1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive-kvm: " fmt 7 8 #include <linux/kernel.h> 9 #include <linux/kvm_host.h> 10 #include <linux/err.h> 11 #include <linux/gfp.h> 12 #include <linux/spinlock.h> 13 #include <linux/delay.h> 14 #include <linux/percpu.h> 15 #include <linux/cpumask.h> 16 #include <linux/uaccess.h> 17 #include <linux/irqdomain.h> 18 #include <asm/kvm_book3s.h> 19 #include <asm/kvm_ppc.h> 20 #include <asm/hvcall.h> 21 #include <asm/xics.h> 22 #include <asm/xive.h> 23 #include <asm/xive-regs.h> 24 #include <asm/debug.h> 25 #include <asm/time.h> 26 #include <asm/opal.h> 27 28 #include <linux/debugfs.h> 29 #include <linux/seq_file.h> 30 31 #include "book3s_xive.h" 32 33 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) 34 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) 35 36 /* Dummy interrupt used when taking interrupts out of a queue in H_CPPR */ 37 #define XICS_DUMMY 1 38 39 static void xive_vm_ack_pending(struct kvmppc_xive_vcpu *xc) 40 { 41 u8 cppr; 42 u16 ack; 43 44 /* 45 * Ensure any previous store to CPPR is ordered vs. 46 * the subsequent loads from PIPR or ACK. 47 */ 48 eieio(); 49 50 /* Perform the acknowledge OS to register cycle. */ 51 ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_OS_REG)); 52 53 /* Synchronize subsequent queue accesses */ 54 mb(); 55 56 /* XXX Check grouping level */ 57 58 /* Anything ? */ 59 if (!((ack >> 8) & TM_QW1_NSR_EO)) 60 return; 61 62 /* Grab CPPR of the most favored pending interrupt */ 63 cppr = ack & 0xff; 64 if (cppr < 8) 65 xc->pending |= 1 << cppr; 66 67 /* Check consistency */ 68 if (cppr >= xc->hw_cppr) 69 pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n", 70 smp_processor_id(), cppr, xc->hw_cppr); 71 72 /* 73 * Update our image of the HW CPPR. We don't yet modify 74 * xc->cppr, this will be done as we scan for interrupts 75 * in the queues. 76 */ 77 xc->hw_cppr = cppr; 78 } 79 80 static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset) 81 { 82 u64 val; 83 84 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 85 offset |= XIVE_ESB_LD_ST_MO; 86 87 val = __raw_readq(__x_eoi_page(xd) + offset); 88 #ifdef __LITTLE_ENDIAN__ 89 val >>= 64-8; 90 #endif 91 return (u8)val; 92 } 93 94 95 static void xive_vm_source_eoi(u32 hw_irq, struct xive_irq_data *xd) 96 { 97 /* If the XIVE supports the new "store EOI facility, use it */ 98 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 99 __raw_writeq(0, __x_eoi_page(xd) + XIVE_ESB_STORE_EOI); 100 else if (xd->flags & XIVE_IRQ_FLAG_LSI) { 101 /* 102 * For LSIs the HW EOI cycle is used rather than PQ bits, 103 * as they are automatically re-triggred in HW when still 104 * pending. 105 */ 106 __raw_readq(__x_eoi_page(xd) + XIVE_ESB_LOAD_EOI); 107 } else { 108 uint64_t eoi_val; 109 110 /* 111 * Otherwise for EOI, we use the special MMIO that does 112 * a clear of both P and Q and returns the old Q, 113 * except for LSIs where we use the "EOI cycle" special 114 * load. 115 * 116 * This allows us to then do a re-trigger if Q was set 117 * rather than synthetizing an interrupt in software 118 */ 119 eoi_val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_00); 120 121 /* Re-trigger if needed */ 122 if ((eoi_val & 1) && __x_trig_page(xd)) 123 __raw_writeq(0, __x_trig_page(xd)); 124 } 125 } 126 127 enum { 128 scan_fetch, 129 scan_poll, 130 scan_eoi, 131 }; 132 133 static u32 xive_vm_scan_interrupts(struct kvmppc_xive_vcpu *xc, 134 u8 pending, int scan_type) 135 { 136 u32 hirq = 0; 137 u8 prio = 0xff; 138 139 /* Find highest pending priority */ 140 while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) { 141 struct xive_q *q; 142 u32 idx, toggle; 143 __be32 *qpage; 144 145 /* 146 * If pending is 0 this will return 0xff which is what 147 * we want 148 */ 149 prio = ffs(pending) - 1; 150 151 /* Don't scan past the guest cppr */ 152 if (prio >= xc->cppr || prio > 7) { 153 if (xc->mfrr < xc->cppr) { 154 prio = xc->mfrr; 155 hirq = XICS_IPI; 156 } 157 break; 158 } 159 160 /* Grab queue and pointers */ 161 q = &xc->queues[prio]; 162 idx = q->idx; 163 toggle = q->toggle; 164 165 /* 166 * Snapshot the queue page. The test further down for EOI 167 * must use the same "copy" that was used by __xive_read_eq 168 * since qpage can be set concurrently and we don't want 169 * to miss an EOI. 170 */ 171 qpage = READ_ONCE(q->qpage); 172 173 skip_ipi: 174 /* 175 * Try to fetch from the queue. Will return 0 for a 176 * non-queueing priority (ie, qpage = 0). 177 */ 178 hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle); 179 180 /* 181 * If this was a signal for an MFFR change done by 182 * H_IPI we skip it. Additionally, if we were fetching 183 * we EOI it now, thus re-enabling reception of a new 184 * such signal. 185 * 186 * We also need to do that if prio is 0 and we had no 187 * page for the queue. In this case, we have non-queued 188 * IPI that needs to be EOId. 189 * 190 * This is safe because if we have another pending MFRR 191 * change that wasn't observed above, the Q bit will have 192 * been set and another occurrence of the IPI will trigger. 193 */ 194 if (hirq == XICS_IPI || (prio == 0 && !qpage)) { 195 if (scan_type == scan_fetch) { 196 xive_vm_source_eoi(xc->vp_ipi, 197 &xc->vp_ipi_data); 198 q->idx = idx; 199 q->toggle = toggle; 200 } 201 /* Loop back on same queue with updated idx/toggle */ 202 WARN_ON(hirq && hirq != XICS_IPI); 203 if (hirq) 204 goto skip_ipi; 205 } 206 207 /* If it's the dummy interrupt, continue searching */ 208 if (hirq == XICS_DUMMY) 209 goto skip_ipi; 210 211 /* Clear the pending bit if the queue is now empty */ 212 if (!hirq) { 213 pending &= ~(1 << prio); 214 215 /* 216 * Check if the queue count needs adjusting due to 217 * interrupts being moved away. 218 */ 219 if (atomic_read(&q->pending_count)) { 220 int p = atomic_xchg(&q->pending_count, 0); 221 222 if (p) { 223 WARN_ON(p > atomic_read(&q->count)); 224 atomic_sub(p, &q->count); 225 } 226 } 227 } 228 229 /* 230 * If the most favoured prio we found pending is less 231 * favored (or equal) than a pending IPI, we return 232 * the IPI instead. 233 */ 234 if (prio >= xc->mfrr && xc->mfrr < xc->cppr) { 235 prio = xc->mfrr; 236 hirq = XICS_IPI; 237 break; 238 } 239 240 /* If fetching, update queue pointers */ 241 if (scan_type == scan_fetch) { 242 q->idx = idx; 243 q->toggle = toggle; 244 } 245 } 246 247 /* If we are just taking a "peek", do nothing else */ 248 if (scan_type == scan_poll) 249 return hirq; 250 251 /* Update the pending bits */ 252 xc->pending = pending; 253 254 /* 255 * If this is an EOI that's it, no CPPR adjustment done here, 256 * all we needed was cleanup the stale pending bits and check 257 * if there's anything left. 258 */ 259 if (scan_type == scan_eoi) 260 return hirq; 261 262 /* 263 * If we found an interrupt, adjust what the guest CPPR should 264 * be as if we had just fetched that interrupt from HW. 265 * 266 * Note: This can only make xc->cppr smaller as the previous 267 * loop will only exit with hirq != 0 if prio is lower than 268 * the current xc->cppr. Thus we don't need to re-check xc->mfrr 269 * for pending IPIs. 270 */ 271 if (hirq) 272 xc->cppr = prio; 273 /* 274 * If it was an IPI the HW CPPR might have been lowered too much 275 * as the HW interrupt we use for IPIs is routed to priority 0. 276 * 277 * We re-sync it here. 278 */ 279 if (xc->cppr != xc->hw_cppr) { 280 xc->hw_cppr = xc->cppr; 281 __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR); 282 } 283 284 return hirq; 285 } 286 287 static unsigned long xive_vm_h_xirr(struct kvm_vcpu *vcpu) 288 { 289 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 290 u8 old_cppr; 291 u32 hirq; 292 293 pr_devel("H_XIRR\n"); 294 295 xc->stat_vm_h_xirr++; 296 297 /* First collect pending bits from HW */ 298 xive_vm_ack_pending(xc); 299 300 pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n", 301 xc->pending, xc->hw_cppr, xc->cppr); 302 303 /* Grab previous CPPR and reverse map it */ 304 old_cppr = xive_prio_to_guest(xc->cppr); 305 306 /* Scan for actual interrupts */ 307 hirq = xive_vm_scan_interrupts(xc, xc->pending, scan_fetch); 308 309 pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n", 310 hirq, xc->hw_cppr, xc->cppr); 311 312 /* That should never hit */ 313 if (hirq & 0xff000000) 314 pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq); 315 316 /* 317 * XXX We could check if the interrupt is masked here and 318 * filter it. If we chose to do so, we would need to do: 319 * 320 * if (masked) { 321 * lock(); 322 * if (masked) { 323 * old_Q = true; 324 * hirq = 0; 325 * } 326 * unlock(); 327 * } 328 */ 329 330 /* Return interrupt and old CPPR in GPR4 */ 331 kvmppc_set_gpr(vcpu, 4, hirq | (old_cppr << 24)); 332 333 return H_SUCCESS; 334 } 335 336 static unsigned long xive_vm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) 337 { 338 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 339 u8 pending = xc->pending; 340 u32 hirq; 341 342 pr_devel("H_IPOLL(server=%ld)\n", server); 343 344 xc->stat_vm_h_ipoll++; 345 346 /* Grab the target VCPU if not the current one */ 347 if (xc->server_num != server) { 348 vcpu = kvmppc_xive_find_server(vcpu->kvm, server); 349 if (!vcpu) 350 return H_PARAMETER; 351 xc = vcpu->arch.xive_vcpu; 352 353 /* Scan all priorities */ 354 pending = 0xff; 355 } else { 356 /* Grab pending interrupt if any */ 357 __be64 qw1 = __raw_readq(xive_tima + TM_QW1_OS); 358 u8 pipr = be64_to_cpu(qw1) & 0xff; 359 360 if (pipr < 8) 361 pending |= 1 << pipr; 362 } 363 364 hirq = xive_vm_scan_interrupts(xc, pending, scan_poll); 365 366 /* Return interrupt and old CPPR in GPR4 */ 367 kvmppc_set_gpr(vcpu, 4, hirq | (xc->cppr << 24)); 368 369 return H_SUCCESS; 370 } 371 372 static void xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu *xc) 373 { 374 u8 pending, prio; 375 376 pending = xc->pending; 377 if (xc->mfrr != 0xff) { 378 if (xc->mfrr < 8) 379 pending |= 1 << xc->mfrr; 380 else 381 pending |= 0x80; 382 } 383 if (!pending) 384 return; 385 prio = ffs(pending) - 1; 386 387 __raw_writeb(prio, xive_tima + TM_SPC_SET_OS_PENDING); 388 } 389 390 static void xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive *xive, 391 struct kvmppc_xive_vcpu *xc) 392 { 393 unsigned int prio; 394 395 /* For each priority that is now masked */ 396 for (prio = xc->cppr; prio < KVMPPC_XIVE_Q_COUNT; prio++) { 397 struct xive_q *q = &xc->queues[prio]; 398 struct kvmppc_xive_irq_state *state; 399 struct kvmppc_xive_src_block *sb; 400 u32 idx, toggle, entry, irq, hw_num; 401 struct xive_irq_data *xd; 402 __be32 *qpage; 403 u16 src; 404 405 idx = q->idx; 406 toggle = q->toggle; 407 qpage = READ_ONCE(q->qpage); 408 if (!qpage) 409 continue; 410 411 /* For each interrupt in the queue */ 412 for (;;) { 413 entry = be32_to_cpup(qpage + idx); 414 415 /* No more ? */ 416 if ((entry >> 31) == toggle) 417 break; 418 irq = entry & 0x7fffffff; 419 420 /* Skip dummies and IPIs */ 421 if (irq == XICS_DUMMY || irq == XICS_IPI) 422 goto next; 423 sb = kvmppc_xive_find_source(xive, irq, &src); 424 if (!sb) 425 goto next; 426 state = &sb->irq_state[src]; 427 428 /* Has it been rerouted ? */ 429 if (xc->server_num == state->act_server) 430 goto next; 431 432 /* 433 * Allright, it *has* been re-routed, kill it from 434 * the queue. 