xref: /linux/arch/powerpc/kvm/book3s_xive.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive-kvm: " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/kvm_host.h>
10 #include <linux/err.h>
11 #include <linux/gfp.h>
12 #include <linux/spinlock.h>
13 #include <linux/delay.h>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/uaccess.h>
17 #include <linux/irqdomain.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/kvm_ppc.h>
20 #include <asm/hvcall.h>
21 #include <asm/xics.h>
22 #include <asm/xive.h>
23 #include <asm/xive-regs.h>
24 #include <asm/debug.h>
25 #include <asm/debugfs.h>
26 #include <asm/time.h>
27 #include <asm/opal.h>
28 
29 #include <linux/debugfs.h>
30 #include <linux/seq_file.h>
31 
32 #include "book3s_xive.h"
33 
34 
35 /*
36  * Virtual mode variants of the hcalls for use on radix/radix
37  * with AIL. They require the VCPU's VP to be "pushed"
38  *
39  * We still instantiate them here because we use some of the
40  * generated utility functions as well in this file.
41  */
42 #define XIVE_RUNTIME_CHECKS
43 #define X_PFX xive_vm_
44 #define X_STATIC static
45 #define X_STAT_PFX stat_vm_
46 #define __x_tima		xive_tima
47 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
48 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
49 #define __x_writeb	__raw_writeb
50 #define __x_readw	__raw_readw
51 #define __x_readq	__raw_readq
52 #define __x_writeq	__raw_writeq
53 
54 #include "book3s_xive_template.c"
55 
56 /*
57  * We leave a gap of a couple of interrupts in the queue to
58  * account for the IPI and additional safety guard.
59  */
60 #define XIVE_Q_GAP	2
61 
62 /*
63  * Push a vcpu's context to the XIVE on guest entry.
64  * This assumes we are in virtual mode (MMU on)
65  */
66 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
67 {
68 	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
69 	u64 pq;
70 
71 	/*
72 	 * Nothing to do if the platform doesn't have a XIVE
73 	 * or this vCPU doesn't have its own XIVE context
74 	 * (e.g. because it's not using an in-kernel interrupt controller).
75 	 */
76 	if (!tima || !vcpu->arch.xive_cam_word)
77 		return;
78 
79 	eieio();
80 	__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
81 	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
82 	vcpu->arch.xive_pushed = 1;
83 	eieio();
84 
85 	/*
86 	 * We clear the irq_pending flag. There is a small chance of a
87 	 * race vs. the escalation interrupt happening on another
88 	 * processor setting it again, but the only consequence is to
89 	 * cause a spurious wakeup on the next H_CEDE, which is not an
90 	 * issue.
91 	 */
92 	vcpu->arch.irq_pending = 0;
93 
94 	/*
95 	 * In single escalation mode, if the escalation interrupt is
96 	 * on, we mask it.
97 	 */
98 	if (vcpu->arch.xive_esc_on) {
99 		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
100 						  XIVE_ESB_SET_PQ_01));
101 		mb();
102 
103 		/*
104 		 * We have a possible subtle race here: The escalation
105 		 * interrupt might have fired and be on its way to the
106 		 * host queue while we mask it, and if we unmask it
107 		 * early enough (re-cede right away), there is a
108 		 * theorical possibility that it fires again, thus
109 		 * landing in the target queue more than once which is
110 		 * a big no-no.
111 		 *
112 		 * Fortunately, solving this is rather easy. If the
113 		 * above load setting PQ to 01 returns a previous
114 		 * value where P is set, then we know the escalation
115 		 * interrupt is somewhere on its way to the host. In
116 		 * that case we simply don't clear the xive_esc_on
117 		 * flag below. It will be eventually cleared by the
118 		 * handler for the escalation interrupt.
119 		 *
120 		 * Then, when doing a cede, we check that flag again
121 		 * before re-enabling the escalation interrupt, and if
122 		 * set, we abort the cede.
123 		 */
124 		if (!(pq & XIVE_ESB_VAL_P))
125 			/* Now P is 0, we can clear the flag */
126 			vcpu->arch.xive_esc_on = 0;
127 	}
128 }
129 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
130 
131 /*
132  * Pull a vcpu's context from the XIVE on guest exit.
133  * This assumes we are in virtual mode (MMU on)
134  */
135 void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu)
136 {
137 	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
138 
139 	if (!vcpu->arch.xive_pushed)
140 		return;
141 
142 	/*
143 	 * Should not have been pushed if there is no tima
144 	 */
145 	if (WARN_ON(!tima))
146 		return;
147 
148 	eieio();
149 	/* First load to pull the context, we ignore the value */
150 	__raw_readl(tima + TM_SPC_PULL_OS_CTX);
151 	/* Second load to recover the context state (Words 0 and 1) */
152 	vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS);
153 
154 	/* Fixup some of the state for the next load */
155 	vcpu->arch.xive_saved_state.lsmfb = 0;
156 	vcpu->arch.xive_saved_state.ack = 0xff;
157 	vcpu->arch.xive_pushed = 0;
158 	eieio();
159 }
160 EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu);
161 
162 void kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu)
163 {
164 	void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr;
165 
166 	if (!esc_vaddr)
167 		return;
168 
169 	/* we are using XIVE with single escalation */
170 
171 	if (vcpu->arch.xive_esc_on) {
172 		/*
173 		 * If we still have a pending escalation, abort the cede,
174 		 * and we must set PQ to 10 rather than 00 so that we don't
175 		 * potentially end up with two entries for the escalation
176 		 * interrupt in the XIVE interrupt queue.  In that case
177 		 * we also don't want to set xive_esc_on to 1 here in
178 		 * case we race with xive_esc_irq().
179 		 */
180 		vcpu->arch.ceded = 0;
181 		/*
182 		 * The escalation interrupts are special as we don't EOI them.
183 		 * There is no need to use the load-after-store ordering offset
184 		 * to set PQ to 10 as we won't use StoreEOI.
185 		 */
186 		__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10);
187 	} else {
188 		vcpu->arch.xive_esc_on = true;
189 		mb();
190 		__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00);
191 	}
192 	mb();
193 }
194 EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation);
195 
196 /*
197  * This is a simple trigger for a generic XIVE IRQ. This must
198  * only be called for interrupts that support a trigger page
199  */
200 static bool xive_irq_trigger(struct xive_irq_data *xd)
201 {
202 	/* This should be only for MSIs */
203 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
204 		return false;
205 
206 	/* Those interrupts should always have a trigger page */
207 	if (WARN_ON(!xd->trig_mmio))
208 		return false;
209 
210 	out_be64(xd->trig_mmio, 0);
211 
212 	return true;
213 }
214 
215 static irqreturn_t xive_esc_irq(int irq, void *data)
216 {
217 	struct kvm_vcpu *vcpu = data;
218 
219 	vcpu->arch.irq_pending = 1;
220 	smp_mb();
221 	if (vcpu->arch.ceded)
222 		kvmppc_fast_vcpu_kick(vcpu);
223 
224 	/* Since we have the no-EOI flag, the interrupt is effectively
225 	 * disabled now. Clearing xive_esc_on means we won't bother
226 	 * doing so on the next entry.
227 	 *
228 	 * This also allows the entry code to know that if a PQ combination
229 	 * of 10 is observed while xive_esc_on is true, it means the queue
230 	 * contains an unprocessed escalation interrupt. We don't make use of
231 	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
232 	 */
233 	vcpu->arch.xive_esc_on = false;
234 
235 	/* This orders xive_esc_on = false vs. subsequent stale_p = true */
236 	smp_wmb();	/* goes with smp_mb() in cleanup_single_escalation */
237 
238 	return IRQ_HANDLED;
239 }
240 
241 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
242 				  bool single_escalation)
243 {
244 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
245 	struct xive_q *q = &xc->queues[prio];
246 	char *name = NULL;
247 	int rc;
248 
249 	/* Already there ? */
250 	if (xc->esc_virq[prio])
251 		return 0;
252 
253 	/* Hook up the escalation interrupt */
254 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
255 	if (!xc->esc_virq[prio]) {
256 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
257 		       prio, xc->server_num);
258 		return -EIO;
259 	}
260 
261 	if (single_escalation)
262 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
263 				 vcpu->kvm->arch.lpid, xc->server_num);
264 	else
265 		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
266 				 vcpu->kvm->arch.lpid, xc->server_num, prio);
267 	if (!name) {
268 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
269 		       prio, xc->server_num);
270 		rc = -ENOMEM;
271 		goto error;
272 	}
273 
274 	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
275 
276 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
277 			 IRQF_NO_THREAD, name, vcpu);
278 	if (rc) {
279 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
280 		       prio, xc->server_num);
281 		goto error;
282 	}
283 	xc->esc_virq_names[prio] = name;
284 
285 	/* In single escalation mode, we grab the ESB MMIO of the
286 	 * interrupt and mask it. Also populate the VCPU v/raddr
287 	 * of the ESB page for use by asm entry/exit code. Finally
288 	 * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the
289 	 * core code from performing an EOI on the escalation
290 	 * interrupt, thus leaving it effectively masked after
291 	 * it fires once.
