xref: /linux/arch/powerpc/kvm/book3s_pr.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Alexander Graf <agraf@suse.de>
7  *    Kevin Wolf <mail@kevin-wolf.de>
8  *    Paul Mackerras <paulus@samba.org>
9  *
10  * Description:
11  * Functions relating to running KVM on Book 3S processors where
12  * we don't have access to hypervisor mode, and we run the guest
13  * in problem state (user mode).
14  *
15  * This file is derived from arch/powerpc/kvm/44x.c,
16  * by Hollis Blanchard <hollisb@us.ibm.com>.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23 
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/interrupt.h>
29 #include <asm/io.h>
30 #include <asm/kvm_ppc.h>
31 #include <asm/kvm_book3s.h>
32 #include <asm/mmu_context.h>
33 #include <asm/switch_to.h>
34 #include <asm/firmware.h>
35 #include <asm/setup.h>
36 #include <linux/gfp.h>
37 #include <linux/sched.h>
38 #include <linux/vmalloc.h>
39 #include <linux/highmem.h>
40 #include <linux/module.h>
41 #include <linux/miscdevice.h>
42 #include <asm/asm-prototypes.h>
43 #include <asm/tm.h>
44 
45 #include "book3s.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include "trace_pr.h"
49 
50 /* #define EXIT_DEBUG */
51 /* #define DEBUG_EXT */
52 
53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54 			     ulong msr);
55 #ifdef CONFIG_PPC_BOOK3S_64
56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57 #endif
58 
59 /* Some compatibility defines */
60 #ifdef CONFIG_PPC_BOOK3S_32
61 #define MSR_USER32 MSR_USER
62 #define MSR_USER64 MSR_USER
63 #define HW_PAGE_SIZE PAGE_SIZE
64 #define HPTE_R_M   _PAGE_COHERENT
65 #endif
66 
67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68 {
69 	ulong msr = kvmppc_get_msr(vcpu);
70 	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71 }
72 
73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74 {
75 	ulong msr = kvmppc_get_msr(vcpu);
76 	ulong pc = kvmppc_get_pc(vcpu);
77 
78 	/* We are in DR only split real mode */
79 	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80 		return;
81 
82 	/* We have not fixed up the guest already */
83 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84 		return;
85 
86 	/* The code is in fixupable address space */
87 	if (pc & SPLIT_HACK_MASK)
88 		return;
89 
90 	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91 	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92 }
93 
94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95 {
96 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97 		ulong pc = kvmppc_get_pc(vcpu);
98 		ulong lr = kvmppc_get_lr(vcpu);
99 		if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100 			kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101 		if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102 			kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103 		vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104 	}
105 }
106 
107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108 {
109 	unsigned long msr, pc, new_msr, new_pc;
110 
111 	kvmppc_unfixup_split_real(vcpu);
112 
113 	msr = kvmppc_get_msr(vcpu);
114 	pc = kvmppc_get_pc(vcpu);
115 	new_msr = vcpu->arch.intr_msr;
116 	new_pc = to_book3s(vcpu)->hior + vec;
117 
118 #ifdef CONFIG_PPC_BOOK3S_64
119 	/* If transactional, change to suspend mode on IRQ delivery */
120 	if (MSR_TM_TRANSACTIONAL(msr))
121 		new_msr |= MSR_TS_S;
122 	else
123 		new_msr |= msr & MSR_TS_MASK;
124 #endif
125 
126 	kvmppc_set_srr0(vcpu, pc);
127 	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128 	kvmppc_set_pc(vcpu, new_pc);
129 	kvmppc_set_msr(vcpu, new_msr);
130 }
131 
132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133 {
134 #ifdef CONFIG_PPC_BOOK3S_64
135 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136 	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137 	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138 	svcpu->in_use = 0;
139 	svcpu_put(svcpu);
140 
141 	/* Disable AIL if supported */
142 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
143 		if (cpu_has_feature(CPU_FTR_ARCH_207S))
144 			mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145 		if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146 			mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147 	}
148 #endif
149 
150 	vcpu->cpu = smp_processor_id();
151 #ifdef CONFIG_PPC_BOOK3S_32
152 	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153 #endif
154 
155 	if (kvmppc_is_split_real(vcpu))
156 		kvmppc_fixup_split_real(vcpu);
157 
158 	kvmppc_restore_tm_pr(vcpu);
159 }
160 
161 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162 {
163 #ifdef CONFIG_PPC_BOOK3S_64
164 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165 	if (svcpu->in_use) {
166 		kvmppc_copy_from_svcpu(vcpu);
167 	}
168 	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169 	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170 	svcpu_put(svcpu);
171 
172 	/* Enable AIL if supported */
173 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
174 		if (cpu_has_feature(CPU_FTR_ARCH_207S))
175 			mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176 		if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177 			mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178 	}
179 #endif
180 
181 	if (kvmppc_is_split_real(vcpu))
182 		kvmppc_unfixup_split_real(vcpu);
183 
184 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186 	kvmppc_save_tm_pr(vcpu);
187 
188 	vcpu->cpu = -1;
189 }
190 
191 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
192 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193 {
194 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195 
196 	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197 	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198 	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199 	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200 	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201 	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202 	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203 	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204 	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205 	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206 	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207 	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208 	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209 	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210 	svcpu->cr  = vcpu->arch.regs.ccr;
211 	svcpu->xer = vcpu->arch.regs.xer;
212 	svcpu->ctr = vcpu->arch.regs.ctr;
213 	svcpu->lr  = vcpu->arch.regs.link;
214 	svcpu->pc  = vcpu->arch.regs.nip;
215 #ifdef CONFIG_PPC_BOOK3S_64
216 	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217 #endif
218 	/*
219 	 * Now also save the current time base value. We use this
220 	 * to find the guest purr and spurr value.
221 	 */
222 	vcpu->arch.entry_tb = get_tb();
223 	vcpu->arch.entry_vtb = get_vtb();
224 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
225 		vcpu->arch.entry_ic = mfspr(SPRN_IC);
226 	svcpu->in_use = true;
227 
228 	svcpu_put(svcpu);
229 }
230 
231 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232 {
233 	ulong guest_msr = kvmppc_get_msr(vcpu);
234 	ulong smsr = guest_msr;
235 
236 	/* Guest MSR values */
237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239 		MSR_TM | MSR_TS_MASK;
240 #else
241 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242 #endif
243 	/* Process MSR values */
244 	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245 	/* External providers the guest reserved */
246 	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247 	/* 64-bit Process MSR values */
248 #ifdef CONFIG_PPC_BOOK3S_64
249 	smsr |= MSR_HV;
250 #endif
251 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252 	/*
253 	 * in guest privileged state, we want to fail all TM transactions.
254 	 * So disable MSR TM bit so that all tbegin. will be able to be
255 	 * trapped into host.
256 	 */
257 	if (!(guest_msr & MSR_PR))
258 		smsr &= ~MSR_TM;
259 #endif
260 	vcpu->arch.shadow_msr = smsr;
261 }
262 
263 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
264 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265 {
266 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268 	ulong old_msr;
269 #endif
270 
271 	/*
272 	 * Maybe we were already preempted and synced the svcpu from
273 	 * our preempt notifiers. Don't bother touching this svcpu then.