435 */ 436 qpage[idx] = cpu_to_be32((entry & 0x80000000) | XICS_DUMMY); 437 438 /* Find the HW interrupt */ 439 kvmppc_xive_select_irq(state, &hw_num, &xd); 440 441 /* If it's not an LSI, set PQ to 11 the EOI will force a resend */ 442 if (!(xd->flags & XIVE_IRQ_FLAG_LSI)) 443 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 444 445 /* EOI the source */ 446 xive_vm_source_eoi(hw_num, xd); 447 448 next: 449 idx = (idx + 1) & q->msk; 450 if (idx == 0) 451 toggle ^= 1; 452 } 453 } 454 } 455 456 static int xive_vm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) 457 { 458 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 459 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 460 u8 old_cppr; 461 462 pr_devel("H_CPPR(cppr=%ld)\n", cppr); 463 464 xc->stat_vm_h_cppr++; 465 466 /* Map CPPR */ 467 cppr = xive_prio_from_guest(cppr); 468 469 /* Remember old and update SW state */ 470 old_cppr = xc->cppr; 471 xc->cppr = cppr; 472 473 /* 474 * Order the above update of xc->cppr with the subsequent 475 * read of xc->mfrr inside push_pending_to_hw() 476 */ 477 smp_mb(); 478 479 if (cppr > old_cppr) { 480 /* 481 * We are masking less, we need to look for pending things 482 * to deliver and set VP pending bits accordingly to trigger 483 * a new interrupt otherwise we might miss MFRR changes for 484 * which we have optimized out sending an IPI signal. 485 */ 486 xive_vm_push_pending_to_hw(xc); 487 } else { 488 /* 489 * We are masking more, we need to check the queue for any 490 * interrupt that has been routed to another CPU, take 491 * it out (replace it with the dummy) and retrigger it. 492 * 493 * This is necessary since those interrupts may otherwise 494 * never be processed, at least not until this CPU restores 495 * its CPPR. 496 * 497 * This is in theory racy vs. HW adding new interrupts to 498 * the queue. In practice this works because the interesting 499 * cases are when the guest has done a set_xive() to move the 500 * interrupt away, which flushes the xive, followed by the 501 * target CPU doing a H_CPPR. So any new interrupt coming into 502 * the queue must still be routed to us and isn't a source 503 * of concern. 504 */ 505 xive_vm_scan_for_rerouted_irqs(xive, xc); 506 } 507 508 /* Apply new CPPR */ 509 xc->hw_cppr = cppr; 510 __raw_writeb(cppr, xive_tima + TM_QW1_OS + TM_CPPR); 511 512 return H_SUCCESS; 513 } 514 515 static int xive_vm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) 516 { 517 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 518 struct kvmppc_xive_src_block *sb; 519 struct kvmppc_xive_irq_state *state; 520 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 521 struct xive_irq_data *xd; 522 u8 new_cppr = xirr >> 24; 523 u32 irq = xirr & 0x00ffffff, hw_num; 524 u16 src; 525 int rc = 0; 526 527 pr_devel("H_EOI(xirr=%08lx)\n", xirr); 528 529 xc->stat_vm_h_eoi++; 530 531 xc->cppr = xive_prio_from_guest(new_cppr); 532 533 /* 534 * IPIs are synthesized from MFRR and thus don't need 535 * any special EOI handling. The underlying interrupt 536 * used to signal MFRR changes is EOId when fetched from 537 * the queue. 538 */ 539 if (irq == XICS_IPI || irq == 0) { 540 /* 541 * This barrier orders the setting of xc->cppr vs. 542 * subsequent test of xc->mfrr done inside 543 * scan_interrupts and push_pending_to_hw 544 */ 545 smp_mb(); 546 goto bail; 547 } 548 549 /* Find interrupt source */ 550 sb = kvmppc_xive_find_source(xive, irq, &src); 551 if (!sb) { 552 pr_devel(" source not found !\n"); 553 rc = H_PARAMETER; 554 /* Same as above */ 555 smp_mb(); 556 goto bail; 557 } 558 state = &sb->irq_state[src]; 559 kvmppc_xive_select_irq(state, &hw_num, &xd); 560 561 state->in_eoi = true; 562 563 /* 564 * This barrier orders both setting of in_eoi above vs, 565 * subsequent test of guest_priority, and the setting 566 * of xc->cppr vs. subsequent test of xc->mfrr done inside 567 * scan_interrupts and push_pending_to_hw 568 */ 569 smp_mb(); 570 571 again: 572 if (state->guest_priority == MASKED) { 573 arch_spin_lock(&sb->lock); 574 if (state->guest_priority != MASKED) { 575 arch_spin_unlock(&sb->lock); 576 goto again; 577 } 578 pr_devel(" EOI on saved P...\n"); 579 580 /* Clear old_p, that will cause unmask to perform an EOI */ 581 state->old_p = false; 582 583 arch_spin_unlock(&sb->lock); 584 } else { 585 pr_devel(" EOI on source...\n"); 586 587 /* Perform EOI on the source */ 588 xive_vm_source_eoi(hw_num, xd); 589 590 /* If it's an emulated LSI, check level and resend */ 591 if (state->lsi && state->asserted) 592 __raw_writeq(0, __x_trig_page(xd)); 593 594 } 595 596 /* 597 * This barrier orders the above guest_priority check 598 * and spin_lock/unlock with clearing in_eoi below. 599 * 600 * It also has to be a full mb() as it must ensure 601 * the MMIOs done in source_eoi() are completed before 602 * state->in_eoi is visible. 603 */ 604 mb(); 605 state->in_eoi = false; 606 bail: 607 608 /* Re-evaluate pending IRQs and update HW */ 609 xive_vm_scan_interrupts(xc, xc->pending, scan_eoi); 610 xive_vm_push_pending_to_hw(xc); 611 pr_devel(" after scan pending=%02x\n", xc->pending); 612 613 /* Apply new CPPR */ 614 xc->hw_cppr = xc->cppr; 615 __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR); 616 617 return rc; 618 } 619 620 static int xive_vm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, 621 unsigned long mfrr) 622 { 623 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 624 625 pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr); 626 627 xc->stat_vm_h_ipi++; 628 629 /* Find target */ 630 vcpu = kvmppc_xive_find_server(vcpu->kvm, server); 631 if (!vcpu) 632 return H_PARAMETER; 633 xc = vcpu->arch.xive_vcpu; 634 635 /* Locklessly write over MFRR */ 636 xc->mfrr = mfrr; 637 638 /* 639 * The load of xc->cppr below and the subsequent MMIO store 640 * to the IPI must happen after the above mfrr update is 641 * globally visible so that: 642 * 643 * - Synchronize with another CPU doing an H_EOI or a H_CPPR 644 * updating xc->cppr then reading xc->mfrr. 645 * 646 * - The target of the IPI sees the xc->mfrr update 647 */ 648 mb(); 649 650 /* Shoot the IPI if most favored than target cppr */ 651 if (mfrr < xc->cppr) 652 __raw_writeq(0, __x_trig_page(&xc->vp_ipi_data)); 653 654 return H_SUCCESS; 655 } 656 657 /* 658 * We leave a gap of a couple of interrupts in the queue to 659 * account for the IPI and additional safety guard. 660 */ 661 #define XIVE_Q_GAP 2 662 663 static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu) 664 { 665 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 666 667 /* Check enablement at VP level */ 668 return xc->vp_cam & TM_QW1W2_HO; 669 } 670 671 bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu) 672 { 673 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 674 struct kvmppc_xive *xive = xc->xive; 675 676 if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE) 677 return kvmppc_xive_vcpu_has_save_restore(vcpu); 678 679 return true; 680 } 681 682 /* 683 * Push a vcpu's context to the XIVE on guest entry. 684 * This assumes we are in virtual mode (MMU on) 685 */ 686 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) 687 { 688 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; 689 u64 pq; 690 691 /* 692 * Nothing to do if the platform doesn't have a XIVE 693 * or this vCPU doesn't have its own XIVE context 694 * (e.g. because it's not using an in-kernel interrupt controller). 695 */ 696 if (!tima || !vcpu->arch.xive_cam_word) 697 return; 698 699 eieio(); 700 if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) 701 __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS); 702 __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2); 703 vcpu->arch.xive_pushed = 1; 704 eieio(); 705 706 /* 707 * We clear the irq_pending flag. There is a small chance of a 708 * race vs. the escalation interrupt happening on another 709 * processor setting it again, but the only consequence is to 710 * cause a spurious wakeup on the next H_CEDE, which is not an 711 * issue. 712 */ 713 vcpu->arch.irq_pending = 0; 714 715 /* 716 * In single escalation mode, if the escalation interrupt is 717 * on, we mask it. 718 */ 719 if (vcpu->arch.xive_esc_on) { 720 pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + 721 XIVE_ESB_SET_PQ_01)); 722 mb(); 723 724 /* 725 * We have a possible subtle race here: The escalation 726 * interrupt might have fired and be on its way to the 727 * host queue while we mask it, and if we unmask it 728 * early enough (re-cede right away), there is a 729 * theoretical possibility that it fires again, thus 730 * landing in the target queue more than once which is 731 * a big no-no. 732 * 733 * Fortunately, solving this is rather easy. If the 734 * above load setting PQ to 01 returns a previous 735 * value where P is set, then we know the escalation 736 * interrupt is somewhere on its way to the host. In 737 * that case we simply don't clear the xive_esc_on 738 * flag below. It will be eventually cleared by the 739 * handler for the escalation interrupt. 740 * 741 * Then, when doing a cede, we check that flag again 742 * before re-enabling the escalation interrupt, and if 743 * set, we abort the cede. 744 */ 745 if (!(pq & XIVE_ESB_VAL_P)) 746 /* Now P is 0, we can clear the flag */ 747 vcpu->arch.xive_esc_on = 0; 748 } 749 } 750 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu); 751 752 /* 753 * Pull a vcpu's context from the XIVE on guest exit. 754 * This assumes we are in virtual mode (MMU on) 755 */ 756 void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu) 757 { 758 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; 759 760 if (!vcpu->arch.xive_pushed) 761 return; 762 763 /* 764 * Should not have been pushed if there is no tima 765 */ 766 if (WARN_ON(!tima)) 767 return; 768 769 eieio(); 770 /* First load to pull the context, we ignore the value */ 771 __raw_readl(tima + TM_SPC_PULL_OS_CTX); 772 /* Second load to recover the context state (Words 0 and 1) */ 773 if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) 774 vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS); 775 776 /* Fixup some of the state for the next load */ 777 vcpu->arch.xive_saved_state.lsmfb = 0; 778 vcpu->arch.xive_saved_state.ack = 0xff; 779 vcpu->arch.xive_pushed = 0; 780 eieio(); 781 } 782 EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu); 783 784 bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu) 785 { 786 void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr; 787 bool ret = true; 788 789 if (!esc_vaddr) 790 return ret; 791 792 /* we are using XIVE with single escalation */ 793 794 if (vcpu->arch.xive_esc_on) { 795 /* 796 * If we still have a pending escalation, abort the cede, 797 * and we must set PQ to 10 rather than 00 so that we don't 798 * potentially end up with two entries for the escalation 799 * interrupt in the XIVE interrupt queue. In that case 800 * we also don't want to set xive_esc_on to 1 here in 801 * case we race with xive_esc_irq(). 