xref: /linux/arch/powerpc/lib/sstep.c (revision 2504e5b9827f7fc76ed0e4593adc852ac7a19851)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17 
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20 
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK	0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK	0x87c0ffff
26 #endif
27 
28 /* Bits in XER */
29 #define XER_SO		0x80000000U
30 #define XER_OV		0x40000000U
31 #define XER_CA		0x20000000U
32 #define XER_OV32	0x00080000U
33 #define XER_CA32	0x00040000U
34 
35 #ifdef CONFIG_VSX
36 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
37 #endif
38 
39 #ifdef CONFIG_PPC_FPU
40 /*
41  * Functions in ldstfp.S
42  */
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
51 #endif
52 
53 #ifdef __powerpc64__
54 /*
55  * Functions in quad.S
56  */
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61 		    unsigned int *crp);
62 #endif
63 
64 #ifdef __LITTLE_ENDIAN__
65 #define IS_LE	1
66 #define IS_BE	0
67 #else
68 #define IS_LE	0
69 #define IS_BE	1
70 #endif
71 
72 /*
73  * Emulate the truncation of 64 bit values in 32-bit mode.
74  */
75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
76 							unsigned long val)
77 {
78 	if ((msr & MSR_64BIT) == 0)
79 		val &= 0xffffffffUL;
80 	return val;
81 }
82 
83 /*
84  * Determine whether a conditional branch instruction would branch.
85  */
86 static nokprobe_inline int branch_taken(unsigned int instr,
87 					const struct pt_regs *regs,
88 					struct instruction_op *op)
89 {
90 	unsigned int bo = (instr >> 21) & 0x1f;
91 	unsigned int bi;
92 
93 	if ((bo & 4) == 0) {
94 		/* decrement counter */
95 		op->type |= DECCTR;
96 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 			return 0;
98 	}
99 	if ((bo & 0x10) == 0) {
100 		/* check bit from CR */
101 		bi = (instr >> 16) & 0x1f;
102 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 			return 0;
104 	}
105 	return 1;
106 }
107 
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109 				       unsigned long ea, int nb)
110 {
111 	if (!user_mode(regs))
112 		return 1;
113 	if (__access_ok(ea, nb))
114 		return 1;
115 	if (__access_ok(ea, 1))
116 		/* Access overlaps the end of the user region */
117 		regs->dar = TASK_SIZE_MAX - 1;
118 	else
119 		regs->dar = ea;
120 	return 0;
121 }
122 
123 /*
124  * Calculate effective address for a D-form instruction
125  */
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 					      const struct pt_regs *regs)
128 {
129 	int ra;
130 	unsigned long ea;
131 
132 	ra = (instr >> 16) & 0x1f;
133 	ea = (signed short) instr;		/* sign-extend */
134 	if (ra)
135 		ea += regs->gpr[ra];
136 
137 	return ea;
138 }
139 
140 #ifdef __powerpc64__
141 /*
142  * Calculate effective address for a DS-form instruction
143  */
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 					       const struct pt_regs *regs)
146 {
147 	int ra;
148 	unsigned long ea;
149 
150 	ra = (instr >> 16) & 0x1f;
151 	ea = (signed short) (instr & ~3);	/* sign-extend */
152 	if (ra)
153 		ea += regs->gpr[ra];
154 
155 	return ea;
156 }
157 
158 /*
159  * Calculate effective address for a DQ-form instruction
160  */
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 					       const struct pt_regs *regs)
163 {
164 	int ra;
165 	unsigned long ea;
166 
167 	ra = (instr >> 16) & 0x1f;
168 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
169 	if (ra)
170 		ea += regs->gpr[ra];
171 
172 	return ea;
173 }
174 #endif /* __powerpc64 */
175 
176 /*
177  * Calculate effective address for an X-form instruction
178  */
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 					      const struct pt_regs *regs)
181 {
182 	int ra, rb;
183 	unsigned long ea;
184 
185 	ra = (instr >> 16) & 0x1f;
186 	rb = (instr >> 11) & 0x1f;
187 	ea = regs->gpr[rb];
188 	if (ra)
189 		ea += regs->gpr[ra];
190 
191 	return ea;
192 }
193 
194 /*
195  * Calculate effective address for a MLS:D-form / 8LS:D-form
196  * prefixed instruction
197  */
198 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
199 						  unsigned int suffix,
200 						  const struct pt_regs *regs)
201 {
202 	int ra, prefix_r;
203 	unsigned int  dd;
204 	unsigned long ea, d0, d1, d;
205 
206 	prefix_r = GET_PREFIX_R(instr);
207 	ra = GET_PREFIX_RA(suffix);
208 
209 	d0 = instr & 0x3ffff;
210 	d1 = suffix & 0xffff;
211 	d = (d0 << 16) | d1;
212 
213 	/*
214 	 * sign extend a 34 bit number
215 	 */
216 	dd = (unsigned int)(d >> 2);
217 	ea = (signed int)dd;
218 	ea = (ea << 2) | (d & 0x3);
219 
220 	if (!prefix_r && ra)
221 		ea += regs->gpr[ra];
222 	else if (!prefix_r && !ra)
223 		; /* Leave ea as is */
224 	else if (prefix_r)
225 		ea += regs->nip;
226 
227 	/*
228 	 * (prefix_r && ra) is an invalid form. Should already be
229 	 * checked for by caller!
230 	 */
231 
232 	return ea;
233 }
234 
235 /*
236  * Return the largest power of 2, not greater than sizeof(unsigned long),
237  * such that x is a multiple of it.
238  */
239 static nokprobe_inline unsigned long max_align(unsigned long x)
240 {
241 	x |= sizeof(unsigned long);
242 	return x & -x;		/* isolates rightmost bit */
243 }
244 
245 static nokprobe_inline unsigned long byterev_2(unsigned long x)
246 {
247 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
248 }
249 
250 static nokprobe_inline unsigned long byterev_4(unsigned long x)
251 {
252 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
253 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
254 }
255 
256 #ifdef __powerpc64__
257 static nokprobe_inline unsigned long byterev_8(unsigned long x)
258 {
259 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
260 }
261 #endif
262 
263 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
264 {
265 	switch (nb) {
266 	case 2:
267 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
268 		break;
269 	case 4:
270 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
271 		break;
272 #ifdef __powerpc64__
273 	case 8:
274 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
275 		break;
276 	case 16: {
277 		unsigned long *up = (unsigned long *)ptr;
278 		unsigned long tmp;
279 		tmp = byterev_8(up[0]);
280 		up[0] = byterev_8(up[1]);
281 		up[1] = tmp;
282 		break;
283 	}
284 	case 32: {
285 		unsigned long *up = (unsigned long *)ptr;
286 		unsigned long tmp;
287 
288 		tmp = byterev_8(up[0]);
289 		up[0] = byterev_8(up[3]);
290 		up[3] = tmp;
291 		tmp = byterev_8(up[2]);
292 		up[2] = byterev_8(up[1]);
293 		up[1] = tmp;
294 		break;
295 	}
296 
297 #endif
298 	default:
299 		WARN_ON_ONCE(1);
300 	}
301 }
302 
303 static __always_inline int
304 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
305 {
306 	unsigned long x = 0;
307 
308 	switch (nb) {
309 	case 1:
310 		unsafe_get_user(x, (unsigned char __user *)ea, Efault);
311 		break;
312 	case 2:
313 		unsafe_get_user(x, (unsigned short __user *)ea, Efault);
314 		break;
315 	case 4:
316 		unsafe_get_user(x, (unsigned int __user *)ea, Efault);
317 		break;
318 #ifdef __powerpc64__
319 	case 8:
320 		unsafe_get_user(x, (unsigned long __user *)ea, Efault);
321 		break;
322 #endif
323 	}
324 	*dest = x;
325 	return 0;
326 
327 Efault:
328 	regs->dar = ea;
329 	return -EFAULT;
330 }
331 
332 static nokprobe_inline int
333 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
334 {
335 	int err;
336 
337 	if (is_kernel_addr(ea))
338 		return __read_mem_aligned(dest, ea, nb, regs);
339 
340 	if (user_read_access_begin((void __user *)ea, nb)) {
341 		err = __read_mem_aligned(dest, ea, nb, regs);
342 		user_read_access_end();
343 	} else {
344 		err = -EFAULT;
345 		regs->dar = ea;
346 	}
347 
348 	return err;
349 }
350 
351 /*
352  * Copy from userspace to a buffer, using the largest possible
353  * aligned accesses, up to sizeof(long).
354  */
355 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
356 {
357 	int c;
358 
359 	for (; nb > 0; nb -= c) {
360 		c = max_align(ea);
361 		if (c > nb)
362 			c = max_align(nb);
363 		switch (c) {
364 		case 1:
365 			unsafe_get_user(*dest, (u8 __user *)ea, Efault);
366 			break;
367 		case 2:
368 			unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
369 			break;
370 		case 4:
371 			unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
372 			break;
373 #ifdef __powerpc64__
374 		case 8:
375 			unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
376 			break;
377 #endif
378 		}
379 		dest += c;
380 		ea += c;
381 	}
382 	return 0;
383 
384 Efault:
385 	regs->dar = ea;
386 	return -EFAULT;
387 }
388 
389 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
390 {
391 	int err;
392 
393 	if (is_kernel_addr(ea))
394 		return __copy_mem_in(dest, ea, nb, regs);
395 
396 	if (user_read_access_begin((void __user *)ea, nb)) {
397 		err = __copy_mem_in(dest, ea, nb, regs);
398 		user_read_access_end();
399 	} else {
400 		err = -EFAULT;
401 		regs->dar = ea;
402 	}
403 
404 	return err;
405 }
406 
407 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
408 					      unsigned long ea, int nb,
409 					      struct pt_regs *regs)
410 {
411 	union {
412 		unsigned long ul;
413 		u8 b[sizeof(unsigned long)];
414 	} u;
415 	int i;
416 	int err;
417 
418 	u.ul = 0;
419 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
420 	err = copy_mem_in(&u.b[i], ea, nb, regs);
421 	if (!err)
422 		*dest = u.ul;
423 	return err;
424 }
425 
426 /*
427  * Read memory at address ea for nb bytes, return 0 for success
428  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
429  * If nb < sizeof(long), the result is right-justified on BE systems.
430  */
431 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
432 			      struct pt_regs *regs)
433 {
434 	if (!address_ok(regs, ea, nb))
435 		return -EFAULT;
436 	if ((ea & (nb - 1)) == 0)
437 		return read_mem_aligned(dest, ea, nb, regs);
438 	return read_mem_unaligned(dest, ea, nb, regs);
439 }
440 NOKPROBE_SYMBOL(read_mem);
441 
442 static __always_inline int
443 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
444 {
445 	switch (nb) {
446 	case 1:
447 		unsafe_put_user(val, (unsigned char __user *)ea, Efault);
448 		break;
449 	case 2:
450 		unsafe_put_user(val, (unsigned short __user *)ea, Efault);
451 		break;
452 	case 4:
453 		unsafe_put_user(val, (unsigned int __user *)ea, Efault);
454 		break;
455 #ifdef __powerpc64__
456 	case 8:
457 		unsafe_put_user(val, (unsigned long __user *)ea, Efault);
458 		break;
459 #endif
460 	}
461 	return 0;
462 
463 Efault:
464 	regs->dar = ea;
465 	return -EFAULT;
466 }
467 
468 static nokprobe_inline int
469 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
470 {
471 	int err;
472 
473 	if (is_kernel_addr(ea))
474 		return __write_mem_aligned(val, ea, nb, regs);
475 
476 	if (user_write_access_begin((void __user *)ea, nb)) {
477 		err = __write_mem_aligned(val, ea, nb, regs);
478 		user_write_access_end();
479 	} else {
480 		err = -EFAULT;
481 		regs->dar = ea;
482 	}
483 
484 	return err;
485 }
486 
487 /*
488  * Copy from a buffer to userspace, using the largest possible
489  * aligned accesses, up to sizeof(long).
490  */
491 static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
492 {
493 	int c;
494 
495 	for (; nb > 0; nb -= c) {
496 		c = max_align(ea);
497 		if (c > nb)
498 			c = max_align(nb);
499 		switch (c) {
500 		case 1:
501 			unsafe_put_user(*dest, (u8 __user *)ea, Efault);
502 			break;
503 		case 2:
504 			unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
505 			break;
506 		case 4:
507 			unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
508 			break;
509 #ifdef __powerpc64__
510 		case 8:
511 			unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
512 			break;
513 #endif
514 		}
515 		dest += c;
516 		ea += c;
517 	}
518 	return 0;
519 
520 Efault:
521 	regs->dar = ea;
522 	return -EFAULT;
523 }
524 
525 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
526 {
527 	int err;
528 
529 	if (is_kernel_addr(ea))
530 		return __copy_mem_out(dest, ea, nb, regs);
531 
532 	if (user_write_access_begin((void __user *)ea, nb)) {
533 		err = __copy_mem_out(dest, ea, nb, regs);
534 		user_write_access_end();
535 	} else {
536 		err = -EFAULT;
537 		regs->dar = ea;
538 	}
539 
540 	return err;
541 }
542 
543 static nokprobe_inline int write_mem_unaligned(unsigned long val,
544 					       unsigned long ea, int nb,
545 					       struct pt_regs *regs)
546 {
547 	union {
548 		unsigned long ul;
549 		u8 b[sizeof(unsigned long)];
550 	} u;
551 	int i;
552 
553 	u.ul = val;
554 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
555 	return copy_mem_out(&u.b[i], ea, nb, regs);
556 }
557 
558 /*
559  * Write memory at address ea for nb bytes, return 0 for success
560  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
561  */
562 static int write_mem(unsigned long val, unsigned long ea, int nb,
563 			       struct pt_regs *regs)
564 {
565 	if (!address_ok(regs, ea, nb))
566 		return -EFAULT;
567 	if ((ea & (nb - 1)) == 0)
568 		return write_mem_aligned(val, ea, nb, regs);
569 	return write_mem_unaligned(val, ea, nb, regs);
570 }
571 NOKPROBE_SYMBOL(write_mem);
572 
573 #ifdef CONFIG_PPC_FPU
574 /*
575  * These access either the real FP register or the image in the
576  * thread_struct, depending on regs->msr & MSR_FP.