292 	 */
293 	if (single_escalation) {
294 		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
295 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
296 
297 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
298 		vcpu->arch.xive_esc_raddr = xd->eoi_page;
299 		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
300 		xd->flags |= XIVE_IRQ_FLAG_NO_EOI;
301 	}
302 
303 	return 0;
304 error:
305 	irq_dispose_mapping(xc->esc_virq[prio]);
306 	xc->esc_virq[prio] = 0;
307 	kfree(name);
308 	return rc;
309 }
310 
311 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
312 {
313 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
314 	struct kvmppc_xive *xive = xc->xive;
315 	struct xive_q *q =  &xc->queues[prio];
316 	void *qpage;
317 	int rc;
318 
319 	if (WARN_ON(q->qpage))
320 		return 0;
321 
322 	/* Allocate the queue and retrieve infos on current node for now */
323 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
324 	if (!qpage) {
325 		pr_err("Failed to allocate queue %d for VCPU %d\n",
326 		       prio, xc->server_num);
327 		return -ENOMEM;
328 	}
329 	memset(qpage, 0, 1 << xive->q_order);
330 
331 	/*
332 	 * Reconfigure the queue. This will set q->qpage only once the
333 	 * queue is fully configured. This is a requirement for prio 0
334 	 * as we will stop doing EOIs for every IPI as soon as we observe
335 	 * qpage being non-NULL, and instead will only EOI when we receive
336 	 * corresponding queue 0 entries
337 	 */
338 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
339 					 xive->q_order, true);
340 	if (rc)
341 		pr_err("Failed to configure queue %d for VCPU %d\n",
342 		       prio, xc->server_num);
343 	return rc;
344 }
345 
346 /* Called with xive->lock held */
347 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
348 {
349 	struct kvmppc_xive *xive = kvm->arch.xive;
350 	struct kvm_vcpu *vcpu;
351 	int i, rc;
352 
353 	lockdep_assert_held(&xive->lock);
354 
355 	/* Already provisioned ? */
356 	if (xive->qmap & (1 << prio))
357 		return 0;
358 
359 	pr_devel("Provisioning prio... %d\n", prio);
360 
361 	/* Provision each VCPU and enable escalations if needed */
362 	kvm_for_each_vcpu(i, vcpu, kvm) {
363 		if (!vcpu->arch.xive_vcpu)
364 			continue;
365 		rc = xive_provision_queue(vcpu, prio);
366 		if (rc == 0 && !xive->single_escalation)
367 			kvmppc_xive_attach_escalation(vcpu, prio,
368 						      xive->single_escalation);
369 		if (rc)
370 			return rc;
371 	}
372 
373 	/* Order previous stores and mark it as provisioned */
374 	mb();
375 	xive->qmap |= (1 << prio);
376 	return 0;
377 }
378 
379 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
380 {
381 	struct kvm_vcpu *vcpu;
382 	struct kvmppc_xive_vcpu *xc;
383 	struct xive_q *q;
384 
385 	/* Locate target server */
386 	vcpu = kvmppc_xive_find_server(kvm, server);
387 	if (!vcpu) {
388 		pr_warn("%s: Can't find server %d\n", __func__, server);
389 		return;
390 	}
391 	xc = vcpu->arch.xive_vcpu;
392 	if (WARN_ON(!xc))
393 		return;
394 
395 	q = &xc->queues[prio];
396 	atomic_inc(&q->pending_count);
397 }
398 
399 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
400 {
401 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
402 	struct xive_q *q;
403 	u32 max;
404 
405 	if (WARN_ON(!xc))
406 		return -ENXIO;
407 	if (!xc->valid)
408 		return -ENXIO;
409 
410 	q = &xc->queues[prio];
411 	if (WARN_ON(!q->qpage))
412 		return -ENXIO;
413 
414 	/* Calculate max number of interrupts in that queue. */
415 	max = (q->msk + 1) - XIVE_Q_GAP;
416 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
417 }
418 
419 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
420 {
421 	struct kvm_vcpu *vcpu;
422 	int i, rc;
423 
424 	/* Locate target server */
425 	vcpu = kvmppc_xive_find_server(kvm, *server);
426 	if (!vcpu) {
427 		pr_devel("Can't find server %d\n", *server);
428 		return -EINVAL;
429 	}
430 
431 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
432 
433 	/* Try pick it */
434 	rc = xive_try_pick_queue(vcpu, prio);
435 	if (rc == 0)
436 		return rc;
437 
438 	pr_devel(" .. failed, looking up candidate...\n");
439 
440 	/* Failed, pick another VCPU */
441 	kvm_for_each_vcpu(i, vcpu, kvm) {
442 		if (!vcpu->arch.xive_vcpu)
443 			continue;
444 		rc = xive_try_pick_queue(vcpu, prio);
445 		if (rc == 0) {
446 			*server = vcpu->arch.xive_vcpu->server_num;
447 			pr_devel("  found on 0x%x/%d\n", *server, prio);
448 			return rc;
449 		}
450 	}
451 	pr_devel("  no available target !\n");
452 
453 	/* No available target ! */
454 	return -EBUSY;
455 }
456 
457 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
458 			     struct kvmppc_xive_src_block *sb,
459 			     struct kvmppc_xive_irq_state *state)
460 {
461 	struct xive_irq_data *xd;
462 	u32 hw_num;
463 	u8 old_prio;
464 	u64 val;
465 
466 	/*
467 	 * Take the lock, set masked, try again if racing
468 	 * with H_EOI
469 	 */
470 	for (;;) {
471 		arch_spin_lock(&sb->lock);
472 		old_prio = state->guest_priority;
473 		state->guest_priority = MASKED;
474 		mb();
475 		if (!state->in_eoi)
476 			break;
477 		state->guest_priority = old_prio;
478 		arch_spin_unlock(&sb->lock);
479 	}
480 
481 	/* No change ? Bail */
482 	if (old_prio == MASKED)
483 		return old_prio;
484 
485 	/* Get the right irq */
486 	kvmppc_xive_select_irq(state, &hw_num, &xd);
487 
488 	/* Set PQ to 10, return old P and old Q and remember them */
489 	val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
490 	state->old_p = !!(val & 2);
491 	state->old_q = !!(val & 1);
492 
493 	/*
494 	 * Synchronize hardware to sensure the queues are updated when
495 	 * masking
496 	 */
497 	xive_native_sync_source(hw_num);
498 
499 	return old_prio;
500 }
501 
502 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
503 				 struct kvmppc_xive_irq_state *state)
504 {
505 	/*
506 	 * Take the lock try again if racing with H_EOI
507 	 */
508 	for (;;) {
509 		arch_spin_lock(&sb->lock);
510 		if (!state->in_eoi)
511 			break;
512 		arch_spin_unlock(&sb->lock);
513 	}
514 }
515 
516 static void xive_finish_unmask(struct kvmppc_xive *xive,
517 			       struct kvmppc_xive_src_block *sb,
518 			       struct kvmppc_xive_irq_state *state,
519 			       u8 prio)
520 {
521 	struct xive_irq_data *xd;
522 	u32 hw_num;
523 
524 	/* If we aren't changing a thing, move on */
525 	if (state->guest_priority != MASKED)
526 		goto bail;
527 
528 	/* Get the right irq */
529 	kvmppc_xive_select_irq(state, &hw_num, &xd);
530 
531 	/* Old Q set, set PQ to 11 */
532 	if (state->old_q)
533 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
534 
535 	/*
536 	 * If not old P, then perform an "effective" EOI,
537 	 * on the source. This will handle the cases where
538 	 * FW EOI is needed.
539 	 */
540 	if (!state->old_p)
541 		xive_vm_source_eoi(hw_num, xd);
542 
543 	/* Synchronize ordering and mark unmasked */
544 	mb();
545 bail:
546 	state->guest_priority = prio;
547 }
548 
549 /*
550  * Target an interrupt to a given server/prio, this will fallback
551  * to another server if necessary and perform the HW targetting
552  * updates as needed
553  *
554  * NOTE: Must be called with the state lock held
555  */
556 static int xive_target_interrupt(struct kvm *kvm,
557 				 struct kvmppc_xive_irq_state *state,
558 				 u32 server, u8 prio)
559 {
560 	struct kvmppc_xive *xive = kvm->arch.xive;
561 	u32 hw_num;
562 	int rc;
563 
564 	/*
565 	 * This will return a tentative server and actual
566 	 * priority. The count for that new target will have
567 	 * already been incremented.
568 	 */
569 	rc = kvmppc_xive_select_target(kvm, &server, prio);
570 
571 	/*
572 	 * We failed to find a target ? Not much we can do
573 	 * at least until we support the GIQ.
574 	 */
575 	if (rc)
576 		return rc;
577 
578 	/*
579 	 * Increment the old queue pending count if there
580 	 * was one so that the old queue count gets adjusted later
581 	 * when observed to be empty.
582 	 */
583 	if (state->act_priority != MASKED)
584 		xive_inc_q_pending(kvm,
585 				   state->act_server,
586 				   state->act_priority);
587 	/*
588 	 * Update state and HW
589 	 */
590 	state->act_priority = prio;
591 	state->act_server = server;
592 
593 	/* Get the right irq */
594 	kvmppc_xive_select_irq(state, &hw_num, NULL);
595 
596 	return xive_native_configure_irq(hw_num,
597 					 kvmppc_xive_vp(xive, server),
598 					 prio, state->number);
599 }
600 
601 /*
602  * Targetting rules: In order to avoid losing track of
603  * pending interrupts accross mask and unmask, which would
604  * allow queue overflows, we implement the following rules:
605  *
606  *  - Unless it was never enabled (or we run out of capacity)
607  *    an interrupt is always targetted at a valid server/queue
608  *    pair even when "masked" by the guest. This pair tends to
609  *    be the last one used but it can be changed under some
610  *    circumstances. That allows us to separate targetting
611  *    from masking, we only handle accounting during (re)targetting,
612  *    this also allows us to let an interrupt drain into its target
613  *    queue after masking, avoiding complex schemes to remove
614  *    interrupts out of remote processor queues.
