1 /* 2 * A Remote Heap. Remote means that we don't touch the memory that the 3 * heap points to. Normal heap implementations use the memory they manage 4 * to place their list. We cannot do that because the memory we manage may 5 * have special properties, for example it is uncachable or of different 6 * endianess. 7 * 8 * Author: Pantelis Antoniou <panto@intracom.gr> 9 * 10 * 2004 (c) INTRACOM S.A. Greece. This file is licensed under 11 * the terms of the GNU General Public License version 2. This program 12 * is licensed "as is" without any warranty of any kind, whether express 13 * or implied. 14 */ 15 #include <linux/types.h> 16 #include <linux/errno.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/slab.h> 21 22 #include <asm/rheap.h> 23 24 /* 25 * Fixup a list_head, needed when copying lists. If the pointers fall 26 * between s and e, apply the delta. This assumes that 27 * sizeof(struct list_head *) == sizeof(unsigned long *). 28 */ 29 static inline void fixup(unsigned long s, unsigned long e, int d, 30 struct list_head *l) 31 { 32 unsigned long *pp; 33 34 pp = (unsigned long *)&l->next; 35 if (*pp >= s && *pp < e) 36 *pp += d; 37 38 pp = (unsigned long *)&l->prev; 39 if (*pp >= s && *pp < e) 40 *pp += d; 41 } 42 43 /* Grow the allocated blocks */ 44 static int grow(rh_info_t * info, int max_blocks) 45 { 46 rh_block_t *block, *blk; 47 int i, new_blocks; 48 int delta; 49 unsigned long blks, blke; 50 51 if (max_blocks <= info->max_blocks) 52 return -EINVAL; 53 54 new_blocks = max_blocks - info->max_blocks; 55 56 block = kmalloc(sizeof(rh_block_t) * max_blocks, GFP_KERNEL); 57 if (block == NULL) 58 return -ENOMEM; 59 60 if (info->max_blocks > 0) { 61 62 /* copy old block area */ 63 memcpy(block, info->block, 64 sizeof(rh_block_t) * info->max_blocks); 65 66 delta = (char *)block - (char *)info->block; 67 68 /* and fixup list pointers */ 69 blks = (unsigned long)info->block; 70 blke = (unsigned long)(info->block + info->max_blocks); 71 72 for (i = 0, blk = block; i < info->max_blocks; i++, blk++) 73 fixup(blks, blke, delta, &blk->list); 74 75 fixup(blks, blke, delta, &info->empty_list); 76 fixup(blks, blke, delta, &info->free_list); 77 fixup(blks, blke, delta, &info->taken_list); 78 79 /* free the old allocated memory */ 80 if ((info->flags & RHIF_STATIC_BLOCK) == 0) 81 kfree(info->block); 82 } 83 84 info->block = block; 85 info->empty_slots += new_blocks; 86 info->max_blocks = max_blocks; 87 info->flags &= ~RHIF_STATIC_BLOCK; 88 89 /* add all new blocks to the free list */ 90 blk = block + info->max_blocks - new_blocks; 91 for (i = 0; i < new_blocks; i++, blk++) 92 list_add(&blk->list, &info->empty_list); 93 94 return 0; 95 } 96 97 /* 98 * Assure at least the required amount of empty slots. If this function 99 * causes a grow in the block area then all pointers kept to the block 100 * area are invalid! 101 */ 102 static int assure_empty(rh_info_t * info, int slots) 103 { 104 int max_blocks; 105 106 /* This function is not meant to be used to grow uncontrollably */ 107 if (slots >= 4) 108 return -EINVAL; 109 110 /* Enough space */ 111 if (info->empty_slots >= slots) 112 return 0; 113 114 /* Next 16 sized block */ 115 max_blocks = ((info->max_blocks + slots) + 15) & ~15; 116 117 return grow(info, max_blocks); 118 } 119 120 static rh_block_t *get_slot(rh_info_t * info) 121 { 122 rh_block_t *blk; 123 124 /* If no more free slots, and failure to extend. */ 125 /* XXX: You should have called assure_empty before */ 126 if (info->empty_slots == 0) { 127 printk(KERN_ERR "rh: out of slots; crash is imminent.