1 /* 2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. 3 * 4 * Author: Yu Liu, yu.liu@freescale.com 5 * Scott Wood, scottwood@freescale.com 6 * Ashish Kalra, ashish.kalra@freescale.com 7 * Varun Sethi, varun.sethi@freescale.com 8 * Alexander Graf, agraf@suse.de 9 * 10 * Description: 11 * This file is based on arch/powerpc/kvm/44x_tlb.c, 12 * by Hollis Blanchard <hollisb@us.ibm.com>. 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License, version 2, as 16 * published by the Free Software Foundation. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/slab.h> 22 #include <linux/string.h> 23 #include <linux/kvm.h> 24 #include <linux/kvm_host.h> 25 #include <linux/highmem.h> 26 #include <linux/log2.h> 27 #include <linux/uaccess.h> 28 #include <linux/sched.h> 29 #include <linux/rwsem.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hugetlb.h> 32 #include <asm/kvm_ppc.h> 33 34 #include "e500.h" 35 #include "trace.h" 36 #include "timing.h" 37 #include "e500_mmu_host.h" 38 39 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) 40 41 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; 42 43 static inline unsigned int tlb1_max_shadow_size(void) 44 { 45 /* reserve one entry for magic page */ 46 return host_tlb_params[1].entries - tlbcam_index - 1; 47 } 48 49 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) 50 { 51 /* Mask off reserved bits. */ 52 mas3 &= MAS3_ATTRIB_MASK; 53 54 #ifndef CONFIG_KVM_BOOKE_HV 55 if (!usermode) { 56 /* Guest is in supervisor mode, 57 * so we need to translate guest 58 * supervisor permissions into user permissions. */ 59 mas3 &= ~E500_TLB_USER_PERM_MASK; 60 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; 61 } 62 mas3 |= E500_TLB_SUPER_PERM_MASK; 63 #endif 64 return mas3; 65 } 66 67 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode) 68 { 69 #ifdef CONFIG_SMP 70 return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M; 71 #else 72 return mas2 & MAS2_ATTRIB_MASK; 73 #endif 74 } 75 76 /* 77 * writing shadow tlb entry to host TLB 78 */ 79 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, 80 uint32_t mas0) 81 { 82 unsigned long flags; 83 84 local_irq_save(flags); 85 mtspr(SPRN_MAS0, mas0); 86 mtspr(SPRN_MAS1, stlbe->mas1); 87 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); 88 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); 89 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); 90 #ifdef CONFIG_KVM_BOOKE_HV 91 mtspr(SPRN_MAS8, stlbe->mas8); 92 #endif 93 asm volatile("isync; tlbwe" : : : "memory"); 94 95 #ifdef CONFIG_KVM_BOOKE_HV 96 /* Must clear mas8 for other host tlbwe's */ 97 mtspr(SPRN_MAS8, 0); 98 isync(); 99 #endif 100 local_irq_restore(flags); 101 102 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, 103 stlbe->mas2, stlbe->mas7_3); 104 } 105 106 /* 107 * Acquire a mas0 with victim hint, as if we just took a TLB miss. 108 * 109 * We don't care about the address we're searching for, other than that it's 110 * in the right set and is not present in the TLB. Using a zero PID and a 111 * userspace address means we don't have to set and then restore MAS5, or 112 * calculate a proper MAS6 value. 113 */ 114 static u32 get_host_mas0(unsigned long eaddr) 115 { 116 unsigned long flags; 117 u32 mas0; 118 119 local_irq_save(flags); 120 mtspr(SPRN_MAS6, 0); 121 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); 122 mas0 = mfspr(SPRN_MAS0); 123 local_irq_restore(flags); 124 125 return mas0; 126 } 127 128 /* sesel is for tlb1 only */ 129 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 130 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) 131 { 132 u32 mas0; 133 134 if (tlbsel == 0) { 135 mas0 = get_host_mas0(stlbe->mas2); 136 __write_host_tlbe(stlbe, mas0); 137 } else { 138 __write_host_tlbe(stlbe, 139 MAS0_TLBSEL(1) | 140 MAS0_ESEL(to_htlb1_esel(sesel))); 141 } 142 } 143 144 /* sesel is for tlb1 only */ 145 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 146 struct kvm_book3e_206_tlb_entry *gtlbe, 147 struct kvm_book3e_206_tlb_entry *stlbe, 148 int stlbsel, int sesel) 149 { 150 int stid; 151 152 preempt_disable(); 153 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe); 154 155 stlbe->mas1 |= MAS1_TID(stid); 156 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); 157 preempt_enable(); 158 } 159 160 #ifdef CONFIG_KVM_E500V2 161 /* XXX should be a hook in the gva2hpa translation */ 162 void kvmppc_map_magic(struct kvm_vcpu *vcpu) 163 { 164 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 165 struct kvm_book3e_206_tlb_entry magic; 166 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; 167 unsigned int stid; 168 pfn_t pfn; 169 170 pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; 171 get_page(pfn_to_page(pfn)); 172 173 preempt_disable(); 174 