802 */ 803 ret = false; 804 /* 805 * The escalation interrupts are special as we don't EOI them. 806 * There is no need to use the load-after-store ordering offset 807 * to set PQ to 10 as we won't use StoreEOI. 808 */ 809 __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10); 810 } else { 811 vcpu->arch.xive_esc_on = true; 812 mb(); 813 __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00); 814 } 815 mb(); 816 817 return ret; 818 } 819 EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation); 820 821 /* 822 * This is a simple trigger for a generic XIVE IRQ. This must 823 * only be called for interrupts that support a trigger page 824 */ 825 static bool xive_irq_trigger(struct xive_irq_data *xd) 826 { 827 /* This should be only for MSIs */ 828 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 829 return false; 830 831 /* Those interrupts should always have a trigger page */ 832 if (WARN_ON(!xd->trig_mmio)) 833 return false; 834 835 out_be64(xd->trig_mmio, 0); 836 837 return true; 838 } 839 840 static irqreturn_t xive_esc_irq(int irq, void *data) 841 { 842 struct kvm_vcpu *vcpu = data; 843 844 vcpu->arch.irq_pending = 1; 845 smp_mb(); 846 if (vcpu->arch.ceded || vcpu->arch.nested) 847 kvmppc_fast_vcpu_kick(vcpu); 848 849 /* Since we have the no-EOI flag, the interrupt is effectively 850 * disabled now. Clearing xive_esc_on means we won't bother 851 * doing so on the next entry. 852 * 853 * This also allows the entry code to know that if a PQ combination 854 * of 10 is observed while xive_esc_on is true, it means the queue 855 * contains an unprocessed escalation interrupt. We don't make use of 856 * that knowledge today but might (see comment in book3s_hv_rmhandler.S) 857 */ 858 vcpu->arch.xive_esc_on = false; 859 860 /* This orders xive_esc_on = false vs. subsequent stale_p = true */ 861 smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */ 862 863 return IRQ_HANDLED; 864 } 865 866 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio, 867 bool single_escalation) 868 { 869 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 870 struct xive_q *q = &xc->queues[prio]; 871 char *name = NULL; 872 int rc; 873 874 /* Already there ? */ 875 if (xc->esc_virq[prio]) 876 return 0; 877 878 /* Hook up the escalation interrupt */ 879 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); 880 if (!xc->esc_virq[prio]) { 881 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", 882 prio, xc->server_num); 883 return -EIO; 884 } 885 886 if (single_escalation) 887 name = kasprintf(GFP_KERNEL, "kvm-%lld-%d", 888 vcpu->kvm->arch.lpid, xc->server_num); 889 else 890 name = kasprintf(GFP_KERNEL, "kvm-%lld-%d-%d", 891 vcpu->kvm->arch.lpid, xc->server_num, prio); 892 if (!name) { 893 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", 894 prio, xc->server_num); 895 rc = -ENOMEM; 896 goto error; 897 } 898 899 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio); 900 901 rc = request_irq(xc->esc_virq[prio], xive_esc_irq, 902 IRQF_NO_THREAD, name, vcpu); 903 if (rc) { 904 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", 905 prio, xc->server_num); 906 goto error; 907 } 908 xc->esc_virq_names[prio] = name; 909 910 /* In single escalation mode, we grab the ESB MMIO of the 911 * interrupt and mask it. Also populate the VCPU v/raddr 912 * of the ESB page for use by asm entry/exit code. Finally 913 * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the 914 * core code from performing an EOI on the escalation 915 * interrupt, thus leaving it effectively masked after 916 * it fires once. 917 */ 918 if (single_escalation) { 919 struct xive_irq_data *xd = irq_get_chip_data(xc->esc_virq[prio]); 920 921 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 922 vcpu->arch.xive_esc_raddr = xd->eoi_page; 923 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio; 924 xd->flags |= XIVE_IRQ_FLAG_NO_EOI; 925 } 926 927 return 0; 928 error: 929 irq_dispose_mapping(xc->esc_virq[prio]); 930 xc->esc_virq[prio] = 0; 931 kfree(name); 932 return rc; 933 } 934 935 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) 936 { 937 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 938 struct kvmppc_xive *xive = xc->xive; 939 struct xive_q *q = &xc->queues[prio]; 940 void *qpage; 941 int rc; 942 943 if (WARN_ON(q->qpage)) 944 return 0; 945 946 /* Allocate the queue and retrieve infos on current node for now */ 947 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); 948 if (!qpage) { 949 pr_err("Failed to allocate queue %d for VCPU %d\n", 950 prio, xc->server_num); 951 return -ENOMEM; 952 } 953 memset(qpage, 0, 1 << xive->q_order); 954 955 /* 956 * Reconfigure the queue. This will set q->qpage only once the 957 * queue is fully configured. This is a requirement for prio 0 958 * as we will stop doing EOIs for every IPI as soon as we observe 959 * qpage being non-NULL, and instead will only EOI when we receive 960 * corresponding queue 0 entries 961 */ 962 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, 963 xive->q_order, true); 964 if (rc) 965 pr_err("Failed to configure queue %d for VCPU %d\n", 966 prio, xc->server_num); 967 return rc; 968 } 969 970 /* Called with xive->lock held */ 971 static int xive_check_provisioning(struct kvm *kvm, u8 prio) 972 { 973 struct kvmppc_xive *xive = kvm->arch.xive; 974 struct kvm_vcpu *vcpu; 975 unsigned long i; 976 int rc; 977 978 lockdep_assert_held(&xive->lock); 979 980 /* Already provisioned ? */ 981 if (xive->qmap & (1 << prio)) 982 return 0; 983 984 pr_devel("Provisioning prio... %d\n", prio); 985 986 /* Provision each VCPU and enable escalations if needed */ 987 kvm_for_each_vcpu(i, vcpu, kvm) { 988 if (!vcpu->arch.xive_vcpu) 989 continue; 990 rc = xive_provision_queue(vcpu, prio); 991 if (rc == 0 && !kvmppc_xive_has_single_escalation(xive)) 992 kvmppc_xive_attach_escalation(vcpu, prio, 993 kvmppc_xive_has_single_escalation(xive)); 994 if (rc) 995 return rc; 996 } 997 998 /* Order previous stores and mark it as provisioned */ 999 mb(); 1000 xive->qmap |= (1 << prio); 1001 return 0; 1002 } 1003 1004 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) 1005 { 1006 struct kvm_vcpu *vcpu; 1007 struct kvmppc_xive_vcpu *xc; 1008 struct xive_q *q; 1009 1010 /* Locate target server */ 1011 vcpu = kvmppc_xive_find_server(kvm, server); 1012 if (!vcpu) { 1013 pr_warn("%s: Can't find server %d\n", __func__, server); 1014 return; 1015 } 1016 xc = vcpu->arch.xive_vcpu; 1017 if (WARN_ON(!xc)) 1018 return; 1019 1020 q = &xc->queues[prio]; 1021 atomic_inc(&q->pending_count); 1022 } 1023 1024 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) 1025 { 1026 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1027 struct xive_q *q; 1028 u32 max; 1029 1030 if (WARN_ON(!xc)) 1031 return -ENXIO; 1032 if (!xc->valid) 1033 return -ENXIO; 1034 1035 q = &xc->queues[prio]; 1036 if (WARN_ON(!q->qpage)) 1037 return -ENXIO; 1038 1039 /* Calculate max number of interrupts in that queue. */ 1040 max = (q->msk + 1) - XIVE_Q_GAP; 1041 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; 1042 } 1043 1044 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio) 1045 { 1046 struct kvm_vcpu *vcpu; 1047 unsigned long i; 1048 int rc; 1049 1050 /* Locate target server */ 1051 vcpu = kvmppc_xive_find_server(kvm, *server); 1052 if (!vcpu) { 1053 pr_devel("Can't find server %d\n", *server); 1054 return -EINVAL; 1055 } 1056 1057 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); 1058 1059 /* Try pick it */ 1060 rc = xive_try_pick_queue(vcpu, prio); 1061 if (rc == 0) 1062 return rc; 1063 1064 pr_devel(" .. failed, looking up candidate...\n"); 1065 1066 /* Failed, pick another VCPU */ 1067 kvm_for_each_vcpu(i, vcpu, kvm) { 1068 if (!vcpu->arch.xive_vcpu) 1069 continue; 1070 rc = xive_try_pick_queue(vcpu, prio); 1071 if (rc == 0) { 1072 *server = vcpu->arch.xive_vcpu->server_num; 1073 pr_devel(" found on 0x%x/%d\n", *server, prio); 1074 return rc; 1075 } 1076 } 1077 pr_devel(" no available target !\n"); 1078 1079 /* No available target ! */ 1080 return -EBUSY; 1081 } 1082 1083 static u8 xive_lock_and_mask(struct kvmppc_xive *xive, 1084 struct kvmppc_xive_src_block *sb, 1085 struct kvmppc_xive_irq_state *state) 1086 { 1087 struct xive_irq_data *xd; 1088 u32 hw_num; 1089 u8 old_prio; 1090 u64 val; 1091 1092 /* 1093 * Take the lock, set masked, try again if racing 1094 * with H_EOI 1095 */ 1096 for (;;) { 1097 arch_spin_lock(&sb->lock); 1098 old_prio = state->guest_priority; 1099 state->guest_priority = MASKED; 1100 mb(); 1101 if (!state->in_eoi) 1102 break; 1103 state->guest_priority = old_prio; 1104 arch_spin_unlock(&sb->lock); 1105 } 1106 1107 /* No change ? Bail */ 1108 if (old_prio == MASKED) 1109 return old_prio; 1110 1111 /* Get the right irq */ 1112 kvmppc_xive_select_irq(state, &hw_num, &xd); 1113 1114 /* Set PQ to 10, return old P and old Q and remember them */ 1115 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); 1116 state->old_p = !!(val & 2); 1117 state->old_q = !!(val & 1); 1118 1119 /* 1120 * Synchronize hardware to sensure the queues are updated when 1121 * masking 1122 */ 1123 xive_native_sync_source(hw_num); 1124 1125 return old_prio; 1126 } 1127 1128 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, 1129 struct kvmppc_xive_irq_state *state) 1130 { 1131 /* 1132 * Take the lock try again if racing with H_EOI 1133 */ 1134 for (;;) { 1135 arch_spin_lock(&sb->lock); 1136 if (!state->in_eoi) 1137 break; 1138 arch_spin_unlock(&sb->lock); 1139 } 1140 } 1141 1142 static void xive_finish_unmask(struct kvmppc_xive *xive, 1143 struct kvmppc_xive_src_block *sb, 1144 struct kvmppc_xive_irq_state *state, 1145 u8 prio) 1146 { 1147 struct xive_irq_data *xd; 1148 u32 hw_num; 1149 1150 /* If we aren't changing a thing, move on */ 1151 if (state->guest_priority != MASKED) 1152 goto bail; 1153 1154 /* Get the right irq */ 1155 kvmppc_xive_select_irq(state, &hw_num, &xd); 1156 1157 /* Old Q set, set PQ to 11 */ 1158 if (state->old_q) 1159 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); 1160 1161 /* 1162 * If not old P, then perform an "effective" EOI, 1163 * on the source. This will handle the cases where 1164 * FW EOI is needed. 