xref: /linux/arch/powerpc/kvm/e500_mmu_host.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, yu.liu@freescale.com
5  *         Scott Wood, scottwood@freescale.com
6  *         Ashish Kalra, ashish.kalra@freescale.com
7  *         Varun Sethi, varun.sethi@freescale.com
8  *         Alexander Graf, agraf@suse.de
9  *
10  * Description:
11  * This file is based on arch/powerpc/kvm/44x_tlb.c,
12  * by Hollis Blanchard <hollisb@us.ibm.com>.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License, version 2, as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
33 
34 #include "e500.h"
35 #include "trace.h"
36 #include "timing.h"
37 #include "e500_mmu_host.h"
38 
39 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
40 
41 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
42 
43 static inline unsigned int tlb1_max_shadow_size(void)
44 {
45 	/* reserve one entry for magic page */
46 	return host_tlb_params[1].entries - tlbcam_index - 1;
47 }
48 
49 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
50 {
51 	/* Mask off reserved bits. */
52 	mas3 &= MAS3_ATTRIB_MASK;
53 
54 #ifndef CONFIG_KVM_BOOKE_HV
55 	if (!usermode) {
56 		/* Guest is in supervisor mode,
57 		 * so we need to translate guest
58 		 * supervisor permissions into user permissions. */
59 		mas3 &= ~E500_TLB_USER_PERM_MASK;
60 		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
61 	}
62 	mas3 |= E500_TLB_SUPER_PERM_MASK;
63 #endif
64 	return mas3;
65 }
66 
67 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
68 {
69 #ifdef CONFIG_SMP
70 	return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
71 #else
72 	return mas2 & MAS2_ATTRIB_MASK;
73 #endif
74 }
75 
76 /*
77  * writing shadow tlb entry to host TLB
78  */
79 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
80 				     uint32_t mas0)
81 {
82 	unsigned long flags;
83 
84 	local_irq_save(flags);
85 	mtspr(SPRN_MAS0, mas0);
86 	mtspr(SPRN_MAS1, stlbe->mas1);
87 	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
88 	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
89 	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
90 #ifdef CONFIG_KVM_BOOKE_HV
91 	mtspr(SPRN_MAS8, stlbe->mas8);
92 #endif
93 	asm volatile("isync; tlbwe" : : : "memory");
94 
95 #ifdef CONFIG_KVM_BOOKE_HV
96 	/* Must clear mas8 for other host tlbwe's */
97 	mtspr(SPRN_MAS8, 0);
98 	isync();
99 #endif
100 	local_irq_restore(flags);
101 
102 	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
103 	                              stlbe->mas2, stlbe->mas7_3);
104 }
105 
106 /*
107  * Acquire a mas0 with victim hint, as if we just took a TLB miss.
108  *
109  * We don't care about the address we're searching for, other than that it's
110  * in the right set and is not present in the TLB.  Using a zero PID and a
111  * userspace address means we don't have to set and then restore MAS5, or
112  * calculate a proper MAS6 value.
113  */
114 static u32 get_host_mas0(unsigned long eaddr)
115 {
116 	unsigned long flags;
117 	u32 mas0;
118 
119 	local_irq_save(flags);
120 	mtspr(SPRN_MAS6, 0);
121 	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
122 	mas0 = mfspr(SPRN_MAS0);
123 	local_irq_restore(flags);
124 
125 	return mas0;
126 }
127 
128 /* sesel is for tlb1 only */
129 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
130 		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
131 {
132 	u32 mas0;
133 
134 	if (tlbsel == 0) {
135 		mas0 = get_host_mas0(stlbe->mas2);
136 		__write_host_tlbe(stlbe, mas0);
137 	} else {
138 		__write_host_tlbe(stlbe,
139 				  MAS0_TLBSEL(1) |
140 				  MAS0_ESEL(to_htlb1_esel(sesel)));
141 	}
142 }
143 
144 /* sesel is for tlb1 only */
145 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
146 			struct kvm_book3e_206_tlb_entry *gtlbe,
147 			struct kvm_book3e_206_tlb_entry *stlbe,
148 			int stlbsel, int sesel)
149 {
150 	int stid;
151 
152 	preempt_disable();
153 	stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
154 
155 	stlbe->mas1 |= MAS1_TID(stid);
156 	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
157 	preempt_enable();
158 }
159 
160 #ifdef CONFIG_KVM_E500V2
161 /* XXX should be a hook in the gva2hpa translation */
162 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
163 {
164 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
165 	struct kvm_book3e_206_tlb_entry magic;
166 	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
167 	unsigned int stid;
168 	pfn_t pfn;
169 
170 	pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
171 	get_page(pfn_to_page(pfn));
172 
173 	preempt_disable();
174 	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
175 
176 	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
177 		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
178 	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
179 	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
180 		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
181 	magic.mas8 = 0;
