcx. */
1960 			if (!(rd & 1))
1961 				op->type = MKOP(STCX, 0, 16);
1962 			break;
1963 #endif
1964 
1965 		case 23:	/* lwzx */
1966 		case 55:	/* lwzux */
1967 			op->type = MKOP(LOAD, u, 4);
1968 			break;
1969 
1970 		case 87:	/* lbzx */
1971 		case 119:	/* lbzux */
1972 			op->type = MKOP(LOAD, u, 1);
1973 			break;
1974 
1975 #ifdef CONFIG_ALTIVEC
1976 		/*
1977 		 * Note: for the load/store vector element instructions,
1978 		 * bits of the EA say which field of the VMX register to use.
1979 		 */
1980 		case 7:		/* lvebx */
1981 			op->type = MKOP(LOAD_VMX, 0, 1);
1982 			op->element_size = 1;
1983 			break;
1984 
1985 		case 39:	/* lvehx */
1986 			op->type = MKOP(LOAD_VMX, 0, 2);
1987 			op->element_size = 2;
1988 			break;
1989 
1990 		case 71:	/* lvewx */
1991 			op->type = MKOP(LOAD_VMX, 0, 4);
1992 			op->element_size = 4;
1993 			break;
1994 
1995 		case 103:	/* lvx */
1996 		case 359:	/* lvxl */
1997 			op->type = MKOP(LOAD_VMX, 0, 16);
1998 			op->element_size = 16;
1999 			break;
2000 
2001 		case 135:	/* stvebx */
2002 			op->type = MKOP(STORE_VMX, 0, 1);
2003 			op->element_size = 1;
2004 			break;
2005 
2006 		case 167:	/* stvehx */
2007 			op->type = MKOP(STORE_VMX, 0, 2);
2008 			op->element_size = 2;
2009 			break;
2010 
2011 		case 199:	/* stvewx */
2012 			op->type = MKOP(STORE_VMX, 0, 4);
2013 			op->element_size = 4;
2014 			break;
2015 
2016 		case 231:	/* stvx */
2017 		case 487:	/* stvxl */
2018 			op->type = MKOP(STORE_VMX, 0, 16);
2019 			break;
2020 #endif /* CONFIG_ALTIVEC */
2021 
2022 #ifdef __powerpc64__
2023 		case 21:	/* ldx */
2024 		case 53:	/* ldux */
2025 			op->type = MKOP(LOAD, u, 8);
2026 			break;
2027 
2028 		case 149:	/* stdx */
2029 		case 181:	/* stdux */
2030 			op->type = MKOP(STORE, u, 8);
2031 			break;
2032 #endif
2033 
2034 		case 151:	/* stwx */
2035 		case 183:	/* stwux */
2036 			op->type = MKOP(STORE, u, 4);
2037 			break;
2038 
2039 		case 215:	/* stbx */
2040 		case 247:	/* stbux */
2041 			op->type = MKOP(STORE, u, 1);
2042 			break;
2043 
2044 		case 279:	/* lhzx */
2045 		case 311:	/* lhzux */
2046 			op->type = MKOP(LOAD, u, 2);
2047 			break;
2048 
2049 #ifdef __powerpc64__
2050 		case 341:	/* lwax */
2051 		case 373:	/* lwaux */
2052 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2053 			break;
2054 #endif
2055 
2056 		case 343:	/* lhax */
2057 		case 375:	/* lhaux */
2058 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2059 			break;
2060 
2061 		case 407:	/* sthx */
2062 		case 439:	/* sthux */
2063 			op->type = MKOP(STORE, u, 2);
2064 			break;
2065 
2066 #ifdef __powerpc64__
2067 		case 532:	/* ldbrx */
2068 			op->type = MKOP(LOAD, BYTEREV, 8);
2069 			break;
2070 
2071 #endif
2072 		case 533:	/* lswx */
2073 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2074 			break;
2075 
2076 		case 534:	/* lwbrx */
2077 			op->type = MKOP(LOAD, BYTEREV, 4);
2078 			break;
2079 
2080 		case 597:	/* lswi */
2081 			if (rb == 0)
2082 				rb = 32;	/* # bytes to load */
2083 			op->type = MKOP(LOAD_MULTI, 0, rb);
2084 			op->ea = ra ? regs->gpr[ra] : 0;
2085 			break;
2086 
2087 #ifdef CONFIG_PPC_FPU
2088 		case 535:	/* lfsx */
2089 		case 567:	/* lfsux */
2090 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2091 			break;
2092 
2093 		case 599:	/* lfdx */
2094 		case 631:	/* lfdux */
2095 			op->type = MKOP(LOAD_FP, u, 8);
2096 			break;
2097 
2098 		case 663:	/* stfsx */
2099 		case 695:	/* stfsux */
2100 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2101 			break;
2102 
2103 		case 727:	/* stfdx */
2104 		case 759:	/* stfdux */
2105 			op->type = MKOP(STORE_FP, u, 8);