274 	 */
275 	if (!svcpu->in_use)
276 		goto out;
277 
278 	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279 	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280 	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281 	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282 	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283 	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284 	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285 	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286 	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287 	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288 	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289 	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290 	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291 	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292 	vcpu->arch.regs.ccr  = svcpu->cr;
293 	vcpu->arch.regs.xer = svcpu->xer;
294 	vcpu->arch.regs.ctr = svcpu->ctr;
295 	vcpu->arch.regs.link  = svcpu->lr;
296 	vcpu->arch.regs.nip  = svcpu->pc;
297 	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298 	vcpu->arch.fault_dar   = svcpu->fault_dar;
299 	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300 	vcpu->arch.last_inst   = svcpu->last_inst;
301 #ifdef CONFIG_PPC_BOOK3S_64
302 	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303 #endif
304 	/*
305 	 * Update purr and spurr using time base on exit.
306 	 */
307 	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308 	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309 	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
311 		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312 
313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314 	/*
315 	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316 	 * notifying host:
317 	 *  modified by unprivileged instructions like "tbegin"/"tend"/
318 	 * "tresume"/"tsuspend" in PR KVM guest.
319 	 *
320 	 * It is necessary to sync here to calculate a correct shadow_msr.
321 	 *
322 	 * privileged guest's tbegin will be failed at present. So we
323 	 * only take care of problem state guest.
324 	 */
325 	old_msr = kvmppc_get_msr(vcpu);
326 	if (unlikely((old_msr & MSR_PR) &&
327 		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328 				(old_msr & (MSR_TS_MASK)))) {
329 		old_msr &= ~(MSR_TS_MASK);
330 		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331 		kvmppc_set_msr_fast(vcpu, old_msr);
332 		kvmppc_recalc_shadow_msr(vcpu);
333 	}
334 #endif
335 
336 	svcpu->in_use = false;
337 
338 out:
339 	svcpu_put(svcpu);
340 }
341 
342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
343 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344 {
345 	tm_enable();
346 	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347 	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348 	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349 	tm_disable();
350 }
351 
352 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353 {
354 	tm_enable();
355 	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356 	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357 	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358 	tm_disable();
359 }
360 
361 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362  * hardware.
363  */
364 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365 {
366 	ulong exit_nr;
367 	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368 		(MSR_FP | MSR_VEC | MSR_VSX);
369 
370 	if (!ext_diff)
371 		return;
372 
373 	if (ext_diff == MSR_FP)
374 		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375 	else if (ext_diff == MSR_VEC)
376 		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377 	else
378 		exit_nr = BOOK3S_INTERRUPT_VSX;
379 
380 	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381 }
382 
383 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384 {
385 	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386 		kvmppc_save_tm_sprs(vcpu);
387 		return;
388 	}
389 
390 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391 	kvmppc_giveup_ext(vcpu, MSR_VSX);
392 
393 	preempt_disable();
394 	_kvmppc_save_tm_pr(vcpu, mfmsr());
395 	preempt_enable();
396 }
397 
398 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399 {
400 	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401 		kvmppc_restore_tm_sprs(vcpu);
402 		if (kvmppc_get_msr(vcpu) & MSR_TM) {
403 			kvmppc_handle_lost_math_exts(vcpu);
404 			if (vcpu->arch.fscr & FSCR_TAR)
405 				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406 		}
407 		return;
408 	}
409 
410 	preempt_disable();
411 	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412 	preempt_enable();
413 
414 	if (kvmppc_get_msr(vcpu) & MSR_TM) {
415 		kvmppc_handle_lost_math_exts(vcpu);
416 		if (vcpu->arch.fscr & FSCR_TAR)
417 			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418 	}
419 }
420 #endif
421 
422 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423 {
424 	int r = 1; /* Indicate we want to get back into the guest */
425 
426 	/* We misuse TLB_FLUSH to indicate that we want to clear
427 	   all shadow cache entries */
428 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
430 
431 	return r;
432 }
433 
434 /************* MMU Notifiers *************/
435 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436 {
437 	unsigned long i;
438 	struct kvm_vcpu *vcpu;
439 
440 	kvm_for_each_vcpu(i, vcpu, kvm)
441 		kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442 				      range->end << PAGE_SHIFT);
443 
444 	return false;
445 }
446 
447 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449 	return do_kvm_unmap_gfn(kvm, range);
450 }
451 
452 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454 	/* XXX could be more clever ;) */
455 	return false;
456 }
457 
458 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459 {
460 	/* XXX could be more clever ;) */
461 	return false;
462 }
463 
464 /*****************************************/
465 
466 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
467 {
468 	ulong old_msr;
469 
470 	/* For PAPR guest, make sure MSR reflects guest mode */
471 	if (vcpu->arch.papr_enabled)
472 		msr = (msr & ~MSR_HV) | MSR_ME;
473 
474 #ifdef EXIT_DEBUG
475 	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
476 #endif
477 
478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479 	/* We should never target guest MSR to TS=10 && PR=0,
480 	 * since we always fail transaction for guest privilege
481 	 * state.
482 	 */
483 	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
484 		kvmppc_emulate_tabort(vcpu,
485 			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
486 #endif
487 
488 	old_msr = kvmppc_get_msr(vcpu);
489 	msr &= to_book3s(vcpu)->msr_mask;
490 	kvmppc_set_msr_fast(vcpu, msr);
491 	kvmppc_recalc_shadow_msr(vcpu);
492 
493 	if (msr & MSR_POW) {
494 		if (!vcpu->arch.pending_exceptions) {
495 			kvm_vcpu_halt(vcpu);
496 			vcpu->stat.generic.halt_wakeup++;
497 
498 			/* Unset POW bit after we woke up */
499 			msr &= ~MSR_POW;
500 			kvmppc_set_msr_fast(vcpu, msr);
501 		}
502 	}
503 
504 	if (kvmppc_is_split_real(vcpu))
505 		kvmppc_fixup_split_real(vcpu);
506 	else
507 		kvmppc_unfixup_split_real(vcpu);
508 
509 	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
510 		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
511 		kvmppc_mmu_flush_segments(vcpu);
512 		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
513 
514 		/* Preload magic page segment when in kernel mode */
515 		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
516 			struct kvm_vcpu_arch *a = &vcpu->arch;
517 
518 			if (msr & MSR_DR)
519 				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
520 			else
521 				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
522 		}
523 	}
524 
525 	/*
526 	 * When switching from 32 to 64-bit, we may have a stale 32-bit
527 	 * magic page around, we need to flush it. Typically 32-bit magic
528 	 * page will be instantiated when calling into RTAS. Note: We
529 	 * assume that such transition only happens while in kernel mode,
530 	 * ie, we never transition from user 32-bit to kernel 64-bit with
531 	 * a 32-bit magic page around.