577  */
578 static int do_fp_load(struct instruction_op *op, unsigned long ea,
579 		      struct pt_regs *regs, bool cross_endian)
580 {
581 	int err, rn, nb;
582 	union {
583 		int i;
584 		unsigned int u;
585 		float f;
586 		double d[2];
587 		unsigned long l[2];
588 		u8 b[2 * sizeof(double)];
589 	} u;
590 
591 	nb = GETSIZE(op->type);
592 	if (!address_ok(regs, ea, nb))
593 		return -EFAULT;
594 	rn = op->reg;
595 	err = copy_mem_in(u.b, ea, nb, regs);
596 	if (err)
597 		return err;
598 	if (unlikely(cross_endian)) {
599 		do_byte_reverse(u.b, min(nb, 8));
600 		if (nb == 16)
601 			do_byte_reverse(&u.b[8], 8);
602 	}
603 	preempt_disable();
604 	if (nb == 4) {
605 		if (op->type & FPCONV)
606 			conv_sp_to_dp(&u.f, &u.d[0]);
607 		else if (op->type & SIGNEXT)
608 			u.l[0] = u.i;
609 		else
610 			u.l[0] = u.u;
611 	}
612 	if (regs->msr & MSR_FP)
613 		put_fpr(rn, &u.d[0]);
614 	else
615 		current->thread.TS_FPR(rn) = u.l[0];
616 	if (nb == 16) {
617 		/* lfdp */
618 		rn |= 1;
619 		if (regs->msr & MSR_FP)
620 			put_fpr(rn, &u.d[1]);
621 		else
622 			current->thread.TS_FPR(rn) = u.l[1];
623 	}
624 	preempt_enable();
625 	return 0;
626 }
627 NOKPROBE_SYMBOL(do_fp_load);
628 
629 static int do_fp_store(struct instruction_op *op, unsigned long ea,
630 		       struct pt_regs *regs, bool cross_endian)
631 {
632 	int rn, nb;
633 	union {
634 		unsigned int u;
635 		float f;
636 		double d[2];
637 		unsigned long l[2];
638 		u8 b[2 * sizeof(double)];
639 	} u;
640 
641 	nb = GETSIZE(op->type);
642 	if (!address_ok(regs, ea, nb))
643 		return -EFAULT;
644 	rn = op->reg;
645 	preempt_disable();
646 	if (regs->msr & MSR_FP)
647 		get_fpr(rn, &u.d[0]);
648 	else
649 		u.l[0] = current->thread.TS_FPR(rn);
650 	if (nb == 4) {
651 		if (op->type & FPCONV)
652 			conv_dp_to_sp(&u.d[0], &u.f);
653 		else
654 			u.u = u.l[0];
655 	}
656 	if (nb == 16) {
657 		rn |= 1;
658 		if (regs->msr & MSR_FP)
659 			get_fpr(rn, &u.d[1]);
660 		else
661 			u.l[1] = current->thread.TS_FPR(rn);
662 	}
663 	preempt_enable();
664 	if (unlikely(cross_endian)) {
665 		do_byte_reverse(u.b, min(nb, 8));
666 		if (nb == 16)
667 			do_byte_reverse(&u.b[8], 8);
668 	}
669 	return copy_mem_out(u.b, ea, nb, regs);
670 }
671 NOKPROBE_SYMBOL(do_fp_store);
672 #endif
673 
674 #ifdef CONFIG_ALTIVEC
675 /* For Altivec/VMX, no need to worry about alignment */
676 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
677 				       int size, struct pt_regs *regs,
678 				       bool cross_endian)
679 {
680 	int err;
681 	union {
682 		__vector128 v;
683 		u8 b[sizeof(__vector128)];
684 	} u = {};
685 
686 	if (!address_ok(regs, ea & ~0xfUL, 16))
687 		return -EFAULT;
688 	/* align to multiple of size */
689 	ea &= ~(size - 1);
690 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
691 	if (err)
692 		return err;
693 	if (unlikely(cross_endian))
694 		do_byte_reverse(&u.b[ea & 0xf], size);
695 	preempt_disable();
696 	if (regs->msr & MSR_VEC)
697 		put_vr(rn, &u.v);
698 	else
699 		current->thread.vr_state.vr[rn] = u.v;
700 	preempt_enable();
701 	return 0;
702 }
703 
704 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
705 					int size, struct pt_regs *regs,
706 					bool cross_endian)
707 {
708 	union {
709 		__vector128 v;
710 		u8 b[sizeof(__vector128)];
711 	} u;
712 
713 	if (!address_ok(regs, ea & ~0xfUL, 16))
714 		return -EFAULT;
715 	/* align to multiple of size */
716 	ea &= ~(size - 1);
717 
718 	preempt_disable();
719 	if (regs->msr & MSR_VEC)
720 		get_vr(rn, &u.v);
721 	else
722 		u.v = current->thread.vr_state.vr[rn];
723 	preempt_enable();
724 	if (unlikely(cross_endian))
725 		do_byte_reverse(&u.b[ea & 0xf], size);
726 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
727 }
728 #endif /* CONFIG_ALTIVEC */
729 
730 #ifdef __powerpc64__
731 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
732 				      int reg, bool cross_endian)
733 {
734 	int err;
735 
736 	if (!address_ok(regs, ea, 16))
737 		return -EFAULT;
738 	/* if aligned, should be atomic */
739 	if ((ea & 0xf) == 0) {
740 		err = do_lq(ea, &regs->gpr[reg]);
741 	} else {
742 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
743 		if (!err)
744 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
745 	}
746 	if (!err && unlikely(cross_endian))
747 		do_byte_reverse(&regs->gpr[reg], 16);
748 	return err;
749 }
750 
751 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
752 				       int reg, bool cross_endian)
753 {
754 	int err;
755 	unsigned long vals[2];
756 
757 	if (!address_ok(regs, ea, 16))
758 		return -EFAULT;
759 	vals[0] = regs->gpr[reg];
760 	vals[1] = regs->gpr[reg + 1];
761 	if (unlikely(cross_endian))
762 		do_byte_reverse(vals, 16);
763 
764 	/* if aligned, should be atomic */
765 	if ((ea & 0xf) == 0)
766 		return do_stq(ea, vals[0], vals[1]);
767 
768 	err = write_mem(vals[IS_LE], ea, 8, regs);
769 	if (!err)
770 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
771 	return err;
772 }
773 #endif /* __powerpc64 */
774 
775 #ifdef CONFIG_VSX
776 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
777 		      const void *mem, bool rev)
778 {
779 	int size, read_size;
780 	int i, j;
781 	const unsigned int *wp;
782 	const unsigned short *hp;
783 	const unsigned char *bp;
784 
785 	size = GETSIZE(op->type);
786 	reg->d[0] = reg->d[1] = 0;
787 
788 	switch (op->element_size) {
789 	case 32:
790 		/* [p]lxvp[x] */
791 	case 16:
792 		/* whole vector; lxv[x] or lxvl[l] */
793 		if (size == 0)
794 			break;
795 		memcpy(reg, mem, size);
796 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
797 			rev = !rev;
798 		if (rev)
799 			do_byte_reverse(reg, size);
800 		break;
801 	case 8:
802 		/* scalar loads, lxvd2x, lxvdsx */
803 		read_size = (size >= 8) ? 8 : size;
804 		i = IS_LE ? 8 : 8 - read_size;
805 		memcpy(&reg->b[i], mem, read_size);
806 		if (rev)
807 			do_byte_reverse(&reg->b[i], 8);
808 		if (size < 8) {
809 			if (op->type & SIGNEXT) {
810 				/* size == 4 is the only case here */
811 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
812 			} else if (op->vsx_flags & VSX_FPCONV) {
813 				preempt_disable();
814 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
815 					      &reg->dp[IS_LE]);
816 				preempt_enable();
817 			}
818 		} else {
819 			if (size == 16) {
820 				unsigned long v = *(unsigned long *)(mem + 8);
821 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
822 			} else if (op->vsx_flags & VSX_SPLAT)
823 				reg->d[IS_BE] = reg->d[IS_LE];
824 		}
825 		break;
826 	case 4:
827 		/* lxvw4x, lxvwsx */
828 		wp = mem;
829 		for (j = 0; j < size / 4; ++j) {
830 			i = IS_LE ? 3 - j : j;
831 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
832 		}
833 		if (op->vsx_flags & VSX_SPLAT) {
834 			u32 val = reg->w[IS_LE ? 3 : 0];
835 			for (; j < 4; ++j) {
836 				i = IS_LE ? 3 - j : j;
837 				reg->w[i] = val;
838 			}
839 		}
840 		break;
841 	case 2:
842 		/* lxvh8x */
843 		hp = mem;
844 		for (j = 0; j < size / 2; ++j) {
845 			i = IS_LE ? 7 - j : j;
846 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
847 		}
848 		break;
849 	case 1:
850 		/* lxvb16x */
851 		bp = mem;
852 		for (j = 0; j < size; ++j) {
853 			i = IS_LE ? 15 - j : j;
854 			reg->b[i] = *bp++;
855 		}
856 		break;
857 	}
858 }
859 EXPORT_SYMBOL_GPL(emulate_vsx_load);
860 NOKPROBE_SYMBOL(emulate_vsx_load);
861 
862 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
863 		       void *mem, bool rev)
864 {
865 	int size, write_size;
866 	int i, j;
867 	union vsx_reg buf;
868 	unsigned int *wp;
869 	unsigned short *hp;
870 	unsigned char *bp;
871 
872 	size = GETSIZE(op->type);
873 
874 	switch (op->element_size) {
875 	case 32:
876 		/* [p]stxvp[x] */
877 		if (size == 0)
878 			break;
879 		if (rev) {
880 			/* reverse 32 bytes */
881 			union vsx_reg buf32[2];
882 			buf32[0].d[0] = byterev_8(reg[1].d[1]);
883 			buf32[0].d[1] = byterev_8(reg[1].d[0]);
884 			buf32[1].d[0] = byterev_8(reg[0].d[1]);
885 			buf32[1].d[1] = byterev_8(reg[0].d[0]);
886 			memcpy(mem, buf32, size);
887 		} else {
888 			memcpy(mem, reg, size);
889 		}
890 		break;
891 	case 16:
892 		/* stxv, stxvx, stxvl, stxvll */
893 		if (size == 0)
894 			break;
895 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
896 			rev = !rev;
897 		if (rev) {
898 			/* reverse 16 bytes */
899 			buf.d[0] = byterev_8(reg->d[1]);
900 			buf.d[1] = byterev_8(reg->d[0]);
901 			reg = &buf;
902 		}
903 		memcpy(mem, reg, size);
904 		break;
905 	case 8:
906 		/* scalar stores, stxvd2x */
907 		write_size = (size >= 8) ? 8 : size;
908 		i = IS_LE ? 8 : 8 - write_size;
909 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
910 			buf.d[0] = buf.d[1] = 0;
911 			preempt_disable();
912 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
913 			preempt_enable();
914 			reg = &buf;
915 		}
916 		memcpy(mem, &reg->b[i], write_size);
917 		if (size == 16)
918 			memcpy(mem + 8, &reg->d[IS_BE], 8);
919 		if (unlikely(rev)) {
920 			do_byte_reverse(mem, write_size);
921 			if (size == 16)
922 				do_byte_reverse(mem + 8, 8);
923 		}
924 		break;
925 	case 4:
926 		/* stxvw4x */
927 		wp = mem;
928 		for (j = 0; j < size / 4; ++j) {
929 			i = IS_LE ? 3 - j : j;
930 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
931 		}
932 		break;
933 	case 2:
934 		/* stxvh8x */
935 		hp = mem;
936 		for (j = 0; j < size / 2; ++j) {
937 			i = IS_LE ? 7 - j : j;
938 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
939 		}
940 		break;
941 	case 1:
942 		/* stvxb16x */
943 		bp = mem;
944 		for (j = 0; j < size; ++j) {
945 			i = IS_LE ? 15 - j : j;
946 			*bp++ = reg->b[i];
947 		}
948 		break;
949 	}
950 }
951 EXPORT_SYMBOL_GPL(emulate_vsx_store);
952 NOKPROBE_SYMBOL(emulate_vsx_store);
953 
954 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
955 				       unsigned long ea, struct pt_regs *regs,
956 				       bool cross_endian)
957 {
958 	int reg = op->reg;
959 	int i, j, nr_vsx_regs;
960 	u8 mem[32];
961 	union vsx_reg buf[2];
962 	int size = GETSIZE(op->type);
963 
964 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
965 		return -EFAULT;
966 
967 	nr_vsx_regs = max(1ul, size / sizeof(__vector128));
968 	emulate_vsx_load(op, buf, mem, cross_endian);
969 	preempt_disable();
970 	if (reg < 32) {
971 		/* FP regs + extensions */
972 		if (regs->msr & MSR_FP) {
973 			for (i = 0; i < nr_vsx_regs; i++) {
974 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
975 				load_vsrn(reg + i, &buf[j].v);
976 			}
977 		} else {
978 			for (i = 0; i < nr_vsx_regs; i++) {
979 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
980 				current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
981 				current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
982 			}
983 		}
984 	} else {
985 		if (regs->msr & MSR_VEC) {
986 			for (i = 0; i < nr_vsx_regs; i++) {
987 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
988 				load_vsrn(reg + i, &buf[j].v);
989 			}
990 		} else {
991 			for (i = 0; i < nr_vsx_regs; i++) {
992 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
993 				current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
994 			}
995 		}
996 	}
997 	preempt_enable();
998 	return 0;
999 }
1000 
1001 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1002 					unsigned long ea, struct pt_regs *regs,
1003 					bool cross_endian)
1004 {
1005 	int reg = op->reg;
1006 	int i, j, nr_vsx_regs;
1007 	u8 mem[32];
1008 	union vsx_reg buf[2];
1009 	int size = GETSIZE(op->type);
1010 
1011 	if (!address_ok(regs, ea, size))
1012 		return -EFAULT;
1013 
1014 	nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1015 	preempt_disable();
1016 	if (reg < 32) {
1017 		/* FP regs + extensions */
1018 		if (regs->msr & MSR_FP) {
1019 			for (i = 0; i < nr_vsx_regs; i++) {
1020 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1021 				store_vsrn(reg + i, &buf[j].v);
1022 			}
1023 		} else {
1024 			for (i = 0; i < nr_vsx_regs; i++) {
1025 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1026 				buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1027 				buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1028 			}
1029 		}
1030 	} else {
1031 		if (regs->msr & MSR_VEC) {
1032 			for (i = 0; i < nr_vsx_regs; i++) {
1033 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1034 				store_vsrn(reg + i, &buf[j].v);
1035 			}
1036 		} else {
1037 			for (i = 0; i < nr_vsx_regs; i++) {
1038 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1039 				buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1040 			}
1041 		}
1042 	}
1043 	preempt_enable();
1044 	emulate_vsx_store(op, buf, mem, cross_endian);
1045 	return  copy_mem_out(mem, ea, size, regs);
1046 }
1047 #endif /* CONFIG_VSX */
1048 
1049 static int __emulate_dcbz(unsigned long ea)
1050 {
1051 	unsigned long i;
1052 	unsigned long size = l1_dcache_bytes();
1053 
1054 	for (i = 0; i < size; i += sizeof(long))
1055 		unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1056 
1057 	return 0;
1058 
1059 Efault:
1060 	return -EFAULT;
1061 }
1062 
1063 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1064 {
1065 	int err;
1066 	unsigned long size = l1_dcache_bytes();
1067 
1068 	ea = truncate_if_32bit(regs->msr, ea);
1069 	ea &= ~(size - 1);
1070 	if (!address_ok(regs, ea, size))
1071 		return -EFAULT;
1072 
1073 	if (is_kernel_addr(ea)) {
1074 		err = __emulate_dcbz(ea);
1075 	} else if (user_write_access_begin((void __user *)ea, size)) {
1076 		err = __emulate_dcbz(ea);
1077 		user_write_access_end();
