xref: /linux/arch/powerpc/lib/sstep.c (revision 1fd02f6605b855b4af2883f29a2abc88bdf17857)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17 
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20 
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK	0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK	0x87c0ffff
26 #endif
27 
28 /* Bits in XER */
29 #define XER_SO		0x80000000U
30 #define XER_OV		0x40000000U
31 #define XER_CA		0x20000000U
32 #define XER_OV32	0x00080000U
33 #define XER_CA32	0x00040000U
34 
35 #ifdef CONFIG_VSX
36 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
37 #endif
38 
39 #ifdef CONFIG_PPC_FPU
40 /*
41  * Functions in ldstfp.S
42  */
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
51 #endif
52 
53 #ifdef __powerpc64__
54 /*
55  * Functions in quad.S
56  */
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61 		    unsigned int *crp);
62 #endif
63 
64 #ifdef __LITTLE_ENDIAN__
65 #define IS_LE	1
66 #define IS_BE	0
67 #else
68 #define IS_LE	0
69 #define IS_BE	1
70 #endif
71 
72 /*
73  * Emulate the truncation of 64 bit values in 32-bit mode.
74  */
75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
76 							unsigned long val)
77 {
78 	if ((msr & MSR_64BIT) == 0)
79 		val &= 0xffffffffUL;
80 	return val;
81 }
82 
83 /*
84  * Determine whether a conditional branch instruction would branch.
85  */
86 static nokprobe_inline int branch_taken(unsigned int instr,
87 					const struct pt_regs *regs,
88 					struct instruction_op *op)
89 {
90 	unsigned int bo = (instr >> 21) & 0x1f;
91 	unsigned int bi;
92 
93 	if ((bo & 4) == 0) {
94 		/* decrement counter */
95 		op->type |= DECCTR;
96 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 			return 0;
98 	}
99 	if ((bo & 0x10) == 0) {
100 		/* check bit from CR */
101 		bi = (instr >> 16) & 0x1f;
102 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 			return 0;
104 	}
105 	return 1;
106 }
107 
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109 				       unsigned long ea, int nb)
110 {
111 	if (!user_mode(regs))
112 		return 1;
113 	if (access_ok((void __user *)ea, nb))
114 		return 1;
115 	if (access_ok((void __user *)ea, 1))
116 		/* Access overlaps the end of the user region */
117 		regs->dar = TASK_SIZE_MAX - 1;
118 	else
119 		regs->dar = ea;
120 	return 0;
121 }
122 
123 /*
124  * Calculate effective address for a D-form instruction
125  */
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 					      const struct pt_regs *regs)
128 {
129 	int ra;
130 	unsigned long ea;
131 
132 	ra = (instr >> 16) & 0x1f;
133 	ea = (signed short) instr;		/* sign-extend */
134 	if (ra)
135 		ea += regs->gpr[ra];
136 
137 	return ea;
138 }
139 
140 #ifdef __powerpc64__
141 /*
142  * Calculate effective address for a DS-form instruction
143  */
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 					       const struct pt_regs *regs)
146 {
147 	int ra;
148 	unsigned long ea;
149 
150 	ra = (instr >> 16) & 0x1f;
151 	ea = (signed short) (instr & ~3);	/* sign-extend */
152 	if (ra)
153 		ea += regs->gpr[ra];
154 
155 	return ea;
156 }
157 
158 /*
159  * Calculate effective address for a DQ-form instruction
160  */
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 					       const struct pt_regs *regs)
163 {
164 	int ra;
165 	unsigned long ea;
166 
167 	ra = (instr >> 16) & 0x1f;
168 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
169 	if (ra)
170 		ea += regs->gpr[ra];
171 
172 	return ea;
173 }
174 #endif /* __powerpc64 */
175 
176 /*
177  * Calculate effective address for an X-form instruction
178  */
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 					      const struct pt_regs *regs)
181 {
182 	int ra, rb;
183 	unsigned long ea;
184 
185 	ra = (instr >> 16) & 0x1f;
186 	rb = (instr >> 11) & 0x1f;
187 	ea = regs->gpr[rb];
188 	if (ra)
189 		ea += regs->gpr[ra];
190 
191 	return ea;
192 }
193 
194 /*
195  * Calculate effective address for a MLS:D-form / 8LS:D-form
196  * prefixed instruction
197  */
198 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
199 						  unsigned int suffix,
200 						  const struct pt_regs *regs)
201 {
202 	int ra, prefix_r;
203 	unsigned int  dd;
204 	unsigned long ea, d0, d1, d;
205 
206 	prefix_r = GET_PREFIX_R(instr);
207 	ra = GET_PREFIX_RA(suffix);
208 
209 	d0 = instr & 0x3ffff;
210 	d1 = suffix & 0xffff;
211 	d = (d0 << 16) | d1;
212 
213 	/*
214 	 * sign extend a 34 bit number
215 	 */
216 	dd = (unsigned int)(d >> 2);
217 	ea = (signed int)dd;
218 	ea = (ea << 2) | (d & 0x3);
219 
220 	if (!prefix_r && ra)
221 		ea += regs->gpr[ra];
222 	else if (!prefix_r && !ra)
223 		; /* Leave ea as is */
224 	else if (prefix_r)
225 		ea += regs->nip;
226 
227 	/*
228 	 * (prefix_r && ra) is an invalid form. Should already be
229 	 * checked for by caller!
230 	 */
231 
232 	return ea;
233 }
234 
235 /*
236  * Return the largest power of 2, not greater than sizeof(unsigned long),
237  * such that x is a multiple of it.
238  */
239 static nokprobe_inline unsigned long max_align(unsigned long x)
240 {
241 	x |= sizeof(unsigned long);
242 	return x & -x;		/* isolates rightmost bit */
243 }
244 
245 static nokprobe_inline unsigned long byterev_2(unsigned long x)
246 {
247 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
248 }
249 
250 static nokprobe_inline unsigned long byterev_4(unsigned long x)
251 {
252 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
253 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
254 }
255 
256 #ifdef __powerpc64__
257 static nokprobe_inline unsigned long byterev_8(unsigned long x)
258 {
259 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
260 }
261 #endif
262 
263 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
264 {
265 	switch (nb) {
266 	case 2:
267 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
268 		break;
269 	case 4:
270 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
271 		break;
272 #ifdef __powerpc64__
273 	case 8:
274 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
275 		break;
276 	case 16: {
277 		unsigned long *up = (unsigned long *)ptr;
278 		unsigned long tmp;
279 		tmp = byterev_8(up[0]);
280 		up[0] = byterev_8(up[1]);
281 		up[1] = tmp;
282 		break;
283 	}
284 	case 32: {
285 		unsigned long *up = (unsigned long *)ptr;
286 		unsigned long tmp;
287 
288 		tmp = byterev_8(up[0]);
289 		up[0] = byterev_8(up[3]);
290 		up[3] = tmp;
291 		tmp = byterev_8(up[2]);
292 		up[2] = byterev_8(up[1]);
293 		up[1] = tmp;
294 		break;
295 	}
296 
297 #endif
298 	default:
299 		WARN_ON_ONCE(1);
300 	}
301 }
302 
303 static __always_inline int
304 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
305 {
306 	unsigned long x = 0;
307 
308 	switch (nb) {
309 	case 1:
310 		unsafe_get_user(x, (unsigned char __user *)ea, Efault);
311 		break;
312 	case 2:
313 		unsafe_get_user(x, (unsigned short __user *)ea, Efault);
314 		break;
315 	case 4:
316 		unsafe_get_user(x, (unsigned int __user *)ea, Efault);
317 		break;
318 #ifdef __powerpc64__
319 	case 8:
320 		unsafe_get_user(x, (unsigned long __user *)ea, Efault);
321 		break;
322 #endif
323 	}
324 	*dest = x;
325 	return 0;
326 
327 Efault:
328 	regs->dar = ea;
329 	return -EFAULT;
330 }
331 
332 static nokprobe_inline int
333 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
334 {
335 	int err;
336 
337 	if (is_kernel_addr(ea))
338 		return __read_mem_aligned(dest, ea, nb, regs);
339 
340 	if (user_read_access_begin((void __user *)ea, nb)) {
341 		err = __read_mem_aligned(dest, ea, nb, regs);
342 		user_read_access_end();
343 	} else {
344 		err = -EFAULT;
345 		regs->dar = ea;
346 	}
347 
348 	return err;
349 }
350 
351 /*
352  * Copy from userspace to a buffer, using the largest possible
353  * aligned accesses, up to sizeof(long).
354  */
355 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
356 {
357 	int c;
358 
359 	for (; nb > 0; nb -= c) {
360 		c = max_align(ea);
361 		if (c > nb)
362 			c = max_align(nb);
363 		switch (c) {
364 		case 1:
365 			unsafe_get_user(*dest, (u8 __user *)ea, Efault);
366 			break;
367 		case 2:
368 			unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
369 			break;
370 		case 4:
371 			unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
372 			break;
373 #ifdef __powerpc64__
374 		case 8:
375 			unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
376 			break;
377 #endif
378 		}
379 		dest += c;
380 		ea += c;
381 	}
382 	return 0;
383 
384 Efault:
385 	regs->dar = ea;
386 	return -EFAULT;
387 }
388 
389 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
390 {
391 	int err;
392 
393 	if (is_kernel_addr(ea))
394 		return __copy_mem_in(dest, ea, nb, regs);
395 
396 	if (user_read_access_begin((void __user *)ea, nb)) {
397 		err = __copy_mem_in(dest, ea, nb, regs);
398 		user_read_access_end();
399 	} else {
400 		err = -EFAULT;
401 		regs->dar = ea;
402 	}
403 
404 	return err;
405 }
406 
407 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
408 					      unsigned long ea, int nb,
409 					      struct pt_regs *regs)
410 {
411 	union {
412 		unsigned long ul;
413 		u8 b[sizeof(unsigned long)];
414 	} u;
415 	int i;
416 	int err;
417 
418 	u.ul = 0;
419 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
420 	err = copy_mem_in(&u.b[i], ea, nb, regs);
421 	if (!err)
422 		*dest = u.ul;
423 	return err;
424 }
425 
426 /*
427  * Read memory at address ea for nb bytes, return 0 for success
428  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
429  * If nb < sizeof(long), the result is right-justified on BE systems.
430  */
431 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
432 			      struct pt_regs *regs)
433 {
434 	if (!address_ok(regs, ea, nb))
435 		return -EFAULT;
436 	if ((ea & (nb - 1)) == 0)
437 		return read_mem_aligned(dest, ea, nb, regs);
438 	return read_mem_unaligned(dest, ea, nb, regs);
439 }
440 NOKPROBE_SYMBOL(read_mem);
441 
442 static __always_inline int
443 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
444 {
445 	switch (nb) {
446 	case 1:
447 		unsafe_put_user(val, (unsigned char __user *)ea, Efault);
448 		break;
449 	case 2:
450 		unsafe_put_user(val, (unsigned short __user *)ea, Efault);
451 		break;
452 	case 4:
453 		unsafe_put_user(val, (unsigned int __user *)ea, Efault);
454 		break;
455 #ifdef __powerpc64__
456 	case 8:
457 		unsafe_put_user(val, (unsigned long __user *)ea, Efault);
458 		break;
459 #endif
460 	}
461 	return 0;
462 
463 Efault:
464 	regs->dar = ea;
465 	return -EFAULT;
466 }
467 
468 static nokprobe_inline int
469 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
470 {
471 	int err;
472 
473 	if (is_kernel_addr(ea))
474 		return __write_mem_aligned(val, ea, nb, regs);
475 
476 	if (user_write_access_begin((void __user *)ea, nb)) {
477 		err = __write_mem_aligned(val, ea, nb, regs);
478 		user_write_access_end();
479 	} else {
480 		err = -EFAULT;
481 		regs->dar = ea;
482 	}
483 
484 	return err;
485 }
486 
487 /*
488  * Copy from a buffer to userspace, using the largest possible
489  * aligned accesses, up to sizeof(long).
490  */
491 static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
492 {
493 	int c;
494 
495 	for (; nb > 0; nb -= c) {
496 		c = max_align(ea);
497 		if (c > nb)
498 			c = max_align(nb);
499 		switch (c) {
500 		case 1:
501 			unsafe_put_user(*dest, (u8 __user *)ea, Efault);
502 			break;
503 		case 2:
504 			unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
505 			break;
506 		case 4:
507 			unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
508 			break;
509 #ifdef __powerpc64__
510 		case 8:
511 			unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
512 			break;
513 #endif
514 		}
515 		dest += c;
516 		ea += c;
517 	}
518 	return 0;
519 
520 Efault:
521 	regs->dar = ea;
522 	return -EFAULT;
523 }
524 
525 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
526 {
527 	int err;
528 
529 	if (is_kernel_addr(ea))
530 		return __copy_mem_out(dest, ea, nb, regs);
531 
532 	if (user_write_access_begin((void __user *)ea, nb)) {
533 		err = __copy_mem_out(dest, ea, nb, regs);
534 		user_write_access_end();
535 	} else {
536 		err = -EFAULT;
537 		regs->dar = ea;
538 	}
539 
540 	return err;
541 }
542 
543 static nokprobe_inline int write_mem_unaligned(unsigned long val,
544 					       unsigned long ea, int nb,
545 					       struct pt_regs *regs)
546 {
547 	union {
548 		unsigned long ul;
549 		u8 b[sizeof(unsigned long)];
550 	} u;
551 	int i;
552 
553 	u.ul = val;
554 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
555 	return copy_mem_out(&u.b[i], ea, nb, regs);
556 }
557 
558 /*
559  * Write memory at address ea for nb bytes, return 0 for success
560  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
561  */
562 static int write_mem(unsigned long val, unsigned long ea, int nb,
563 			       struct pt_regs *regs)
564 {
565 	if (!address_ok(regs, ea, nb))
566 		return -EFAULT;
567 	if ((ea & (nb - 1)) == 0)
568 		return write_mem_aligned(val, ea, nb, regs);
569 	return write_mem_unaligned(val, ea, nb, regs);
570 }
571 NOKPROBE_SYMBOL(write_mem);
572 
573 #ifdef CONFIG_PPC_FPU
574 /*
575  * These access either the real FP register or the image in the
576  * thread_struct, depending on regs->msr & MSR_FP.