532 	 */
533 	if (vcpu->arch.magic_page_pa &&
534 	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
535 		/* going from RTAS to normal kernel code */
536 		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
537 				     ~0xFFFUL);
538 	}
539 
540 	/* Preload FPU if it's enabled */
541 	if (kvmppc_get_msr(vcpu) & MSR_FP)
542 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
543 
544 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
545 	if (kvmppc_get_msr(vcpu) & MSR_TM)
546 		kvmppc_handle_lost_math_exts(vcpu);
547 #endif
548 }
549 
550 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
551 {
552 	u32 host_pvr;
553 
554 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
555 	vcpu->arch.pvr = pvr;
556 #ifdef CONFIG_PPC_BOOK3S_64
557 	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
558 		kvmppc_mmu_book3s_64_init(vcpu);
559 		if (!to_book3s(vcpu)->hior_explicit)
560 			to_book3s(vcpu)->hior = 0xfff00000;
561 		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
562 		vcpu->arch.cpu_type = KVM_CPU_3S_64;
563 	} else
564 #endif
565 	{
566 		kvmppc_mmu_book3s_32_init(vcpu);
567 		if (!to_book3s(vcpu)->hior_explicit)
568 			to_book3s(vcpu)->hior = 0;
569 		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
570 		vcpu->arch.cpu_type = KVM_CPU_3S_32;
571 	}
572 
573 	kvmppc_sanity_check(vcpu);
574 
575 	/* If we are in hypervisor level on 970, we can tell the CPU to
576 	 * treat DCBZ as 32 bytes store */
577 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
578 	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
579 	    !strcmp(cur_cpu_spec->platform, "ppc970"))
580 		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
581 
582 	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
583 	   really needs them in a VM on Cell and force disable them. */
584 	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
585 		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
586 
587 	/*
588 	 * If they're asking for POWER6 or later, set the flag
589 	 * indicating that we can do multiple large page sizes
590 	 * and 1TB segments.
591 	 * Also set the flag that indicates that tlbie has the large
592 	 * page bit in the RB operand instead of the instruction.
593 	 */
594 	switch (PVR_VER(pvr)) {
595 	case PVR_POWER6:
596 	case PVR_POWER7:
597 	case PVR_POWER7p:
598 	case PVR_POWER8:
599 	case PVR_POWER8E:
600 	case PVR_POWER8NVL:
601 	case PVR_HX_C2000:
602 	case PVR_POWER9:
603 		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
604 			BOOK3S_HFLAG_NEW_TLBIE;
605 		break;
606 	}
607 
608 #ifdef CONFIG_PPC_BOOK3S_32
609 	/* 32 bit Book3S always has 32 byte dcbz */
610 	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
611 #endif
612 
613 	/* On some CPUs we can execute paired single operations natively */
614 	asm ( "mfpvr %0" : "=r"(host_pvr));
615 	switch (host_pvr) {
616 	case 0x00080200:	/* lonestar 2.0 */
617 	case 0x00088202:	/* lonestar 2.2 */
618 	case 0x70000100:	/* gekko 1.0 */
619 	case 0x00080100:	/* gekko 2.0 */
620 	case 0x00083203:	/* gekko 2.3a */
621 	case 0x00083213:	/* gekko 2.3b */
622 	case 0x00083204:	/* gekko 2.4 */
623 	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
624 	case 0x00087200:	/* broadway */
625 		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
626 		/* Enable HID2.PSE - in case we need it later */
627 		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
628 	}
629 }
630 
631 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
632  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
633  * emulate 32 bytes dcbz length.
634  *
635  * The Book3s_64 inventors also realized this case and implemented a special bit
636  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
637  *
638  * My approach here is to patch the dcbz instruction on executing pages.
639  */
640 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
641 {
642 	struct kvm_host_map map;
643 	u64 hpage_offset;
644 	u32 *page;
645 	int i, r;
646 
647 	r = kvm_vcpu_map(vcpu, pte->raddr >> PAGE_SHIFT, &map);
648 	if (r)
649 		return;
650 
651 	hpage_offset = pte->raddr & ~PAGE_MASK;
652 	hpage_offset &= ~0xFFFULL;
653 	hpage_offset /= 4;
654 
655 	page = map.hva;
656 
657 	/* patch dcbz into reserved instruction, so we trap */
658 	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
659 		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
660 			page[i] &= cpu_to_be32(0xfffffff7);
661 
662 	kvm_vcpu_unmap(vcpu, &map);
663 }
664 
665 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
666 {
667 	ulong mp_pa = vcpu->arch.magic_page_pa;
668 
669 	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
670 		mp_pa = (uint32_t)mp_pa;
671 
672 	gpa &= ~0xFFFULL;
673 	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
674 		return true;
675 	}
676 
677 	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
678 }
679 
680 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
681 			    ulong eaddr, int vec)
682 {
683 	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
684 	bool iswrite = false;
685 	int r = RESUME_GUEST;
686 	int relocated;
687 	int page_found = 0;
688 	struct kvmppc_pte pte = { 0 };
689 	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
690 	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
691 	u64 vsid;
692 
693 	relocated = data ? dr : ir;
694 	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
695 		iswrite = true;
696 
697 	/* Resolve real address if translation turned on */
698 	if (relocated) {
699 		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
700 	} else {
701 		pte.may_execute = true;
702 		pte.may_read = true;
703 		pte.may_write = true;
704 		pte.raddr = eaddr & KVM_PAM;
705 		pte.eaddr = eaddr;
706 		pte.vpage = eaddr >> 12;
707 		pte.page_size = MMU_PAGE_64K;
708 		pte.wimg = HPTE_R_M;
709 	}
710 
711 	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
712 	case 0:
713 		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
714 		break;
715 	case MSR_DR:
716 		if (!data &&
717 		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
718 		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
719 			pte.raddr &= ~SPLIT_HACK_MASK;
720 		fallthrough;
721 	case MSR_IR:
722 		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
723 
724 		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
725 			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
726 		else
727 			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
728 		pte.vpage |= vsid;
729 
730 		if (vsid == -1)
731 			page_found = -EINVAL;
732 		break;
733 	}
734 
735 	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
736 	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
737 		/*
738 		 * If we do the dcbz hack, we have to NX on every execution,
739 		 * so we can patch the executing code. This renders our guest
740 		 * NX-less.
741 		 */
742 		pte.may_execute = !data;
743 	}
744 
745 	if (page_found == -ENOENT || page_found == -EPERM) {
746 		/* Page not found in guest PTE entries, or protection fault */
747 		u64 flags;
748 
749 		if (page_found == -EPERM)
750 			flags = DSISR_PROTFAULT;
751 		else
752 			flags = DSISR_NOHPTE;
753 		if (data) {
754 			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
755 			kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags);
756 		} else {
757 			kvmppc_core_queue_inst_storage(vcpu, flags);
758 		}
759 	} else if (page_found == -EINVAL) {
760 		/* Page not found in guest SLB */
761 		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
762 		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
763 	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
764 		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
765 			/*
766 			 * There is already a host HPTE there, presumably
767 			 * a read-only one for a page the guest thinks
768 			 * is writable, so get rid of it first.
769 			 */
770 			kvmppc_mmu_unmap_page(vcpu, &pte);
771 		}
772 		/* The guest's PTE is not mapped yet. Map on the host */
773 		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
774 			/* Exit KVM if mapping failed */
775 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
776 			return RESUME_HOST;
777 		}
778 		if (data)
779 			vcpu->stat.sp_storage++;
780 		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
781 			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
782 			kvmppc_patch_dcbz(vcpu, &pte);
783 	} else {
784 		/* MMIO */
785 		vcpu->stat.mmio_exits++;
786 		vcpu->arch.paddr_accessed = pte.raddr;
787 		vcpu->arch.vaddr_accessed = pte.eaddr;
788 		r = kvmppc_emulate_mmio(vcpu);
789 		if ( r == RESUME_HOST_NV )
790 			r = RESUME_HOST;
791 	}
792 
793 	return r;
794 }
795 
796 /* Give up external provider (FPU, Altivec, VSX) */
797 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
798 {
799 	struct thread_struct *t = &current->thread;
800 
801 	/*
802 	 * VSX instructions can access FP and vector registers, so if
803 	 * we are giving up VSX, make sure we give up FP and VMX as well.