2106 			break;
2107 
2108 #ifdef __powerpc64__
2109 		case 791:	/* lfdpx */
2110 			op->type = MKOP(LOAD_FP, 0, 16);
2111 			break;
2112 
2113 		case 855:	/* lfiwax */
2114 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2115 			break;
2116 
2117 		case 887:	/* lfiwzx */
2118 			op->type = MKOP(LOAD_FP, 0, 4);
2119 			break;
2120 
2121 		case 919:	/* stfdpx */
2122 			op->type = MKOP(STORE_FP, 0, 16);
2123 			break;
2124 
2125 		case 983:	/* stfiwx */
2126 			op->type = MKOP(STORE_FP, 0, 4);
2127 			break;
2128 #endif /* __powerpc64 */
2129 #endif /* CONFIG_PPC_FPU */
2130 
2131 #ifdef __powerpc64__
2132 		case 660:	/* stdbrx */
2133 			op->type = MKOP(STORE, BYTEREV, 8);
2134 			op->val = byterev_8(regs->gpr[rd]);
2135 			break;
2136 
2137 #endif
2138 		case 661:	/* stswx */
2139 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2140 			break;
2141 
2142 		case 662:	/* stwbrx */
2143 			op->type = MKOP(STORE, BYTEREV, 4);
2144 			op->val = byterev_4(regs->gpr[rd]);
2145 			break;
2146 
2147 		case 725:	/* stswi */
2148 			if (rb == 0)
2149 				rb = 32;	/* # bytes to store */
2150 			op->type = MKOP(STORE_MULTI, 0, rb);
2151 			op->ea = ra ? regs->gpr[ra] : 0;
2152 			break;
2153 
2154 		case 790:	/* lhbrx */
2155 			op->type = MKOP(LOAD, BYTEREV, 2);
2156 			break;
2157 
2158 		case 918:	/* sthbrx */
2159 			op->type = MKOP(STORE, BYTEREV, 2);
2160 			op->val = byterev_2(regs->gpr[rd]);
2161 			break;
2162 
2163 #ifdef CONFIG_VSX
2164 		case 12:	/* lxsiwzx */
2165 			op->reg = rd | ((instr & 1) << 5);
2166 			op->type = MKOP(LOAD_VSX, 0, 4);
2167 			op->element_size = 8;
2168 			break;
2169 
2170 		case 76:	/* lxsiwax */
2171 			op->reg = rd | ((instr & 1) << 5);
2172 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2173 			op->element_size = 8;
2174 			break;
2175 
2176 		case 140:	/* stxsiwx */
2177 			op->reg = rd | ((instr & 1) << 5);
2178 			op->type = MKOP(STORE_VSX, 0, 4);
2179 			op->element_size = 8;
2180 			break;
2181 
2182 		case 268:	/* lxvx */
2183 			op->reg = rd | ((instr & 1) << 5);
2184 			op->type = MKOP(LOAD_VSX, 0, 16);
2185 			op->element_size = 16;
2186 			op->vsx_flags = VSX_CHECK_VEC;
2187 			break;
2188 
2189 		case 269:	/* lxvl */
2190 		case 301: {	/* lxvll */
2191 			int nb;
2192 			op->reg = rd | ((instr & 1) << 5);
2193 			op->ea = ra ? regs->gpr[ra] : 0;
2194 			nb = regs->gpr[rb] & 0xff;
2195 			if (nb > 16)
2196 				nb = 16;
2197 			op->type = MKOP(LOAD_VSX, 0, nb);
2198 			op->element_size = 16;
2199 			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2200 				VSX_CHECK_VEC;
2201 			break;
2202 		}
2203 		case 332:	/* lxvdsx */
2204 			op->reg = rd | ((instr & 1) << 5);
2205 			op->type = MKOP(LOAD_VSX, 0, 8);
2206 			op->element_size = 8;
2207 			op->vsx_flags = VSX_SPLAT;
2208 			break;
2209 
2210 		case 364:	/* lxvwsx */
2211 			op->reg = rd | ((instr & 1) << 5);
2212 			op->type = MKOP(LOAD_VSX, 0, 4);
2213 			op->element_size = 4;
2214 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2215 			break;
2216 
2217 		case 396:	/* stxvx */
2218 			op->reg = rd | ((instr & 1) << 5);
2219 			op->type = MKOP(STORE_VSX, 0, 16);
2220 			op->element_size = 16;
2221 			op->vsx_flags = VSX_CHECK_VEC;
2222 			break;
2223 
2224 		case 397:	/* stxvl */
2225 		case 429: {	/* stxvll */
2226 			int nb;
2227 			op->reg = rd | ((instr & 1) << 5);
2228 			op->ea = ra ? regs->gpr[ra] : 0;
2229 			nb = regs->gpr[rb] & 0xff;
2230 			if (nb > 16)
2231 				nb = 16;
2232 			op->type = MKOP(STORE_VSX, 0, nb);
2233 			op->element_size = 16;
2234 			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2235 				VSX_CHECK_VEC;