577  */
578 static int do_fp_load(struct instruction_op *op, unsigned long ea,
579 		      struct pt_regs *regs, bool cross_endian)
580 {
581 	int err, rn, nb;
582 	union {
583 		int i;
584 		unsigned int u;
585 		float f;
586 		double d[2];
587 		unsigned long l[2];
588 		u8 b[2 * sizeof(double)];
589 	} u;
590 
591 	nb = GETSIZE(op->type);
592 	if (!address_ok(regs, ea, nb))
593 		return -EFAULT;
594 	rn = op->reg;
595 	err = copy_mem_in(u.b, ea, nb, regs);
596 	if (err)
597 		return err;
598 	if (unlikely(cross_endian)) {
599 		do_byte_reverse(u.b, min(nb, 8));
600 		if (nb == 16)
601 			do_byte_reverse(&u.b[8], 8);
602 	}
603 	preempt_disable();
604 	if (nb == 4) {
605 		if (op->type & FPCONV)
606 			conv_sp_to_dp(&u.f, &u.d[0]);
607 		else if (op->type & SIGNEXT)
608 			u.l[0] = u.i;
609 		else
610 			u.l[0] = u.u;
611 	}
612 	if (regs->msr & MSR_FP)
613 		put_fpr(rn, &u.d[0]);
614 	else
615 		current->thread.TS_FPR(rn) = u.l[0];
616 	if (nb == 16) {
617 		/* lfdp */
618 		rn |= 1;
619 		if (regs->msr & MSR_FP)
620 			put_fpr(rn, &u.d[1]);
621 		else
622 			current->thread.TS_FPR(rn) = u.l[1];
623 	}
624 	preempt_enable();
625 	return 0;
626 }
627 NOKPROBE_SYMBOL(do_fp_load);
628 
629 static int do_fp_store(struct instruction_op *op, unsigned long ea,
630 		       struct pt_regs *regs, bool cross_endian)
631 {
632 	int rn, nb;
633 	union {
634 		unsigned int u;
635 		float f;
636 		double d[2];
637 		unsigned long l[2];
638 		u8 b[2 * sizeof(double)];
639 	} u;
640 
641 	nb = GETSIZE(op->type);
642 	if (!address_ok(regs, ea, nb))
643 		return -EFAULT;
644 	rn = op->reg;
645 	preempt_disable();
646 	if (regs->msr & MSR_FP)
647 		get_fpr(rn, &u.d[0]);
648 	else
649 		u.l[0] = current->thread.TS_FPR(rn);
650 	if (nb == 4) {
651 		if (op->type & FPCONV)
652 			conv_dp_to_sp(&u.d[0], &u.f);
653 		else
654 			u.u = u.l[0];
655 	}
656 	if (nb == 16) {
657 		rn |= 1;
658 		if (regs->msr & MSR_FP)
659 			get_fpr(rn, &u.d[1]);
660 		else
661 			u.l[1] = current->thread.TS_FPR(rn);
662 	}
663 	preempt_enable();
664 	if (unlikely(cross_endian)) {
665 		do_byte_reverse(u.b, min(nb, 8));
666 		if (nb == 16)
667 			do_byte_reverse(&u.b[8], 8);
668 	}
669 	return copy_mem_out(u.b, ea, nb, regs);
670 }
671 NOKPROBE_SYMBOL(do_fp_store);
672 #endif
673 
674 #ifdef CONFIG_ALTIVEC
675 /* For Altivec/VMX, no need to worry about alignment */
676 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
677 				       int size, struct pt_regs *regs,
678 				       bool cross_endian)
679 {
680 	int err;
681 	union {
682 		__vector128 v;
683 		u8 b[sizeof(__vector128)];
684 	} u = {};
685 
686 	if (!address_ok(regs, ea & ~0xfUL, 16))
687 		return -EFAULT;
688 	/* align to multiple of size */
689 	ea &= ~(size - 1);
690 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
691 	if (err)
692 		return err;
693 	if (unlikely(cross_endian))
694 		do_byte_reverse(&u.b[ea & 0xf], size);
695 	preempt_disable();
696 	if (regs->msr & MSR_VEC)
697 		put_vr(rn, &u.v);
698 	else
699 		current->thread.vr_state.vr[rn] = u.v;
700 	preempt_enable();
701 	return 0;
702 }
703 
704 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
705 					int size, struct pt_regs *regs,
706 					bool cross_endian)
707 {
708 	union {
709 		__vector128 v;
710 		u8 b[sizeof(__vector128)];
711 	} u;
712 
713 	if (!address_ok(regs, ea & ~0xfUL, 16))
714 		return -EFAULT;
715 	/* align to multiple of size */
716 	ea &= ~(size - 1);
717 
718 	preempt_disable();
719 	if (regs->msr & MSR_VEC)
720 		get_vr(rn, &u.v);
721 	else
722 		u.v = current->thread.vr_state.vr[rn];
723 	preempt_enable();
724 	if (unlikely(cross_endian))
725 		do_byte_reverse(&u.b[ea & 0xf], size);
726 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
727 }
728 #endif /* CONFIG_ALTIVEC */
729 
730 #ifdef __powerpc64__
731 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
732 				      int reg, bool cross_endian)
733 {
734 	int err;
735 
736 	if (!address_ok(regs, ea, 16))
737 		return -EFAULT;
738 	/* if aligned, should be atomic */
739 	if ((ea & 0xf) == 0) {
740 		err = do_lq(ea, &regs->gpr[reg]);
741 	} else {
742 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
743 		if (!err)
744 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
745 	}
746 	if (!err && unlikely(cross_endian))
747 		do_byte_reverse(&regs->gpr[reg], 16);
748 	return err;
749 }
750 
751 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
752 				       int reg, bool cross_endian)
753 {
754 	int err;
755 	unsigned long vals[2];
756 
757 	if (!address_ok(regs, ea, 16))
758 		return -EFAULT;
759 	vals[0] = regs->gpr[reg];
760 	vals[1] = regs->gpr[reg + 1];
761 	if (unlikely(cross_endian))
762 		do_byte_reverse(vals, 16);
763 
764 	/* if aligned, should be atomic */
765 	if ((ea & 0xf) == 0)
766 		return do_stq(ea, vals[0], vals[1]);
767 
768 	err = write_mem(vals[IS_LE], ea, 8, regs);
769 	if (!err)
770 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
771 	return err;
772 }
773 #endif /* __powerpc64 */
774 
775 #ifdef CONFIG_VSX
776 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
777 		      const void *mem, bool rev)
778 {
779 	int size, read_size;
780 	int i, j;
781 	const unsigned int *wp;
782 	const unsigned short *hp;
783 	const unsigned char *bp;
784 
785 	size = GETSIZE(op->type);
786 	reg->d[0] = reg->d[1] = 0;
787 
788 	switch (op->element_size) {
789 	case 32:
790 		/* [p]lxvp[x] */
791 	case 16:
792 		/* whole vector; lxv[x] or lxvl[l] */
793 		if (size == 0)
794 			break;
795 		memcpy(reg, mem, size);
796 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
797 			rev = !rev;
798 		if (rev)
799 			do_byte_reverse(reg, size);
800 		break;
801 	case 8:
802 		/* scalar loads, lxvd2x, lxvdsx */
803 		read_size = (size >= 8) ? 8 : size;
804 		i = IS_LE ? 8 : 8 - read_size;
805 		memcpy(&reg->b[i], mem, read_size);
806 		if (rev)
807 			do_byte_reverse(&reg->b[i], 8);
808 		if (size < 8) {
809 			if (op->type & SIGNEXT) {
810 				/* size == 4 is the only case here */
811 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
812 			} else if (op->vsx_flags & VSX_FPCONV) {
813 				preempt_disable();
814 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
815 					      &reg->dp[IS_LE]);
816 				preempt_enable();
817 			}
818 		} else {
819 			if (size == 16) {
820 				unsigned long v = *(unsigned long *)(mem + 8);
821 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
822 			} else if (op->vsx_flags & VSX_SPLAT)
823 				reg->d[IS_BE] = reg->d[IS_LE];
824 		}
825 		break;
826 	case 4:
827 		/* lxvw4x, lxvwsx */
828 		wp = mem;
829 		for (j = 0; j < size / 4; ++j) {
830 			i = IS_LE ? 3 - j : j;
831 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
832 		}
833 		if (op->vsx_flags & VSX_SPLAT) {
834 			u32 val = reg->w[IS_LE ? 3 : 0];
835 			for (; j < 4; ++j) {
836 				i = IS_LE ? 3 - j : j;
837 				reg->w[i] = val;
838 			}
839 		}
840 		break;
841 	case 2:
842 		/* lxvh8x */
843 		hp = mem;
844 		for (j = 0; j < size / 2; ++j) {
845 			i = IS_LE ? 7 - j : j;
846 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
847 		}
848 		break;
849 	case 1:
850 		/* lxvb16x */
851 		bp = mem;
852 		for (j = 0; j < size; ++j) {
853 			i = IS_LE ? 15 - j : j;
854 			reg->b[i] = *bp++;
855 		}
856 		break;
857 	}
858 }
859 EXPORT_SYMBOL_GPL(emulate_vsx_load);
860 NOKPROBE_SYMBOL(emulate_vsx_load);
861 
862 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
863 		       void *mem, bool rev)
864 {
865 	int size, write_size;
866 	int i, j;
867 	union vsx_reg buf;
868 	unsigned int *wp;
869 	unsigned short *hp;
870 	unsigned char *bp;
871 
872 	size = GETSIZE(op->type);
873 
874 	switch (op->element_size) {
875 	case 32:
876 		/* [p]stxvp[x] */
877 		if (size == 0)
878 			break;
879 		if (rev) {
880 			/* reverse 32 bytes */
881 			union vsx_reg buf32[2];
882 			buf32[0].d[0] = byterev_8(reg[1].d[1]);
883 			buf32[0].d[1] = byterev_8(reg[1].d[0]);
884 			buf32[1].d[0] = byterev_8(reg[0].d[1]);
885 			buf32[1].d[1] = byterev_8(reg[0].d[0]);
886 			memcpy(mem, buf32, size);
887 		} else {
888 			memcpy(mem, reg, size);
889 		}
890 		break;
891 	case 16:
892 		/* stxv, stxvx, stxvl, stxvll */
893 		if (size == 0)
894 			break;
895 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
896 			rev = !rev;
897 		if (rev) {
898 			/* reverse 16 bytes */
899 			buf.d[0] = byterev_8(reg->d[1]);
900 			buf.d[1] = byterev_8(reg->d[0]);
901 			reg = &buf;
902 		}
903 		memcpy(mem, reg, size);
904 		break;
905 	case 8:
906 		/* scalar stores, stxvd2x */
907 		write_size = (size >= 8) ? 8 : size;
908 		i = IS_LE ? 8 : 8 - write_size;
909 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
910 			buf.d[0] = buf.d[1] = 0;
911 			preempt_disable();
912 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
913 			preempt_enable();
914 			reg = &buf;
915 		}
916 		memcpy(mem, &reg->b[i], write_size);
917 		if (size == 16)
918 			memcpy(mem + 8, &reg->d[IS_BE], 8);
919 		if (unlikely(rev)) {
920 			do_byte_reverse(mem, write_size);
921 			if (size == 16)
922 				do_byte_reverse(mem + 8, 8);
923 		}
924 		break;
925 	case 4:
926 		/* stxvw4x */
927 		wp = mem;
928 		for (j = 0; j < size / 4; ++j) {
929 			i = IS_LE ? 3 - j : j;
930 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
931 		}
932 		break;
933 	case 2:
934 		/* stxvh8x */
935 		hp = mem;
936 		for (j = 0; j < size / 2; ++j) {
937 			i = IS_LE ? 7 - j : j;
938 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
939 		}
940 		break;
941 	case 1:
942 		/* stvxb16x */
943 		bp = mem;
944 		for (j = 0; j < size; ++j) {
945 			i = IS_LE ? 15 - j : j;
946 			*bp++ = reg->b[i];
947 		}
948 		break;
949 	}
950 }
951 EXPORT_SYMBOL_GPL(emulate_vsx_store);
952 NOKPROBE_SYMBOL(emulate_vsx_store);
953 
954 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
955 				       unsigned long ea, struct pt_regs *regs,
956 				       bool cross_endian)
957 {
958 	int reg = op->reg;
959 	int i, j, nr_vsx_regs;
960 	u8 mem[32];
961 	union vsx_reg buf[2];
962 	int size = GETSIZE(op->type);
963 
964 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
965 		return -EFAULT;
966 
967 	nr_vsx_regs = max(1ul, size / sizeof(__vector128));
968 	emulate_vsx_load(op, buf, mem, cross_endian);
969 	preempt_disable();
970 	if (reg < 32) {
971 		/* FP regs + extensions */
972 		if (regs->msr & MSR_FP) {
973 			for (i = 0; i < nr_vsx_regs; i++) {
974 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
975 				load_vsrn(reg + i, &buf[j].v);
976 			}
977 		} else {
978 			for (i = 0; i < nr_vsx_regs; i++) {
979 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
980 				current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
981 				current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
982 			}
983 		}
984 	} else {
985 		if (regs->msr & MSR_VEC) {
986 			for (i = 0; i < nr_vsx_regs; i++) {
987 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
988 				load_vsrn(reg + i, &buf[j].v);
989 			}
990 		} else {
991 			for (i = 0; i < nr_vsx_regs; i++) {
992 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
993 				current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
994 			}
995 		}
996 	}
997 	preempt_enable();
998 	return 0;
999 }
1000 
1001 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1002 					unsigned long ea, struct pt_regs *regs,
1003 					bool cross_endian)
1004 {
1005 	int reg = op->reg;
1006 	int i, j, nr_vsx_regs;
1007 	u8 mem[32];
1008 	union vsx_reg buf[2];
1009 	int size = GETSIZE(op->type);
1010 
1011 	if (!address_ok(regs, ea, size))
1012 		return -EFAULT;
1013 
1014 	nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1015 	preempt_disable();
1016 	if (reg < 32) {
1017 		/* FP regs + extensions */
1018 		if (regs->msr & MSR_FP) {
1019 			for (i = 0; i < nr_vsx_regs; i++) {
1020 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1021 				store_vsrn(reg + i, &buf[j].v);
1022 			}
1023 		} else {
1024 			for (i = 0; i < nr_vsx_regs; i++) {
1025 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1026 				buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1027 				buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1028 			}
1029 		}
1030 	} else {
1031 		if (regs->msr & MSR_VEC) {
1032 			for (i = 0; i < nr_vsx_regs; i++) {
1033 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1034 				store_vsrn(reg + i, &buf[j].v);
1035 			}
1036 		} else {
1037 			for (i = 0; i < nr_vsx_regs; i++) {
1038 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1039 				buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1040 			}
1041 		}
1042 	}
1043 	preempt_enable();
1044 	emulate_vsx_store(op, buf, mem, cross_endian);
1045 	return  copy_mem_out(mem, ea, size, regs);
1046 }
1047 #endif /* CONFIG_VSX */
1048 
1049 static int __emulate_dcbz(unsigned long ea)
1050 {
1051 	unsigned long i;
1052 	unsigned long size = l1_dcache_bytes();
1053 
1054 	for (i = 0; i < size; i += sizeof(long))
1055 		unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1056 
1057 	return 0;
1058 
1059 Efault:
1060 	return -EFAULT;
1061 }
1062 
1063 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1064 {
1065 	int err;
1066 	unsigned long size = l1_dcache_bytes();
1067 
1068 	ea = truncate_if_32bit(regs->msr, ea);
1069 	ea &= ~(size - 1);
1070 	if (!address_ok(regs, ea, size))
1071 		return -EFAULT;
1072 
1073 	if (is_kernel_addr(ea)) {
1074 		err = __emulate_dcbz(ea);
1075 	} else if (user_write_access_begin((void __user *)ea, size)) {
1076 		err = __emulate_dcbz(ea);
1077 		user_write_access_end();
1078 	} else {
1079 		err = -EFAULT;
1080 	}
1081 
1082 	if (err)
1083 		regs->dar = ea;