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); 175 176 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | 177 MAS1_TSIZE(BOOK3E_PAGESZ_4K); 178 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; 179 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | 180 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; 181 magic.mas8 = 0; 182 183 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index)); 184 preempt_enable(); 185 } 186 #endif 187 188 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, 189 int esel) 190 { 191 struct kvm_book3e_206_tlb_entry *gtlbe = 192 get_entry(vcpu_e500, tlbsel, esel); 193 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref; 194 195 /* Don't bother with unmapped entries */ 196 if (!(ref->flags & E500_TLB_VALID)) { 197 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0), 198 "%s: flags %x\n", __func__, ref->flags); 199 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]); 200 } 201 202 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) { 203 u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; 204 int hw_tlb_indx; 205 unsigned long flags; 206 207 local_irq_save(flags); 208 while (tmp) { 209 hw_tlb_indx = __ilog2_u64(tmp & -tmp); 210 mtspr(SPRN_MAS0, 211 MAS0_TLBSEL(1) | 212 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); 213 mtspr(SPRN_MAS1, 0); 214 asm volatile("tlbwe"); 215 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; 216 tmp &= tmp - 1; 217 } 218 mb(); 219 vcpu_e500->g2h_tlb1_map[esel] = 0; 220 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID); 221 local_irq_restore(flags); 222 } 223 224 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) { 225 /* 226 * TLB1 entry is backed by 4k pages. This should happen 227 * rarely and is not worth optimizing. Invalidate everything. 228 */ 229 kvmppc_e500_tlbil_all(vcpu_e500); 230 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID); 231 } 232 233 /* Already invalidated in between */ 234 if (!(ref->flags & E500_TLB_VALID)) 235 return; 236 237 /* Guest tlbe is backed by at most one host tlbe per shadow pid. */ 238 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); 239 240 /* Mark the TLB as not backed by the host anymore */ 241 ref->flags &= ~E500_TLB_VALID; 242 } 243 244 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) 245 { 246 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); 247 } 248 249 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, 250 struct kvm_book3e_206_tlb_entry *gtlbe, 251 pfn_t pfn) 252 { 253 ref->pfn = pfn; 254 ref->flags |= E500_TLB_VALID; 255 256 if (tlbe_is_writable(gtlbe)) 257 kvm_set_pfn_dirty(pfn); 258 } 259 260 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) 261 { 262 if (ref->flags & E500_TLB_VALID) { 263 /* FIXME: don't log bogus pfn for TLB1 */ 264 trace_kvm_booke206_ref_release(ref->pfn, ref->flags); 265 ref->flags = 0; 266 } 267 } 268 269 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) 270 { 271 if (vcpu_e500->g2h_tlb1_map) 272 memset(vcpu_e500->g2h_tlb1_map, 0, 273 sizeof(u64) * vcpu_e500->gtlb_params[1].entries); 274 if (vcpu_e500->h2g_tlb1_rmap) 275 memset(vcpu_e500->h2g_tlb1_rmap, 0, 276 sizeof(unsigned int) * host_tlb_params[1].entries); 277 } 278 279 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) 280 { 281 int tlbsel; 282 int i; 283 284 for (tlbsel = 0; tlbsel <= 1; tlbsel++) { 285 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { 286 struct tlbe_ref *ref = 287 &vcpu_e500->gtlb_priv[tlbsel][i].ref; 288 kvmppc_e500_ref_release(ref); 289 } 290 } 291 } 292 293 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu) 294 { 295 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 296 kvmppc_e500_tlbil_all(vcpu_e500); 297 clear_tlb_privs(vcpu_e500); 298 clear_tlb1_bitmap(vcpu_e500); 299 } 300 301 /* TID must be supplied by the caller */ 302 static void kvmppc_e500_setup_stlbe( 303 struct kvm_vcpu *vcpu, 304 struct kvm_book3e_206_tlb_entry *gtlbe, 305 int tsize, struct tlbe_ref *ref, u64 gvaddr, 306 struct kvm_book3e_206_tlb_entry *stlbe) 307 { 308 pfn_t pfn = ref->pfn; 309 u32 pr = vcpu->arch.shared->msr & MSR_PR; 310 311 BUG_ON(!(ref->flags & E500_TLB_VALID)); 312 313 /* Force IPROT=0 for all guest mappings. */ 314 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; 315 stlbe->mas2 = (gvaddr & MAS2_EPN) | 316 e500_shadow_mas2_attrib(gtlbe->mas2, pr); 317 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | 318 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr); 319 320 #ifdef CONFIG_KVM_BOOKE_HV 321 stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid; 322 #endif 323 } 324 325 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, 326 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 327 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, 328 struct tlbe_ref *ref) 329 { 330 struct kvm_memory_slot *slot; 331 unsigned long pfn = 0; /* silence GCC warning */ 332 unsigned long hva; 333 int pfnmap = 0; 334 int tsize = BOOK3E_PAGESZ_4K; 335 336 /* 337 * Translate guest physical to true physical, acquiring 338 * a page reference if it is normal, non-reserved memory. 