2236 			break;
2237 		}
2238 		case 524:	/* lxsspx */
2239 			op->reg = rd | ((instr & 1) << 5);
2240 			op->type = MKOP(LOAD_VSX, 0, 4);
2241 			op->element_size = 8;
2242 			op->vsx_flags = VSX_FPCONV;
2243 			break;
2244 
2245 		case 588:	/* lxsdx */
2246 			op->reg = rd | ((instr & 1) << 5);
2247 			op->type = MKOP(LOAD_VSX, 0, 8);
2248 			op->element_size = 8;
2249 			break;
2250 
2251 		case 652:	/* stxsspx */
2252 			op->reg = rd | ((instr & 1) << 5);
2253 			op->type = MKOP(STORE_VSX, 0, 4);
2254 			op->element_size = 8;
2255 			op->vsx_flags = VSX_FPCONV;
2256 			break;
2257 
2258 		case 716:	/* stxsdx */
2259 			op->reg = rd | ((instr & 1) << 5);
2260 			op->type = MKOP(STORE_VSX, 0, 8);
2261 			op->element_size = 8;
2262 			break;
2263 
2264 		case 780:	/* lxvw4x */
2265 			op->reg = rd | ((instr & 1) << 5);
2266 			op->type = MKOP(LOAD_VSX, 0, 16);
2267 			op->element_size = 4;
2268 			break;
2269 
2270 		case 781:	/* lxsibzx */
2271 			op->reg = rd | ((instr & 1) << 5);
2272 			op->type = MKOP(LOAD_VSX, 0, 1);
2273 			op->element_size = 8;
2274 			op->vsx_flags = VSX_CHECK_VEC;
2275 			break;
2276 
2277 		case 812:	/* lxvh8x */
2278 			op->reg = rd | ((instr & 1) << 5);
2279 			op->type = MKOP(LOAD_VSX, 0, 16);
2280 			op->element_size = 2;
2281 			op->vsx_flags = VSX_CHECK_VEC;
2282 			break;
2283 
2284 		case 813:	/* lxsihzx */
2285 			op->reg = rd | ((instr & 1) << 5);
2286 			op->type = MKOP(LOAD_VSX, 0, 2);
2287 			op->element_size = 8;
2288 			op->vsx_flags = VSX_CHECK_VEC;
2289 			break;
2290 
2291 		case 844:	/* lxvd2x */
2292 			op->reg = rd | ((instr & 1) << 5);
2293 			op->type = MKOP(LOAD_VSX, 0, 16);
2294 			op->element_size = 8;
2295 			break;
2296 
2297 		case 876:	/* lxvb16x */
2298 			op->reg = rd | ((instr & 1) << 5);
2299 			op->type = MKOP(LOAD_VSX, 0, 16);
2300 			op->element_size = 1;
2301 			op->vsx_flags = VSX_CHECK_VEC;
2302 			break;
2303 
2304 		case 908:	/* stxvw4x */
2305 			op->reg = rd | ((instr & 1) << 5);
2306 			op->type = MKOP(STORE_VSX, 0, 16);
2307 			op->element_size = 4;
2308 			break;
2309 
2310 		case 909:	/* stxsibx */
2311 			op->reg = rd | ((instr & 1) << 5);
2312 			op->type = MKOP(STORE_VSX, 0, 1);
2313 			op->element_size = 8;
2314 			op->vsx_flags = VSX_CHECK_VEC;
2315 			break;
2316 
2317 		case 940:	/* stxvh8x */
2318 			op->reg = rd | ((instr & 1) << 5);
2319 			op->type = MKOP(STORE_VSX, 0, 16);
2320 			op->element_size = 2;
2321 			op->vsx_flags = VSX_CHECK_VEC;
2322 			break;
2323 
2324 		case 941:	/* stxsihx */
2325 			op->reg = rd | ((instr & 1) << 5);
2326 			op->type = MKOP(STORE_VSX, 0, 2);
2327 			op->element_size = 8;
2328 			op->vsx_flags = VSX_CHECK_VEC;
2329 			break;
2330 
2331 		case 972:	/* stxvd2x */
2332 			op->reg = rd | ((instr & 1) << 5);
2333 			op->type = MKOP(STORE_VSX, 0, 16);
2334 			op->element_size = 8;
2335 			break;
2336 
2337 		case 1004:	/* stxvb16x */
2338 			op->reg = rd | ((instr & 1) << 5);
2339 			op->type = MKOP(STORE_VSX, 0, 16);
2340 			op->element_size = 1;
2341 			op->vsx_flags = VSX_CHECK_VEC;
2342 			break;
2343 
2344 #endif /* CONFIG_VSX */
2345 		}
2346 		break;
2347 
2348 	case 32:	/* lwz */
2349 	case 33:	/* lwzu */
2350 		op->type = MKOP(LOAD, u, 4);
2351 		op->ea = dform_ea(instr, regs);
2352 		break;
2353 
2354 	case 34:	/* lbz */
2355 	case 35:	/* lbzu */
2356 		op->type = MKOP(LOAD, u, 1);
2357 		op->ea = dform_ea(instr, regs);
2358 		break;
2359 
2360 	case 36:	/* stw */
2361 	case 37:	/* stwu */
2362 		op->type = MKOP(STORE, u, 4);
2363 		op->ea = dform_ea(instr, regs);
2364 		break;
2365 
2366 	case 38:	/* stb */