1084 
1085 
1086 	return err;
1087 }
1088 NOKPROBE_SYMBOL(emulate_dcbz);
1089 
1090 #define __put_user_asmx(x, addr, err, op, cr)		\
1091 	__asm__ __volatile__(				\
1092 		".machine push\n"			\
1093 		".machine power8\n"			\
1094 		"1:	" op " %2,0,%3\n"		\
1095 		".machine pop\n"			\
1096 		"	mfcr	%1\n"			\
1097 		"2:\n"					\
1098 		".section .fixup,\"ax\"\n"		\
1099 		"3:	li	%0,%4\n"		\
1100 		"	b	2b\n"			\
1101 		".previous\n"				\
1102 		EX_TABLE(1b, 3b)			\
1103 		: "=r" (err), "=r" (cr)			\
1104 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1105 
1106 #define __get_user_asmx(x, addr, err, op)		\
1107 	__asm__ __volatile__(				\
1108 		".machine push\n"			\
1109 		".machine power8\n"			\
1110 		"1:	"op" %1,0,%2\n"			\
1111 		".machine pop\n"			\
1112 		"2:\n"					\
1113 		".section .fixup,\"ax\"\n"		\
1114 		"3:	li	%0,%3\n"		\
1115 		"	b	2b\n"			\
1116 		".previous\n"				\
1117 		EX_TABLE(1b, 3b)			\
1118 		: "=r" (err), "=r" (x)			\
1119 		: "r" (addr), "i" (-EFAULT), "0" (err))
1120 
1121 #define __cacheop_user_asmx(addr, err, op)		\
1122 	__asm__ __volatile__(				\
1123 		"1:	"op" 0,%1\n"			\
1124 		"2:\n"					\
1125 		".section .fixup,\"ax\"\n"		\
1126 		"3:	li	%0,%3\n"		\
1127 		"	b	2b\n"			\
1128 		".previous\n"				\
1129 		EX_TABLE(1b, 3b)			\
1130 		: "=r" (err)				\
1131 		: "r" (addr), "i" (-EFAULT), "0" (err))
1132 
1133 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1134 				    struct instruction_op *op)
1135 {
1136 	long val = op->val;
1137 
1138 	op->type |= SETCC;
1139 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1140 	if (!(regs->msr & MSR_64BIT))
1141 		val = (int) val;
1142 	if (val < 0)
1143 		op->ccval |= 0x80000000;
1144 	else if (val > 0)
1145 		op->ccval |= 0x40000000;
1146 	else
1147 		op->ccval |= 0x20000000;
1148 }
1149 
1150 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1151 {
1152 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1153 		if (val)
1154 			op->xerval |= XER_CA32;
1155 		else
1156 			op->xerval &= ~XER_CA32;
1157 	}
1158 }
1159 
1160 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1161 				     struct instruction_op *op, int rd,
1162 				     unsigned long val1, unsigned long val2,
1163 				     unsigned long carry_in)
1164 {
1165 	unsigned long val = val1 + val2;
1166 
1167 	if (carry_in)
1168 		++val;
1169 	op->type = COMPUTE | SETREG | SETXER;
1170 	op->reg = rd;
1171 	op->val = val;
1172 	val = truncate_if_32bit(regs->msr, val);
1173 	val1 = truncate_if_32bit(regs->msr, val1);
1174 	op->xerval = regs->xer;
1175 	if (val < val1 || (carry_in && val == val1))
1176 		op->xerval |= XER_CA;
1177 	else
1178 		op->xerval &= ~XER_CA;
1179 
1180 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1181 			(carry_in && (unsigned int)val == (unsigned int)val1));
1182 }
1183 
1184 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1185 					  struct instruction_op *op,
1186 					  long v1, long v2, int crfld)
1187 {
1188 	unsigned int crval, shift;
1189 
1190 	op->type = COMPUTE | SETCC;
1191 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1192 	if (v1 < v2)
1193 		crval |= 8;
1194 	else if (v1 > v2)
1195 		crval |= 4;
1196 	else
1197 		crval |= 2;
1198 	shift = (7 - crfld) * 4;
1199 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1200 }
1201 
1202 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1203 					    struct instruction_op *op,
1204 					    unsigned long v1,
1205 					    unsigned long v2, int crfld)
1206 {
1207 	unsigned int crval, shift;
1208 
1209 	op->type = COMPUTE | SETCC;
1210 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1211 	if (v1 < v2)
1212 		crval |= 8;
1213 	else if (v1 > v2)
1214 		crval |= 4;
1215 	else
1216 		crval |= 2;
1217 	shift = (7 - crfld) * 4;
1218 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1219 }
1220 
1221 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1222 				    struct instruction_op *op,
1223 				    unsigned long v1, unsigned long v2)
1224 {
1225 	unsigned long long out_val, mask;
1226 	int i;
1227 
1228 	out_val = 0;
1229 	for (i = 0; i < 8; i++) {
1230 		mask = 0xffUL << (i * 8);
1231 		if ((v1 & mask) == (v2 & mask))
1232 			out_val |= mask;
1233 	}
1234 	op->val = out_val;
1235 }
1236 
1237 /*
1238  * The size parameter is used to adjust the equivalent popcnt instruction.
1239  * popcntb = 8, popcntw = 32, popcntd = 64
1240  */
1241 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1242 				      struct instruction_op *op,
1243 				      unsigned long v1, int size)
1244 {
1245 	unsigned long long out = v1;
1246 
1247 	out -= (out >> 1) & 0x5555555555555555ULL;
1248 	out = (0x3333333333333333ULL & out) +
1249 	      (0x3333333333333333ULL & (out >> 2));
1250 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1251 
1252 	if (size == 8) {	/* popcntb */
1253 		op->val = out;
1254 		return;
1255 	}
1256 	out += out >> 8;
1257 	out += out >> 16;
1258 	if (size == 32) {	/* popcntw */
1259 		op->val = out & 0x0000003f0000003fULL;
1260 		return;
1261 	}
1262 
1263 	out = (out + (out >> 32)) & 0x7f;
1264 	op->val = out;	/* popcntd */
1265 }
1266 
1267 #ifdef CONFIG_PPC64
1268 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1269 				      struct instruction_op *op,
1270 				      unsigned long v1, unsigned long v2)
1271 {
1272 	unsigned char perm, idx;
1273 	unsigned int i;
1274 
1275 	perm = 0;
1276 	for (i = 0; i < 8; i++) {
1277 		idx = (v1 >> (i * 8)) & 0xff;
1278 		if (idx < 64)
1279 			if (v2 & PPC_BIT(idx))
1280 				perm |= 1 << i;
1281 	}
1282 	op->val = perm;
1283 }
1284 #endif /* CONFIG_PPC64 */
1285 /*
1286  * The size parameter adjusts the equivalent prty instruction.
1287  * prtyw = 32, prtyd = 64
1288  */
1289 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1290 				    struct instruction_op *op,
1291 				    unsigned long v, int size)
1292 {
1293 	unsigned long long res = v ^ (v >> 8);
1294 
1295 	res ^= res >> 16;
1296 	if (size == 32) {		/* prtyw */
1297 		op->val = res & 0x0000000100000001ULL;
1298 		return;
1299 	}
1300 
1301 	res ^= res >> 32;
1302 	op->val = res & 1;	/*prtyd */
1303 }
1304 
1305 static nokprobe_inline int trap_compare(long v1, long v2)
1306 {
1307 	int ret = 0;
1308 
1309 	if (v1 < v2)
1310 		ret |= 0x10;
1311 	else if (v1 > v2)
1312 		ret |= 0x08;
1313 	else
1314 		ret |= 0x04;
1315 	if ((unsigned long)v1 < (unsigned long)v2)
1316 		ret |= 0x02;
1317 	else if ((unsigned long)v1 > (unsigned long)v2)
1318 		ret |= 0x01;
1319 	return ret;
1320 }
1321 
1322 /*
1323  * Elements of 32-bit rotate and mask instructions.
1324  */
1325 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1326 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1327 #ifdef __powerpc64__
1328 #define MASK64_L(mb)	(~0UL >> (mb))
1329 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1330 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1331 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1332 #else
1333 #define DATA32(x)	(x)
1334 #endif
1335 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1336 
1337 /*
1338  * Decode an instruction, and return information about it in *op
1339  * without changing *regs.
1340  * Integer arithmetic and logical instructions, branches, and barrier
1341  * instructions can be emulated just using the information in *op.
1342  *
1343  * Return value is 1 if the instruction can be emulated just by
1344  * updating *regs with the information in *op, -1 if we need the
1345  * GPRs but *regs doesn't contain the full register set, or 0
1346  * otherwise.
1347  */
1348 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1349 		  ppc_inst_t instr)
1350 {
1351 #ifdef CONFIG_PPC64
1352 	unsigned int suffixopcode, prefixtype, prefix_r;
1353 #endif
1354 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1355 	unsigned long int imm;
1356 	unsigned long int val, val2;
1357 	unsigned int mb, me, sh;
1358 	unsigned int word, suffix;
1359 	long ival;
1360 
1361 	word = ppc_inst_val(instr);
1362 	suffix = ppc_inst_suffix(instr);
1363 
1364 	op->type = COMPUTE;
1365 
1366 	opcode = ppc_inst_primary_opcode(instr);
1367 	switch (opcode) {
1368 	case 16:	/* bc */
1369 		op->type = BRANCH;
1370 		imm = (signed short)(word & 0xfffc);
1371 		if ((word & 2) == 0)
1372 			imm += regs->nip;
1373 		op->val = truncate_if_32bit(regs->msr, imm);
1374 		if (word & 1)
1375 			op->type |= SETLK;
1376 		if (branch_taken(word, regs, op))
1377 			op->type |= BRTAKEN;
1378 		return 1;
1379 #ifdef CONFIG_PPC64
1380 	case 17:	/* sc */
1381 		if ((word & 0xfe2) == 2)
1382 			op->type = SYSCALL;
1383 		else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1384 				(word & 0xfe3) == 1) {	/* scv */
1385 			op->type = SYSCALL_VECTORED_0;
1386 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1387 				goto unknown_opcode;
1388 		} else
1389 			op->type = UNKNOWN;
1390 		return 0;
1391 #endif
1392 	case 18:	/* b */
1393 		op->type = BRANCH | BRTAKEN;
1394 		imm = word & 0x03fffffc;
1395 		if (imm & 0x02000000)
1396 			imm -= 0x04000000;
1397 		if ((word & 2) == 0)
1398 			imm += regs->nip;
1399 		op->val = truncate_if_32bit(regs->msr, imm);
1400 		if (word & 1)
1401 			op->type |= SETLK;
1402 		return 1;
1403 	case 19:
1404 		switch ((word >> 1) & 0x3ff) {
1405 		case 0:		/* mcrf */
1406 			op->type = COMPUTE + SETCC;
1407 			rd = 7 - ((word >> 23) & 0x7);
1408 			ra = 7 - ((word >> 18) & 0x7);
1409 			rd *= 4;
1410 			ra *= 4;
1411 			val = (regs->ccr >> ra) & 0xf;
1412 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1413 			return 1;
1414 
1415 		case 16:	/* bclr */
1416 		case 528:	/* bcctr */
1417 			op->type = BRANCH;
1418 			imm = (word & 0x400)? regs->ctr: regs->link;
1419 			op->val = truncate_if_32bit(regs->msr, imm);
1420 			if (word & 1)
1421 				op->type |= SETLK;
1422 			if (branch_taken(word, regs, op))
1423 				op->type |= BRTAKEN;
1424 			return 1;
1425 
1426 		case 18:	/* rfid, scary */
1427 			if (regs->msr & MSR_PR)
1428 				goto priv;
1429 			op->type = RFI;
1430 			return 0;
1431 
1432 		case 150:	/* isync */
1433 			op->type = BARRIER | BARRIER_ISYNC;
1434 			return 1;
1435 
1436 		case 33:	/* crnor */
1437 		case 129:	/* crandc */
1438 		case 193:	/* crxor */
1439 		case 225:	/* crnand */
1440 		case 257:	/* crand */
1441 		case 289:	/* creqv */
1442 		case 417:	/* crorc */
1443 		case 449:	/* cror */
1444 			op->type = COMPUTE + SETCC;
1445 			ra = (word >> 16) & 0x1f;
1446 			rb = (word >> 11) & 0x1f;
1447 			rd = (word >> 21) & 0x1f;
1448 			ra = (regs->ccr >> (31 - ra)) & 1;
1449 			rb = (regs->ccr >> (31 - rb)) & 1;
1450 			val = (word >> (6 + ra * 2 + rb)) & 1;
1451 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1452 				(val << (31 - rd));
1453 			return 1;
1454 		}
1455 		break;
1456 	case 31:
1457 		switch ((word >> 1) & 0x3ff) {
1458 		case 598:	/* sync */
1459 			op->type = BARRIER + BARRIER_SYNC;
1460 #ifdef __powerpc64__
1461 			switch ((word >> 21) & 3) {
1462 			case 1:		/* lwsync */
1463 				op->type = BARRIER + BARRIER_LWSYNC;
1464 				break;
1465 			case 2:		/* ptesync */
1466 				op->type = BARRIER + BARRIER_PTESYNC;
1467 				break;
1468 			}
1469 #endif
1470 			return 1;
1471 
1472 		case 854:	/* eieio */
1473 			op->type = BARRIER + BARRIER_EIEIO;
1474 			return 1;
1475 		}
1476 		break;
1477 	}
1478 
1479 	rd = (word >> 21) & 0x1f;
1480 	ra = (word >> 16) & 0x1f;
1481 	rb = (word >> 11) & 0x1f;
1482 	rc = (word >> 6) & 0x1f;
1483 
1484 	switch (opcode) {
1485 #ifdef __powerpc64__
1486 	case 1:
1487 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
1488 			goto unknown_opcode;
1489 
1490 		prefix_r = GET_PREFIX_R(word);
1491 		ra = GET_PREFIX_RA(suffix);
1492 		rd = (suffix >> 21) & 0x1f;
1493 		op->reg = rd;
1494 		op->val = regs->gpr[rd];
1495 		suffixopcode = get_op(suffix);
1496 		prefixtype = (word >> 24) & 0x3;
1497 		switch (prefixtype) {
1498 		case 2:
1499 			if (prefix_r && ra)
1500 				return 0;
1501 			switch (suffixopcode) {
1502 			case 14:	/* paddi */
1503 				op->type = COMPUTE | PREFIXED;
1504 				op->val = mlsd_8lsd_ea(word, suffix, regs);
1505 				goto compute_done;
1506 			}
1507 		}
1508 		break;
1509 	case 2:		/* tdi */
1510 		if (rd & trap_compare(regs->gpr[ra], (short) word))
1511 			goto trap;
1512 		return 1;
1513 #endif
1514 	case 3:		/* twi */
1515 		if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1516 			goto trap;
1517 		return 1;
1518 
1519 #ifdef __powerpc64__
1520 	case 4:
1521 		/*
1522 		 * There are very many instructions with this primary opcode
1523 		 * introduced in the ISA as early as v2.03. However, the ones
1524 		 * we currently emulate were all introduced with ISA 3.0
1525 		 */
1526 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1527 			goto unknown_opcode;
1528 
1529 		switch (word & 0x3f) {
1530 		case 48:	/* maddhd */
1531 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1532 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1533 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1534 			goto compute_done;
1535 
1536 		case 49:	/* maddhdu */
1537 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1538 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1539 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1540 			goto compute_done;
1541 
1542 		case 51:	/* maddld */
1543 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1544 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1545 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1546 			goto compute_done;
1547 		}
1548 
1549 		/*
1550 		 * There are other instructions from ISA 3.0 with the same
1551 		 * primary opcode which do not have emulation support yet.
