1 /* 2 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 3 * 4 * Authors: 5 * Alexander Graf <agraf@suse.de> 6 * Kevin Wolf <mail@kevin-wolf.de> 7 * Paul Mackerras <paulus@samba.org> 8 * 9 * Description: 10 * Functions relating to running KVM on Book 3S processors where 11 * we don't have access to hypervisor mode, and we run the guest 12 * in problem state (user mode). 13 * 14 * This file is derived from arch/powerpc/kvm/44x.c, 15 * by Hollis Blanchard <hollisb@us.ibm.com>. 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License, version 2, as 19 * published by the Free Software Foundation. 20 */ 21 22 #include <linux/kvm_host.h> 23 #include <linux/export.h> 24 #include <linux/err.h> 25 #include <linux/slab.h> 26 27 #include <asm/reg.h> 28 #include <asm/cputable.h> 29 #include <asm/cacheflush.h> 30 #include <asm/tlbflush.h> 31 #include <linux/uaccess.h> 32 #include <asm/io.h> 33 #include <asm/kvm_ppc.h> 34 #include <asm/kvm_book3s.h> 35 #include <asm/mmu_context.h> 36 #include <asm/switch_to.h> 37 #include <asm/firmware.h> 38 #include <asm/setup.h> 39 #include <linux/gfp.h> 40 #include <linux/sched.h> 41 #include <linux/vmalloc.h> 42 #include <linux/highmem.h> 43 #include <linux/module.h> 44 #include <linux/miscdevice.h> 45 46 #include "book3s.h" 47 48 #define CREATE_TRACE_POINTS 49 #include "trace_pr.h" 50 51 /* #define EXIT_DEBUG */ 52 /* #define DEBUG_EXT */ 53 54 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 55 ulong msr); 56 static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac); 57 58 /* Some compatibility defines */ 59 #ifdef CONFIG_PPC_BOOK3S_32 60 #define MSR_USER32 MSR_USER 61 #define MSR_USER64 MSR_USER 62 #define HW_PAGE_SIZE PAGE_SIZE 63 #endif 64 65 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) 66 { 67 ulong msr = kvmppc_get_msr(vcpu); 68 return (msr & (MSR_IR|MSR_DR)) == MSR_DR; 69 } 70 71 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) 72 { 73 ulong msr = kvmppc_get_msr(vcpu); 74 ulong pc = kvmppc_get_pc(vcpu); 75 76 /* We are in DR only split real mode */ 77 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) 78 return; 79 80 /* We have not fixed up the guest already */ 81 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) 82 return; 83 84 /* The code is in fixupable address space */ 85 if (pc & SPLIT_HACK_MASK) 86 return; 87 88 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; 89 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); 90 } 91 92 void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu); 93 94 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) 95 { 96 #ifdef CONFIG_PPC_BOOK3S_64 97 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 98 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); 99 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; 100 svcpu->in_use = 0; 101 svcpu_put(svcpu); 102 #endif 103 104 /* Disable AIL if supported */ 105 if (cpu_has_feature(CPU_FTR_HVMODE) && 106 cpu_has_feature(CPU_FTR_ARCH_207S)) 107 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); 108 109 vcpu->cpu = smp_processor_id(); 110 #ifdef CONFIG_PPC_BOOK3S_32 111 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; 112 #endif 113 114 if (kvmppc_is_split_real(vcpu)) 115 kvmppc_fixup_split_real(vcpu); 116 } 117 118 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) 119 { 120 #ifdef CONFIG_PPC_BOOK3S_64 121 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 122 if (svcpu->in_use) { 123 kvmppc_copy_from_svcpu(vcpu, svcpu); 124 } 125 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); 126 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; 127 svcpu_put(svcpu); 128 #endif 129 130 if (kvmppc_is_split_real(vcpu)) 131 kvmppc_unfixup_split_real(vcpu); 132 133 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 134 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 135 136 /* Enable AIL if supported */ 137 if (cpu_has_feature(CPU_FTR_HVMODE) && 138 cpu_has_feature(CPU_FTR_ARCH_207S)) 139 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); 140 141 vcpu->cpu = -1; 142 } 143 144 /* Copy data needed by real-mode code from vcpu to shadow vcpu */ 145 void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu, 146 struct kvm_vcpu *vcpu) 147 { 148 svcpu->gpr[0] = vcpu->arch.gpr[0]; 149 svcpu->gpr[1] = vcpu->arch.gpr[1]; 150 svcpu->gpr[2] = vcpu->arch.gpr[2]; 151 svcpu->gpr[3] = vcpu->arch.gpr[3]; 152 svcpu->gpr[4] = vcpu->arch.gpr[4]; 153 svcpu->gpr[5] = vcpu->arch.gpr[5]; 154 svcpu->gpr[6] = vcpu->arch.gpr[6]; 155 svcpu->gpr[7] = vcpu->arch.gpr[7]; 156 svcpu->gpr[8] = vcpu->arch.gpr[8]; 157 svcpu->gpr[9] = vcpu->arch.gpr[9]; 158 svcpu->gpr[10] = vcpu->arch.gpr[10]; 159 svcpu->gpr[11] = vcpu->arch.gpr[11]; 160 svcpu->gpr[12] = vcpu->arch.gpr[12]; 161 svcpu->gpr[13] = vcpu->arch.gpr[13]; 162 svcpu->cr = vcpu->arch.cr; 163 svcpu->xer = vcpu->arch.xer; 164 svcpu->ctr = vcpu->arch.ctr; 165 svcpu->lr = vcpu->arch.lr; 166 svcpu->pc = vcpu->arch.pc; 167 #ifdef CONFIG_PPC_BOOK3S_64 168 svcpu->shadow_fscr = vcpu->arch.shadow_fscr; 169 #endif 170 /* 171 * Now also save the current time base value. We use this 172 * to find the guest purr and spurr value. 173 */ 174 vcpu->arch.entry_tb = get_tb(); 175 vcpu->arch.entry_vtb = get_vtb(); 176 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 177 vcpu->arch.entry_ic = mfspr(SPRN_IC); 178 svcpu->in_use = true; 179 } 180 181 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ 182 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu, 183 struct kvmppc_book3s_shadow_vcpu *svcpu) 184 { 185 /* 186 * vcpu_put would just call us again because in_use hasn't 187 * been updated yet. 188 */ 189 preempt_disable(); 190 191 /* 192 * Maybe we were already preempted and synced the svcpu from 193 * our preempt notifiers. Don't bother touching this svcpu then. 194 */ 195 if (!svcpu->in_use) 196 goto out; 197 198 vcpu->arch.gpr[0] = svcpu->gpr[0]; 199 vcpu->arch.gpr[1] = svcpu->gpr[1]; 200 vcpu->arch.gpr[2] = svcpu->gpr[2]; 201 vcpu->arch.gpr[3] = svcpu->gpr[3]; 202 vcpu->arch.gpr[4] = svcpu->gpr[4]; 203 vcpu->arch.gpr[5] = svcpu->gpr[5]; 204 vcpu->arch.gpr[6] = svcpu->gpr[6]; 205 vcpu->arch.gpr[7] = svcpu->gpr[7]; 206 vcpu->arch.gpr[8] = svcpu->gpr[8]; 207 vcpu->arch.gpr[9] = svcpu->gpr[9]; 208 vcpu->arch.gpr[10] = svcpu->gpr[10]; 209 vcpu->arch.gpr[11] = svcpu->gpr[11]; 210 vcpu->arch.gpr[12] = svcpu->gpr[12]; 211 vcpu->arch.gpr[13] = svcpu->gpr[13]; 212 vcpu->arch.cr = svcpu->cr; 213 vcpu->arch.xer = svcpu->xer; 214 vcpu->arch.ctr = svcpu->ctr; 215 vcpu->arch.lr = svcpu->lr; 216 vcpu->arch.pc = svcpu->pc; 217 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; 218 vcpu->arch.fault_dar = svcpu->fault_dar; 