339 * 340 * gfn_to_memslot() must succeed because otherwise we wouldn't 341 * have gotten this far. Eventually we should just pass the slot 342 * pointer through from the first lookup. 343 */ 344 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); 345 hva = gfn_to_hva_memslot(slot, gfn); 346 347 if (tlbsel == 1) { 348 struct vm_area_struct *vma; 349 down_read(¤t->mm->mmap_sem); 350 351 vma = find_vma(current->mm, hva); 352 if (vma && hva >= vma->vm_start && 353 (vma->vm_flags & VM_PFNMAP)) { 354 /* 355 * This VMA is a physically contiguous region (e.g. 356 * /dev/mem) that bypasses normal Linux page 357 * management. Find the overlap between the 358 * vma and the memslot. 359 */ 360 361 unsigned long start, end; 362 unsigned long slot_start, slot_end; 363 364 pfnmap = 1; 365 366 start = vma->vm_pgoff; 367 end = start + 368 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT); 369 370 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); 371 372 slot_start = pfn - (gfn - slot->base_gfn); 373 slot_end = slot_start + slot->npages; 374 375 if (start < slot_start) 376 start = slot_start; 377 if (end > slot_end) 378 end = slot_end; 379 380 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 381 MAS1_TSIZE_SHIFT; 382 383 /* 384 * e500 doesn't implement the lowest tsize bit, 385 * or 1K pages. 386 */ 387 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 388 389 /* 390 * Now find the largest tsize (up to what the guest 391 * requested) that will cover gfn, stay within the 392 * range, and for which gfn and pfn are mutually 393 * aligned. 394 */ 395 396 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { 397 unsigned long gfn_start, gfn_end, tsize_pages; 398 tsize_pages = 1 << (tsize - 2); 399 400 gfn_start = gfn & ~(tsize_pages - 1); 401 gfn_end = gfn_start + tsize_pages; 402 403 if (gfn_start + pfn - gfn < start) 404 continue; 405 if (gfn_end + pfn - gfn > end) 406 continue; 407 if ((gfn & (tsize_pages - 1)) != 408 (pfn & (tsize_pages - 1))) 409 continue; 410 411 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 412 pfn &= ~(tsize_pages - 1); 413 break; 414 } 415 } else if (vma && hva >= vma->vm_start && 416 (vma->vm_flags & VM_HUGETLB)) { 417 unsigned long psize = vma_kernel_pagesize(vma); 418 419 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 420 MAS1_TSIZE_SHIFT; 421 422 /* 423 * Take the largest page size that satisfies both host 424 * and guest mapping 425 */ 426 tsize = min(__ilog2(psize) - 10, tsize); 427 428 /* 429 * e500 doesn't implement the lowest tsize bit, 430 * or 1K pages. 431 */ 432 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 433 } 434 435 up_read(¤t->mm->mmap_sem); 436 } 437 438 if (likely(!pfnmap)) { 439 unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT); 440 pfn = gfn_to_pfn_memslot(slot, gfn); 441 if (is_error_noslot_pfn(pfn)) { 442 printk(KERN_ERR "Couldn't get real page for gfn %lx!\n", 443 (long)gfn); 444 return -EINVAL; 445 } 446 447 /* Align guest and physical address to page map boundaries */ 448 pfn &= ~(tsize_pages - 1); 449 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 450 } 451 452 kvmppc_e500_ref_setup(ref, gtlbe, pfn); 453 454 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize, 455 ref, gvaddr, stlbe); 456 457 /* Clear i-cache for new pages */ 458 kvmppc_mmu_flush_icache(pfn); 459 460 /* Drop refcount on page, so that mmu notifiers can clear it */ 461 kvm_release_pfn_clean(pfn); 462 463 return 0; 464 } 465 466 /* XXX only map the one-one case, for now use TLB0 */ 467 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, 468 struct kvm_book3e_206_tlb_entry *stlbe) 469 { 470 struct kvm_book3e_206_tlb_entry *gtlbe; 471 struct tlbe_ref *ref; 472 int stlbsel = 0; 473 int sesel = 0; 474 int r; 475 476 gtlbe = get_entry(vcpu_e500, 0, esel); 477 ref = &vcpu_e500->gtlb_priv[0][esel].ref; 478 479 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), 480 get_tlb_raddr(gtlbe) >> PAGE_SHIFT, 481 gtlbe, 0, stlbe, ref); 482 if (r) 483 return r; 484 485 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel); 486 487 return 0; 488 } 489 490 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500, 491 struct tlbe_ref *ref, 492 int esel) 493 { 494 unsigned int sesel = vcpu_e500->host_tlb1_nv++; 495 496 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) 497 vcpu_e500->host_tlb1_nv = 0; 498 499 if (vcpu_e500->h2g_tlb1_rmap[sesel]) { 500 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1; 501 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel); 502 } 503 504 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; 505 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel; 506 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1; 507 WARN_ON(!