xref: /linux/arch/powerpc/lib/sstep.c (revision 312b62b6610cabea4cb535fd4889c41e9a84afca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17 
18 extern char system_call_common[];
19 
20 #ifdef CONFIG_PPC64
21 /* Bits in SRR1 that are copied from MSR */
22 #define MSR_MASK	0xffffffff87c0ffffUL
23 #else
24 #define MSR_MASK	0x87c0ffff
25 #endif
26 
27 /* Bits in XER */
28 #define XER_SO		0x80000000U
29 #define XER_OV		0x40000000U
30 #define XER_CA		0x20000000U
31 #define XER_OV32	0x00080000U
32 #define XER_CA32	0x00040000U
33 
34 #ifdef CONFIG_PPC_FPU
35 /*
36  * Functions in ldstfp.S
37  */
38 extern void get_fpr(int rn, double *p);
39 extern void put_fpr(int rn, const double *p);
40 extern void get_vr(int rn, __vector128 *p);
41 extern void put_vr(int rn, __vector128 *p);
42 extern void load_vsrn(int vsr, const void *p);
43 extern void store_vsrn(int vsr, void *p);
44 extern void conv_sp_to_dp(const float *sp, double *dp);
45 extern void conv_dp_to_sp(const double *dp, float *sp);
46 #endif
47 
48 #ifdef __powerpc64__
49 /*
50  * Functions in quad.S
51  */
52 extern int do_lq(unsigned long ea, unsigned long *regs);
53 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
54 extern int do_lqarx(unsigned long ea, unsigned long *regs);
55 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
56 		    unsigned int *crp);
57 #endif
58 
59 #ifdef __LITTLE_ENDIAN__
60 #define IS_LE	1
61 #define IS_BE	0
62 #else
63 #define IS_LE	0
64 #define IS_BE	1
65 #endif
66 
67 /*
68  * Emulate the truncation of 64 bit values in 32-bit mode.
69  */
70 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
71 							unsigned long val)
72 {
73 #ifdef __powerpc64__
74 	if ((msr & MSR_64BIT) == 0)
75 		val &= 0xffffffffUL;
76 #endif
77 	return val;
78 }
79 
80 /*
81  * Determine whether a conditional branch instruction would branch.
82  */
83 static nokprobe_inline int branch_taken(unsigned int instr,
84 					const struct pt_regs *regs,
85 					struct instruction_op *op)
86 {
87 	unsigned int bo = (instr >> 21) & 0x1f;
88 	unsigned int bi;
89 
90 	if ((bo & 4) == 0) {
91 		/* decrement counter */
92 		op->type |= DECCTR;
93 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
94 			return 0;
95 	}
96 	if ((bo & 0x10) == 0) {
97 		/* check bit from CR */
98 		bi = (instr >> 16) & 0x1f;
99 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
100 			return 0;
101 	}
102 	return 1;
103 }
104 
105 static nokprobe_inline long address_ok(struct pt_regs *regs,
106 				       unsigned long ea, int nb)
107 {
108 	if (!user_mode(regs))
109 		return 1;
110 	if (__access_ok(ea, nb, USER_DS))
111 		return 1;
112 	if (__access_ok(ea, 1, USER_DS))
113 		/* Access overlaps the end of the user region */
114 		regs->dar = USER_DS.seg;
115 	else
116 		regs->dar = ea;
117 	return 0;
118 }
119 
120 /*
121  * Calculate effective address for a D-form instruction
122  */
123 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
124 					      const struct pt_regs *regs)
125 {
126 	int ra;
127 	unsigned long ea;
128 
129 	ra = (instr >> 16) & 0x1f;
130 	ea = (signed short) instr;		/* sign-extend */
131 	if (ra)
132 		ea += regs->gpr[ra];
133 
134 	return ea;
135 }
136 
137 #ifdef __powerpc64__
138 /*
139  * Calculate effective address for a DS-form instruction
140  */
141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
142 					       const struct pt_regs *regs)
143 {
144 	int ra;
145 	unsigned long ea;
146 
147 	ra = (instr >> 16) & 0x1f;
148 	ea = (signed short) (instr & ~3);	/* sign-extend */
149 	if (ra)
150 		ea += regs->gpr[ra];
151 
152 	return ea;
153 }
154 
155 /*
156  * Calculate effective address for a DQ-form instruction
157  */
158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
159 					       const struct pt_regs *regs)
160 {
161 	int ra;
162 	unsigned long ea;
163 
164 	ra = (instr >> 16) & 0x1f;
165 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
166 	if (ra)
167 		ea += regs->gpr[ra];
168 
169 	return ea;
170 }
171 #endif /* __powerpc64 */
172 
173 /*
174  * Calculate effective address for an X-form instruction
175  */
176 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
177 					      const struct pt_regs *regs)
178 {
179 	int ra, rb;
180 	unsigned long ea;
181 
182 	ra = (instr >> 16) & 0x1f;
183 	rb = (instr >> 11) & 0x1f;
184 	ea = regs->gpr[rb];
185 	if (ra)
186 		ea += regs->gpr[ra];
187 
188 	return ea;
189 }
190 
191 /*
192  * Calculate effective address for a MLS:D-form / 8LS:D-form
193  * prefixed instruction
194  */
195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
196 						  unsigned int suffix,
197 						  const struct pt_regs *regs)
198 {
199 	int ra, prefix_r;
200 	unsigned int  dd;
201 	unsigned long ea, d0, d1, d;
202 
203 	prefix_r = instr & (1ul << 20);
204 	ra = (suffix >> 16) & 0x1f;
205 
206 	d0 = instr & 0x3ffff;
207 	d1 = suffix & 0xffff;
208 	d = (d0 << 16) | d1;
209 
210 	/*
211 	 * sign extend a 34 bit number
212 	 */
213 	dd = (unsigned int)(d >> 2);
214 	ea = (signed int)dd;
215 	ea = (ea << 2) | (d & 0x3);
216 
217 	if (!prefix_r && ra)
218 		ea += regs->gpr[ra];
219 	else if (!prefix_r && !ra)
220 		; /* Leave ea as is */
221 	else if (prefix_r && !ra)
222 		ea += regs->nip;
223 	else if (prefix_r && ra)
224 		; /* Invalid form. Should already be checked for by caller! */
225 
226 	return ea;
227 }
228 
229 /*
230  * Return the largest power of 2, not greater than sizeof(unsigned long),
231  * such that x is a multiple of it.
232  */
233 static nokprobe_inline unsigned long max_align(unsigned long x)
234 {
235 	x |= sizeof(unsigned long);
236 	return x & -x;		/* isolates rightmost bit */
237 }
238 
239 static nokprobe_inline unsigned long byterev_2(unsigned long x)
240 {
241 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
242 }
243 
244 static nokprobe_inline unsigned long byterev_4(unsigned long x)
245 {
246 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
247 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
248 }
249 
250 #ifdef __powerpc64__
251 static nokprobe_inline unsigned long byterev_8(unsigned long x)
252 {
253 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
254 }
255 #endif
256 
257 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
258 {
259 	switch (nb) {
260 	case 2:
261 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
262 		break;
263 	case 4:
264 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
265 		break;
266 #ifdef __powerpc64__
267 	case 8:
268 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
269 		break;
270 	case 16: {
271 		unsigned long *up = (unsigned long *)ptr;
272 		unsigned long tmp;
273 		tmp = byterev_8(up[0]);
274 		up[0] = byterev_8(up[1]);
275 		up[1] = tmp;
276 		break;
277 	}
278 #endif
279 	default:
280 		WARN_ON_ONCE(1);
281 	}
282 }
283 
284 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
285 					    unsigned long ea, int nb,
286 					    struct pt_regs *regs)
287 {
288 	int err = 0;
289 	unsigned long x = 0;
290 
291 	switch (nb) {
292 	case 1:
293 		err = __get_user(x, (unsigned char __user *) ea);
294 		break;
295 	case 2:
296 		err = __get_user(x, (unsigned short __user *) ea);
297 		break;
298 	case 4:
299 		err = __get_user(x, (unsigned int __user *) ea);
300 		break;
301 #ifdef __powerpc64__
302 	case 8:
303 		err = __get_user(x, (unsigned long __user *) ea);
304 		break;
305 #endif
306 	}
307 	if (!err)
308 		*dest = x;
309 	else
310 		regs->dar = ea;
311 	return err;
312 }
313 
314 /*
315  * Copy from userspace to a buffer, using the largest possible
316  * aligned accesses, up to sizeof(long).
317  */
318 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
319 				       struct pt_regs *regs)
320 {
321 	int err = 0;
322 	int c;
323 
324 	for (; nb > 0; nb -= c) {
325 		c = max_align(ea);
326 		if (c > nb)
327 			c = max_align(nb);
328 		switch (c) {
329 		case 1:
330 			err = __get_user(*dest, (unsigned char __user *) ea);
331 			break;
332 		case 2:
333 			err = __get_user(*(u16 *)dest,
334 					 (unsigned short __user *) ea);
335 			break;
336 		case 4:
337 			err = __get_user(*(u32 *)dest,
338 					 (unsigned int __user *) ea);
339 			break;
340 #ifdef __powerpc64__
341 		case 8:
342 			err = __get_user(*(unsigned long *)dest,
343 					 (unsigned long __user *) ea);
344 			break;
345 #endif
346 		}
347 		if (err) {
348 			regs->dar = ea;
349 			return err;
350 		}
351 		dest += c;
352 		ea += c;
353 	}
354 	return 0;
355 }
356 
357 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
358 					      unsigned long ea, int nb,
359 					      struct pt_regs *regs)
360 {
361 	union {
362 		unsigned long ul;
363 		u8 b[sizeof(unsigned long)];
364 	} u;
365 	int i;
366 	int err;
367 
368 	u.ul = 0;
369 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
370 	err = copy_mem_in(&u.b[i], ea, nb, regs);
371 	if (!err)
372 		*dest = u.ul;
373 	return err;
374 }
375 
376 /*
377  * Read memory at address ea for nb bytes, return 0 for success
378  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
379  * If nb < sizeof(long), the result is right-justified on BE systems.
380  */
381 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
382 			      struct pt_regs *regs)
383 {
384 	if (!address_ok(regs, ea, nb))
385 		return -EFAULT;
386 	if ((ea & (nb - 1)) == 0)
387 		return read_mem_aligned(dest, ea, nb, regs);
388 	return read_mem_unaligned(dest, ea, nb, regs);
389 }
390 NOKPROBE_SYMBOL(read_mem);
391 
392 static nokprobe_inline int write_mem_aligned(unsigned long val,
393 					     unsigned long ea, int nb,
394 					     struct pt_regs *regs)
395 {
396 	int err = 0;
397 
398 	switch (nb) {
399 	case 1:
400 		err = __put_user(val, (unsigned char __user *) ea);
401 		break;
402 	case 2:
403 		err = __put_user(val, (unsigned short __user *) ea);
404 		break;
405 	case 4:
406 		err = __put_user(val, (unsigned int __user *) ea);
407 		break;
408 #ifdef __powerpc64__
409 	case 8:
410 		err = __put_user(val, (unsigned long __user *) ea);
411 		break;
412 #endif
413 	}
414 	if (err)
415 		regs->dar = ea;
416 	return err;
417 }
418 
419 /*
420  * Copy from a buffer to userspace, using the largest possible
421  * aligned accesses, up to sizeof(long).
422  */
423 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
424 					struct pt_regs *regs)
425 {
426 	int err = 0;
427 	int c;
428 
429 	for (; nb > 0; nb -= c) {
430 		c = max_align(ea);
431 		if (c > nb)
432 			c = max_align(nb);
433 		switch (c) {
434 		case 1:
435 			err = __put_user(*dest, (unsigned char __user *) ea);
436 			break;
437 		case 2:
438 			err = __put_user(*(u16 *)dest,
439 					 (unsigned short __user *) ea);
440 			break;
441 		case 4:
442 			err = __put_user(*(u32 *)dest,
443 					 (unsigned int __user *) ea);
444 			break;
445 #ifdef __powerpc64__
446 		case 8:
447 			err = __put_user(*(unsigned long *)dest,
448 					 (unsigned long __user *) ea);
449 			break;
450 #endif
451 		}
452 		if (err) {
453 			regs->dar = ea;
454 			return err;
455 		}
456 		dest += c;
457 		ea += c;
458 	}
459 	return 0;
460 }
461 
462 static nokprobe_inline int write_mem_unaligned(unsigned long val,
463 					       unsigned long ea, int nb,
464 					       struct pt_regs *regs)
465 {
466 	union {
467 		unsigned long ul;
468 		u8 b[sizeof(unsigned long)];
469 	} u;
470 	int i;
471 
472 	u.ul = val;
473 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
474 	return copy_mem_out(&u.b[i], ea, nb, regs);
475 }
476 
477 /*
478  * Write memory at address ea for nb bytes, return 0 for success
479  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
480  */
481 static int write_mem(unsigned long val, unsigned long ea, int nb,
482 			       struct pt_regs *regs)
483 {
484 	if (!address_ok(regs, ea, nb))
485 		return -EFAULT;
486 	if ((ea & (nb - 1)) == 0)
487 		return write_mem_aligned(val, ea, nb, regs);
488 	return write_mem_unaligned(val, ea, nb, regs);
489 }
490 NOKPROBE_SYMBOL(write_mem);
491 
492 #ifdef CONFIG_PPC_FPU
493 /*
494  * These access either the real FP register or the image in the
495  * thread_struct, depending on regs->msr & MSR_FP.