1165 */ 1166 if (!state->old_p) 1167 xive_vm_source_eoi(hw_num, xd); 1168 1169 /* Synchronize ordering and mark unmasked */ 1170 mb(); 1171 bail: 1172 state->guest_priority = prio; 1173 } 1174 1175 /* 1176 * Target an interrupt to a given server/prio, this will fallback 1177 * to another server if necessary and perform the HW targetting 1178 * updates as needed 1179 * 1180 * NOTE: Must be called with the state lock held 1181 */ 1182 static int xive_target_interrupt(struct kvm *kvm, 1183 struct kvmppc_xive_irq_state *state, 1184 u32 server, u8 prio) 1185 { 1186 struct kvmppc_xive *xive = kvm->arch.xive; 1187 u32 hw_num; 1188 int rc; 1189 1190 /* 1191 * This will return a tentative server and actual 1192 * priority. The count for that new target will have 1193 * already been incremented. 1194 */ 1195 rc = kvmppc_xive_select_target(kvm, &server, prio); 1196 1197 /* 1198 * We failed to find a target ? Not much we can do 1199 * at least until we support the GIQ. 1200 */ 1201 if (rc) 1202 return rc; 1203 1204 /* 1205 * Increment the old queue pending count if there 1206 * was one so that the old queue count gets adjusted later 1207 * when observed to be empty. 1208 */ 1209 if (state->act_priority != MASKED) 1210 xive_inc_q_pending(kvm, 1211 state->act_server, 1212 state->act_priority); 1213 /* 1214 * Update state and HW 1215 */ 1216 state->act_priority = prio; 1217 state->act_server = server; 1218 1219 /* Get the right irq */ 1220 kvmppc_xive_select_irq(state, &hw_num, NULL); 1221 1222 return xive_native_configure_irq(hw_num, 1223 kvmppc_xive_vp(xive, server), 1224 prio, state->number); 1225 } 1226 1227 /* 1228 * Targetting rules: In order to avoid losing track of 1229 * pending interrupts across mask and unmask, which would 1230 * allow queue overflows, we implement the following rules: 1231 * 1232 * - Unless it was never enabled (or we run out of capacity) 1233 * an interrupt is always targetted at a valid server/queue 1234 * pair even when "masked" by the guest. This pair tends to 1235 * be the last one used but it can be changed under some 1236 * circumstances. That allows us to separate targetting 1237 * from masking, we only handle accounting during (re)targetting, 1238 * this also allows us to let an interrupt drain into its target 1239 * queue after masking, avoiding complex schemes to remove 1240 * interrupts out of remote processor queues. 1241 * 1242 * - When masking, we set PQ to 10 and save the previous value 1243 * of P and Q. 1244 * 1245 * - When unmasking, if saved Q was set, we set PQ to 11 1246 * otherwise we leave PQ to the HW state which will be either 1247 * 10 if nothing happened or 11 if the interrupt fired while 1248 * masked. Effectively we are OR'ing the previous Q into the 1249 * HW Q. 1250 * 1251 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) 1252 * which will unmask the interrupt and shoot a new one if Q was 1253 * set. 1254 * 1255 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, 1256 * effectively meaning an H_EOI from the guest is still expected 1257 * for that interrupt). 1258 * 1259 * - If H_EOI occurs while masked, we clear the saved P. 1260 * 1261 * - When changing target, we account on the new target and 1262 * increment a separate "pending" counter on the old one. 1263 * This pending counter will be used to decrement the old 1264 * target's count when its queue has been observed empty. 1265 */ 1266 1267 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, 1268 u32 priority) 1269 { 1270 struct kvmppc_xive *xive = kvm->arch.xive; 1271 struct kvmppc_xive_src_block *sb; 1272 struct kvmppc_xive_irq_state *state; 1273 u8 new_act_prio; 1274 int rc = 0; 1275 u16 idx; 1276 1277 if (!xive) 1278 return -ENODEV; 1279 1280 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", 1281 irq, server, priority); 1282 1283 /* First, check provisioning of queues */ 1284 if (priority != MASKED) { 1285 mutex_lock(&xive->lock); 1286 rc = xive_check_provisioning(xive->kvm, 1287 xive_prio_from_guest(priority)); 1288 mutex_unlock(&xive->lock); 1289 } 1290 if (rc) { 1291 pr_devel(" provisioning failure %d !\n", rc); 1292 return rc; 1293 } 1294 1295 sb = kvmppc_xive_find_source(xive, irq, &idx); 1296 if (!sb) 1297 return -EINVAL; 1298 state = &sb->irq_state[idx]; 1299 1300 /* 1301 * We first handle masking/unmasking since the locking 1302 * might need to be retried due to EOIs, we'll handle 1303 * targetting changes later. These functions will return 1304 * with the SB lock held. 1305 * 1306 * xive_lock_and_mask() will also set state->guest_priority 1307 * but won't otherwise change other fields of the state. 1308 * 1309 * xive_lock_for_unmask will not actually unmask, this will 1310 * be done later by xive_finish_unmask() once the targetting 1311 * has been done, so we don't try to unmask an interrupt 1312 * that hasn't yet been targetted. 1313 */ 1314 if (priority == MASKED) 1315 xive_lock_and_mask(xive, sb, state); 1316 else 1317 xive_lock_for_unmask(sb, state); 1318 1319 1320 /* 1321 * Then we handle targetting. 1322 * 1323 * First calculate a new "actual priority" 1324 */ 1325 new_act_prio = state->act_priority; 1326 if (priority != MASKED) 1327 new_act_prio = xive_prio_from_guest(priority); 1328 1329 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", 1330 new_act_prio, state->act_server, state->act_priority); 1331 1332 /* 1333 * Then check if we actually need to change anything, 1334 * 1335 * The condition for re-targetting the interrupt is that 1336 * we have a valid new priority (new_act_prio is not 0xff) 1337 * and either the server or the priority changed. 1338 * 1339 * Note: If act_priority was ff and the new priority is 1340 * also ff, we don't do anything and leave the interrupt 1341 * untargetted. An attempt of doing an int_on on an 1342 * untargetted interrupt will fail. If that is a problem 1343 * we could initialize interrupts with valid default 1344 */ 1345 1346 if (new_act_prio != MASKED && 1347 (state->act_server != server || 1348 state->act_priority != new_act_prio)) 1349 rc = xive_target_interrupt(kvm, state, server, new_act_prio); 1350 1351 /* 1352 * Perform the final unmasking of the interrupt source 1353 * if necessary 1354 */ 1355 if (priority != MASKED) 1356 xive_finish_unmask(xive, sb, state, priority); 1357 1358 /* 1359 * Finally Update saved_priority to match. Only int_on/off 1360 * set this field to a different value. 1361 */ 1362 state->saved_priority = priority; 1363 1364 arch_spin_unlock(&sb->lock); 1365 return rc; 1366 } 1367 1368 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, 1369 u32 *priority) 1370 { 1371 struct kvmppc_xive *xive = kvm->arch.xive; 1372 struct kvmppc_xive_src_block *sb; 1373 struct kvmppc_xive_irq_state *state; 1374 u16 idx; 1375 1376 if (!xive) 1377 return -ENODEV; 1378 1379 sb = kvmppc_xive_find_source(xive, irq, &idx); 1380 if (!sb) 1381 return -EINVAL; 1382 state = &sb->irq_state[idx]; 1383 arch_spin_lock(&sb->lock); 1384 *server = state->act_server; 1385 *priority = state->guest_priority; 1386 arch_spin_unlock(&sb->lock); 1387 1388 return 0; 1389 } 1390 1391 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) 1392 { 1393 struct kvmppc_xive *xive = kvm->arch.xive; 1394 struct kvmppc_xive_src_block *sb; 1395 struct kvmppc_xive_irq_state *state; 1396 u16 idx; 1397 1398 if (!xive) 1399 return -ENODEV; 1400 1401 sb = kvmppc_xive_find_source(xive, irq, &idx); 1402 if (!sb) 1403 return -EINVAL; 1404 state = &sb->irq_state[idx]; 1405 1406 pr_devel("int_on(irq=0x%x)\n", irq); 1407 1408 /* 1409 * Check if interrupt was not targetted 1410 */ 1411 if (state->act_priority == MASKED) { 1412 pr_devel("int_on on untargetted interrupt\n"); 1413 return -EINVAL; 1414 } 1415 1416 /* If saved_priority is 0xff, do nothing */ 1417 if (state->saved_priority == MASKED) 1418 return 0; 1419 1420 /* 1421 * Lock and unmask it. 1422 */ 1423 xive_lock_for_unmask(sb, state); 1424 xive_finish_unmask(xive, sb, state, state->saved_priority); 1425 arch_spin_unlock(&sb->lock); 1426 1427 return 0; 1428 } 1429 1430 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) 1431 { 1432 struct kvmppc_xive *xive = kvm->arch.xive; 1433 struct kvmppc_xive_src_block *sb; 1434 struct kvmppc_xive_irq_state *state; 1435 u16 idx; 1436 1437 if (!xive) 1438 return -ENODEV; 1439 1440 sb = kvmppc_xive_find_source(xive, irq, &idx); 1441 if (!sb) 1442 return -EINVAL; 1443 state = &sb->irq_state[idx]; 1444 1445 pr_devel("int_off(irq=0x%x)\n", irq); 1446 1447 /* 1448 * Lock and mask 1449 */ 1450 state->saved_priority = xive_lock_and_mask(xive, sb, state); 1451 arch_spin_unlock(&sb->lock); 1452 1453 return 0; 1454 } 1455 1456 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) 1457 { 1458 struct kvmppc_xive_src_block *sb; 1459 struct kvmppc_xive_irq_state *state; 1460 u16 idx; 1461 1462 sb = kvmppc_xive_find_source(xive, irq, &idx); 1463 if (!sb) 1464 return false; 1465 state = &sb->irq_state[idx]; 1466 if (!state->valid) 1467 return false; 1468 1469 /* 1470 * Trigger the IPI. This assumes we never restore a pass-through 1471 * interrupt which should be safe enough 1472 */ 1473 xive_irq_trigger(&state->ipi_data); 1474 1475 return true; 1476 } 1477 1478 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) 1479 { 1480 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1481 1482 if (!xc) 1483 return 0; 1484 1485 /* Return the per-cpu state for state saving/migration */ 1486 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | 1487 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | 1488 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; 1489 } 1490 1491 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) 1492 { 1493 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1494 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 1495 u8 cppr, mfrr; 1496 u32 xisr; 1497 1498 if (!xc || !xive) 1499 return -ENOENT; 1500 1501 /* Grab individual state fields. We don't use pending_pri */ 1502 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; 1503 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & 1504 KVM_REG_PPC_ICP_XISR_MASK; 1505 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; 1506 1507 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", 1508 xc->server_num, cppr, mfrr, xisr); 1509 1510 /* 1511 * We can't update the state of a "pushed" VCPU, but that 1512 * shouldn't happen because the vcpu->mutex makes running a 1513 * vcpu mutually exclusive with doing one_reg get/set on it. 1514 */ 1515 if (WARN_ON(vcpu->arch.xive_pushed)) 1516 return -EIO; 1517 1518 /* Update VCPU HW saved state */ 1519 vcpu->arch.xive_saved_state.cppr = cppr; 1520 xc->hw_cppr = xc->cppr = cppr; 1521 1522 /* 1523 * Update MFRR state. If it's not 0xff, we mark the VCPU as 1524 * having a pending MFRR change, which will re-evaluate the 1525 * target. The VCPU will thus potentially get a spurious 1526 * interrupt but that's not a big deal. 1527 */ 1528 xc->mfrr = mfrr; 1529 if (mfrr < cppr) 1530 xive_irq_trigger(&xc->vp_ipi_data); 1531 1532 /* 1533 * Now saved XIRR is "interesting". It means there's something in 1534 * the legacy "1 element" queue... for an IPI we simply ignore it, 1535 * as the MFRR restore will handle that. For anything else we need 1536 * to force a resend of the source. 