182 
183 	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
184 	preempt_enable();
185 }
186 #endif
187 
188 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
189 			 int esel)
190 {
191 	struct kvm_book3e_206_tlb_entry *gtlbe =
192 		get_entry(vcpu_e500, tlbsel, esel);
193 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
194 
195 	/* Don't bother with unmapped entries */
196 	if (!(ref->flags & E500_TLB_VALID)) {
197 		WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
198 		     "%s: flags %x\n", __func__, ref->flags);
199 		WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
200 	}
201 
202 	if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
203 		u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
204 		int hw_tlb_indx;
205 		unsigned long flags;
206 
207 		local_irq_save(flags);
208 		while (tmp) {
209 			hw_tlb_indx = __ilog2_u64(tmp & -tmp);
210 			mtspr(SPRN_MAS0,
211 			      MAS0_TLBSEL(1) |
212 			      MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
213 			mtspr(SPRN_MAS1, 0);
214 			asm volatile("tlbwe");
215 			vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
216 			tmp &= tmp - 1;
217 		}
218 		mb();
219 		vcpu_e500->g2h_tlb1_map[esel] = 0;
220 		ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
221 		local_irq_restore(flags);
222 	}
223 
224 	if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
225 		/*
226 		 * TLB1 entry is backed by 4k pages. This should happen
227 		 * rarely and is not worth optimizing. Invalidate everything.
228 		 */
229 		kvmppc_e500_tlbil_all(vcpu_e500);
230 		ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
231 	}
232 
233 	/* Already invalidated in between */
234 	if (!(ref->flags & E500_TLB_VALID))
235 		return;
236 
237 	/* Guest tlbe is backed by at most one host tlbe per shadow pid. */
238 	kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
239 
240 	/* Mark the TLB as not backed by the host anymore */
241 	ref->flags &= ~E500_TLB_VALID;
242 }
243 
244 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
245 {
246 	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
247 }
248 
249 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
250 					 struct kvm_book3e_206_tlb_entry *gtlbe,
251 					 pfn_t pfn)
252 {
253 	ref->pfn = pfn;
254 	ref->flags |= E500_TLB_VALID;
255 
256 	if (tlbe_is_writable(gtlbe))
257 		kvm_set_pfn_dirty(pfn);
258 }
259 
260 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
261 {
262 	if (ref->flags & E500_TLB_VALID) {
263 		/* FIXME: don't log bogus pfn for TLB1 */
264 		trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
265 		ref->flags = 0;
266 	}
267 }
268 
269 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
270 {
271 	if (vcpu_e500->g2h_tlb1_map)
272 		memset(vcpu_e500->g2h_tlb1_map, 0,
273 		       sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
274 	if (vcpu_e500->h2g_tlb1_rmap)
275 		memset(vcpu_e500->h2g_tlb1_rmap, 0,
276 		       sizeof(unsigned int) * host_tlb_params[1].entries);
277 }
278 
279 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
280 {
281 	int tlbsel;
282 	int i;
283 
284 	for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
285 		for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
286 			struct tlbe_ref *ref =
287 				&vcpu_e500->gtlb_priv[tlbsel][i].ref;
288 			kvmppc_e500_ref_release(ref);
289 		}
290 	}
291 }
292 
293 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
294 {
295 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
296 	kvmppc_e500_tlbil_all(vcpu_e500);
297 	clear_tlb_privs(vcpu_e500);
298 	clear_tlb1_bitmap(vcpu_e500);
299 }
300 
301 /* TID must be supplied by the caller */
302 static void kvmppc_e500_setup_stlbe(
303 	struct kvm_vcpu *vcpu,
304 	struct kvm_book3e_206_tlb_entry *gtlbe,
305 	int tsize, struct tlbe_ref *ref, u64 gvaddr,
306 	struct kvm_book3e_206_tlb_entry *stlbe)
307 {
308 	pfn_t pfn = ref->pfn;
309 	u32 pr = vcpu->arch.shared->msr & MSR_PR;
310 
311 	BUG_ON(!(ref->flags & E500_TLB_VALID));
312 
313 	/* Force IPROT=0 for all guest mappings. */
314 	stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
315 	stlbe->mas2 = (gvaddr & MAS2_EPN) |
316 		      e500_shadow_mas2_attrib(gtlbe->mas2, pr);
317 	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
318 			e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
319 
320 #ifdef CONFIG_KVM_BOOKE_HV
321 	stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
322 #endif
323 }
324 
325 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
326 	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
327 	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
328 	struct tlbe_ref *ref)
329 {
330 	struct kvm_memory_slot *slot;
331 	unsigned long pfn = 0; /* silence GCC warning */
332 	unsigned long hva;
333 	int pfnmap = 0;
334 	int tsize = BOOK3E_PAGESZ_4K;
335 
336 	/*
337 	 * Translate guest physical to true physical, acquiring
338 	 * a page reference if it is normal, non-reserved memory.