1552 		 */
1553 		goto unknown_opcode;
1554 #endif
1555 
1556 	case 7:		/* mulli */
1557 		op->val = regs->gpr[ra] * (short) word;
1558 		goto compute_done;
1559 
1560 	case 8:		/* subfic */
1561 		imm = (short) word;
1562 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1563 		return 1;
1564 
1565 	case 10:	/* cmpli */
1566 		imm = (unsigned short) word;
1567 		val = regs->gpr[ra];
1568 #ifdef __powerpc64__
1569 		if ((rd & 1) == 0)
1570 			val = (unsigned int) val;
1571 #endif
1572 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1573 		return 1;
1574 
1575 	case 11:	/* cmpi */
1576 		imm = (short) word;
1577 		val = regs->gpr[ra];
1578 #ifdef __powerpc64__
1579 		if ((rd & 1) == 0)
1580 			val = (int) val;
1581 #endif
1582 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1583 		return 1;
1584 
1585 	case 12:	/* addic */
1586 		imm = (short) word;
1587 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1588 		return 1;
1589 
1590 	case 13:	/* addic. */
1591 		imm = (short) word;
1592 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1593 		set_cr0(regs, op);
1594 		return 1;
1595 
1596 	case 14:	/* addi */
1597 		imm = (short) word;
1598 		if (ra)
1599 			imm += regs->gpr[ra];
1600 		op->val = imm;
1601 		goto compute_done;
1602 
1603 	case 15:	/* addis */
1604 		imm = ((short) word) << 16;
1605 		if (ra)
1606 			imm += regs->gpr[ra];
1607 		op->val = imm;
1608 		goto compute_done;
1609 
1610 	case 19:
1611 		if (((word >> 1) & 0x1f) == 2) {
1612 			/* addpcis */
1613 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1614 				goto unknown_opcode;
1615 			imm = (short) (word & 0xffc1);	/* d0 + d2 fields */
1616 			imm |= (word >> 15) & 0x3e;	/* d1 field */
1617 			op->val = regs->nip + (imm << 16) + 4;
1618 			goto compute_done;
1619 		}
1620 		op->type = UNKNOWN;
1621 		return 0;
1622 
1623 	case 20:	/* rlwimi */
1624 		mb = (word >> 6) & 0x1f;
1625 		me = (word >> 1) & 0x1f;
1626 		val = DATA32(regs->gpr[rd]);
1627 		imm = MASK32(mb, me);
1628 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1629 		goto logical_done;
1630 
1631 	case 21:	/* rlwinm */
1632 		mb = (word >> 6) & 0x1f;
1633 		me = (word >> 1) & 0x1f;
1634 		val = DATA32(regs->gpr[rd]);
1635 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1636 		goto logical_done;
1637 
1638 	case 23:	/* rlwnm */
1639 		mb = (word >> 6) & 0x1f;
1640 		me = (word >> 1) & 0x1f;
1641 		rb = regs->gpr[rb] & 0x1f;
1642 		val = DATA32(regs->gpr[rd]);
1643 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1644 		goto logical_done;
1645 
1646 	case 24:	/* ori */
1647 		op->val = regs->gpr[rd] | (unsigned short) word;
1648 		goto logical_done_nocc;
1649 
1650 	case 25:	/* oris */
1651 		imm = (unsigned short) word;
1652 		op->val = regs->gpr[rd] | (imm << 16);
1653 		goto logical_done_nocc;
1654 
1655 	case 26:	/* xori */
1656 		op->val = regs->gpr[rd] ^ (unsigned short) word;
1657 		goto logical_done_nocc;
1658 
1659 	case 27:	/* xoris */
1660 		imm = (unsigned short) word;
1661 		op->val = regs->gpr[rd] ^ (imm << 16);
1662 		goto logical_done_nocc;
1663 
1664 	case 28:	/* andi. */
1665 		op->val = regs->gpr[rd] & (unsigned short) word;
1666 		set_cr0(regs, op);
1667 		goto logical_done_nocc;
1668 
1669 	case 29:	/* andis. */
1670 		imm = (unsigned short) word;
1671 		op->val = regs->gpr[rd] & (imm << 16);
1672 		set_cr0(regs, op);
1673 		goto logical_done_nocc;
1674 
1675 #ifdef __powerpc64__
1676 	case 30:	/* rld* */
1677 		mb = ((word >> 6) & 0x1f) | (word & 0x20);
1678 		val = regs->gpr[rd];
1679 		if ((word & 0x10) == 0) {
1680 			sh = rb | ((word & 2) << 4);
1681 			val = ROTATE(val, sh);
1682 			switch ((word >> 2) & 3) {
1683 			case 0:		/* rldicl */
1684 				val &= MASK64_L(mb);
1685 				break;
1686 			case 1:		/* rldicr */
1687 				val &= MASK64_R(mb);
1688 				break;
1689 			case 2:		/* rldic */
1690 				val &= MASK64(mb, 63 - sh);
1691 				break;
1692 			case 3:		/* rldimi */
1693 				imm = MASK64(mb, 63 - sh);
1694 				val = (regs->gpr[ra] & ~imm) |
1695 					(val & imm);
1696 			}
1697 			op->val = val;
1698 			goto logical_done;
1699 		} else {
1700 			sh = regs->gpr[rb] & 0x3f;
1701 			val = ROTATE(val, sh);
1702 			switch ((word >> 1) & 7) {
1703 			case 0:		/* rldcl */
1704 				op->val = val & MASK64_L(mb);
1705 				goto logical_done;
1706 			case 1:		/* rldcr */
1707 				op->val = val & MASK64_R(mb);
1708 				goto logical_done;
1709 			}
1710 		}
1711 #endif
1712 		op->type = UNKNOWN;	/* illegal instruction */
1713 		return 0;
1714 
1715 	case 31:
1716 		/* isel occupies 32 minor opcodes */
1717 		if (((word >> 1) & 0x1f) == 15) {
1718 			mb = (word >> 6) & 0x1f; /* bc field */
1719 			val = (regs->ccr >> (31 - mb)) & 1;
1720 			val2 = (ra) ? regs->gpr[ra] : 0;
1721 
1722 			op->val = (val) ? val2 : regs->gpr[rb];
1723 			goto compute_done;
1724 		}
1725 
1726 		switch ((word >> 1) & 0x3ff) {
1727 		case 4:		/* tw */
1728 			if (rd == 0x1f ||
1729 			    (rd & trap_compare((int)regs->gpr[ra],
1730 					       (int)regs->gpr[rb])))
1731 				goto trap;
1732 			return 1;
1733 #ifdef __powerpc64__
1734 		case 68:	/* td */
1735 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1736 				goto trap;
1737 			return 1;
1738 #endif
1739 		case 83:	/* mfmsr */
1740 			if (regs->msr & MSR_PR)
1741 				goto priv;
1742 			op->type = MFMSR;
1743 			op->reg = rd;
1744 			return 0;
1745 		case 146:	/* mtmsr */
1746 			if (regs->msr & MSR_PR)
1747 				goto priv;
1748 			op->type = MTMSR;
1749 			op->reg = rd;
1750 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1751 			return 0;
1752 #ifdef CONFIG_PPC64
1753 		case 178:	/* mtmsrd */
1754 			if (regs->msr & MSR_PR)
1755 				goto priv;
1756 			op->type = MTMSR;
1757 			op->reg = rd;
1758 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1759 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1760 			imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1761 			op->val = imm;
1762 			return 0;
1763 #endif
1764 
1765 		case 19:	/* mfcr */
1766 			imm = 0xffffffffUL;
1767 			if ((word >> 20) & 1) {
1768 				imm = 0xf0000000UL;
1769 				for (sh = 0; sh < 8; ++sh) {
1770 					if (word & (0x80000 >> sh))
1771 						break;
1772 					imm >>= 4;
1773 				}
1774 			}
1775 			op->val = regs->ccr & imm;
1776 			goto compute_done;
1777 
1778 		case 128:	/* setb */
1779 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1780 				goto unknown_opcode;
1781 			/*
1782 			 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1783 			 * Since each CR field is 4 bits,
1784 			 * we can simply mask off the bottom two bits (bfa * 4)
1785 			 * to yield the first bit in the CR field.
1786 			 */
1787 			ra = ra & ~0x3;
1788 			/* 'val' stores bits of the CR field (bfa) */
1789 			val = regs->ccr >> (CR0_SHIFT - ra);
1790 			/* checks if the LT bit of CR field (bfa) is set */
1791 			if (val & 8)
1792 				op->val = -1;
1793 			/* checks if the GT bit of CR field (bfa) is set */
1794 			else if (val & 4)
1795 				op->val = 1;
1796 			else
1797 				op->val = 0;
1798 			goto compute_done;
1799 
1800 		case 144:	/* mtcrf */
1801 			op->type = COMPUTE + SETCC;
1802 			imm = 0xf0000000UL;
1803 			val = regs->gpr[rd];
1804 			op->ccval = regs->ccr;
1805 			for (sh = 0; sh < 8; ++sh) {
1806 				if (word & (0x80000 >> sh))
1807 					op->ccval = (op->ccval & ~imm) |
1808 						(val & imm);
1809 				imm >>= 4;
1810 			}
1811 			return 1;
1812 
1813 		case 339:	/* mfspr */
1814 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1815 			op->type = MFSPR;
1816 			op->reg = rd;
1817 			op->spr = spr;
1818 			if (spr == SPRN_XER || spr == SPRN_LR ||
1819 			    spr == SPRN_CTR)
1820 				return 1;
1821 			return 0;
1822 
1823 		case 467:	/* mtspr */
1824 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1825 			op->type = MTSPR;
1826 			op->val = regs->gpr[rd];
1827 			op->spr = spr;
1828 			if (spr == SPRN_XER || spr == SPRN_LR ||
1829 			    spr == SPRN_CTR)
1830 				return 1;
1831 			return 0;
1832 
1833 /*
1834  * Compare instructions
1835  */
1836 		case 0:	/* cmp */
1837 			val = regs->gpr[ra];
1838 			val2 = regs->gpr[rb];
1839 #ifdef __powerpc64__
1840 			if ((rd & 1) == 0) {
1841 				/* word (32-bit) compare */
1842 				val = (int) val;
1843 				val2 = (int) val2;
1844 			}
1845 #endif
1846 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1847 			return 1;
1848 
1849 		case 32:	/* cmpl */
1850 			val = regs->gpr[ra];
1851 			val2 = regs->gpr[rb];
1852 #ifdef __powerpc64__
1853 			if ((rd & 1) == 0) {
1854 				/* word (32-bit) compare */
1855 				val = (unsigned int) val;
1856 				val2 = (unsigned int) val2;
1857 			}
1858 #endif
1859 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1860 			return 1;
1861 
1862 		case 508: /* cmpb */
1863 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1864 			goto logical_done_nocc;
1865 
1866 /*
1867  * Arithmetic instructions
1868  */
1869 		case 8:	/* subfc */
1870 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1871 				       regs->gpr[rb], 1);
1872 			goto arith_done;
1873 #ifdef __powerpc64__
1874 		case 9:	/* mulhdu */
1875 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1876 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1877 			goto arith_done;
1878 #endif
1879 		case 10:	/* addc */
1880 			add_with_carry(regs, op, rd, regs->gpr[ra],
1881 				       regs->gpr[rb], 0);
1882 			goto arith_done;
1883 
1884 		case 11:	/* mulhwu */
1885 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1886 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1887 			goto arith_done;
1888 
1889 		case 40:	/* subf */
1890 			op->val = regs->gpr[rb] - regs->gpr[ra];
1891 			goto arith_done;
1892 #ifdef __powerpc64__
1893 		case 73:	/* mulhd */
1894 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1895 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1896 			goto arith_done;
1897 #endif
1898 		case 75:	/* mulhw */
1899 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1900 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1901 			goto arith_done;
1902 
1903 		case 104:	/* neg */
1904 			op->val = -regs->gpr[ra];
1905 			goto arith_done;
1906 
1907 		case 136:	/* subfe */
1908 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1909 				       regs->gpr[rb], regs->xer & XER_CA);
1910 			goto arith_done;
1911 
1912 		case 138:	/* adde */
1913 			add_with_carry(regs, op, rd, regs->gpr[ra],
1914 				       regs->gpr[rb], regs->xer & XER_CA);
1915 			goto arith_done;
1916 
1917 		case 200:	/* subfze */
1918 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1919 				       regs->xer & XER_CA);
1920 			goto arith_done;
1921 
1922 		case 202:	/* addze */
1923 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1924 				       regs->xer & XER_CA);
1925 			goto arith_done;
1926 
1927 		case 232:	/* subfme */
1928 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1929 				       regs->xer & XER_CA);
1930 			goto arith_done;
1931 #ifdef __powerpc64__
1932 		case 233:	/* mulld */
1933 			op->val = regs->gpr[ra] * regs->gpr[rb];
1934 			goto arith_done;
1935 #endif
1936 		case 234:	/* addme */
1937 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1938 				       regs->xer & XER_CA);
1939 			goto arith_done;
1940 
1941 		case 235:	/* mullw */
1942 			op->val = (long)(int) regs->gpr[ra] *
1943 				(int) regs->gpr[rb];
1944 
1945 			goto arith_done;