1078 	} else {
1079 		err = -EFAULT;
1080 	}
1081 
1082 	if (err)
1083 		regs->dar = ea;
1084 
1085 
1086 	return err;
1087 }
1088 NOKPROBE_SYMBOL(emulate_dcbz);
1089 
1090 #define __put_user_asmx(x, addr, err, op, cr)		\
1091 	__asm__ __volatile__(				\
1092 		"1:	" op " %2,0,%3\n"		\
1093 		"	mfcr	%1\n"			\
1094 		"2:\n"					\
1095 		".section .fixup,\"ax\"\n"		\
1096 		"3:	li	%0,%4\n"		\
1097 		"	b	2b\n"			\
1098 		".previous\n"				\
1099 		EX_TABLE(1b, 3b)			\
1100 		: "=r" (err), "=r" (cr)			\
1101 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1102 
1103 #define __get_user_asmx(x, addr, err, op)		\
1104 	__asm__ __volatile__(				\
1105 		"1:	"op" %1,0,%2\n"			\
1106 		"2:\n"					\
1107 		".section .fixup,\"ax\"\n"		\
1108 		"3:	li	%0,%3\n"		\
1109 		"	b	2b\n"			\
1110 		".previous\n"				\
1111 		EX_TABLE(1b, 3b)			\
1112 		: "=r" (err), "=r" (x)			\
1113 		: "r" (addr), "i" (-EFAULT), "0" (err))
1114 
1115 #define __cacheop_user_asmx(addr, err, op)		\
1116 	__asm__ __volatile__(				\
1117 		"1:	"op" 0,%1\n"			\
1118 		"2:\n"					\
1119 		".section .fixup,\"ax\"\n"		\
1120 		"3:	li	%0,%3\n"		\
1121 		"	b	2b\n"			\
1122 		".previous\n"				\
1123 		EX_TABLE(1b, 3b)			\
1124 		: "=r" (err)				\
1125 		: "r" (addr), "i" (-EFAULT), "0" (err))
1126 
1127 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1128 				    struct instruction_op *op)
1129 {
1130 	long val = op->val;
1131 
1132 	op->type |= SETCC;
1133 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1134 	if (!(regs->msr & MSR_64BIT))
1135 		val = (int) val;
1136 	if (val < 0)
1137 		op->ccval |= 0x80000000;
1138 	else if (val > 0)
1139 		op->ccval |= 0x40000000;
1140 	else
1141 		op->ccval |= 0x20000000;
1142 }
1143 
1144 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1145 {
1146 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1147 		if (val)
1148 			op->xerval |= XER_CA32;
1149 		else
1150 			op->xerval &= ~XER_CA32;
1151 	}
1152 }
1153 
1154 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1155 				     struct instruction_op *op, int rd,
1156 				     unsigned long val1, unsigned long val2,
1157 				     unsigned long carry_in)
1158 {
1159 	unsigned long val = val1 + val2;
1160 
1161 	if (carry_in)
1162 		++val;
1163 	op->type = COMPUTE + SETREG + SETXER;
1164 	op->reg = rd;
1165 	op->val = val;
1166 	val = truncate_if_32bit(regs->msr, val);
1167 	val1 = truncate_if_32bit(regs->msr, val1);
1168 	op->xerval = regs->xer;
1169 	if (val < val1 || (carry_in && val == val1))
1170 		op->xerval |= XER_CA;
1171 	else
1172 		op->xerval &= ~XER_CA;
1173 
1174 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1175 			(carry_in && (unsigned int)val == (unsigned int)val1));
1176 }
1177 
1178 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1179 					  struct instruction_op *op,
1180 					  long v1, long v2, int crfld)
1181 {
1182 	unsigned int crval, shift;
1183 
1184 	op->type = COMPUTE + SETCC;
1185 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1186 	if (v1 < v2)
1187 		crval |= 8;
1188 	else if (v1 > v2)
1189 		crval |= 4;
1190 	else
1191 		crval |= 2;
1192 	shift = (7 - crfld) * 4;
1193 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1194 }
1195 
1196 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1197 					    struct instruction_op *op,
1198 					    unsigned long v1,
1199 					    unsigned long v2, int crfld)
1200 {
1201 	unsigned int crval, shift;
1202 
1203 	op->type = COMPUTE + SETCC;
1204 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1205 	if (v1 < v2)
1206 		crval |= 8;
1207 	else if (v1 > v2)
1208 		crval |= 4;
1209 	else
1210 		crval |= 2;
1211 	shift = (7 - crfld) * 4;
1212 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1213 }
1214 
1215 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1216 				    struct instruction_op *op,
1217 				    unsigned long v1, unsigned long v2)
1218 {
1219 	unsigned long long out_val, mask;
1220 	int i;
1221 
1222 	out_val = 0;
1223 	for (i = 0; i < 8; i++) {
1224 		mask = 0xffUL << (i * 8);
1225 		if ((v1 & mask) == (v2 & mask))
1226 			out_val |= mask;
1227 	}
1228 	op->val = out_val;
1229 }
1230 
1231 /*
1232  * The size parameter is used to adjust the equivalent popcnt instruction.
1233  * popcntb = 8, popcntw = 32, popcntd = 64
1234  */
1235 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1236 				      struct instruction_op *op,
1237 				      unsigned long v1, int size)
1238 {
1239 	unsigned long long out = v1;
1240 
1241 	out -= (out >> 1) & 0x5555555555555555ULL;
1242 	out = (0x3333333333333333ULL & out) +
1243 	      (0x3333333333333333ULL & (out >> 2));
1244 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1245 
1246 	if (size == 8) {	/* popcntb */
1247 		op->val = out;
1248 		return;
1249 	}
1250 	out += out >> 8;
1251 	out += out >> 16;
1252 	if (size == 32) {	/* popcntw */
1253 		op->val = out & 0x0000003f0000003fULL;
1254 		return;
1255 	}
1256 
1257 	out = (out + (out >> 32)) & 0x7f;
1258 	op->val = out;	/* popcntd */
1259 }
1260 
1261 #ifdef CONFIG_PPC64
1262 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1263 				      struct instruction_op *op,
1264 				      unsigned long v1, unsigned long v2)
1265 {
1266 	unsigned char perm, idx;
1267 	unsigned int i;
1268 
1269 	perm = 0;
1270 	for (i = 0; i < 8; i++) {
1271 		idx = (v1 >> (i * 8)) & 0xff;
1272 		if (idx < 64)
1273 			if (v2 & PPC_BIT(idx))
1274 				perm |= 1 << i;
1275 	}
1276 	op->val = perm;
1277 }
1278 #endif /* CONFIG_PPC64 */
1279 /*
1280  * The size parameter adjusts the equivalent prty instruction.
1281  * prtyw = 32, prtyd = 64
1282  */
1283 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1284 				    struct instruction_op *op,
1285 				    unsigned long v, int size)
1286 {
1287 	unsigned long long res = v ^ (v >> 8);
1288 
1289 	res ^= res >> 16;
1290 	if (size == 32) {		/* prtyw */
1291 		op->val = res & 0x0000000100000001ULL;
1292 		return;
1293 	}
1294 
1295 	res ^= res >> 32;
1296 	op->val = res & 1;	/*prtyd */
1297 }
1298 
1299 static nokprobe_inline int trap_compare(long v1, long v2)
1300 {
1301 	int ret = 0;
1302 
1303 	if (v1 < v2)
1304 		ret |= 0x10;
1305 	else if (v1 > v2)
1306 		ret |= 0x08;
1307 	else
1308 		ret |= 0x04;
1309 	if ((unsigned long)v1 < (unsigned long)v2)
1310 		ret |= 0x02;
1311 	else if ((unsigned long)v1 > (unsigned long)v2)
1312 		ret |= 0x01;
1313 	return ret;
1314 }
1315 
1316 /*
1317  * Elements of 32-bit rotate and mask instructions.
1318  */
1319 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1320 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1321 #ifdef __powerpc64__
1322 #define MASK64_L(mb)	(~0UL >> (mb))
1323 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1324 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1325 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1326 #else
1327 #define DATA32(x)	(x)
1328 #endif
1329 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1330 
1331 /*
1332  * Decode an instruction, and return information about it in *op
1333  * without changing *regs.
1334  * Integer arithmetic and logical instructions, branches, and barrier
1335  * instructions can be emulated just using the information in *op.
1336  *
1337  * Return value is 1 if the instruction can be emulated just by
1338  * updating *regs with the information in *op, -1 if we need the
1339  * GPRs but *regs doesn't contain the full register set, or 0
1340  * otherwise.
1341  */
1342 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1343 		  ppc_inst_t instr)
1344 {
1345 #ifdef CONFIG_PPC64
1346 	unsigned int suffixopcode, prefixtype, prefix_r;
1347 #endif
1348 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1349 	unsigned long int imm;
1350 	unsigned long int val, val2;
1351 	unsigned int mb, me, sh;
1352 	unsigned int word, suffix;
1353 	long ival;
1354 
1355 	word = ppc_inst_val(instr);
1356 	suffix = ppc_inst_suffix(instr);
1357 
1358 	op->type = COMPUTE;
1359 
1360 	opcode = ppc_inst_primary_opcode(instr);
1361 	switch (opcode) {
1362 	case 16:	/* bc */
1363 		op->type = BRANCH;
1364 		imm = (signed short)(word & 0xfffc);
1365 		if ((word & 2) == 0)
1366 			imm += regs->nip;
1367 		op->val = truncate_if_32bit(regs->msr, imm);
1368 		if (word & 1)
1369 			op->type |= SETLK;
1370 		if (branch_taken(word, regs, op))
1371 			op->type |= BRTAKEN;
1372 		return 1;
1373 #ifdef CONFIG_PPC64
1374 	case 17:	/* sc */
1375 		if ((word & 0xfe2) == 2)
1376 			op->type = SYSCALL;
1377 		else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1378 				(word & 0xfe3) == 1) {	/* scv */
1379 			op->type = SYSCALL_VECTORED_0;
1380 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1381 				goto unknown_opcode;
1382 		} else
1383 			op->type = UNKNOWN;
1384 		return 0;
1385 #endif
1386 	case 18:	/* b */
1387 		op->type = BRANCH | BRTAKEN;
1388 		imm = word & 0x03fffffc;
1389 		if (imm & 0x02000000)
1390 			imm -= 0x04000000;
1391 		if ((word & 2) == 0)
1392 			imm += regs->nip;
1393 		op->val = truncate_if_32bit(regs->msr, imm);
1394 		if (word & 1)
1395 			op->type |= SETLK;
1396 		return 1;
1397 	case 19:
1398 		switch ((word >> 1) & 0x3ff) {
1399 		case 0:		/* mcrf */
1400 			op->type = COMPUTE + SETCC;
1401 			rd = 7 - ((word >> 23) & 0x7);
1402 			ra = 7 - ((word >> 18) & 0x7);
1403 			rd *= 4;
1404 			ra *= 4;
1405 			val = (regs->ccr >> ra) & 0xf;
1406 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1407 			return 1;
1408 
1409 		case 16:	/* bclr */
1410 		case 528:	/* bcctr */
1411 			op->type = BRANCH;
1412 			imm = (word & 0x400)? regs->ctr: regs->link;
1413 			op->val = truncate_if_32bit(regs->msr, imm);
1414 			if (word & 1)
1415 				op->type |= SETLK;
1416 			if (branch_taken(word, regs, op))
1417 				op->type |= BRTAKEN;
1418 			return 1;
1419 
1420 		case 18:	/* rfid, scary */
1421 			if (regs->msr & MSR_PR)
1422 				goto priv;
1423 			op->type = RFI;
1424 			return 0;
1425 
1426 		case 150:	/* isync */
1427 			op->type = BARRIER | BARRIER_ISYNC;
1428 			return 1;
1429 
1430 		case 33:	/* crnor */
1431 		case 129:	/* crandc */
1432 		case 193:	/* crxor */
1433 		case 225:	/* crnand */
1434 		case 257:	/* crand */
1435 		case 289:	/* creqv */
1436 		case 417:	/* crorc */
1437 		case 449:	/* cror */
1438 			op->type = COMPUTE + SETCC;
1439 			ra = (word >> 16) & 0x1f;
1440 			rb = (word >> 11) & 0x1f;
1441 			rd = (word >> 21) & 0x1f;
1442 			ra = (regs->ccr >> (31 - ra)) & 1;
1443 			rb = (regs->ccr >> (31 - rb)) & 1;
1444 			val = (word >> (6 + ra * 2 + rb)) & 1;
1445 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1446 				(val << (31 - rd));
1447 			return 1;
1448 		}
1449 		break;
1450 	case 31:
1451 		switch ((word >> 1) & 0x3ff) {
1452 		case 598:	/* sync */
1453 			op->type = BARRIER + BARRIER_SYNC;
1454 #ifdef __powerpc64__
1455 			switch ((word >> 21) & 3) {
1456 			case 1:		/* lwsync */
1457 				op->type = BARRIER + BARRIER_LWSYNC;
1458 				break;
1459 			case 2:		/* ptesync */
1460 				op->type = BARRIER + BARRIER_PTESYNC;
1461 				break;
1462 			}
1463 #endif
1464 			return 1;
1465 
1466 		case 854:	/* eieio */
1467 			op->type = BARRIER + BARRIER_EIEIO;
1468 			return 1;
1469 		}
1470 		break;
1471 	}
1472 
1473 	rd = (word >> 21) & 0x1f;
1474 	ra = (word >> 16) & 0x1f;
1475 	rb = (word >> 11) & 0x1f;
1476 	rc = (word >> 6) & 0x1f;
1477 
1478 	switch (opcode) {
1479 #ifdef __powerpc64__
1480 	case 1:
1481 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
1482 			goto unknown_opcode;
1483 
1484 		prefix_r = GET_PREFIX_R(word);
1485 		ra = GET_PREFIX_RA(suffix);
1486 		rd = (suffix >> 21) & 0x1f;
1487 		op->reg = rd;
1488 		op->val = regs->gpr[rd];
1489 		suffixopcode = get_op(suffix);
1490 		prefixtype = (word >> 24) & 0x3;
1491 		switch (prefixtype) {
1492 		case 2:
1493 			if (prefix_r && ra)
1494 				return 0;
1495 			switch (suffixopcode) {
1496 			case 14:	/* paddi */
1497 				op->type = COMPUTE | PREFIXED;
1498 				op->val = mlsd_8lsd_ea(word, suffix, regs);
1499 				goto compute_done;
1500 			}
1501 		}
1502 		break;
1503 	case 2:		/* tdi */
1504 		if (rd & trap_compare(regs->gpr[ra], (short) word))
1505 			goto trap;
1506 		return 1;
1507 #endif
1508 	case 3:		/* twi */
1509 		if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1510 			goto trap;
1511 		return 1;
1512 
1513 #ifdef __powerpc64__
1514 	case 4:
1515 		/*
1516 		 * There are very many instructions with this primary opcode
1517 		 * introduced in the ISA as early as v2.03. However, the ones
1518 		 * we currently emulate were all introduced with ISA 3.0
1519 		 */
1520 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1521 			goto unknown_opcode;
1522 
1523 		switch (word & 0x3f) {
1524 		case 48:	/* maddhd */
1525 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1526 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1527 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1528 			goto compute_done;
1529 
1530 		case 49:	/* maddhdu */
1531 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1532 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1533 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1534 			goto compute_done;
1535 
1536 		case 51:	/* maddld */
1537 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1538 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1539 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1540 			goto compute_done;
1541 		}
1542 
1543 		/*
1544 		 * There are other instructions from ISA 3.0 with the same
1545 		 * primary opcode which do not have emulation support yet.