2367 	case 39:	/* stbu */
2368 		op->type = MKOP(STORE, u, 1);
2369 		op->ea = dform_ea(instr, regs);
2370 		break;
2371 
2372 	case 40:	/* lhz */
2373 	case 41:	/* lhzu */
2374 		op->type = MKOP(LOAD, u, 2);
2375 		op->ea = dform_ea(instr, regs);
2376 		break;
2377 
2378 	case 42:	/* lha */
2379 	case 43:	/* lhau */
2380 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2381 		op->ea = dform_ea(instr, regs);
2382 		break;
2383 
2384 	case 44:	/* sth */
2385 	case 45:	/* sthu */
2386 		op->type = MKOP(STORE, u, 2);
2387 		op->ea = dform_ea(instr, regs);
2388 		break;
2389 
2390 	case 46:	/* lmw */
2391 		if (ra >= rd)
2392 			break;		/* invalid form, ra in range to load */
2393 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2394 		op->ea = dform_ea(instr, regs);
2395 		break;
2396 
2397 	case 47:	/* stmw */
2398 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2399 		op->ea = dform_ea(instr, regs);
2400 		break;
2401 
2402 #ifdef CONFIG_PPC_FPU
2403 	case 48:	/* lfs */
2404 	case 49:	/* lfsu */
2405 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2406 		op->ea = dform_ea(instr, regs);
2407 		break;
2408 
2409 	case 50:	/* lfd */
2410 	case 51:	/* lfdu */
2411 		op->type = MKOP(LOAD_FP, u, 8);
2412 		op->ea = dform_ea(instr, regs);
2413 		break;
2414 
2415 	case 52:	/* stfs */
2416 	case 53:	/* stfsu */
2417 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2418 		op->ea = dform_ea(instr, regs);
2419 		break;
2420 
2421 	case 54:	/* stfd */
2422 	case 55:	/* stfdu */
2423 		op->type = MKOP(STORE_FP, u, 8);
2424 		op->ea = dform_ea(instr, regs);
2425 		break;
2426 #endif
2427 
2428 #ifdef __powerpc64__
2429 	case 56:	/* lq */
2430 		if (!((rd & 1) || (rd == ra)))
2431 			op->type = MKOP(LOAD, 0, 16);
2432 		op->ea = dqform_ea(instr, regs);
2433 		break;
2434 #endif
2435 
2436 #ifdef CONFIG_VSX
2437 	case 57:	/* lfdp, lxsd, lxssp */
2438 		op->ea = dsform_ea(instr, regs);
2439 		switch (instr & 3) {
2440 		case 0:		/* lfdp */
2441 			if (rd & 1)
2442 				break;		/* reg must be even */
2443 			op->type = MKOP(LOAD_FP, 0, 16);
2444 			break;
2445 		case 2:		/* lxsd */
2446 			op->reg = rd + 32;
2447 			op->type = MKOP(LOAD_VSX, 0, 8);
2448 			op->element_size = 8;
2449 			op->vsx_flags = VSX_CHECK_VEC;
2450 			break;
2451 		case 3:		/* lxssp */
2452 			op->reg = rd + 32;
2453 			op->type = MKOP(LOAD_VSX, 0, 4);
2454 			op->element_size = 8;
2455 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2456 			break;
2457 		}
2458 		break;
2459 #endif /* CONFIG_VSX */
2460 
2461 #ifdef __powerpc64__
2462 	case 58:	/* ld[u], lwa */
2463 		op->ea = dsform_ea(instr, regs);
2464 		switch (instr & 3) {
2465 		case 0:		/* ld */
2466 			op->type = MKOP(LOAD, 0, 8);
2467 			break;
2468 		case 1:		/* ldu */
2469 			op->type = MKOP(LOAD, UPDATE, 8);
2470 			break;
2471 		case 2:		/* lwa */
2472 			op->type = MKOP(LOAD, SIGNEXT, 4);
2473 			break;
2474 		}
2475 		break;
2476 #endif
2477 
2478 #ifdef CONFIG_VSX
2479 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2480 		switch (instr & 7) {
2481 		case 0:		/* stfdp with LSB of DS field = 0 */
2482 		case 4:		/* stfdp with LSB of DS field = 1 */
2483 			op->ea = dsform_ea(instr, regs);
2484 			op->type = MKOP(STORE_FP, 0, 16);
2485 			break;
2486 
2487 		case 1:		/* lxv */
2488 			op->ea = dqform_ea(instr, regs);
2489 			if (instr & 8)
2490 				op->reg = rd + 32;
2491 			op->type = MKOP(LOAD_VSX, 0, 16);
2492 			op->element_size = 16;
2493 			op->vsx_flags = VSX_CHECK_VEC;
2494 			break;
2495 
2496 		case 2:		/* stxsd with LSB of DS field = 0 */
2497 		case 6:		/* stxsd with LSB of DS field = 1 */