219 vcpu->arch.fault_dsisr = svcpu->fault_dsisr; 220 vcpu->arch.last_inst = svcpu->last_inst; 221 #ifdef CONFIG_PPC_BOOK3S_64 222 vcpu->arch.shadow_fscr = svcpu->shadow_fscr; 223 #endif 224 /* 225 * Update purr and spurr using time base on exit. 226 */ 227 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; 228 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; 229 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; 230 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 231 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; 232 svcpu->in_use = false; 233 234 out: 235 preempt_enable(); 236 } 237 238 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) 239 { 240 int r = 1; /* Indicate we want to get back into the guest */ 241 242 /* We misuse TLB_FLUSH to indicate that we want to clear 243 all shadow cache entries */ 244 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 245 kvmppc_mmu_pte_flush(vcpu, 0, 0); 246 247 return r; 248 } 249 250 /************* MMU Notifiers *************/ 251 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start, 252 unsigned long end) 253 { 254 long i; 255 struct kvm_vcpu *vcpu; 256 struct kvm_memslots *slots; 257 struct kvm_memory_slot *memslot; 258 259 slots = kvm_memslots(kvm); 260 kvm_for_each_memslot(memslot, slots) { 261 unsigned long hva_start, hva_end; 262 gfn_t gfn, gfn_end; 263 264 hva_start = max(start, memslot->userspace_addr); 265 hva_end = min(end, memslot->userspace_addr + 266 (memslot->npages << PAGE_SHIFT)); 267 if (hva_start >= hva_end) 268 continue; 269 /* 270 * {gfn(page) | page intersects with [hva_start, hva_end)} = 271 * {gfn, gfn+1, ..., gfn_end-1}. 272 */ 273 gfn = hva_to_gfn_memslot(hva_start, memslot); 274 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 275 kvm_for_each_vcpu(i, vcpu, kvm) 276 kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT, 277 gfn_end << PAGE_SHIFT); 278 } 279 } 280 281 static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva) 282 { 283 trace_kvm_unmap_hva(hva); 284 285 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE); 286 287 return 0; 288 } 289 290 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start, 291 unsigned long end) 292 { 293 do_kvm_unmap_hva(kvm, start, end); 294 295 return 0; 296 } 297 298 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start, 299 unsigned long end) 300 { 301 /* XXX could be more clever ;) */ 302 return 0; 303 } 304 305 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva) 306 { 307 /* XXX could be more clever ;) */ 308 return 0; 309 } 310 311 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte) 312 { 313 /* The page will get remapped properly on its next fault */ 314 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE); 315 } 316 317 /*****************************************/ 318 319 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) 320 { 321 ulong guest_msr = kvmppc_get_msr(vcpu); 322 ulong smsr = guest_msr; 323 324 /* Guest MSR values */ 325 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; 326 /* Process MSR values */ 327 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; 328 /* External providers the guest reserved */ 329 smsr |= (guest_msr & vcpu->arch.guest_owned_ext); 330 /* 64-bit Process MSR values */ 331 #ifdef CONFIG_PPC_BOOK3S_64 332 smsr |= MSR_ISF | MSR_HV; 333 #endif 334 vcpu->arch.shadow_msr = smsr; 335 } 336 337 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) 338 { 339 ulong old_msr = kvmppc_get_msr(vcpu); 340 341 #ifdef EXIT_DEBUG 342 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); 343 #endif 344 345 msr &= to_book3s(vcpu)->msr_mask; 346 kvmppc_set_msr_fast(vcpu, msr); 347 kvmppc_recalc_shadow_msr(vcpu); 348 349 if (msr & MSR_POW) { 350 if (!vcpu->arch.pending_exceptions) { 351 kvm_vcpu_block(vcpu); 352 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 353 vcpu->stat.halt_wakeup++; 354 355 /* Unset POW bit after we woke up */ 356 msr &= ~MSR_POW; 357 kvmppc_set_msr_fast(vcpu, msr); 358 } 359 } 360 361 if (kvmppc_is_split_real(vcpu)) 362 kvmppc_fixup_split_real(vcpu); 363 else 364 kvmppc_unfixup_split_real(vcpu); 365 366 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != 367 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { 368 kvmppc_mmu_flush_segments(vcpu); 369 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 370 371 /* Preload magic page segment when in kernel mode */ 372 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { 373 struct kvm_vcpu_arch *a = &vcpu->arch; 374 375 if (msr & MSR_DR) 376 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); 377 else 378 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); 379 } 380 } 381 382 /* 383 * When switching from 32 to 64-bit, we may have a stale 32-bit 384 * magic page around, we need to flush it. Typically 32-bit magic 385 * page will be instanciated when calling into RTAS. Note: We 386 * assume that such transition only happens while in kernel mode, 387 * ie, we never transition from user 32-bit to kernel 64-bit with 388 * a 32-bit magic page around. 389 */ 390 if (vcpu->arch.magic_page_pa && 391 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { 392 /* going from RTAS to normal kernel code */ 393 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, 394 ~0xFFFUL); 395 } 396 397 /* Preload FPU if it's enabled */ 398 if (kvmppc_get_msr(vcpu) & MSR_FP) 399 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 400 } 401 402 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) 403 { 404 u32 host_pvr; 405 406 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; 407 vcpu->arch.pvr = pvr; 408 #ifdef CONFIG_PPC_BOOK3S_64 409 if ((pvr >= 0x330000) && (pvr < 0x70330000)) { 410 kvmppc_mmu_book3s_64_init(vcpu); 411 if (!to_book3s(vcpu)->hior_explicit) 412 to_book3s(vcpu)->hior = 0xfff00000; 413 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; 414 vcpu->arch.cpu_type = KVM_CPU_3S_64; 415 } else 416 #endif 417 { 418 kvmppc_mmu_book3s_32_init(vcpu); 419 if (!to_book3s(vcpu)->hior_explicit) 420 to_book3s(vcpu)->hior = 0; 421 to_book3s(vcpu)->msr_mask = 0xffffffffULL; 422 vcpu->arch.cpu_type = KVM_CPU_3S_32; 423 } 424 425 kvmppc_sanity_check(vcpu); 426 427 /* If we are in hypervisor level on 970, we can tell the CPU to 428 * treat DCBZ as 32 bytes store */ 429 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; 430 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && 431 !strcmp(cur_cpu_spec->platform, "ppc970")) 432 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 433 434 /* Cell performs badly if MSR_FEx are set. So let's hope nobody 435 really needs them in a VM on Cell and force disable them. */ 436 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) 437 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); 438 439 /* 440 * If they're asking for POWER6 or later, set the flag 441 * indicating that we can do multiple large page sizes 442 * and 1TB segments. 