1546 		 */
1547 		goto unknown_opcode;
1548 #endif
1549 
1550 	case 7:		/* mulli */
1551 		op->val = regs->gpr[ra] * (short) word;
1552 		goto compute_done;
1553 
1554 	case 8:		/* subfic */
1555 		imm = (short) word;
1556 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1557 		return 1;
1558 
1559 	case 10:	/* cmpli */
1560 		imm = (unsigned short) word;
1561 		val = regs->gpr[ra];
1562 #ifdef __powerpc64__
1563 		if ((rd & 1) == 0)
1564 			val = (unsigned int) val;
1565 #endif
1566 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1567 		return 1;
1568 
1569 	case 11:	/* cmpi */
1570 		imm = (short) word;
1571 		val = regs->gpr[ra];
1572 #ifdef __powerpc64__
1573 		if ((rd & 1) == 0)
1574 			val = (int) val;
1575 #endif
1576 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1577 		return 1;
1578 
1579 	case 12:	/* addic */
1580 		imm = (short) word;
1581 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1582 		return 1;
1583 
1584 	case 13:	/* addic. */
1585 		imm = (short) word;
1586 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1587 		set_cr0(regs, op);
1588 		return 1;
1589 
1590 	case 14:	/* addi */
1591 		imm = (short) word;
1592 		if (ra)
1593 			imm += regs->gpr[ra];
1594 		op->val = imm;
1595 		goto compute_done;
1596 
1597 	case 15:	/* addis */
1598 		imm = ((short) word) << 16;
1599 		if (ra)
1600 			imm += regs->gpr[ra];
1601 		op->val = imm;
1602 		goto compute_done;
1603 
1604 	case 19:
1605 		if (((word >> 1) & 0x1f) == 2) {
1606 			/* addpcis */
1607 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1608 				goto unknown_opcode;
1609 			imm = (short) (word & 0xffc1);	/* d0 + d2 fields */
1610 			imm |= (word >> 15) & 0x3e;	/* d1 field */
1611 			op->val = regs->nip + (imm << 16) + 4;
1612 			goto compute_done;
1613 		}
1614 		op->type = UNKNOWN;
1615 		return 0;
1616 
1617 	case 20:	/* rlwimi */
1618 		mb = (word >> 6) & 0x1f;
1619 		me = (word >> 1) & 0x1f;
1620 		val = DATA32(regs->gpr[rd]);
1621 		imm = MASK32(mb, me);
1622 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1623 		goto logical_done;
1624 
1625 	case 21:	/* rlwinm */
1626 		mb = (word >> 6) & 0x1f;
1627 		me = (word >> 1) & 0x1f;
1628 		val = DATA32(regs->gpr[rd]);
1629 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1630 		goto logical_done;
1631 
1632 	case 23:	/* rlwnm */
1633 		mb = (word >> 6) & 0x1f;
1634 		me = (word >> 1) & 0x1f;
1635 		rb = regs->gpr[rb] & 0x1f;
1636 		val = DATA32(regs->gpr[rd]);
1637 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1638 		goto logical_done;
1639 
1640 	case 24:	/* ori */
1641 		op->val = regs->gpr[rd] | (unsigned short) word;
1642 		goto logical_done_nocc;
1643 
1644 	case 25:	/* oris */
1645 		imm = (unsigned short) word;
1646 		op->val = regs->gpr[rd] | (imm << 16);
1647 		goto logical_done_nocc;
1648 
1649 	case 26:	/* xori */
1650 		op->val = regs->gpr[rd] ^ (unsigned short) word;
1651 		goto logical_done_nocc;
1652 
1653 	case 27:	/* xoris */
1654 		imm = (unsigned short) word;
1655 		op->val = regs->gpr[rd] ^ (imm << 16);
1656 		goto logical_done_nocc;
1657 
1658 	case 28:	/* andi. */
1659 		op->val = regs->gpr[rd] & (unsigned short) word;
1660 		set_cr0(regs, op);
1661 		goto logical_done_nocc;
1662 
1663 	case 29:	/* andis. */
1664 		imm = (unsigned short) word;
1665 		op->val = regs->gpr[rd] & (imm << 16);
1666 		set_cr0(regs, op);
1667 		goto logical_done_nocc;
1668 
1669 #ifdef __powerpc64__
1670 	case 30:	/* rld* */
1671 		mb = ((word >> 6) & 0x1f) | (word & 0x20);
1672 		val = regs->gpr[rd];
1673 		if ((word & 0x10) == 0) {
1674 			sh = rb | ((word & 2) << 4);
1675 			val = ROTATE(val, sh);
1676 			switch ((word >> 2) & 3) {
1677 			case 0:		/* rldicl */
1678 				val &= MASK64_L(mb);
1679 				break;
1680 			case 1:		/* rldicr */
1681 				val &= MASK64_R(mb);
1682 				break;
1683 			case 2:		/* rldic */
1684 				val &= MASK64(mb, 63 - sh);
1685 				break;
1686 			case 3:		/* rldimi */
1687 				imm = MASK64(mb, 63 - sh);
1688 				val = (regs->gpr[ra] & ~imm) |
1689 					(val & imm);
1690 			}
1691 			op->val = val;
1692 			goto logical_done;
1693 		} else {
1694 			sh = regs->gpr[rb] & 0x3f;
1695 			val = ROTATE(val, sh);
1696 			switch ((word >> 1) & 7) {
1697 			case 0:		/* rldcl */
1698 				op->val = val & MASK64_L(mb);
1699 				goto logical_done;
1700 			case 1:		/* rldcr */
1701 				op->val = val & MASK64_R(mb);
1702 				goto logical_done;
1703 			}
1704 		}
1705 #endif
1706 		op->type = UNKNOWN;	/* illegal instruction */
1707 		return 0;
1708 
1709 	case 31:
1710 		/* isel occupies 32 minor opcodes */
1711 		if (((word >> 1) & 0x1f) == 15) {
1712 			mb = (word >> 6) & 0x1f; /* bc field */
1713 			val = (regs->ccr >> (31 - mb)) & 1;
1714 			val2 = (ra) ? regs->gpr[ra] : 0;
1715 
1716 			op->val = (val) ? val2 : regs->gpr[rb];
1717 			goto compute_done;
1718 		}
1719 
1720 		switch ((word >> 1) & 0x3ff) {
1721 		case 4:		/* tw */
1722 			if (rd == 0x1f ||
1723 			    (rd & trap_compare((int)regs->gpr[ra],
1724 					       (int)regs->gpr[rb])))
1725 				goto trap;
1726 			return 1;
1727 #ifdef __powerpc64__
1728 		case 68:	/* td */
1729 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1730 				goto trap;
1731 			return 1;
1732 #endif
1733 		case 83:	/* mfmsr */
1734 			if (regs->msr & MSR_PR)
1735 				goto priv;
1736 			op->type = MFMSR;
1737 			op->reg = rd;
1738 			return 0;
1739 		case 146:	/* mtmsr */
1740 			if (regs->msr & MSR_PR)
1741 				goto priv;
1742 			op->type = MTMSR;
1743 			op->reg = rd;
1744 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1745 			return 0;
1746 #ifdef CONFIG_PPC64
1747 		case 178:	/* mtmsrd */
1748 			if (regs->msr & MSR_PR)
1749 				goto priv;
1750 			op->type = MTMSR;
1751 			op->reg = rd;
1752 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1753 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1754 			imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1755 			op->val = imm;
1756 			return 0;
1757 #endif
1758 
1759 		case 19:	/* mfcr */
1760 			imm = 0xffffffffUL;
1761 			if ((word >> 20) & 1) {
1762 				imm = 0xf0000000UL;
1763 				for (sh = 0; sh < 8; ++sh) {
1764 					if (word & (0x80000 >> sh))
1765 						break;
1766 					imm >>= 4;
1767 				}
1768 			}
1769 			op->val = regs->ccr & imm;
1770 			goto compute_done;
1771 
1772 		case 128:	/* setb */
1773 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1774 				goto unknown_opcode;
1775 			/*
1776 			 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1777 			 * Since each CR field is 4 bits,
1778 			 * we can simply mask off the bottom two bits (bfa * 4)
1779 			 * to yield the first bit in the CR field.
1780 			 */
1781 			ra = ra & ~0x3;
1782 			/* 'val' stores bits of the CR field (bfa) */
1783 			val = regs->ccr >> (CR0_SHIFT - ra);
1784 			/* checks if the LT bit of CR field (bfa) is set */
1785 			if (val & 8)
1786 				op->val = -1;
1787 			/* checks if the GT bit of CR field (bfa) is set */
1788 			else if (val & 4)
1789 				op->val = 1;
1790 			else
1791 				op->val = 0;
1792 			goto compute_done;
1793 
1794 		case 144:	/* mtcrf */
1795 			op->type = COMPUTE + SETCC;
1796 			imm = 0xf0000000UL;
1797 			val = regs->gpr[rd];
1798 			op->ccval = regs->ccr;
1799 			for (sh = 0; sh < 8; ++sh) {
1800 				if (word & (0x80000 >> sh))
1801 					op->ccval = (op->ccval & ~imm) |
1802 						(val & imm);
1803 				imm >>= 4;
1804 			}
1805 			return 1;
1806 
1807 		case 339:	/* mfspr */
1808 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1809 			op->type = MFSPR;
1810 			op->reg = rd;
1811 			op->spr = spr;
1812 			if (spr == SPRN_XER || spr == SPRN_LR ||
1813 			    spr == SPRN_CTR)
1814 				return 1;
1815 			return 0;
1816 
1817 		case 467:	/* mtspr */
1818 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1819 			op->type = MTSPR;
1820 			op->val = regs->gpr[rd];
1821 			op->spr = spr;
1822 			if (spr == SPRN_XER || spr == SPRN_LR ||
1823 			    spr == SPRN_CTR)
1824 				return 1;
1825 			return 0;
1826 
1827 /*
1828  * Compare instructions
1829  */
1830 		case 0:	/* cmp */
1831 			val = regs->gpr[ra];
1832 			val2 = regs->gpr[rb];
1833 #ifdef __powerpc64__
1834 			if ((rd & 1) == 0) {
1835 				/* word (32-bit) compare */
1836 				val = (int) val;
1837 				val2 = (int) val2;
1838 			}
1839 #endif
1840 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1841 			return 1;
1842 
1843 		case 32:	/* cmpl */
1844 			val = regs->gpr[ra];
1845 			val2 = regs->gpr[rb];
1846 #ifdef __powerpc64__
1847 			if ((rd & 1) == 0) {
1848 				/* word (32-bit) compare */
1849 				val = (unsigned int) val;
1850 				val2 = (unsigned int) val2;
1851 			}
1852 #endif
1853 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1854 			return 1;
1855 
1856 		case 508: /* cmpb */
1857 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1858 			goto logical_done_nocc;
1859 
1860 /*
1861  * Arithmetic instructions
1862  */
1863 		case 8:	/* subfc */
1864 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1865 				       regs->gpr[rb], 1);
1866 			goto arith_done;
1867 #ifdef __powerpc64__
1868 		case 9:	/* mulhdu */
1869 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1870 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1871 			goto arith_done;
1872 #endif
1873 		case 10:	/* addc */
1874 			add_with_carry(regs, op, rd, regs->gpr[ra],
1875 				       regs->gpr[rb], 0);
1876 			goto arith_done;
1877 
1878 		case 11:	/* mulhwu */
1879 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1880 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1881 			goto arith_done;
1882 
1883 		case 40:	/* subf */
1884 			op->val = regs->gpr[rb] - regs->gpr[ra];
1885 			goto arith_done;
1886 #ifdef __powerpc64__
1887 		case 73:	/* mulhd */
1888 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1889 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1890 			goto arith_done;
1891 #endif
1892 		case 75:	/* mulhw */
1893 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1894 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1895 			goto arith_done;
1896 
1897 		case 104:	/* neg */
1898 			op->val = -regs->gpr[ra];
1899 			goto arith_done;
1900 
1901 		case 136:	/* subfe */
1902 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1903 				       regs->gpr[rb], regs->xer & XER_CA);
1904 			goto arith_done;
1905 
1906 		case 138:	/* adde */
1907 			add_with_carry(regs, op, rd, regs->gpr[ra],
1908 				       regs->gpr[rb], regs->xer & XER_CA);
1909 			goto arith_done;
1910 
1911 		case 200:	/* subfze */
1912 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1913 				       regs->xer & XER_CA);
1914 			goto arith_done;
1915 
1916 		case 202:	/* addze */
1917 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1918 				       regs->xer & XER_CA);
1919 			goto arith_done;
1920 
1921 		case 232:	/* subfme */
1922 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1923 				       regs->xer & XER_CA);
1924 			goto arith_done;
1925 #ifdef __powerpc64__
1926 		case 233:	/* mulld */
1927 			op->val = regs->gpr[ra] * regs->gpr[rb];
1928 			goto arith_done;
1929 #endif
1930 		case 234:	/* addme */
1931 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1932 				       regs->xer & XER_CA);
1933 			goto arith_done;
1934 
1935 		case 235:	/* mullw */
1936 			op->val = (long)(int) regs->gpr[ra] *
1937 				(int) regs->gpr[rb];
1938 
1939 			goto arith_done;