1537 * However the source may not have been setup yet. If that's the 1538 * case, we keep that info and increment a counter in the xive to 1539 * tell subsequent xive_set_source() to go look. 1540 */ 1541 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { 1542 xc->delayed_irq = xisr; 1543 xive->delayed_irqs++; 1544 pr_devel(" xisr restore delayed\n"); 1545 } 1546 1547 return 0; 1548 } 1549 1550 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, 1551 unsigned long host_irq) 1552 { 1553 struct kvmppc_xive *xive = kvm->arch.xive; 1554 struct kvmppc_xive_src_block *sb; 1555 struct kvmppc_xive_irq_state *state; 1556 struct irq_data *host_data = 1557 irq_domain_get_irq_data(irq_get_default_domain(), host_irq); 1558 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); 1559 u16 idx; 1560 u8 prio; 1561 int rc; 1562 1563 if (!xive) 1564 return -ENODEV; 1565 1566 pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n", 1567 __func__, guest_irq, host_irq, hw_irq); 1568 1569 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 1570 if (!sb) 1571 return -EINVAL; 1572 state = &sb->irq_state[idx]; 1573 1574 /* 1575 * Mark the passed-through interrupt as going to a VCPU, 1576 * this will prevent further EOIs and similar operations 1577 * from the XIVE code. It will also mask the interrupt 1578 * to either PQ=10 or 11 state, the latter if the interrupt 1579 * is pending. This will allow us to unmask or retrigger it 1580 * after routing it to the guest with a simple EOI. 1581 * 1582 * The "state" argument is a "token", all it needs is to be 1583 * non-NULL to switch to passed-through or NULL for the 1584 * other way around. We may not yet have an actual VCPU 1585 * target here and we don't really care. 1586 */ 1587 rc = irq_set_vcpu_affinity(host_irq, state); 1588 if (rc) { 1589 pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq); 1590 return rc; 1591 } 1592 1593 /* 1594 * Mask and read state of IPI. We need to know if its P bit 1595 * is set as that means it's potentially already using a 1596 * queue entry in the target 1597 */ 1598 prio = xive_lock_and_mask(xive, sb, state); 1599 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, 1600 state->old_p, state->old_q); 1601 1602 /* Turn the IPI hard off */ 1603 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1604 1605 /* 1606 * Reset ESB guest mapping. Needed when ESB pages are exposed 1607 * to the guest in XIVE native mode 1608 */ 1609 if (xive->ops && xive->ops->reset_mapped) 1610 xive->ops->reset_mapped(kvm, guest_irq); 1611 1612 /* Grab info about irq */ 1613 state->pt_number = hw_irq; 1614 state->pt_data = irq_data_get_irq_chip_data(host_data); 1615 1616 /* 1617 * Configure the IRQ to match the existing configuration of 1618 * the IPI if it was already targetted. Otherwise this will 1619 * mask the interrupt in a lossy way (act_priority is 0xff) 1620 * which is fine for a never started interrupt. 1621 */ 1622 xive_native_configure_irq(hw_irq, 1623 kvmppc_xive_vp(xive, state->act_server), 1624 state->act_priority, state->number); 1625 1626 /* 1627 * We do an EOI to enable the interrupt (and retrigger if needed) 1628 * if the guest has the interrupt unmasked and the P bit was *not* 1629 * set in the IPI. If it was set, we know a slot may still be in 1630 * use in the target queue thus we have to wait for a guest 1631 * originated EOI 1632 */ 1633 if (prio != MASKED && !state->old_p) 1634 xive_vm_source_eoi(hw_irq, state->pt_data); 1635 1636 /* Clear old_p/old_q as they are no longer relevant */ 1637 state->old_p = state->old_q = false; 1638 1639 /* Restore guest prio (unlocks EOI) */ 1640 mb(); 1641 state->guest_priority = prio; 1642 arch_spin_unlock(&sb->lock); 1643 1644 return 0; 1645 } 1646 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); 1647 1648 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, 1649 unsigned long host_irq) 1650 { 1651 struct kvmppc_xive *xive = kvm->arch.xive; 1652 struct kvmppc_xive_src_block *sb; 1653 struct kvmppc_xive_irq_state *state; 1654 u16 idx; 1655 u8 prio; 1656 int rc; 1657 1658 if (!xive) 1659 return -ENODEV; 1660 1661 pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq); 1662 1663 sb = kvmppc_xive_find_source(xive, guest_irq, &idx); 1664 if (!sb) 1665 return -EINVAL; 1666 state = &sb->irq_state[idx]; 1667 1668 /* 1669 * Mask and read state of IRQ. We need to know if its P bit 1670 * is set as that means it's potentially already using a 1671 * queue entry in the target 1672 */ 1673 prio = xive_lock_and_mask(xive, sb, state); 1674 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, 1675 state->old_p, state->old_q); 1676 1677 /* 1678 * If old_p is set, the interrupt is pending, we switch it to 1679 * PQ=11. This will force a resend in the host so the interrupt 1680 * isn't lost to whatever host driver may pick it up 1681 */ 1682 if (state->old_p) 1683 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); 1684 1685 /* Release the passed-through interrupt to the host */ 1686 rc = irq_set_vcpu_affinity(host_irq, NULL); 1687 if (rc) { 1688 pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq); 1689 return rc; 1690 } 1691 1692 /* Forget about the IRQ */ 1693 state->pt_number = 0; 1694 state->pt_data = NULL; 1695 1696 /* 1697 * Reset ESB guest mapping. Needed when ESB pages are exposed 1698 * to the guest in XIVE native mode 1699 */ 1700 if (xive->ops && xive->ops->reset_mapped) { 1701 xive->ops->reset_mapped(kvm, guest_irq); 1702 } 1703 1704 /* Reconfigure the IPI */ 1705 xive_native_configure_irq(state->ipi_number, 1706 kvmppc_xive_vp(xive, state->act_server), 1707 state->act_priority, state->number); 1708 1709 /* 1710 * If old_p is set (we have a queue entry potentially 1711 * occupied) or the interrupt is masked, we set the IPI 1712 * to PQ=10 state. Otherwise we just re-enable it (PQ=00). 1713 */ 1714 if (prio == MASKED || state->old_p) 1715 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); 1716 else 1717 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); 1718 1719 /* Restore guest prio (unlocks EOI) */ 1720 mb(); 1721 state->guest_priority = prio; 1722 arch_spin_unlock(&sb->lock); 1723 1724 return 0; 1725 } 1726 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); 1727 1728 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) 1729 { 1730 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1731 struct kvm *kvm = vcpu->kvm; 1732 struct kvmppc_xive *xive = kvm->arch.xive; 1733 int i, j; 1734 1735 for (i = 0; i <= xive->max_sbid; i++) { 1736 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 1737 1738 if (!sb) 1739 continue; 1740 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { 1741 struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; 1742 1743 if (!state->valid) 1744 continue; 1745 if (state->act_priority == MASKED) 1746 continue; 1747 if (state->act_server != xc->server_num) 1748 continue; 1749 1750 /* Clean it up */ 1751 arch_spin_lock(&sb->lock); 1752 state->act_priority = MASKED; 1753 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); 1754 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); 1755 if (state->pt_number) { 1756 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); 1757 xive_native_configure_irq(state->pt_number, 0, MASKED, 0); 1758 } 1759 arch_spin_unlock(&sb->lock); 1760 } 1761 } 1762 1763 /* Disable vcpu's escalation interrupt */ 1764 if (vcpu->arch.xive_esc_on) { 1765 __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + 1766 XIVE_ESB_SET_PQ_01)); 1767 vcpu->arch.xive_esc_on = false; 1768 } 1769 1770 /* 1771 * Clear pointers to escalation interrupt ESB. 1772 * This is safe because the vcpu->mutex is held, preventing 1773 * any other CPU from concurrently executing a KVM_RUN ioctl. 1774 */ 1775 vcpu->arch.xive_esc_vaddr = 0; 1776 vcpu->arch.xive_esc_raddr = 0; 1777 } 1778 1779 /* 1780 * In single escalation mode, the escalation interrupt is marked so 1781 * that EOI doesn't re-enable it, but just sets the stale_p flag to 1782 * indicate that the P bit has already been dealt with. However, the 1783 * assembly code that enters the guest sets PQ to 00 without clearing 1784 * stale_p (because it has no easy way to address it). Hence we have 1785 * to adjust stale_p before shutting down the interrupt. 1786 */ 1787 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, int irq) 1788 { 1789 struct xive_irq_data *xd = irq_get_chip_data(irq); 1790 1791 /* 1792 * This slightly odd sequence gives the right result 1793 * (i.e. stale_p set if xive_esc_on is false) even if 1794 * we race with xive_esc_irq() and xive_irq_eoi(). 1795 */ 1796 xd->stale_p = false; 1797 smp_mb(); /* paired with smb_wmb in xive_esc_irq */ 1798 if (!vcpu->arch.xive_esc_on) 1799 xd->stale_p = true; 1800 } 1801 1802 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) 1803 { 1804 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 1805 struct kvmppc_xive *xive = vcpu->kvm->arch.xive; 1806 int i; 1807 1808 if (!kvmppc_xics_enabled(vcpu)) 1809 return; 1810 1811 if (!xc) 1812 return; 1813 1814 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); 1815 1816 /* Ensure no interrupt is still routed to that VP */ 1817 xc->valid = false; 1818 kvmppc_xive_disable_vcpu_interrupts(vcpu); 1819 1820 /* Mask the VP IPI */ 1821 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); 1822 1823 /* Free escalations */ 1824 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1825 if (xc->esc_virq[i]) { 1826 if (kvmppc_xive_has_single_escalation(xc->xive)) 1827 xive_cleanup_single_escalation(vcpu, xc->esc_virq[i]); 1828 free_irq(xc->esc_virq[i], vcpu); 1829 irq_dispose_mapping(xc->esc_virq[i]); 1830 kfree(xc->esc_virq_names[i]); 1831 } 1832 } 1833 1834 /* Disable the VP */ 1835 xive_native_disable_vp(xc->vp_id); 1836 1837 /* Clear the cam word so guest entry won't try to push context */ 1838 vcpu->arch.xive_cam_word = 0; 1839 1840 /* Free the queues */ 1841 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1842 struct xive_q *q = &xc->queues[i]; 1843 1844 xive_native_disable_queue(xc->vp_id, q, i); 1845 if (q->qpage) { 1846 free_pages((unsigned long)q->qpage, 1847 xive->q_page_order); 1848 q->qpage = NULL; 1849 } 1850 } 1851 1852 /* Free the IPI */ 1853 if (xc->vp_ipi) { 1854 xive_cleanup_irq_data(&xc->vp_ipi_data); 1855 xive_native_free_irq(xc->vp_ipi); 1856 } 1857 /* Free the VP */ 1858 kfree(xc); 1859 1860 /* Cleanup the vcpu */ 1861 vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT; 1862 vcpu->arch.xive_vcpu = NULL; 1863 } 1864 1865 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu) 1866 { 1867 /* We have a block of xive->nr_servers VPs. We just need to check 1868 * packed vCPU ids are below that. 1869 */ 1870 return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers; 1871 } 1872 1873 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp) 1874 { 1875 u32 vp_id; 1876 1877 if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) { 1878 pr_devel("Out of bounds !