804 	 */
805 	if (msr & MSR_VSX)
806 		msr |= MSR_FP | MSR_VEC;
807 
808 	msr &= vcpu->arch.guest_owned_ext;
809 	if (!msr)
810 		return;
811 
812 #ifdef DEBUG_EXT
813 	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
814 #endif
815 
816 	if (msr & MSR_FP) {
817 		/*
818 		 * Note that on CPUs with VSX, giveup_fpu stores
819 		 * both the traditional FP registers and the added VSX
820 		 * registers into thread.fp_state.fpr[].
821 		 */
822 		if (t->regs->msr & MSR_FP)
823 			giveup_fpu(current);
824 		t->fp_save_area = NULL;
825 	}
826 
827 #ifdef CONFIG_ALTIVEC
828 	if (msr & MSR_VEC) {
829 		if (current->thread.regs->msr & MSR_VEC)
830 			giveup_altivec(current);
831 		t->vr_save_area = NULL;
832 	}
833 #endif
834 
835 	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
836 	kvmppc_recalc_shadow_msr(vcpu);
837 }
838 
839 /* Give up facility (TAR / EBB / DSCR) */
840 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
841 {
842 #ifdef CONFIG_PPC_BOOK3S_64
843 	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
844 		/* Facility not available to the guest, ignore giveup request*/
845 		return;
846 	}
847 
848 	switch (fac) {
849 	case FSCR_TAR_LG:
850 		vcpu->arch.tar = mfspr(SPRN_TAR);
851 		mtspr(SPRN_TAR, current->thread.tar);
852 		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
853 		break;
854 	}
855 #endif
856 }
857 
858 /* Handle external providers (FPU, Altivec, VSX) */
859 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
860 			     ulong msr)
861 {
862 	struct thread_struct *t = &current->thread;
863 
864 	/* When we have paired singles, we emulate in software */
865 	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
866 		return RESUME_GUEST;
867 
868 	if (!(kvmppc_get_msr(vcpu) & msr)) {
869 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
870 		return RESUME_GUEST;
871 	}
872 
873 	if (msr == MSR_VSX) {
874 		/* No VSX?  Give an illegal instruction interrupt */
875 #ifdef CONFIG_VSX
876 		if (!cpu_has_feature(CPU_FTR_VSX))
877 #endif
878 		{
879 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
880 			return RESUME_GUEST;
881 		}
882 
883 		/*
884 		 * We have to load up all the FP and VMX registers before
885 		 * we can let the guest use VSX instructions.
886 		 */
887 		msr = MSR_FP | MSR_VEC | MSR_VSX;
888 	}
889 
890 	/* See if we already own all the ext(s) needed */
891 	msr &= ~vcpu->arch.guest_owned_ext;
892 	if (!msr)
893 		return RESUME_GUEST;
894 
895 #ifdef DEBUG_EXT
896 	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
897 #endif
898 
899 	if (msr & MSR_FP) {
900 		preempt_disable();
901 		enable_kernel_fp();
902 		load_fp_state(&vcpu->arch.fp);
903 		disable_kernel_fp();
904 		t->fp_save_area = &vcpu->arch.fp;
905 		preempt_enable();
906 	}
907 
908 	if (msr & MSR_VEC) {
909 #ifdef CONFIG_ALTIVEC
910 		preempt_disable();
911 		enable_kernel_altivec();
912 		load_vr_state(&vcpu->arch.vr);
913 		disable_kernel_altivec();
914 		t->vr_save_area = &vcpu->arch.vr;
915 		preempt_enable();
916 #endif
917 	}
918 
919 	t->regs->msr |= msr;
920 	vcpu->arch.guest_owned_ext |= msr;
921 	kvmppc_recalc_shadow_msr(vcpu);
922 
923 	return RESUME_GUEST;
924 }
925 
926 /*
927  * Kernel code using FP or VMX could have flushed guest state to
928  * the thread_struct; if so, get it back now.
929  */
930 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
931 {
932 	unsigned long lost_ext;
933 
934 	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
935 	if (!lost_ext)
936 		return;
937 
938 	if (lost_ext & MSR_FP) {
939 		preempt_disable();
940 		enable_kernel_fp();
941 		load_fp_state(&vcpu->arch.fp);
942 		disable_kernel_fp();
943 		preempt_enable();
944 	}
945 #ifdef CONFIG_ALTIVEC
946 	if (lost_ext & MSR_VEC) {
947 		preempt_disable();
948 		enable_kernel_altivec();
949 		load_vr_state(&vcpu->arch.vr);
950 		disable_kernel_altivec();
951 		preempt_enable();
952 	}
953 #endif
954 	current->thread.regs->msr |= lost_ext;
955 }
956 
957 #ifdef CONFIG_PPC_BOOK3S_64
958 
959 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
960 {
961 	/* Inject the Interrupt Cause field and trigger a guest interrupt */
962 	vcpu->arch.fscr &= ~(0xffULL << 56);
963 	vcpu->arch.fscr |= (fac << 56);
964 	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
965 }
966 
967 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
968 {
969 	enum emulation_result er = EMULATE_FAIL;
970 
971 	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
972 		er = kvmppc_emulate_instruction(vcpu);
973 
974 	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
975 		/* Couldn't emulate, trigger interrupt in guest */
976 		kvmppc_trigger_fac_interrupt(vcpu, fac);
977 	}
978 }
979 
980 /* Enable facilities (TAR, EBB, DSCR) for the guest */
981 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
982 {
983 	bool guest_fac_enabled;
984 	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
985 
986 	/*
987 	 * Not every facility is enabled by FSCR bits, check whether the
988 	 * guest has this facility enabled at all.
989 	 */
990 	switch (fac) {
991 	case FSCR_TAR_LG:
992 	case FSCR_EBB_LG:
993 		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
994 		break;
995 	case FSCR_TM_LG:
996 		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
997 		break;
998 	default:
999 		guest_fac_enabled = false;
1000 		break;
1001 	}
1002 
1003 	if (!guest_fac_enabled) {
1004 		/* Facility not enabled by the guest */
1005 		kvmppc_trigger_fac_interrupt(vcpu, fac);
1006 		return RESUME_GUEST;
1007 	}
1008 
1009 	switch (fac) {
1010 	case FSCR_TAR_LG:
1011 		/* TAR switching isn't lazy in Linux yet */
1012 		current->thread.tar = mfspr(SPRN_TAR);
1013 		mtspr(SPRN_TAR, vcpu->arch.tar);
1014 		vcpu->arch.shadow_fscr |= FSCR_TAR;
1015 		break;
1016 	default:
1017 		kvmppc_emulate_fac(vcpu, fac);
1018 		break;
1019 	}
1020 
1021 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1022 	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
1023 	 * for TM spr can trigger TM fac unavailable. In this case, the
1024 	 * emulation is handled by kvmppc_emulate_fac(), which invokes
1025 	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1026 	 * RT for NV registers. So it need to restore those NV reg to reflect
1027 	 * the update.