1946 #ifdef __powerpc64__
1947 		case 265:	/* modud */
1948 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1949 				goto unknown_opcode;
1950 			op->val = regs->gpr[ra] % regs->gpr[rb];
1951 			goto compute_done;
1952 #endif
1953 		case 266:	/* add */
1954 			op->val = regs->gpr[ra] + regs->gpr[rb];
1955 			goto arith_done;
1956 
1957 		case 267:	/* moduw */
1958 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1959 				goto unknown_opcode;
1960 			op->val = (unsigned int) regs->gpr[ra] %
1961 				(unsigned int) regs->gpr[rb];
1962 			goto compute_done;
1963 #ifdef __powerpc64__
1964 		case 457:	/* divdu */
1965 			op->val = regs->gpr[ra] / regs->gpr[rb];
1966 			goto arith_done;
1967 #endif
1968 		case 459:	/* divwu */
1969 			op->val = (unsigned int) regs->gpr[ra] /
1970 				(unsigned int) regs->gpr[rb];
1971 			goto arith_done;
1972 #ifdef __powerpc64__
1973 		case 489:	/* divd */
1974 			op->val = (long int) regs->gpr[ra] /
1975 				(long int) regs->gpr[rb];
1976 			goto arith_done;
1977 #endif
1978 		case 491:	/* divw */
1979 			op->val = (int) regs->gpr[ra] /
1980 				(int) regs->gpr[rb];
1981 			goto arith_done;
1982 #ifdef __powerpc64__
1983 		case 425:	/* divde[.] */
1984 			asm volatile(PPC_DIVDE(%0, %1, %2) :
1985 				"=r" (op->val) : "r" (regs->gpr[ra]),
1986 				"r" (regs->gpr[rb]));
1987 			goto arith_done;
1988 		case 393:	/* divdeu[.] */
1989 			asm volatile(PPC_DIVDEU(%0, %1, %2) :
1990 				"=r" (op->val) : "r" (regs->gpr[ra]),
1991 				"r" (regs->gpr[rb]));
1992 			goto arith_done;
1993 #endif
1994 		case 755:	/* darn */
1995 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1996 				goto unknown_opcode;
1997 			switch (ra & 0x3) {
1998 			case 0:
1999 				/* 32-bit conditioned */
2000 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
2001 				goto compute_done;
2002 
2003 			case 1:
2004 				/* 64-bit conditioned */
2005 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2006 				goto compute_done;
2007 
2008 			case 2:
2009 				/* 64-bit raw */
2010 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2011 				goto compute_done;
2012 			}
2013 
2014 			goto unknown_opcode;
2015 #ifdef __powerpc64__
2016 		case 777:	/* modsd */
2017 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2018 				goto unknown_opcode;
2019 			op->val = (long int) regs->gpr[ra] %
2020 				(long int) regs->gpr[rb];
2021 			goto compute_done;
2022 #endif
2023 		case 779:	/* modsw */
2024 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2025 				goto unknown_opcode;
2026 			op->val = (int) regs->gpr[ra] %
2027 				(int) regs->gpr[rb];
2028 			goto compute_done;
2029 
2030 
2031 /*
2032  * Logical instructions
2033  */
2034 		case 26:	/* cntlzw */
2035 			val = (unsigned int) regs->gpr[rd];
2036 			op->val = ( val ? __builtin_clz(val) : 32 );
2037 			goto logical_done;
2038 #ifdef __powerpc64__
2039 		case 58:	/* cntlzd */
2040 			val = regs->gpr[rd];
2041 			op->val = ( val ? __builtin_clzl(val) : 64 );
2042 			goto logical_done;
2043 #endif
2044 		case 28:	/* and */
2045 			op->val = regs->gpr[rd] & regs->gpr[rb];
2046 			goto logical_done;
2047 
2048 		case 60:	/* andc */
2049 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
2050 			goto logical_done;
2051 
2052 		case 122:	/* popcntb */
2053 			do_popcnt(regs, op, regs->gpr[rd], 8);
2054 			goto logical_done_nocc;
2055 
2056 		case 124:	/* nor */
2057 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2058 			goto logical_done;
2059 
2060 		case 154:	/* prtyw */
2061 			do_prty(regs, op, regs->gpr[rd], 32);
2062 			goto logical_done_nocc;
2063 
2064 		case 186:	/* prtyd */
2065 			do_prty(regs, op, regs->gpr[rd], 64);
2066 			goto logical_done_nocc;
2067 #ifdef CONFIG_PPC64
2068 		case 252:	/* bpermd */
2069 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2070 			goto logical_done_nocc;
2071 #endif
2072 		case 284:	/* xor */
2073 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2074 			goto logical_done;
2075 
2076 		case 316:	/* xor */
2077 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
2078 			goto logical_done;
2079 
2080 		case 378:	/* popcntw */
2081 			do_popcnt(regs, op, regs->gpr[rd], 32);
2082 			goto logical_done_nocc;
2083 
2084 		case 412:	/* orc */
2085 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
2086 			goto logical_done;
2087 
2088 		case 444:	/* or */
2089 			op->val = regs->gpr[rd] | regs->gpr[rb];
2090 			goto logical_done;
2091 
2092 		case 476:	/* nand */
2093 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2094 			goto logical_done;
2095 #ifdef CONFIG_PPC64
2096 		case 506:	/* popcntd */
2097 			do_popcnt(regs, op, regs->gpr[rd], 64);
2098 			goto logical_done_nocc;
2099 #endif
2100 		case 538:	/* cnttzw */
2101 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2102 				goto unknown_opcode;
2103 			val = (unsigned int) regs->gpr[rd];
2104 			op->val = (val ? __builtin_ctz(val) : 32);
2105 			goto logical_done;
2106 #ifdef __powerpc64__
2107 		case 570:	/* cnttzd */
2108 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2109 				goto unknown_opcode;
2110 			val = regs->gpr[rd];
2111 			op->val = (val ? __builtin_ctzl(val) : 64);
2112 			goto logical_done;
2113 #endif
2114 		case 922:	/* extsh */
2115 			op->val = (signed short) regs->gpr[rd];
2116 			goto logical_done;
2117 
2118 		case 954:	/* extsb */
2119 			op->val = (signed char) regs->gpr[rd];
2120 			goto logical_done;
2121 #ifdef __powerpc64__
2122 		case 986:	/* extsw */
2123 			op->val = (signed int) regs->gpr[rd];
2124 			goto logical_done;
2125 #endif
2126 
2127 /*
2128  * Shift instructions
2129  */
2130 		case 24:	/* slw */
2131 			sh = regs->gpr[rb] & 0x3f;
2132 			if (sh < 32)
2133 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2134 			else
2135 				op->val = 0;
2136 			goto logical_done;
2137 
2138 		case 536:	/* srw */
2139 			sh = regs->gpr[rb] & 0x3f;
2140 			if (sh < 32)
2141 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2142 			else
2143 				op->val = 0;
2144 			goto logical_done;
2145 
2146 		case 792:	/* sraw */
2147 			op->type = COMPUTE + SETREG + SETXER;
2148 			sh = regs->gpr[rb] & 0x3f;
2149 			ival = (signed int) regs->gpr[rd];
2150 			op->val = ival >> (sh < 32 ? sh : 31);
2151 			op->xerval = regs->xer;
2152 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2153 				op->xerval |= XER_CA;
2154 			else
2155 				op->xerval &= ~XER_CA;
2156 			set_ca32(op, op->xerval & XER_CA);
2157 			goto logical_done;
2158 
2159 		case 824:	/* srawi */
2160 			op->type = COMPUTE + SETREG + SETXER;
2161 			sh = rb;
2162 			ival = (signed int) regs->gpr[rd];
2163 			op->val = ival >> sh;
2164 			op->xerval = regs->xer;
2165 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2166 				op->xerval |= XER_CA;
2167 			else
2168 				op->xerval &= ~XER_CA;
2169 			set_ca32(op, op->xerval & XER_CA);
2170 			goto logical_done;
2171 
2172 #ifdef __powerpc64__
2173 		case 27:	/* sld */
2174 			sh = regs->gpr[rb] & 0x7f;
2175 			if (sh < 64)
2176 				op->val = regs->gpr[rd] << sh;
2177 			else
2178 				op->val = 0;
2179 			goto logical_done;
2180 
2181 		case 539:	/* srd */
2182 			sh = regs->gpr[rb] & 0x7f;
2183 			if (sh < 64)
2184 				op->val = regs->gpr[rd] >> sh;
2185 			else
2186 				op->val = 0;
2187 			goto logical_done;
2188 
2189 		case 794:	/* srad */
2190 			op->type = COMPUTE + SETREG + SETXER;
2191 			sh = regs->gpr[rb] & 0x7f;
2192 			ival = (signed long int) regs->gpr[rd];
2193 			op->val = ival >> (sh < 64 ? sh : 63);
2194 			op->xerval = regs->xer;
2195 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2196 				op->xerval |= XER_CA;
2197 			else
2198 				op->xerval &= ~XER_CA;
2199 			set_ca32(op, op->xerval & XER_CA);
2200 			goto logical_done;
2201 
2202 		case 826:	/* sradi with sh_5 = 0 */
2203 		case 827:	/* sradi with sh_5 = 1 */
2204 			op->type = COMPUTE + SETREG + SETXER;
2205 			sh = rb | ((word & 2) << 4);
2206 			ival = (signed long int) regs->gpr[rd];
2207 			op->val = ival >> sh;
2208 			op->xerval = regs->xer;
2209 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2210 				op->xerval |= XER_CA;
2211 			else
2212 				op->xerval &= ~XER_CA;
2213 			set_ca32(op, op->xerval & XER_CA);
2214 			goto logical_done;
2215 
2216 		case 890:	/* extswsli with sh_5 = 0 */
2217 		case 891:	/* extswsli with sh_5 = 1 */
2218 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2219 				goto unknown_opcode;
2220 			op->type = COMPUTE + SETREG;
2221 			sh = rb | ((word & 2) << 4);
2222 			val = (signed int) regs->gpr[rd];
2223 			if (sh)
2224 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2225 			else
2226 				op->val = val;
2227 			goto logical_done;
2228 
2229 #endif /* __powerpc64__ */
2230 
2231 /*
2232  * Cache instructions
2233  */
2234 		case 54:	/* dcbst */
2235 			op->type = MKOP(CACHEOP, DCBST, 0);
2236 			op->ea = xform_ea(word, regs);
2237 			return 0;
2238 
2239 		case 86:	/* dcbf */
2240 			op->type = MKOP(CACHEOP, DCBF, 0);
2241 			op->ea = xform_ea(word, regs);
2242 			return 0;
2243 
2244 		case 246:	/* dcbtst */
2245 			op->type = MKOP(CACHEOP, DCBTST, 0);
2246 			op->ea = xform_ea(word, regs);
2247 			op->reg = rd;
2248 			return 0;
2249 
2250 		case 278:	/* dcbt */
2251 			op->type = MKOP(CACHEOP, DCBTST, 0);
2252 			op->ea = xform_ea(word, regs);
2253 			op->reg = rd;
2254 			return 0;
2255 
2256 		case 982:	/* icbi */
2257 			op->type = MKOP(CACHEOP, ICBI, 0);
2258 			op->ea = xform_ea(word, regs);
2259 			return 0;
2260 
2261 		case 1014:	/* dcbz */
2262 			op->type = MKOP(CACHEOP, DCBZ, 0);
2263 			op->ea = xform_ea(word, regs);
2264 			return 0;
2265 		}
2266 		break;
2267 	}
2268 
2269 /*
2270  * Loads and stores.
2271  */
2272 	op->type = UNKNOWN;
2273 	op->update_reg = ra;
2274 	op->reg = rd;
2275 	op->val = regs->gpr[rd];
2276 	u = (word >> 20) & UPDATE;
2277 	op->vsx_flags = 0;
2278 
2279 	switch (opcode) {
2280 	case 31:
2281 		u = word & UPDATE;
2282 		op->ea = xform_ea(word, regs);
2283 		switch ((word >> 1) & 0x3ff) {
2284 		case 20:	/* lwarx */
2285 			op->type = MKOP(LARX, 0, 4);
2286 			break;
2287 
2288 		case 150:	/* stwcx. */
2289 			op->type = MKOP(STCX, 0, 4);
2290 			break;
2291 
2292 #ifdef __powerpc64__
2293 		case 84:	/* ldarx */
2294 			op->type = MKOP(LARX, 0, 8);
2295 			break;
2296 
2297 		case 214:	/* stdcx. */
2298 			op->type = MKOP(STCX, 0, 8);
2299 			break;
2300 
2301 		case 52:	/* lbarx */
2302 			op->type = MKOP(LARX, 0, 1);
2303 			break;
2304 
2305 		case 694:	/* stbcx. */
2306 			op->type = MKOP(STCX, 0, 1);
2307 			break;
2308 
2309 		case 116:	/* lharx */
2310 			op->type = MKOP(LARX, 0, 2);
2311 			break;
2312 
2313 		case 726:	/* sthcx. */
2314 			op->type = MKOP(STCX, 0, 2);
2315 			break;
2316 
2317 		case 276:	/* lqarx */
2318 			if (!((rd & 1) || rd == ra || rd == rb))
2319 				op->type = MKOP(LARX, 0, 16);
2320 			break;
2321 
2322 		case 182:	/* stqcx. */
2323 			if (!(rd & 1))
2324 				op->type = MKOP(STCX, 0, 16);
2325 			break;
2326 #endif
2327 
2328 		case 23:	/* lwzx */
2329 		case 55:	/* lwzux */
2330 			op->type = MKOP(LOAD, u, 4);
2331 			break;
2332 
2333 		case 87:	/* lbzx */
2334 		case 119:	/* lbzux */
2335 			op->type = MKOP(LOAD, u, 1);
2336 			break;
2337 
2338 #ifdef CONFIG_ALTIVEC
2339 		/*
2340 		 * Note: for the load/store vector element instructions,
2341 		 * bits of the EA say which field of the VMX register to use.