1940 #ifdef __powerpc64__
1941 		case 265:	/* modud */
1942 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1943 				goto unknown_opcode;
1944 			op->val = regs->gpr[ra] % regs->gpr[rb];
1945 			goto compute_done;
1946 #endif
1947 		case 266:	/* add */
1948 			op->val = regs->gpr[ra] + regs->gpr[rb];
1949 			goto arith_done;
1950 
1951 		case 267:	/* moduw */
1952 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1953 				goto unknown_opcode;
1954 			op->val = (unsigned int) regs->gpr[ra] %
1955 				(unsigned int) regs->gpr[rb];
1956 			goto compute_done;
1957 #ifdef __powerpc64__
1958 		case 457:	/* divdu */
1959 			op->val = regs->gpr[ra] / regs->gpr[rb];
1960 			goto arith_done;
1961 #endif
1962 		case 459:	/* divwu */
1963 			op->val = (unsigned int) regs->gpr[ra] /
1964 				(unsigned int) regs->gpr[rb];
1965 			goto arith_done;
1966 #ifdef __powerpc64__
1967 		case 489:	/* divd */
1968 			op->val = (long int) regs->gpr[ra] /
1969 				(long int) regs->gpr[rb];
1970 			goto arith_done;
1971 #endif
1972 		case 491:	/* divw */
1973 			op->val = (int) regs->gpr[ra] /
1974 				(int) regs->gpr[rb];
1975 			goto arith_done;
1976 #ifdef __powerpc64__
1977 		case 425:	/* divde[.] */
1978 			asm volatile(PPC_DIVDE(%0, %1, %2) :
1979 				"=r" (op->val) : "r" (regs->gpr[ra]),
1980 				"r" (regs->gpr[rb]));
1981 			goto arith_done;
1982 		case 393:	/* divdeu[.] */
1983 			asm volatile(PPC_DIVDEU(%0, %1, %2) :
1984 				"=r" (op->val) : "r" (regs->gpr[ra]),
1985 				"r" (regs->gpr[rb]));
1986 			goto arith_done;
1987 #endif
1988 		case 755:	/* darn */
1989 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1990 				goto unknown_opcode;
1991 			switch (ra & 0x3) {
1992 			case 0:
1993 				/* 32-bit conditioned */
1994 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1995 				goto compute_done;
1996 
1997 			case 1:
1998 				/* 64-bit conditioned */
1999 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2000 				goto compute_done;
2001 
2002 			case 2:
2003 				/* 64-bit raw */
2004 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2005 				goto compute_done;
2006 			}
2007 
2008 			goto unknown_opcode;
2009 #ifdef __powerpc64__
2010 		case 777:	/* modsd */
2011 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2012 				goto unknown_opcode;
2013 			op->val = (long int) regs->gpr[ra] %
2014 				(long int) regs->gpr[rb];
2015 			goto compute_done;
2016 #endif
2017 		case 779:	/* modsw */
2018 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2019 				goto unknown_opcode;
2020 			op->val = (int) regs->gpr[ra] %
2021 				(int) regs->gpr[rb];
2022 			goto compute_done;
2023 
2024 
2025 /*
2026  * Logical instructions
2027  */
2028 		case 26:	/* cntlzw */
2029 			val = (unsigned int) regs->gpr[rd];
2030 			op->val = ( val ? __builtin_clz(val) : 32 );
2031 			goto logical_done;
2032 #ifdef __powerpc64__
2033 		case 58:	/* cntlzd */
2034 			val = regs->gpr[rd];
2035 			op->val = ( val ? __builtin_clzl(val) : 64 );
2036 			goto logical_done;
2037 #endif
2038 		case 28:	/* and */
2039 			op->val = regs->gpr[rd] & regs->gpr[rb];
2040 			goto logical_done;
2041 
2042 		case 60:	/* andc */
2043 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
2044 			goto logical_done;
2045 
2046 		case 122:	/* popcntb */
2047 			do_popcnt(regs, op, regs->gpr[rd], 8);
2048 			goto logical_done_nocc;
2049 
2050 		case 124:	/* nor */
2051 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2052 			goto logical_done;
2053 
2054 		case 154:	/* prtyw */
2055 			do_prty(regs, op, regs->gpr[rd], 32);
2056 			goto logical_done_nocc;
2057 
2058 		case 186:	/* prtyd */
2059 			do_prty(regs, op, regs->gpr[rd], 64);
2060 			goto logical_done_nocc;
2061 #ifdef CONFIG_PPC64
2062 		case 252:	/* bpermd */
2063 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2064 			goto logical_done_nocc;
2065 #endif
2066 		case 284:	/* xor */
2067 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2068 			goto logical_done;
2069 
2070 		case 316:	/* xor */
2071 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
2072 			goto logical_done;
2073 
2074 		case 378:	/* popcntw */
2075 			do_popcnt(regs, op, regs->gpr[rd], 32);
2076 			goto logical_done_nocc;
2077 
2078 		case 412:	/* orc */
2079 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
2080 			goto logical_done;
2081 
2082 		case 444:	/* or */
2083 			op->val = regs->gpr[rd] | regs->gpr[rb];
2084 			goto logical_done;
2085 
2086 		case 476:	/* nand */
2087 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2088 			goto logical_done;
2089 #ifdef CONFIG_PPC64
2090 		case 506:	/* popcntd */
2091 			do_popcnt(regs, op, regs->gpr[rd], 64);
2092 			goto logical_done_nocc;
2093 #endif
2094 		case 538:	/* cnttzw */
2095 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2096 				goto unknown_opcode;
2097 			val = (unsigned int) regs->gpr[rd];
2098 			op->val = (val ? __builtin_ctz(val) : 32);
2099 			goto logical_done;
2100 #ifdef __powerpc64__
2101 		case 570:	/* cnttzd */
2102 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2103 				goto unknown_opcode;
2104 			val = regs->gpr[rd];
2105 			op->val = (val ? __builtin_ctzl(val) : 64);
2106 			goto logical_done;
2107 #endif
2108 		case 922:	/* extsh */
2109 			op->val = (signed short) regs->gpr[rd];
2110 			goto logical_done;
2111 
2112 		case 954:	/* extsb */
2113 			op->val = (signed char) regs->gpr[rd];
2114 			goto logical_done;
2115 #ifdef __powerpc64__
2116 		case 986:	/* extsw */
2117 			op->val = (signed int) regs->gpr[rd];
2118 			goto logical_done;
2119 #endif
2120 
2121 /*
2122  * Shift instructions
2123  */
2124 		case 24:	/* slw */
2125 			sh = regs->gpr[rb] & 0x3f;
2126 			if (sh < 32)
2127 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2128 			else
2129 				op->val = 0;
2130 			goto logical_done;
2131 
2132 		case 536:	/* srw */
2133 			sh = regs->gpr[rb] & 0x3f;
2134 			if (sh < 32)
2135 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2136 			else
2137 				op->val = 0;
2138 			goto logical_done;
2139 
2140 		case 792:	/* sraw */
2141 			op->type = COMPUTE + SETREG + SETXER;
2142 			sh = regs->gpr[rb] & 0x3f;
2143 			ival = (signed int) regs->gpr[rd];
2144 			op->val = ival >> (sh < 32 ? sh : 31);
2145 			op->xerval = regs->xer;
2146 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2147 				op->xerval |= XER_CA;
2148 			else
2149 				op->xerval &= ~XER_CA;
2150 			set_ca32(op, op->xerval & XER_CA);
2151 			goto logical_done;
2152 
2153 		case 824:	/* srawi */
2154 			op->type = COMPUTE + SETREG + SETXER;
2155 			sh = rb;
2156 			ival = (signed int) regs->gpr[rd];
2157 			op->val = ival >> sh;
2158 			op->xerval = regs->xer;
2159 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2160 				op->xerval |= XER_CA;
2161 			else
2162 				op->xerval &= ~XER_CA;
2163 			set_ca32(op, op->xerval & XER_CA);
2164 			goto logical_done;
2165 
2166 #ifdef __powerpc64__
2167 		case 27:	/* sld */
2168 			sh = regs->gpr[rb] & 0x7f;
2169 			if (sh < 64)
2170 				op->val = regs->gpr[rd] << sh;
2171 			else
2172 				op->val = 0;
2173 			goto logical_done;
2174 
2175 		case 539:	/* srd */
2176 			sh = regs->gpr[rb] & 0x7f;
2177 			if (sh < 64)
2178 				op->val = regs->gpr[rd] >> sh;
2179 			else
2180 				op->val = 0;
2181 			goto logical_done;
2182 
2183 		case 794:	/* srad */
2184 			op->type = COMPUTE + SETREG + SETXER;
2185 			sh = regs->gpr[rb] & 0x7f;
2186 			ival = (signed long int) regs->gpr[rd];
2187 			op->val = ival >> (sh < 64 ? sh : 63);
2188 			op->xerval = regs->xer;
2189 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2190 				op->xerval |= XER_CA;
2191 			else
2192 				op->xerval &= ~XER_CA;
2193 			set_ca32(op, op->xerval & XER_CA);
2194 			goto logical_done;
2195 
2196 		case 826:	/* sradi with sh_5 = 0 */
2197 		case 827:	/* sradi with sh_5 = 1 */
2198 			op->type = COMPUTE + SETREG + SETXER;
2199 			sh = rb | ((word & 2) << 4);
2200 			ival = (signed long int) regs->gpr[rd];
2201 			op->val = ival >> sh;
2202 			op->xerval = regs->xer;
2203 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2204 				op->xerval |= XER_CA;
2205 			else
2206 				op->xerval &= ~XER_CA;
2207 			set_ca32(op, op->xerval & XER_CA);
2208 			goto logical_done;
2209 
2210 		case 890:	/* extswsli with sh_5 = 0 */
2211 		case 891:	/* extswsli with sh_5 = 1 */
2212 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2213 				goto unknown_opcode;
2214 			op->type = COMPUTE + SETREG;
2215 			sh = rb | ((word & 2) << 4);
2216 			val = (signed int) regs->gpr[rd];
2217 			if (sh)
2218 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2219 			else
2220 				op->val = val;
2221 			goto logical_done;
2222 
2223 #endif /* __powerpc64__ */
2224 
2225 /*
2226  * Cache instructions
2227  */
2228 		case 54:	/* dcbst */
2229 			op->type = MKOP(CACHEOP, DCBST, 0);
2230 			op->ea = xform_ea(word, regs);
2231 			return 0;
2232 
2233 		case 86:	/* dcbf */
2234 			op->type = MKOP(CACHEOP, DCBF, 0);
2235 			op->ea = xform_ea(word, regs);
2236 			return 0;
2237 
2238 		case 246:	/* dcbtst */
2239 			op->type = MKOP(CACHEOP, DCBTST, 0);
2240 			op->ea = xform_ea(word, regs);
2241 			op->reg = rd;
2242 			return 0;
2243 
2244 		case 278:	/* dcbt */
2245 			op->type = MKOP(CACHEOP, DCBTST, 0);
2246 			op->ea = xform_ea(word, regs);
2247 			op->reg = rd;
2248 			return 0;
2249 
2250 		case 982:	/* icbi */
2251 			op->type = MKOP(CACHEOP, ICBI, 0);
2252 			op->ea = xform_ea(word, regs);
2253 			return 0;
2254 
2255 		case 1014:	/* dcbz */
2256 			op->type = MKOP(CACHEOP, DCBZ, 0);
2257 			op->ea = xform_ea(word, regs);
2258 			return 0;
2259 		}
2260 		break;
2261 	}
2262 
2263 /*
2264  * Loads and stores.
2265  */
2266 	op->type = UNKNOWN;
2267 	op->update_reg = ra;
2268 	op->reg = rd;
2269 	op->val = regs->gpr[rd];
2270 	u = (word >> 20) & UPDATE;
2271 	op->vsx_flags = 0;
2272 
2273 	switch (opcode) {
2274 	case 31:
2275 		u = word & UPDATE;
2276 		op->ea = xform_ea(word, regs);
2277 		switch ((word >> 1) & 0x3ff) {
2278 		case 20:	/* lwarx */
2279 			op->type = MKOP(LARX, 0, 4);
2280 			break;
2281 
2282 		case 150:	/* stwcx. */
2283 			op->type = MKOP(STCX, 0, 4);
2284 			break;
2285 
2286 #ifdef __powerpc64__
2287 		case 84:	/* ldarx */
2288 			op->type = MKOP(LARX, 0, 8);
2289 			break;
2290 
2291 		case 214:	/* stdcx. */
2292 			op->type = MKOP(STCX, 0, 8);
2293 			break;
2294 
2295 		case 52:	/* lbarx */
2296 			op->type = MKOP(LARX, 0, 1);
2297 			break;
2298 
2299 		case 694:	/* stbcx. */
2300 			op->type = MKOP(STCX, 0, 1);
2301 			break;
2302 
2303 		case 116:	/* lharx */
2304 			op->type = MKOP(LARX, 0, 2);
2305 			break;
2306 
2307 		case 726:	/* sthcx. */
2308 			op->type = MKOP(STCX, 0, 2);
2309 			break;
2310 
2311 		case 276:	/* lqarx */
2312 			if (!((rd & 1) || rd == ra || rd == rb))
2313 				op->type = MKOP(LARX, 0, 16);
2314 			break;
2315 
2316 		case 182:	/* stqcx. */
2317 			if (!(rd & 1))
2318 				op->type = MKOP(STCX, 0, 16);
2319 			break;
2320 #endif
2321 
2322 		case 23:	/* lwzx */
2323 		case 55:	/* lwzux */
2324 			op->type = MKOP(LOAD, u, 4);
2325 			break;
2326 
2327 		case 87:	/* lbzx */
2328 		case 119:	/* lbzux */
2329 			op->type = MKOP(LOAD, u, 1);
2330 			break;
2331 
2332 #ifdef CONFIG_ALTIVEC
2333 		/*
2334 		 * Note: for the load/store vector element instructions,
2335 		 * bits of the EA say which field of the VMX register to use.