615  *
616  *  - When masking, we set PQ to 10 and save the previous value
617  *    of P and Q.
618  *
619  *  - When unmasking, if saved Q was set, we set PQ to 11
620  *    otherwise we leave PQ to the HW state which will be either
621  *    10 if nothing happened or 11 if the interrupt fired while
622  *    masked. Effectively we are OR'ing the previous Q into the
623  *    HW Q.
624  *
625  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
626  *    which will unmask the interrupt and shoot a new one if Q was
627  *    set.
628  *
629  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
630  *    effectively meaning an H_EOI from the guest is still expected
631  *    for that interrupt).
632  *
633  *  - If H_EOI occurs while masked, we clear the saved P.
634  *
635  *  - When changing target, we account on the new target and
636  *    increment a separate "pending" counter on the old one.
637  *    This pending counter will be used to decrement the old
638  *    target's count when its queue has been observed empty.
639  */
640 
641 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
642 			 u32 priority)
643 {
644 	struct kvmppc_xive *xive = kvm->arch.xive;
645 	struct kvmppc_xive_src_block *sb;
646 	struct kvmppc_xive_irq_state *state;
647 	u8 new_act_prio;
648 	int rc = 0;
649 	u16 idx;
650 
651 	if (!xive)
652 		return -ENODEV;
653 
654 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
655 		 irq, server, priority);
656 
657 	/* First, check provisioning of queues */
658 	if (priority != MASKED) {
659 		mutex_lock(&xive->lock);
660 		rc = xive_check_provisioning(xive->kvm,
661 			      xive_prio_from_guest(priority));
662 		mutex_unlock(&xive->lock);
663 	}
664 	if (rc) {
665 		pr_devel("  provisioning failure %d !\n", rc);
666 		return rc;
667 	}
668 
669 	sb = kvmppc_xive_find_source(xive, irq, &idx);
670 	if (!sb)
671 		return -EINVAL;
672 	state = &sb->irq_state[idx];
673 
674 	/*
675 	 * We first handle masking/unmasking since the locking
676 	 * might need to be retried due to EOIs, we'll handle
677 	 * targetting changes later. These functions will return
678 	 * with the SB lock held.
679 	 *
680 	 * xive_lock_and_mask() will also set state->guest_priority
681 	 * but won't otherwise change other fields of the state.
682 	 *
683 	 * xive_lock_for_unmask will not actually unmask, this will
684 	 * be done later by xive_finish_unmask() once the targetting
685 	 * has been done, so we don't try to unmask an interrupt
686 	 * that hasn't yet been targetted.
687 	 */
688 	if (priority == MASKED)
689 		xive_lock_and_mask(xive, sb, state);
690 	else
691 		xive_lock_for_unmask(sb, state);
692 
693 
694 	/*
695 	 * Then we handle targetting.
696 	 *
697 	 * First calculate a new "actual priority"
698 	 */
699 	new_act_prio = state->act_priority;
700 	if (priority != MASKED)
701 		new_act_prio = xive_prio_from_guest(priority);
702 
703 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
704 		 new_act_prio, state->act_server, state->act_priority);
705 
706 	/*
707 	 * Then check if we actually need to change anything,
708 	 *
709 	 * The condition for re-targetting the interrupt is that
710 	 * we have a valid new priority (new_act_prio is not 0xff)
711 	 * and either the server or the priority changed.
712 	 *
713 	 * Note: If act_priority was ff and the new priority is
714 	 *       also ff, we don't do anything and leave the interrupt
715 	 *       untargetted. An attempt of doing an int_on on an
716 	 *       untargetted interrupt will fail. If that is a problem
717 	 *       we could initialize interrupts with valid default
718 	 */
719 
720 	if (new_act_prio != MASKED &&
721 	    (state->act_server != server ||
722 	     state->act_priority != new_act_prio))
723 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
724 
725 	/*
726 	 * Perform the final unmasking of the interrupt source
727 	 * if necessary
728 	 */
729 	if (priority != MASKED)
730 		xive_finish_unmask(xive, sb, state, priority);
731 
732 	/*
733 	 * Finally Update saved_priority to match. Only int_on/off
734 	 * set this field to a different value.
735 	 */
736 	state->saved_priority = priority;
737 
738 	arch_spin_unlock(&sb->lock);
739 	return rc;
740 }
741 
742 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
743 			 u32 *priority)
744 {
745 	struct kvmppc_xive *xive = kvm->arch.xive;
746 	struct kvmppc_xive_src_block *sb;
747 	struct kvmppc_xive_irq_state *state;
748 	u16 idx;
749 
750 	if (!xive)
751 		return -ENODEV;
752 
753 	sb = kvmppc_xive_find_source(xive, irq, &idx);
754 	if (!sb)
755 		return -EINVAL;
756 	state = &sb->irq_state[idx];
757 	arch_spin_lock(&sb->lock);
758 	*server = state->act_server;
759 	*priority = state->guest_priority;
760 	arch_spin_unlock(&sb->lock);
761 
762 	return 0;
763 }
764 
765 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
766 {
767 	struct kvmppc_xive *xive = kvm->arch.xive;
768 	struct kvmppc_xive_src_block *sb;
769 	struct kvmppc_xive_irq_state *state;
770 	u16 idx;
771 
772 	if (!xive)
773 		return -ENODEV;
774 
775 	sb = kvmppc_xive_find_source(xive, irq, &idx);
776 	if (!sb)
777 		return -EINVAL;
778 	state = &sb->irq_state[idx];
779 
780 	pr_devel("int_on(irq=0x%x)\n", irq);
781 
782 	/*
783 	 * Check if interrupt was not targetted
784 	 */
785 	if (state->act_priority == MASKED) {
786 		pr_devel("int_on on untargetted interrupt\n");
787 		return -EINVAL;
788 	}
789 
790 	/* If saved_priority is 0xff, do nothing */
791 	if (state->saved_priority == MASKED)
792 		return 0;
793 
794 	/*
795 	 * Lock and unmask it.
796 	 */
797 	xive_lock_for_unmask(sb, state);
798 	xive_finish_unmask(xive, sb, state, state->saved_priority);
799 	arch_spin_unlock(&sb->lock);
800 
801 	return 0;
802 }
803 
804 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
805 {
806 	struct kvmppc_xive *xive = kvm->arch.xive;
807 	struct kvmppc_xive_src_block *sb;
808 	struct kvmppc_xive_irq_state *state;
809 	u16 idx;
810 
811 	if (!xive)
812 		return -ENODEV;
813 
814 	sb = kvmppc_xive_find_source(xive, irq, &idx);
815 	if (!sb)
816 		return -EINVAL;
817 	state = &sb->irq_state[idx];
818 
819 	pr_devel("int_off(irq=0x%x)\n", irq);
820 
821 	/*
822 	 * Lock and mask
823 	 */
824 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
825 	arch_spin_unlock(&sb->lock);
826 
827 	return 0;
828 }
829 
830 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
831 {
832 	struct kvmppc_xive_src_block *sb;
833 	struct kvmppc_xive_irq_state *state;
834 	u16 idx;
835 
836 	sb = kvmppc_xive_find_source(xive, irq, &idx);
837 	if (!sb)
838 		return false;
839 	state = &sb->irq_state[idx];
840 	if (!state->valid)
841 		return false;
842 
843 	/*
844 	 * Trigger the IPI. This assumes we never restore a pass-through
845 	 * interrupt which should be safe enough
846 	 */
847 	xive_irq_trigger(&state->ipi_data);
848 
849 	return true;
850 }
851 
852 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
853 {
854 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
855 
856 	if (!xc)
857 		return 0;
858 
859 	/* Return the per-cpu state for state saving/migration */
860 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
861 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
862 	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
863 }
864 
865 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
866 {
867 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
868 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
869 	u8 cppr, mfrr;
870 	u32 xisr;
871 
872 	if (!xc || !xive)
873 		return -ENOENT;
874 
875 	/* Grab individual state fields. We don't use pending_pri */
876 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
877 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
878 		KVM_REG_PPC_ICP_XISR_MASK;
879 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
880 
881 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
882 		 xc->server_num, cppr, mfrr, xisr);
883 
884 	/*
885 	 * We can't update the state of a "pushed" VCPU, but that
886 	 * shouldn't happen because the vcpu->mutex makes running a
887 	 * vcpu mutually exclusive with doing one_reg get/set on it.
888 	 */
889 	if (WARN_ON(vcpu->arch.xive_pushed))
890 		return -EIO;
891 
892 	/* Update VCPU HW saved state */
893 	vcpu->arch.xive_saved_state.cppr = cppr;
894 	xc->hw_cppr = xc->cppr = cppr;
895 
896 	/*
897 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
898 	 * having a pending MFRR change, which will re-evaluate the
899 	 * target. The VCPU will thus potentially get a spurious
900 	 * interrupt but that's not a big deal.