443 * Also set the flag that indicates that tlbie has the large 444 * page bit in the RB operand instead of the instruction. 445 */ 446 switch (PVR_VER(pvr)) { 447 case PVR_POWER6: 448 case PVR_POWER7: 449 case PVR_POWER7p: 450 case PVR_POWER8: 451 case PVR_POWER8E: 452 case PVR_POWER8NVL: 453 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | 454 BOOK3S_HFLAG_NEW_TLBIE; 455 break; 456 } 457 458 #ifdef CONFIG_PPC_BOOK3S_32 459 /* 32 bit Book3S always has 32 byte dcbz */ 460 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 461 #endif 462 463 /* On some CPUs we can execute paired single operations natively */ 464 asm ( "mfpvr %0" : "=r"(host_pvr)); 465 switch (host_pvr) { 466 case 0x00080200: /* lonestar 2.0 */ 467 case 0x00088202: /* lonestar 2.2 */ 468 case 0x70000100: /* gekko 1.0 */ 469 case 0x00080100: /* gekko 2.0 */ 470 case 0x00083203: /* gekko 2.3a */ 471 case 0x00083213: /* gekko 2.3b */ 472 case 0x00083204: /* gekko 2.4 */ 473 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ 474 case 0x00087200: /* broadway */ 475 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; 476 /* Enable HID2.PSE - in case we need it later */ 477 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); 478 } 479 } 480 481 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To 482 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to 483 * emulate 32 bytes dcbz length. 484 * 485 * The Book3s_64 inventors also realized this case and implemented a special bit 486 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. 487 * 488 * My approach here is to patch the dcbz instruction on executing pages. 489 */ 490 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) 491 { 492 struct page *hpage; 493 u64 hpage_offset; 494 u32 *page; 495 int i; 496 497 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); 498 if (is_error_page(hpage)) 499 return; 500 501 hpage_offset = pte->raddr & ~PAGE_MASK; 502 hpage_offset &= ~0xFFFULL; 503 hpage_offset /= 4; 504 505 get_page(hpage); 506 page = kmap_atomic(hpage); 507 508 /* patch dcbz into reserved instruction, so we trap */ 509 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) 510 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) 511 page[i] &= cpu_to_be32(0xfffffff7); 512 513 kunmap_atomic(page); 514 put_page(hpage); 515 } 516 517 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 518 { 519 ulong mp_pa = vcpu->arch.magic_page_pa; 520 521 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) 522 mp_pa = (uint32_t)mp_pa; 523 524 gpa &= ~0xFFFULL; 525 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { 526 return true; 527 } 528 529 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); 530 } 531 532 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, 533 ulong eaddr, int vec) 534 { 535 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); 536 bool iswrite = false; 537 int r = RESUME_GUEST; 538 int relocated; 539 int page_found = 0; 540 struct kvmppc_pte pte = { 0 }; 541 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; 542 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; 543 u64 vsid; 544 545 relocated = data ? dr : ir; 546 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) 547 iswrite = true; 548 549 /* Resolve real address if translation turned on */ 550 if (relocated) { 551 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); 552 } else { 553 pte.may_execute = true; 554 pte.may_read = true; 555 pte.may_write = true; 556 pte.raddr = eaddr & KVM_PAM; 557 pte.eaddr = eaddr; 558 pte.vpage = eaddr >> 12; 559 pte.page_size = MMU_PAGE_64K; 560 } 561 562 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { 563 case 0: 564 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); 565 break; 566 case MSR_DR: 567 if (!data && 568 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && 569 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) 570 pte.raddr &= ~SPLIT_HACK_MASK; 571 /* fall through */ 572 case MSR_IR: 573 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); 574 575 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) 576 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); 577 else 578 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); 579 pte.vpage |= vsid; 580 581 if (vsid == -1) 582 page_found = -EINVAL; 583 break; 584 } 585 586 if (vcpu->arch.mmu.is_dcbz32(vcpu) && 587 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 588 /* 589 * If we do the dcbz hack, we have to NX on every execution, 590 * so we can patch the executing code. This renders our guest 591 * NX-less. 592 */ 593 pte.may_execute = !data; 594 } 595 596 if (page_found == -ENOENT) { 597 /* Page not found in guest PTE entries */ 598 u64 ssrr1 = vcpu->arch.shadow_srr1; 599 u64 msr = kvmppc_get_msr(vcpu); 600 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 601 kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr); 602 kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL)); 603 kvmppc_book3s_queue_irqprio(vcpu, vec); 604 } else if (page_found == -EPERM) { 605 /* Storage protection */ 606 u32 dsisr = vcpu->arch.fault_dsisr; 607 u64 ssrr1 = vcpu->arch.shadow_srr1; 608 u64 msr = kvmppc_get_msr(vcpu); 609 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 610 dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT; 611 kvmppc_set_dsisr(vcpu, dsisr); 612 kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL)); 613 kvmppc_book3s_queue_irqprio(vcpu, vec); 614 } else if (page_found == -EINVAL) { 615 /* Page not found in guest SLB */ 616 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 617 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); 618 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { 619 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { 620 /* 621 * There is already a host HPTE there, presumably 622 * a read-only one for a page the guest thinks 623 * is writable, so get rid of it first. 