1028 	 */
1029 	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1030 		return RESUME_GUEST_NV;
1031 #endif
1032 
1033 	return RESUME_GUEST;
1034 }
1035 
1036 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1037 {
1038 	if (fscr & FSCR_SCV)
1039 		fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1040 	/* Prohibit prefixed instructions for now */
1041 	fscr &= ~FSCR_PREFIX;
1042 	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1043 		/* TAR got dropped, drop it in shadow too */
1044 		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1045 	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1046 		vcpu->arch.fscr = fscr;
1047 		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1048 		return;
1049 	}
1050 
1051 	vcpu->arch.fscr = fscr;
1052 }
1053 #endif
1054 
1055 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1056 {
1057 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1058 		u64 msr = kvmppc_get_msr(vcpu);
1059 
1060 		kvmppc_set_msr(vcpu, msr | MSR_SE);
1061 	}
1062 }
1063 
1064 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1065 {
1066 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1067 		u64 msr = kvmppc_get_msr(vcpu);
1068 
1069 		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1070 	}
1071 }
1072 
1073 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1074 {
1075 	enum emulation_result er;
1076 	ulong flags;
1077 	ppc_inst_t last_inst;
1078 	int emul, r;
1079 
1080 	/*
1081 	 * shadow_srr1 only contains valid flags if we came here via a program
1082 	 * exception. The other exceptions (emulation assist, FP unavailable,
1083 	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1084 	 * exception when injecting a program interrupt into the guest.
1085 	 */
1086 	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1087 		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1088 	else
1089 		flags = SRR1_PROGILL;
1090 
1091 	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1092 	if (emul != EMULATE_DONE)
1093 		return RESUME_GUEST;
1094 
1095 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
1096 #ifdef EXIT_DEBUG
1097 		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1098 			kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1099 #endif
1100 		if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1101 			kvmppc_core_queue_program(vcpu, flags);
1102 			return RESUME_GUEST;
1103 		}
1104 	}
1105 
1106 	vcpu->stat.emulated_inst_exits++;
1107 	er = kvmppc_emulate_instruction(vcpu);
1108 	switch (er) {
1109 	case EMULATE_DONE:
1110 		r = RESUME_GUEST_NV;
1111 		break;
1112 	case EMULATE_AGAIN:
1113 		r = RESUME_GUEST;
1114 		break;
1115 	case EMULATE_FAIL:
1116 		pr_crit("%s: emulation at %lx failed (%08x)\n",
1117 			__func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1118 		kvmppc_core_queue_program(vcpu, flags);
1119 		r = RESUME_GUEST;
1120 		break;
1121 	case EMULATE_DO_MMIO:
1122 		vcpu->run->exit_reason = KVM_EXIT_MMIO;
1123 		r = RESUME_HOST_NV;
1124 		break;
1125 	case EMULATE_EXIT_USER:
1126 		r = RESUME_HOST_NV;
1127 		break;
1128 	default:
1129 		BUG();
1130 	}
1131 
1132 	return r;
1133 }
1134 
1135 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1136 {
1137 	struct kvm_run *run = vcpu->run;
1138 	int r = RESUME_HOST;
1139 	int s;
1140 
1141 	vcpu->stat.sum_exits++;
1142 
1143 	run->exit_reason = KVM_EXIT_UNKNOWN;
1144 	run->ready_for_interrupt_injection = 1;
1145 
1146 	/* We get here with MSR.EE=1 */
1147 
1148 	trace_kvm_exit(exit_nr, vcpu);
1149 	guest_exit();
1150 
1151 	switch (exit_nr) {
1152 	case BOOK3S_INTERRUPT_INST_STORAGE:
1153 	{
1154 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1155 		vcpu->stat.pf_instruc++;
1156 
1157 		if (kvmppc_is_split_real(vcpu))
1158 			kvmppc_fixup_split_real(vcpu);
1159 
1160 #ifdef CONFIG_PPC_BOOK3S_32
1161 		/* We set segments as unused segments when invalidating them. So
1162 		 * treat the respective fault as segment fault. */
1163 		{
1164 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1165 			u32 sr;
1166 
1167 			svcpu = svcpu_get(vcpu);
1168 			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1169 			svcpu_put(svcpu);
1170 			if (sr == SR_INVALID) {
1171 				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1172 				r = RESUME_GUEST;
1173 				break;
1174 			}
1175 		}
1176 #endif
1177 
1178 		/* only care about PTEG not found errors, but leave NX alone */
1179 		if (shadow_srr1 & 0x40000000) {
1180 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1181 			r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1182 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1183 			vcpu->stat.sp_instruc++;
1184 		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1185 			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1186 			/*
1187 			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1188 			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1189 			 *     that no guest that needs the dcbz hack does NX.
1190 			 */
1191 			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1192 			r = RESUME_GUEST;
1193 		} else {
1194 			kvmppc_core_queue_inst_storage(vcpu,
1195 						shadow_srr1 & 0x58000000);
1196 			r = RESUME_GUEST;
1197 		}
1198 		break;
1199 	}
1200 	case BOOK3S_INTERRUPT_DATA_STORAGE:
1201 	{
1202 		ulong dar = kvmppc_get_fault_dar(vcpu);
1203 		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1204 		vcpu->stat.pf_storage++;
1205 
1206 #ifdef CONFIG_PPC_BOOK3S_32
1207 		/* We set segments as unused segments when invalidating them. So
1208 		 * treat the respective fault as segment fault. */
1209 		{
1210 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1211 			u32 sr;
1212 
1213 			svcpu = svcpu_get(vcpu);
1214 			sr = svcpu->sr[dar >> SID_SHIFT];
1215 			svcpu_put(svcpu);
1216 			if (sr == SR_INVALID) {
1217 				kvmppc_mmu_map_segment(vcpu, dar);
1218 				r = RESUME_GUEST;
1219 				break;
1220 			}
1221 		}
1222 #endif
1223 
1224 		/*
1225 		 * We need to handle missing shadow PTEs, and
1226 		 * protection faults due to us mapping a page read-only
1227 		 * when the guest thinks it is writable.