\n"); 1879 return -EINVAL; 1880 } 1881 1882 if (xive->vp_base == XIVE_INVALID_VP) { 1883 xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers); 1884 pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers); 1885 1886 if (xive->vp_base == XIVE_INVALID_VP) 1887 return -ENOSPC; 1888 } 1889 1890 vp_id = kvmppc_xive_vp(xive, cpu); 1891 if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) { 1892 pr_devel("Duplicate !\n"); 1893 return -EEXIST; 1894 } 1895 1896 *vp = vp_id; 1897 1898 return 0; 1899 } 1900 1901 int kvmppc_xive_connect_vcpu(struct kvm_device *dev, 1902 struct kvm_vcpu *vcpu, u32 cpu) 1903 { 1904 struct kvmppc_xive *xive = dev->private; 1905 struct kvmppc_xive_vcpu *xc; 1906 int i, r = -EBUSY; 1907 u32 vp_id; 1908 1909 pr_devel("connect_vcpu(cpu=%d)\n", cpu); 1910 1911 if (dev->ops != &kvm_xive_ops) { 1912 pr_devel("Wrong ops !\n"); 1913 return -EPERM; 1914 } 1915 if (xive->kvm != vcpu->kvm) 1916 return -EPERM; 1917 if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT) 1918 return -EBUSY; 1919 1920 /* We need to synchronize with queue provisioning */ 1921 mutex_lock(&xive->lock); 1922 1923 r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id); 1924 if (r) 1925 goto bail; 1926 1927 xc = kzalloc(sizeof(*xc), GFP_KERNEL); 1928 if (!xc) { 1929 r = -ENOMEM; 1930 goto bail; 1931 } 1932 1933 vcpu->arch.xive_vcpu = xc; 1934 xc->xive = xive; 1935 xc->vcpu = vcpu; 1936 xc->server_num = cpu; 1937 xc->vp_id = vp_id; 1938 xc->mfrr = 0xff; 1939 xc->valid = true; 1940 1941 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); 1942 if (r) 1943 goto bail; 1944 1945 if (!kvmppc_xive_check_save_restore(vcpu)) { 1946 pr_err("inconsistent save-restore setup for VCPU %d\n", cpu); 1947 r = -EIO; 1948 goto bail; 1949 } 1950 1951 /* Configure VCPU fields for use by assembly push/pull */ 1952 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); 1953 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); 1954 1955 /* Allocate IPI */ 1956 xc->vp_ipi = xive_native_alloc_irq(); 1957 if (!xc->vp_ipi) { 1958 pr_err("Failed to allocate xive irq for VCPU IPI\n"); 1959 r = -EIO; 1960 goto bail; 1961 } 1962 pr_devel(" IPI=0x%x\n", xc->vp_ipi); 1963 1964 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); 1965 if (r) 1966 goto bail; 1967 1968 /* 1969 * Enable the VP first as the single escalation mode will 1970 * affect escalation interrupts numbering 1971 */ 1972 r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive)); 1973 if (r) { 1974 pr_err("Failed to enable VP in OPAL, err %d\n", r); 1975 goto bail; 1976 } 1977 1978 /* 1979 * Initialize queues. Initially we set them all for no queueing 1980 * and we enable escalation for queue 0 only which we'll use for 1981 * our mfrr change notifications. If the VCPU is hot-plugged, we 1982 * do handle provisioning however based on the existing "map" 1983 * of enabled queues. 1984 */ 1985 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 1986 struct xive_q *q = &xc->queues[i]; 1987 1988 /* Single escalation, no queue 7 */ 1989 if (i == 7 && kvmppc_xive_has_single_escalation(xive)) 1990 break; 1991 1992 /* Is queue already enabled ? Provision it */ 1993 if (xive->qmap & (1 << i)) { 1994 r = xive_provision_queue(vcpu, i); 1995 if (r == 0 && !kvmppc_xive_has_single_escalation(xive)) 1996 kvmppc_xive_attach_escalation( 1997 vcpu, i, kvmppc_xive_has_single_escalation(xive)); 1998 if (r) 1999 goto bail; 2000 } else { 2001 r = xive_native_configure_queue(xc->vp_id, 2002 q, i, NULL, 0, true); 2003 if (r) { 2004 pr_err("Failed to configure queue %d for VCPU %d\n", 2005 i, cpu); 2006 goto bail; 2007 } 2008 } 2009 } 2010 2011 /* If not done above, attach priority 0 escalation */ 2012 r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive)); 2013 if (r) 2014 goto bail; 2015 2016 /* Route the IPI */ 2017 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); 2018 if (!r) 2019 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); 2020 2021 bail: 2022 mutex_unlock(&xive->lock); 2023 if (r) { 2024 kvmppc_xive_cleanup_vcpu(vcpu); 2025 return r; 2026 } 2027 2028 vcpu->arch.irq_type = KVMPPC_IRQ_XICS; 2029 return 0; 2030 } 2031 2032 /* 2033 * Scanning of queues before/after migration save 2034 */ 2035 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) 2036 { 2037 struct kvmppc_xive_src_block *sb; 2038 struct kvmppc_xive_irq_state *state; 2039 u16 idx; 2040 2041 sb = kvmppc_xive_find_source(xive, irq, &idx); 2042 if (!sb) 2043 return; 2044 2045 state = &sb->irq_state[idx]; 2046 2047 /* Some sanity checking */ 2048 if (!state->valid) { 2049 pr_err("invalid irq 0x%x in cpu queue!\n", irq); 2050 return; 2051 } 2052 2053 /* 2054 * If the interrupt is in a queue it should have P set. 2055 * We warn so that gets reported. A backtrace isn't useful 2056 * so no need to use a WARN_ON. 2057 */ 2058 if (!state->saved_p) 2059 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); 2060 2061 /* Set flag */ 2062 state->in_queue = true; 2063 } 2064 2065 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, 2066 struct kvmppc_xive_src_block *sb, 2067 u32 irq) 2068 { 2069 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 2070 2071 if (!state->valid) 2072 return; 2073 2074 /* Mask and save state, this will also sync HW queues */ 2075 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); 2076 2077 /* Transfer P and Q */ 2078 state->saved_p = state->old_p; 2079 state->saved_q = state->old_q; 2080 2081 /* Unlock */ 2082 arch_spin_unlock(&sb->lock); 2083 } 2084 2085 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, 2086 struct kvmppc_xive_src_block *sb, 2087 u32 irq) 2088 { 2089 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; 2090 2091 if (!state->valid) 2092 return; 2093 2094 /* 2095 * Lock / exclude EOI (not technically necessary if the 2096 * guest isn't running concurrently. If this becomes a 2097 * performance issue we can probably remove the lock. 2098 */ 2099 xive_lock_for_unmask(sb, state); 2100 2101 /* Restore mask/prio if it wasn't masked */ 2102 if (state->saved_scan_prio != MASKED) 2103 xive_finish_unmask(xive, sb, state, state->saved_scan_prio); 2104 2105 /* Unlock */ 2106 arch_spin_unlock(&sb->lock); 2107 } 2108 2109 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) 2110 { 2111 u32 idx = q->idx; 2112 u32 toggle = q->toggle; 2113 u32 irq; 2114 2115 do { 2116 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); 2117 if (irq > XICS_IPI) 2118 xive_pre_save_set_queued(xive, irq); 2119 } while(irq); 2120 } 2121 2122 static void xive_pre_save_scan(struct kvmppc_xive *xive) 2123 { 2124 struct kvm_vcpu *vcpu = NULL; 2125 unsigned long i; 2126 int j; 2127 2128 /* 2129 * See comment in xive_get_source() about how this 2130 * work. Collect a stable state for all interrupts 2131 */ 2132 for (i = 0; i <= xive->max_sbid; i++) { 2133 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 2134 if (!sb) 2135 continue; 2136 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 2137 xive_pre_save_mask_irq(xive, sb, j); 2138 } 2139 2140 /* Then scan the queues and update the "in_queue" flag */ 2141 kvm_for_each_vcpu(i, vcpu, xive->kvm) { 2142 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2143 if (!xc) 2144 continue; 2145 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { 2146 if (xc->queues[j].qpage) 2147 xive_pre_save_queue(xive, &xc->queues[j]); 2148 } 2149 } 2150 2151 /* Finally restore interrupt states */ 2152 for (i = 0; i <= xive->max_sbid; i++) { 2153 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 2154 if (!sb) 2155 continue; 2156 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 2157 xive_pre_save_unmask_irq(xive, sb, j); 2158 } 2159 } 2160 2161 static void xive_post_save_scan(struct kvmppc_xive *xive) 2162 { 2163 u32 i, j; 2164 2165 /* Clear all the in_queue flags */ 2166 for (i = 0; i <= xive->max_sbid; i++) { 2167 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 2168 if (!sb) 2169 continue; 2170 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) 2171 sb->irq_state[j].in_queue = false; 2172 } 2173 2174 /* Next get_source() will do a new scan */ 2175 xive->saved_src_count = 0; 2176 } 2177 2178 /* 2179 * This returns the source configuration and state to user space. 2180 */ 2181 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) 2182 { 2183 struct kvmppc_xive_src_block *sb; 2184 struct kvmppc_xive_irq_state *state; 2185 u64 __user *ubufp = (u64 __user *) addr; 2186 u64 val, prio; 2187 u16 idx; 2188 2189 sb = kvmppc_xive_find_source(xive, irq, &idx); 2190 if (!sb) 2191 return -ENOENT; 2192 2193 state = &sb->irq_state[idx]; 2194 2195 if (!state->valid) 2196 return -ENOENT; 2197 2198 pr_devel("get_source(%ld)...\n", irq); 2199 2200 /* 2201 * So to properly save the state into something that looks like a 2202 * XICS migration stream we cannot treat interrupts individually. 2203 * 2204 * We need, instead, mask them all (& save their previous PQ state) 2205 * to get a stable state in the HW, then sync them to ensure that 2206 * any interrupt that had already fired hits its queue, and finally 2207 * scan all the queues to collect which interrupts are still present 2208 * in the queues, so we can set the "pending" flag on them and 2209 * they can be resent on restore. 