339 	 *
340 	 * gfn_to_memslot() must succeed because otherwise we wouldn't
341 	 * have gotten this far.  Eventually we should just pass the slot
342 	 * pointer through from the first lookup.
343 	 */
344 	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
345 	hva = gfn_to_hva_memslot(slot, gfn);
346 
347 	if (tlbsel == 1) {
348 		struct vm_area_struct *vma;
349 		down_read(&current->mm->mmap_sem);
350 
351 		vma = find_vma(current->mm, hva);
352 		if (vma && hva >= vma->vm_start &&
353 		    (vma->vm_flags & VM_PFNMAP)) {
354 			/*
355 			 * This VMA is a physically contiguous region (e.g.
356 			 * /dev/mem) that bypasses normal Linux page
357 			 * management.  Find the overlap between the
358 			 * vma and the memslot.
359 			 */
360 
361 			unsigned long start, end;
362 			unsigned long slot_start, slot_end;
363 
364 			pfnmap = 1;
365 
366 			start = vma->vm_pgoff;
367 			end = start +
368 			      ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
369 
370 			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
371 
372 			slot_start = pfn - (gfn - slot->base_gfn);
373 			slot_end = slot_start + slot->npages;
374 
375 			if (start < slot_start)
376 				start = slot_start;
377 			if (end > slot_end)
378 				end = slot_end;
379 
380 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
381 				MAS1_TSIZE_SHIFT;
382 
383 			/*
384 			 * e500 doesn't implement the lowest tsize bit,
385 			 * or 1K pages.
386 			 */
387 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
388 
389 			/*
390 			 * Now find the largest tsize (up to what the guest
391 			 * requested) that will cover gfn, stay within the
392 			 * range, and for which gfn and pfn are mutually
393 			 * aligned.
394 			 */
395 
396 			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
397 				unsigned long gfn_start, gfn_end, tsize_pages;
398 				tsize_pages = 1 << (tsize - 2);
399 
400 				gfn_start = gfn & ~(tsize_pages - 1);
401 				gfn_end = gfn_start + tsize_pages;
402 
403 				if (gfn_start + pfn - gfn < start)
404 					continue;
405 				if (gfn_end + pfn - gfn > end)
406 					continue;
407 				if ((gfn & (tsize_pages - 1)) !=
408 				    (pfn & (tsize_pages - 1)))
409 					continue;
410 
411 				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
412 				pfn &= ~(tsize_pages - 1);
413 				break;
414 			}
415 		} else if (vma && hva >= vma->vm_start &&
416 			   (vma->vm_flags & VM_HUGETLB)) {
417 			unsigned long psize = vma_kernel_pagesize(vma);
418 
419 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
420 				MAS1_TSIZE_SHIFT;
421 
422 			/*
423 			 * Take the largest page size that satisfies both host
424 			 * and guest mapping
425 			 */
426 			tsize = min(__ilog2(psize) - 10, tsize);
427 
428 			/*
429 			 * e500 doesn't implement the lowest tsize bit,
430 			 * or 1K pages.
431 			 */
432 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
433 		}
434 
435 		up_read(&current->mm->mmap_sem);
436 	}
437 
438 	if (likely(!pfnmap)) {
439 		unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
440 		pfn = gfn_to_pfn_memslot(slot, gfn);
441 		if (is_error_noslot_pfn(pfn)) {
442 			printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
443 					(long)gfn);
444 			return -EINVAL;
445 		}
446 
447 		/* Align guest and physical address to page map boundaries */
448 		pfn &= ~(tsize_pages - 1);
449 		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
450 	}
451 
452 	kvmppc_e500_ref_setup(ref, gtlbe, pfn);
453 
454 	kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
455 				ref, gvaddr, stlbe);
456 
457 	/* Clear i-cache for new pages */
458 	kvmppc_mmu_flush_icache(pfn);
459 
460 	/* Drop refcount on page, so that mmu notifiers can clear it */
461 	kvm_release_pfn_clean(pfn);
462 
463 	return 0;
464 }
465 
466 /* XXX only map the one-one case, for now use TLB0 */
467 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
468 				struct kvm_book3e_206_tlb_entry *stlbe)
469 {
470 	struct kvm_book3e_206_tlb_entry *gtlbe;
471 	struct tlbe_ref *ref;
472 	int stlbsel = 0;
473 	int sesel = 0;
474 	int r;
475 
476 	gtlbe = get_entry(vcpu_e500, 0, esel);
477 	ref = &vcpu_e500->gtlb_priv[0][esel].ref;
478 
479 	r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
480 			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
481 			gtlbe, 0, stlbe, ref);
482 	if (r)
483 		return r;
484 
485 	write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
486 
487 	return 0;
488 }
489 
490 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
491 				     struct tlbe_ref *ref,
492 				     int esel)
493 {
494 	unsigned int sesel = vcpu_e500->host_tlb1_nv++;
495 
496 	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
497 		vcpu_e500->host_tlb1_nv = 0;
498 
499 	if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
500 		unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
501 		vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