2336 		 */
2337 		case 7:		/* lvebx */
2338 			op->type = MKOP(LOAD_VMX, 0, 1);
2339 			op->element_size = 1;
2340 			break;
2341 
2342 		case 39:	/* lvehx */
2343 			op->type = MKOP(LOAD_VMX, 0, 2);
2344 			op->element_size = 2;
2345 			break;
2346 
2347 		case 71:	/* lvewx */
2348 			op->type = MKOP(LOAD_VMX, 0, 4);
2349 			op->element_size = 4;
2350 			break;
2351 
2352 		case 103:	/* lvx */
2353 		case 359:	/* lvxl */
2354 			op->type = MKOP(LOAD_VMX, 0, 16);
2355 			op->element_size = 16;
2356 			break;
2357 
2358 		case 135:	/* stvebx */
2359 			op->type = MKOP(STORE_VMX, 0, 1);
2360 			op->element_size = 1;
2361 			break;
2362 
2363 		case 167:	/* stvehx */
2364 			op->type = MKOP(STORE_VMX, 0, 2);
2365 			op->element_size = 2;
2366 			break;
2367 
2368 		case 199:	/* stvewx */
2369 			op->type = MKOP(STORE_VMX, 0, 4);
2370 			op->element_size = 4;
2371 			break;
2372 
2373 		case 231:	/* stvx */
2374 		case 487:	/* stvxl */
2375 			op->type = MKOP(STORE_VMX, 0, 16);
2376 			break;
2377 #endif /* CONFIG_ALTIVEC */
2378 
2379 #ifdef __powerpc64__
2380 		case 21:	/* ldx */
2381 		case 53:	/* ldux */
2382 			op->type = MKOP(LOAD, u, 8);
2383 			break;
2384 
2385 		case 149:	/* stdx */
2386 		case 181:	/* stdux */
2387 			op->type = MKOP(STORE, u, 8);
2388 			break;
2389 #endif
2390 
2391 		case 151:	/* stwx */
2392 		case 183:	/* stwux */
2393 			op->type = MKOP(STORE, u, 4);
2394 			break;
2395 
2396 		case 215:	/* stbx */
2397 		case 247:	/* stbux */
2398 			op->type = MKOP(STORE, u, 1);
2399 			break;
2400 
2401 		case 279:	/* lhzx */
2402 		case 311:	/* lhzux */
2403 			op->type = MKOP(LOAD, u, 2);
2404 			break;
2405 
2406 #ifdef __powerpc64__
2407 		case 341:	/* lwax */
2408 		case 373:	/* lwaux */
2409 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2410 			break;
2411 #endif
2412 
2413 		case 343:	/* lhax */
2414 		case 375:	/* lhaux */
2415 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2416 			break;
2417 
2418 		case 407:	/* sthx */
2419 		case 439:	/* sthux */
2420 			op->type = MKOP(STORE, u, 2);
2421 			break;
2422 
2423 #ifdef __powerpc64__
2424 		case 532:	/* ldbrx */
2425 			op->type = MKOP(LOAD, BYTEREV, 8);
2426 			break;
2427 
2428 #endif
2429 		case 533:	/* lswx */
2430 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2431 			break;
2432 
2433 		case 534:	/* lwbrx */
2434 			op->type = MKOP(LOAD, BYTEREV, 4);
2435 			break;
2436 
2437 		case 597:	/* lswi */
2438 			if (rb == 0)
2439 				rb = 32;	/* # bytes to load */
2440 			op->type = MKOP(LOAD_MULTI, 0, rb);
2441 			op->ea = ra ? regs->gpr[ra] : 0;
2442 			break;
2443 
2444 #ifdef CONFIG_PPC_FPU
2445 		case 535:	/* lfsx */
2446 		case 567:	/* lfsux */
2447 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2448 			break;
2449 
2450 		case 599:	/* lfdx */
2451 		case 631:	/* lfdux */
2452 			op->type = MKOP(LOAD_FP, u, 8);
2453 			break;
2454 
2455 		case 663:	/* stfsx */
2456 		case 695:	/* stfsux */
2457 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2458 			break;
2459 
2460 		case 727:	/* stfdx */
2461 		case 759:	/* stfdux */
2462 			op->type = MKOP(STORE_FP, u, 8);
2463 			break;
2464 
2465 #ifdef __powerpc64__
2466 		case 791:	/* lfdpx */
2467 			op->type = MKOP(LOAD_FP, 0, 16);
2468 			break;
2469 
2470 		case 855:	/* lfiwax */
2471 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2472 			break;
2473 
2474 		case 887:	/* lfiwzx */
2475 			op->type = MKOP(LOAD_FP, 0, 4);
2476 			break;
2477 
2478 		case 919:	/* stfdpx */
2479 			op->type = MKOP(STORE_FP, 0, 16);
2480 			break;
2481 
2482 		case 983:	/* stfiwx */
2483 			op->type = MKOP(STORE_FP, 0, 4);
2484 			break;
2485 #endif /* __powerpc64 */
2486 #endif /* CONFIG_PPC_FPU */
2487 
2488 #ifdef __powerpc64__
2489 		case 660:	/* stdbrx */
2490 			op->type = MKOP(STORE, BYTEREV, 8);
2491 			op->val = byterev_8(regs->gpr[rd]);
2492 			break;
2493 
2494 #endif
2495 		case 661:	/* stswx */
2496 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2497 			break;
2498 
2499 		case 662:	/* stwbrx */
2500 			op->type = MKOP(STORE, BYTEREV, 4);
2501 			op->val = byterev_4(regs->gpr[rd]);
2502 			break;
2503 
2504 		case 725:	/* stswi */
2505 			if (rb == 0)
2506 				rb = 32;	/* # bytes to store */
2507 			op->type = MKOP(STORE_MULTI, 0, rb);
2508 			op->ea = ra ? regs->gpr[ra] : 0;
2509 			break;
2510 
2511 		case 790:	/* lhbrx */
2512 			op->type = MKOP(LOAD, BYTEREV, 2);
2513 			break;
2514 
2515 		case 918:	/* sthbrx */
2516 			op->type = MKOP(STORE, BYTEREV, 2);
2517 			op->val = byterev_2(regs->gpr[rd]);
2518 			break;
2519 
2520 #ifdef CONFIG_VSX
2521 		case 12:	/* lxsiwzx */
2522 			op->reg = rd | ((word & 1) << 5);
2523 			op->type = MKOP(LOAD_VSX, 0, 4);
2524 			op->element_size = 8;
2525 			break;
2526 
2527 		case 76:	/* lxsiwax */
2528 			op->reg = rd | ((word & 1) << 5);
2529 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2530 			op->element_size = 8;
2531 			break;
2532 
2533 		case 140:	/* stxsiwx */
2534 			op->reg = rd | ((word & 1) << 5);
2535 			op->type = MKOP(STORE_VSX, 0, 4);
2536 			op->element_size = 8;
2537 			break;
2538 
2539 		case 268:	/* lxvx */
2540 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2541 				goto unknown_opcode;
2542 			op->reg = rd | ((word & 1) << 5);
2543 			op->type = MKOP(LOAD_VSX, 0, 16);
2544 			op->element_size = 16;
2545 			op->vsx_flags = VSX_CHECK_VEC;
2546 			break;
2547 
2548 		case 269:	/* lxvl */
2549 		case 301: {	/* lxvll */
2550 			int nb;
2551 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2552 				goto unknown_opcode;
2553 			op->reg = rd | ((word & 1) << 5);
2554 			op->ea = ra ? regs->gpr[ra] : 0;
2555 			nb = regs->gpr[rb] & 0xff;
2556 			if (nb > 16)
2557 				nb = 16;
2558 			op->type = MKOP(LOAD_VSX, 0, nb);
2559 			op->element_size = 16;
2560 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2561 				VSX_CHECK_VEC;
2562 			break;
2563 		}
2564 		case 332:	/* lxvdsx */
2565 			op->reg = rd | ((word & 1) << 5);
2566 			op->type = MKOP(LOAD_VSX, 0, 8);
2567 			op->element_size = 8;
2568 			op->vsx_flags = VSX_SPLAT;
2569 			break;
2570 
2571 		case 333:       /* lxvpx */
2572 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2573 				goto unknown_opcode;
2574 			op->reg = VSX_REGISTER_XTP(rd);
2575 			op->type = MKOP(LOAD_VSX, 0, 32);
2576 			op->element_size = 32;
2577 			break;
2578 
2579 		case 364:	/* lxvwsx */
2580 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2581 				goto unknown_opcode;
2582 			op->reg = rd | ((word & 1) << 5);
2583 			op->type = MKOP(LOAD_VSX, 0, 4);
2584 			op->element_size = 4;
2585 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2586 			break;
2587 
2588 		case 396:	/* stxvx */
2589 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2590 				goto unknown_opcode;
2591 			op->reg = rd | ((word & 1) << 5);
2592 			op->type = MKOP(STORE_VSX, 0, 16);
2593 			op->element_size = 16;
2594 			op->vsx_flags = VSX_CHECK_VEC;
2595 			break;
2596 
2597 		case 397:	/* stxvl */
2598 		case 429: {	/* stxvll */
2599 			int nb;
2600 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2601 				goto unknown_opcode;
2602 			op->reg = rd | ((word & 1) << 5);
2603 			op->ea = ra ? regs->gpr[ra] : 0;
2604 			nb = regs->gpr[rb] & 0xff;
2605 			if (nb > 16)
2606 				nb = 16;
2607 			op->type = MKOP(STORE_VSX, 0, nb);
2608 			op->element_size = 16;
2609 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2610 				VSX_CHECK_VEC;
2611 			break;
2612 		}
2613 		case 461:       /* stxvpx */
2614 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2615 				goto unknown_opcode;
2616 			op->reg = VSX_REGISTER_XTP(rd);
2617 			op->type = MKOP(STORE_VSX, 0, 32);
2618 			op->element_size = 32;
2619 			break;
2620 		case 524:	/* lxsspx */
2621 			op->reg = rd | ((word & 1) << 5);
2622 			op->type = MKOP(LOAD_VSX, 0, 4);
2623 			op->element_size = 8;
2624 			op->vsx_flags = VSX_FPCONV;
2625 			break;
2626 
2627 		case 588:	/* lxsdx */
2628 			op->reg = rd | ((word & 1) << 5);
2629 			op->type = MKOP(LOAD_VSX, 0, 8);
2630 			op->element_size = 8;
2631 			break;
2632 
2633 		case 652:	/* stxsspx */
2634 			op->reg = rd | ((word & 1) << 5);
2635 			op->type = MKOP(STORE_VSX, 0, 4);
2636 			op->element_size = 8;
2637 			op->vsx_flags = VSX_FPCONV;
2638 			break;
2639 
2640 		case 716:	/* stxsdx */
2641 			op->reg = rd | ((word & 1) << 5);
2642 			op->type = MKOP(STORE_VSX, 0, 8);
2643 			op->element_size = 8;
2644 			break;
2645 
2646 		case 780:	/* lxvw4x */
2647 			op->reg = rd | ((word & 1) << 5);
2648 			op->type = MKOP(LOAD_VSX, 0, 16);
2649 			op->element_size = 4;
2650 			break;
2651 
2652 		case 781:	/* lxsibzx */
2653 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2654 				goto unknown_opcode;
2655 			op->reg = rd | ((word & 1) << 5);
2656 			op->type = MKOP(LOAD_VSX, 0, 1);
2657 			op->element_size = 8;
2658 			op->vsx_flags = VSX_CHECK_VEC;
2659 			break;
2660 
2661 		case 812:	/* lxvh8x */
2662 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2663 				goto unknown_opcode;
2664 			op->reg = rd | ((word & 1) << 5);
2665 			op->type = MKOP(LOAD_VSX, 0, 16);
2666 			op->element_size = 2;
2667 			op->vsx_flags = VSX_CHECK_VEC;
2668 			break;
2669 
2670 		case 813:	/* lxsihzx */
2671 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2672 				goto unknown_opcode;
2673 			op->reg = rd | ((word & 1) << 5);
2674 			op->type = MKOP(LOAD_VSX, 0, 2);
2675 			op->element_size = 8;
2676 			op->vsx_flags = VSX_CHECK_VEC;
2677 			break;
2678 
2679 		case 844:	/* lxvd2x */
2680 			op->reg = rd | ((word & 1) << 5);
2681 			op->type = MKOP(LOAD_VSX, 0, 16);
2682 			op->element_size = 8;
2683 			break;
2684 
2685 		case 876:	/* lxvb16x */
2686 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2687 				goto unknown_opcode;
2688 			op->reg = rd | ((word & 1) << 5);
2689 			op->type = MKOP(LOAD_VSX, 0, 16);
2690 			op->element_size = 1;
2691 			op->vsx_flags = VSX_CHECK_VEC;
2692 			break;
2693 
2694 		case 908:	/* stxvw4x */
2695 			op->reg = rd | ((word & 1) << 5);
2696 			op->type = MKOP(STORE_VSX, 0, 16);
2697 			op->element_size = 4;
2698 			break;
2699 
2700 		case 909:	/* stxsibx */
2701 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2702 				goto unknown_opcode;
2703 			op->reg = rd | ((word & 1) << 5);
2704 			op->type = MKOP(STORE_VSX, 0, 1);
2705 			op->element_size = 8;
2706 			op->vsx_flags = VSX_CHECK_VEC;
2707 			break;
2708 
2709 		case 940:	/* stxvh8x */
2710 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2711 				goto unknown_opcode;
2712 			op->reg = rd | ((word & 1) << 5);
2713 			op->type = MKOP(STORE_VSX, 0, 16);
2714 			op->element_size = 2;
2715 			op->vsx_flags = VSX_CHECK_VEC;
2716 			break;
2717 
2718 		case 941:	/* stxsihx */
2719 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2720 				goto unknown_opcode;
2721 			op->reg = rd | ((word & 1) << 5);
2722 			op->type = MKOP(STORE_VSX, 0, 2);
2723 			op->element_size = 8;
2724 			op->vsx_flags = VSX_CHECK_VEC;
2725 			break;
2726 
2727 		case 972:	/* stxvd2x */
2728 			op->reg = rd | ((word & 1) << 5);
2729 			op->type = MKOP(STORE_VSX, 0, 16);
2730 			op->element_size = 8;
2731 			break;
2732 
2733 		case 1004:	/* stxvb16x */
2734 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2735 				goto unknown_opcode;
2736 			op->reg = rd | ((word & 1) << 5);
2737 			op->type = MKOP(STORE_VSX, 0, 16);
2738 			op->element_size = 1;
2739 			op->vsx_flags = VSX_CHECK_VEC;
2740 			break;
2741 
2742 #endif /* CONFIG_VSX */
2743 		}
2744 		break;
2745 
2746 	case 32:	/* lwz */
2747 	case 33:	/* lwzu */
2748 		op->type = MKOP(LOAD, u, 4);
2749 		op->ea = dform_ea(word, regs);
2750 		break;
2751 
2752 	case 34:	/* lbz */
2753 	case 35:	/* lbzu */
2754 		op->type = MKOP(LOAD, u, 1);
2755 		op->ea = dform_ea(word, regs);
2756 		break;
2757 
2758 	case 36:	/* stw */
2759 	case 37:	/* stwu */
2760 		op->type = MKOP(STORE, u, 4);
2761 		op->ea = dform_ea(word, regs);
2762 		break;
2763 
2764 	case 38:	/* stb */
2765 	case 39:	/* stbu */
2766 		op->type = MKOP(STORE, u, 1);
2767 		op->ea = dform_ea(word, regs);
2768 		break;
2769 
2770 	case 40:	/* lhz */
2771 	case 41:	/* lhzu */
2772 		op->type = MKOP(LOAD, u, 2);
2773 		op->ea = dform_ea(word, regs);
2774 		break;
2775 
2776 	case 42:	/* lha */
2777 	case 43:	/* lhau */
2778 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2779 		op->ea = dform_ea(word, regs);
2780 		break;
2781 
2782 	case 44:	/* sth */
2783 	case 45:	/* sthu */
2784 		op->type = MKOP(STORE, u, 2);