624 */ 625 kvmppc_mmu_unmap_page(vcpu, &pte); 626 } 627 /* The guest's PTE is not mapped yet. Map on the host */ 628 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { 629 /* Exit KVM if mapping failed */ 630 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 631 return RESUME_HOST; 632 } 633 if (data) 634 vcpu->stat.sp_storage++; 635 else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 636 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) 637 kvmppc_patch_dcbz(vcpu, &pte); 638 } else { 639 /* MMIO */ 640 vcpu->stat.mmio_exits++; 641 vcpu->arch.paddr_accessed = pte.raddr; 642 vcpu->arch.vaddr_accessed = pte.eaddr; 643 r = kvmppc_emulate_mmio(run, vcpu); 644 if ( r == RESUME_HOST_NV ) 645 r = RESUME_HOST; 646 } 647 648 return r; 649 } 650 651 /* Give up external provider (FPU, Altivec, VSX) */ 652 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) 653 { 654 struct thread_struct *t = ¤t->thread; 655 656 /* 657 * VSX instructions can access FP and vector registers, so if 658 * we are giving up VSX, make sure we give up FP and VMX as well. 659 */ 660 if (msr & MSR_VSX) 661 msr |= MSR_FP | MSR_VEC; 662 663 msr &= vcpu->arch.guest_owned_ext; 664 if (!msr) 665 return; 666 667 #ifdef DEBUG_EXT 668 printk(KERN_INFO "Giving up ext 0x%lx\n", msr); 669 #endif 670 671 if (msr & MSR_FP) { 672 /* 673 * Note that on CPUs with VSX, giveup_fpu stores 674 * both the traditional FP registers and the added VSX 675 * registers into thread.fp_state.fpr[]. 676 */ 677 if (t->regs->msr & MSR_FP) 678 giveup_fpu(current); 679 t->fp_save_area = NULL; 680 } 681 682 #ifdef CONFIG_ALTIVEC 683 if (msr & MSR_VEC) { 684 if (current->thread.regs->msr & MSR_VEC) 685 giveup_altivec(current); 686 t->vr_save_area = NULL; 687 } 688 #endif 689 690 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); 691 kvmppc_recalc_shadow_msr(vcpu); 692 } 693 694 /* Give up facility (TAR / EBB / DSCR) */ 695 static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) 696 { 697 #ifdef CONFIG_PPC_BOOK3S_64 698 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { 699 /* Facility not available to the guest, ignore giveup request*/ 700 return; 701 } 702 703 switch (fac) { 704 case FSCR_TAR_LG: 705 vcpu->arch.tar = mfspr(SPRN_TAR); 706 mtspr(SPRN_TAR, current->thread.tar); 707 vcpu->arch.shadow_fscr &= ~FSCR_TAR; 708 break; 709 } 710 #endif 711 } 712 713 /* Handle external providers (FPU, Altivec, VSX) */ 714 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 715 ulong msr) 716 { 717 struct thread_struct *t = ¤t->thread; 718 719 /* When we have paired singles, we emulate in software */ 720 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) 721 return RESUME_GUEST; 722 723 if (!(kvmppc_get_msr(vcpu) & msr)) { 724 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 725 return RESUME_GUEST; 726 } 727 728 if (msr == MSR_VSX) { 729 /* No VSX? Give an illegal instruction interrupt */ 730 #ifdef CONFIG_VSX 731 if (!cpu_has_feature(CPU_FTR_VSX)) 732 #endif 733 { 734 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 735 return RESUME_GUEST; 736 } 737 738 /* 739 * We have to load up all the FP and VMX registers before 740 * we can let the guest use VSX instructions. 741 */ 742 msr = MSR_FP | MSR_VEC | MSR_VSX; 743 } 744 745 /* See if we already own all the ext(s) needed */ 746 msr &= ~vcpu->arch.guest_owned_ext; 747 if (!msr) 748 return RESUME_GUEST; 749 750 #ifdef DEBUG_EXT 751 printk(KERN_INFO "Loading up ext 0x%lx\n", msr); 752 #endif 753 754 if (msr & MSR_FP) { 755 preempt_disable(); 756 enable_kernel_fp(); 757 load_fp_state(&vcpu->arch.fp); 758 disable_kernel_fp(); 759 t->fp_save_area = &vcpu->arch.fp; 760 preempt_enable(); 761 } 762 763 if (msr & MSR_VEC) { 764 #ifdef CONFIG_ALTIVEC 765 preempt_disable(); 766 enable_kernel_altivec(); 767 load_vr_state(&vcpu->arch.vr); 768 disable_kernel_altivec(); 769 t->vr_save_area = &vcpu->arch.vr; 770 preempt_enable(); 771 #endif 772 } 773 774 t->regs->msr |= msr; 775 vcpu->arch.guest_owned_ext |= msr; 776 kvmppc_recalc_shadow_msr(vcpu); 777 778 return RESUME_GUEST; 779 } 780 781 /* 782 * Kernel code using FP or VMX could have flushed guest state to 783 * the thread_struct; if so, get it back now. 784 */ 785 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) 786 { 787 unsigned long lost_ext; 788 789 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; 790 if (!lost_ext) 791 return; 792 793 if (lost_ext & MSR_FP) { 794 preempt_disable(); 795 enable_kernel_fp(); 796 load_fp_state(&vcpu->arch.fp); 797 disable_kernel_fp(); 798 preempt_enable(); 799 } 800 #ifdef CONFIG_ALTIVEC 801 if (lost_ext & MSR_VEC) { 802 preempt_disable(); 803 enable_kernel_altivec(); 804 load_vr_state(&vcpu->arch.vr); 805 disable_kernel_altivec(); 806 preempt_enable(); 807 } 808 #endif 809 current->thread.regs->msr |= lost_ext; 810 } 811 812 #ifdef CONFIG_PPC_BOOK3S_64 813 814 static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) 815 { 816 /* Inject the Interrupt Cause field and trigger a guest interrupt */ 817 vcpu->arch.fscr &= ~(0xffULL << 56); 818 vcpu->arch.fscr |= (fac << 56); 819 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); 820 } 821 822 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) 823 { 824 enum emulation_result er = EMULATE_FAIL; 825 826 if (!(kvmppc_get_msr(vcpu) & MSR_PR)) 827 er = kvmppc_emulate_instruction(vcpu->run, vcpu); 828 829 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { 830 /* Couldn't emulate, trigger interrupt in guest */ 831 kvmppc_trigger_fac_interrupt(vcpu, fac); 832 } 833 } 834 835 /* Enable facilities (TAR, EBB, DSCR) for the guest */ 836 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) 837 { 838 bool guest_fac_enabled; 839 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); 840 841 /* 842 * Not every facility is enabled by FSCR bits, check whether the 843 * guest has this facility enabled at all. 844 */ 845 switch (fac) { 846 case FSCR_TAR_LG: 847 case FSCR_EBB_LG: 848 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); 849 break; 850 case FSCR_TM_LG: 851 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; 852 break; 853 default: 854 guest_fac_enabled = false; 855 break; 856 } 857 858 if (!guest_fac_enabled) { 859 /* Facility not enabled by the guest */ 860 kvmppc_trigger_fac_interrupt(vcpu, fac); 861 return RESUME_GUEST; 862 } 863 864 switch (fac) { 865 case FSCR_TAR_LG: 866 /* TAR switching isn't lazy in Linux yet */ 867 current->thread.tar = mfspr(SPRN_TAR); 868 mtspr(SPRN_TAR, vcpu->arch.tar); 869 vcpu->arch.shadow_fscr |= FSCR_TAR; 870 break; 871 default: 872 kvmppc_emulate_fac(vcpu, fac); 873 break; 874 } 875 876 return RESUME_GUEST; 877 } 878 879 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) 880 { 881 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { 882 /* TAR got dropped, drop it in shadow too */ 883 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 884 } 885 vcpu->arch.fscr = fscr; 886 } 887 #endif 888 889 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) 890 { 891 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 892 u64 msr = kvmppc_get_msr(vcpu); 893 894 kvmppc_set_msr(vcpu, msr | MSR_SE); 895 } 896 } 897 898 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) 899 { 900 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 901 u64 msr = kvmppc_get_msr(vcpu); 902 903 kvmppc_set_msr(vcpu, msr & ~MSR_SE); 904 } 905 } 906 907 static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu, 908 unsigned int exit_nr) 909 { 910 enum emulation_result er; 911 ulong flags; 912 u32 last_inst; 913 int emul, r; 914 915 /* 916 * shadow_srr1 only contains valid flags if we came here via a program 917 * exception. The other exceptions (emulation assist, FP unavailable, 918 * etc.) do not provide flags in SRR1, so use an illegal-instruction 919 * exception when injecting a program interrupt into the guest. 