496  */
497 static int do_fp_load(struct instruction_op *op, unsigned long ea,
498 		      struct pt_regs *regs, bool cross_endian)
499 {
500 	int err, rn, nb;
501 	union {
502 		int i;
503 		unsigned int u;
504 		float f;
505 		double d[2];
506 		unsigned long l[2];
507 		u8 b[2 * sizeof(double)];
508 	} u;
509 
510 	nb = GETSIZE(op->type);
511 	if (!address_ok(regs, ea, nb))
512 		return -EFAULT;
513 	rn = op->reg;
514 	err = copy_mem_in(u.b, ea, nb, regs);
515 	if (err)
516 		return err;
517 	if (unlikely(cross_endian)) {
518 		do_byte_reverse(u.b, min(nb, 8));
519 		if (nb == 16)
520 			do_byte_reverse(&u.b[8], 8);
521 	}
522 	preempt_disable();
523 	if (nb == 4) {
524 		if (op->type & FPCONV)
525 			conv_sp_to_dp(&u.f, &u.d[0]);
526 		else if (op->type & SIGNEXT)
527 			u.l[0] = u.i;
528 		else
529 			u.l[0] = u.u;
530 	}
531 	if (regs->msr & MSR_FP)
532 		put_fpr(rn, &u.d[0]);
533 	else
534 		current->thread.TS_FPR(rn) = u.l[0];
535 	if (nb == 16) {
536 		/* lfdp */
537 		rn |= 1;
538 		if (regs->msr & MSR_FP)
539 			put_fpr(rn, &u.d[1]);
540 		else
541 			current->thread.TS_FPR(rn) = u.l[1];
542 	}
543 	preempt_enable();
544 	return 0;
545 }
546 NOKPROBE_SYMBOL(do_fp_load);
547 
548 static int do_fp_store(struct instruction_op *op, unsigned long ea,
549 		       struct pt_regs *regs, bool cross_endian)
550 {
551 	int rn, nb;
552 	union {
553 		unsigned int u;
554 		float f;
555 		double d[2];
556 		unsigned long l[2];
557 		u8 b[2 * sizeof(double)];
558 	} u;
559 
560 	nb = GETSIZE(op->type);
561 	if (!address_ok(regs, ea, nb))
562 		return -EFAULT;
563 	rn = op->reg;
564 	preempt_disable();
565 	if (regs->msr & MSR_FP)
566 		get_fpr(rn, &u.d[0]);
567 	else
568 		u.l[0] = current->thread.TS_FPR(rn);
569 	if (nb == 4) {
570 		if (op->type & FPCONV)
571 			conv_dp_to_sp(&u.d[0], &u.f);
572 		else
573 			u.u = u.l[0];
574 	}
575 	if (nb == 16) {
576 		rn |= 1;
577 		if (regs->msr & MSR_FP)
578 			get_fpr(rn, &u.d[1]);
579 		else
580 			u.l[1] = current->thread.TS_FPR(rn);
581 	}
582 	preempt_enable();
583 	if (unlikely(cross_endian)) {
584 		do_byte_reverse(u.b, min(nb, 8));
585 		if (nb == 16)
586 			do_byte_reverse(&u.b[8], 8);
587 	}
588 	return copy_mem_out(u.b, ea, nb, regs);
589 }
590 NOKPROBE_SYMBOL(do_fp_store);
591 #endif
592 
593 #ifdef CONFIG_ALTIVEC
594 /* For Altivec/VMX, no need to worry about alignment */
595 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
596 				       int size, struct pt_regs *regs,
597 				       bool cross_endian)
598 {
599 	int err;
600 	union {
601 		__vector128 v;
602 		u8 b[sizeof(__vector128)];
603 	} u = {};
604 
605 	if (!address_ok(regs, ea & ~0xfUL, 16))
606 		return -EFAULT;
607 	/* align to multiple of size */
608 	ea &= ~(size - 1);
609 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
610 	if (err)
611 		return err;
612 	if (unlikely(cross_endian))
613 		do_byte_reverse(&u.b[ea & 0xf], size);
614 	preempt_disable();
615 	if (regs->msr & MSR_VEC)
616 		put_vr(rn, &u.v);
617 	else
618 		current->thread.vr_state.vr[rn] = u.v;
619 	preempt_enable();
620 	return 0;
621 }
622 
623 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
624 					int size, struct pt_regs *regs,
625 					bool cross_endian)
626 {
627 	union {
628 		__vector128 v;
629 		u8 b[sizeof(__vector128)];
630 	} u;
631 
632 	if (!address_ok(regs, ea & ~0xfUL, 16))
633 		return -EFAULT;
634 	/* align to multiple of size */
635 	ea &= ~(size - 1);
636 
637 	preempt_disable();
638 	if (regs->msr & MSR_VEC)
639 		get_vr(rn, &u.v);
640 	else
641 		u.v = current->thread.vr_state.vr[rn];
642 	preempt_enable();
643 	if (unlikely(cross_endian))
644 		do_byte_reverse(&u.b[ea & 0xf], size);
645 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
646 }
647 #endif /* CONFIG_ALTIVEC */
648 
649 #ifdef __powerpc64__
650 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
651 				      int reg, bool cross_endian)
652 {
653 	int err;
654 
655 	if (!address_ok(regs, ea, 16))
656 		return -EFAULT;
657 	/* if aligned, should be atomic */
658 	if ((ea & 0xf) == 0) {
659 		err = do_lq(ea, &regs->gpr[reg]);
660 	} else {
661 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
662 		if (!err)
663 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
664 	}
665 	if (!err && unlikely(cross_endian))
666 		do_byte_reverse(&regs->gpr[reg], 16);
667 	return err;
668 }
669 
670 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
671 				       int reg, bool cross_endian)
672 {
673 	int err;
674 	unsigned long vals[2];
675 
676 	if (!address_ok(regs, ea, 16))
677 		return -EFAULT;
678 	vals[0] = regs->gpr[reg];
679 	vals[1] = regs->gpr[reg + 1];
680 	if (unlikely(cross_endian))
681 		do_byte_reverse(vals, 16);
682 
683 	/* if aligned, should be atomic */
684 	if ((ea & 0xf) == 0)
685 		return do_stq(ea, vals[0], vals[1]);
686 
687 	err = write_mem(vals[IS_LE], ea, 8, regs);
688 	if (!err)
689 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
690 	return err;
691 }
692 #endif /* __powerpc64 */
693 
694 #ifdef CONFIG_VSX
695 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
696 		      const void *mem, bool rev)
697 {
698 	int size, read_size;
699 	int i, j;
700 	const unsigned int *wp;
701 	const unsigned short *hp;
702 	const unsigned char *bp;
703 
704 	size = GETSIZE(op->type);
705 	reg->d[0] = reg->d[1] = 0;
706 
707 	switch (op->element_size) {
708 	case 16:
709 		/* whole vector; lxv[x] or lxvl[l] */
710 		if (size == 0)
711 			break;
712 		memcpy(reg, mem, size);
713 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
714 			rev = !rev;
715 		if (rev)
716 			do_byte_reverse(reg, 16);
717 		break;
718 	case 8:
719 		/* scalar loads, lxvd2x, lxvdsx */
720 		read_size = (size >= 8) ? 8 : size;
721 		i = IS_LE ? 8 : 8 - read_size;
722 		memcpy(&reg->b[i], mem, read_size);
723 		if (rev)
724 			do_byte_reverse(&reg->b[i], 8);
725 		if (size < 8) {
726 			if (op->type & SIGNEXT) {
727 				/* size == 4 is the only case here */
728 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
729 			} else if (op->vsx_flags & VSX_FPCONV) {
730 				preempt_disable();
731 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
732 					      &reg->dp[IS_LE]);
733 				preempt_enable();
734 			}
735 		} else {
736 			if (size == 16) {
737 				unsigned long v = *(unsigned long *)(mem + 8);
738 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
739 			} else if (op->vsx_flags & VSX_SPLAT)
740 				reg->d[IS_BE] = reg->d[IS_LE];
741 		}
742 		break;
743 	case 4:
744 		/* lxvw4x, lxvwsx */
745 		wp = mem;
746 		for (j = 0; j < size / 4; ++j) {
747 			i = IS_LE ? 3 - j : j;
748 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
749 		}
750 		if (op->vsx_flags & VSX_SPLAT) {
751 			u32 val = reg->w[IS_LE ? 3 : 0];
752 			for (; j < 4; ++j) {
753 				i = IS_LE ? 3 - j : j;
754 				reg->w[i] = val;
755 			}
756 		}
757 		break;
758 	case 2:
759 		/* lxvh8x */
760 		hp = mem;
761 		for (j = 0; j < size / 2; ++j) {
762 			i = IS_LE ? 7 - j : j;
763 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
764 		}
765 		break;
766 	case 1:
767 		/* lxvb16x */
768 		bp = mem;
769 		for (j = 0; j < size; ++j) {
770 			i = IS_LE ? 15 - j : j;
771 			reg->b[i] = *bp++;
772 		}
773 		break;
774 	}
775 }
776 EXPORT_SYMBOL_GPL(emulate_vsx_load);
777 NOKPROBE_SYMBOL(emulate_vsx_load);
778 
779 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
780 		       void *mem, bool rev)
781 {
782 	int size, write_size;
783 	int i, j;
784 	union vsx_reg buf;
785 	unsigned int *wp;
786 	unsigned short *hp;
787 	unsigned char *bp;
788 
789 	size = GETSIZE(op->type);
790 
791 	switch (op->element_size) {
792 	case 16:
793 		/* stxv, stxvx, stxvl, stxvll */
794 		if (size == 0)
795 			break;
796 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
797 			rev = !rev;
798 		if (rev) {
799 			/* reverse 16 bytes */
800 			buf.d[0] = byterev_8(reg->d[1]);
801 			buf.d[1] = byterev_8(reg->d[0]);
802 			reg = &buf;
803 		}
804 		memcpy(mem, reg, size);
805 		break;
806 	case 8:
807 		/* scalar stores, stxvd2x */
808 		write_size = (size >= 8) ? 8 : size;
809 		i = IS_LE ? 8 : 8 - write_size;
810 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
811 			buf.d[0] = buf.d[1] = 0;
812 			preempt_disable();
813 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
814 			preempt_enable();
815 			reg = &buf;
816 		}
817 		memcpy(mem, &reg->b[i], write_size);
818 		if (size == 16)
819 			memcpy(mem + 8, &reg->d[IS_BE], 8);
820 		if (unlikely(rev)) {
821 			do_byte_reverse(mem, write_size);
822 			if (size == 16)
823 				do_byte_reverse(mem + 8, 8);
824 		}
825 		break;
826 	case 4:
827 		/* stxvw4x */
828 		wp = mem;
829 		for (j = 0; j < size / 4; ++j) {
830 			i = IS_LE ? 3 - j : j;
831 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
832 		}
833 		break;
834 	case 2:
835 		/* stxvh8x */
836 		hp = mem;
837 		for (j = 0; j < size / 2; ++j) {
838 			i = IS_LE ? 7 - j : j;
839 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
840 		}
841 		break;
842 	case 1:
843 		/* stvxb16x */
844 		bp = mem;
845 		for (j = 0; j < size; ++j) {
846 			i = IS_LE ? 15 - j : j;
847 			*bp++ = reg->b[i];
848 		}
849 		break;
850 	}
851 }
852 EXPORT_SYMBOL_GPL(emulate_vsx_store);
853 NOKPROBE_SYMBOL(emulate_vsx_store);
854 
855 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
856 				       unsigned long ea, struct pt_regs *regs,
857 				       bool cross_endian)
858 {
859 	int reg = op->reg;
860 	u8 mem[16];
861 	union vsx_reg buf;
862 	int size = GETSIZE(op->type);
863 
864 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
865 		return -EFAULT;
866 
867 	emulate_vsx_load(op, &buf, mem, cross_endian);
868 	preempt_disable();
869 	if (reg < 32) {
870 		/* FP regs + extensions */
871 		if (regs->msr & MSR_FP) {
872 			load_vsrn(reg, &buf);
873 		} else {
874 			current->thread.fp_state.fpr[reg][0] = buf.d[0];
875 			current->thread.fp_state.fpr[reg][1] = buf.d[1];
876 		}
877 	} else {
878 		if (regs->msr & MSR_VEC)
879 			load_vsrn(reg, &buf);
880 		else
881 			current->thread.vr_state.vr[reg - 32] = buf.v;
882 	}
883 	preempt_enable();
884 	return 0;
885 }
886 
887 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
888 					unsigned long ea, struct pt_regs *regs,
889 					bool cross_endian)
890 {
891 	int reg = op->reg;
892 	u8 mem[16];
893 	union vsx_reg buf;
894 	int size = GETSIZE(op->type);
895 
896 	if (!address_ok(regs, ea, size))
897 		return -EFAULT;
898 
899 	preempt_disable();
900 	if (reg < 32) {
901 		/* FP regs + extensions */
902 		if (regs->msr & MSR_FP) {
903 			store_vsrn(reg, &buf);
904 		} else {
905 			buf.d[0] = current->thread.fp_state.fpr[reg][0];
906 			buf.d[1] = current->thread.fp_state.fpr[reg][1];
907 		}
908 	} else {
909 		if (regs->msr & MSR_VEC)
910 			store_vsrn(reg, &buf);
911 		else
912 			buf.v = current->thread.vr_state.vr[reg - 32];
913 	}
914 	preempt_enable();
915 	emulate_vsx_store(op, &buf, mem, cross_endian);
916 	return  copy_mem_out(mem, ea, size, regs);
917 }
918 #endif /* CONFIG_VSX */
919 
920 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
921 {
922 	int err;
923 	unsigned long i, size;
924 
925 #ifdef __powerpc64__
926 	size = ppc64_caches.l1d.block_size;
927 	if (!(regs->msr & MSR_64BIT))
928 		ea &= 0xffffffffUL;
929 #else
930 	size = L1_CACHE_BYTES;
931 #endif
932 	ea &= ~(size - 1);
933 	if (!address_ok(regs, ea, size))
934 		return -EFAULT;
935 	for (i = 0; i < size; i += sizeof(long)) {
936 		err = __put_user(0, (unsigned long __user *) (ea + i));
937 		if (err) {
938 			regs->dar = ea;
939 			return err;
940 		}
941 	}
942 	return 0;
943 }
944 NOKPROBE_SYMBOL(emulate_dcbz);
945 
946 #define __put_user_asmx(x, addr, err, op, cr)		\
947 	__asm__ __volatile__(				\
948 		"1:	" op " %2,0,%3\n"		\
949 		"	mfcr	%1\n"			\
950 		"2:\n"					\
951 		".section .fixup,\"ax\"\n"		\
952 		"3:	li	%0,%4\n"		\
953 		"	b	2b\n"			\
954 		".previous\n"				\
955 		EX_TABLE(1b, 3b)			\
956 		: "=r" (err), "=r" (cr)			\
957 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
958 
959 #define __get_user_asmx(x, addr, err, op)		\
960 	__asm__ __volatile__(				\
961 		"1:	"op" %1,0,%2\n"			\
962 		"2:\n"					\
963 		".section .fixup,\"ax\"\n"		\
964 		"3:	li	%0,%3\n"		\
965 		"	b	2b\n"			\
966 		".previous\n"				\
967 		EX_TABLE(1b, 3b)			\