901 	 */
902 	xc->mfrr = mfrr;
903 	if (mfrr < cppr)
904 		xive_irq_trigger(&xc->vp_ipi_data);
905 
906 	/*
907 	 * Now saved XIRR is "interesting". It means there's something in
908 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
909 	 * as the MFRR restore will handle that. For anything else we need
910 	 * to force a resend of the source.
911 	 * However the source may not have been setup yet. If that's the
912 	 * case, we keep that info and increment a counter in the xive to
913 	 * tell subsequent xive_set_source() to go look.
914 	 */
915 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
916 		xc->delayed_irq = xisr;
917 		xive->delayed_irqs++;
918 		pr_devel("  xisr restore delayed\n");
919 	}
920 
921 	return 0;
922 }
923 
924 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
925 			   struct irq_desc *host_desc)
926 {
927 	struct kvmppc_xive *xive = kvm->arch.xive;
928 	struct kvmppc_xive_src_block *sb;
929 	struct kvmppc_xive_irq_state *state;
930 	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
931 	unsigned int host_irq = irq_desc_get_irq(host_desc);
932 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
933 	u16 idx;
934 	u8 prio;
935 	int rc;
936 
937 	if (!xive)
938 		return -ENODEV;
939 
940 	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
941 
942 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
943 	if (!sb)
944 		return -EINVAL;
945 	state = &sb->irq_state[idx];
946 
947 	/*
948 	 * Mark the passed-through interrupt as going to a VCPU,
949 	 * this will prevent further EOIs and similar operations
950 	 * from the XIVE code. It will also mask the interrupt
951 	 * to either PQ=10 or 11 state, the latter if the interrupt
952 	 * is pending. This will allow us to unmask or retrigger it
953 	 * after routing it to the guest with a simple EOI.
954 	 *
955 	 * The "state" argument is a "token", all it needs is to be
956 	 * non-NULL to switch to passed-through or NULL for the
957 	 * other way around. We may not yet have an actual VCPU
958 	 * target here and we don't really care.
959 	 */
960 	rc = irq_set_vcpu_affinity(host_irq, state);
961 	if (rc) {
962 		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
963 		return rc;
964 	}
965 
966 	/*
967 	 * Mask and read state of IPI. We need to know if its P bit
968 	 * is set as that means it's potentially already using a
969 	 * queue entry in the target
970 	 */
971 	prio = xive_lock_and_mask(xive, sb, state);
972 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
973 		 state->old_p, state->old_q);
974 
975 	/* Turn the IPI hard off */
976 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
977 
978 	/*
979 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
980 	 * to the guest in XIVE native mode
981 	 */
982 	if (xive->ops && xive->ops->reset_mapped)
983 		xive->ops->reset_mapped(kvm, guest_irq);
984 
985 	/* Grab info about irq */
986 	state->pt_number = hw_irq;
987 	state->pt_data = irq_data_get_irq_handler_data(host_data);
988 
989 	/*
990 	 * Configure the IRQ to match the existing configuration of
991 	 * the IPI if it was already targetted. Otherwise this will
992 	 * mask the interrupt in a lossy way (act_priority is 0xff)
993 	 * which is fine for a never started interrupt.
994 	 */
995 	xive_native_configure_irq(hw_irq,
996 				  kvmppc_xive_vp(xive, state->act_server),
997 				  state->act_priority, state->number);
998 
999 	/*
1000 	 * We do an EOI to enable the interrupt (and retrigger if needed)
1001 	 * if the guest has the interrupt unmasked and the P bit was *not*
1002 	 * set in the IPI. If it was set, we know a slot may still be in
1003 	 * use in the target queue thus we have to wait for a guest
1004 	 * originated EOI
1005 	 */
1006 	if (prio != MASKED && !state->old_p)
1007 		xive_vm_source_eoi(hw_irq, state->pt_data);
1008 
1009 	/* Clear old_p/old_q as they are no longer relevant */
1010 	state->old_p = state->old_q = false;
1011 
1012 	/* Restore guest prio (unlocks EOI) */
1013 	mb();
1014 	state->guest_priority = prio;
1015 	arch_spin_unlock(&sb->lock);
1016 
1017 	return 0;
1018 }
1019 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
1020 
1021 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
1022 			   struct irq_desc *host_desc)
1023 {
1024 	struct kvmppc_xive *xive = kvm->arch.xive;
1025 	struct kvmppc_xive_src_block *sb;
1026 	struct kvmppc_xive_irq_state *state;
1027 	unsigned int host_irq = irq_desc_get_irq(host_desc);
1028 	u16 idx;
1029 	u8 prio;
1030 	int rc;
1031 
1032 	if (!xive)
1033 		return -ENODEV;
1034 
1035 	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
1036 
1037 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1038 	if (!sb)
1039 		return -EINVAL;
1040 	state = &sb->irq_state[idx];
1041 
1042 	/*
1043 	 * Mask and read state of IRQ. We need to know if its P bit
1044 	 * is set as that means it's potentially already using a
1045 	 * queue entry in the target
1046 	 */
1047 	prio = xive_lock_and_mask(xive, sb, state);
1048 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1049 		 state->old_p, state->old_q);
1050 
1051 	/*
1052 	 * If old_p is set, the interrupt is pending, we switch it to
1053 	 * PQ=11. This will force a resend in the host so the interrupt
1054 	 * isn't lost to whatver host driver may pick it up
1055 	 */
1056 	if (state->old_p)
1057 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1058 
1059 	/* Release the passed-through interrupt to the host */
1060 	rc = irq_set_vcpu_affinity(host_irq, NULL);
1061 	if (rc) {
1062 		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
1063 		return rc;
1064 	}
1065 
1066 	/* Forget about the IRQ */
1067 	state->pt_number = 0;
1068 	state->pt_data = NULL;
1069 
1070 	/*
1071 	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1072 	 * to the guest in XIVE native mode
1073 	 */
1074 	if (xive->ops && xive->ops->reset_mapped) {
1075 		xive->ops->reset_mapped(kvm, guest_irq);
1076 	}
1077 
1078 	/* Reconfigure the IPI */
1079 	xive_native_configure_irq(state->ipi_number,
1080 				  kvmppc_xive_vp(xive, state->act_server),
1081 				  state->act_priority, state->number);
1082 
1083 	/*
1084 	 * If old_p is set (we have a queue entry potentially
1085 	 * occupied) or the interrupt is masked, we set the IPI
1086 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1087 	 */
1088 	if (prio == MASKED || state->old_p)
1089 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1090 	else
1091 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1092 
1093 	/* Restore guest prio (unlocks EOI) */
1094 	mb();
1095 	state->guest_priority = prio;
1096 	arch_spin_unlock(&sb->lock);
1097 
1098 	return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1101 
1102 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1103 {
1104 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1105 	struct kvm *kvm = vcpu->kvm;
1106 	struct kvmppc_xive *xive = kvm->arch.xive;
1107 	int i, j;
1108 
1109 	for (i = 0; i <= xive->max_sbid; i++) {
1110 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1111 
1112 		if (!sb)
1113 			continue;
1114 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1115 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1116 
1117 			if (!state->valid)
1118 				continue;
1119 			if (state->act_priority == MASKED)
1120 				continue;
1121 			if (state->act_server != xc->server_num)
1122 				continue;
1123 
1124 			/* Clean it up */
1125 			arch_spin_lock(&sb->lock);
1126 			state->act_priority = MASKED;
1127 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1128 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1129 			if (state->pt_number) {
1130 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1131 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1132 			}
1133 			arch_spin_unlock(&sb->lock);
1134 		}
1135 	}
1136 
1137 	/* Disable vcpu's escalation interrupt */
1138 	if (vcpu->arch.xive_esc_on) {
1139 		__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1140 					     XIVE_ESB_SET_PQ_01));
1141 		vcpu->arch.xive_esc_on = false;
1142 	}
1143 
1144 	/*
1145 	 * Clear pointers to escalation interrupt ESB.
1146 	 * This is safe because the vcpu->mutex is held, preventing
1147 	 * any other CPU from concurrently executing a KVM_RUN ioctl.
1148 	 */
1149 	vcpu->arch.xive_esc_vaddr = 0;
1150 	vcpu->arch.xive_esc_raddr = 0;
1151 }
1152 
1153 /*
1154  * In single escalation mode, the escalation interrupt is marked so
1155  * that EOI doesn't re-enable it, but just sets the stale_p flag to
1156  * indicate that the P bit has already been dealt with.  However, the
1157  * assembly code that enters the guest sets PQ to 00 without clearing
1158  * stale_p (because it has no easy way to address it).  Hence we have
1159  * to adjust stale_p before shutting down the interrupt.
1160  */
1161 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
1162 				    struct kvmppc_xive_vcpu *xc, int irq)
1163 {
1164 	struct irq_data *d = irq_get_irq_data(irq);
1165 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1166 
1167 	/*
1168 	 * This slightly odd sequence gives the right result
1169 	 * (i.e. stale_p set if xive_esc_on is false) even if
1170 	 * we race with xive_esc_irq() and xive_irq_eoi().