2498 			op->ea = dsform_ea(instr, regs);
2499 			op->reg = rd + 32;
2500 			op->type = MKOP(STORE_VSX, 0, 8);
2501 			op->element_size = 8;
2502 			op->vsx_flags = VSX_CHECK_VEC;
2503 			break;
2504 
2505 		case 3:		/* stxssp with LSB of DS field = 0 */
2506 		case 7:		/* stxssp with LSB of DS field = 1 */
2507 			op->ea = dsform_ea(instr, regs);
2508 			op->reg = rd + 32;
2509 			op->type = MKOP(STORE_VSX, 0, 4);
2510 			op->element_size = 8;
2511 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2512 			break;
2513 
2514 		case 5:		/* stxv */
2515 			op->ea = dqform_ea(instr, regs);
2516 			if (instr & 8)
2517 				op->reg = rd + 32;
2518 			op->type = MKOP(STORE_VSX, 0, 16);
2519 			op->element_size = 16;
2520 			op->vsx_flags = VSX_CHECK_VEC;
2521 			break;
2522 		}
2523 		break;
2524 #endif /* CONFIG_VSX */
2525 
2526 #ifdef __powerpc64__
2527 	case 62:	/* std[u] */
2528 		op->ea = dsform_ea(instr, regs);
2529 		switch (instr & 3) {
2530 		case 0:		/* std */
2531 			op->type = MKOP(STORE, 0, 8);
2532 			break;
2533 		case 1:		/* stdu */
2534 			op->type = MKOP(STORE, UPDATE, 8);
2535 			break;
2536 		case 2:		/* stq */
2537 			if (!(rd & 1))
2538 				op->type = MKOP(STORE, 0, 16);
2539 			break;
2540 		}
2541 		break;
2542 #endif /* __powerpc64__ */
2543 
2544 	}
2545 	return 0;
2546 
2547  logical_done:
2548 	if (instr & 1)
2549 		set_cr0(regs, op);
2550  logical_done_nocc:
2551 	op->reg = ra;
2552 	op->type |= SETREG;
2553 	return 1;
2554 
2555  arith_done:
2556 	if (instr & 1)
2557 		set_cr0(regs, op);
2558  compute_done:
2559 	op->reg = rd;
2560 	op->type |= SETREG;
2561 	return 1;
2562 
2563  priv:
2564 	op->type = INTERRUPT | 0x700;
2565 	op->val = SRR1_PROGPRIV;
2566 	return 0;
2567 
2568  trap:
2569 	op->type = INTERRUPT | 0x700;
2570 	op->val = SRR1_PROGTRAP;
2571 	return 0;
2572 }
2573 EXPORT_SYMBOL_GPL(analyse_instr);
2574 NOKPROBE_SYMBOL(analyse_instr);
2575 
2576 /*
2577  * For PPC32 we always use stwu with r1 to change the stack pointer.
2578  * So this emulated store may corrupt the exception frame, now we
2579  * have to provide the exception frame trampoline, which is pushed
2580  * below the kprobed function stack. So we only update gpr[1] but
2581  * don't emulate the real store operation. We will do real store
2582  * operation safely in exception return code by checking this flag.
2583  */
2584 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2585 {
2586 #ifdef CONFIG_PPC32
2587 	/*
2588 	 * Check if we will touch kernel stack overflow
2589 	 */
2590 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2591 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2592 		return -EINVAL;
2593 	}
2594 #endif /* CONFIG_PPC32 */
2595 	/*
2596 	 * Check if we already set since that means we'll
2597 	 * lose the previous value.
2598 	 */
2599 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2600 	set_thread_flag(TIF_EMULATE_STACK_STORE);
2601 	return 0;
2602 }
2603 
2604 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2605 {
2606 	switch (size) {
2607 	case 2:
2608 		*valp = (signed short) *valp;
2609 		break;
2610 	case 4:
2611 		*valp = (signed int) *valp;
2612 		break;
2613 	}
2614 }
2615 
2616 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2617 {
2618 	switch (size) {
2619 	case 2:
2620 		*valp = byterev_2(*valp);
2621 		break;
2622 	case 4:
2623 		*valp = byterev_4(*valp);
2624 		break;
2625 #ifdef __powerpc64__
2626 	case 8:
2627 		*valp = byterev_8(*valp);
2628 		break;
2629 #endif
2630 	}
2631 }
2632 
2633 /*
2634  * Emulate an instruction that can be executed just by updating
2635  * fields in *regs.