968 		: "=r" (err), "=r" (x)			\
969 		: "r" (addr), "i" (-EFAULT), "0" (err))
970 
971 #define __cacheop_user_asmx(addr, err, op)		\
972 	__asm__ __volatile__(				\
973 		"1:	"op" 0,%1\n"			\
974 		"2:\n"					\
975 		".section .fixup,\"ax\"\n"		\
976 		"3:	li	%0,%3\n"		\
977 		"	b	2b\n"			\
978 		".previous\n"				\
979 		EX_TABLE(1b, 3b)			\
980 		: "=r" (err)				\
981 		: "r" (addr), "i" (-EFAULT), "0" (err))
982 
983 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
984 				    struct instruction_op *op)
985 {
986 	long val = op->val;
987 
988 	op->type |= SETCC;
989 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
990 #ifdef __powerpc64__
991 	if (!(regs->msr & MSR_64BIT))
992 		val = (int) val;
993 #endif
994 	if (val < 0)
995 		op->ccval |= 0x80000000;
996 	else if (val > 0)
997 		op->ccval |= 0x40000000;
998 	else
999 		op->ccval |= 0x20000000;
1000 }
1001 
1002 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1003 {
1004 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1005 		if (val)
1006 			op->xerval |= XER_CA32;
1007 		else
1008 			op->xerval &= ~XER_CA32;
1009 	}
1010 }
1011 
1012 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1013 				     struct instruction_op *op, int rd,
1014 				     unsigned long val1, unsigned long val2,
1015 				     unsigned long carry_in)
1016 {
1017 	unsigned long val = val1 + val2;
1018 
1019 	if (carry_in)
1020 		++val;
1021 	op->type = COMPUTE + SETREG + SETXER;
1022 	op->reg = rd;
1023 	op->val = val;
1024 #ifdef __powerpc64__
1025 	if (!(regs->msr & MSR_64BIT)) {
1026 		val = (unsigned int) val;
1027 		val1 = (unsigned int) val1;
1028 	}
1029 #endif
1030 	op->xerval = regs->xer;
1031 	if (val < val1 || (carry_in && val == val1))
1032 		op->xerval |= XER_CA;
1033 	else
1034 		op->xerval &= ~XER_CA;
1035 
1036 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1037 			(carry_in && (unsigned int)val == (unsigned int)val1));
1038 }
1039 
1040 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1041 					  struct instruction_op *op,
1042 					  long v1, long v2, int crfld)
1043 {
1044 	unsigned int crval, shift;
1045 
1046 	op->type = COMPUTE + SETCC;
1047 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1048 	if (v1 < v2)
1049 		crval |= 8;
1050 	else if (v1 > v2)
1051 		crval |= 4;
1052 	else
1053 		crval |= 2;
1054 	shift = (7 - crfld) * 4;
1055 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1056 }
1057 
1058 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1059 					    struct instruction_op *op,
1060 					    unsigned long v1,
1061 					    unsigned long v2, int crfld)
1062 {
1063 	unsigned int crval, shift;
1064 
1065 	op->type = COMPUTE + SETCC;
1066 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1067 	if (v1 < v2)
1068 		crval |= 8;
1069 	else if (v1 > v2)
1070 		crval |= 4;
1071 	else
1072 		crval |= 2;
1073 	shift = (7 - crfld) * 4;
1074 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1075 }
1076 
1077 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1078 				    struct instruction_op *op,
1079 				    unsigned long v1, unsigned long v2)
1080 {
1081 	unsigned long long out_val, mask;
1082 	int i;
1083 
1084 	out_val = 0;
1085 	for (i = 0; i < 8; i++) {
1086 		mask = 0xffUL << (i * 8);
1087 		if ((v1 & mask) == (v2 & mask))
1088 			out_val |= mask;
1089 	}
1090 	op->val = out_val;
1091 }
1092 
1093 /*
1094  * The size parameter is used to adjust the equivalent popcnt instruction.
1095  * popcntb = 8, popcntw = 32, popcntd = 64
1096  */
1097 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1098 				      struct instruction_op *op,
1099 				      unsigned long v1, int size)
1100 {
1101 	unsigned long long out = v1;
1102 
1103 	out -= (out >> 1) & 0x5555555555555555ULL;
1104 	out = (0x3333333333333333ULL & out) +
1105 	      (0x3333333333333333ULL & (out >> 2));
1106 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1107 
1108 	if (size == 8) {	/* popcntb */
1109 		op->val = out;
1110 		return;
1111 	}
1112 	out += out >> 8;
1113 	out += out >> 16;
1114 	if (size == 32) {	/* popcntw */
1115 		op->val = out & 0x0000003f0000003fULL;
1116 		return;
1117 	}
1118 
1119 	out = (out + (out >> 32)) & 0x7f;
1120 	op->val = out;	/* popcntd */
1121 }
1122 
1123 #ifdef CONFIG_PPC64
1124 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1125 				      struct instruction_op *op,
1126 				      unsigned long v1, unsigned long v2)
1127 {
1128 	unsigned char perm, idx;
1129 	unsigned int i;
1130 
1131 	perm = 0;
1132 	for (i = 0; i < 8; i++) {
1133 		idx = (v1 >> (i * 8)) & 0xff;
1134 		if (idx < 64)
1135 			if (v2 & PPC_BIT(idx))
1136 				perm |= 1 << i;
1137 	}
1138 	op->val = perm;
1139 }
1140 #endif /* CONFIG_PPC64 */
1141 /*
1142  * The size parameter adjusts the equivalent prty instruction.
1143  * prtyw = 32, prtyd = 64
1144  */
1145 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1146 				    struct instruction_op *op,
1147 				    unsigned long v, int size)
1148 {
1149 	unsigned long long res = v ^ (v >> 8);
1150 
1151 	res ^= res >> 16;
1152 	if (size == 32) {		/* prtyw */
1153 		op->val = res & 0x0000000100000001ULL;
1154 		return;
1155 	}
1156 
1157 	res ^= res >> 32;
1158 	op->val = res & 1;	/*prtyd */
1159 }
1160 
1161 static nokprobe_inline int trap_compare(long v1, long v2)
1162 {
1163 	int ret = 0;
1164 
1165 	if (v1 < v2)
1166 		ret |= 0x10;
1167 	else if (v1 > v2)
1168 		ret |= 0x08;
1169 	else
1170 		ret |= 0x04;
1171 	if ((unsigned long)v1 < (unsigned long)v2)
1172 		ret |= 0x02;
1173 	else if ((unsigned long)v1 > (unsigned long)v2)
1174 		ret |= 0x01;
1175 	return ret;
1176 }
1177 
1178 /*
1179  * Elements of 32-bit rotate and mask instructions.
1180  */
1181 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1182 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1183 #ifdef __powerpc64__
1184 #define MASK64_L(mb)	(~0UL >> (mb))
1185 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1186 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1187 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1188 #else
1189 #define DATA32(x)	(x)
1190 #endif
1191 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1192 
1193 /*
1194  * Decode an instruction, and return information about it in *op
1195  * without changing *regs.
1196  * Integer arithmetic and logical instructions, branches, and barrier
1197  * instructions can be emulated just using the information in *op.
1198  *
1199  * Return value is 1 if the instruction can be emulated just by
1200  * updating *regs with the information in *op, -1 if we need the
1201  * GPRs but *regs doesn't contain the full register set, or 0
1202  * otherwise.
1203  */
1204 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1205 		  struct ppc_inst instr)
1206 {
1207 #ifdef CONFIG_PPC64
1208 	unsigned int suffixopcode, prefixtype, prefix_r;
1209 #endif
1210 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1211 	unsigned long int imm;
1212 	unsigned long int val, val2;
1213 	unsigned int mb, me, sh;
1214 	unsigned int word, suffix;
1215 	long ival;
1216 
1217 	word = ppc_inst_val(instr);
1218 	suffix = ppc_inst_suffix(instr);
1219 
1220 	op->type = COMPUTE;
1221 
1222 	opcode = ppc_inst_primary_opcode(instr);
1223 	switch (opcode) {
1224 	case 16:	/* bc */
1225 		op->type = BRANCH;
1226 		imm = (signed short)(word & 0xfffc);
1227 		if ((word & 2) == 0)
1228 			imm += regs->nip;
1229 		op->val = truncate_if_32bit(regs->msr, imm);
1230 		if (word & 1)
1231 			op->type |= SETLK;
1232 		if (branch_taken(word, regs, op))
1233 			op->type |= BRTAKEN;
1234 		return 1;
1235 #ifdef CONFIG_PPC64
1236 	case 17:	/* sc */
1237 		if ((word & 0xfe2) == 2)
1238 			op->type = SYSCALL;
1239 		else
1240 			op->type = UNKNOWN;
1241 		return 0;
1242 #endif
1243 	case 18:	/* b */
1244 		op->type = BRANCH | BRTAKEN;
1245 		imm = word & 0x03fffffc;
1246 		if (imm & 0x02000000)
1247 			imm -= 0x04000000;
1248 		if ((word & 2) == 0)
1249 			imm += regs->nip;
1250 		op->val = truncate_if_32bit(regs->msr, imm);
1251 		if (word & 1)
1252 			op->type |= SETLK;
1253 		return 1;
1254 	case 19:
1255 		switch ((word >> 1) & 0x3ff) {
1256 		case 0:		/* mcrf */
1257 			op->type = COMPUTE + SETCC;
1258 			rd = 7 - ((word >> 23) & 0x7);
1259 			ra = 7 - ((word >> 18) & 0x7);
1260 			rd *= 4;
1261 			ra *= 4;
1262 			val = (regs->ccr >> ra) & 0xf;
1263 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1264 			return 1;
1265 
1266 		case 16:	/* bclr */
1267 		case 528:	/* bcctr */
1268 			op->type = BRANCH;
1269 			imm = (word & 0x400)? regs->ctr: regs->link;
1270 			op->val = truncate_if_32bit(regs->msr, imm);
1271 			if (word & 1)
1272 				op->type |= SETLK;
1273 			if (branch_taken(word, regs, op))
1274 				op->type |= BRTAKEN;
1275 			return 1;
1276 
1277 		case 18:	/* rfid, scary */
1278 			if (regs->msr & MSR_PR)
1279 				goto priv;
1280 			op->type = RFI;
1281 			return 0;
1282 
1283 		case 150:	/* isync */
1284 			op->type = BARRIER | BARRIER_ISYNC;
1285 			return 1;
1286 
1287 		case 33:	/* crnor */
1288 		case 129:	/* crandc */
1289 		case 193:	/* crxor */
1290 		case 225:	/* crnand */
1291 		case 257:	/* crand */
1292 		case 289:	/* creqv */
1293 		case 417:	/* crorc */
1294 		case 449:	/* cror */
1295 			op->type = COMPUTE + SETCC;
1296 			ra = (word >> 16) & 0x1f;
1297 			rb = (word >> 11) & 0x1f;
1298 			rd = (word >> 21) & 0x1f;
1299 			ra = (regs->ccr >> (31 - ra)) & 1;
1300 			rb = (regs->ccr >> (31 - rb)) & 1;
1301 			val = (word >> (6 + ra * 2 + rb)) & 1;
1302 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1303 				(val << (31 - rd));
1304 			return 1;
1305 		}
1306 		break;
1307 	case 31:
1308 		switch ((word >> 1) & 0x3ff) {
1309 		case 598:	/* sync */
1310 			op->type = BARRIER + BARRIER_SYNC;
1311 #ifdef __powerpc64__
1312 			switch ((word >> 21) & 3) {
1313 			case 1:		/* lwsync */
1314 				op->type = BARRIER + BARRIER_LWSYNC;
1315 				break;
1316 			case 2:		/* ptesync */
1317 				op->type = BARRIER + BARRIER_PTESYNC;
1318 				break;
1319 			}
1320 #endif
1321 			return 1;
1322 
1323 		case 854:	/* eieio */
1324 			op->type = BARRIER + BARRIER_EIEIO;
1325 			return 1;
1326 		}
1327 		break;
1328 	}
1329 
1330 	/* Following cases refer to regs->gpr[], so we need all regs */
1331 	if (!FULL_REGS(regs))
1332 		return -1;
1333 
1334 	rd = (word >> 21) & 0x1f;
1335 	ra = (word >> 16) & 0x1f;
1336 	rb = (word >> 11) & 0x1f;
1337 	rc = (word >> 6) & 0x1f;
1338 
1339 	switch (opcode) {
1340 #ifdef __powerpc64__
1341 	case 1:
1342 		prefix_r = word & (1ul << 20);
1343 		ra = (suffix >> 16) & 0x1f;
1344 		rd = (suffix >> 21) & 0x1f;
1345 		op->reg = rd;
1346 		op->val = regs->gpr[rd];
1347 		suffixopcode = get_op(suffix);
1348 		prefixtype = (word >> 24) & 0x3;
1349 		switch (prefixtype) {
1350 		case 2:
1351 			if (prefix_r && ra)
1352 				return 0;
1353 			switch (suffixopcode) {
1354 			case 14:	/* paddi */
1355 				op->type = COMPUTE | PREFIXED;
1356 				op->val = mlsd_8lsd_ea(word, suffix, regs);
1357 				goto compute_done;
1358 			}
1359 		}
1360 		break;
1361 	case 2:		/* tdi */
1362 		if (rd & trap_compare(regs->gpr[ra], (short) word))
1363 			goto trap;
1364 		return 1;
1365 #endif
1366 	case 3:		/* twi */
1367 		if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1368 			goto trap;
1369 		return 1;
1370 
1371 #ifdef __powerpc64__
1372 	case 4:
1373 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1374 			return -1;
1375 
1376 		switch (word & 0x3f) {
1377 		case 48:	/* maddhd */
1378 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1379 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1380 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1381 			goto compute_done;
1382 
1383 		case 49:	/* maddhdu */
1384 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1385 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1386 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1387 			goto compute_done;
1388 
1389 		case 51:	/* maddld */
1390 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1391 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1392 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1393 			goto compute_done;
1394 		}
1395 
1396 		/*
1397 		 * There are other instructions from ISA 3.0 with the same
1398 		 * primary opcode which do not have emulation support yet.