(ref->flags & E500_TLB_VALID)); 508 509 return sesel; 510 } 511 512 /* Caller must ensure that the specified guest TLB entry is safe to insert into 513 * the shadow TLB. */ 514 /* For both one-one and one-to-many */ 515 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, 516 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 517 struct kvm_book3e_206_tlb_entry *stlbe, int esel) 518 { 519 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref; 520 int sesel; 521 int r; 522 523 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, 524 ref); 525 if (r) 526 return r; 527 528 /* Use TLB0 when we can only map a page with 4k */ 529 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) { 530 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0; 531 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0); 532 return 0; 533 } 534 535 /* Otherwise map into TLB1 */ 536 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel); 537 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel); 538 539 return 0; 540 } 541 542 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, 543 unsigned int index) 544 { 545 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 546 struct tlbe_priv *priv; 547 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; 548 int tlbsel = tlbsel_of(index); 549 int esel = esel_of(index); 550 551 gtlbe = get_entry(vcpu_e500, tlbsel, esel); 552 553 switch (tlbsel) { 554 case 0: 555 priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; 556 557 /* Triggers after clear_tlb_privs or on initial mapping */ 558 if (!(priv->ref.flags & E500_TLB_VALID)) { 559 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); 560 } else { 561 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, 562 &priv->ref, eaddr, &stlbe); 563 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0); 564 } 565 break; 566 567 case 1: { 568 gfn_t gfn = gpaddr >> PAGE_SHIFT; 569 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe, 570 esel); 571 break; 572 } 573 574 default: 575 BUG(); 576 break; 577 } 578 } 579 580 /************* MMU Notifiers *************/ 581 582 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) 583 { 584 trace_kvm_unmap_hva(hva); 585 586 /* 587 * Flush all shadow tlb entries everywhere. This is slow, but 588 * we are 100% sure that we catch the to be unmapped page 589 */ 590 kvm_flush_remote_tlbs(kvm); 591 592 return 0; 593 } 594 595 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 596 { 597 /* kvm_unmap_hva flushes everything anyways */ 598 kvm_unmap_hva(kvm, start); 599 600 return 0; 601 } 602 603 int kvm_age_hva(struct kvm *kvm, unsigned long hva) 604 { 605 /* XXX could be more clever ;) */ 606 return 0; 607 } 608 609 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 610 { 611 /* XXX could be more clever ;) */ 612 return 0; 613 } 614 615 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 616 { 617 /* The page will get remapped properly on its next fault */ 618 kvm_unmap_hva(kvm, hva); 619 } 620 621 /*****************************************/ 622 623 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500) 624 { 625 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; 626 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; 627 628 /* 629 * This should never happen on real e500 hardware, but is 630 * architecturally possible -- e.g. in some weird nested 631 * virtualization case. 632 */ 633 if (host_tlb_params[0].entries == 0 || 634 host_tlb_params[1].entries == 0) { 635 pr_err("%s: need to know host tlb size\n", __func__); 636 return -ENODEV; 637 } 638 639 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> 640 TLBnCFG_ASSOC_SHIFT; 641 host_tlb_params[1].ways = host_tlb_params[1].entries; 642 643 if (!is_power_of_2(host_tlb_params[0].entries) || 644 !is_power_of_2(host_tlb_params[0].ways) || 645 host_tlb_params[0].entries < host_tlb_params[0].ways || 646 host_tlb_params[0].ways == 0) { 647 pr_err("%s: bad tlb0 host config: %u entries %u ways\n", 648 __func__, host_tlb_params[0].entries, 649 host_tlb_params[0].ways); 650 return -ENODEV; 651 } 652 653 host_tlb_params[0].sets = 654 host_tlb_params[0].entries / host_tlb_params[0].ways; 655 host_tlb_params[1].sets = 1; 656 657 vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) * 658 host_tlb_params[1].entries, 659 GFP_KERNEL); 660 if (!vcpu_e500->h2g_tlb1_rmap) 661 return -EINVAL; 662 663 return 0; 664 } 665 666 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) 667 { 668 kfree(vcpu_e500->h2g_tlb1_rmap); 669 } 670