1171 	 */
1172 	xd->stale_p = false;
1173 	smp_mb();		/* paired with smb_wmb in xive_esc_irq */
1174 	if (!vcpu->arch.xive_esc_on)
1175 		xd->stale_p = true;
1176 }
1177 
1178 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1179 {
1180 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1181 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1182 	int i;
1183 
1184 	if (!kvmppc_xics_enabled(vcpu))
1185 		return;
1186 
1187 	if (!xc)
1188 		return;
1189 
1190 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1191 
1192 	/* Ensure no interrupt is still routed to that VP */
1193 	xc->valid = false;
1194 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1195 
1196 	/* Mask the VP IPI */
1197 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1198 
1199 	/* Free escalations */
1200 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1201 		if (xc->esc_virq[i]) {
1202 			if (xc->xive->single_escalation)
1203 				xive_cleanup_single_escalation(vcpu, xc,
1204 							xc->esc_virq[i]);
1205 			free_irq(xc->esc_virq[i], vcpu);
1206 			irq_dispose_mapping(xc->esc_virq[i]);
1207 			kfree(xc->esc_virq_names[i]);
1208 		}
1209 	}
1210 
1211 	/* Disable the VP */
1212 	xive_native_disable_vp(xc->vp_id);
1213 
1214 	/* Clear the cam word so guest entry won't try to push context */
1215 	vcpu->arch.xive_cam_word = 0;
1216 
1217 	/* Free the queues */
1218 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1219 		struct xive_q *q = &xc->queues[i];
1220 
1221 		xive_native_disable_queue(xc->vp_id, q, i);
1222 		if (q->qpage) {
1223 			free_pages((unsigned long)q->qpage,
1224 				   xive->q_page_order);
1225 			q->qpage = NULL;
1226 		}
1227 	}
1228 
1229 	/* Free the IPI */
1230 	if (xc->vp_ipi) {
1231 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1232 		xive_native_free_irq(xc->vp_ipi);
1233 	}
1234 	/* Free the VP */
1235 	kfree(xc);
1236 
1237 	/* Cleanup the vcpu */
1238 	vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1239 	vcpu->arch.xive_vcpu = NULL;
1240 }
1241 
1242 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
1243 {
1244 	/* We have a block of xive->nr_servers VPs. We just need to check
1245 	 * packed vCPU ids are below that.
1246 	 */
1247 	return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers;
1248 }
1249 
1250 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
1251 {
1252 	u32 vp_id;
1253 
1254 	if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
1255 		pr_devel("Out of bounds !\n");
1256 		return -EINVAL;
1257 	}
1258 
1259 	if (xive->vp_base == XIVE_INVALID_VP) {
1260 		xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
1261 		pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
1262 
1263 		if (xive->vp_base == XIVE_INVALID_VP)
1264 			return -ENOSPC;
1265 	}
1266 
1267 	vp_id = kvmppc_xive_vp(xive, cpu);
1268 	if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1269 		pr_devel("Duplicate !\n");
1270 		return -EEXIST;
1271 	}
1272 
1273 	*vp = vp_id;
1274 
1275 	return 0;
1276 }
1277 
1278 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1279 			     struct kvm_vcpu *vcpu, u32 cpu)
1280 {
1281 	struct kvmppc_xive *xive = dev->private;
1282 	struct kvmppc_xive_vcpu *xc;
1283 	int i, r = -EBUSY;
1284 	u32 vp_id;
1285 
1286 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1287 
1288 	if (dev->ops != &kvm_xive_ops) {
1289 		pr_devel("Wrong ops !\n");
1290 		return -EPERM;
1291 	}
1292 	if (xive->kvm != vcpu->kvm)
1293 		return -EPERM;
1294 	if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1295 		return -EBUSY;
1296 
1297 	/* We need to synchronize with queue provisioning */
1298 	mutex_lock(&xive->lock);
1299 
1300 	r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
1301 	if (r)
1302 		goto bail;
1303 
1304 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1305 	if (!xc) {
1306 		r = -ENOMEM;
1307 		goto bail;
1308 	}
1309 
1310 	vcpu->arch.xive_vcpu = xc;
1311 	xc->xive = xive;
1312 	xc->vcpu = vcpu;
1313 	xc->server_num = cpu;
1314 	xc->vp_id = vp_id;
1315 	xc->mfrr = 0xff;
1316 	xc->valid = true;
1317 
1318 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1319 	if (r)
1320 		goto bail;
1321 
1322 	/* Configure VCPU fields for use by assembly push/pull */
1323 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1324 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1325 
1326 	/* Allocate IPI */
1327 	xc->vp_ipi = xive_native_alloc_irq();
1328 	if (!xc->vp_ipi) {
1329 		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1330 		r = -EIO;
1331 		goto bail;
1332 	}
1333 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1334 
1335 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1336 	if (r)
1337 		goto bail;
1338 
1339 	/*
1340 	 * Enable the VP first as the single escalation mode will
1341 	 * affect escalation interrupts numbering
1342 	 */
1343 	r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1344 	if (r) {
1345 		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1346 		goto bail;
1347 	}
1348 
1349 	/*
1350 	 * Initialize queues. Initially we set them all for no queueing
1351 	 * and we enable escalation for queue 0 only which we'll use for
1352 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1353 	 * do handle provisioning however based on the existing "map"
1354 	 * of enabled queues.
1355 	 */
1356 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1357 		struct xive_q *q = &xc->queues[i];
1358 
1359 		/* Single escalation, no queue 7 */
1360 		if (i == 7 && xive->single_escalation)
1361 			break;
1362 
1363 		/* Is queue already enabled ? Provision it */
1364 		if (xive->qmap & (1 << i)) {
1365 			r = xive_provision_queue(vcpu, i);
1366 			if (r == 0 && !xive->single_escalation)
1367 				kvmppc_xive_attach_escalation(
1368 					vcpu, i, xive->single_escalation);
1369 			if (r)
1370 				goto bail;
1371 		} else {
1372 			r = xive_native_configure_queue(xc->vp_id,
1373 							q, i, NULL, 0, true);
1374 			if (r) {
1375 				pr_err("Failed to configure queue %d for VCPU %d\n",
1376 				       i, cpu);
1377 				goto bail;
1378 			}
1379 		}
1380 	}
1381 
1382 	/* If not done above, attach priority 0 escalation */
1383 	r = kvmppc_xive_attach_escalation(vcpu, 0, xive->single_escalation);
1384 	if (r)
1385 		goto bail;
1386 
1387 	/* Route the IPI */
1388 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1389 	if (!r)
1390 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1391 
1392 bail:
1393 	mutex_unlock(&xive->lock);
1394 	if (r) {
1395 		kvmppc_xive_cleanup_vcpu(vcpu);
1396 		return r;
1397 	}
1398 
1399 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1400 	return 0;
1401 }
1402 
1403 /*
1404  * Scanning of queues before/after migration save
1405  */
1406 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1407 {
1408 	struct kvmppc_xive_src_block *sb;
1409 	struct kvmppc_xive_irq_state *state;
1410 	u16 idx;
1411 
1412 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1413 	if (!sb)
1414 		return;
1415 
1416 	state = &sb->irq_state[idx];
1417 
1418 	/* Some sanity checking */
1419 	if (!state->valid) {
1420 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1421 		return;
1422 	}
1423 
1424 	/*
1425 	 * If the interrupt is in a queue it should have P set.
1426 	 * We warn so that gets reported. A backtrace isn't useful
1427 	 * so no need to use a WARN_ON.
1428 	 */
1429 	if (!state->saved_p)
1430 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1431 
1432 	/* Set flag */
1433 	state->in_queue = true;
1434 }
1435 
1436 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1437 				   struct kvmppc_xive_src_block *sb,
1438 				   u32 irq)
1439 {
1440 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1441 
1442 	if (!state->valid)
1443 		return;
1444 
1445 	/* Mask and save state, this will also sync HW queues */
1446 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1447 
1448 	/* Transfer P and Q */
1449 	state->saved_p = state->old_p;
1450 	state->saved_q = state->old_q;
1451 
1452 	/* Unlock */
1453 	arch_spin_unlock(&sb->lock);
1454 }
1455 
1456 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1457 				     struct kvmppc_xive_src_block *sb,
1458 				     u32 irq)
1459 {
1460 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1461 
1462 	if (!state->valid)
1463 		return;
1464 
1465 	/*
1466 	 * Lock / exclude EOI (not technically necessary if the
1467 	 * guest isn't running concurrently. If this becomes a
1468 	 * performance issue we can probably remove the lock.
1469 	 */
1470 	xive_lock_for_unmask(sb, state);
1471 
1472 	/* Restore mask/prio if it wasn't masked */
1473 	if (state->saved_scan_prio != MASKED)
1474 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1475 
1476 	/* Unlock */
1477 	arch_spin_unlock(&sb->lock);
1478 }
1479 
1480 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1481 {
1482 	u32 idx = q->idx;
1483 	u32 toggle = q->toggle;
1484 	u32 irq;
1485 
1486 	do {
1487 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1488 		if (irq > XICS_IPI)
1489 			xive_pre_save_set_queued(xive, irq);
1490 	} while(irq);
1491 }
1492 
1493 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1494 {
1495 	struct kvm_vcpu *vcpu = NULL;
1496 	int i, j;
1497 
1498 	/*
1499 	 * See comment in xive_get_source() about how this
1500 	 * work. Collect a stable state for all interrupts
1501 	 */
1502 	for (i = 0; i <= xive->max_sbid; i++) {
1503 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1504 		if (!sb)
1505 			continue;
1506 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1507 			xive_pre_save_mask_irq(xive, sb, j);
1508 	}
1509 
1510 	/* Then scan the queues and update the "in_queue" flag */
1511 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1512 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1513 		if (!xc)
1514 			continue;
1515 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1516 			if (xc->queues[j].qpage)
1517 				xive_pre_save_queue(xive, &xc->queues[j]);
1518 		}
1519 	}
1520 
1521 	/* Finally restore interrupt states */
1522 	for (i = 0; i <= xive->max_sbid; i++) {
1523 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1524 		if (!sb)
1525 			continue;
1526 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1527 			xive_pre_save_unmask_irq(xive, sb, j);
1528 	}
1529 }
1530 
1531 static void xive_post_save_scan(struct kvmppc_xive *xive)
1532 {
1533 	u32 i, j;
1534 
1535 	/* Clear all the in_queue flags */
1536 	for (i = 0; i <= xive->max_sbid; i++) {
1537 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1538 		if (!sb)
1539 			continue;
1540 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1541 			sb->irq_state[j].in_queue = false;
1542 	}
1543 
1544 	/* Next get_source() will do a new scan */
1545 	xive->saved_src_count = 0;
1546 }
1547 
1548 /*
1549  * This returns the source configuration and state to user space.