920 */ 921 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) 922 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; 923 else 924 flags = SRR1_PROGILL; 925 926 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 927 if (emul != EMULATE_DONE) 928 return RESUME_GUEST; 929 930 if (kvmppc_get_msr(vcpu) & MSR_PR) { 931 #ifdef EXIT_DEBUG 932 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", 933 kvmppc_get_pc(vcpu), last_inst); 934 #endif 935 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { 936 kvmppc_core_queue_program(vcpu, flags); 937 return RESUME_GUEST; 938 } 939 } 940 941 vcpu->stat.emulated_inst_exits++; 942 er = kvmppc_emulate_instruction(run, vcpu); 943 switch (er) { 944 case EMULATE_DONE: 945 r = RESUME_GUEST_NV; 946 break; 947 case EMULATE_AGAIN: 948 r = RESUME_GUEST; 949 break; 950 case EMULATE_FAIL: 951 pr_crit("%s: emulation at %lx failed (%08x)\n", 952 __func__, kvmppc_get_pc(vcpu), last_inst); 953 kvmppc_core_queue_program(vcpu, flags); 954 r = RESUME_GUEST; 955 break; 956 case EMULATE_DO_MMIO: 957 run->exit_reason = KVM_EXIT_MMIO; 958 r = RESUME_HOST_NV; 959 break; 960 case EMULATE_EXIT_USER: 961 r = RESUME_HOST_NV; 962 break; 963 default: 964 BUG(); 965 } 966 967 return r; 968 } 969 970 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu, 971 unsigned int exit_nr) 972 { 973 int r = RESUME_HOST; 974 int s; 975 976 vcpu->stat.sum_exits++; 977 978 run->exit_reason = KVM_EXIT_UNKNOWN; 979 run->ready_for_interrupt_injection = 1; 980 981 /* We get here with MSR.EE=1 */ 982 983 trace_kvm_exit(exit_nr, vcpu); 984 guest_exit(); 985 986 switch (exit_nr) { 987 case BOOK3S_INTERRUPT_INST_STORAGE: 988 { 989 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 990 vcpu->stat.pf_instruc++; 991 992 if (kvmppc_is_split_real(vcpu)) 993 kvmppc_fixup_split_real(vcpu); 994 995 #ifdef CONFIG_PPC_BOOK3S_32 996 /* We set segments as unused segments when invalidating them. So 997 * treat the respective fault as segment fault. */ 998 { 999 struct kvmppc_book3s_shadow_vcpu *svcpu; 1000 u32 sr; 1001 1002 svcpu = svcpu_get(vcpu); 1003 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; 1004 svcpu_put(svcpu); 1005 if (sr == SR_INVALID) { 1006 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 1007 r = RESUME_GUEST; 1008 break; 1009 } 1010 } 1011 #endif 1012 1013 /* only care about PTEG not found errors, but leave NX alone */ 1014 if (shadow_srr1 & 0x40000000) { 1015 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1016 r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr); 1017 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1018 vcpu->stat.sp_instruc++; 1019 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 1020 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 1021 /* 1022 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, 1023 * so we can't use the NX bit inside the guest. Let's cross our fingers, 1024 * that no guest that needs the dcbz hack does NX. 1025 */ 1026 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); 1027 r = RESUME_GUEST; 1028 } else { 1029 u64 msr = kvmppc_get_msr(vcpu); 1030 msr |= shadow_srr1 & 0x58000000; 1031 kvmppc_set_msr_fast(vcpu, msr); 1032 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1033 r = RESUME_GUEST; 1034 } 1035 break; 1036 } 1037 case BOOK3S_INTERRUPT_DATA_STORAGE: 1038 { 1039 ulong dar = kvmppc_get_fault_dar(vcpu); 1040 u32 fault_dsisr = vcpu->arch.fault_dsisr; 1041 vcpu->stat.pf_storage++; 1042 1043 #ifdef CONFIG_PPC_BOOK3S_32 1044 /* We set segments as unused segments when invalidating them. So 1045 * treat the respective fault as segment fault. */ 1046 { 1047 struct kvmppc_book3s_shadow_vcpu *svcpu; 1048 u32 sr; 1049 1050 svcpu = svcpu_get(vcpu); 1051 sr = svcpu->sr[dar >> SID_SHIFT]; 1052 svcpu_put(svcpu); 1053 if (sr == SR_INVALID) { 1054 kvmppc_mmu_map_segment(vcpu, dar); 1055 r = RESUME_GUEST; 1056 break; 1057 } 1058 } 1059 #endif 1060 1061 /* 1062 * We need to handle missing shadow PTEs, and 1063 * protection faults due to us mapping a page read-only 1064 * when the guest thinks it is writable. 1065 */ 1066 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { 1067 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1068 r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); 1069 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1070 } else { 1071 kvmppc_set_dar(vcpu, dar); 1072 kvmppc_set_dsisr(vcpu, fault_dsisr); 1073 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1074 r = RESUME_GUEST; 1075 } 1076 break; 1077 } 1078 case BOOK3S_INTERRUPT_DATA_SEGMENT: 1079 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { 1080 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 1081 kvmppc_book3s_queue_irqprio(vcpu, 1082 BOOK3S_INTERRUPT_DATA_SEGMENT); 1083 } 1084 r = RESUME_GUEST; 1085 break; 1086 case BOOK3S_INTERRUPT_INST_SEGMENT: 1087 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { 1088 kvmppc_book3s_queue_irqprio(vcpu, 1089 BOOK3S_INTERRUPT_INST_SEGMENT); 1090 } 1091 r = RESUME_GUEST; 1092 break; 1093 /* We're good on these - the host merely wanted to get our attention */ 1094 case BOOK3S_INTERRUPT_DECREMENTER: 1095 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1096 case BOOK3S_INTERRUPT_DOORBELL: 1097 case BOOK3S_INTERRUPT_H_DOORBELL: 1098 vcpu->stat.dec_exits++; 1099 r = RESUME_GUEST; 1100 break; 1101 case BOOK3S_INTERRUPT_EXTERNAL: 1102 case BOOK3S_INTERRUPT_EXTERNAL_LEVEL: 1103 case BOOK3S_INTERRUPT_EXTERNAL_HV: 1104 vcpu->stat.ext_intr_exits++; 1105 r = RESUME_GUEST; 1106 break; 1107 case BOOK3S_INTERRUPT_PERFMON: 1108 r = RESUME_GUEST; 1109 break; 1110 case BOOK3S_INTERRUPT_PROGRAM: 1111 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1112 r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); 1113 break; 1114 case BOOK3S_INTERRUPT_SYSCALL: 1115 { 1116 u32 last_sc; 1117 int emul; 1118 1119 /* Get last sc for papr */ 1120 if (vcpu->arch.papr_enabled) { 1121 /* The sc instuction points SRR0 to