2210 * 2211 * So we do it all when the "first" interrupt gets saved, all the 2212 * state is collected at that point, the rest of xive_get_source() 2213 * will merely collect and convert that state to the expected 2214 * userspace bit mask. 2215 */ 2216 if (xive->saved_src_count == 0) 2217 xive_pre_save_scan(xive); 2218 xive->saved_src_count++; 2219 2220 /* Convert saved state into something compatible with xics */ 2221 val = state->act_server; 2222 prio = state->saved_scan_prio; 2223 2224 if (prio == MASKED) { 2225 val |= KVM_XICS_MASKED; 2226 prio = state->saved_priority; 2227 } 2228 val |= prio << KVM_XICS_PRIORITY_SHIFT; 2229 if (state->lsi) { 2230 val |= KVM_XICS_LEVEL_SENSITIVE; 2231 if (state->saved_p) 2232 val |= KVM_XICS_PENDING; 2233 } else { 2234 if (state->saved_p) 2235 val |= KVM_XICS_PRESENTED; 2236 2237 if (state->saved_q) 2238 val |= KVM_XICS_QUEUED; 2239 2240 /* 2241 * We mark it pending (which will attempt a re-delivery) 2242 * if we are in a queue *or* we were masked and had 2243 * Q set which is equivalent to the XICS "masked pending" 2244 * state 2245 */ 2246 if (state->in_queue || (prio == MASKED && state->saved_q)) 2247 val |= KVM_XICS_PENDING; 2248 } 2249 2250 /* 2251 * If that was the last interrupt saved, reset the 2252 * in_queue flags 2253 */ 2254 if (xive->saved_src_count == xive->src_count) 2255 xive_post_save_scan(xive); 2256 2257 /* Copy the result to userspace */ 2258 if (put_user(val, ubufp)) 2259 return -EFAULT; 2260 2261 return 0; 2262 } 2263 2264 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block( 2265 struct kvmppc_xive *xive, int irq) 2266 { 2267 struct kvmppc_xive_src_block *sb; 2268 int i, bid; 2269 2270 bid = irq >> KVMPPC_XICS_ICS_SHIFT; 2271 2272 mutex_lock(&xive->lock); 2273 2274 /* block already exists - somebody else got here first */ 2275 if (xive->src_blocks[bid]) 2276 goto out; 2277 2278 /* Create the ICS */ 2279 sb = kzalloc(sizeof(*sb), GFP_KERNEL); 2280 if (!sb) 2281 goto out; 2282 2283 sb->id = bid; 2284 2285 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 2286 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; 2287 sb->irq_state[i].eisn = 0; 2288 sb->irq_state[i].guest_priority = MASKED; 2289 sb->irq_state[i].saved_priority = MASKED; 2290 sb->irq_state[i].act_priority = MASKED; 2291 } 2292 smp_wmb(); 2293 xive->src_blocks[bid] = sb; 2294 2295 if (bid > xive->max_sbid) 2296 xive->max_sbid = bid; 2297 2298 out: 2299 mutex_unlock(&xive->lock); 2300 return xive->src_blocks[bid]; 2301 } 2302 2303 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) 2304 { 2305 struct kvm *kvm = xive->kvm; 2306 struct kvm_vcpu *vcpu = NULL; 2307 unsigned long i; 2308 2309 kvm_for_each_vcpu(i, vcpu, kvm) { 2310 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2311 2312 if (!xc) 2313 continue; 2314 2315 if (xc->delayed_irq == irq) { 2316 xc->delayed_irq = 0; 2317 xive->delayed_irqs--; 2318 return true; 2319 } 2320 } 2321 return false; 2322 } 2323 2324 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) 2325 { 2326 struct kvmppc_xive_src_block *sb; 2327 struct kvmppc_xive_irq_state *state; 2328 u64 __user *ubufp = (u64 __user *) addr; 2329 u16 idx; 2330 u64 val; 2331 u8 act_prio, guest_prio; 2332 u32 server; 2333 int rc = 0; 2334 2335 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) 2336 return -ENOENT; 2337 2338 pr_devel("set_source(irq=0x%lx)\n", irq); 2339 2340 /* Find the source */ 2341 sb = kvmppc_xive_find_source(xive, irq, &idx); 2342 if (!sb) { 2343 pr_devel("No source, creating source block...\n"); 2344 sb = kvmppc_xive_create_src_block(xive, irq); 2345 if (!sb) { 2346 pr_devel("Failed to create block...\n"); 2347 return -ENOMEM; 2348 } 2349 } 2350 state = &sb->irq_state[idx]; 2351 2352 /* Read user passed data */ 2353 if (get_user(val, ubufp)) { 2354 pr_devel("fault getting user info !\n"); 2355 return -EFAULT; 2356 } 2357 2358 server = val & KVM_XICS_DESTINATION_MASK; 2359 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; 2360 2361 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", 2362 val, server, guest_prio); 2363 2364 /* 2365 * If the source doesn't already have an IPI, allocate 2366 * one and get the corresponding data 2367 */ 2368 if (!state->ipi_number) { 2369 state->ipi_number = xive_native_alloc_irq(); 2370 if (state->ipi_number == 0) { 2371 pr_devel("Failed to allocate IPI !\n"); 2372 return -ENOMEM; 2373 } 2374 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); 2375 pr_devel(" src_ipi=0x%x\n", state->ipi_number); 2376 } 2377 2378 /* 2379 * We use lock_and_mask() to set us in the right masked 2380 * state. We will override that state from the saved state 2381 * further down, but this will handle the cases of interrupts 2382 * that need FW masking. We set the initial guest_priority to 2383 * 0 before calling it to ensure it actually performs the masking. 2384 */ 2385 state->guest_priority = 0; 2386 xive_lock_and_mask(xive, sb, state); 2387 2388 /* 2389 * Now, we select a target if we have one. If we don't we 2390 * leave the interrupt untargetted. It means that an interrupt 2391 * can become "untargetted" across migration if it was masked 2392 * by set_xive() but there is little we can do about it. 2393 */ 2394 2395 /* First convert prio and mark interrupt as untargetted */ 2396 act_prio = xive_prio_from_guest(guest_prio); 2397 state->act_priority = MASKED; 2398 2399 /* 2400 * We need to drop the lock due to the mutex below. Hopefully 2401 * nothing is touching that interrupt yet since it hasn't been 2402 * advertized to a running guest yet 2403 */ 2404 arch_spin_unlock(&sb->lock); 2405 2406 /* If we have a priority target the interrupt */ 2407 if (act_prio != MASKED) { 2408 /* First, check provisioning of queues */ 2409 mutex_lock(&xive->lock); 2410 rc = xive_check_provisioning(xive->kvm, act_prio); 2411 mutex_unlock(&xive->lock); 2412 2413 /* Target interrupt */ 2414 if (rc == 0) 2415 rc = xive_target_interrupt(xive->kvm, state, 2416 server, act_prio); 2417 /* 2418 * If provisioning or targetting failed, leave it 2419 * alone and masked. It will remain disabled until 2420 * the guest re-targets it. 2421 */ 2422 } 2423 2424 /* 2425 * Find out if this was a delayed irq stashed in an ICP, 2426 * in which case, treat it as pending 2427 */ 2428 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { 2429 val |= KVM_XICS_PENDING; 2430 pr_devel(" Found delayed ! forcing PENDING !\n"); 2431 } 2432 2433 /* Cleanup the SW state */ 2434 state->old_p = false; 2435 state->old_q = false; 2436 state->lsi = false; 2437 state->asserted = false; 2438 2439 /* Restore LSI state */ 2440 if (val & KVM_XICS_LEVEL_SENSITIVE) { 2441 state->lsi = true; 2442 if (val & KVM_XICS_PENDING) 2443 state->asserted = true; 2444 pr_devel(" LSI ! Asserted=%d\n", state->asserted); 2445 } 2446 2447 /* 2448 * Restore P and Q. If the interrupt was pending, we 2449 * force Q and !P, which will trigger a resend. 2450 * 2451 * That means that a guest that had both an interrupt 2452 * pending (queued) and Q set will restore with only 2453 * one instance of that interrupt instead of 2, but that 2454 * is perfectly fine as coalescing interrupts that haven't 2455 * been presented yet is always allowed. 2456 */ 2457 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) 2458 state->old_p = true; 2459 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) 2460 state->old_q = true; 2461 2462 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); 2463 2464 /* 2465 * If the interrupt was unmasked, update guest priority and 2466 * perform the appropriate state transition and do a 2467 * re-trigger if necessary. 2468 */ 2469 if (val & KVM_XICS_MASKED) { 2470 pr_devel(" masked, saving prio\n"); 2471 state->guest_priority = MASKED; 2472 state->saved_priority = guest_prio; 2473 } else { 2474 pr_devel(" unmasked, restoring to prio %d\n", guest_prio); 2475 xive_finish_unmask(xive, sb, state, guest_prio); 2476 state->saved_priority = guest_prio; 2477 } 2478 2479 /* Increment the number of valid sources and mark this one valid */ 2480 if (!state->valid) 2481 xive->src_count++; 2482 state->valid = true; 2483 2484 return 0; 2485 } 2486 2487 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 2488 bool line_status) 2489 { 2490 struct kvmppc_xive *xive = kvm->arch.xive; 2491 struct kvmppc_xive_src_block *sb; 2492 struct kvmppc_xive_irq_state *state; 2493 u16 idx; 2494 2495 if (!xive) 2496 return -ENODEV; 2497 2498 sb = kvmppc_xive_find_source(xive, irq, &idx); 2499 if (!sb) 2500 return -EINVAL; 2501 2502 /* Perform locklessly .... (we need to do some RCUisms here...) */ 2503 state = &sb->irq_state[idx]; 2504 if (!state->valid) 2505 return -EINVAL; 2506 2507 /* We don't allow a trigger on a passed-through interrupt */ 2508 if (state->pt_number) 2509 return -EINVAL; 2510 2511 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) 2512 state->asserted = true; 2513 else if (level == 0 || level == KVM_INTERRUPT_UNSET) { 2514 state->asserted = false; 2515 return 0; 2516 } 2517 2518 /* Trigger the IPI */ 2519 xive_irq_trigger(&state->ipi_data); 2520 2521 return 0; 2522 } 2523 2524 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr) 2525 { 2526 u32 __user *ubufp = (u32 __user *) addr; 2527 u32 nr_servers; 2528 int rc = 0; 2529 2530 if (get_user(nr_servers, ubufp)) 2531 return -EFAULT; 2532 2533 pr_devel("%s nr_servers=%u\n", __func__, nr_servers); 2534 2535 if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS) 2536 return -EINVAL; 2537 2538 mutex_lock(&xive->lock); 2539 if (xive->vp_base != XIVE_INVALID_VP) 2540 /* The VP block is allocated once and freed when the device 2541 * is released. Better not allow to change its size since its 2542 * used by connect_vcpu to validate vCPU ids are valid (eg, 2543 * setting it back to a higher value could allow connect_vcpu 2544 * to come up with a VP id that goes beyond the VP block, which 2545 * is likely to cause a crash in OPAL). 2546 */ 2547 rc = -EBUSY; 2548 else if (nr_servers > KVM_MAX_VCPUS) 2549 /* We don't need more servers. Higher vCPU ids get packed 2550 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id(). 2551 */ 2552 xive->nr_servers = KVM_MAX_VCPUS; 2553 else 2554 xive->nr_servers = nr_servers; 2555 2556 mutex_unlock(&xive->lock); 2557 2558 return rc; 2559 } 2560 2561 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2562 { 2563 struct kvmppc_xive *xive = dev->private; 2564 2565 /* We honor the existing XICS ioctl */ 2566 switch (attr->group) { 2567 case KVM_DEV_XICS_GRP_SOURCES: 2568 return xive_set_source(xive, attr->attr, attr->addr); 2569 case KVM_DEV_XICS_GRP_CTRL: 2570 switch (attr->attr) { 2571 case KVM_DEV_XICS_NR_SERVERS: 2572 return kvmppc_xive_set_nr_servers(xive, attr->addr); 2573 } 2574 } 2575 return -ENXIO; 2576 } 2577 2578 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2579 { 2580 struct kvmppc_xive *xive = dev->private; 2581 2582 /* We honor the existing XICS ioctl */ 2583 switch (attr->group) { 2584 case KVM_DEV_XICS_GRP_SOURCES: 2585 return xive_get_source(xive, attr->attr, attr->addr); 2586 } 2587 return -ENXIO; 2588 } 2589 2590 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2591 { 2592 /* We honor the same limits as XICS, at least for now */ 2593 switch (attr->group) { 2594 case KVM_DEV_XICS_GRP_SOURCES: 2595 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && 2596 attr->attr < KVMPPC_XICS_NR_IRQS) 2597 return 0; 2598 break; 2599 case KVM_DEV_XICS_GRP_CTRL: 2600 switch (attr->attr) { 2601 case KVM_DEV_XICS_NR_SERVERS: 2602 return 0; 2603 } 2604 } 2605 return -ENXIO; 2606 } 2607 2608 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) 2609 { 2610 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); 2611 xive_native_configure_irq(hw_num, 0, MASKED, 0); 2612 } 2613 2614 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) 2615 { 2616 int i; 2617 2618 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 2619 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 2620 2621 if (!state->valid) 2622 continue; 2623 2624 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); 2625 xive_cleanup_irq_data(&state->ipi_data); 2626 xive_native_free_irq(state->ipi_number); 2627 2628 /* Pass-through, cleanup too but keep IRQ hw data */ 2629 if (state->pt_number) 2630 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); 2631 2632 state->valid = false; 2633 } 2634 } 2635 2636 /* 2637 * Called when device fd is closed. kvm->lock is held. 2638 */ 2639 static void kvmppc_xive_release(struct kvm_device *dev) 2640 { 2641 struct kvmppc_xive *xive = dev->private; 2642 struct kvm *kvm = xive->kvm; 2643 struct kvm_vcpu *vcpu; 2644 unsigned long i; 2645 2646 pr_devel("Releasing xive device\n"); 2647 2648 /* 2649 * Since this is the device release function, we know that 2650 * userspace does not have any open fd referring to the 2651 * device. Therefore there can not be any of the device 2652 * attribute set/get functions being executed concurrently, 2653 * and similarly, the connect_vcpu and set/clr_mapped 2654 * functions also cannot be being executed. 