1228 		 */
1229 		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1230 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1231 			r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1232 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1233 		} else {
1234 			kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr);
1235 			r = RESUME_GUEST;
1236 		}
1237 		break;
1238 	}
1239 	case BOOK3S_INTERRUPT_DATA_SEGMENT:
1240 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1241 			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1242 			kvmppc_book3s_queue_irqprio(vcpu,
1243 				BOOK3S_INTERRUPT_DATA_SEGMENT);
1244 		}
1245 		r = RESUME_GUEST;
1246 		break;
1247 	case BOOK3S_INTERRUPT_INST_SEGMENT:
1248 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1249 			kvmppc_book3s_queue_irqprio(vcpu,
1250 				BOOK3S_INTERRUPT_INST_SEGMENT);
1251 		}
1252 		r = RESUME_GUEST;
1253 		break;
1254 	/* We're good on these - the host merely wanted to get our attention */
1255 	case BOOK3S_INTERRUPT_DECREMENTER:
1256 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1257 	case BOOK3S_INTERRUPT_DOORBELL:
1258 	case BOOK3S_INTERRUPT_H_DOORBELL:
1259 		vcpu->stat.dec_exits++;
1260 		r = RESUME_GUEST;
1261 		break;
1262 	case BOOK3S_INTERRUPT_EXTERNAL:
1263 	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1264 	case BOOK3S_INTERRUPT_H_VIRT:
1265 		vcpu->stat.ext_intr_exits++;
1266 		r = RESUME_GUEST;
1267 		break;
1268 	case BOOK3S_INTERRUPT_HMI:
1269 	case BOOK3S_INTERRUPT_PERFMON:
1270 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1271 		r = RESUME_GUEST;
1272 		break;
1273 	case BOOK3S_INTERRUPT_PROGRAM:
1274 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1275 		r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1276 		break;
1277 	case BOOK3S_INTERRUPT_SYSCALL:
1278 	{
1279 		ppc_inst_t last_sc;
1280 		int emul;
1281 
1282 		/* Get last sc for papr */
1283 		if (vcpu->arch.papr_enabled) {
1284 			/* The sc instruction points SRR0 to the next inst */
1285 			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1286 			if (emul != EMULATE_DONE) {
1287 				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1288 				r = RESUME_GUEST;
1289 				break;
1290 			}
1291 		}
1292 
1293 		if (vcpu->arch.papr_enabled &&
1294 		    (ppc_inst_val(last_sc) == 0x44000022) &&
1295 		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1296 			/* SC 1 papr hypercalls */
1297 			ulong cmd = kvmppc_get_gpr(vcpu, 3);
1298 			int i;
1299 
1300 #ifdef CONFIG_PPC_BOOK3S_64
1301 			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1302 				r = RESUME_GUEST;
1303 				break;
1304 			}
1305 #endif
1306 
1307 			run->papr_hcall.nr = cmd;
1308 			for (i = 0; i < 9; ++i) {
1309 				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1310 				run->papr_hcall.args[i] = gpr;
1311 			}
1312 			run->exit_reason = KVM_EXIT_PAPR_HCALL;
1313 			vcpu->arch.hcall_needed = 1;
1314 			r = RESUME_HOST;
1315 		} else if (vcpu->arch.osi_enabled &&
1316 		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1317 		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1318 			/* MOL hypercalls */
1319 			u64 *gprs = run->osi.gprs;
1320 			int i;
1321 
1322 			run->exit_reason = KVM_EXIT_OSI;
1323 			for (i = 0; i < 32; i++)
1324 				gprs[i] = kvmppc_get_gpr(vcpu, i);
1325 			vcpu->arch.osi_needed = 1;
1326 			r = RESUME_HOST_NV;
1327 		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1328 		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1329 			/* KVM PV hypercalls */
1330 			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1331 			r = RESUME_GUEST;
1332 		} else {
1333 			/* Guest syscalls */
1334 			vcpu->stat.syscall_exits++;
1335 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1336 			r = RESUME_GUEST;
1337 		}
1338 		break;
1339 	}
1340 	case BOOK3S_INTERRUPT_FP_UNAVAIL:
1341 	case BOOK3S_INTERRUPT_ALTIVEC:
1342 	case BOOK3S_INTERRUPT_VSX:
1343 	{
1344 		int ext_msr = 0;
1345 		int emul;
1346 		ppc_inst_t last_inst;
1347 
1348 		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1349 			/* Do paired single instruction emulation */
1350 			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1351 						    &last_inst);
1352 			if (emul == EMULATE_DONE)
1353 				r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1354 			else
1355 				r = RESUME_GUEST;
1356 
1357 			break;
1358 		}
1359 
1360 		/* Enable external provider */
1361 		switch (exit_nr) {
1362 		case BOOK3S_INTERRUPT_FP_UNAVAIL:
1363 			ext_msr = MSR_FP;
1364 			break;
1365 
1366 		case BOOK3S_INTERRUPT_ALTIVEC:
1367 			ext_msr = MSR_VEC;
1368 			break;
1369 
1370 		case BOOK3S_INTERRUPT_VSX:
1371 			ext_msr = MSR_VSX;
1372 			break;
1373 		}
1374 
1375 		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1376 		break;
1377 	}
1378 	case BOOK3S_INTERRUPT_ALIGNMENT:
1379 	{
1380 		ppc_inst_t last_inst;
1381 		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1382 
1383 		if (emul == EMULATE_DONE) {
1384 			u32 dsisr;
1385 			u64 dar;
1386 
1387 			dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst));
1388 			dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst));
1389 
1390 			kvmppc_set_dsisr(vcpu, dsisr);
1391 			kvmppc_set_dar(vcpu, dar);
1392 
1393 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1394 		}
1395 		r = RESUME_GUEST;
1396 		break;
1397 	}
1398 #ifdef CONFIG_PPC_BOOK3S_64
1399 	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1400 		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1401 		break;
1402 #endif
1403 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1404 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1405 		r = RESUME_GUEST;
1406 		break;
1407 	case BOOK3S_INTERRUPT_TRACE:
1408 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1409 			run->exit_reason = KVM_EXIT_DEBUG;
1410 			r = RESUME_HOST;
1411 		} else {
1412 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1413 			r = RESUME_GUEST;
1414 		}
1415 		break;
1416 	default:
1417 	{
1418 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1419 		/* Ugh - bork here! What did we get? */
1420 		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1421 			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1422 		r = RESUME_HOST;
1423 		BUG();
1424 		break;
1425 	}
1426 	}
1427 
1428 	if (!(r & RESUME_HOST)) {
1429 		/* To avoid clobbering exit_reason, only check for signals if
1430 		 * we aren't already exiting to userspace for some other
1431 		 * reason. */
1432 
1433 		/*
1434 		 * Interrupts could be timers for the guest which we have to
1435 		 * inject again, so let's postpone them until we're in the guest
1436 		 * and if we really did time things so badly, then we just exit
1437 		 * again due to a host external interrupt.