1399 		 */
1400 		return -1;
1401 #endif
1402 
1403 	case 7:		/* mulli */
1404 		op->val = regs->gpr[ra] * (short) word;
1405 		goto compute_done;
1406 
1407 	case 8:		/* subfic */
1408 		imm = (short) word;
1409 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1410 		return 1;
1411 
1412 	case 10:	/* cmpli */
1413 		imm = (unsigned short) word;
1414 		val = regs->gpr[ra];
1415 #ifdef __powerpc64__
1416 		if ((rd & 1) == 0)
1417 			val = (unsigned int) val;
1418 #endif
1419 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1420 		return 1;
1421 
1422 	case 11:	/* cmpi */
1423 		imm = (short) word;
1424 		val = regs->gpr[ra];
1425 #ifdef __powerpc64__
1426 		if ((rd & 1) == 0)
1427 			val = (int) val;
1428 #endif
1429 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1430 		return 1;
1431 
1432 	case 12:	/* addic */
1433 		imm = (short) word;
1434 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1435 		return 1;
1436 
1437 	case 13:	/* addic. */
1438 		imm = (short) word;
1439 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1440 		set_cr0(regs, op);
1441 		return 1;
1442 
1443 	case 14:	/* addi */
1444 		imm = (short) word;
1445 		if (ra)
1446 			imm += regs->gpr[ra];
1447 		op->val = imm;
1448 		goto compute_done;
1449 
1450 	case 15:	/* addis */
1451 		imm = ((short) word) << 16;
1452 		if (ra)
1453 			imm += regs->gpr[ra];
1454 		op->val = imm;
1455 		goto compute_done;
1456 
1457 	case 19:
1458 		if (((word >> 1) & 0x1f) == 2) {
1459 			/* addpcis */
1460 			imm = (short) (word & 0xffc1);	/* d0 + d2 fields */
1461 			imm |= (word >> 15) & 0x3e;	/* d1 field */
1462 			op->val = regs->nip + (imm << 16) + 4;
1463 			goto compute_done;
1464 		}
1465 		op->type = UNKNOWN;
1466 		return 0;
1467 
1468 	case 20:	/* rlwimi */
1469 		mb = (word >> 6) & 0x1f;
1470 		me = (word >> 1) & 0x1f;
1471 		val = DATA32(regs->gpr[rd]);
1472 		imm = MASK32(mb, me);
1473 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1474 		goto logical_done;
1475 
1476 	case 21:	/* rlwinm */
1477 		mb = (word >> 6) & 0x1f;
1478 		me = (word >> 1) & 0x1f;
1479 		val = DATA32(regs->gpr[rd]);
1480 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1481 		goto logical_done;
1482 
1483 	case 23:	/* rlwnm */
1484 		mb = (word >> 6) & 0x1f;
1485 		me = (word >> 1) & 0x1f;
1486 		rb = regs->gpr[rb] & 0x1f;
1487 		val = DATA32(regs->gpr[rd]);
1488 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1489 		goto logical_done;
1490 
1491 	case 24:	/* ori */
1492 		op->val = regs->gpr[rd] | (unsigned short) word;
1493 		goto logical_done_nocc;
1494 
1495 	case 25:	/* oris */
1496 		imm = (unsigned short) word;
1497 		op->val = regs->gpr[rd] | (imm << 16);
1498 		goto logical_done_nocc;
1499 
1500 	case 26:	/* xori */
1501 		op->val = regs->gpr[rd] ^ (unsigned short) word;
1502 		goto logical_done_nocc;
1503 
1504 	case 27:	/* xoris */
1505 		imm = (unsigned short) word;
1506 		op->val = regs->gpr[rd] ^ (imm << 16);
1507 		goto logical_done_nocc;
1508 
1509 	case 28:	/* andi. */
1510 		op->val = regs->gpr[rd] & (unsigned short) word;
1511 		set_cr0(regs, op);
1512 		goto logical_done_nocc;
1513 
1514 	case 29:	/* andis. */
1515 		imm = (unsigned short) word;
1516 		op->val = regs->gpr[rd] & (imm << 16);
1517 		set_cr0(regs, op);
1518 		goto logical_done_nocc;
1519 
1520 #ifdef __powerpc64__
1521 	case 30:	/* rld* */
1522 		mb = ((word >> 6) & 0x1f) | (word & 0x20);
1523 		val = regs->gpr[rd];
1524 		if ((word & 0x10) == 0) {
1525 			sh = rb | ((word & 2) << 4);
1526 			val = ROTATE(val, sh);
1527 			switch ((word >> 2) & 3) {
1528 			case 0:		/* rldicl */
1529 				val &= MASK64_L(mb);
1530 				break;
1531 			case 1:		/* rldicr */
1532 				val &= MASK64_R(mb);
1533 				break;
1534 			case 2:		/* rldic */
1535 				val &= MASK64(mb, 63 - sh);
1536 				break;
1537 			case 3:		/* rldimi */
1538 				imm = MASK64(mb, 63 - sh);
1539 				val = (regs->gpr[ra] & ~imm) |
1540 					(val & imm);
1541 			}
1542 			op->val = val;
1543 			goto logical_done;
1544 		} else {
1545 			sh = regs->gpr[rb] & 0x3f;
1546 			val = ROTATE(val, sh);
1547 			switch ((word >> 1) & 7) {
1548 			case 0:		/* rldcl */
1549 				op->val = val & MASK64_L(mb);
1550 				goto logical_done;
1551 			case 1:		/* rldcr */
1552 				op->val = val & MASK64_R(mb);
1553 				goto logical_done;
1554 			}
1555 		}
1556 #endif
1557 		op->type = UNKNOWN;	/* illegal instruction */
1558 		return 0;
1559 
1560 	case 31:
1561 		/* isel occupies 32 minor opcodes */
1562 		if (((word >> 1) & 0x1f) == 15) {
1563 			mb = (word >> 6) & 0x1f; /* bc field */
1564 			val = (regs->ccr >> (31 - mb)) & 1;
1565 			val2 = (ra) ? regs->gpr[ra] : 0;
1566 
1567 			op->val = (val) ? val2 : regs->gpr[rb];
1568 			goto compute_done;
1569 		}
1570 
1571 		switch ((word >> 1) & 0x3ff) {
1572 		case 4:		/* tw */
1573 			if (rd == 0x1f ||
1574 			    (rd & trap_compare((int)regs->gpr[ra],
1575 					       (int)regs->gpr[rb])))
1576 				goto trap;
1577 			return 1;
1578 #ifdef __powerpc64__
1579 		case 68:	/* td */
1580 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1581 				goto trap;
1582 			return 1;
1583 #endif
1584 		case 83:	/* mfmsr */
1585 			if (regs->msr & MSR_PR)
1586 				goto priv;
1587 			op->type = MFMSR;
1588 			op->reg = rd;
1589 			return 0;
1590 		case 146:	/* mtmsr */
1591 			if (regs->msr & MSR_PR)
1592 				goto priv;
1593 			op->type = MTMSR;
1594 			op->reg = rd;
1595 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1596 			return 0;
1597 #ifdef CONFIG_PPC64
1598 		case 178:	/* mtmsrd */
1599 			if (regs->msr & MSR_PR)
1600 				goto priv;
1601 			op->type = MTMSR;
1602 			op->reg = rd;
1603 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1604 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1605 			imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1606 			op->val = imm;
1607 			return 0;
1608 #endif
1609 
1610 		case 19:	/* mfcr */
1611 			imm = 0xffffffffUL;
1612 			if ((word >> 20) & 1) {
1613 				imm = 0xf0000000UL;
1614 				for (sh = 0; sh < 8; ++sh) {
1615 					if (word & (0x80000 >> sh))
1616 						break;
1617 					imm >>= 4;
1618 				}
1619 			}
1620 			op->val = regs->ccr & imm;
1621 			goto compute_done;
1622 
1623 		case 144:	/* mtcrf */
1624 			op->type = COMPUTE + SETCC;
1625 			imm = 0xf0000000UL;
1626 			val = regs->gpr[rd];
1627 			op->ccval = regs->ccr;
1628 			for (sh = 0; sh < 8; ++sh) {
1629 				if (word & (0x80000 >> sh))
1630 					op->ccval = (op->ccval & ~imm) |
1631 						(val & imm);
1632 				imm >>= 4;
1633 			}
1634 			return 1;
1635 
1636 		case 339:	/* mfspr */
1637 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1638 			op->type = MFSPR;
1639 			op->reg = rd;
1640 			op->spr = spr;
1641 			if (spr == SPRN_XER || spr == SPRN_LR ||
1642 			    spr == SPRN_CTR)
1643 				return 1;
1644 			return 0;
1645 
1646 		case 467:	/* mtspr */
1647 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1648 			op->type = MTSPR;
1649 			op->val = regs->gpr[rd];
1650 			op->spr = spr;
1651 			if (spr == SPRN_XER || spr == SPRN_LR ||
1652 			    spr == SPRN_CTR)
1653 				return 1;
1654 			return 0;
1655 
1656 /*
1657  * Compare instructions
1658  */
1659 		case 0:	/* cmp */
1660 			val = regs->gpr[ra];
1661 			val2 = regs->gpr[rb];
1662 #ifdef __powerpc64__
1663 			if ((rd & 1) == 0) {
1664 				/* word (32-bit) compare */
1665 				val = (int) val;
1666 				val2 = (int) val2;
1667 			}
1668 #endif
1669 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1670 			return 1;
1671 
1672 		case 32:	/* cmpl */
1673 			val = regs->gpr[ra];
1674 			val2 = regs->gpr[rb];
1675 #ifdef __powerpc64__
1676 			if ((rd & 1) == 0) {
1677 				/* word (32-bit) compare */
1678 				val = (unsigned int) val;
1679 				val2 = (unsigned int) val2;
1680 			}
1681 #endif
1682 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1683 			return 1;
1684 
1685 		case 508: /* cmpb */
1686 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1687 			goto logical_done_nocc;
1688 
1689 /*
1690  * Arithmetic instructions
1691  */
1692 		case 8:	/* subfc */
1693 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1694 				       regs->gpr[rb], 1);
1695 			goto arith_done;
1696 #ifdef __powerpc64__
1697 		case 9:	/* mulhdu */
1698 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1699 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1700 			goto arith_done;
1701 #endif
1702 		case 10:	/* addc */
1703 			add_with_carry(regs, op, rd, regs->gpr[ra],
1704 				       regs->gpr[rb], 0);
1705 			goto arith_done;
1706 
1707 		case 11:	/* mulhwu */
1708 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1709 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1710 			goto arith_done;
1711 
1712 		case 40:	/* subf */
1713 			op->val = regs->gpr[rb] - regs->gpr[ra];
1714 			goto arith_done;
1715 #ifdef __powerpc64__
1716 		case 73:	/* mulhd */
1717 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1718 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1719 			goto arith_done;
1720 #endif
1721 		case 75:	/* mulhw */
1722 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1723 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1724 			goto arith_done;
1725 
1726 		case 104:	/* neg */
1727 			op->val = -regs->gpr[ra];
1728 			goto arith_done;
1729 
1730 		case 136:	/* subfe */
1731 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1732 				       regs->gpr[rb], regs->xer & XER_CA);
1733 			goto arith_done;
1734 
1735 		case 138:	/* adde */
1736 			add_with_carry(regs, op, rd, regs->gpr[ra],
1737 				       regs->gpr[rb], regs->xer & XER_CA);
1738 			goto arith_done;
1739 
1740 		case 200:	/* subfze */
1741 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1742 				       regs->xer & XER_CA);
1743 			goto arith_done;
1744 
1745 		case 202:	/* addze */
1746 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1747 				       regs->xer & XER_CA);
1748 			goto arith_done;
1749 
1750 		case 232:	/* subfme */
1751 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1752 				       regs->xer & XER_CA);
1753 			goto arith_done;
1754 #ifdef __powerpc64__
1755 		case 233:	/* mulld */
1756 			op->val = regs->gpr[ra] * regs->gpr[rb];
1757 			goto arith_done;
1758 #endif
1759 		case 234:	/* addme */
1760 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1761 				       regs->xer & XER_CA);
1762 			goto arith_done;
1763 
1764 		case 235:	/* mullw */
1765 			op->val = (long)(int) regs->gpr[ra] *
1766 				(int) regs->gpr[rb];
1767 
1768 			goto arith_done;
1769 #ifdef __powerpc64__
1770 		case 265:	/* modud */
1771 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1772 				return -1;
1773 			op->val = regs->gpr[ra] % regs->gpr[rb];