1550  */
1551 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1552 {
1553 	struct kvmppc_xive_src_block *sb;
1554 	struct kvmppc_xive_irq_state *state;
1555 	u64 __user *ubufp = (u64 __user *) addr;
1556 	u64 val, prio;
1557 	u16 idx;
1558 
1559 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1560 	if (!sb)
1561 		return -ENOENT;
1562 
1563 	state = &sb->irq_state[idx];
1564 
1565 	if (!state->valid)
1566 		return -ENOENT;
1567 
1568 	pr_devel("get_source(%ld)...\n", irq);
1569 
1570 	/*
1571 	 * So to properly save the state into something that looks like a
1572 	 * XICS migration stream we cannot treat interrupts individually.
1573 	 *
1574 	 * We need, instead, mask them all (& save their previous PQ state)
1575 	 * to get a stable state in the HW, then sync them to ensure that
1576 	 * any interrupt that had already fired hits its queue, and finally
1577 	 * scan all the queues to collect which interrupts are still present
1578 	 * in the queues, so we can set the "pending" flag on them and
1579 	 * they can be resent on restore.
1580 	 *
1581 	 * So we do it all when the "first" interrupt gets saved, all the
1582 	 * state is collected at that point, the rest of xive_get_source()
1583 	 * will merely collect and convert that state to the expected
1584 	 * userspace bit mask.
1585 	 */
1586 	if (xive->saved_src_count == 0)
1587 		xive_pre_save_scan(xive);
1588 	xive->saved_src_count++;
1589 
1590 	/* Convert saved state into something compatible with xics */
1591 	val = state->act_server;
1592 	prio = state->saved_scan_prio;
1593 
1594 	if (prio == MASKED) {
1595 		val |= KVM_XICS_MASKED;
1596 		prio = state->saved_priority;
1597 	}
1598 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1599 	if (state->lsi) {
1600 		val |= KVM_XICS_LEVEL_SENSITIVE;
1601 		if (state->saved_p)
1602 			val |= KVM_XICS_PENDING;
1603 	} else {
1604 		if (state->saved_p)
1605 			val |= KVM_XICS_PRESENTED;
1606 
1607 		if (state->saved_q)
1608 			val |= KVM_XICS_QUEUED;
1609 
1610 		/*
1611 		 * We mark it pending (which will attempt a re-delivery)
1612 		 * if we are in a queue *or* we were masked and had
1613 		 * Q set which is equivalent to the XICS "masked pending"
1614 		 * state
1615 		 */
1616 		if (state->in_queue || (prio == MASKED && state->saved_q))
1617 			val |= KVM_XICS_PENDING;
1618 	}
1619 
1620 	/*
1621 	 * If that was the last interrupt saved, reset the
1622 	 * in_queue flags
1623 	 */
1624 	if (xive->saved_src_count == xive->src_count)
1625 		xive_post_save_scan(xive);
1626 
1627 	/* Copy the result to userspace */
1628 	if (put_user(val, ubufp))
1629 		return -EFAULT;
1630 
1631 	return 0;
1632 }
1633 
1634 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
1635 	struct kvmppc_xive *xive, int irq)
1636 {
1637 	struct kvmppc_xive_src_block *sb;
1638 	int i, bid;
1639 
1640 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1641 
1642 	mutex_lock(&xive->lock);
1643 
1644 	/* block already exists - somebody else got here first */
1645 	if (xive->src_blocks[bid])
1646 		goto out;
1647 
1648 	/* Create the ICS */
1649 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1650 	if (!sb)
1651 		goto out;
1652 
1653 	sb->id = bid;
1654 
1655 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1656 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1657 		sb->irq_state[i].eisn = 0;
1658 		sb->irq_state[i].guest_priority = MASKED;
1659 		sb->irq_state[i].saved_priority = MASKED;
1660 		sb->irq_state[i].act_priority = MASKED;
1661 	}
1662 	smp_wmb();
1663 	xive->src_blocks[bid] = sb;
1664 
1665 	if (bid > xive->max_sbid)
1666 		xive->max_sbid = bid;
1667 
1668 out:
1669 	mutex_unlock(&xive->lock);
1670 	return xive->src_blocks[bid];
1671 }
1672 
1673 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1674 {
1675 	struct kvm *kvm = xive->kvm;
1676 	struct kvm_vcpu *vcpu = NULL;
1677 	int i;
1678 
1679 	kvm_for_each_vcpu(i, vcpu, kvm) {
1680 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1681 
1682 		if (!xc)
1683 			continue;
1684 
1685 		if (xc->delayed_irq == irq) {
1686 			xc->delayed_irq = 0;
1687 			xive->delayed_irqs--;
1688 			return true;
1689 		}
1690 	}
1691 	return false;
1692 }
1693 
1694 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1695 {
1696 	struct kvmppc_xive_src_block *sb;
1697 	struct kvmppc_xive_irq_state *state;
1698 	u64 __user *ubufp = (u64 __user *) addr;
1699 	u16 idx;
1700 	u64 val;
1701 	u8 act_prio, guest_prio;
1702 	u32 server;
1703 	int rc = 0;
1704 
1705 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1706 		return -ENOENT;
1707 
1708 	pr_devel("set_source(irq=0x%lx)\n", irq);
1709 
1710 	/* Find the source */
1711 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1712 	if (!sb) {
1713 		pr_devel("No source, creating source block...\n");
1714 		sb = kvmppc_xive_create_src_block(xive, irq);
1715 		if (!sb) {
1716 			pr_devel("Failed to create block...\n");
1717 			return -ENOMEM;
1718 		}
1719 	}
1720 	state = &sb->irq_state[idx];
1721 
1722 	/* Read user passed data */
1723 	if (get_user(val, ubufp)) {
1724 		pr_devel("fault getting user info !\n");
1725 		return -EFAULT;
1726 	}
1727 
1728 	server = val & KVM_XICS_DESTINATION_MASK;
1729 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1730 
1731 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1732 		 val, server, guest_prio);
1733 
1734 	/*
1735 	 * If the source doesn't already have an IPI, allocate
1736 	 * one and get the corresponding data
1737 	 */
1738 	if (!state->ipi_number) {
1739 		state->ipi_number = xive_native_alloc_irq();
1740 		if (state->ipi_number == 0) {
1741 			pr_devel("Failed to allocate IPI !\n");
1742 			return -ENOMEM;
1743 		}
1744 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1745 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1746 	}
1747 
1748 	/*
1749 	 * We use lock_and_mask() to set us in the right masked
1750 	 * state. We will override that state from the saved state
1751 	 * further down, but this will handle the cases of interrupts
1752 	 * that need FW masking. We set the initial guest_priority to
1753 	 * 0 before calling it to ensure it actually performs the masking.
1754 	 */
1755 	state->guest_priority = 0;
1756 	xive_lock_and_mask(xive, sb, state);
1757 
1758 	/*
1759 	 * Now, we select a target if we have one. If we don't we
1760 	 * leave the interrupt untargetted. It means that an interrupt
1761 	 * can become "untargetted" accross migration if it was masked
1762 	 * by set_xive() but there is little we can do about it.
1763 	 */
1764 
1765 	/* First convert prio and mark interrupt as untargetted */
1766 	act_prio = xive_prio_from_guest(guest_prio);
1767 	state->act_priority = MASKED;
1768 
1769 	/*
1770 	 * We need to drop the lock due to the mutex below. Hopefully
1771 	 * nothing is touching that interrupt yet since it hasn't been
1772 	 * advertized to a running guest yet
1773 	 */
1774 	arch_spin_unlock(&sb->lock);
1775 
1776 	/* If we have a priority target the interrupt */
1777 	if (act_prio != MASKED) {
1778 		/* First, check provisioning of queues */
1779 		mutex_lock(&xive->lock);
1780 		rc = xive_check_provisioning(xive->kvm, act_prio);
1781 		mutex_unlock(&xive->lock);
1782 
1783 		/* Target interrupt */
1784 		if (rc == 0)
1785 			rc = xive_target_interrupt(xive->kvm, state,
1786 						   server, act_prio);
1787 		/*
1788 		 * If provisioning or targetting failed, leave it
1789 		 * alone and masked. It will remain disabled until
1790 		 * the guest re-targets it.