1438 		 */
1439 		s = kvmppc_prepare_to_enter(vcpu);
1440 		if (s <= 0)
1441 			r = s;
1442 		else {
1443 			/* interrupts now hard-disabled */
1444 			kvmppc_fix_ee_before_entry();
1445 		}
1446 
1447 		kvmppc_handle_lost_ext(vcpu);
1448 	}
1449 
1450 	trace_kvm_book3s_reenter(r, vcpu);
1451 
1452 	return r;
1453 }
1454 
1455 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1456 					    struct kvm_sregs *sregs)
1457 {
1458 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1459 	int i;
1460 
1461 	sregs->pvr = vcpu->arch.pvr;
1462 
1463 	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1464 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1465 		for (i = 0; i < 64; i++) {
1466 			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1467 			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1468 		}
1469 	} else {
1470 		for (i = 0; i < 16; i++)
1471 			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1472 
1473 		for (i = 0; i < 8; i++) {
1474 			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1475 			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1476 		}
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1483 					    struct kvm_sregs *sregs)
1484 {
1485 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1486 	int i;
1487 
1488 	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1489 
1490 	vcpu3s->sdr1 = sregs->u.s.sdr1;
1491 #ifdef CONFIG_PPC_BOOK3S_64
1492 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1493 		/* Flush all SLB entries */
1494 		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1495 		vcpu->arch.mmu.slbia(vcpu);
1496 
1497 		for (i = 0; i < 64; i++) {
1498 			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1499 			u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1500 
1501 			if (rb & SLB_ESID_V)
1502 				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1503 		}
1504 	} else
1505 #endif
1506 	{
1507 		for (i = 0; i < 16; i++) {
1508 			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1509 		}
1510 		for (i = 0; i < 8; i++) {
1511 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1512 				       (u32)sregs->u.s.ppc32.ibat[i]);
1513 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1514 				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1515 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1516 				       (u32)sregs->u.s.ppc32.dbat[i]);
1517 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1518 				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1519 		}
1520 	}
1521 
1522 	/* Flush the MMU after messing with the segments */
1523 	kvmppc_mmu_pte_flush(vcpu, 0, 0);
1524 
1525 	return 0;
1526 }
1527 
1528 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1529 				 union kvmppc_one_reg *val)
1530 {
1531 	int r = 0;
1532 
1533 	switch (id) {
1534 	case KVM_REG_PPC_DEBUG_INST:
1535 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1536 		break;
1537 	case KVM_REG_PPC_HIOR:
1538 		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1539 		break;
1540 	case KVM_REG_PPC_VTB:
1541 		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
1542 		break;
1543 	case KVM_REG_PPC_LPCR:
1544 	case KVM_REG_PPC_LPCR_64:
1545 		/*
1546 		 * We are only interested in the LPCR_ILE bit
1547 		 */
1548 		if (vcpu->arch.intr_msr & MSR_LE)
1549 			*val = get_reg_val(id, LPCR_ILE);
1550 		else
1551 			*val = get_reg_val(id, 0);
1552 		break;
1553 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1554 	case KVM_REG_PPC_TFHAR:
1555 		*val = get_reg_val(id, vcpu->arch.tfhar);
1556 		break;
1557 	case KVM_REG_PPC_TFIAR:
1558 		*val = get_reg_val(id, vcpu->arch.tfiar);
1559 		break;
1560 	case KVM_REG_PPC_TEXASR:
1561 		*val = get_reg_val(id, vcpu->arch.texasr);
1562 		break;
1563 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1564 		*val = get_reg_val(id,
1565 				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1566 		break;
1567 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1568 	{
1569 		int i, j;
1570 
1571 		i = id - KVM_REG_PPC_TM_VSR0;
1572 		if (i < 32)
1573 			for (j = 0; j < TS_FPRWIDTH; j++)
1574 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1575 		else {
1576 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1577 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1578 			else
1579 				r = -ENXIO;
1580 		}
1581 		break;
1582 	}
1583 	case KVM_REG_PPC_TM_CR:
1584 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1585 		break;
1586 	case KVM_REG_PPC_TM_XER:
1587 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1588 		break;
1589 	case KVM_REG_PPC_TM_LR:
1590 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1591 		break;
1592 	case KVM_REG_PPC_TM_CTR:
1593 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1594 		break;
1595 	case KVM_REG_PPC_TM_FPSCR:
1596 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1597 		break;
1598 	case KVM_REG_PPC_TM_AMR:
1599 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1600 		break;
1601 	case KVM_REG_PPC_TM_PPR:
1602 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1603 		break;
1604 	case KVM_REG_PPC_TM_VRSAVE:
1605 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1606 		break;
1607 	case KVM_REG_PPC_TM_VSCR:
1608 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1609 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1610 		else
1611 			r = -ENXIO;
1612 		break;
1613 	case KVM_REG_PPC_TM_DSCR:
1614 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1615 		break;
1616 	case KVM_REG_PPC_TM_TAR:
1617 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1618 		break;
1619 #endif
1620 	default:
1621 		r = -EINVAL;
1622 		break;
1623 	}
1624 
1625 	return r;
1626 }
1627 
1628 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1629 {
1630 	if (new_lpcr & LPCR_ILE)
1631 		vcpu->arch.intr_msr |= MSR_LE;
1632 	else
1633 		vcpu->arch.intr_msr &= ~MSR_LE;
1634 }
1635 
1636 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1637 				 union kvmppc_one_reg *val)
1638 {
1639 	int r = 0;
1640 
1641 	switch (id) {
1642 	case KVM_REG_PPC_HIOR:
1643 		to_book3s(vcpu)->hior = set_reg_val(id, *val);
1644 		to_book3s(vcpu)->hior_explicit = true;
1645 		break;
1646 	case KVM_REG_PPC_VTB:
1647 		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1648 		break;
1649 	case KVM_REG_PPC_LPCR:
1650 	case KVM_REG_PPC_LPCR_64:
1651 		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1652 		break;
1653 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1654 	case KVM_REG_PPC_TFHAR:
1655 		vcpu->arch.tfhar = set_reg_val(id, *val);
1656 		break;
1657 	case KVM_REG_PPC_TFIAR:
1658 		vcpu->arch.tfiar = set_reg_val(id, *val);
1659 		break;
1660 	case KVM_REG_PPC_TEXASR:
1661 		vcpu->arch.texasr = set_reg_val(id, *val);
1662 		break;
1663 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1664 		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1665 			set_reg_val(id, *val);
1666 		break;
1667 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1668 	{
1669 		int i, j;
1670 
1671 		i = id - KVM_REG_PPC_TM_VSR0;
1672 		if (i < 32)
1673 			for (j = 0; j < TS_FPRWIDTH; j++)
1674 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1675 		else
1676 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1677 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1678 			else
1679 				r = -ENXIO;
1680 		break;
1681 	}
1682 	case KVM_REG_PPC_TM_CR:
1683 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1684 		break;
1685 	case KVM_REG_PPC_TM_XER:
1686 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1687 		break;
1688 	case KVM_REG_PPC_TM_LR:
1689 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1690 		break;
1691 	case KVM_REG_PPC_TM_CTR:
1692 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1693 		break;
1694 	case KVM_REG_PPC_TM_FPSCR:
1695 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1696 		break;
1697 	case KVM_REG_PPC_TM_AMR:
1698 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1699 		break;
1700 	case KVM_REG_PPC_TM_PPR:
1701 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1702 		break;
1703 	case KVM_REG_PPC_TM_VRSAVE:
1704 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1705 		break;
1706 	case KVM_REG_PPC_TM_VSCR:
1707 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1708 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1709 		else
1710 			r = -ENXIO;
1711 		break;
1712 	case KVM_REG_PPC_TM_DSCR:
1713 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1714 		break;
1715 	case KVM_REG_PPC_TM_TAR:
1716 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1717 		break;
1718 #endif
1719 	default:
1720 		r = -EINVAL;
1721 		break;
1722 	}
1723 
1724 	return r;
1725 }
1726 
1727 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1728 {
1729 	struct kvmppc_vcpu_book3s *vcpu_book3s;
1730 	unsigned long p;
1731 	int err;
1732 
1733 	err = -ENOMEM;
1734 
1735 	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1736 	if (!vcpu_book3s)
1737 		goto out;
1738 	vcpu->arch.book3s = vcpu_book3s;
1739 
1740 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1741 	vcpu->arch.shadow_vcpu =
1742 		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1743 	if (!vcpu->arch.shadow_vcpu)
1744 		goto free_vcpu3s;
1745 #endif
1746 
1747 	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1748 	if (!p)
1749 		goto free_shadow_vcpu;
1750 	vcpu->arch.shared = (void *)p;
1751 #ifdef CONFIG_PPC_BOOK3S_64
1752 	/* Always start the shared struct in native endian mode */
1753 #ifdef __BIG_ENDIAN__
1754         vcpu->arch.shared_big_endian = true;
1755 #else
1756         vcpu->arch.shared_big_endian = false;
1757 #endif
1758 
1759 	/*
1760 	 * Default to the same as the host if we're on sufficiently
1761 	 * recent machine that we have 1TB segments;
1762 	 * otherwise default to PPC970FX.