1774 			goto compute_done;
1775 #endif
1776 		case 266:	/* add */
1777 			op->val = regs->gpr[ra] + regs->gpr[rb];
1778 			goto arith_done;
1779 
1780 		case 267:	/* moduw */
1781 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1782 				return -1;
1783 			op->val = (unsigned int) regs->gpr[ra] %
1784 				(unsigned int) regs->gpr[rb];
1785 			goto compute_done;
1786 #ifdef __powerpc64__
1787 		case 457:	/* divdu */
1788 			op->val = regs->gpr[ra] / regs->gpr[rb];
1789 			goto arith_done;
1790 #endif
1791 		case 459:	/* divwu */
1792 			op->val = (unsigned int) regs->gpr[ra] /
1793 				(unsigned int) regs->gpr[rb];
1794 			goto arith_done;
1795 #ifdef __powerpc64__
1796 		case 489:	/* divd */
1797 			op->val = (long int) regs->gpr[ra] /
1798 				(long int) regs->gpr[rb];
1799 			goto arith_done;
1800 #endif
1801 		case 491:	/* divw */
1802 			op->val = (int) regs->gpr[ra] /
1803 				(int) regs->gpr[rb];
1804 			goto arith_done;
1805 
1806 		case 755:	/* darn */
1807 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1808 				return -1;
1809 			switch (ra & 0x3) {
1810 			case 0:
1811 				/* 32-bit conditioned */
1812 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1813 				goto compute_done;
1814 
1815 			case 1:
1816 				/* 64-bit conditioned */
1817 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1818 				goto compute_done;
1819 
1820 			case 2:
1821 				/* 64-bit raw */
1822 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1823 				goto compute_done;
1824 			}
1825 
1826 			return -1;
1827 #ifdef __powerpc64__
1828 		case 777:	/* modsd */
1829 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1830 				return -1;
1831 			op->val = (long int) regs->gpr[ra] %
1832 				(long int) regs->gpr[rb];
1833 			goto compute_done;
1834 #endif
1835 		case 779:	/* modsw */
1836 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1837 				return -1;
1838 			op->val = (int) regs->gpr[ra] %
1839 				(int) regs->gpr[rb];
1840 			goto compute_done;
1841 
1842 
1843 /*
1844  * Logical instructions
1845  */
1846 		case 26:	/* cntlzw */
1847 			val = (unsigned int) regs->gpr[rd];
1848 			op->val = ( val ? __builtin_clz(val) : 32 );
1849 			goto logical_done;
1850 #ifdef __powerpc64__
1851 		case 58:	/* cntlzd */
1852 			val = regs->gpr[rd];
1853 			op->val = ( val ? __builtin_clzl(val) : 64 );
1854 			goto logical_done;
1855 #endif
1856 		case 28:	/* and */
1857 			op->val = regs->gpr[rd] & regs->gpr[rb];
1858 			goto logical_done;
1859 
1860 		case 60:	/* andc */
1861 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1862 			goto logical_done;
1863 
1864 		case 122:	/* popcntb */
1865 			do_popcnt(regs, op, regs->gpr[rd], 8);
1866 			goto logical_done_nocc;
1867 
1868 		case 124:	/* nor */
1869 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1870 			goto logical_done;
1871 
1872 		case 154:	/* prtyw */
1873 			do_prty(regs, op, regs->gpr[rd], 32);
1874 			goto logical_done_nocc;
1875 
1876 		case 186:	/* prtyd */
1877 			do_prty(regs, op, regs->gpr[rd], 64);
1878 			goto logical_done_nocc;
1879 #ifdef CONFIG_PPC64
1880 		case 252:	/* bpermd */
1881 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1882 			goto logical_done_nocc;
1883 #endif
1884 		case 284:	/* xor */
1885 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1886 			goto logical_done;
1887 
1888 		case 316:	/* xor */
1889 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1890 			goto logical_done;
1891 
1892 		case 378:	/* popcntw */
1893 			do_popcnt(regs, op, regs->gpr[rd], 32);
1894 			goto logical_done_nocc;
1895 
1896 		case 412:	/* orc */
1897 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1898 			goto logical_done;
1899 
1900 		case 444:	/* or */
1901 			op->val = regs->gpr[rd] | regs->gpr[rb];
1902 			goto logical_done;
1903 
1904 		case 476:	/* nand */
1905 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1906 			goto logical_done;
1907 #ifdef CONFIG_PPC64
1908 		case 506:	/* popcntd */
1909 			do_popcnt(regs, op, regs->gpr[rd], 64);
1910 			goto logical_done_nocc;
1911 #endif
1912 		case 538:	/* cnttzw */
1913 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1914 				return -1;
1915 			val = (unsigned int) regs->gpr[rd];
1916 			op->val = (val ? __builtin_ctz(val) : 32);
1917 			goto logical_done;
1918 #ifdef __powerpc64__
1919 		case 570:	/* cnttzd */
1920 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1921 				return -1;
1922 			val = regs->gpr[rd];
1923 			op->val = (val ? __builtin_ctzl(val) : 64);
1924 			goto logical_done;
1925 #endif
1926 		case 922:	/* extsh */
1927 			op->val = (signed short) regs->gpr[rd];
1928 			goto logical_done;
1929 
1930 		case 954:	/* extsb */
1931 			op->val = (signed char) regs->gpr[rd];
1932 			goto logical_done;
1933 #ifdef __powerpc64__
1934 		case 986:	/* extsw */
1935 			op->val = (signed int) regs->gpr[rd];
1936 			goto logical_done;
1937 #endif
1938 
1939 /*
1940  * Shift instructions
1941  */
1942 		case 24:	/* slw */
1943 			sh = regs->gpr[rb] & 0x3f;
1944 			if (sh < 32)
1945 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1946 			else
1947 				op->val = 0;
1948 			goto logical_done;
1949 
1950 		case 536:	/* srw */
1951 			sh = regs->gpr[rb] & 0x3f;
1952 			if (sh < 32)
1953 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1954 			else
1955 				op->val = 0;
1956 			goto logical_done;
1957 
1958 		case 792:	/* sraw */
1959 			op->type = COMPUTE + SETREG + SETXER;
1960 			sh = regs->gpr[rb] & 0x3f;
1961 			ival = (signed int) regs->gpr[rd];
1962 			op->val = ival >> (sh < 32 ? sh : 31);
1963 			op->xerval = regs->xer;
1964 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1965 				op->xerval |= XER_CA;
1966 			else
1967 				op->xerval &= ~XER_CA;
1968 			set_ca32(op, op->xerval & XER_CA);
1969 			goto logical_done;
1970 
1971 		case 824:	/* srawi */
1972 			op->type = COMPUTE + SETREG + SETXER;
1973 			sh = rb;
1974 			ival = (signed int) regs->gpr[rd];
1975 			op->val = ival >> sh;
1976 			op->xerval = regs->xer;
1977 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1978 				op->xerval |= XER_CA;
1979 			else
1980 				op->xerval &= ~XER_CA;
1981 			set_ca32(op, op->xerval & XER_CA);
1982 			goto logical_done;
1983 
1984 #ifdef __powerpc64__
1985 		case 27:	/* sld */
1986 			sh = regs->gpr[rb] & 0x7f;
1987 			if (sh < 64)
1988 				op->val = regs->gpr[rd] << sh;
1989 			else
1990 				op->val = 0;
1991 			goto logical_done;
1992 
1993 		case 539:	/* srd */
1994 			sh = regs->gpr[rb] & 0x7f;
1995 			if (sh < 64)
1996 				op->val = regs->gpr[rd] >> sh;
1997 			else
1998 				op->val = 0;
1999 			goto logical_done;
2000 
2001 		case 794:	/* srad */
2002 			op->type = COMPUTE + SETREG + SETXER;
2003 			sh = regs->gpr[rb] & 0x7f;
2004 			ival = (signed long int) regs->gpr[rd];
2005 			op->val = ival >> (sh < 64 ? sh : 63);
2006 			op->xerval = regs->xer;
2007 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2008 				op->xerval |= XER_CA;
2009 			else
2010 				op->xerval &= ~XER_CA;
2011 			set_ca32(op, op->xerval & XER_CA);
2012 			goto logical_done;
2013 
2014 		case 826:	/* sradi with sh_5 = 0 */
2015 		case 827:	/* sradi with sh_5 = 1 */
2016 			op->type = COMPUTE + SETREG + SETXER;
2017 			sh = rb | ((word & 2) << 4);
2018 			ival = (signed long int) regs->gpr[rd];
2019 			op->val = ival >> sh;
2020 			op->xerval = regs->xer;
2021 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2022 				op->xerval |= XER_CA;
2023 			else
2024 				op->xerval &= ~XER_CA;
2025 			set_ca32(op, op->xerval & XER_CA);
2026 			goto logical_done;
2027 
2028 		case 890:	/* extswsli with sh_5 = 0 */
2029 		case 891:	/* extswsli with sh_5 = 1 */
2030 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2031 				return -1;
2032 			op->type = COMPUTE + SETREG;
2033 			sh = rb | ((word & 2) << 4);
2034 			val = (signed int) regs->gpr[rd];
2035 			if (sh)
2036 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2037 			else
2038 				op->val = val;
2039 			goto logical_done;
2040 
2041 #endif /* __powerpc64__ */
2042 
2043 /*
2044  * Cache instructions
2045  */
2046 		case 54:	/* dcbst */
2047 			op->type = MKOP(CACHEOP, DCBST, 0);
2048 			op->ea = xform_ea(word, regs);
2049 			return 0;
2050 
2051 		case 86:	/* dcbf */
2052 			op->type = MKOP(CACHEOP, DCBF, 0);
2053 			op->ea = xform_ea(word, regs);
2054 			return 0;
2055 
2056 		case 246:	/* dcbtst */
2057 			op->type = MKOP(CACHEOP, DCBTST, 0);
2058 			op->ea = xform_ea(word, regs);
2059 			op->reg = rd;
2060 			return 0;
2061 
2062 		case 278:	/* dcbt */
2063 			op->type = MKOP(CACHEOP, DCBTST, 0);
2064 			op->ea = xform_ea(word, regs);
2065 			op->reg = rd;
2066 			return 0;
2067 
2068 		case 982:	/* icbi */
2069 			op->type = MKOP(CACHEOP, ICBI, 0);
2070 			op->ea = xform_ea(word, regs);
2071 			return 0;
2072 
2073 		case 1014:	/* dcbz */
2074 			op->type = MKOP(CACHEOP, DCBZ, 0);
2075 			op->ea = xform_ea(word, regs);
2076 			return 0;
2077 		}
2078 		break;
2079 	}
2080 
2081 /*
2082  * Loads and stores.
2083  */
2084 	op->type = UNKNOWN;
2085 	op->update_reg = ra;
2086 	op->reg = rd;
2087 	op->val = regs->gpr[rd];
2088 	u = (word >> 20) & UPDATE;
2089 	op->vsx_flags = 0;
2090 
2091 	switch (opcode) {
2092 	case 31:
2093 		u = word & UPDATE;
2094 		op->ea = xform_ea(word, regs);
2095 		switch ((word >> 1) & 0x3ff) {
2096 		case 20:	/* lwarx */
2097 			op->type = MKOP(LARX, 0, 4);
2098 			break;
2099 
2100 		case 150:	/* stwcx. */
2101 			op->type = MKOP(STCX, 0, 4);
2102 			break;
2103 
2104 #ifdef __powerpc64__
2105 		case 84:	/* ldarx */
2106 			op->type = MKOP(LARX, 0, 8);
2107 			break;
2108 
2109 		case 214:	/* stdcx. */
2110 			op->type = MKOP(STCX, 0, 8);
2111 			break;
2112 
2113 		case 52:	/* lbarx */
2114 			op->type = MKOP(LARX, 0, 1);
2115 			break;
2116 
2117 		case 694:	/* stbcx. */
2118 			op->type = MKOP(STCX, 0, 1);
2119 			break;
2120 
2121 		case 116:	/* lharx */
2122 			op->type = MKOP(LARX, 0, 2);
2123 			break;
2124 
2125 		case 726:	/* sthcx. */
2126 			op->type = MKOP(STCX, 0, 2);
2127 			break;
2128 
2129 		case 276:	/* lqarx */
2130 			if (!((rd & 1) || rd == ra || rd == rb))
2131 				op->type = MKOP(LARX, 0, 16);
2132 			break;
2133 
2134 		case 182:	/* stqcx. */
2135 			if (!(rd & 1))
2136 				op->type = MKOP(STCX, 0, 16);
2137 			break;
2138 #endif
2139 
2140 		case 23:	/* lwzx */
2141 		case 55:	/* lwzux */
2142 			op->type = MKOP(LOAD, u, 4);
2143 			break;
2144 
2145 		case 87:	/* lbzx */
2146 		case 119:	/* lbzux */
2147 			op->type = MKOP(LOAD, u, 1);
2148 			break;
2149 
2150 #ifdef CONFIG_ALTIVEC
2151 		/*
2152 		 * Note: for the load/store vector element instructions,
2153 		 * bits of the EA say which field of the VMX register to use.