1791 		 */
1792 	}
1793 
1794 	/*
1795 	 * Find out if this was a delayed irq stashed in an ICP,
1796 	 * in which case, treat it as pending
1797 	 */
1798 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1799 		val |= KVM_XICS_PENDING;
1800 		pr_devel("  Found delayed ! forcing PENDING !\n");
1801 	}
1802 
1803 	/* Cleanup the SW state */
1804 	state->old_p = false;
1805 	state->old_q = false;
1806 	state->lsi = false;
1807 	state->asserted = false;
1808 
1809 	/* Restore LSI state */
1810 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1811 		state->lsi = true;
1812 		if (val & KVM_XICS_PENDING)
1813 			state->asserted = true;
1814 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1815 	}
1816 
1817 	/*
1818 	 * Restore P and Q. If the interrupt was pending, we
1819 	 * force Q and !P, which will trigger a resend.
1820 	 *
1821 	 * That means that a guest that had both an interrupt
1822 	 * pending (queued) and Q set will restore with only
1823 	 * one instance of that interrupt instead of 2, but that
1824 	 * is perfectly fine as coalescing interrupts that haven't
1825 	 * been presented yet is always allowed.
1826 	 */
1827 	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1828 		state->old_p = true;
1829 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1830 		state->old_q = true;
1831 
1832 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1833 
1834 	/*
1835 	 * If the interrupt was unmasked, update guest priority and
1836 	 * perform the appropriate state transition and do a
1837 	 * re-trigger if necessary.
1838 	 */
1839 	if (val & KVM_XICS_MASKED) {
1840 		pr_devel("  masked, saving prio\n");
1841 		state->guest_priority = MASKED;
1842 		state->saved_priority = guest_prio;
1843 	} else {
1844 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1845 		xive_finish_unmask(xive, sb, state, guest_prio);
1846 		state->saved_priority = guest_prio;
1847 	}
1848 
1849 	/* Increment the number of valid sources and mark this one valid */
1850 	if (!state->valid)
1851 		xive->src_count++;
1852 	state->valid = true;
1853 
1854 	return 0;
1855 }
1856 
1857 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1858 			bool line_status)
1859 {
1860 	struct kvmppc_xive *xive = kvm->arch.xive;
1861 	struct kvmppc_xive_src_block *sb;
1862 	struct kvmppc_xive_irq_state *state;
1863 	u16 idx;
1864 
1865 	if (!xive)
1866 		return -ENODEV;
1867 
1868 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1869 	if (!sb)
1870 		return -EINVAL;
1871 
1872 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1873 	state = &sb->irq_state[idx];
1874 	if (!state->valid)
1875 		return -EINVAL;
1876 
1877 	/* We don't allow a trigger on a passed-through interrupt */
1878 	if (state->pt_number)
1879 		return -EINVAL;
1880 
1881 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1882 		state->asserted = true;
1883 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1884 		state->asserted = false;
1885 		return 0;
1886 	}
1887 
1888 	/* Trigger the IPI */
1889 	xive_irq_trigger(&state->ipi_data);
1890 
1891 	return 0;
1892 }
1893 
1894 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
1895 {
1896 	u32 __user *ubufp = (u32 __user *) addr;
1897 	u32 nr_servers;
1898 	int rc = 0;
1899 
1900 	if (get_user(nr_servers, ubufp))
1901 		return -EFAULT;
1902 
1903 	pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
1904 
1905 	if (!nr_servers || nr_servers > KVM_MAX_VCPU_ID)
1906 		return -EINVAL;
1907 
1908 	mutex_lock(&xive->lock);
1909 	if (xive->vp_base != XIVE_INVALID_VP)
1910 		/* The VP block is allocated once and freed when the device
1911 		 * is released. Better not allow to change its size since its
1912 		 * used by connect_vcpu to validate vCPU ids are valid (eg,
1913 		 * setting it back to a higher value could allow connect_vcpu
1914 		 * to come up with a VP id that goes beyond the VP block, which
1915 		 * is likely to cause a crash in OPAL).
1916 		 */
1917 		rc = -EBUSY;
1918 	else if (nr_servers > KVM_MAX_VCPUS)
1919 		/* We don't need more servers. Higher vCPU ids get packed
1920 		 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
1921 		 */
1922 		xive->nr_servers = KVM_MAX_VCPUS;
1923 	else
1924 		xive->nr_servers = nr_servers;
1925 
1926 	mutex_unlock(&xive->lock);
1927 
1928 	return rc;
1929 }
1930 
1931 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1932 {
1933 	struct kvmppc_xive *xive = dev->private;
1934 
1935 	/* We honor the existing XICS ioctl */
1936 	switch (attr->group) {
1937 	case KVM_DEV_XICS_GRP_SOURCES:
1938 		return xive_set_source(xive, attr->attr, attr->addr);
1939 	case KVM_DEV_XICS_GRP_CTRL:
1940 		switch (attr->attr) {
1941 		case KVM_DEV_XICS_NR_SERVERS:
1942 			return kvmppc_xive_set_nr_servers(xive, attr->addr);
1943 		}
1944 	}
1945 	return -ENXIO;
1946 }
1947 
1948 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1949 {
1950 	struct kvmppc_xive *xive = dev->private;
1951 
1952 	/* We honor the existing XICS ioctl */
1953 	switch (attr->group) {
1954 	case KVM_DEV_XICS_GRP_SOURCES:
1955 		return xive_get_source(xive, attr->attr, attr->addr);
1956 	}
1957 	return -ENXIO;
1958 }
1959 
1960 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1961 {
1962 	/* We honor the same limits as XICS, at least for now */
1963 	switch (attr->group) {
1964 	case KVM_DEV_XICS_GRP_SOURCES:
1965 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1966 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1967 			return 0;
1968 		break;
1969 	case KVM_DEV_XICS_GRP_CTRL:
1970 		switch (attr->attr) {
1971 		case KVM_DEV_XICS_NR_SERVERS:
1972 			return 0;
1973 		}
1974 	}
1975 	return -ENXIO;
1976 }
1977 
1978 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1979 {
1980 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1981 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
1982 }
1983 
1984 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1985 {
1986 	int i;
1987 
1988 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1989 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1990 
1991 		if (!state->valid)
1992 			continue;
1993 
1994 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1995 		xive_cleanup_irq_data(&state->ipi_data);
1996 		xive_native_free_irq(state->ipi_number);
1997 
1998 		/* Pass-through, cleanup too but keep IRQ hw data */
1999 		if (state->pt_number)
2000 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
2001 
2002 		state->valid = false;
2003 	}
2004 }
2005 
2006 /*
2007  * Called when device fd is closed.  kvm->lock is held.
2008  */
2009 static void kvmppc_xive_release(struct kvm_device *dev)
2010 {
2011 	struct kvmppc_xive *xive = dev->private;
2012 	struct kvm *kvm = xive->kvm;
2013 	struct kvm_vcpu *vcpu;
2014 	int i;
2015 
2016 	pr_devel("Releasing xive device\n");
2017 
2018 	/*
2019 	 * Since this is the device release function, we know that
2020 	 * userspace does not have any open fd referring to the
2021 	 * device.  Therefore there can not be any of the device
2022 	 * attribute set/get functions being executed concurrently,
2023 	 * and similarly, the connect_vcpu and set/clr_mapped
2024 	 * functions also cannot be being executed.
2025 	 */
2026 
2027 	debugfs_remove(xive->dentry);
2028 
2029 	/*
2030 	 * We should clean up the vCPU interrupt presenters first.
2031 	 */
2032 	kvm_for_each_vcpu(i, vcpu, kvm) {
2033 		/*
2034 		 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
2035 		 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
2036 		 * Holding the vcpu->mutex also means that the vcpu cannot
2037 		 * be executing the KVM_RUN ioctl, and therefore it cannot
2038 		 * be executing the XIVE push or pull code or accessing
2039 		 * the XIVE MMIO regions.
2040 		 */
2041 		mutex_lock(&vcpu->mutex);
2042 		kvmppc_xive_cleanup_vcpu(vcpu);
2043 		mutex_unlock(&vcpu->mutex);
2044 	}
2045 
2046 	/*
2047 	 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
2048 	 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
2049 	 * against xive code getting called during vcpu execution or
2050 	 * set/get one_reg operations.
2051 	 */
2052 	kvm->arch.xive = NULL;
2053 
2054 	/* Mask and free interrupts */
2055 	for (i = 0; i <= xive->max_sbid; i++) {
2056 		if (xive->src_blocks[i])
2057 			kvmppc_xive_free_sources(xive->src_blocks[i]);
2058 		kfree(xive->src_blocks[i]);
2059 		xive->src_blocks[i] = NULL;
2060 	}
2061 
2062 	if (xive->vp_base != XIVE_INVALID_VP)
2063 		xive_native_free_vp_block(xive->vp_base);
2064 
2065 	/*
2066 	 * A reference of the kvmppc_xive pointer is now kept under
2067 	 * the xive_devices struct of the machine for reuse. It is
2068 	 * freed when the VM is destroyed for now until we fix all the
2069 	 * execution paths.
2070 	 */
2071 
2072 	kfree(dev);
2073 }
2074 
2075 /*
2076  * When the guest chooses the interrupt mode (XICS legacy or XIVE
2077  * native), the VM will switch of KVM device. The previous device will
2078  * be "released" before the new one is created.
2079  *
2080  * Until we are sure all execution paths are well protected, provide a
2081  * fail safe (transitional) method for device destruction, in which
2082  * the XIVE device pointer is recycled and not directly freed.