2636  */
2637 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2638 {
2639 	unsigned long next_pc;
2640 
2641 	next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2642 	switch (op->type & INSTR_TYPE_MASK) {
2643 	case COMPUTE:
2644 		if (op->type & SETREG)
2645 			regs->gpr[op->reg] = op->val;
2646 		if (op->type & SETCC)
2647 			regs->ccr = op->ccval;
2648 		if (op->type & SETXER)
2649 			regs->xer = op->xerval;
2650 		break;
2651 
2652 	case BRANCH:
2653 		if (op->type & SETLK)
2654 			regs->link = next_pc;
2655 		if (op->type & BRTAKEN)
2656 			next_pc = op->val;
2657 		if (op->type & DECCTR)
2658 			--regs->ctr;
2659 		break;
2660 
2661 	case BARRIER:
2662 		switch (op->type & BARRIER_MASK) {
2663 		case BARRIER_SYNC:
2664 			mb();
2665 			break;
2666 		case BARRIER_ISYNC:
2667 			isync();
2668 			break;
2669 		case BARRIER_EIEIO:
2670 			eieio();
2671 			break;
2672 		case BARRIER_LWSYNC:
2673 			asm volatile("lwsync" : : : "memory");
2674 			break;
2675 		case BARRIER_PTESYNC:
2676 			asm volatile("ptesync" : : : "memory");
2677 			break;
2678 		}
2679 		break;
2680 
2681 	case MFSPR:
2682 		switch (op->spr) {
2683 		case SPRN_XER:
2684 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2685 			break;
2686 		case SPRN_LR:
2687 			regs->gpr[op->reg] = regs->link;
2688 			break;
2689 		case SPRN_CTR:
2690 			regs->gpr[op->reg] = regs->ctr;
2691 			break;
2692 		default:
2693 			WARN_ON_ONCE(1);
2694 		}
2695 		break;
2696 
2697 	case MTSPR:
2698 		switch (op->spr) {
2699 		case SPRN_XER:
2700 			regs->xer = op->val & 0xffffffffUL;
2701 			break;
2702 		case SPRN_LR:
2703 			regs->link = op->val;
2704 			break;
2705 		case SPRN_CTR:
2706 			regs->ctr = op->val;
2707 			break;
2708 		default:
2709 			WARN_ON_ONCE(1);
2710 		}
2711 		break;
2712 
2713 	default:
2714 		WARN_ON_ONCE(1);
2715 	}
2716 	regs->nip = next_pc;
2717 }
2718 
2719 /*
2720  * Emulate a previously-analysed load or store instruction.
2721  * Return values are:
2722  * 0 = instruction emulated successfully
2723  * -EFAULT = address out of range or access faulted (regs->dar
2724  *	     contains the faulting address)
2725  * -EACCES = misaligned access, instruction requires alignment
2726  * -EINVAL = unknown operation in *op
2727  */
2728 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2729 {
2730 	int err, size, type;
2731 	int i, rd, nb;
2732 	unsigned int cr;
2733 	unsigned long val;
2734 	unsigned long ea;
2735 	bool cross_endian;
2736 
2737 	err = 0;
2738 	size = GETSIZE(op->type);
2739 	type = op->type & INSTR_TYPE_MASK;
2740 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2741 	ea = truncate_if_32bit(regs->msr, op->ea);
2742 
2743 	switch (type) {
2744 	case LARX:
2745 		if (ea & (size - 1))
2746 			return -EACCES;		/* can't handle misaligned */
2747 		if (!address_ok(regs, ea, size))
2748 			return -EFAULT;
2749 		err = 0;
2750 		val = 0;
2751 		switch (size) {
2752 #ifdef __powerpc64__
2753 		case 1:
2754 			__get_user_asmx(val, ea, err, "lbarx");
2755 			break;
2756 		case 2:
2757 			__get_user_asmx(val, ea, err, "lharx");
2758 			break;
2759 #endif
2760 		case 4:
2761 			__get_user_asmx(val, ea, err, "lwarx");
2762 			break;
2763 #ifdef __powerpc64__
2764 		case 8:
2765 			__get_user_asmx(val, ea, err, "ldarx");
2766 			break;
2767 		case 16:
2768 			err = do_lqarx(ea, &regs->gpr[op->reg]);
2769 			break;
2770 #endif
2771 		default:
2772 			return -EINVAL;
2773 		}
2774 		if (err) {
2775 			regs->dar = ea;
2776 			break;
2777 		}
2778 		if (size < 16)
2779 			regs->gpr[op->reg] = val;
2780 		break;
2781 
2782 	case STCX:
2783 		if (ea & (size - 1))
2784 			return -EACCES;		/* can't handle misaligned */
2785 		if (!address_ok(regs, ea, size))
2786 			return -EFAULT;
2787 		err = 0;
2788 		switch (size) {
2789 #ifdef __powerpc64__
2790 		case 1:
2791 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2792 			break;
2793 		case 2:
2794 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2795 			break;
2796 #endif
2797 		case 4:
2798 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
2799 			break;
2800 #ifdef __powerpc64__
2801 		case 8:
2802 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
2803 			break;
2804 		case 16:
2805 			err = do_stqcx(ea, regs->gpr[op->reg],
2806 				       regs->gpr[op->reg + 1], &cr);
2807 			break;
2808 #endif
2809 		default:
2810 			return -EINVAL;
2811 		}
2812 		if (!err)
2813 			regs->ccr = (regs->ccr & 0x0fffffff) |
2814 				(cr & 0xe0000000) |
2815 				((regs->xer >> 3) & 0x10000000);
2816 		else
2817 			regs->dar = ea;
2818 		break;
2819 
2820 	case LOAD:
2821 #ifdef __powerpc64__
2822 		if (size == 16) {
2823 			err = emulate_lq(regs, ea, op->reg, cross_endian);
2824 			break;
2825 		}
2826 #endif
2827 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2828 		if (!err) {
2829 			if (op->type & SIGNEXT)
2830 				do_signext(&regs->gpr[op->reg], size);
2831 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2832 				do_byterev(&regs->gpr[op->reg], size);
2833 		}
2834 		break;
2835 
2836 #ifdef CONFIG_PPC_FPU
2837 	case LOAD_FP:
2838 		/*
2839 		 * If the instruction is in userspace, we can emulate it even
2840 		 * if the VMX state is not live, because we have the state
2841 		 * stored in the thread_struct.  If the instruction is in
2842 		 * the kernel, we must not touch the state in the thread_struct.
2843 		 */
2844 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2845 			return 0;
2846 		err = do_fp_load(op, ea, regs, cross_endian);
2847 		break;
2848 #endif
2849 #ifdef CONFIG_ALTIVEC
2850 	case LOAD_VMX:
2851 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2852 			return 0;
2853 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2854 		break;
2855 #endif
2856 #ifdef CONFIG_VSX
2857 	case LOAD_VSX: {
2858 		unsigned long msrbit = MSR_VSX;
2859 
2860 		/*
2861 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2862 		 * when the target of the instruction is a vector register.
2863 		 */
2864 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2865 			msrbit = MSR_VEC;
2866 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2867 			return 0;
2868 		err = do_vsx_load(op, ea, regs, cross_endian);
2869 		break;
2870 	}
2871 #endif
2872 	case LOAD_MULTI:
2873 		if (!address_ok(regs, ea, size))
2874 			return -EFAULT;
2875 		rd = op->reg;
2876 		for (i = 0; i < size; i += 4) {
2877 			unsigned int v32 = 0;
2878 
2879 			nb = size - i;
2880 			if (nb > 4)
2881 				nb = 4;
2882 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
2883 			if (err)
2884 				break;
2885 			if (unlikely(cross_endian))
2886 				v32 = byterev_4(v32);
2887 			regs->gpr[rd] = v32;
2888 			ea += 4;
2889 			/* reg number wraps from 31 to 0 for lsw[ix] */
2890 			rd = (rd + 1) & 0x1f;
2891 		}
2892 		break;
2893 
2894 	case STORE:
2895 #ifdef __powerpc64__
2896 		if (size == 16) {
2897 			err = emulate_stq(regs, ea, op->reg, cross_endian);
2898 			break;
2899 		}
2900 #endif
2901 		if ((op->type & UPDATE) && size == sizeof(long) &&
2902 		    op->reg == 1 && op->update_reg == 1 &&
2903 		    !(regs->msr & MSR_PR) &&
2904 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
2905 			err = handle_stack_update(ea, regs);
2906 			break;
2907 		}
2908 		if (unlikely(cross_endian))
2909 			do_byterev(&op->val, size);
2910 		err = write_mem(op->val, ea, size, regs);
2911 		break;
2912 
2913 #ifdef CONFIG_PPC_FPU
2914 	case STORE_FP:
2915 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2916 			return 0;
2917 		err = do_fp_store(op, ea, regs, cross_endian);
2918 		break;
2919 #endif
2920 #ifdef CONFIG_ALTIVEC
2921 	case STORE_VMX:
2922 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2923 			return 0;
2924 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
2925 		break;
2926 #endif
2927 #ifdef CONFIG_VSX
2928 	case STORE_VSX: {
2929 		unsigned long msrbit = MSR_VSX;
2930 
2931 		/*
2932 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2933 		 * when the target of the instruction is a vector register.