\n"); 128 return NULL; 129 } 130 131 /* Get empty slot to use */ 132 blk = list_entry(info->empty_list.next, rh_block_t, list); 133 list_del_init(&blk->list); 134 info->empty_slots--; 135 136 /* Initialize */ 137 blk->start = 0; 138 blk->size = 0; 139 blk->owner = NULL; 140 141 return blk; 142 } 143 144 static inline void release_slot(rh_info_t * info, rh_block_t * blk) 145 { 146 list_add(&blk->list, &info->empty_list); 147 info->empty_slots++; 148 } 149 150 static void attach_free_block(rh_info_t * info, rh_block_t * blkn) 151 { 152 rh_block_t *blk; 153 rh_block_t *before; 154 rh_block_t *after; 155 rh_block_t *next; 156 int size; 157 unsigned long s, e, bs, be; 158 struct list_head *l; 159 160 /* We assume that they are aligned properly */ 161 size = blkn->size; 162 s = blkn->start; 163 e = s + size; 164 165 /* Find the blocks immediately before and after the given one 166 * (if any) */ 167 before = NULL; 168 after = NULL; 169 next = NULL; 170 171 list_for_each(l, &info->free_list) { 172 blk = list_entry(l, rh_block_t, list); 173 174 bs = blk->start; 175 be = bs + blk->size; 176 177 if (next == NULL && s >= bs) 178 next = blk; 179 180 if (be == s) 181 before = blk; 182 183 if (e == bs) 184 after = blk; 185 186 /* If both are not null, break now */ 187 if (before != NULL && after != NULL) 188 break; 189 } 190 191 /* Now check if they are really adjacent */ 192 if (before && s != (before->start + before->size)) 193 before = NULL; 194 195 if (after && e != after->start) 196 after = NULL; 197 198 /* No coalescing; list insert and return */ 199 if (before == NULL && after == NULL) { 200 201 if (next != NULL) 202 list_add(&blkn->list, &next->list); 203 else 204 list_add(&blkn->list, &info->free_list); 205 206 return; 207 } 208 209 /* We don't need it anymore */ 210 release_slot(info, blkn); 211 212 /* Grow the before block */ 213 if (before != NULL && after == NULL) { 214 before->size += size; 215 return; 216 } 217 218 /* Grow the after block backwards */ 219 if (before == NULL && after != NULL) { 220 after->start -= size; 221 after->size += size; 222 return; 223 } 224 225 /* Grow the before block, and release the after block */ 226 before->size += size + after->size; 227 list_del(&after->list); 228 release_slot(info, after); 229 } 230 231 static void attach_taken_block(rh_info_t * info, rh_block_t * blkn) 232 { 233 rh_block_t *blk; 234 struct list_head *l; 235 236 /* Find the block immediately before the given one (if any) */ 237 list_for_each(l, &info->taken_list) { 238 blk = list_entry(l, rh_block_t, list); 239 if (blk->start > blkn->start) { 240 list_add_tail(&blkn->list, &blk->list); 241 return; 242 } 243 } 244 245 list_add_tail(&blkn->list, &info->taken_list); 246 } 247 248 /* 249 * Create a remote heap dynamically. Note that no memory for the blocks 250 * are allocated. It will upon the first allocation 251 */ 252 rh_info_t *rh_create(unsigned int alignment) 253 { 254 rh_info_t *info; 255 256 /* Alignment must be a power of two */ 257 if ((alignment & (alignment - 1)) != 0) 258 return ERR_PTR(-EINVAL); 259 260 info = kmalloc(sizeof(*info), GFP_KERNEL); 261 if (info == NULL) 262 return ERR_PTR(-ENOMEM); 263 264 info->alignment = alignment; 265 266 /* Initially everything as empty */ 267 info->block = NULL; 268 info->max_blocks = 0; 269 info->empty_slots = 0; 270 info->flags = 0; 271 272 INIT_LIST_HEAD(&info->empty_list); 273 INIT_LIST_HEAD(&info->free_list); 274 INIT_LIST_HEAD(&info->taken_list); 275 276 return info; 277 } 278 279 /* 280 * Destroy a dynamically created remote heap. Deallocate only if the areas 281 * are not static 282 */ 283 void rh_destroy(rh_info_t * info) 284 { 285 if ((info->flags & RHIF_STATIC_BLOCK) == 0 && info->block != NULL) 286 kfree(info->block); 287 288 if ((info->flags & RHIF_STATIC_INFO) == 0) 289 kfree(info); 290 } 291 292 /* 293 * Initialize in place a remote heap info block. This is needed to support 294 * operation very early in the startup of the kernel, when it is not yet safe 295 * to call kmalloc. 