the next inst */ 1122 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); 1123 if (emul != EMULATE_DONE) { 1124 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); 1125 r = RESUME_GUEST; 1126 break; 1127 } 1128 } 1129 1130 if (vcpu->arch.papr_enabled && 1131 (last_sc == 0x44000022) && 1132 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 1133 /* SC 1 papr hypercalls */ 1134 ulong cmd = kvmppc_get_gpr(vcpu, 3); 1135 int i; 1136 1137 #ifdef CONFIG_PPC_BOOK3S_64 1138 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { 1139 r = RESUME_GUEST; 1140 break; 1141 } 1142 #endif 1143 1144 run->papr_hcall.nr = cmd; 1145 for (i = 0; i < 9; ++i) { 1146 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); 1147 run->papr_hcall.args[i] = gpr; 1148 } 1149 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1150 vcpu->arch.hcall_needed = 1; 1151 r = RESUME_HOST; 1152 } else if (vcpu->arch.osi_enabled && 1153 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && 1154 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { 1155 /* MOL hypercalls */ 1156 u64 *gprs = run->osi.gprs; 1157 int i; 1158 1159 run->exit_reason = KVM_EXIT_OSI; 1160 for (i = 0; i < 32; i++) 1161 gprs[i] = kvmppc_get_gpr(vcpu, i); 1162 vcpu->arch.osi_needed = 1; 1163 r = RESUME_HOST_NV; 1164 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && 1165 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { 1166 /* KVM PV hypercalls */ 1167 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); 1168 r = RESUME_GUEST; 1169 } else { 1170 /* Guest syscalls */ 1171 vcpu->stat.syscall_exits++; 1172 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1173 r = RESUME_GUEST; 1174 } 1175 break; 1176 } 1177 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1178 case BOOK3S_INTERRUPT_ALTIVEC: 1179 case BOOK3S_INTERRUPT_VSX: 1180 { 1181 int ext_msr = 0; 1182 int emul; 1183 u32 last_inst; 1184 1185 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { 1186 /* Do paired single instruction emulation */ 1187 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, 1188 &last_inst); 1189 if (emul == EMULATE_DONE) 1190 r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); 1191 else 1192 r = RESUME_GUEST; 1193 1194 break; 1195 } 1196 1197 /* Enable external provider */ 1198 switch (exit_nr) { 1199 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1200 ext_msr = MSR_FP; 1201 break; 1202 1203 case BOOK3S_INTERRUPT_ALTIVEC: 1204 ext_msr = MSR_VEC; 1205 break; 1206 1207 case BOOK3S_INTERRUPT_VSX: 1208 ext_msr = MSR_VSX; 1209 break; 1210 } 1211 1212 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); 1213 break; 1214 } 1215 case BOOK3S_INTERRUPT_ALIGNMENT: 1216 { 1217 u32 last_inst; 1218 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1219 1220 if (emul == EMULATE_DONE) { 1221 u32 dsisr; 1222 u64 dar; 1223 1224 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst); 1225 dar = kvmppc_alignment_dar(vcpu, last_inst); 1226 1227 kvmppc_set_dsisr(vcpu, dsisr); 1228 kvmppc_set_dar(vcpu, dar); 1229 1230 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1231 } 1232 r = RESUME_GUEST; 1233 break; 1234 } 1235 #ifdef CONFIG_PPC_BOOK3S_64 1236 case BOOK3S_INTERRUPT_FAC_UNAVAIL: 1237 kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); 1238 r = RESUME_GUEST; 1239 break; 1240 #endif 1241 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1242 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1243 r = RESUME_GUEST; 1244 break; 1245 case BOOK3S_INTERRUPT_TRACE: 1246 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1247 run->exit_reason = KVM_EXIT_DEBUG; 1248 r = RESUME_HOST; 1249 } else { 1250 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1251 r = RESUME_GUEST; 1252 } 1253 break; 1254 default: 1255 { 1256 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1257 /* Ugh - bork here! What did we get? */ 1258 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", 1259 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); 1260 r = RESUME_HOST; 1261 BUG(); 1262 break; 1263 } 1264 } 1265 1266 if (!(r & RESUME_HOST)) { 1267 /* To avoid clobbering exit_reason, only check for signals if 1268 * we aren't already exiting to userspace for some other 1269 * reason. */ 1270 1271 /* 1272 * Interrupts could be timers for the guest which we have to 1273 * inject again, so let's postpone them until we're in the guest 1274 * and if we really did time things so badly, then we just exit 1275 * again due to a host external interrupt. 1276 */ 1277 s = kvmppc_prepare_to_enter(vcpu); 1278 if (s <= 0) 1279 r = s; 1280 else { 1281 /* interrupts now hard-disabled */ 1282 kvmppc_fix_ee_before_entry(); 1283 } 1284 1285 kvmppc_handle_lost_ext(vcpu); 1286 } 1287 1288 trace_kvm_book3s_reenter(r, vcpu); 1289 1290 return r; 1291 } 1292 1293 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, 1294 struct kvm_sregs *sregs) 1295 { 1296 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1297 int i; 1298 1299 sregs->pvr = vcpu->arch.pvr; 1300 1301 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; 1302 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1303 for (i = 0; i < 64; i++) { 1304 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; 1305 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1306 } 1307 } else { 1308 for (i = 0; i < 16; i++) 1309 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); 1310 1311 for (i = 0; i < 8; i++) { 1312 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; 1313 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; 1314 } 1315 } 1316 1317 return 0; 1318 } 1319 1320 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, 1321 struct kvm_sregs *sregs) 1322 { 1323 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1324 int i; 1325 1326 kvmppc_set_pvr_pr(vcpu, sregs->pvr); 1327 1328 vcpu3s->sdr1 = sregs->u.s.sdr1; 1329 #ifdef CONFIG_PPC_BOOK3S_64 1330 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1331 /* Flush all SLB entries */ 1332 vcpu->arch.mmu.slbmte(vcpu, 0, 0); 1333 vcpu->arch.mmu.slbia(vcpu); 1334 1335 for (i = 0; i < 64; i++) { 1336 u64 rb = sregs->u.s.ppc64.slb[i].slbe; 1337 u64 rs = sregs->u.s.ppc64.slb[i].slbv; 1338 1339 if (rb & SLB_ESID_V) 1340 vcpu->arch.mmu.slbmte(vcpu, rs, rb); 1341 } 1342 } else 1343 #endif 1344 { 1345 for (i = 0; i < 16; i++) { 1346 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); 1347 } 1348 for (i = 0; i < 8; i++) { 1349 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, 1350 (u32)sregs->u.s.ppc32.ibat[i]); 1351 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, 1352 (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); 1353 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, 