2083  */
2084 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
2085 {
2086 	struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
2087 		&kvm->arch.xive_devices.native :
2088 		&kvm->arch.xive_devices.xics_on_xive;
2089 	struct kvmppc_xive *xive = *kvm_xive_device;
2090 
2091 	if (!xive) {
2092 		xive = kzalloc(sizeof(*xive), GFP_KERNEL);
2093 		*kvm_xive_device = xive;
2094 	} else {
2095 		memset(xive, 0, sizeof(*xive));
2096 	}
2097 
2098 	return xive;
2099 }
2100 
2101 /*
2102  * Create a XICS device with XIVE backend.  kvm->lock is held.
2103  */
2104 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2105 {
2106 	struct kvmppc_xive *xive;
2107 	struct kvm *kvm = dev->kvm;
2108 
2109 	pr_devel("Creating xive for partition\n");
2110 
2111 	/* Already there ? */
2112 	if (kvm->arch.xive)
2113 		return -EEXIST;
2114 
2115 	xive = kvmppc_xive_get_device(kvm, type);
2116 	if (!xive)
2117 		return -ENOMEM;
2118 
2119 	dev->private = xive;
2120 	xive->dev = dev;
2121 	xive->kvm = kvm;
2122 	mutex_init(&xive->lock);
2123 
2124 	/* We use the default queue size set by the host */
2125 	xive->q_order = xive_native_default_eq_shift();
2126 	if (xive->q_order < PAGE_SHIFT)
2127 		xive->q_page_order = 0;
2128 	else
2129 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
2130 
2131 	/* VP allocation is delayed to the first call to connect_vcpu */
2132 	xive->vp_base = XIVE_INVALID_VP;
2133 	/* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2134 	 * on a POWER9 system.
2135 	 */
2136 	xive->nr_servers = KVM_MAX_VCPUS;
2137 
2138 	xive->single_escalation = xive_native_has_single_escalation();
2139 
2140 	kvm->arch.xive = xive;
2141 	return 0;
2142 }
2143 
2144 int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req)
2145 {
2146 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2147 
2148 	/* The VM should have configured XICS mode before doing XICS hcalls. */
2149 	if (!kvmppc_xics_enabled(vcpu))
2150 		return H_TOO_HARD;
2151 
2152 	switch (req) {
2153 	case H_XIRR:
2154 		return xive_vm_h_xirr(vcpu);
2155 	case H_CPPR:
2156 		return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4));
2157 	case H_EOI:
2158 		return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4));
2159 	case H_IPI:
2160 		return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4),
2161 					  kvmppc_get_gpr(vcpu, 5));
2162 	case H_IPOLL:
2163 		return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4));
2164 	case H_XIRR_X:
2165 		xive_vm_h_xirr(vcpu);
2166 		kvmppc_set_gpr(vcpu, 5, get_tb() + vc->tb_offset);
2167 		return H_SUCCESS;
2168 	}
2169 
2170 	return H_UNSUPPORTED;
2171 }
2172 EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall);
2173 
2174 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2175 {
2176 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2177 	unsigned int i;
2178 
2179 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2180 		struct xive_q *q = &xc->queues[i];
2181 		u32 i0, i1, idx;
2182 
2183 		if (!q->qpage && !xc->esc_virq[i])
2184 			continue;
2185 
2186 		if (q->qpage) {
2187 			seq_printf(m, "    q[%d]: ", i);
2188 			idx = q->idx;
2189 			i0 = be32_to_cpup(q->qpage + idx);
2190 			idx = (idx + 1) & q->msk;
2191 			i1 = be32_to_cpup(q->qpage + idx);
2192 			seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2193 				   i0, i1);
2194 		}
2195 		if (xc->esc_virq[i]) {
2196 			struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2197 			struct xive_irq_data *xd =
2198 				irq_data_get_irq_handler_data(d);
2199 			u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2200 
2201 			seq_printf(m, "    ESC %d %c%c EOI @%llx",
2202 				   xc->esc_virq[i],
2203 				   (pq & XIVE_ESB_VAL_P) ? 'P' : '-',
2204 				   (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-',
2205 				   xd->eoi_page);
2206 			seq_puts(m, "\n");
2207 		}
2208 	}
2209 	return 0;
2210 }
2211 
2212 void kvmppc_xive_debug_show_sources(struct seq_file *m,
2213 				    struct kvmppc_xive_src_block *sb)
2214 {
2215 	int i;
2216 
2217 	seq_puts(m, "    LISN      HW/CHIP   TYPE    PQ      EISN    CPU/PRIO\n");
2218 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2219 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2220 		struct xive_irq_data *xd;
2221 		u64 pq;
2222 		u32 hw_num;
2223 
2224 		if (!state->valid)
2225 			continue;
2226 
2227 		kvmppc_xive_select_irq(state, &hw_num, &xd);
2228 
2229 		pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2230 
2231 		seq_printf(m, "%08x  %08x/%02x", state->number, hw_num,
2232 			   xd->src_chip);
2233 		if (state->lsi)
2234 			seq_printf(m, " %cLSI", state->asserted ? '^' : ' ');
2235 		else
2236 			seq_puts(m, "  MSI");
2237 
2238 		seq_printf(m, " %s  %c%c  %08x   % 4d/%d",
2239 			   state->ipi_number == hw_num ? "IPI" : " PT",
2240 			   pq & XIVE_ESB_VAL_P ? 'P' : '-',
2241 			   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
2242 			   state->eisn, state->act_server,
2243 			   state->act_priority);
2244 
2245 		seq_puts(m, "\n");
2246 	}
2247 }
2248 
2249 static int xive_debug_show(struct seq_file *m, void *private)
2250 {
2251 	struct kvmppc_xive *xive = m->private;
2252 	struct kvm *kvm = xive->kvm;
2253 	struct kvm_vcpu *vcpu;
2254 	u64 t_rm_h_xirr = 0;
2255 	u64 t_rm_h_ipoll = 0;
2256 	u64 t_rm_h_cppr = 0;
2257 	u64 t_rm_h_eoi = 0;
2258 	u64 t_rm_h_ipi = 0;
2259 	u64 t_vm_h_xirr = 0;
2260 	u64 t_vm_h_ipoll = 0;
2261 	u64 t_vm_h_cppr = 0;
2262 	u64 t_vm_h_eoi = 0;
2263 	u64 t_vm_h_ipi = 0;
2264 	unsigned int i;
2265 
2266 	if (!kvm)
2267 		return 0;
2268 
2269 	seq_puts(m, "=========\nVCPU state\n=========\n");
2270 
2271 	kvm_for_each_vcpu(i, vcpu, kvm) {
2272 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2273 
2274 		if (!xc)
2275 			continue;
2276 
2277 		seq_printf(m, "VCPU %d: VP:%#x/%02x\n"
2278 			 "    CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2279 			 xc->server_num, xc->vp_id, xc->vp_chip_id,
2280 			 xc->cppr, xc->hw_cppr,
2281 			 xc->mfrr, xc->pending,
2282 			 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2283 
2284 		kvmppc_xive_debug_show_queues(m, vcpu);
2285 
2286 		t_rm_h_xirr += xc->stat_rm_h_xirr;
2287 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2288 		t_rm_h_cppr += xc->stat_rm_h_cppr;
2289 		t_rm_h_eoi += xc->stat_rm_h_eoi;
2290 		t_rm_h_ipi += xc->stat_rm_h_ipi;
2291 		t_vm_h_xirr += xc->stat_vm_h_xirr;
2292 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2293 		t_vm_h_cppr += xc->stat_vm_h_cppr;
2294 		t_vm_h_eoi += xc->stat_vm_h_eoi;
2295 		t_vm_h_ipi += xc->stat_vm_h_ipi;
2296 	}
2297 
2298 	seq_puts(m, "Hcalls totals\n");
2299 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2300 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2301 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2302 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2303 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2304 
2305 	seq_puts(m, "=========\nSources\n=========\n");
2306 
2307 	for (i = 0; i <= xive->max_sbid; i++) {
2308 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2309 
2310 		if (sb) {
2311 			arch_spin_lock(&sb->lock);
2312 			kvmppc_xive_debug_show_sources(m, sb);
2313 			arch_spin_unlock(&sb->lock);
2314 		}
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 DEFINE_SHOW_ATTRIBUTE(xive_debug);
2321 
2322 static void xive_debugfs_init(struct kvmppc_xive *xive)
2323 {
2324 	char *name;
2325 
2326 	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
2327 	if (!name) {
2328 		pr_err("%s: no memory for name\n", __func__);
2329 		return;
2330 	}
2331 
2332 	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
2333 					   xive, &xive_debug_fops);
2334 
2335 	pr_debug("%s: created %s\n", __func__, name);
2336 	kfree(name);
2337 }
2338 
2339 static void kvmppc_xive_init(struct kvm_device *dev)
2340 {
2341 	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
2342 
2343 	/* Register some debug interfaces */
2344 	xive_debugfs_init(xive);
2345 }
2346 
2347 struct kvm_device_ops kvm_xive_ops = {
2348 	.name = "kvm-xive",
2349 	.create = kvmppc_xive_create,
2350 	.init = kvmppc_xive_init,
2351 	.release = kvmppc_xive_release,
2352 	.set_attr = xive_set_attr,
2353 	.get_attr = xive_get_attr,
2354 	.has_attr = xive_has_attr,
2355 };
2356