296 */ 297 void rh_init(rh_info_t * info, unsigned int alignment, int max_blocks, 298 rh_block_t * block) 299 { 300 int i; 301 rh_block_t *blk; 302 303 /* Alignment must be a power of two */ 304 if ((alignment & (alignment - 1)) != 0) 305 return; 306 307 info->alignment = alignment; 308 309 /* Initially everything as empty */ 310 info->block = block; 311 info->max_blocks = max_blocks; 312 info->empty_slots = max_blocks; 313 info->flags = RHIF_STATIC_INFO | RHIF_STATIC_BLOCK; 314 315 INIT_LIST_HEAD(&info->empty_list); 316 INIT_LIST_HEAD(&info->free_list); 317 INIT_LIST_HEAD(&info->taken_list); 318 319 /* Add all new blocks to the free list */ 320 for (i = 0, blk = block; i < max_blocks; i++, blk++) 321 list_add(&blk->list, &info->empty_list); 322 } 323 324 /* Attach a free memory region, coalesces regions if adjuscent */ 325 int rh_attach_region(rh_info_t * info, unsigned long start, int size) 326 { 327 rh_block_t *blk; 328 unsigned long s, e, m; 329 int r; 330 331 /* The region must be aligned */ 332 s = start; 333 e = s + size; 334 m = info->alignment - 1; 335 336 /* Round start up */ 337 s = (s + m) & ~m; 338 339 /* Round end down */ 340 e = e & ~m; 341 342 if (IS_ERR_VALUE(e) || (e < s)) 343 return -ERANGE; 344 345 /* Take final values */ 346 start = s; 347 size = e - s; 348 349 /* Grow the blocks, if needed */ 350 r = assure_empty(info, 1); 351 if (r < 0) 352 return r; 353 354 blk = get_slot(info); 355 blk->start = start; 356 blk->size = size; 357 blk->owner = NULL; 358 359 attach_free_block(info, blk); 360 361 return 0; 362 } 363 364 /* Detatch given address range, splits free block if needed. */ 365 unsigned long rh_detach_region(rh_info_t * info, unsigned long start, int size) 366 { 367 struct list_head *l; 368 rh_block_t *blk, *newblk; 369 unsigned long s, e, m, bs, be; 370 371 /* Validate size */ 372 if (size <= 0) 373 return (unsigned long) -EINVAL; 374 375 /* The region must be aligned */ 376 s = start; 377 e = s + size; 378 m = info->alignment - 1; 379 380 /* Round start up */ 381 s = (s + m) & ~m; 382 383 /* Round end down */ 384 e = e & ~m; 385 386 if (assure_empty(info, 1) < 0) 387 return (unsigned long) -ENOMEM; 388 389 blk = NULL; 390 list_for_each(l, &info->free_list) { 391 blk = list_entry(l, rh_block_t, list); 392 /* The range must lie entirely inside one free block */ 393 bs = blk->start; 394 be = blk->start + blk->size; 395 if (s >= bs && e <= be) 396 break; 397 blk = NULL; 398 } 399 400 if (blk == NULL) 401 return (unsigned long) -ENOMEM; 402 403 /* Perfect fit */ 404 if (bs == s && be == e) { 405 /* Delete from free list, release slot */ 406 list_del(&blk->list); 407 release_slot(info, blk); 408 return s; 409 } 410 411 /* blk still in free list, with updated start and/or size */ 412 if (bs == s || be == e) { 413 if (bs == s) 414 blk->start += size; 415 blk->size -= size; 416 417 } else { 418 /* The front free fragment */ 419 blk->size = s - bs; 420 421 /* the back free fragment */ 422 newblk = get_slot(info); 423 newblk->start = e; 424 newblk->size = be - e; 425 426 list_add(&newblk->list, &blk->list); 427 } 428 429 return s; 430 } 431 432 /* Allocate a block of memory at the specified alignment. The value returned 433 * is an offset into the buffer initialized by rh_init(), or a negative number 434 * if there is an error. 