1354 (u32)sregs->u.s.ppc32.dbat[i]); 1355 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, 1356 (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); 1357 } 1358 } 1359 1360 /* Flush the MMU after messing with the segments */ 1361 kvmppc_mmu_pte_flush(vcpu, 0, 0); 1362 1363 return 0; 1364 } 1365 1366 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1367 union kvmppc_one_reg *val) 1368 { 1369 int r = 0; 1370 1371 switch (id) { 1372 case KVM_REG_PPC_DEBUG_INST: 1373 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1374 break; 1375 case KVM_REG_PPC_HIOR: 1376 *val = get_reg_val(id, to_book3s(vcpu)->hior); 1377 break; 1378 case KVM_REG_PPC_VTB: 1379 *val = get_reg_val(id, to_book3s(vcpu)->vtb); 1380 break; 1381 case KVM_REG_PPC_LPCR: 1382 case KVM_REG_PPC_LPCR_64: 1383 /* 1384 * We are only interested in the LPCR_ILE bit 1385 */ 1386 if (vcpu->arch.intr_msr & MSR_LE) 1387 *val = get_reg_val(id, LPCR_ILE); 1388 else 1389 *val = get_reg_val(id, 0); 1390 break; 1391 default: 1392 r = -EINVAL; 1393 break; 1394 } 1395 1396 return r; 1397 } 1398 1399 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) 1400 { 1401 if (new_lpcr & LPCR_ILE) 1402 vcpu->arch.intr_msr |= MSR_LE; 1403 else 1404 vcpu->arch.intr_msr &= ~MSR_LE; 1405 } 1406 1407 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1408 union kvmppc_one_reg *val) 1409 { 1410 int r = 0; 1411 1412 switch (id) { 1413 case KVM_REG_PPC_HIOR: 1414 to_book3s(vcpu)->hior = set_reg_val(id, *val); 1415 to_book3s(vcpu)->hior_explicit = true; 1416 break; 1417 case KVM_REG_PPC_VTB: 1418 to_book3s(vcpu)->vtb = set_reg_val(id, *val); 1419 break; 1420 case KVM_REG_PPC_LPCR: 1421 case KVM_REG_PPC_LPCR_64: 1422 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); 1423 break; 1424 default: 1425 r = -EINVAL; 1426 break; 1427 } 1428 1429 return r; 1430 } 1431 1432 static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm, 1433 unsigned int id) 1434 { 1435 struct kvmppc_vcpu_book3s *vcpu_book3s; 1436 struct kvm_vcpu *vcpu; 1437 int err = -ENOMEM; 1438 unsigned long p; 1439 1440 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1441 if (!vcpu) 1442 goto out; 1443 1444 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); 1445 if (!vcpu_book3s) 1446 goto free_vcpu; 1447 vcpu->arch.book3s = vcpu_book3s; 1448 1449 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1450 vcpu->arch.shadow_vcpu = 1451 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); 1452 if (!vcpu->arch.shadow_vcpu) 1453 goto free_vcpu3s; 1454 #endif 1455 1456 err = kvm_vcpu_init(vcpu, kvm, id); 1457 if (err) 1458 goto free_shadow_vcpu; 1459 1460 err = -ENOMEM; 1461 p = __get_free_page(GFP_KERNEL|__GFP_ZERO); 1462 if (!p) 1463 goto uninit_vcpu; 1464 vcpu->arch.shared = (void *)p; 1465 #ifdef CONFIG_PPC_BOOK3S_64 1466 /* Always start the shared struct in native endian mode */ 1467 #ifdef __BIG_ENDIAN__ 1468 vcpu->arch.shared_big_endian = true; 1469 #else 1470 vcpu->arch.shared_big_endian = false; 1471 #endif 1472 1473 /* 1474 * Default to the same as the host if we're on sufficiently 1475 * recent machine that we have 1TB segments; 1476 * otherwise default to PPC970FX. 1477 */ 1478 vcpu->arch.pvr = 0x3C0301; 1479 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1480 vcpu->arch.pvr = mfspr(SPRN_PVR); 1481 vcpu->arch.intr_msr = MSR_SF; 1482 #else 1483 /* default to book3s_32 (750) */ 1484 vcpu->arch.pvr = 0x84202; 1485 #endif 1486 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); 1487 vcpu->arch.slb_nr = 64; 1488 1489 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; 1490 1491 err = kvmppc_mmu_init(vcpu); 1492 if (err < 0) 1493 goto uninit_vcpu; 1494 1495 return vcpu; 1496 1497 uninit_vcpu: 1498 kvm_vcpu_uninit(vcpu); 1499 free_shadow_vcpu: 1500 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1501 kfree(vcpu->arch.shadow_vcpu); 1502 free_vcpu3s: 1503 #endif 1504 vfree(vcpu_book3s); 1505 free_vcpu: 1506 kmem_cache_free(kvm_vcpu_cache, vcpu); 1507 out: 1508 return ERR_PTR(err); 1509 } 1510 1511 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) 1512 { 1513 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 1514 1515 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); 1516 kvm_vcpu_uninit(vcpu); 1517 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1518 kfree(vcpu->arch.shadow_vcpu); 1519 #endif 1520 vfree(vcpu_book3s); 1521 kmem_cache_free(kvm_vcpu_cache, vcpu); 1522 } 1523 1524 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1525 { 1526 int ret; 1527 #ifdef CONFIG_ALTIVEC 1528 unsigned long uninitialized_var(vrsave); 1529 #endif 1530 1531 /* Check if we can run the vcpu at all */ 1532 if (!vcpu->arch.sane) { 1533 kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1534 ret = -EINVAL; 1535 goto out; 1536 } 1537 1538 kvmppc_setup_debug(vcpu); 1539 1540 /* 1541 * Interrupts could be timers for the guest which we have to inject 1542 * again, so let's postpone them until we're in the guest and if we 1543 * really did time things so badly, then we just exit again due to 1544 * a host external interrupt. 1545 */ 1546 ret = kvmppc_prepare_to_enter(vcpu); 1547 if (ret <= 0) 1548 goto out; 1549 /* interrupts now hard-disabled */ 1550 1551 /* Save FPU, Altivec and VSX state */ 1552 giveup_all(current); 1553 1554 /* Preload FPU if it's enabled */ 1555 if (kvmppc_get_msr(vcpu) & MSR_FP) 1556 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 1557 1558 kvmppc_fix_ee_before_entry(); 1559 1560 ret = __kvmppc_vcpu_run(kvm_run, vcpu); 1561 1562 kvmppc_clear_debug(vcpu); 1563 1564 /* No need for guest_exit. It's done in handle_exit. 1565 We also get here with interrupts enabled. */ 1566 1567 /* Make sure we save the guest FPU/Altivec/VSX state */ 1568 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 1569 1570 /* Make sure we save the guest TAR/EBB/DSCR state */ 1571 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1572 1573 out: 1574 vcpu->mode = OUTSIDE_GUEST_MODE; 1575 return ret; 1576 } 1577 1578 /* 1579 * Get (and clear) the dirty memory log for a memory slot. 1580 */ 1581 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, 1582 struct kvm_dirty_log *log) 1583 { 1584 struct kvm_memslots *slots; 1585 struct kvm_memory_slot *memslot; 1586 struct kvm_vcpu *vcpu; 1587 ulong ga, ga_end; 1588 int is_dirty = 0; 1589 int r; 1590 unsigned long n; 1591 1592 mutex_lock(&kvm->slots_lock); 1593 1594 r = kvm_get_dirty_log(kvm, log, &is_dirty); 1595 if (r) 1596 goto out; 1597 1598 /* If nothing is dirty, don't bother messing with page tables. */ 1599 if (is_dirty) { 1600 slots = kvm_memslots(kvm); 1601 memslot = id_to_memslot(slots, log->slot); 1602 1603 ga = memslot->base_gfn << PAGE_SHIFT; 1604 ga_end = ga + (memslot->npages << PAGE_SHIFT); 1605 1606 kvm_for_each_vcpu(n, vcpu, kvm) 1607 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); 1608 1609 n = kvm_dirty_bitmap_bytes(memslot); 1610 memset(memslot->dirty_bitmap, 0, n); 1611 } 1612 1613 r = 0; 1614 out: 1615 mutex_unlock(&kvm->slots_lock); 1616 return r; 1617 } 1618 1619 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, 1620 struct kvm_memory_slot *memslot) 1621 { 1622 return; 1623 } 1624 1625 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, 1626 struct kvm_memory_slot *memslot, 1627 const struct kvm_userspace_memory_region *mem) 1628 { 1629 return 0; 1630 } 1631 1632 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, 1633 const struct kvm_userspace_memory_region *mem, 1634 const struct kvm_memory_slot *old, 1635 const struct kvm_memory_slot *new) 1636 { 1637 return; 1638 } 1639 1640 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free, 1641 struct kvm_memory_slot *dont) 1642 { 1643 return; 1644 } 1645 1646 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot, 1647 unsigned long npages) 1648 { 1649 return 0; 1650 } 1651 1652 1653 #ifdef CONFIG_PPC64 1654 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1655 struct kvm_ppc_smmu_info *info) 1656 { 1657 long int i; 1658 struct kvm_vcpu *vcpu; 1659 1660 info->flags = 0; 1661 1662 /* SLB is always 64 entries */ 1663 info->slb_size = 64; 1664 1665 /* Standard 4k base page size segment */ 1666 info->sps[0].page_shift = 12; 1667 info->sps[0].slb_enc = 0; 1668 info->sps[0].enc[0].page_shift = 12; 1669 info->sps[0].enc[0].pte_enc = 0; 1670 1671 /* 1672 * 64k large page size. 1673 * We only want to put this in if the CPUs we're emulating 1674 * support it, but unfortunately we don't have a vcpu easily 1675 * to hand here to test. Just pick the first vcpu, and if 1676 * that doesn't exist yet, report the minimum capability, 1677 * i.e., no 64k pages. 1678 * 1T segment support goes along with 64k pages. 1679 */ 1680 i = 1; 1681 vcpu = kvm_get_vcpu(kvm, 0); 1682 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { 1683 info->flags = KVM_PPC_1T_SEGMENTS; 1684 info->sps[i].page_shift = 16; 1685 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; 1686 info->sps[i].enc[0].page_shift = 16; 1687 info->sps[i].enc[0].pte_enc = 1; 1688 ++i; 1689 } 1690 1691 /* Standard 16M large page size segment */ 1692 info->sps[i].page_shift = 24; 1693 info->sps[i].slb_enc = SLB_VSID_L; 1694 info->sps[i].enc[0].page_shift = 24; 1695 info->sps[i].enc[0].pte_enc = 0; 1696 1697 return 0; 1698 } 1699 #else 1700 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1701 struct kvm_ppc_smmu_info *info) 1702 { 1703 /* We should not get called */ 1704 BUG(); 1705 } 1706 #endif /* CONFIG_PPC64 */ 1707 1708 static unsigned int kvm_global_user_count = 0; 1709 static DEFINE_SPINLOCK(kvm_global_user_count_lock); 1710 1711 static int kvmppc_core_init_vm_pr(struct kvm *kvm) 1712 { 1713 mutex_init(&kvm->arch.hpt_mutex); 1714 1715 #ifdef CONFIG_PPC_BOOK3S_64 1716 /* Start out with the default set of hcalls enabled */ 1717 kvmppc_pr_init_default_hcalls(kvm); 1718 #endif 1719 1720 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 1721 spin_lock(&kvm_global_user_count_lock); 1722 if (++kvm_global_user_count == 1) 1723 pseries_disable_reloc_on_exc(); 1724 spin_unlock(&kvm_global_user_count_lock); 1725 } 1726 return 0; 1727 } 1728 1729 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) 1730 { 1731 #ifdef CONFIG_PPC64 1732 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 1733 #endif 1734 1735 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 1736 spin_lock(&kvm_global_user_count_lock); 1737 BUG_ON(kvm_global_user_count == 0); 1738 if (--kvm_global_user_count == 0) 1739 pseries_enable_reloc_on_exc(); 1740 spin_unlock(&kvm_global_user_count_lock); 1741 } 1742 } 1743 1744 static int kvmppc_core_check_processor_compat_pr(void) 1745 { 1746 /* 1747 * Disable KVM for Power9 untill the required bits merged. 1748 */ 1749 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1750 return -EIO; 1751 return 0; 1752 } 1753 1754 static long kvm_arch_vm_ioctl_pr(struct file *filp, 1755 unsigned int ioctl, unsigned long arg) 1756 { 1757 return -ENOTTY; 1758 } 1759 1760 static struct kvmppc_ops kvm_ops_pr = { 1761 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, 1762 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, 1763 .get_one_reg = kvmppc_get_one_reg_pr, 1764 .set_one_reg = kvmppc_set_one_reg_pr, 1765 .vcpu_load = kvmppc_core_vcpu_load_pr, 1766 .vcpu_put = kvmppc_core_vcpu_put_pr, 1767 .set_msr = kvmppc_set_msr_pr, 1768 .vcpu_run = kvmppc_vcpu_run_pr, 1769 .vcpu_create = kvmppc_core_vcpu_create_pr, 1770 .vcpu_free = kvmppc_core_vcpu_free_pr, 1771 .check_requests = kvmppc_core_check_requests_pr, 1772 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, 1773 .flush_memslot = kvmppc_core_flush_memslot_pr, 1774 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, 1775 .commit_memory_region = kvmppc_core_commit_memory_region_pr, 1776 .unmap_hva = kvm_unmap_hva_pr, 1777 .unmap_hva_range = kvm_unmap_hva_range_pr, 1778 .age_hva = kvm_age_hva_pr, 1779 .test_age_hva = kvm_test_age_hva_pr, 1780 .set_spte_hva = kvm_set_spte_hva_pr, 1781 .mmu_destroy = kvmppc_mmu_destroy_pr, 1782 .free_memslot = kvmppc_core_free_memslot_pr, 1783 .create_memslot = kvmppc_core_create_memslot_pr, 1784 .init_vm = kvmppc_core_init_vm_pr, 1785 .destroy_vm = kvmppc_core_destroy_vm_pr, 1786 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, 1787 .emulate_op = kvmppc_core_emulate_op_pr, 1788 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, 1789 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, 1790 .fast_vcpu_kick = kvm_vcpu_kick, 1791 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr, 1792 #ifdef CONFIG_PPC_BOOK3S_64 1793 .hcall_implemented = kvmppc_hcall_impl_pr, 1794 #endif 1795 }; 1796 1797 1798 int kvmppc_book3s_init_pr(void) 1799 { 1800 int r; 1801 1802 r = kvmppc_core_check_processor_compat_pr(); 1803 if (r < 0) 1804 return r; 1805 1806 kvm_ops_pr.owner = THIS_MODULE; 1807 kvmppc_pr_ops = &kvm_ops_pr; 1808 1809 r = kvmppc_mmu_hpte_sysinit(); 1810 return r; 1811 } 1812 1813 void kvmppc_book3s_exit_pr(void) 1814 { 1815 kvmppc_pr_ops = NULL; 1816 kvmppc_mmu_hpte_sysexit(); 1817 } 1818 1819 /* 1820 * We only support separate modules for book3s 64 1821 */ 1822 #ifdef CONFIG_PPC_BOOK3S_64 1823 1824 module_init(kvmppc_book3s_init_pr); 1825 module_exit(kvmppc_book3s_exit_pr); 1826 1827 MODULE_LICENSE("GPL"); 1828 MODULE_ALIAS_MISCDEV(KVM_MINOR); 1829 MODULE_ALIAS("devname:kvm"); 1830 #endif 1831