2785 		op->ea = dform_ea(word, regs);
2786 		break;
2787 
2788 	case 46:	/* lmw */
2789 		if (ra >= rd)
2790 			break;		/* invalid form, ra in range to load */
2791 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2792 		op->ea = dform_ea(word, regs);
2793 		break;
2794 
2795 	case 47:	/* stmw */
2796 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2797 		op->ea = dform_ea(word, regs);
2798 		break;
2799 
2800 #ifdef CONFIG_PPC_FPU
2801 	case 48:	/* lfs */
2802 	case 49:	/* lfsu */
2803 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2804 		op->ea = dform_ea(word, regs);
2805 		break;
2806 
2807 	case 50:	/* lfd */
2808 	case 51:	/* lfdu */
2809 		op->type = MKOP(LOAD_FP, u, 8);
2810 		op->ea = dform_ea(word, regs);
2811 		break;
2812 
2813 	case 52:	/* stfs */
2814 	case 53:	/* stfsu */
2815 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2816 		op->ea = dform_ea(word, regs);
2817 		break;
2818 
2819 	case 54:	/* stfd */
2820 	case 55:	/* stfdu */
2821 		op->type = MKOP(STORE_FP, u, 8);
2822 		op->ea = dform_ea(word, regs);
2823 		break;
2824 #endif
2825 
2826 #ifdef __powerpc64__
2827 	case 56:	/* lq */
2828 		if (!((rd & 1) || (rd == ra)))
2829 			op->type = MKOP(LOAD, 0, 16);
2830 		op->ea = dqform_ea(word, regs);
2831 		break;
2832 #endif
2833 
2834 #ifdef CONFIG_VSX
2835 	case 57:	/* lfdp, lxsd, lxssp */
2836 		op->ea = dsform_ea(word, regs);
2837 		switch (word & 3) {
2838 		case 0:		/* lfdp */
2839 			if (rd & 1)
2840 				break;		/* reg must be even */
2841 			op->type = MKOP(LOAD_FP, 0, 16);
2842 			break;
2843 		case 2:		/* lxsd */
2844 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2845 				goto unknown_opcode;
2846 			op->reg = rd + 32;
2847 			op->type = MKOP(LOAD_VSX, 0, 8);
2848 			op->element_size = 8;
2849 			op->vsx_flags = VSX_CHECK_VEC;
2850 			break;
2851 		case 3:		/* lxssp */
2852 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2853 				goto unknown_opcode;
2854 			op->reg = rd + 32;
2855 			op->type = MKOP(LOAD_VSX, 0, 4);
2856 			op->element_size = 8;
2857 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2858 			break;
2859 		}
2860 		break;
2861 #endif /* CONFIG_VSX */
2862 
2863 #ifdef __powerpc64__
2864 	case 58:	/* ld[u], lwa */
2865 		op->ea = dsform_ea(word, regs);
2866 		switch (word & 3) {
2867 		case 0:		/* ld */
2868 			op->type = MKOP(LOAD, 0, 8);
2869 			break;
2870 		case 1:		/* ldu */
2871 			op->type = MKOP(LOAD, UPDATE, 8);
2872 			break;
2873 		case 2:		/* lwa */
2874 			op->type = MKOP(LOAD, SIGNEXT, 4);
2875 			break;
2876 		}
2877 		break;
2878 #endif
2879 
2880 #ifdef CONFIG_VSX
2881 	case 6:
2882 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2883 			goto unknown_opcode;
2884 		op->ea = dqform_ea(word, regs);
2885 		op->reg = VSX_REGISTER_XTP(rd);
2886 		op->element_size = 32;
2887 		switch (word & 0xf) {
2888 		case 0:         /* lxvp */
2889 			op->type = MKOP(LOAD_VSX, 0, 32);
2890 			break;
2891 		case 1:         /* stxvp */
2892 			op->type = MKOP(STORE_VSX, 0, 32);
2893 			break;
2894 		}
2895 		break;
2896 
2897 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2898 		switch (word & 7) {
2899 		case 0:		/* stfdp with LSB of DS field = 0 */
2900 		case 4:		/* stfdp with LSB of DS field = 1 */
2901 			op->ea = dsform_ea(word, regs);
2902 			op->type = MKOP(STORE_FP, 0, 16);
2903 			break;
2904 
2905 		case 1:		/* lxv */
2906 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2907 				goto unknown_opcode;
2908 			op->ea = dqform_ea(word, regs);
2909 			if (word & 8)
2910 				op->reg = rd + 32;
2911 			op->type = MKOP(LOAD_VSX, 0, 16);
2912 			op->element_size = 16;
2913 			op->vsx_flags = VSX_CHECK_VEC;
2914 			break;
2915 
2916 		case 2:		/* stxsd with LSB of DS field = 0 */
2917 		case 6:		/* stxsd with LSB of DS field = 1 */
2918 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2919 				goto unknown_opcode;
2920 			op->ea = dsform_ea(word, regs);
2921 			op->reg = rd + 32;
2922 			op->type = MKOP(STORE_VSX, 0, 8);
2923 			op->element_size = 8;
2924 			op->vsx_flags = VSX_CHECK_VEC;
2925 			break;
2926 
2927 		case 3:		/* stxssp with LSB of DS field = 0 */
2928 		case 7:		/* stxssp with LSB of DS field = 1 */
2929 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2930 				goto unknown_opcode;
2931 			op->ea = dsform_ea(word, regs);
2932 			op->reg = rd + 32;
2933 			op->type = MKOP(STORE_VSX, 0, 4);
2934 			op->element_size = 8;
2935 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2936 			break;
2937 
2938 		case 5:		/* stxv */
2939 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2940 				goto unknown_opcode;
2941 			op->ea = dqform_ea(word, regs);
2942 			if (word & 8)
2943 				op->reg = rd + 32;
2944 			op->type = MKOP(STORE_VSX, 0, 16);
2945 			op->element_size = 16;
2946 			op->vsx_flags = VSX_CHECK_VEC;
2947 			break;
2948 		}
2949 		break;
2950 #endif /* CONFIG_VSX */
2951 
2952 #ifdef __powerpc64__
2953 	case 62:	/* std[u] */
2954 		op->ea = dsform_ea(word, regs);
2955 		switch (word & 3) {
2956 		case 0:		/* std */
2957 			op->type = MKOP(STORE, 0, 8);
2958 			break;
2959 		case 1:		/* stdu */
2960 			op->type = MKOP(STORE, UPDATE, 8);
2961 			break;
2962 		case 2:		/* stq */
2963 			if (!(rd & 1))
2964 				op->type = MKOP(STORE, 0, 16);
2965 			break;
2966 		}
2967 		break;
2968 	case 1: /* Prefixed instructions */
2969 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2970 			goto unknown_opcode;
2971 
2972 		prefix_r = GET_PREFIX_R(word);
2973 		ra = GET_PREFIX_RA(suffix);
2974 		op->update_reg = ra;
2975 		rd = (suffix >> 21) & 0x1f;
2976 		op->reg = rd;
2977 		op->val = regs->gpr[rd];
2978 
2979 		suffixopcode = get_op(suffix);
2980 		prefixtype = (word >> 24) & 0x3;
2981 		switch (prefixtype) {
2982 		case 0: /* Type 00  Eight-Byte Load/Store */
2983 			if (prefix_r && ra)
2984 				break;
2985 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2986 			switch (suffixopcode) {
2987 			case 41:	/* plwa */
2988 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2989 				break;
2990 #ifdef CONFIG_VSX
2991 			case 42:        /* plxsd */
2992 				op->reg = rd + 32;
2993 				op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2994 				op->element_size = 8;
2995 				op->vsx_flags = VSX_CHECK_VEC;
2996 				break;
2997 			case 43:	/* plxssp */
2998 				op->reg = rd + 32;
2999 				op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3000 				op->element_size = 8;
3001 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3002 				break;
3003 			case 46:	/* pstxsd */
3004 				op->reg = rd + 32;
3005 				op->type = MKOP(STORE_VSX, PREFIXED, 8);
3006 				op->element_size = 8;
3007 				op->vsx_flags = VSX_CHECK_VEC;
3008 				break;
3009 			case 47:	/* pstxssp */
3010 				op->reg = rd + 32;
3011 				op->type = MKOP(STORE_VSX, PREFIXED, 4);
3012 				op->element_size = 8;
3013 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3014 				break;
3015 			case 51:	/* plxv1 */
3016 				op->reg += 32;
3017 				fallthrough;
3018 			case 50:	/* plxv0 */
3019 				op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3020 				op->element_size = 16;
3021 				op->vsx_flags = VSX_CHECK_VEC;
3022 				break;
3023 			case 55:	/* pstxv1 */
3024 				op->reg = rd + 32;
3025 				fallthrough;
3026 			case 54:	/* pstxv0 */
3027 				op->type = MKOP(STORE_VSX, PREFIXED, 16);
3028 				op->element_size = 16;
3029 				op->vsx_flags = VSX_CHECK_VEC;
3030 				break;
3031 #endif /* CONFIG_VSX */
3032 			case 56:        /* plq */
3033 				op->type = MKOP(LOAD, PREFIXED, 16);
3034 				break;
3035 			case 57:	/* pld */
3036 				op->type = MKOP(LOAD, PREFIXED, 8);
3037 				break;
3038 #ifdef CONFIG_VSX
3039 			case 58:        /* plxvp */
3040 				op->reg = VSX_REGISTER_XTP(rd);
3041 				op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3042 				op->element_size = 32;
3043 				break;
3044 #endif /* CONFIG_VSX */
3045 			case 60:        /* pstq */
3046 				op->type = MKOP(STORE, PREFIXED, 16);
3047 				break;
3048 			case 61:	/* pstd */
3049 				op->type = MKOP(STORE, PREFIXED, 8);
3050 				break;
3051 #ifdef CONFIG_VSX
3052 			case 62:        /* pstxvp */
3053 				op->reg = VSX_REGISTER_XTP(rd);
3054 				op->type = MKOP(STORE_VSX, PREFIXED, 32);
3055 				op->element_size = 32;
3056 				break;
3057 #endif /* CONFIG_VSX */
3058 			}
3059 			break;
3060 		case 1: /* Type 01 Eight-Byte Register-to-Register */
3061 			break;
3062 		case 2: /* Type 10 Modified Load/Store */
3063 			if (prefix_r && ra)
3064 				break;
3065 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
3066 			switch (suffixopcode) {
3067 			case 32:	/* plwz */
3068 				op->type = MKOP(LOAD, PREFIXED, 4);
3069 				break;
3070 			case 34:	/* plbz */
3071 				op->type = MKOP(LOAD, PREFIXED, 1);
3072 				break;
3073 			case 36:	/* pstw */
3074 				op->type = MKOP(STORE, PREFIXED, 4);
3075 				break;
3076 			case 38:	/* pstb */
3077 				op->type = MKOP(STORE, PREFIXED, 1);
3078 				break;
3079 			case 40:	/* plhz */
3080 				op->type = MKOP(LOAD, PREFIXED, 2);
3081 				break;
3082 			case 42:	/* plha */
3083 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3084 				break;
3085 			case 44:	/* psth */
3086 				op->type = MKOP(STORE, PREFIXED, 2);
3087 				break;
3088 			case 48:        /* plfs */
3089 				op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3090 				break;
3091 			case 50:        /* plfd */
3092 				op->type = MKOP(LOAD_FP, PREFIXED, 8);
3093 				break;
3094 			case 52:        /* pstfs */
3095 				op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3096 				break;
3097 			case 54:        /* pstfd */
3098 				op->type = MKOP(STORE_FP, PREFIXED, 8);
3099 				break;
3100 			}
3101 			break;
3102 		case 3: /* Type 11 Modified Register-to-Register */
3103 			break;
3104 		}
3105 #endif /* __powerpc64__ */
3106 
3107 	}
3108 
3109 	if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3110 		switch (GETTYPE(op->type)) {
3111 		case LOAD:
3112 			if (ra == rd)
3113 				goto unknown_opcode;
3114 			fallthrough;
3115 		case STORE:
3116 		case LOAD_FP:
3117 		case STORE_FP:
3118 			if (ra == 0)
3119 				goto unknown_opcode;
3120 		}
3121 	}
3122 
3123 #ifdef CONFIG_VSX
3124 	if ((GETTYPE(op->type) == LOAD_VSX ||
3125 	     GETTYPE(op->type) == STORE_VSX) &&
3126 	    !cpu_has_feature(CPU_FTR_VSX)) {
3127 		return -1;
3128 	}
3129 #endif /* CONFIG_VSX */
3130 
3131 	return 0;
3132 
3133  unknown_opcode:
3134 	op->type = UNKNOWN;
3135 	return 0;
3136 
3137  logical_done:
3138 	if (word & 1)
3139 		set_cr0(regs, op);
3140  logical_done_nocc:
3141 	op->reg = ra;
3142 	op->type |= SETREG;
3143 	return 1;
3144 
3145  arith_done:
3146 	if (word & 1)
3147 		set_cr0(regs, op);
3148  compute_done:
3149 	op->reg = rd;
3150 	op->type |= SETREG;
3151 	return 1;
3152 
3153  priv:
3154 	op->type = INTERRUPT | 0x700;
3155 	op->val = SRR1_PROGPRIV;
3156 	return 0;
3157 
3158  trap:
3159 	op->type = INTERRUPT | 0x700;
3160 	op->val = SRR1_PROGTRAP;
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL_GPL(analyse_instr);
3164 NOKPROBE_SYMBOL(analyse_instr);
3165 
3166 /*
3167  * For PPC32 we always use stwu with r1 to change the stack pointer.
3168  * So this emulated store may corrupt the exception frame, now we
3169  * have to provide the exception frame trampoline, which is pushed
3170  * below the kprobed function stack. So we only update gpr[1] but
3171  * don't emulate the real store operation. We will do real store
3172  * operation safely in exception return code by checking this flag.
3173  */
3174 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3175 {
3176 	/*
3177 	 * Check if we already set since that means we'll
3178 	 * lose the previous value.
3179 	 */
3180 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3181 	set_thread_flag(TIF_EMULATE_STACK_STORE);
3182 	return 0;
3183 }
3184 
3185 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3186 {
3187 	switch (size) {
3188 	case 2:
3189 		*valp = (signed short) *valp;
3190 		break;
3191 	case 4:
3192 		*valp = (signed int) *valp;
3193 		break;
3194 	}
3195 }
3196 
3197 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3198 {
3199 	switch (size) {
3200 	case 2:
3201 		*valp = byterev_2(*valp);
3202 		break;
3203 	case 4:
3204 		*valp = byterev_4(*valp);
3205 		break;
3206 #ifdef __powerpc64__
3207 	case 8:
3208 		*valp = byterev_8(*valp);
3209 		break;
3210 #endif
3211 	}
3212 }
3213 
3214 /*
3215  * Emulate an instruction that can be executed just by updating
3216  * fields in *regs.