2154 		 */
2155 		case 7:		/* lvebx */
2156 			op->type = MKOP(LOAD_VMX, 0, 1);
2157 			op->element_size = 1;
2158 			break;
2159 
2160 		case 39:	/* lvehx */
2161 			op->type = MKOP(LOAD_VMX, 0, 2);
2162 			op->element_size = 2;
2163 			break;
2164 
2165 		case 71:	/* lvewx */
2166 			op->type = MKOP(LOAD_VMX, 0, 4);
2167 			op->element_size = 4;
2168 			break;
2169 
2170 		case 103:	/* lvx */
2171 		case 359:	/* lvxl */
2172 			op->type = MKOP(LOAD_VMX, 0, 16);
2173 			op->element_size = 16;
2174 			break;
2175 
2176 		case 135:	/* stvebx */
2177 			op->type = MKOP(STORE_VMX, 0, 1);
2178 			op->element_size = 1;
2179 			break;
2180 
2181 		case 167:	/* stvehx */
2182 			op->type = MKOP(STORE_VMX, 0, 2);
2183 			op->element_size = 2;
2184 			break;
2185 
2186 		case 199:	/* stvewx */
2187 			op->type = MKOP(STORE_VMX, 0, 4);
2188 			op->element_size = 4;
2189 			break;
2190 
2191 		case 231:	/* stvx */
2192 		case 487:	/* stvxl */
2193 			op->type = MKOP(STORE_VMX, 0, 16);
2194 			break;
2195 #endif /* CONFIG_ALTIVEC */
2196 
2197 #ifdef __powerpc64__
2198 		case 21:	/* ldx */
2199 		case 53:	/* ldux */
2200 			op->type = MKOP(LOAD, u, 8);
2201 			break;
2202 
2203 		case 149:	/* stdx */
2204 		case 181:	/* stdux */
2205 			op->type = MKOP(STORE, u, 8);
2206 			break;
2207 #endif
2208 
2209 		case 151:	/* stwx */
2210 		case 183:	/* stwux */
2211 			op->type = MKOP(STORE, u, 4);
2212 			break;
2213 
2214 		case 215:	/* stbx */
2215 		case 247:	/* stbux */
2216 			op->type = MKOP(STORE, u, 1);
2217 			break;
2218 
2219 		case 279:	/* lhzx */
2220 		case 311:	/* lhzux */
2221 			op->type = MKOP(LOAD, u, 2);
2222 			break;
2223 
2224 #ifdef __powerpc64__
2225 		case 341:	/* lwax */
2226 		case 373:	/* lwaux */
2227 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2228 			break;
2229 #endif
2230 
2231 		case 343:	/* lhax */
2232 		case 375:	/* lhaux */
2233 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2234 			break;
2235 
2236 		case 407:	/* sthx */
2237 		case 439:	/* sthux */
2238 			op->type = MKOP(STORE, u, 2);
2239 			break;
2240 
2241 #ifdef __powerpc64__
2242 		case 532:	/* ldbrx */
2243 			op->type = MKOP(LOAD, BYTEREV, 8);
2244 			break;
2245 
2246 #endif
2247 		case 533:	/* lswx */
2248 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2249 			break;
2250 
2251 		case 534:	/* lwbrx */
2252 			op->type = MKOP(LOAD, BYTEREV, 4);
2253 			break;
2254 
2255 		case 597:	/* lswi */
2256 			if (rb == 0)
2257 				rb = 32;	/* # bytes to load */
2258 			op->type = MKOP(LOAD_MULTI, 0, rb);
2259 			op->ea = ra ? regs->gpr[ra] : 0;
2260 			break;
2261 
2262 #ifdef CONFIG_PPC_FPU
2263 		case 535:	/* lfsx */
2264 		case 567:	/* lfsux */
2265 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2266 			break;
2267 
2268 		case 599:	/* lfdx */
2269 		case 631:	/* lfdux */
2270 			op->type = MKOP(LOAD_FP, u, 8);
2271 			break;
2272 
2273 		case 663:	/* stfsx */
2274 		case 695:	/* stfsux */
2275 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2276 			break;
2277 
2278 		case 727:	/* stfdx */
2279 		case 759:	/* stfdux */
2280 			op->type = MKOP(STORE_FP, u, 8);
2281 			break;
2282 
2283 #ifdef __powerpc64__
2284 		case 791:	/* lfdpx */
2285 			op->type = MKOP(LOAD_FP, 0, 16);
2286 			break;
2287 
2288 		case 855:	/* lfiwax */
2289 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2290 			break;
2291 
2292 		case 887:	/* lfiwzx */
2293 			op->type = MKOP(LOAD_FP, 0, 4);
2294 			break;
2295 
2296 		case 919:	/* stfdpx */
2297 			op->type = MKOP(STORE_FP, 0, 16);
2298 			break;
2299 
2300 		case 983:	/* stfiwx */
2301 			op->type = MKOP(STORE_FP, 0, 4);
2302 			break;
2303 #endif /* __powerpc64 */
2304 #endif /* CONFIG_PPC_FPU */
2305 
2306 #ifdef __powerpc64__
2307 		case 660:	/* stdbrx */
2308 			op->type = MKOP(STORE, BYTEREV, 8);
2309 			op->val = byterev_8(regs->gpr[rd]);
2310 			break;
2311 
2312 #endif
2313 		case 661:	/* stswx */
2314 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2315 			break;
2316 
2317 		case 662:	/* stwbrx */
2318 			op->type = MKOP(STORE, BYTEREV, 4);
2319 			op->val = byterev_4(regs->gpr[rd]);
2320 			break;
2321 
2322 		case 725:	/* stswi */
2323 			if (rb == 0)
2324 				rb = 32;	/* # bytes to store */
2325 			op->type = MKOP(STORE_MULTI, 0, rb);
2326 			op->ea = ra ? regs->gpr[ra] : 0;
2327 			break;
2328 
2329 		case 790:	/* lhbrx */
2330 			op->type = MKOP(LOAD, BYTEREV, 2);
2331 			break;
2332 
2333 		case 918:	/* sthbrx */
2334 			op->type = MKOP(STORE, BYTEREV, 2);
2335 			op->val = byterev_2(regs->gpr[rd]);
2336 			break;
2337 
2338 #ifdef CONFIG_VSX
2339 		case 12:	/* lxsiwzx */
2340 			op->reg = rd | ((word & 1) << 5);
2341 			op->type = MKOP(LOAD_VSX, 0, 4);
2342 			op->element_size = 8;
2343 			break;
2344 
2345 		case 76:	/* lxsiwax */
2346 			op->reg = rd | ((word & 1) << 5);
2347 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2348 			op->element_size = 8;
2349 			break;
2350 
2351 		case 140:	/* stxsiwx */
2352 			op->reg = rd | ((word & 1) << 5);
2353 			op->type = MKOP(STORE_VSX, 0, 4);
2354 			op->element_size = 8;
2355 			break;
2356 
2357 		case 268:	/* lxvx */
2358 			op->reg = rd | ((word & 1) << 5);
2359 			op->type = MKOP(LOAD_VSX, 0, 16);
2360 			op->element_size = 16;
2361 			op->vsx_flags = VSX_CHECK_VEC;
2362 			break;
2363 
2364 		case 269:	/* lxvl */
2365 		case 301: {	/* lxvll */
2366 			int nb;
2367 			op->reg = rd | ((word & 1) << 5);
2368 			op->ea = ra ? regs->gpr[ra] : 0;
2369 			nb = regs->gpr[rb] & 0xff;
2370 			if (nb > 16)
2371 				nb = 16;
2372 			op->type = MKOP(LOAD_VSX, 0, nb);
2373 			op->element_size = 16;
2374 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2375 				VSX_CHECK_VEC;
2376 			break;
2377 		}
2378 		case 332:	/* lxvdsx */
2379 			op->reg = rd | ((word & 1) << 5);
2380 			op->type = MKOP(LOAD_VSX, 0, 8);
2381 			op->element_size = 8;
2382 			op->vsx_flags = VSX_SPLAT;
2383 			break;
2384 
2385 		case 364:	/* lxvwsx */
2386 			op->reg = rd | ((word & 1) << 5);
2387 			op->type = MKOP(LOAD_VSX, 0, 4);
2388 			op->element_size = 4;
2389 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2390 			break;
2391 
2392 		case 396:	/* stxvx */
2393 			op->reg = rd | ((word & 1) << 5);
2394 			op->type = MKOP(STORE_VSX, 0, 16);
2395 			op->element_size = 16;
2396 			op->vsx_flags = VSX_CHECK_VEC;
2397 			break;
2398 
2399 		case 397:	/* stxvl */
2400 		case 429: {	/* stxvll */
2401 			int nb;
2402 			op->reg = rd | ((word & 1) << 5);
2403 			op->ea = ra ? regs->gpr[ra] : 0;
2404 			nb = regs->gpr[rb] & 0xff;
2405 			if (nb > 16)
2406 				nb = 16;
2407 			op->type = MKOP(STORE_VSX, 0, nb);
2408 			op->element_size = 16;
2409 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2410 				VSX_CHECK_VEC;
2411 			break;
2412 		}
2413 		case 524:	/* lxsspx */
2414 			op->reg = rd | ((word & 1) << 5);
2415 			op->type = MKOP(LOAD_VSX, 0, 4);
2416 			op->element_size = 8;
2417 			op->vsx_flags = VSX_FPCONV;
2418 			break;
2419 
2420 		case 588:	/* lxsdx */
2421 			op->reg = rd | ((word & 1) << 5);
2422 			op->type = MKOP(LOAD_VSX, 0, 8);
2423 			op->element_size = 8;
2424 			break;
2425 
2426 		case 652:	/* stxsspx */
2427 			op->reg = rd | ((word & 1) << 5);
2428 			op->type = MKOP(STORE_VSX, 0, 4);
2429 			op->element_size = 8;
2430 			op->vsx_flags = VSX_FPCONV;
2431 			break;
2432 
2433 		case 716:	/* stxsdx */
2434 			op->reg = rd | ((word & 1) << 5);
2435 			op->type = MKOP(STORE_VSX, 0, 8);
2436 			op->element_size = 8;
2437 			break;
2438 
2439 		case 780:	/* lxvw4x */
2440 			op->reg = rd | ((word & 1) << 5);
2441 			op->type = MKOP(LOAD_VSX, 0, 16);
2442 			op->element_size = 4;
2443 			break;
2444 
2445 		case 781:	/* lxsibzx */
2446 			op->reg = rd | ((word & 1) << 5);
2447 			op->type = MKOP(LOAD_VSX, 0, 1);
2448 			op->element_size = 8;
2449 			op->vsx_flags = VSX_CHECK_VEC;
2450 			break;
2451 
2452 		case 812:	/* lxvh8x */
2453 			op->reg = rd | ((word & 1) << 5);
2454 			op->type = MKOP(LOAD_VSX, 0, 16);
2455 			op->element_size = 2;
2456 			op->vsx_flags = VSX_CHECK_VEC;
2457 			break;
2458 
2459 		case 813:	/* lxsihzx */
2460 			op->reg = rd | ((word & 1) << 5);
2461 			op->type = MKOP(LOAD_VSX, 0, 2);
2462 			op->element_size = 8;
2463 			op->vsx_flags = VSX_CHECK_VEC;
2464 			break;
2465 
2466 		case 844:	/* lxvd2x */
2467 			op->reg = rd | ((word & 1) << 5);
2468 			op->type = MKOP(LOAD_VSX, 0, 16);
2469 			op->element_size = 8;
2470 			break;
2471 
2472 		case 876:	/* lxvb16x */
2473 			op->reg = rd | ((word & 1) << 5);
2474 			op->type = MKOP(LOAD_VSX, 0, 16);
2475 			op->element_size = 1;
2476 			op->vsx_flags = VSX_CHECK_VEC;
2477 			break;
2478 
2479 		case 908:	/* stxvw4x */
2480 			op->reg = rd | ((word & 1) << 5);
2481 			op->type = MKOP(STORE_VSX, 0, 16);
2482 			op->element_size = 4;
2483 			break;
2484 
2485 		case 909:	/* stxsibx */
2486 			op->reg = rd | ((word & 1) << 5);
2487 			op->type = MKOP(STORE_VSX, 0, 1);
2488 			op->element_size = 8;
2489 			op->vsx_flags = VSX_CHECK_VEC;
2490 			break;
2491 
2492 		case 940:	/* stxvh8x */
2493 			op->reg = rd | ((word & 1) << 5);
2494 			op->type = MKOP(STORE_VSX, 0, 16);
2495 			op->element_size = 2;
2496 			op->vsx_flags = VSX_CHECK_VEC;
2497 			break;
2498 
2499 		case 941:	/* stxsihx */
2500 			op->reg = rd | ((word & 1) << 5);
2501 			op->type = MKOP(STORE_VSX, 0, 2);
2502 			op->element_size = 8;
2503 			op->vsx_flags = VSX_CHECK_VEC;
2504 			break;
2505 
2506 		case 972:	/* stxvd2x */
2507 			op->reg = rd | ((word & 1) << 5);
2508 			op->type = MKOP(STORE_VSX, 0, 16);
2509 			op->element_size = 8;
2510 			break;
2511 
2512 		case 1004:	/* stxvb16x */
2513 			op->reg = rd | ((word & 1) << 5);
2514 			op->type = MKOP(STORE_VSX, 0, 16);
2515 			op->element_size = 1;
2516 			op->vsx_flags = VSX_CHECK_VEC;
2517 			break;
2518 
2519 #endif /* CONFIG_VSX */
2520 		}
2521 		break;
2522 
2523 	case 32:	/* lwz */
2524 	case 33:	/* lwzu */
2525 		op->type = MKOP(LOAD, u, 4);
2526 		op->ea = dform_ea(word, regs);
2527 		break;
2528 
2529 	case 34:	/* lbz */
2530 	case 35:	/* lbzu */
2531 		op->type = MKOP(LOAD, u, 1);
2532 		op->ea = dform_ea(word, regs);
2533 		break;
2534 
2535 	case 36:	/* stw */
2536 	case 37:	/* stwu */
2537 		op->type = MKOP(STORE, u, 4);
2538 		op->ea = dform_ea(word, regs);
2539 		break;
2540 
2541 	case 38:	/* stb */
2542 	case 39:	/* stbu */
2543 		op->type = MKOP(STORE, u, 1);
2544 		op->ea = dform_ea(word, regs);
2545 		break;
2546 
2547 	case 40:	/* lhz */
2548 	case 41:	/* lhzu */
2549 		op->type = MKOP(LOAD, u, 2);
2550 		op->ea = dform_ea(word, regs);
2551 		break;
2552 
2553 	case 42:	/* lha */
2554 	case 43:	/* lhau */
2555 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2556 		op->ea = dform_ea(word, regs);
2557 		break;
2558 
2559 	case 44:	/* sth */