2342 		 */
2343 		case 7:		/* lvebx */
2344 			op->type = MKOP(LOAD_VMX, 0, 1);
2345 			op->element_size = 1;
2346 			break;
2347 
2348 		case 39:	/* lvehx */
2349 			op->type = MKOP(LOAD_VMX, 0, 2);
2350 			op->element_size = 2;
2351 			break;
2352 
2353 		case 71:	/* lvewx */
2354 			op->type = MKOP(LOAD_VMX, 0, 4);
2355 			op->element_size = 4;
2356 			break;
2357 
2358 		case 103:	/* lvx */
2359 		case 359:	/* lvxl */
2360 			op->type = MKOP(LOAD_VMX, 0, 16);
2361 			op->element_size = 16;
2362 			break;
2363 
2364 		case 135:	/* stvebx */
2365 			op->type = MKOP(STORE_VMX, 0, 1);
2366 			op->element_size = 1;
2367 			break;
2368 
2369 		case 167:	/* stvehx */
2370 			op->type = MKOP(STORE_VMX, 0, 2);
2371 			op->element_size = 2;
2372 			break;
2373 
2374 		case 199:	/* stvewx */
2375 			op->type = MKOP(STORE_VMX, 0, 4);
2376 			op->element_size = 4;
2377 			break;
2378 
2379 		case 231:	/* stvx */
2380 		case 487:	/* stvxl */
2381 			op->type = MKOP(STORE_VMX, 0, 16);
2382 			break;
2383 #endif /* CONFIG_ALTIVEC */
2384 
2385 #ifdef __powerpc64__
2386 		case 21:	/* ldx */
2387 		case 53:	/* ldux */
2388 			op->type = MKOP(LOAD, u, 8);
2389 			break;
2390 
2391 		case 149:	/* stdx */
2392 		case 181:	/* stdux */
2393 			op->type = MKOP(STORE, u, 8);
2394 			break;
2395 #endif
2396 
2397 		case 151:	/* stwx */
2398 		case 183:	/* stwux */
2399 			op->type = MKOP(STORE, u, 4);
2400 			break;
2401 
2402 		case 215:	/* stbx */
2403 		case 247:	/* stbux */
2404 			op->type = MKOP(STORE, u, 1);
2405 			break;
2406 
2407 		case 279:	/* lhzx */
2408 		case 311:	/* lhzux */
2409 			op->type = MKOP(LOAD, u, 2);
2410 			break;
2411 
2412 #ifdef __powerpc64__
2413 		case 341:	/* lwax */
2414 		case 373:	/* lwaux */
2415 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2416 			break;
2417 #endif
2418 
2419 		case 343:	/* lhax */
2420 		case 375:	/* lhaux */
2421 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2422 			break;
2423 
2424 		case 407:	/* sthx */
2425 		case 439:	/* sthux */
2426 			op->type = MKOP(STORE, u, 2);
2427 			break;
2428 
2429 #ifdef __powerpc64__
2430 		case 532:	/* ldbrx */
2431 			op->type = MKOP(LOAD, BYTEREV, 8);
2432 			break;
2433 
2434 #endif
2435 		case 533:	/* lswx */
2436 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2437 			break;
2438 
2439 		case 534:	/* lwbrx */
2440 			op->type = MKOP(LOAD, BYTEREV, 4);
2441 			break;
2442 
2443 		case 597:	/* lswi */
2444 			if (rb == 0)
2445 				rb = 32;	/* # bytes to load */
2446 			op->type = MKOP(LOAD_MULTI, 0, rb);
2447 			op->ea = ra ? regs->gpr[ra] : 0;
2448 			break;
2449 
2450 #ifdef CONFIG_PPC_FPU
2451 		case 535:	/* lfsx */
2452 		case 567:	/* lfsux */
2453 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2454 			break;
2455 
2456 		case 599:	/* lfdx */
2457 		case 631:	/* lfdux */
2458 			op->type = MKOP(LOAD_FP, u, 8);
2459 			break;
2460 
2461 		case 663:	/* stfsx */
2462 		case 695:	/* stfsux */
2463 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2464 			break;
2465 
2466 		case 727:	/* stfdx */
2467 		case 759:	/* stfdux */
2468 			op->type = MKOP(STORE_FP, u, 8);
2469 			break;
2470 
2471 #ifdef __powerpc64__
2472 		case 791:	/* lfdpx */
2473 			op->type = MKOP(LOAD_FP, 0, 16);
2474 			break;
2475 
2476 		case 855:	/* lfiwax */
2477 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2478 			break;
2479 
2480 		case 887:	/* lfiwzx */
2481 			op->type = MKOP(LOAD_FP, 0, 4);
2482 			break;
2483 
2484 		case 919:	/* stfdpx */
2485 			op->type = MKOP(STORE_FP, 0, 16);
2486 			break;
2487 
2488 		case 983:	/* stfiwx */
2489 			op->type = MKOP(STORE_FP, 0, 4);
2490 			break;
2491 #endif /* __powerpc64 */
2492 #endif /* CONFIG_PPC_FPU */
2493 
2494 #ifdef __powerpc64__
2495 		case 660:	/* stdbrx */
2496 			op->type = MKOP(STORE, BYTEREV, 8);
2497 			op->val = byterev_8(regs->gpr[rd]);
2498 			break;
2499 
2500 #endif
2501 		case 661:	/* stswx */
2502 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2503 			break;
2504 
2505 		case 662:	/* stwbrx */
2506 			op->type = MKOP(STORE, BYTEREV, 4);
2507 			op->val = byterev_4(regs->gpr[rd]);
2508 			break;
2509 
2510 		case 725:	/* stswi */
2511 			if (rb == 0)
2512 				rb = 32;	/* # bytes to store */
2513 			op->type = MKOP(STORE_MULTI, 0, rb);
2514 			op->ea = ra ? regs->gpr[ra] : 0;
2515 			break;
2516 
2517 		case 790:	/* lhbrx */
2518 			op->type = MKOP(LOAD, BYTEREV, 2);
2519 			break;
2520 
2521 		case 918:	/* sthbrx */
2522 			op->type = MKOP(STORE, BYTEREV, 2);
2523 			op->val = byterev_2(regs->gpr[rd]);
2524 			break;
2525 
2526 #ifdef CONFIG_VSX
2527 		case 12:	/* lxsiwzx */
2528 			op->reg = rd | ((word & 1) << 5);
2529 			op->type = MKOP(LOAD_VSX, 0, 4);
2530 			op->element_size = 8;
2531 			break;
2532 
2533 		case 76:	/* lxsiwax */
2534 			op->reg = rd | ((word & 1) << 5);
2535 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2536 			op->element_size = 8;
2537 			break;
2538 
2539 		case 140:	/* stxsiwx */
2540 			op->reg = rd | ((word & 1) << 5);
2541 			op->type = MKOP(STORE_VSX, 0, 4);
2542 			op->element_size = 8;
2543 			break;
2544 
2545 		case 268:	/* lxvx */
2546 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2547 				goto unknown_opcode;
2548 			op->reg = rd | ((word & 1) << 5);
2549 			op->type = MKOP(LOAD_VSX, 0, 16);
2550 			op->element_size = 16;
2551 			op->vsx_flags = VSX_CHECK_VEC;
2552 			break;
2553 
2554 		case 269:	/* lxvl */
2555 		case 301: {	/* lxvll */
2556 			int nb;
2557 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2558 				goto unknown_opcode;
2559 			op->reg = rd | ((word & 1) << 5);
2560 			op->ea = ra ? regs->gpr[ra] : 0;
2561 			nb = regs->gpr[rb] & 0xff;
2562 			if (nb > 16)
2563 				nb = 16;
2564 			op->type = MKOP(LOAD_VSX, 0, nb);
2565 			op->element_size = 16;
2566 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2567 				VSX_CHECK_VEC;
2568 			break;
2569 		}
2570 		case 332:	/* lxvdsx */
2571 			op->reg = rd | ((word & 1) << 5);
2572 			op->type = MKOP(LOAD_VSX, 0, 8);
2573 			op->element_size = 8;
2574 			op->vsx_flags = VSX_SPLAT;
2575 			break;
2576 
2577 		case 333:       /* lxvpx */
2578 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2579 				goto unknown_opcode;
2580 			op->reg = VSX_REGISTER_XTP(rd);
2581 			op->type = MKOP(LOAD_VSX, 0, 32);
2582 			op->element_size = 32;
2583 			break;
2584 
2585 		case 364:	/* lxvwsx */
2586 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2587 				goto unknown_opcode;
2588 			op->reg = rd | ((word & 1) << 5);
2589 			op->type = MKOP(LOAD_VSX, 0, 4);
2590 			op->element_size = 4;
2591 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2592 			break;
2593 
2594 		case 396:	/* stxvx */
2595 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2596 				goto unknown_opcode;
2597 			op->reg = rd | ((word & 1) << 5);
2598 			op->type = MKOP(STORE_VSX, 0, 16);
2599 			op->element_size = 16;
2600 			op->vsx_flags = VSX_CHECK_VEC;
2601 			break;
2602 
2603 		case 397:	/* stxvl */
2604 		case 429: {	/* stxvll */
2605 			int nb;
2606 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2607 				goto unknown_opcode;
2608 			op->reg = rd | ((word & 1) << 5);
2609 			op->ea = ra ? regs->gpr[ra] : 0;
2610 			nb = regs->gpr[rb] & 0xff;
2611 			if (nb > 16)
2612 				nb = 16;
2613 			op->type = MKOP(STORE_VSX, 0, nb);
2614 			op->element_size = 16;
2615 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2616 				VSX_CHECK_VEC;
2617 			break;
2618 		}
2619 		case 461:       /* stxvpx */
2620 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2621 				goto unknown_opcode;
2622 			op->reg = VSX_REGISTER_XTP(rd);
2623 			op->type = MKOP(STORE_VSX, 0, 32);
2624 			op->element_size = 32;
2625 			break;
2626 		case 524:	/* lxsspx */
2627 			op->reg = rd | ((word & 1) << 5);
2628 			op->type = MKOP(LOAD_VSX, 0, 4);
2629 			op->element_size = 8;
2630 			op->vsx_flags = VSX_FPCONV;
2631 			break;
2632 
2633 		case 588:	/* lxsdx */
2634 			op->reg = rd | ((word & 1) << 5);
2635 			op->type = MKOP(LOAD_VSX, 0, 8);
2636 			op->element_size = 8;
2637 			break;
2638 
2639 		case 652:	/* stxsspx */
2640 			op->reg = rd | ((word & 1) << 5);
2641 			op->type = MKOP(STORE_VSX, 0, 4);
2642 			op->element_size = 8;
2643 			op->vsx_flags = VSX_FPCONV;
2644 			break;
2645 
2646 		case 716:	/* stxsdx */
2647 			op->reg = rd | ((word & 1) << 5);
2648 			op->type = MKOP(STORE_VSX, 0, 8);
2649 			op->element_size = 8;
2650 			break;
2651 
2652 		case 780:	/* lxvw4x */
2653 			op->reg = rd | ((word & 1) << 5);
2654 			op->type = MKOP(LOAD_VSX, 0, 16);
2655 			op->element_size = 4;
2656 			break;
2657 
2658 		case 781:	/* lxsibzx */
2659 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2660 				goto unknown_opcode;
2661 			op->reg = rd | ((word & 1) << 5);
2662 			op->type = MKOP(LOAD_VSX, 0, 1);
2663 			op->element_size = 8;
2664 			op->vsx_flags = VSX_CHECK_VEC;
2665 			break;
2666 
2667 		case 812:	/* lxvh8x */
2668 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2669 				goto unknown_opcode;
2670 			op->reg = rd | ((word & 1) << 5);
2671 			op->type = MKOP(LOAD_VSX, 0, 16);
2672 			op->element_size = 2;
2673 			op->vsx_flags = VSX_CHECK_VEC;
2674 			break;
2675 
2676 		case 813:	/* lxsihzx */
2677 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2678 				goto unknown_opcode;
2679 			op->reg = rd | ((word & 1) << 5);
2680 			op->type = MKOP(LOAD_VSX, 0, 2);
2681 			op->element_size = 8;
2682 			op->vsx_flags = VSX_CHECK_VEC;
2683 			break;
2684 
2685 		case 844:	/* lxvd2x */
2686 			op->reg = rd | ((word & 1) << 5);
2687 			op->type = MKOP(LOAD_VSX, 0, 16);
2688 			op->element_size = 8;
2689 			break;
2690 
2691 		case 876:	/* lxvb16x */
2692 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2693 				goto unknown_opcode;
2694 			op->reg = rd | ((word & 1) << 5);
2695 			op->type = MKOP(LOAD_VSX, 0, 16);
2696 			op->element_size = 1;
2697 			op->vsx_flags = VSX_CHECK_VEC;
2698 			break;
2699 
2700 		case 908:	/* stxvw4x */
2701 			op->reg = rd | ((word & 1) << 5);
2702 			op->type = MKOP(STORE_VSX, 0, 16);
2703 			op->element_size = 4;
2704 			break;
2705 
2706 		case 909:	/* stxsibx */
2707 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2708 				goto unknown_opcode;
2709 			op->reg = rd | ((word & 1) << 5);
2710 			op->type = MKOP(STORE_VSX, 0, 1);
2711 			op->element_size = 8;
2712 			op->vsx_flags = VSX_CHECK_VEC;
2713 			break;
2714 
2715 		case 940:	/* stxvh8x */
2716 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2717 				goto unknown_opcode;
2718 			op->reg = rd | ((word & 1) << 5);
2719 			op->type = MKOP(STORE_VSX, 0, 16);
2720 			op->element_size = 2;
2721 			op->vsx_flags = VSX_CHECK_VEC;
2722 			break;
2723 
2724 		case 941:	/* stxsihx */
2725 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2726 				goto unknown_opcode;
2727 			op->reg = rd | ((word & 1) << 5);
2728 			op->type = MKOP(STORE_VSX, 0, 2);
2729 			op->element_size = 8;
2730 			op->vsx_flags = VSX_CHECK_VEC;
2731 			break;
2732 
2733 		case 972:	/* stxvd2x */
2734 			op->reg = rd | ((word & 1) << 5);
2735 			op->type = MKOP(STORE_VSX, 0, 16);
2736 			op->element_size = 8;
2737 			break;
2738 
2739 		case 1004:	/* stxvb16x */
2740 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2741 				goto unknown_opcode;
2742 			op->reg = rd | ((word & 1) << 5);
2743 			op->type = MKOP(STORE_VSX, 0, 16);
2744 			op->element_size = 1;
2745 			op->vsx_flags = VSX_CHECK_VEC;
2746 			break;
2747 
2748 #endif /* CONFIG_VSX */
2749 		}
2750 		break;
2751 
2752 	case 32:	/* lwz */
2753 	case 33:	/* lwzu */
2754 		op->type = MKOP(LOAD, u, 4);
2755 		op->ea = dform_ea(word, regs);
2756 		break;
2757 
2758 	case 34:	/* lbz */
2759 	case 35:	/* lbzu */
2760 		op->type = MKOP(LOAD, u, 1);
2761 		op->ea = dform_ea(word, regs);
2762 		break;
2763 
2764 	case 36:	/* stw */
2765 	case 37:	/* stwu */
2766 		op->type = MKOP(STORE, u, 4);
2767 		op->ea = dform_ea(word, regs);
2768 		break;
2769 
2770 	case 38:	/* stb */
2771 	case 39:	/* stbu */
2772 		op->type = MKOP(STORE, u, 1);
2773 		op->ea = dform_ea(word, regs);
2774 		break;
2775 
2776 	case 40:	/* lhz */
2777 	case 41:	/* lhzu */
2778 		op->type = MKOP(LOAD, u, 2);
2779 		op->ea = dform_ea(word, regs);
2780 		break;
2781 
2782 	case 42:	/* lha */
2783 	case 43:	/* lhau */
2784 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2785 		op->ea = dform_ea(word, regs);
2786 		break;
2787 
2788 	case 44:	/* sth */
2789 	case 45:	/* sthu */