3217  */
3218 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3219 {
3220 	unsigned long next_pc;
3221 
3222 	next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3223 	switch (GETTYPE(op->type)) {
3224 	case COMPUTE:
3225 		if (op->type & SETREG)
3226 			regs->gpr[op->reg] = op->val;
3227 		if (op->type & SETCC)
3228 			regs->ccr = op->ccval;
3229 		if (op->type & SETXER)
3230 			regs->xer = op->xerval;
3231 		break;
3232 
3233 	case BRANCH:
3234 		if (op->type & SETLK)
3235 			regs->link = next_pc;
3236 		if (op->type & BRTAKEN)
3237 			next_pc = op->val;
3238 		if (op->type & DECCTR)
3239 			--regs->ctr;
3240 		break;
3241 
3242 	case BARRIER:
3243 		switch (op->type & BARRIER_MASK) {
3244 		case BARRIER_SYNC:
3245 			mb();
3246 			break;
3247 		case BARRIER_ISYNC:
3248 			isync();
3249 			break;
3250 		case BARRIER_EIEIO:
3251 			eieio();
3252 			break;
3253 		case BARRIER_LWSYNC:
3254 			asm volatile("lwsync" : : : "memory");
3255 			break;
3256 		case BARRIER_PTESYNC:
3257 			asm volatile("ptesync" : : : "memory");
3258 			break;
3259 		}
3260 		break;
3261 
3262 	case MFSPR:
3263 		switch (op->spr) {
3264 		case SPRN_XER:
3265 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3266 			break;
3267 		case SPRN_LR:
3268 			regs->gpr[op->reg] = regs->link;
3269 			break;
3270 		case SPRN_CTR:
3271 			regs->gpr[op->reg] = regs->ctr;
3272 			break;
3273 		default:
3274 			WARN_ON_ONCE(1);
3275 		}
3276 		break;
3277 
3278 	case MTSPR:
3279 		switch (op->spr) {
3280 		case SPRN_XER:
3281 			regs->xer = op->val & 0xffffffffUL;
3282 			break;
3283 		case SPRN_LR:
3284 			regs->link = op->val;
3285 			break;
3286 		case SPRN_CTR:
3287 			regs->ctr = op->val;
3288 			break;
3289 		default:
3290 			WARN_ON_ONCE(1);
3291 		}
3292 		break;
3293 
3294 	default:
3295 		WARN_ON_ONCE(1);
3296 	}
3297 	regs_set_return_ip(regs, next_pc);
3298 }
3299 NOKPROBE_SYMBOL(emulate_update_regs);
3300 
3301 /*
3302  * Emulate a previously-analysed load or store instruction.
3303  * Return values are:
3304  * 0 = instruction emulated successfully
3305  * -EFAULT = address out of range or access faulted (regs->dar
3306  *	     contains the faulting address)
3307  * -EACCES = misaligned access, instruction requires alignment
3308  * -EINVAL = unknown operation in *op
3309  */
3310 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3311 {
3312 	int err, size, type;
3313 	int i, rd, nb;
3314 	unsigned int cr;
3315 	unsigned long val;
3316 	unsigned long ea;
3317 	bool cross_endian;
3318 
3319 	err = 0;
3320 	size = GETSIZE(op->type);
3321 	type = GETTYPE(op->type);
3322 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3323 	ea = truncate_if_32bit(regs->msr, op->ea);
3324 
3325 	switch (type) {
3326 	case LARX:
3327 		if (ea & (size - 1))
3328 			return -EACCES;		/* can't handle misaligned */
3329 		if (!address_ok(regs, ea, size))
3330 			return -EFAULT;
3331 		err = 0;
3332 		val = 0;
3333 		switch (size) {
3334 #ifdef __powerpc64__
3335 		case 1:
3336 			__get_user_asmx(val, ea, err, "lbarx");
3337 			break;
3338 		case 2:
3339 			__get_user_asmx(val, ea, err, "lharx");
3340 			break;
3341 #endif
3342 		case 4:
3343 			__get_user_asmx(val, ea, err, "lwarx");
3344 			break;
3345 #ifdef __powerpc64__
3346 		case 8:
3347 			__get_user_asmx(val, ea, err, "ldarx");
3348 			break;
3349 		case 16:
3350 			err = do_lqarx(ea, &regs->gpr[op->reg]);
3351 			break;
3352 #endif
3353 		default:
3354 			return -EINVAL;
3355 		}
3356 		if (err) {
3357 			regs->dar = ea;
3358 			break;
3359 		}
3360 		if (size < 16)
3361 			regs->gpr[op->reg] = val;
3362 		break;
3363 
3364 	case STCX:
3365 		if (ea & (size - 1))
3366 			return -EACCES;		/* can't handle misaligned */
3367 		if (!address_ok(regs, ea, size))
3368 			return -EFAULT;
3369 		err = 0;
3370 		switch (size) {
3371 #ifdef __powerpc64__
3372 		case 1:
3373 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3374 			break;
3375 		case 2:
3376 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3377 			break;
3378 #endif
3379 		case 4:
3380 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
3381 			break;
3382 #ifdef __powerpc64__
3383 		case 8:
3384 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
3385 			break;
3386 		case 16:
3387 			err = do_stqcx(ea, regs->gpr[op->reg],
3388 				       regs->gpr[op->reg + 1], &cr);
3389 			break;
3390 #endif
3391 		default:
3392 			return -EINVAL;
3393 		}
3394 		if (!err)
3395 			regs->ccr = (regs->ccr & 0x0fffffff) |
3396 				(cr & 0xe0000000) |
3397 				((regs->xer >> 3) & 0x10000000);
3398 		else
3399 			regs->dar = ea;
3400 		break;
3401 
3402 	case LOAD:
3403 #ifdef __powerpc64__
3404 		if (size == 16) {
3405 			err = emulate_lq(regs, ea, op->reg, cross_endian);
3406 			break;
3407 		}
3408 #endif
3409 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3410 		if (!err) {
3411 			if (op->type & SIGNEXT)
3412 				do_signext(&regs->gpr[op->reg], size);
3413 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3414 				do_byterev(&regs->gpr[op->reg], size);
3415 		}
3416 		break;
3417 
3418 #ifdef CONFIG_PPC_FPU
3419 	case LOAD_FP:
3420 		/*
3421 		 * If the instruction is in userspace, we can emulate it even
3422 		 * if the VMX state is not live, because we have the state
3423 		 * stored in the thread_struct.  If the instruction is in
3424 		 * the kernel, we must not touch the state in the thread_struct.
3425 		 */
3426 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3427 			return 0;
3428 		err = do_fp_load(op, ea, regs, cross_endian);
3429 		break;
3430 #endif
3431 #ifdef CONFIG_ALTIVEC
3432 	case LOAD_VMX:
3433 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3434 			return 0;
3435 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3436 		break;
3437 #endif
3438 #ifdef CONFIG_VSX
3439 	case LOAD_VSX: {
3440 		unsigned long msrbit = MSR_VSX;
3441 
3442 		/*
3443 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3444 		 * when the target of the instruction is a vector register.
3445 		 */
3446 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3447 			msrbit = MSR_VEC;
3448 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3449 			return 0;
3450 		err = do_vsx_load(op, ea, regs, cross_endian);
3451 		break;
3452 	}
3453 #endif
3454 	case LOAD_MULTI:
3455 		if (!address_ok(regs, ea, size))
3456 			return -EFAULT;
3457 		rd = op->reg;
3458 		for (i = 0; i < size; i += 4) {
3459 			unsigned int v32 = 0;
3460 
3461 			nb = size - i;
3462 			if (nb > 4)
3463 				nb = 4;
3464 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3465 			if (err)
3466 				break;
3467 			if (unlikely(cross_endian))
3468 				v32 = byterev_4(v32);
3469 			regs->gpr[rd] = v32;
3470 			ea += 4;
3471 			/* reg number wraps from 31 to 0 for lsw[ix] */
3472 			rd = (rd + 1) & 0x1f;
3473 		}
3474 		break;
3475 
3476 	case STORE:
3477 #ifdef __powerpc64__
3478 		if (size == 16) {
3479 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3480 			break;
3481 		}
3482 #endif
3483 		if ((op->type & UPDATE) && size == sizeof(long) &&
3484 		    op->reg == 1 && op->update_reg == 1 &&
3485 		    !(regs->msr & MSR_PR) &&
3486 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3487 			err = handle_stack_update(ea, regs);
3488 			break;
3489 		}
3490 		if (unlikely(cross_endian))
3491 			do_byterev(&op->val, size);
3492 		err = write_mem(op->val, ea, size, regs);
3493 		break;
3494 
3495 #ifdef CONFIG_PPC_FPU
3496 	case STORE_FP:
3497 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3498 			return 0;
3499 		err = do_fp_store(op, ea, regs, cross_endian);
3500 		break;
3501 #endif
3502 #ifdef CONFIG_ALTIVEC
3503 	case STORE_VMX:
3504 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3505 			return 0;
3506 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3507 		break;
3508 #endif
3509 #ifdef CONFIG_VSX
3510 	case STORE_VSX: {
3511 		unsigned long msrbit = MSR_VSX;
3512 
3513 		/*
3514 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3515 		 * when the target of the instruction is a vector register.
3516 		 */
3517 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3518 			msrbit = MSR_VEC;
3519 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3520 			return 0;
3521 		err = do_vsx_store(op, ea, regs, cross_endian);
3522 		break;
3523 	}
3524 #endif
3525 	case STORE_MULTI:
3526 		if (!address_ok(regs, ea, size))
3527 			return -EFAULT;
3528 		rd = op->reg;
3529 		for (i = 0; i < size; i += 4) {
3530 			unsigned int v32 = regs->gpr[rd];
3531 
3532 			nb = size - i;
3533 			if (nb > 4)
3534 				nb = 4;
3535 			if (unlikely(cross_endian))
3536 				v32 = byterev_4(v32);
3537 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3538 			if (err)
3539 				break;
3540 			ea += 4;
3541 			/* reg number wraps from 31 to 0 for stsw[ix] */
3542 			rd = (rd + 1) & 0x1f;
3543 		}
3544 		break;
3545 
3546 	default:
3547 		return -EINVAL;
3548 	}
3549 
3550 	if (err)
3551 		return err;
3552 
3553 	if (op->type & UPDATE)
3554 		regs->gpr[op->update_reg] = op->ea;
3555 
3556 	return 0;
3557 }
3558 NOKPROBE_SYMBOL(emulate_loadstore);
3559 
3560 /*
3561  * Emulate instructions that cause a transfer of control,
3562  * loads and stores, and a few other instructions.
3563  * Returns 1 if the step was emulated, 0 if not,
3564  * or -1 if the instruction is one that should not be stepped,
3565  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3566  */
3567 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3568 {
3569 	struct instruction_op op;
3570 	int r, err, type;
3571 	unsigned long val;
3572 	unsigned long ea;
3573 
3574 	r = analyse_instr(&op, regs, instr);
3575 	if (r < 0)
3576 		return r;
3577 	if (r > 0) {
3578 		emulate_update_regs(regs, &op);
3579 		return 1;
3580 	}
3581 
3582 	err = 0;
3583 	type = GETTYPE(op.type);
3584 
3585 	if (OP_IS_LOAD_STORE(type)) {
3586 		err = emulate_loadstore(regs, &op);
3587 		if (err)
3588 			return 0;
3589 		goto instr_done;
3590 	}
3591 
3592 	switch (type) {
3593 	case CACHEOP:
3594 		ea = truncate_if_32bit(regs->msr, op.ea);
3595 		if (!address_ok(regs, ea, 8))
3596 			return 0;
3597 		switch (op.type & CACHEOP_MASK) {
3598 		case DCBST:
3599 			__cacheop_user_asmx(ea, err, "dcbst");
3600 			break;
3601 		case DCBF:
3602 			__cacheop_user_asmx(ea, err, "dcbf");
3603 			break;
3604 		case DCBTST:
3605 			if (op.reg == 0)
3606 				prefetchw((void *) ea);
3607 			break;
3608 		case DCBT:
3609 			if (op.reg == 0)
3610 				prefetch((void *) ea);
3611 			break;
3612 		case ICBI:
3613 			__cacheop_user_asmx(ea, err, "icbi");
3614 			break;
3615 		case DCBZ:
3616 			err = emulate_dcbz(ea, regs);
3617 			break;
3618 		}
3619 		if (err) {
3620 			regs->dar = ea;
3621 			return 0;
3622 		}
3623 		goto instr_done;
3624 
3625 	case MFMSR:
3626 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3627 		goto instr_done;
3628 
3629 	case MTMSR:
3630 		val = regs->gpr[op.reg];
3631 		if ((val & MSR_RI) == 0)
3632 			/* can't step mtmsr[d] that would clear MSR_RI */
3633 			return -1;
3634 		/* here op.val is the mask of bits to change */
3635 		regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3636 		goto instr_done;
3637 
3638 #ifdef CONFIG_PPC64
3639 	case SYSCALL:	/* sc */
3640 		/*
3641 		 * N.B. this uses knowledge about how the syscall
3642 		 * entry code works.  If that is changed, this will
3643 		 * need to be changed also.
3644 		 */
3645 		if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3646 				cpu_has_feature(CPU_FTR_REAL_LE) &&
3647 				regs->gpr[0] == 0x1ebe) {
3648 			regs_set_return_msr(regs, regs->msr ^ MSR_LE);
3649 			goto instr_done;
3650 		}
3651 		regs->gpr[9] = regs->gpr[13];
3652 		regs->gpr[10] = MSR_KERNEL;
3653 		regs->gpr[11] = regs->nip + 4;
3654 		regs->gpr[12] = regs->msr & MSR_MASK;
3655 		regs->gpr[13] = (unsigned long) get_paca();
3656 		regs_set_return_ip(regs, (unsigned long) &system_call_common);
3657 		regs_set_return_msr(regs, MSR_KERNEL);
3658 		return 1;
3659 
3660 #ifdef CONFIG_PPC_BOOK3S_64
3661 	case SYSCALL_VECTORED_0:	/* scv 0 */
3662 		regs->gpr[9] = regs->gpr[13];
3663 		regs->gpr[10] = MSR_KERNEL;
3664 		regs->gpr[11] = regs->nip + 4;
3665 		regs->gpr[12] = regs->msr & MSR_MASK;
3666 		regs->gpr[13] = (unsigned long) get_paca();
3667 		regs_set_return_ip(regs, (unsigned long) &system_call_vectored_emulate);
3668 		regs_set_return_msr(regs, MSR_KERNEL);
3669 		return 1;
3670 #endif
3671 
3672 	case RFI:
3673 		return -1;
3674 #endif
3675 	}
3676 	return 0;
3677 
3678  instr_done:
3679 	regs_set_return_ip(regs,
3680 		truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3681 	return 1;
3682 }
3683 NOKPROBE_SYMBOL(emulate_step);
3684