2560 	case 45:	/* sthu */
2561 		op->type = MKOP(STORE, u, 2);
2562 		op->ea = dform_ea(word, regs);
2563 		break;
2564 
2565 	case 46:	/* lmw */
2566 		if (ra >= rd)
2567 			break;		/* invalid form, ra in range to load */
2568 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2569 		op->ea = dform_ea(word, regs);
2570 		break;
2571 
2572 	case 47:	/* stmw */
2573 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2574 		op->ea = dform_ea(word, regs);
2575 		break;
2576 
2577 #ifdef CONFIG_PPC_FPU
2578 	case 48:	/* lfs */
2579 	case 49:	/* lfsu */
2580 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2581 		op->ea = dform_ea(word, regs);
2582 		break;
2583 
2584 	case 50:	/* lfd */
2585 	case 51:	/* lfdu */
2586 		op->type = MKOP(LOAD_FP, u, 8);
2587 		op->ea = dform_ea(word, regs);
2588 		break;
2589 
2590 	case 52:	/* stfs */
2591 	case 53:	/* stfsu */
2592 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2593 		op->ea = dform_ea(word, regs);
2594 		break;
2595 
2596 	case 54:	/* stfd */
2597 	case 55:	/* stfdu */
2598 		op->type = MKOP(STORE_FP, u, 8);
2599 		op->ea = dform_ea(word, regs);
2600 		break;
2601 #endif
2602 
2603 #ifdef __powerpc64__
2604 	case 56:	/* lq */
2605 		if (!((rd & 1) || (rd == ra)))
2606 			op->type = MKOP(LOAD, 0, 16);
2607 		op->ea = dqform_ea(word, regs);
2608 		break;
2609 #endif
2610 
2611 #ifdef CONFIG_VSX
2612 	case 57:	/* lfdp, lxsd, lxssp */
2613 		op->ea = dsform_ea(word, regs);
2614 		switch (word & 3) {
2615 		case 0:		/* lfdp */
2616 			if (rd & 1)
2617 				break;		/* reg must be even */
2618 			op->type = MKOP(LOAD_FP, 0, 16);
2619 			break;
2620 		case 2:		/* lxsd */
2621 			op->reg = rd + 32;
2622 			op->type = MKOP(LOAD_VSX, 0, 8);
2623 			op->element_size = 8;
2624 			op->vsx_flags = VSX_CHECK_VEC;
2625 			break;
2626 		case 3:		/* lxssp */
2627 			op->reg = rd + 32;
2628 			op->type = MKOP(LOAD_VSX, 0, 4);
2629 			op->element_size = 8;
2630 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2631 			break;
2632 		}
2633 		break;
2634 #endif /* CONFIG_VSX */
2635 
2636 #ifdef __powerpc64__
2637 	case 58:	/* ld[u], lwa */
2638 		op->ea = dsform_ea(word, regs);
2639 		switch (word & 3) {
2640 		case 0:		/* ld */
2641 			op->type = MKOP(LOAD, 0, 8);
2642 			break;
2643 		case 1:		/* ldu */
2644 			op->type = MKOP(LOAD, UPDATE, 8);
2645 			break;
2646 		case 2:		/* lwa */
2647 			op->type = MKOP(LOAD, SIGNEXT, 4);
2648 			break;
2649 		}
2650 		break;
2651 #endif
2652 
2653 #ifdef CONFIG_VSX
2654 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2655 		switch (word & 7) {
2656 		case 0:		/* stfdp with LSB of DS field = 0 */
2657 		case 4:		/* stfdp with LSB of DS field = 1 */
2658 			op->ea = dsform_ea(word, regs);
2659 			op->type = MKOP(STORE_FP, 0, 16);
2660 			break;
2661 
2662 		case 1:		/* lxv */
2663 			op->ea = dqform_ea(word, regs);
2664 			if (word & 8)
2665 				op->reg = rd + 32;
2666 			op->type = MKOP(LOAD_VSX, 0, 16);
2667 			op->element_size = 16;
2668 			op->vsx_flags = VSX_CHECK_VEC;
2669 			break;
2670 
2671 		case 2:		/* stxsd with LSB of DS field = 0 */
2672 		case 6:		/* stxsd with LSB of DS field = 1 */
2673 			op->ea = dsform_ea(word, regs);
2674 			op->reg = rd + 32;
2675 			op->type = MKOP(STORE_VSX, 0, 8);
2676 			op->element_size = 8;
2677 			op->vsx_flags = VSX_CHECK_VEC;
2678 			break;
2679 
2680 		case 3:		/* stxssp with LSB of DS field = 0 */
2681 		case 7:		/* stxssp with LSB of DS field = 1 */
2682 			op->ea = dsform_ea(word, regs);
2683 			op->reg = rd + 32;
2684 			op->type = MKOP(STORE_VSX, 0, 4);
2685 			op->element_size = 8;
2686 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2687 			break;
2688 
2689 		case 5:		/* stxv */
2690 			op->ea = dqform_ea(word, regs);
2691 			if (word & 8)
2692 				op->reg = rd + 32;
2693 			op->type = MKOP(STORE_VSX, 0, 16);
2694 			op->element_size = 16;
2695 			op->vsx_flags = VSX_CHECK_VEC;
2696 			break;
2697 		}
2698 		break;
2699 #endif /* CONFIG_VSX */
2700 
2701 #ifdef __powerpc64__
2702 	case 62:	/* std[u] */
2703 		op->ea = dsform_ea(word, regs);
2704 		switch (word & 3) {
2705 		case 0:		/* std */
2706 			op->type = MKOP(STORE, 0, 8);
2707 			break;
2708 		case 1:		/* stdu */
2709 			op->type = MKOP(STORE, UPDATE, 8);
2710 			break;
2711 		case 2:		/* stq */
2712 			if (!(rd & 1))
2713 				op->type = MKOP(STORE, 0, 16);
2714 			break;
2715 		}
2716 		break;
2717 	case 1: /* Prefixed instructions */
2718 		prefix_r = word & (1ul << 20);
2719 		ra = (suffix >> 16) & 0x1f;
2720 		op->update_reg = ra;
2721 		rd = (suffix >> 21) & 0x1f;
2722 		op->reg = rd;
2723 		op->val = regs->gpr[rd];
2724 
2725 		suffixopcode = get_op(suffix);
2726 		prefixtype = (word >> 24) & 0x3;
2727 		switch (prefixtype) {
2728 		case 0: /* Type 00  Eight-Byte Load/Store */
2729 			if (prefix_r && ra)
2730 				break;
2731 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2732 			switch (suffixopcode) {
2733 			case 41:	/* plwa */
2734 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2735 				break;
2736 			case 42:        /* plxsd */
2737 				op->reg = rd + 32;
2738 				op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2739 				op->element_size = 8;
2740 				op->vsx_flags = VSX_CHECK_VEC;
2741 				break;
2742 			case 43:	/* plxssp */
2743 				op->reg = rd + 32;
2744 				op->type = MKOP(LOAD_VSX, PREFIXED, 4);
2745 				op->element_size = 8;
2746 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2747 				break;
2748 			case 46:	/* pstxsd */
2749 				op->reg = rd + 32;
2750 				op->type = MKOP(STORE_VSX, PREFIXED, 8);
2751 				op->element_size = 8;
2752 				op->vsx_flags = VSX_CHECK_VEC;
2753 				break;
2754 			case 47:	/* pstxssp */
2755 				op->reg = rd + 32;
2756 				op->type = MKOP(STORE_VSX, PREFIXED, 4);
2757 				op->element_size = 8;
2758 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2759 				break;
2760 			case 51:	/* plxv1 */
2761 				op->reg += 32;
2762 				fallthrough;
2763 			case 50:	/* plxv0 */
2764 				op->type = MKOP(LOAD_VSX, PREFIXED, 16);
2765 				op->element_size = 16;
2766 				op->vsx_flags = VSX_CHECK_VEC;
2767 				break;
2768 			case 55:	/* pstxv1 */
2769 				op->reg = rd + 32;
2770 				fallthrough;
2771 			case 54:	/* pstxv0 */
2772 				op->type = MKOP(STORE_VSX, PREFIXED, 16);
2773 				op->element_size = 16;
2774 				op->vsx_flags = VSX_CHECK_VEC;
2775 				break;
2776 			case 56:        /* plq */
2777 				op->type = MKOP(LOAD, PREFIXED, 16);
2778 				break;
2779 			case 57:	/* pld */
2780 				op->type = MKOP(LOAD, PREFIXED, 8);
2781 				break;
2782 			case 60:        /* stq */
2783 				op->type = MKOP(STORE, PREFIXED, 16);
2784 				break;
2785 			case 61:	/* pstd */
2786 				op->type = MKOP(STORE, PREFIXED, 8);
2787 				break;
2788 			}
2789 			break;
2790 		case 1: /* Type 01 Eight-Byte Register-to-Register */
2791 			break;
2792 		case 2: /* Type 10 Modified Load/Store */
2793 			if (prefix_r && ra)
2794 				break;
2795 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2796 			switch (suffixopcode) {
2797 			case 32:	/* plwz */
2798 				op->type = MKOP(LOAD, PREFIXED, 4);
2799 				break;
2800 			case 34:	/* plbz */
2801 				op->type = MKOP(LOAD, PREFIXED, 1);
2802 				break;
2803 			case 36:	/* pstw */
2804 				op->type = MKOP(STORE, PREFIXED, 4);
2805 				break;
2806 			case 38:	/* pstb */
2807 				op->type = MKOP(STORE, PREFIXED, 1);
2808 				break;
2809 			case 40:	/* plhz */
2810 				op->type = MKOP(LOAD, PREFIXED, 2);
2811 				break;
2812 			case 42:	/* plha */
2813 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
2814 				break;
2815 			case 44:	/* psth */
2816 				op->type = MKOP(STORE, PREFIXED, 2);
2817 				break;
2818 			case 48:        /* plfs */
2819 				op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
2820 				break;
2821 			case 50:        /* plfd */
2822 				op->type = MKOP(LOAD_FP, PREFIXED, 8);
2823 				break;
2824 			case 52:        /* pstfs */
2825 				op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
2826 				break;
2827 			case 54:        /* pstfd */
2828 				op->type = MKOP(STORE_FP, PREFIXED, 8);
2829 				break;
2830 			}
2831 			break;
2832 		case 3: /* Type 11 Modified Register-to-Register */
2833 			break;
2834 		}
2835 #endif /* __powerpc64__ */
2836 
2837 	}
2838 
2839 #ifdef CONFIG_VSX
2840 	if ((GETTYPE(op->type) == LOAD_VSX ||
2841 	     GETTYPE(op->type) == STORE_VSX) &&
2842 	    !cpu_has_feature(CPU_FTR_VSX)) {
2843 		return -1;
2844 	}
2845 #endif /* CONFIG_VSX */
2846 
2847 	return 0;
2848 
2849  logical_done:
2850 	if (word & 1)
2851 		set_cr0(regs, op);
2852  logical_done_nocc:
2853 	op->reg = ra;
2854 	op->type |= SETREG;
2855 	return 1;
2856 
2857  arith_done:
2858 	if (word & 1)
2859 		set_cr0(regs, op);
2860  compute_done:
2861 	op->reg = rd;
2862 	op->type |= SETREG;
2863 	return 1;
2864 
2865  priv:
2866 	op->type = INTERRUPT | 0x700;
2867 	op->val = SRR1_PROGPRIV;
2868 	return 0;
2869 
2870  trap:
2871 	op->type = INTERRUPT | 0x700;
2872 	op->val = SRR1_PROGTRAP;
2873 	return 0;
2874 }
2875 EXPORT_SYMBOL_GPL(analyse_instr);
2876 NOKPROBE_SYMBOL(analyse_instr);
2877 
2878 /*
2879  * For PPC32 we always use stwu with r1 to change the stack pointer.
2880  * So this emulated store may corrupt the exception frame, now we
2881  * have to provide the exception frame trampoline, which is pushed
2882  * below the kprobed function stack. So we only update gpr[1] but
2883  * don't emulate the real store operation. We will do real store
2884  * operation safely in exception return code by checking this flag.
2885  */
2886 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2887 {
2888 #ifdef CONFIG_PPC32
2889 	/*
2890 	 * Check if we will touch kernel stack overflow
2891 	 */
2892 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2893 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2894 		return -EINVAL;
2895 	}
2896 #endif /* CONFIG_PPC32 */
2897 	/*
2898 	 * Check if we already set since that means we'll
2899 	 * lose the previous value.
2900 	 */
2901 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2902 	set_thread_flag(TIF_EMULATE_STACK_STORE);
2903 	return 0;
2904 }
2905 
2906 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2907 {
2908 	switch (size) {
2909 	case 2:
2910 		*valp = (signed short) *valp;
2911 		break;
2912 	case 4:
2913 		*valp = (signed int) *valp;
2914 		break;
2915 	}
2916 }
2917 
2918 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2919 {
2920 	switch (size) {
2921 	case 2:
2922 		*valp = byterev_2(*valp);
2923 		break;
2924 	case 4:
2925 		*valp = byterev_4(*valp);
2926 		break;
2927 #ifdef __powerpc64__
2928 	case 8:
2929 		*valp = byterev_8(*valp);
2930 		break;
2931 #endif
2932 	}
2933 }
2934 
2935 /*
2936  * Emulate an instruction that can be executed just by updating
2937  * fields in *regs.