2790 		op->type = MKOP(STORE, u, 2);
2791 		op->ea = dform_ea(word, regs);
2792 		break;
2793 
2794 	case 46:	/* lmw */
2795 		if (ra >= rd)
2796 			break;		/* invalid form, ra in range to load */
2797 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2798 		op->ea = dform_ea(word, regs);
2799 		break;
2800 
2801 	case 47:	/* stmw */
2802 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2803 		op->ea = dform_ea(word, regs);
2804 		break;
2805 
2806 #ifdef CONFIG_PPC_FPU
2807 	case 48:	/* lfs */
2808 	case 49:	/* lfsu */
2809 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2810 		op->ea = dform_ea(word, regs);
2811 		break;
2812 
2813 	case 50:	/* lfd */
2814 	case 51:	/* lfdu */
2815 		op->type = MKOP(LOAD_FP, u, 8);
2816 		op->ea = dform_ea(word, regs);
2817 		break;
2818 
2819 	case 52:	/* stfs */
2820 	case 53:	/* stfsu */
2821 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2822 		op->ea = dform_ea(word, regs);
2823 		break;
2824 
2825 	case 54:	/* stfd */
2826 	case 55:	/* stfdu */
2827 		op->type = MKOP(STORE_FP, u, 8);
2828 		op->ea = dform_ea(word, regs);
2829 		break;
2830 #endif
2831 
2832 #ifdef __powerpc64__
2833 	case 56:	/* lq */
2834 		if (!((rd & 1) || (rd == ra)))
2835 			op->type = MKOP(LOAD, 0, 16);
2836 		op->ea = dqform_ea(word, regs);
2837 		break;
2838 #endif
2839 
2840 #ifdef CONFIG_VSX
2841 	case 57:	/* lfdp, lxsd, lxssp */
2842 		op->ea = dsform_ea(word, regs);
2843 		switch (word & 3) {
2844 		case 0:		/* lfdp */
2845 			if (rd & 1)
2846 				break;		/* reg must be even */
2847 			op->type = MKOP(LOAD_FP, 0, 16);
2848 			break;
2849 		case 2:		/* lxsd */
2850 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2851 				goto unknown_opcode;
2852 			op->reg = rd + 32;
2853 			op->type = MKOP(LOAD_VSX, 0, 8);
2854 			op->element_size = 8;
2855 			op->vsx_flags = VSX_CHECK_VEC;
2856 			break;
2857 		case 3:		/* lxssp */
2858 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2859 				goto unknown_opcode;
2860 			op->reg = rd + 32;
2861 			op->type = MKOP(LOAD_VSX, 0, 4);
2862 			op->element_size = 8;
2863 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2864 			break;
2865 		}
2866 		break;
2867 #endif /* CONFIG_VSX */
2868 
2869 #ifdef __powerpc64__
2870 	case 58:	/* ld[u], lwa */
2871 		op->ea = dsform_ea(word, regs);
2872 		switch (word & 3) {
2873 		case 0:		/* ld */
2874 			op->type = MKOP(LOAD, 0, 8);
2875 			break;
2876 		case 1:		/* ldu */
2877 			op->type = MKOP(LOAD, UPDATE, 8);
2878 			break;
2879 		case 2:		/* lwa */
2880 			op->type = MKOP(LOAD, SIGNEXT, 4);
2881 			break;
2882 		}
2883 		break;
2884 #endif
2885 
2886 #ifdef CONFIG_VSX
2887 	case 6:
2888 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2889 			goto unknown_opcode;
2890 		op->ea = dqform_ea(word, regs);
2891 		op->reg = VSX_REGISTER_XTP(rd);
2892 		op->element_size = 32;
2893 		switch (word & 0xf) {
2894 		case 0:         /* lxvp */
2895 			op->type = MKOP(LOAD_VSX, 0, 32);
2896 			break;
2897 		case 1:         /* stxvp */
2898 			op->type = MKOP(STORE_VSX, 0, 32);
2899 			break;
2900 		}
2901 		break;
2902 
2903 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2904 		switch (word & 7) {
2905 		case 0:		/* stfdp with LSB of DS field = 0 */
2906 		case 4:		/* stfdp with LSB of DS field = 1 */
2907 			op->ea = dsform_ea(word, regs);
2908 			op->type = MKOP(STORE_FP, 0, 16);
2909 			break;
2910 
2911 		case 1:		/* lxv */
2912 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2913 				goto unknown_opcode;
2914 			op->ea = dqform_ea(word, regs);
2915 			if (word & 8)
2916 				op->reg = rd + 32;
2917 			op->type = MKOP(LOAD_VSX, 0, 16);
2918 			op->element_size = 16;
2919 			op->vsx_flags = VSX_CHECK_VEC;
2920 			break;
2921 
2922 		case 2:		/* stxsd with LSB of DS field = 0 */
2923 		case 6:		/* stxsd with LSB of DS field = 1 */
2924 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2925 				goto unknown_opcode;
2926 			op->ea = dsform_ea(word, regs);
2927 			op->reg = rd + 32;
2928 			op->type = MKOP(STORE_VSX, 0, 8);
2929 			op->element_size = 8;
2930 			op->vsx_flags = VSX_CHECK_VEC;
2931 			break;
2932 
2933 		case 3:		/* stxssp with LSB of DS field = 0 */
2934 		case 7:		/* stxssp with LSB of DS field = 1 */
2935 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2936 				goto unknown_opcode;
2937 			op->ea = dsform_ea(word, regs);
2938 			op->reg = rd + 32;
2939 			op->type = MKOP(STORE_VSX, 0, 4);
2940 			op->element_size = 8;
2941 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2942 			break;
2943 
2944 		case 5:		/* stxv */
2945 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2946 				goto unknown_opcode;
2947 			op->ea = dqform_ea(word, regs);
2948 			if (word & 8)
2949 				op->reg = rd + 32;
2950 			op->type = MKOP(STORE_VSX, 0, 16);
2951 			op->element_size = 16;
2952 			op->vsx_flags = VSX_CHECK_VEC;
2953 			break;
2954 		}
2955 		break;
2956 #endif /* CONFIG_VSX */
2957 
2958 #ifdef __powerpc64__
2959 	case 62:	/* std[u] */
2960 		op->ea = dsform_ea(word, regs);
2961 		switch (word & 3) {
2962 		case 0:		/* std */
2963 			op->type = MKOP(STORE, 0, 8);
2964 			break;
2965 		case 1:		/* stdu */
2966 			op->type = MKOP(STORE, UPDATE, 8);
2967 			break;
2968 		case 2:		/* stq */
2969 			if (!(rd & 1))
2970 				op->type = MKOP(STORE, 0, 16);
2971 			break;
2972 		}
2973 		break;
2974 	case 1: /* Prefixed instructions */
2975 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2976 			goto unknown_opcode;
2977 
2978 		prefix_r = GET_PREFIX_R(word);
2979 		ra = GET_PREFIX_RA(suffix);
2980 		op->update_reg = ra;
2981 		rd = (suffix >> 21) & 0x1f;
2982 		op->reg = rd;
2983 		op->val = regs->gpr[rd];
2984 
2985 		suffixopcode = get_op(suffix);
2986 		prefixtype = (word >> 24) & 0x3;
2987 		switch (prefixtype) {
2988 		case 0: /* Type 00  Eight-Byte Load/Store */
2989 			if (prefix_r && ra)
2990 				break;
2991 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2992 			switch (suffixopcode) {
2993 			case 41:	/* plwa */
2994 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2995 				break;
2996 #ifdef CONFIG_VSX
2997 			case 42:        /* plxsd */
2998 				op->reg = rd + 32;
2999 				op->type = MKOP(LOAD_VSX, PREFIXED, 8);
3000 				op->element_size = 8;
3001 				op->vsx_flags = VSX_CHECK_VEC;
3002 				break;
3003 			case 43:	/* plxssp */
3004 				op->reg = rd + 32;
3005 				op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3006 				op->element_size = 8;
3007 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3008 				break;
3009 			case 46:	/* pstxsd */
3010 				op->reg = rd + 32;
3011 				op->type = MKOP(STORE_VSX, PREFIXED, 8);
3012 				op->element_size = 8;
3013 				op->vsx_flags = VSX_CHECK_VEC;
3014 				break;
3015 			case 47:	/* pstxssp */
3016 				op->reg = rd + 32;
3017 				op->type = MKOP(STORE_VSX, PREFIXED, 4);
3018 				op->element_size = 8;
3019 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3020 				break;
3021 			case 51:	/* plxv1 */
3022 				op->reg += 32;
3023 				fallthrough;
3024 			case 50:	/* plxv0 */
3025 				op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3026 				op->element_size = 16;
3027 				op->vsx_flags = VSX_CHECK_VEC;
3028 				break;
3029 			case 55:	/* pstxv1 */
3030 				op->reg = rd + 32;
3031 				fallthrough;
3032 			case 54:	/* pstxv0 */
3033 				op->type = MKOP(STORE_VSX, PREFIXED, 16);
3034 				op->element_size = 16;
3035 				op->vsx_flags = VSX_CHECK_VEC;
3036 				break;
3037 #endif /* CONFIG_VSX */
3038 			case 56:        /* plq */
3039 				op->type = MKOP(LOAD, PREFIXED, 16);
3040 				break;
3041 			case 57:	/* pld */
3042 				op->type = MKOP(LOAD, PREFIXED, 8);
3043 				break;
3044 #ifdef CONFIG_VSX
3045 			case 58:        /* plxvp */
3046 				op->reg = VSX_REGISTER_XTP(rd);
3047 				op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3048 				op->element_size = 32;
3049 				break;
3050 #endif /* CONFIG_VSX */
3051 			case 60:        /* pstq */
3052 				op->type = MKOP(STORE, PREFIXED, 16);
3053 				break;
3054 			case 61:	/* pstd */
3055 				op->type = MKOP(STORE, PREFIXED, 8);
3056 				break;
3057 #ifdef CONFIG_VSX
3058 			case 62:        /* pstxvp */
3059 				op->reg = VSX_REGISTER_XTP(rd);
3060 				op->type = MKOP(STORE_VSX, PREFIXED, 32);
3061 				op->element_size = 32;
3062 				break;
3063 #endif /* CONFIG_VSX */
3064 			}
3065 			break;
3066 		case 1: /* Type 01 Eight-Byte Register-to-Register */
3067 			break;
3068 		case 2: /* Type 10 Modified Load/Store */
3069 			if (prefix_r && ra)
3070 				break;
3071 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
3072 			switch (suffixopcode) {
3073 			case 32:	/* plwz */
3074 				op->type = MKOP(LOAD, PREFIXED, 4);
3075 				break;
3076 			case 34:	/* plbz */
3077 				op->type = MKOP(LOAD, PREFIXED, 1);
3078 				break;
3079 			case 36:	/* pstw */
3080 				op->type = MKOP(STORE, PREFIXED, 4);
3081 				break;
3082 			case 38:	/* pstb */
3083 				op->type = MKOP(STORE, PREFIXED, 1);
3084 				break;
3085 			case 40:	/* plhz */
3086 				op->type = MKOP(LOAD, PREFIXED, 2);
3087 				break;
3088 			case 42:	/* plha */
3089 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3090 				break;
3091 			case 44:	/* psth */
3092 				op->type = MKOP(STORE, PREFIXED, 2);
3093 				break;
3094 			case 48:        /* plfs */
3095 				op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3096 				break;
3097 			case 50:        /* plfd */
3098 				op->type = MKOP(LOAD_FP, PREFIXED, 8);
3099 				break;
3100 			case 52:        /* pstfs */
3101 				op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3102 				break;
3103 			case 54:        /* pstfd */
3104 				op->type = MKOP(STORE_FP, PREFIXED, 8);
3105 				break;
3106 			}
3107 			break;
3108 		case 3: /* Type 11 Modified Register-to-Register */
3109 			break;
3110 		}
3111 #endif /* __powerpc64__ */
3112 
3113 	}
3114 
3115 	if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3116 		switch (GETTYPE(op->type)) {
3117 		case LOAD:
3118 			if (ra == rd)
3119 				goto unknown_opcode;
3120 			fallthrough;
3121 		case STORE:
3122 		case LOAD_FP:
3123 		case STORE_FP:
3124 			if (ra == 0)
3125 				goto unknown_opcode;
3126 		}
3127 	}
3128 
3129 #ifdef CONFIG_VSX
3130 	if ((GETTYPE(op->type) == LOAD_VSX ||
3131 	     GETTYPE(op->type) == STORE_VSX) &&
3132 	    !cpu_has_feature(CPU_FTR_VSX)) {
3133 		return -1;
3134 	}
3135 #endif /* CONFIG_VSX */
3136 
3137 	return 0;
3138 
3139  unknown_opcode:
3140 	op->type = UNKNOWN;
3141 	return 0;
3142 
3143  logical_done:
3144 	if (word & 1)
3145 		set_cr0(regs, op);
3146  logical_done_nocc:
3147 	op->reg = ra;
3148 	op->type |= SETREG;
3149 	return 1;
3150 
3151  arith_done:
3152 	if (word & 1)
3153 		set_cr0(regs, op);
3154  compute_done:
3155 	op->reg = rd;
3156 	op->type |= SETREG;
3157 	return 1;
3158 
3159  priv:
3160 	op->type = INTERRUPT | 0x700;
3161 	op->val = SRR1_PROGPRIV;
3162 	return 0;
3163 
3164  trap:
3165 	op->type = INTERRUPT | 0x700;
3166 	op->val = SRR1_PROGTRAP;
3167 	return 0;
3168 }
3169 EXPORT_SYMBOL_GPL(analyse_instr);
3170 NOKPROBE_SYMBOL(analyse_instr);
3171 
3172 /*
3173  * For PPC32 we always use stwu with r1 to change the stack pointer.
3174  * So this emulated store may corrupt the exception frame, now we
3175  * have to provide the exception frame trampoline, which is pushed
3176  * below the kprobed function stack. So we only update gpr[1] but
3177  * don't emulate the real store operation. We will do real store
3178  * operation safely in exception return code by checking this flag.
3179  */
3180 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3181 {
3182 	/*
3183 	 * Check if we already set since that means we'll
3184 	 * lose the previous value.
3185 	 */
3186 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3187 	set_thread_flag(TIF_EMULATE_STACK_STORE);
3188 	return 0;
3189 }
3190 
3191 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3192 {
3193 	switch (size) {
3194 	case 2:
3195 		*valp = (signed short) *valp;
3196 		break;
3197 	case 4:
3198 		*valp = (signed int) *valp;
3199 		break;
3200 	}
3201 }
3202 
3203 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3204 {
3205 	switch (size) {
3206 	case 2:
3207 		*valp = byterev_2(*valp);
3208 		break;
3209 	case 4:
3210 		*valp = byterev_4(*valp);
3211 		break;
3212 #ifdef __powerpc64__
3213 	case 8:
3214 		*valp = byterev_8(*valp);
3215 		break;
3216 #endif
3217 	}
3218 }
3219 
3220 /*
3221  * Emulate an instruction that can be executed just by updating
3222  * fields in *regs.