502 	}
503 
504 	vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
505 	vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
506 	vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
507 	WARN_ON(!(ref->flags & E500_TLB_VALID));
508 
509 	return sesel;
510 }
511 
512 /* Caller must ensure that the specified guest TLB entry is safe to insert into
513  * the shadow TLB. */
514 /* For both one-one and one-to-many */
515 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
516 		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
517 		struct kvm_book3e_206_tlb_entry *stlbe, int esel)
518 {
519 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
520 	int sesel;
521 	int r;
522 
523 	r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
524 				   ref);
525 	if (r)
526 		return r;
527 
528 	/* Use TLB0 when we can only map a page with 4k */
529 	if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
530 		vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
531 		write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
532 		return 0;
533 	}
534 
535 	/* Otherwise map into TLB1 */
536 	sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
537 	write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
538 
539 	return 0;
540 }
541 
542 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
543 		    unsigned int index)
544 {
545 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
546 	struct tlbe_priv *priv;
547 	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
548 	int tlbsel = tlbsel_of(index);
549 	int esel = esel_of(index);
550 
551 	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
552 
553 	switch (tlbsel) {
554 	case 0:
555 		priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
556 
557 		/* Triggers after clear_tlb_privs or on initial mapping */
558 		if (!(priv->ref.flags & E500_TLB_VALID)) {
559 			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
560 		} else {
561 			kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
562 						&priv->ref, eaddr, &stlbe);
563 			write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
564 		}
565 		break;
566 
567 	case 1: {
568 		gfn_t gfn = gpaddr >> PAGE_SHIFT;
569 		kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
570 				     esel);
571 		break;
572 	}
573 
574 	default:
575 		BUG();
576 		break;
577 	}
578 }
579 
580 /************* MMU Notifiers *************/
581 
582 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
583 {
584 	trace_kvm_unmap_hva(hva);
585 
586 	/*
587 	 * Flush all shadow tlb entries everywhere. This is slow, but
588 	 * we are 100% sure that we catch the to be unmapped page
589 	 */
590 	kvm_flush_remote_tlbs(kvm);
591 
592 	return 0;
593 }
594 
595 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
596 {
597 	/* kvm_unmap_hva flushes everything anyways */
598 	kvm_unmap_hva(kvm, start);
599 
600 	return 0;
601 }
602 
603 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
604 {
605 	/* XXX could be more clever ;) */
606 	return 0;
607 }
608 
609 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
610 {
611 	/* XXX could be more clever ;) */
612 	return 0;
613 }
614 
615 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
616 {
617 	/* The page will get remapped properly on its next fault */
618 	kvm_unmap_hva(kvm, hva);
619 }
620 
621 /*****************************************/
622 
623 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
624 {
625 	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
626 	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
627 
628 	/*
629 	 * This should never happen on real e500 hardware, but is
630 	 * architecturally possible -- e.g. in some weird nested
631 	 * virtualization case.
632 	 */
633 	if (host_tlb_params[0].entries == 0 ||
634 	    host_tlb_params[1].entries == 0) {
635 		pr_err("%s: need to know host tlb size\n", __func__);
636 		return -ENODEV;
637 	}
638 
639 	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
640 				  TLBnCFG_ASSOC_SHIFT;
641 	host_tlb_params[1].ways = host_tlb_params[1].entries;
642 
643 	if (!is_power_of_2(host_tlb_params[0].entries) ||
644 	    !is_power_of_2(host_tlb_params[0].ways) ||
645 	    host_tlb_params[0].entries < host_tlb_params[0].ways ||
646 	    host_tlb_params[0].ways == 0) {
647 		pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
648 		       __func__, host_tlb_params[0].entries,
649 		       host_tlb_params[0].ways);
650 		return -ENODEV;
651 	}
652 
653 	host_tlb_params[0].sets =
654 		host_tlb_params[0].entries / host_tlb_params[0].ways;
655 	host_tlb_params[1].sets = 1;
656 
657 	vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
658 					   host_tlb_params[1].entries,
659 					   GFP_KERNEL);
660 	if (!vcpu_e500->h2g_tlb1_rmap)
661 		return -EINVAL;
662 
663 	return 0;
664 }
665 
666 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
667 {
668 	kfree(vcpu_e500->h2g_tlb1_rmap);
669 }
670