435 */ 436 unsigned long rh_alloc_align(rh_info_t * info, int size, int alignment, const char *owner) 437 { 438 struct list_head *l; 439 rh_block_t *blk; 440 rh_block_t *newblk; 441 unsigned long start, sp_size; 442 443 /* Validate size, and alignment must be power of two */ 444 if (size <= 0 || (alignment & (alignment - 1)) != 0) 445 return (unsigned long) -EINVAL; 446 447 /* Align to configured alignment */ 448 size = (size + (info->alignment - 1)) & ~(info->alignment - 1); 449 450 if (assure_empty(info, 2) < 0) 451 return (unsigned long) -ENOMEM; 452 453 blk = NULL; 454 list_for_each(l, &info->free_list) { 455 blk = list_entry(l, rh_block_t, list); 456 if (size <= blk->size) { 457 start = (blk->start + alignment - 1) & ~(alignment - 1); 458 if (start + size <= blk->start + blk->size) 459 break; 460 } 461 blk = NULL; 462 } 463 464 if (blk == NULL) 465 return (unsigned long) -ENOMEM; 466 467 /* Just fits */ 468 if (blk->size == size) { 469 /* Move from free list to taken list */ 470 list_del(&blk->list); 471 newblk = blk; 472 } else { 473 /* Fragment caused, split if needed */ 474 /* Create block for fragment in the beginning */ 475 sp_size = start - blk->start; 476 if (sp_size) { 477 rh_block_t *spblk; 478 479 spblk = get_slot(info); 480 spblk->start = blk->start; 481 spblk->size = sp_size; 482 /* add before the blk */ 483 list_add(&spblk->list, blk->list.prev); 484 } 485 newblk = get_slot(info); 486 newblk->start = start; 487 newblk->size = size; 488 489 /* blk still in free list, with updated start and size 490 * for fragment in the end */ 491 blk->start = start + size; 492 blk->size -= sp_size + size; 493 /* No fragment in the end, remove blk */ 494 if (blk->size == 0) { 495 list_del(&blk->list); 496 release_slot(info, blk); 497 } 498 } 499 500 newblk->owner = owner; 501 attach_taken_block(info, newblk); 502 503 return start; 504 } 505 506 /* Allocate a block of memory at the default alignment. The value returned is 507 * an offset into the buffer initialized by rh_init(), or a negative number if 508 * there is an error. 509 */ 510 unsigned long rh_alloc(rh_info_t * info, int size, const char *owner) 511 { 512 return rh_alloc_align(info, size, info->alignment, owner); 513 } 514 515 /* Allocate a block of memory at the given offset, rounded up to the default 516 * alignment. The value returned is an offset into the buffer initialized by 517 * rh_init(), or a negative number if there is an error. 518 */ 519 unsigned long rh_alloc_fixed(rh_info_t * info, unsigned long start, int size, const char *owner) 520 { 521 struct list_head *l; 522 rh_block_t *blk, *newblk1, *newblk2; 523 unsigned long s, e, m, bs = 0, be = 0; 524 525 /* Validate size */ 526 if (size <= 0) 527 return (unsigned long) -EINVAL; 528 529 /* The region must be aligned */ 530 s = start; 531 e = s + size; 532 m = info->alignment - 1; 533 534 /* Round start up */ 535 s = (s + m) & ~m; 536 537 /* Round end down */ 538 e = e & ~m; 539 540 if (assure_empty(info, 2) < 0) 541 return (unsigned long) -ENOMEM; 542 543 blk = NULL; 544 list_for_each(l, &info->free_list) { 545 blk = list_entry(l, rh_block_t, list); 546 /* The range must lie entirely inside one free block */ 547 bs = blk->start; 548 be = blk->start + blk->size; 549 if (s >= bs && e <= be) 550 break; 551 } 552 553 if (blk == NULL) 554 return (unsigned long) -ENOMEM; 555 556 /* Perfect fit */ 557 if (bs == s && be == e) { 558 /* Move from free list to taken list */ 559 list_del(&blk->list); 560 blk->owner = owner; 561 562 start = blk->start; 563 attach_taken_block(info, blk); 564 565 return start; 566 567 } 568 569 /* blk still in free list, with updated start and/or size */ 570 if (bs == s || be == e) { 571 if (bs == s) 572 blk->start += size; 573 blk->size -= size; 574 575 } else { 576 /* The front free fragment */ 577 blk->size = s - bs; 578 579 /* The back free fragment */ 580 newblk2 = get_slot(info); 581 newblk2->start = e; 582 newblk2->size = be - e; 583 584 list_add(&newblk2->list, &blk->list); 585 } 586 587 newblk1 = get_slot(info); 588 newblk1->start = s; 589 newblk1->size = e - s; 590 newblk1->owner = owner; 591 592 start = newblk1->start; 593 attach_taken_block(info, newblk1); 594 595 return start; 596 } 597 598 /* Deallocate the memory previously allocated by one of the rh_alloc functions. 599 * The return value is the size of the deallocated block, or a negative number 600 * if there is an error. 601 */ 602 int rh_free(rh_info_t * info, unsigned long start) 603 { 604 rh_block_t *blk, *blk2; 605 struct list_head *l; 606 int size; 607 608 /* Linear search for block */ 609 blk = NULL; 610 list_for_each(l, &info->taken_list) { 611 blk2 = list_entry(l, rh_block_t, list); 612 if (start < blk2->start) 613 break; 614 blk = blk2; 615 } 616 617 if (blk == NULL || start > (blk->start + blk->size)) 618 return -EINVAL; 619 620 /* Remove from taken list */ 621 list_del(&blk->list); 622 623 /* Get size of freed block */ 624 size = blk->size; 625 attach_free_block(info, blk); 626 627 return size; 628 } 629 630 int rh_get_stats(rh_info_t * info, int what, int max_stats, rh_stats_t * stats) 631 { 632 rh_block_t *blk; 633 struct list_head *l; 634 struct list_head *h; 635 int nr; 636 637 switch (what) { 638 639 case RHGS_FREE: 640 h = &info->free_list; 641 break; 642 643 case RHGS_TAKEN: 644 h = &info->taken_list; 645 break; 646 647 default: 648 return -EINVAL; 649 } 650 651 /* Linear search for block */ 652 nr = 0; 653 list_for_each(l, h) { 654 blk = list_entry(l, rh_block_t, list); 655 if (stats != NULL && nr < max_stats) { 656 stats->start = blk->start; 657 stats->size = blk->size; 658 stats->owner = blk->owner; 659 stats++; 660 } 661 nr++; 662 } 663 664 return nr; 665 } 666 667 int rh_set_owner(rh_info_t * info, unsigned long start, const char *owner) 668 { 669 rh_block_t *blk, *blk2; 670 struct list_head *l; 671 int size; 672 673 /* Linear search for block */ 674 blk = NULL; 675 list_for_each(l, &info->taken_list) { 676 blk2 = list_entry(l, rh_block_t, list); 677 if (start < blk2->start) 678 break; 679 blk = blk2; 680 } 681 682 if (blk == NULL || start > (blk->start + blk->size)) 683 return -EINVAL; 684 685 blk->owner = owner; 686 size = blk->size; 687 688 return size; 689 } 690 691 void rh_dump(rh_info_t * info) 692 { 693 static rh_stats_t st[32]; /* XXX maximum 32 blocks */ 694 int maxnr; 695 int i, nr; 696 697 maxnr = ARRAY_SIZE(st); 698 699 printk(KERN_INFO 700 "info @0x%p (%d slots empty / %d max)\n", 701 info, info->empty_slots, info->max_blocks); 702 703 printk(KERN_INFO " Free:\n"); 704 nr = rh_get_stats(info, RHGS_FREE, maxnr, st); 705 if (nr > maxnr) 706 nr = maxnr; 707 for (i = 0; i < nr; i++) 708 printk(KERN_INFO 709 " 0x%lx-0x%lx (%u)\n", 710 st[i].start, st[i].start + st[i].size, 711 st[i].size); 712 printk(KERN_INFO "\n"); 713 714 printk(KERN_INFO " Taken:\n"); 715 nr = rh_get_stats(info, RHGS_TAKEN, maxnr, st); 716 if (nr > maxnr) 717 nr = maxnr; 718 for (i = 0; i < nr; i++) 719 printk(KERN_INFO 720 " 0x%lx-0x%lx (%u) %s\n", 721 st[i].start, st[i].start + st[i].size, 722 st[i].size, st[i].owner != NULL ? st[i].owner : ""); 723 printk(KERN_INFO "\n"); 724 } 725 726 void rh_dump_blk(rh_info_t * info, rh_block_t * blk) 727 { 728 printk(KERN_INFO 729 "blk @0x%p: 0x%lx-0x%lx (%u)\n", 730 blk, blk->start, blk->start + blk->size, blk->size); 731 } 732