3223  */
3224 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3225 {
3226 	unsigned long next_pc;
3227 
3228 	next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3229 	switch (GETTYPE(op->type)) {
3230 	case COMPUTE:
3231 		if (op->type & SETREG)
3232 			regs->gpr[op->reg] = op->val;
3233 		if (op->type & SETCC)
3234 			regs->ccr = op->ccval;
3235 		if (op->type & SETXER)
3236 			regs->xer = op->xerval;
3237 		break;
3238 
3239 	case BRANCH:
3240 		if (op->type & SETLK)
3241 			regs->link = next_pc;
3242 		if (op->type & BRTAKEN)
3243 			next_pc = op->val;
3244 		if (op->type & DECCTR)
3245 			--regs->ctr;
3246 		break;
3247 
3248 	case BARRIER:
3249 		switch (op->type & BARRIER_MASK) {
3250 		case BARRIER_SYNC:
3251 			mb();
3252 			break;
3253 		case BARRIER_ISYNC:
3254 			isync();
3255 			break;
3256 		case BARRIER_EIEIO:
3257 			eieio();
3258 			break;
3259 #ifdef CONFIG_PPC64
3260 		case BARRIER_LWSYNC:
3261 			asm volatile("lwsync" : : : "memory");
3262 			break;
3263 		case BARRIER_PTESYNC:
3264 			asm volatile("ptesync" : : : "memory");
3265 			break;
3266 #endif
3267 		}
3268 		break;
3269 
3270 	case MFSPR:
3271 		switch (op->spr) {
3272 		case SPRN_XER:
3273 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3274 			break;
3275 		case SPRN_LR:
3276 			regs->gpr[op->reg] = regs->link;
3277 			break;
3278 		case SPRN_CTR:
3279 			regs->gpr[op->reg] = regs->ctr;
3280 			break;
3281 		default:
3282 			WARN_ON_ONCE(1);
3283 		}
3284 		break;
3285 
3286 	case MTSPR:
3287 		switch (op->spr) {
3288 		case SPRN_XER:
3289 			regs->xer = op->val & 0xffffffffUL;
3290 			break;
3291 		case SPRN_LR:
3292 			regs->link = op->val;
3293 			break;
3294 		case SPRN_CTR:
3295 			regs->ctr = op->val;
3296 			break;
3297 		default:
3298 			WARN_ON_ONCE(1);
3299 		}
3300 		break;
3301 
3302 	default:
3303 		WARN_ON_ONCE(1);
3304 	}
3305 	regs_set_return_ip(regs, next_pc);
3306 }
3307 NOKPROBE_SYMBOL(emulate_update_regs);
3308 
3309 /*
3310  * Emulate a previously-analysed load or store instruction.
3311  * Return values are:
3312  * 0 = instruction emulated successfully
3313  * -EFAULT = address out of range or access faulted (regs->dar
3314  *	     contains the faulting address)
3315  * -EACCES = misaligned access, instruction requires alignment
3316  * -EINVAL = unknown operation in *op
3317  */
3318 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3319 {
3320 	int err, size, type;
3321 	int i, rd, nb;
3322 	unsigned int cr;
3323 	unsigned long val;
3324 	unsigned long ea;
3325 	bool cross_endian;
3326 
3327 	err = 0;
3328 	size = GETSIZE(op->type);
3329 	type = GETTYPE(op->type);
3330 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3331 	ea = truncate_if_32bit(regs->msr, op->ea);
3332 
3333 	switch (type) {
3334 	case LARX:
3335 		if (ea & (size - 1))
3336 			return -EACCES;		/* can't handle misaligned */
3337 		if (!address_ok(regs, ea, size))
3338 			return -EFAULT;
3339 		err = 0;
3340 		val = 0;
3341 		switch (size) {
3342 #ifdef __powerpc64__
3343 		case 1:
3344 			__get_user_asmx(val, ea, err, "lbarx");
3345 			break;
3346 		case 2:
3347 			__get_user_asmx(val, ea, err, "lharx");
3348 			break;
3349 #endif
3350 		case 4:
3351 			__get_user_asmx(val, ea, err, "lwarx");
3352 			break;
3353 #ifdef __powerpc64__
3354 		case 8:
3355 			__get_user_asmx(val, ea, err, "ldarx");
3356 			break;
3357 		case 16:
3358 			err = do_lqarx(ea, &regs->gpr[op->reg]);
3359 			break;
3360 #endif
3361 		default:
3362 			return -EINVAL;
3363 		}
3364 		if (err) {
3365 			regs->dar = ea;
3366 			break;
3367 		}
3368 		if (size < 16)
3369 			regs->gpr[op->reg] = val;
3370 		break;
3371 
3372 	case STCX:
3373 		if (ea & (size - 1))
3374 			return -EACCES;		/* can't handle misaligned */
3375 		if (!address_ok(regs, ea, size))
3376 			return -EFAULT;
3377 		err = 0;
3378 		switch (size) {
3379 #ifdef __powerpc64__
3380 		case 1:
3381 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3382 			break;
3383 		case 2:
3384 			__put_user_asmx(op->val, ea, err, "sthcx.", cr);
3385 			break;
3386 #endif
3387 		case 4:
3388 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
3389 			break;
3390 #ifdef __powerpc64__
3391 		case 8:
3392 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
3393 			break;
3394 		case 16:
3395 			err = do_stqcx(ea, regs->gpr[op->reg],
3396 				       regs->gpr[op->reg + 1], &cr);
3397 			break;
3398 #endif
3399 		default:
3400 			return -EINVAL;
3401 		}
3402 		if (!err)
3403 			regs->ccr = (regs->ccr & 0x0fffffff) |
3404 				(cr & 0xe0000000) |
3405 				((regs->xer >> 3) & 0x10000000);
3406 		else
3407 			regs->dar = ea;
3408 		break;
3409 
3410 	case LOAD:
3411 #ifdef __powerpc64__
3412 		if (size == 16) {
3413 			err = emulate_lq(regs, ea, op->reg, cross_endian);
3414 			break;
3415 		}
3416 #endif
3417 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3418 		if (!err) {
3419 			if (op->type & SIGNEXT)
3420 				do_signext(&regs->gpr[op->reg], size);
3421 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3422 				do_byterev(&regs->gpr[op->reg], size);
3423 		}
3424 		break;
3425 
3426 #ifdef CONFIG_PPC_FPU
3427 	case LOAD_FP:
3428 		/*
3429 		 * If the instruction is in userspace, we can emulate it even
3430 		 * if the VMX state is not live, because we have the state
3431 		 * stored in the thread_struct.  If the instruction is in
3432 		 * the kernel, we must not touch the state in the thread_struct.
3433 		 */
3434 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3435 			return 0;
3436 		err = do_fp_load(op, ea, regs, cross_endian);
3437 		break;
3438 #endif
3439 #ifdef CONFIG_ALTIVEC
3440 	case LOAD_VMX:
3441 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3442 			return 0;
3443 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3444 		break;
3445 #endif
3446 #ifdef CONFIG_VSX
3447 	case LOAD_VSX: {
3448 		unsigned long msrbit = MSR_VSX;
3449 
3450 		/*
3451 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3452 		 * when the target of the instruction is a vector register.
3453 		 */
3454 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3455 			msrbit = MSR_VEC;
3456 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3457 			return 0;
3458 		err = do_vsx_load(op, ea, regs, cross_endian);
3459 		break;
3460 	}
3461 #endif
3462 	case LOAD_MULTI:
3463 		if (!address_ok(regs, ea, size))
3464 			return -EFAULT;
3465 		rd = op->reg;
3466 		for (i = 0; i < size; i += 4) {
3467 			unsigned int v32 = 0;
3468 
3469 			nb = size - i;
3470 			if (nb > 4)
3471 				nb = 4;
3472 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3473 			if (err)
3474 				break;
3475 			if (unlikely(cross_endian))
3476 				v32 = byterev_4(v32);
3477 			regs->gpr[rd] = v32;
3478 			ea += 4;
3479 			/* reg number wraps from 31 to 0 for lsw[ix] */
3480 			rd = (rd + 1) & 0x1f;
3481 		}
3482 		break;
3483 
3484 	case STORE:
3485 #ifdef __powerpc64__
3486 		if (size == 16) {
3487 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3488 			break;
3489 		}
3490 #endif
3491 		if ((op->type & UPDATE) && size == sizeof(long) &&
3492 		    op->reg == 1 && op->update_reg == 1 &&
3493 		    !(regs->msr & MSR_PR) &&
3494 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3495 			err = handle_stack_update(ea, regs);
3496 			break;
3497 		}
3498 		if (unlikely(cross_endian))
3499 			do_byterev(&op->val, size);
3500 		err = write_mem(op->val, ea, size, regs);
3501 		break;
3502 
3503 #ifdef CONFIG_PPC_FPU
3504 	case STORE_FP:
3505 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3506 			return 0;
3507 		err = do_fp_store(op, ea, regs, cross_endian);
3508 		break;
3509 #endif
3510 #ifdef CONFIG_ALTIVEC
3511 	case STORE_VMX:
3512 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3513 			return 0;
3514 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3515 		break;
3516 #endif
3517 #ifdef CONFIG_VSX
3518 	case STORE_VSX: {
3519 		unsigned long msrbit = MSR_VSX;
3520 
3521 		/*
3522 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3523 		 * when the target of the instruction is a vector register.
3524 		 */
3525 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3526 			msrbit = MSR_VEC;
3527 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3528 			return 0;
3529 		err = do_vsx_store(op, ea, regs, cross_endian);
3530 		break;
3531 	}
3532 #endif
3533 	case STORE_MULTI:
3534 		if (!address_ok(regs, ea, size))
3535 			return -EFAULT;
3536 		rd = op->reg;
3537 		for (i = 0; i < size; i += 4) {
3538 			unsigned int v32 = regs->gpr[rd];
3539 
3540 			nb = size - i;
3541 			if (nb > 4)
3542 				nb = 4;
3543 			if (unlikely(cross_endian))
3544 				v32 = byterev_4(v32);
3545 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3546 			if (err)
3547 				break;
3548 			ea += 4;
3549 			/* reg number wraps from 31 to 0 for stsw[ix] */
3550 			rd = (rd + 1) & 0x1f;
3551 		}
3552 		break;
3553 
3554 	default:
3555 		return -EINVAL;
3556 	}
3557 
3558 	if (err)
3559 		return err;
3560 
3561 	if (op->type & UPDATE)
3562 		regs->gpr[op->update_reg] = op->ea;
3563 
3564 	return 0;
3565 }
3566 NOKPROBE_SYMBOL(emulate_loadstore);
3567 
3568 /*
3569  * Emulate instructions that cause a transfer of control,
3570  * loads and stores, and a few other instructions.
3571  * Returns 1 if the step was emulated, 0 if not,
3572  * or -1 if the instruction is one that should not be stepped,
3573  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3574  */
3575 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3576 {
3577 	struct instruction_op op;
3578 	int r, err, type;
3579 	unsigned long val;
3580 	unsigned long ea;
3581 
3582 	r = analyse_instr(&op, regs, instr);
3583 	if (r < 0)
3584 		return r;
3585 	if (r > 0) {
3586 		emulate_update_regs(regs, &op);
3587 		return 1;
3588 	}
3589 
3590 	err = 0;
3591 	type = GETTYPE(op.type);
3592 
3593 	if (OP_IS_LOAD_STORE(type)) {
3594 		err = emulate_loadstore(regs, &op);
3595 		if (err)
3596 			return 0;
3597 		goto instr_done;
3598 	}
3599 
3600 	switch (type) {
3601 	case CACHEOP:
3602 		ea = truncate_if_32bit(regs->msr, op.ea);
3603 		if (!address_ok(regs, ea, 8))
3604 			return 0;
3605 		switch (op.type & CACHEOP_MASK) {
3606 		case DCBST:
3607 			__cacheop_user_asmx(ea, err, "dcbst");
3608 			break;
3609 		case DCBF:
3610 			__cacheop_user_asmx(ea, err, "dcbf");
3611 			break;
3612 		case DCBTST:
3613 			if (op.reg == 0)
3614 				prefetchw((void *) ea);
3615 			break;
3616 		case DCBT:
3617 			if (op.reg == 0)
3618 				prefetch((void *) ea);
3619 			break;
3620 		case ICBI:
3621 			__cacheop_user_asmx(ea, err, "icbi");
3622 			break;
3623 		case DCBZ:
3624 			err = emulate_dcbz(ea, regs);
3625 			break;
3626 		}
3627 		if (err) {
3628 			regs->dar = ea;
3629 			return 0;
3630 		}
3631 		goto instr_done;
3632 
3633 	case MFMSR:
3634 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3635 		goto instr_done;
3636 
3637 	case MTMSR:
3638 		val = regs->gpr[op.reg];
3639 		if ((val & MSR_RI) == 0)
3640 			/* can't step mtmsr[d] that would clear MSR_RI */
3641 			return -1;
3642 		/* here op.val is the mask of bits to change */
3643 		regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3644 		goto instr_done;
3645 
3646 #ifdef CONFIG_PPC64
3647 	case SYSCALL:	/* sc */
3648 		/*
3649 		 * N.B. this uses knowledge about how the syscall
3650 		 * entry code works.  If that is changed, this will
3651 		 * need to be changed also.
3652 		 */
3653 		if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3654 				cpu_has_feature(CPU_FTR_REAL_LE) &&
3655 				regs->gpr[0] == 0x1ebe) {
3656 			regs_set_return_msr(regs, regs->msr ^ MSR_LE);
3657 			goto instr_done;
3658 		}
3659 		regs->gpr[9] = regs->gpr[13];
3660 		regs->gpr[10] = MSR_KERNEL;
3661 		regs->gpr[11] = regs->nip + 4;
3662 		regs->gpr[12] = regs->msr & MSR_MASK;
3663 		regs->gpr[13] = (unsigned long) get_paca();
3664 		regs_set_return_ip(regs, (unsigned long) &system_call_common);
3665 		regs_set_return_msr(regs, MSR_KERNEL);
3666 		return 1;
3667 
3668 #ifdef CONFIG_PPC_BOOK3S_64
3669 	case SYSCALL_VECTORED_0:	/* scv 0 */
3670 		regs->gpr[9] = regs->gpr[13];
3671 		regs->gpr[10] = MSR_KERNEL;
3672 		regs->gpr[11] = regs->nip + 4;
3673 		regs->gpr[12] = regs->msr & MSR_MASK;
3674 		regs->gpr[13] = (unsigned long) get_paca();
3675 		regs_set_return_ip(regs, (unsigned long) &system_call_vectored_emulate);
3676 		regs_set_return_msr(regs, MSR_KERNEL);
3677 		return 1;
3678 #endif
3679 
3680 	case RFI:
3681 		return -1;
3682 #endif
3683 	}
3684 	return 0;
3685 
3686  instr_done:
3687 	regs_set_return_ip(regs,
3688 		truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3689 	return 1;
3690 }
3691 NOKPROBE_SYMBOL(emulate_step);
3692