2938  */
2939 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2940 {
2941 	unsigned long next_pc;
2942 
2943 	next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
2944 	switch (GETTYPE(op->type)) {
2945 	case COMPUTE:
2946 		if (op->type & SETREG)
2947 			regs->gpr[op->reg] = op->val;
2948 		if (op->type & SETCC)
2949 			regs->ccr = op->ccval;
2950 		if (op->type & SETXER)
2951 			regs->xer = op->xerval;
2952 		break;
2953 
2954 	case BRANCH:
2955 		if (op->type & SETLK)
2956 			regs->link = next_pc;
2957 		if (op->type & BRTAKEN)
2958 			next_pc = op->val;
2959 		if (op->type & DECCTR)
2960 			--regs->ctr;
2961 		break;
2962 
2963 	case BARRIER:
2964 		switch (op->type & BARRIER_MASK) {
2965 		case BARRIER_SYNC:
2966 			mb();
2967 			break;
2968 		case BARRIER_ISYNC:
2969 			isync();
2970 			break;
2971 		case BARRIER_EIEIO:
2972 			eieio();
2973 			break;
2974 		case BARRIER_LWSYNC:
2975 			asm volatile("lwsync" : : : "memory");
2976 			break;
2977 		case BARRIER_PTESYNC:
2978 			asm volatile("ptesync" : : : "memory");
2979 			break;
2980 		}
2981 		break;
2982 
2983 	case MFSPR:
2984 		switch (op->spr) {
2985 		case SPRN_XER:
2986 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2987 			break;
2988 		case SPRN_LR:
2989 			regs->gpr[op->reg] = regs->link;
2990 			break;
2991 		case SPRN_CTR:
2992 			regs->gpr[op->reg] = regs->ctr;
2993 			break;
2994 		default:
2995 			WARN_ON_ONCE(1);
2996 		}
2997 		break;
2998 
2999 	case MTSPR:
3000 		switch (op->spr) {
3001 		case SPRN_XER:
3002 			regs->xer = op->val & 0xffffffffUL;
3003 			break;
3004 		case SPRN_LR:
3005 			regs->link = op->val;
3006 			break;
3007 		case SPRN_CTR:
3008 			regs->ctr = op->val;
3009 			break;
3010 		default:
3011 			WARN_ON_ONCE(1);
3012 		}
3013 		break;
3014 
3015 	default:
3016 		WARN_ON_ONCE(1);
3017 	}
3018 	regs->nip = next_pc;
3019 }
3020 NOKPROBE_SYMBOL(emulate_update_regs);
3021 
3022 /*
3023  * Emulate a previously-analysed load or store instruction.
3024  * Return values are:
3025  * 0 = instruction emulated successfully
3026  * -EFAULT = address out of range or access faulted (regs->dar
3027  *	     contains the faulting address)
3028  * -EACCES = misaligned access, instruction requires alignment
3029  * -EINVAL = unknown operation in *op
3030  */
3031 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3032 {
3033 	int err, size, type;
3034 	int i, rd, nb;
3035 	unsigned int cr;
3036 	unsigned long val;
3037 	unsigned long ea;
3038 	bool cross_endian;
3039 
3040 	err = 0;
3041 	size = GETSIZE(op->type);
3042 	type = GETTYPE(op->type);
3043 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3044 	ea = truncate_if_32bit(regs->msr, op->ea);
3045 
3046 	switch (type) {
3047 	case LARX:
3048 		if (ea & (size - 1))
3049 			return -EACCES;		/* can't handle misaligned */
3050 		if (!address_ok(regs, ea, size))
3051 			return -EFAULT;
3052 		err = 0;
3053 		val = 0;
3054 		switch (size) {
3055 #ifdef __powerpc64__
3056 		case 1:
3057 			__get_user_asmx(val, ea, err, "lbarx");
3058 			break;
3059 		case 2:
3060 			__get_user_asmx(val, ea, err, "lharx");
3061 			break;
3062 #endif
3063 		case 4:
3064 			__get_user_asmx(val, ea, err, "lwarx");
3065 			break;
3066 #ifdef __powerpc64__
3067 		case 8:
3068 			__get_user_asmx(val, ea, err, "ldarx");
3069 			break;
3070 		case 16:
3071 			err = do_lqarx(ea, &regs->gpr[op->reg]);
3072 			break;
3073 #endif
3074 		default:
3075 			return -EINVAL;
3076 		}
3077 		if (err) {
3078 			regs->dar = ea;
3079 			break;
3080 		}
3081 		if (size < 16)
3082 			regs->gpr[op->reg] = val;
3083 		break;
3084 
3085 	case STCX:
3086 		if (ea & (size - 1))
3087 			return -EACCES;		/* can't handle misaligned */
3088 		if (!address_ok(regs, ea, size))
3089 			return -EFAULT;
3090 		err = 0;
3091 		switch (size) {
3092 #ifdef __powerpc64__
3093 		case 1:
3094 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3095 			break;
3096 		case 2:
3097 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3098 			break;
3099 #endif
3100 		case 4:
3101 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
3102 			break;
3103 #ifdef __powerpc64__
3104 		case 8:
3105 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
3106 			break;
3107 		case 16:
3108 			err = do_stqcx(ea, regs->gpr[op->reg],
3109 				       regs->gpr[op->reg + 1], &cr);
3110 			break;
3111 #endif
3112 		default:
3113 			return -EINVAL;
3114 		}
3115 		if (!err)
3116 			regs->ccr = (regs->ccr & 0x0fffffff) |
3117 				(cr & 0xe0000000) |
3118 				((regs->xer >> 3) & 0x10000000);
3119 		else
3120 			regs->dar = ea;
3121 		break;
3122 
3123 	case LOAD:
3124 #ifdef __powerpc64__
3125 		if (size == 16) {
3126 			err = emulate_lq(regs, ea, op->reg, cross_endian);
3127 			break;
3128 		}
3129 #endif
3130 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3131 		if (!err) {
3132 			if (op->type & SIGNEXT)
3133 				do_signext(&regs->gpr[op->reg], size);
3134 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3135 				do_byterev(&regs->gpr[op->reg], size);
3136 		}
3137 		break;
3138 
3139 #ifdef CONFIG_PPC_FPU
3140 	case LOAD_FP:
3141 		/*
3142 		 * If the instruction is in userspace, we can emulate it even
3143 		 * if the VMX state is not live, because we have the state
3144 		 * stored in the thread_struct.  If the instruction is in
3145 		 * the kernel, we must not touch the state in the thread_struct.
3146 		 */
3147 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3148 			return 0;
3149 		err = do_fp_load(op, ea, regs, cross_endian);
3150 		break;
3151 #endif
3152 #ifdef CONFIG_ALTIVEC
3153 	case LOAD_VMX:
3154 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3155 			return 0;
3156 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3157 		break;
3158 #endif
3159 #ifdef CONFIG_VSX
3160 	case LOAD_VSX: {
3161 		unsigned long msrbit = MSR_VSX;
3162 
3163 		/*
3164 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3165 		 * when the target of the instruction is a vector register.
3166 		 */
3167 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3168 			msrbit = MSR_VEC;
3169 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3170 			return 0;
3171 		err = do_vsx_load(op, ea, regs, cross_endian);
3172 		break;
3173 	}
3174 #endif
3175 	case LOAD_MULTI:
3176 		if (!address_ok(regs, ea, size))
3177 			return -EFAULT;
3178 		rd = op->reg;
3179 		for (i = 0; i < size; i += 4) {
3180 			unsigned int v32 = 0;
3181 
3182 			nb = size - i;
3183 			if (nb > 4)
3184 				nb = 4;
3185 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3186 			if (err)
3187 				break;
3188 			if (unlikely(cross_endian))
3189 				v32 = byterev_4(v32);
3190 			regs->gpr[rd] = v32;
3191 			ea += 4;
3192 			/* reg number wraps from 31 to 0 for lsw[ix] */
3193 			rd = (rd + 1) & 0x1f;
3194 		}
3195 		break;
3196 
3197 	case STORE:
3198 #ifdef __powerpc64__
3199 		if (size == 16) {
3200 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3201 			break;
3202 		}
3203 #endif
3204 		if ((op->type & UPDATE) && size == sizeof(long) &&
3205 		    op->reg == 1 && op->update_reg == 1 &&
3206 		    !(regs->msr & MSR_PR) &&
3207 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3208 			err = handle_stack_update(ea, regs);
3209 			break;
3210 		}
3211 		if (unlikely(cross_endian))
3212 			do_byterev(&op->val, size);
3213 		err = write_mem(op->val, ea, size, regs);
3214 		break;
3215 
3216 #ifdef CONFIG_PPC_FPU
3217 	case STORE_FP:
3218 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3219 			return 0;
3220 		err = do_fp_store(op, ea, regs, cross_endian);
3221 		break;
3222 #endif
3223 #ifdef CONFIG_ALTIVEC
3224 	case STORE_VMX:
3225 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3226 			return 0;
3227 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3228 		break;
3229 #endif
3230 #ifdef CONFIG_VSX
3231 	case STORE_VSX: {
3232 		unsigned long msrbit = MSR_VSX;
3233 
3234 		/*
3235 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3236 		 * when the target of the instruction is a vector register.
3237 		 */
3238 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3239 			msrbit = MSR_VEC;
3240 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3241 			return 0;
3242 		err = do_vsx_store(op, ea, regs, cross_endian);
3243 		break;
3244 	}
3245 #endif
3246 	case STORE_MULTI:
3247 		if (!address_ok(regs, ea, size))
3248 			return -EFAULT;
3249 		rd = op->reg;
3250 		for (i = 0; i < size; i += 4) {
3251 			unsigned int v32 = regs->gpr[rd];
3252 
3253 			nb = size - i;
3254 			if (nb > 4)
3255 				nb = 4;
3256 			if (unlikely(cross_endian))
3257 				v32 = byterev_4(v32);
3258 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3259 			if (err)
3260 				break;
3261 			ea += 4;
3262 			/* reg number wraps from 31 to 0 for stsw[ix] */
3263 			rd = (rd + 1) & 0x1f;
3264 		}
3265 		break;
3266 
3267 	default:
3268 		return -EINVAL;
3269 	}
3270 
3271 	if (err)
3272 		return err;
3273 
3274 	if (op->type & UPDATE)
3275 		regs->gpr[op->update_reg] = op->ea;
3276 
3277 	return 0;
3278 }
3279 NOKPROBE_SYMBOL(emulate_loadstore);
3280 
3281 /*
3282  * Emulate instructions that cause a transfer of control,
3283  * loads and stores, and a few other instructions.
3284  * Returns 1 if the step was emulated, 0 if not,
3285  * or -1 if the instruction is one that should not be stepped,
3286  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3287  */
3288 int emulate_step(struct pt_regs *regs, struct ppc_inst instr)
3289 {
3290 	struct instruction_op op;
3291 	int r, err, type;
3292 	unsigned long val;
3293 	unsigned long ea;
3294 
3295 	r = analyse_instr(&op, regs, instr);
3296 	if (r < 0)
3297 		return r;
3298 	if (r > 0) {
3299 		emulate_update_regs(regs, &op);
3300 		return 1;
3301 	}
3302 
3303 	err = 0;
3304 	type = GETTYPE(op.type);
3305 
3306 	if (OP_IS_LOAD_STORE(type)) {
3307 		err = emulate_loadstore(regs, &op);
3308 		if (err)
3309 			return 0;
3310 		goto instr_done;
3311 	}
3312 
3313 	switch (type) {
3314 	case CACHEOP:
3315 		ea = truncate_if_32bit(regs->msr, op.ea);
3316 		if (!address_ok(regs, ea, 8))
3317 			return 0;
3318 		switch (op.type & CACHEOP_MASK) {
3319 		case DCBST:
3320 			__cacheop_user_asmx(ea, err, "dcbst");
3321 			break;
3322 		case DCBF:
3323 			__cacheop_user_asmx(ea, err, "dcbf");
3324 			break;
3325 		case DCBTST:
3326 			if (op.reg == 0)
3327 				prefetchw((void *) ea);
3328 			break;
3329 		case DCBT:
3330 			if (op.reg == 0)
3331 				prefetch((void *) ea);
3332 			break;
3333 		case ICBI:
3334 			__cacheop_user_asmx(ea, err, "icbi");
3335 			break;
3336 		case DCBZ:
3337 			err = emulate_dcbz(ea, regs);
3338 			break;
3339 		}
3340 		if (err) {
3341 			regs->dar = ea;
3342 			return 0;
3343 		}
3344 		goto instr_done;
3345 
3346 	case MFMSR:
3347 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3348 		goto instr_done;
3349 
3350 	case MTMSR:
3351 		val = regs->gpr[op.reg];
3352 		if ((val & MSR_RI) == 0)
3353 			/* can't step mtmsr[d] that would clear MSR_RI */
3354 			return -1;
3355 		/* here op.val is the mask of bits to change */
3356 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
3357 		goto instr_done;
3358 
3359 #ifdef CONFIG_PPC64
3360 	case SYSCALL:	/* sc */
3361 		/*
3362 		 * N.B. this uses knowledge about how the syscall
3363 		 * entry code works.  If that is changed, this will
3364 		 * need to be changed also.
3365 		 */
3366 		if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3367 				cpu_has_feature(CPU_FTR_REAL_LE) &&
3368 				regs->gpr[0] == 0x1ebe) {
3369 			regs->msr ^= MSR_LE;
3370 			goto instr_done;
3371 		}
3372 		regs->gpr[9] = regs->gpr[13];
3373 		regs->gpr[10] = MSR_KERNEL;
3374 		regs->gpr[11] = regs->nip + 4;
3375 		regs->gpr[12] = regs->msr & MSR_MASK;
3376 		regs->gpr[13] = (unsigned long) get_paca();
3377 		regs->nip = (unsigned long) &system_call_common;
3378 		regs->msr = MSR_KERNEL;
3379 		return 1;
3380 
3381 	case RFI:
3382 		return -1;
3383 #endif
3384 	}
3385 	return 0;
3386 
3387  instr_done:
3388 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type));
3389 	return 1;
3390 }
3391 NOKPROBE_SYMBOL(emulate_step);
3392