2655 */ 2656 2657 debugfs_remove(xive->dentry); 2658 2659 /* 2660 * We should clean up the vCPU interrupt presenters first. 2661 */ 2662 kvm_for_each_vcpu(i, vcpu, kvm) { 2663 /* 2664 * Take vcpu->mutex to ensure that no one_reg get/set ioctl 2665 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently. 2666 * Holding the vcpu->mutex also means that the vcpu cannot 2667 * be executing the KVM_RUN ioctl, and therefore it cannot 2668 * be executing the XIVE push or pull code or accessing 2669 * the XIVE MMIO regions. 2670 */ 2671 mutex_lock(&vcpu->mutex); 2672 kvmppc_xive_cleanup_vcpu(vcpu); 2673 mutex_unlock(&vcpu->mutex); 2674 } 2675 2676 /* 2677 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type 2678 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe 2679 * against xive code getting called during vcpu execution or 2680 * set/get one_reg operations. 2681 */ 2682 kvm->arch.xive = NULL; 2683 2684 /* Mask and free interrupts */ 2685 for (i = 0; i <= xive->max_sbid; i++) { 2686 if (xive->src_blocks[i]) 2687 kvmppc_xive_free_sources(xive->src_blocks[i]); 2688 kfree(xive->src_blocks[i]); 2689 xive->src_blocks[i] = NULL; 2690 } 2691 2692 if (xive->vp_base != XIVE_INVALID_VP) 2693 xive_native_free_vp_block(xive->vp_base); 2694 2695 /* 2696 * A reference of the kvmppc_xive pointer is now kept under 2697 * the xive_devices struct of the machine for reuse. It is 2698 * freed when the VM is destroyed for now until we fix all the 2699 * execution paths. 2700 */ 2701 2702 kfree(dev); 2703 } 2704 2705 /* 2706 * When the guest chooses the interrupt mode (XICS legacy or XIVE 2707 * native), the VM will switch of KVM device. The previous device will 2708 * be "released" before the new one is created. 2709 * 2710 * Until we are sure all execution paths are well protected, provide a 2711 * fail safe (transitional) method for device destruction, in which 2712 * the XIVE device pointer is recycled and not directly freed. 2713 */ 2714 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type) 2715 { 2716 struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ? 2717 &kvm->arch.xive_devices.native : 2718 &kvm->arch.xive_devices.xics_on_xive; 2719 struct kvmppc_xive *xive = *kvm_xive_device; 2720 2721 if (!xive) { 2722 xive = kzalloc(sizeof(*xive), GFP_KERNEL); 2723 *kvm_xive_device = xive; 2724 } else { 2725 memset(xive, 0, sizeof(*xive)); 2726 } 2727 2728 return xive; 2729 } 2730 2731 /* 2732 * Create a XICS device with XIVE backend. kvm->lock is held. 2733 */ 2734 static int kvmppc_xive_create(struct kvm_device *dev, u32 type) 2735 { 2736 struct kvmppc_xive *xive; 2737 struct kvm *kvm = dev->kvm; 2738 2739 pr_devel("Creating xive for partition\n"); 2740 2741 /* Already there ? */ 2742 if (kvm->arch.xive) 2743 return -EEXIST; 2744 2745 xive = kvmppc_xive_get_device(kvm, type); 2746 if (!xive) 2747 return -ENOMEM; 2748 2749 dev->private = xive; 2750 xive->dev = dev; 2751 xive->kvm = kvm; 2752 mutex_init(&xive->lock); 2753 2754 /* We use the default queue size set by the host */ 2755 xive->q_order = xive_native_default_eq_shift(); 2756 if (xive->q_order < PAGE_SHIFT) 2757 xive->q_page_order = 0; 2758 else 2759 xive->q_page_order = xive->q_order - PAGE_SHIFT; 2760 2761 /* VP allocation is delayed to the first call to connect_vcpu */ 2762 xive->vp_base = XIVE_INVALID_VP; 2763 /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets 2764 * on a POWER9 system. 2765 */ 2766 xive->nr_servers = KVM_MAX_VCPUS; 2767 2768 if (xive_native_has_single_escalation()) 2769 xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION; 2770 2771 if (xive_native_has_save_restore()) 2772 xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE; 2773 2774 kvm->arch.xive = xive; 2775 return 0; 2776 } 2777 2778 int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req) 2779 { 2780 /* The VM should have configured XICS mode before doing XICS hcalls. */ 2781 if (!kvmppc_xics_enabled(vcpu)) 2782 return H_TOO_HARD; 2783 2784 switch (req) { 2785 case H_XIRR: 2786 return xive_vm_h_xirr(vcpu); 2787 case H_CPPR: 2788 return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4)); 2789 case H_EOI: 2790 return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4)); 2791 case H_IPI: 2792 return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4), 2793 kvmppc_get_gpr(vcpu, 5)); 2794 case H_IPOLL: 2795 return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4)); 2796 case H_XIRR_X: 2797 xive_vm_h_xirr(vcpu); 2798 kvmppc_set_gpr(vcpu, 5, get_tb() + kvmppc_get_tb_offset(vcpu)); 2799 return H_SUCCESS; 2800 } 2801 2802 return H_UNSUPPORTED; 2803 } 2804 EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall); 2805 2806 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu) 2807 { 2808 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2809 unsigned int i; 2810 2811 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { 2812 struct xive_q *q = &xc->queues[i]; 2813 u32 i0, i1, idx; 2814 2815 if (!q->qpage && !xc->esc_virq[i]) 2816 continue; 2817 2818 if (q->qpage) { 2819 seq_printf(m, " q[%d]: ", i); 2820 idx = q->idx; 2821 i0 = be32_to_cpup(q->qpage + idx); 2822 idx = (idx + 1) & q->msk; 2823 i1 = be32_to_cpup(q->qpage + idx); 2824 seq_printf(m, "T=%d %08x %08x...\n", q->toggle, 2825 i0, i1); 2826 } 2827 if (xc->esc_virq[i]) { 2828 struct xive_irq_data *xd = irq_get_chip_data(xc->esc_virq[i]); 2829 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 2830 2831 seq_printf(m, " ESC %d %c%c EOI @%llx", 2832 xc->esc_virq[i], 2833 (pq & XIVE_ESB_VAL_P) ? 'P' : '-', 2834 (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-', 2835 xd->eoi_page); 2836 seq_puts(m, "\n"); 2837 } 2838 } 2839 return 0; 2840 } 2841 2842 void kvmppc_xive_debug_show_sources(struct seq_file *m, 2843 struct kvmppc_xive_src_block *sb) 2844 { 2845 int i; 2846 2847 seq_puts(m, " LISN HW/CHIP TYPE PQ EISN CPU/PRIO\n"); 2848 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { 2849 struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; 2850 struct xive_irq_data *xd; 2851 u64 pq; 2852 u32 hw_num; 2853 2854 if (!state->valid) 2855 continue; 2856 2857 kvmppc_xive_select_irq(state, &hw_num, &xd); 2858 2859 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); 2860 2861 seq_printf(m, "%08x %08x/%02x", state->number, hw_num, 2862 xd->src_chip); 2863 if (state->lsi) 2864 seq_printf(m, " %cLSI", state->asserted ? '^' : ' '); 2865 else 2866 seq_puts(m, " MSI"); 2867 2868 seq_printf(m, " %s %c%c %08x % 4d/%d", 2869 state->ipi_number == hw_num ? "IPI" : " PT", 2870 pq & XIVE_ESB_VAL_P ? 'P' : '-', 2871 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 2872 state->eisn, state->act_server, 2873 state->act_priority); 2874 2875 seq_puts(m, "\n"); 2876 } 2877 } 2878 2879 static int xive_debug_show(struct seq_file *m, void *private) 2880 { 2881 struct kvmppc_xive *xive = m->private; 2882 struct kvm *kvm = xive->kvm; 2883 struct kvm_vcpu *vcpu; 2884 u64 t_rm_h_xirr = 0; 2885 u64 t_rm_h_ipoll = 0; 2886 u64 t_rm_h_cppr = 0; 2887 u64 t_rm_h_eoi = 0; 2888 u64 t_rm_h_ipi = 0; 2889 u64 t_vm_h_xirr = 0; 2890 u64 t_vm_h_ipoll = 0; 2891 u64 t_vm_h_cppr = 0; 2892 u64 t_vm_h_eoi = 0; 2893 u64 t_vm_h_ipi = 0; 2894 unsigned long i; 2895 2896 if (!kvm) 2897 return 0; 2898 2899 seq_puts(m, "=========\nVCPU state\n=========\n"); 2900 2901 kvm_for_each_vcpu(i, vcpu, kvm) { 2902 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; 2903 2904 if (!xc) 2905 continue; 2906 2907 seq_printf(m, "VCPU %d: VP:%#x/%02x\n" 2908 " CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", 2909 xc->server_num, xc->vp_id, xc->vp_chip_id, 2910 xc->cppr, xc->hw_cppr, 2911 xc->mfrr, xc->pending, 2912 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); 2913 2914 kvmppc_xive_debug_show_queues(m, vcpu); 2915 2916 t_rm_h_xirr += xc->stat_rm_h_xirr; 2917 t_rm_h_ipoll += xc->stat_rm_h_ipoll; 2918 t_rm_h_cppr += xc->stat_rm_h_cppr; 2919 t_rm_h_eoi += xc->stat_rm_h_eoi; 2920 t_rm_h_ipi += xc->stat_rm_h_ipi; 2921 t_vm_h_xirr += xc->stat_vm_h_xirr; 2922 t_vm_h_ipoll += xc->stat_vm_h_ipoll; 2923 t_vm_h_cppr += xc->stat_vm_h_cppr; 2924 t_vm_h_eoi += xc->stat_vm_h_eoi; 2925 t_vm_h_ipi += xc->stat_vm_h_ipi; 2926 } 2927 2928 seq_puts(m, "Hcalls totals\n"); 2929 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); 2930 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); 2931 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); 2932 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); 2933 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); 2934 2935 seq_puts(m, "=========\nSources\n=========\n"); 2936 2937 for (i = 0; i <= xive->max_sbid; i++) { 2938 struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; 2939 2940 if (sb) { 2941 arch_spin_lock(&sb->lock); 2942 kvmppc_xive_debug_show_sources(m, sb); 2943 arch_spin_unlock(&sb->lock); 2944 } 2945 } 2946 2947 return 0; 2948 } 2949 2950 DEFINE_SHOW_ATTRIBUTE(xive_debug); 2951 2952 static void xive_debugfs_init(struct kvmppc_xive *xive) 2953 { 2954 xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry, 2955 xive, &xive_debug_fops); 2956 2957 pr_debug("%s: created\n", __func__); 2958 } 2959 2960 static void kvmppc_xive_init(struct kvm_device *dev) 2961 { 2962 struct kvmppc_xive *xive = dev->private; 2963 2964 /* Register some debug interfaces */ 2965 xive_debugfs_init(xive); 2966 } 2967 2968 struct kvm_device_ops kvm_xive_ops = { 2969 .name = "kvm-xive", 2970 .create = kvmppc_xive_create, 2971 .init = kvmppc_xive_init, 2972 .release = kvmppc_xive_release, 2973 .set_attr = xive_set_attr, 2974 .get_attr = xive_get_attr, 2975 .has_attr = xive_has_attr, 2976 }; 2977