2934 		 */
2935 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2936 			msrbit = MSR_VEC;
2937 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2938 			return 0;
2939 		err = do_vsx_store(op, ea, regs, cross_endian);
2940 		break;
2941 	}
2942 #endif
2943 	case STORE_MULTI:
2944 		if (!address_ok(regs, ea, size))
2945 			return -EFAULT;
2946 		rd = op->reg;
2947 		for (i = 0; i < size; i += 4) {
2948 			unsigned int v32 = regs->gpr[rd];
2949 
2950 			nb = size - i;
2951 			if (nb > 4)
2952 				nb = 4;
2953 			if (unlikely(cross_endian))
2954 				v32 = byterev_4(v32);
2955 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
2956 			if (err)
2957 				break;
2958 			ea += 4;
2959 			/* reg number wraps from 31 to 0 for stsw[ix] */
2960 			rd = (rd + 1) & 0x1f;
2961 		}
2962 		break;
2963 
2964 	default:
2965 		return -EINVAL;
2966 	}
2967 
2968 	if (err)
2969 		return err;
2970 
2971 	if (op->type & UPDATE)
2972 		regs->gpr[op->update_reg] = op->ea;
2973 
2974 	return 0;
2975 }
2976 NOKPROBE_SYMBOL(emulate_loadstore);
2977 
2978 /*
2979  * Emulate instructions that cause a transfer of control,
2980  * loads and stores, and a few other instructions.
2981  * Returns 1 if the step was emulated, 0 if not,
2982  * or -1 if the instruction is one that should not be stepped,
2983  * such as an rfid, or a mtmsrd that would clear MSR_RI.
2984  */
2985 int emulate_step(struct pt_regs *regs, unsigned int instr)
2986 {
2987 	struct instruction_op op;
2988 	int r, err, type;
2989 	unsigned long val;
2990 	unsigned long ea;
2991 
2992 	r = analyse_instr(&op, regs, instr);
2993 	if (r < 0)
2994 		return r;
2995 	if (r > 0) {
2996 		emulate_update_regs(regs, &op);
2997 		return 1;
2998 	}
2999 
3000 	err = 0;
3001 	type = op.type & INSTR_TYPE_MASK;
3002 
3003 	if (OP_IS_LOAD_STORE(type)) {
3004 		err = emulate_loadstore(regs, &op);
3005 		if (err)
3006 			return 0;
3007 		goto instr_done;
3008 	}
3009 
3010 	switch (type) {
3011 	case CACHEOP:
3012 		ea = truncate_if_32bit(regs->msr, op.ea);
3013 		if (!address_ok(regs, ea, 8))
3014 			return 0;
3015 		switch (op.type & CACHEOP_MASK) {
3016 		case DCBST:
3017 			__cacheop_user_asmx(ea, err, "dcbst");
3018 			break;
3019 		case DCBF:
3020 			__cacheop_user_asmx(ea, err, "dcbf");
3021 			break;
3022 		case DCBTST:
3023 			if (op.reg == 0)
3024 				prefetchw((void *) ea);
3025 			break;
3026 		case DCBT:
3027 			if (op.reg == 0)
3028 				prefetch((void *) ea);
3029 			break;
3030 		case ICBI:
3031 			__cacheop_user_asmx(ea, err, "icbi");
3032 			break;
3033 		case DCBZ:
3034 			err = emulate_dcbz(ea, regs);
3035 			break;
3036 		}
3037 		if (err) {
3038 			regs->dar = ea;
3039 			return 0;
3040 		}
3041 		goto instr_done;
3042 
3043 	case MFMSR:
3044 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3045 		goto instr_done;
3046 
3047 	case MTMSR:
3048 		val = regs->gpr[op.reg];
3049 		if ((val & MSR_RI) == 0)
3050 			/* can't step mtmsr[d] that would clear MSR_RI */
3051 			return -1;
3052 		/* here op.val is the mask of bits to change */
3053 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
3054 		goto instr_done;
3055 
3056 #ifdef CONFIG_PPC64
3057 	case SYSCALL:	/* sc */
3058 		/*
3059 		 * N.B. this uses knowledge about how the syscall
3060 		 * entry code works.  If that is changed, this will
3061 		 * need to be changed also.
3062 		 */
3063 		if (regs->gpr[0] == 0x1ebe &&
3064 		    cpu_has_feature(CPU_FTR_REAL_LE)) {
3065 			regs->msr ^= MSR_LE;
3066 			goto instr_done;
3067 		}
3068 		regs->gpr[9] = regs->gpr[13];
3069 		regs->gpr[10] = MSR_KERNEL;
3070 		regs->gpr[11] = regs->nip + 4;
3071 		regs->gpr[12] = regs->msr & MSR_MASK;
3072 		regs->gpr[13] = (unsigned long) get_paca();
3073 		regs->nip = (unsigned long) &system_call_common;
3074 		regs->msr = MSR_KERNEL;
3075 		return 1;
3076 
3077 	case RFI:
3078 		return -1;
3079 #endif
3080 	}
3081 	return 0;
3082 
3083  instr_done:
3084 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3085 	return 1;
3086 }
3087 NOKPROBE_SYMBOL(emulate_step);
3088