1763 	 */
1764 	vcpu->arch.pvr = 0x3C0301;
1765 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1766 		vcpu->arch.pvr = mfspr(SPRN_PVR);
1767 	vcpu->arch.intr_msr = MSR_SF;
1768 #else
1769 	/* default to book3s_32 (750) */
1770 	vcpu->arch.pvr = 0x84202;
1771 	vcpu->arch.intr_msr = 0;
1772 #endif
1773 	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1774 	vcpu->arch.slb_nr = 64;
1775 
1776 	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1777 
1778 	err = kvmppc_mmu_init_pr(vcpu);
1779 	if (err < 0)
1780 		goto free_shared_page;
1781 
1782 	return 0;
1783 
1784 free_shared_page:
1785 	free_page((unsigned long)vcpu->arch.shared);
1786 free_shadow_vcpu:
1787 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1788 	kfree(vcpu->arch.shadow_vcpu);
1789 free_vcpu3s:
1790 #endif
1791 	vfree(vcpu_book3s);
1792 out:
1793 	return err;
1794 }
1795 
1796 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1797 {
1798 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1799 
1800 	kvmppc_mmu_destroy_pr(vcpu);
1801 	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1802 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1803 	kfree(vcpu->arch.shadow_vcpu);
1804 #endif
1805 	vfree(vcpu_book3s);
1806 }
1807 
1808 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1809 {
1810 	int ret;
1811 
1812 	/* Check if we can run the vcpu at all */
1813 	if (!vcpu->arch.sane) {
1814 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1815 		ret = -EINVAL;
1816 		goto out;
1817 	}
1818 
1819 	kvmppc_setup_debug(vcpu);
1820 
1821 	/*
1822 	 * Interrupts could be timers for the guest which we have to inject
1823 	 * again, so let's postpone them until we're in the guest and if we
1824 	 * really did time things so badly, then we just exit again due to
1825 	 * a host external interrupt.
1826 	 */
1827 	ret = kvmppc_prepare_to_enter(vcpu);
1828 	if (ret <= 0)
1829 		goto out;
1830 	/* interrupts now hard-disabled */
1831 
1832 	/* Save FPU, Altivec and VSX state */
1833 	giveup_all(current);
1834 
1835 	/* Preload FPU if it's enabled */
1836 	if (kvmppc_get_msr(vcpu) & MSR_FP)
1837 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1838 
1839 	kvmppc_fix_ee_before_entry();
1840 
1841 	ret = __kvmppc_vcpu_run(vcpu);
1842 
1843 	kvmppc_clear_debug(vcpu);
1844 
1845 	/* No need for guest_exit. It's done in handle_exit.
1846 	   We also get here with interrupts enabled. */
1847 
1848 	/* Make sure we save the guest FPU/Altivec/VSX state */
1849 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1850 
1851 	/* Make sure we save the guest TAR/EBB/DSCR state */
1852 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1853 
1854 	srr_regs_clobbered();
1855 out:
1856 	vcpu->mode = OUTSIDE_GUEST_MODE;
1857 	return ret;
1858 }
1859 
1860 /*
1861  * Get (and clear) the dirty memory log for a memory slot.
1862  */
1863 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1864 					 struct kvm_dirty_log *log)
1865 {
1866 	struct kvm_memory_slot *memslot;
1867 	struct kvm_vcpu *vcpu;
1868 	ulong ga, ga_end;
1869 	int is_dirty = 0;
1870 	int r;
1871 	unsigned long n;
1872 
1873 	mutex_lock(&kvm->slots_lock);
1874 
1875 	r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1876 	if (r)
1877 		goto out;
1878 
1879 	/* If nothing is dirty, don't bother messing with page tables. */
1880 	if (is_dirty) {
1881 		ga = memslot->base_gfn << PAGE_SHIFT;
1882 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1883 
1884 		kvm_for_each_vcpu(n, vcpu, kvm)
1885 			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1886 
1887 		n = kvm_dirty_bitmap_bytes(memslot);
1888 		memset(memslot->dirty_bitmap, 0, n);
1889 	}
1890 
1891 	r = 0;
1892 out:
1893 	mutex_unlock(&kvm->slots_lock);
1894 	return r;
1895 }
1896 
1897 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1898 					 struct kvm_memory_slot *memslot)
1899 {
1900 	return;
1901 }
1902 
1903 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1904 				const struct kvm_memory_slot *old,
1905 				struct kvm_memory_slot *new,
1906 				enum kvm_mr_change change)
1907 {
1908 	return 0;
1909 }
1910 
1911 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1912 				struct kvm_memory_slot *old,
1913 				const struct kvm_memory_slot *new,
1914 				enum kvm_mr_change change)
1915 {
1916 	return;
1917 }
1918 
1919 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1920 {
1921 	return;
1922 }
1923 
1924 #ifdef CONFIG_PPC64
1925 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1926 					 struct kvm_ppc_smmu_info *info)
1927 {
1928 	long int i;
1929 	struct kvm_vcpu *vcpu;
1930 
1931 	info->flags = 0;
1932 
1933 	/* SLB is always 64 entries */
1934 	info->slb_size = 64;
1935 
1936 	/* Standard 4k base page size segment */
1937 	info->sps[0].page_shift = 12;
1938 	info->sps[0].slb_enc = 0;
1939 	info->sps[0].enc[0].page_shift = 12;
1940 	info->sps[0].enc[0].pte_enc = 0;
1941 
1942 	/*
1943 	 * 64k large page size.
1944 	 * We only want to put this in if the CPUs we're emulating
1945 	 * support it, but unfortunately we don't have a vcpu easily
1946 	 * to hand here to test.  Just pick the first vcpu, and if
1947 	 * that doesn't exist yet, report the minimum capability,
1948 	 * i.e., no 64k pages.
1949 	 * 1T segment support goes along with 64k pages.
1950 	 */
1951 	i = 1;
1952 	vcpu = kvm_get_vcpu(kvm, 0);
1953 	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1954 		info->flags = KVM_PPC_1T_SEGMENTS;
1955 		info->sps[i].page_shift = 16;
1956 		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1957 		info->sps[i].enc[0].page_shift = 16;
1958 		info->sps[i].enc[0].pte_enc = 1;
1959 		++i;
1960 	}
1961 
1962 	/* Standard 16M large page size segment */
1963 	info->sps[i].page_shift = 24;
1964 	info->sps[i].slb_enc = SLB_VSID_L;
1965 	info->sps[i].enc[0].page_shift = 24;
1966 	info->sps[i].enc[0].pte_enc = 0;
1967 
1968 	return 0;
1969 }
1970 
1971 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1972 {
1973 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1974 		return -ENODEV;
1975 	/* Require flags and process table base and size to all be zero. */
1976 	if (cfg->flags || cfg->process_table)
1977 		return -EINVAL;
1978 	return 0;
1979 }
1980 
1981 #else
1982 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1983 					 struct kvm_ppc_smmu_info *info)
1984 {
1985 	/* We should not get called */
1986 	BUG();
1987 	return 0;
1988 }
1989 #endif /* CONFIG_PPC64 */
1990 
1991 static unsigned int kvm_global_user_count = 0;
1992 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1993 
1994 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1995 {
1996 	mutex_init(&kvm->arch.hpt_mutex);
1997 
1998 #ifdef CONFIG_PPC_BOOK3S_64
1999 	/* Start out with the default set of hcalls enabled */
2000 	kvmppc_pr_init_default_hcalls(kvm);
2001 #endif
2002 
2003 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2004 		spin_lock(&kvm_global_user_count_lock);
2005 		if (++kvm_global_user_count == 1)
2006 			pseries_disable_reloc_on_exc();
2007 		spin_unlock(&kvm_global_user_count_lock);
2008 	}
2009 	return 0;
2010 }
2011 
2012 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2013 {
2014 #ifdef CONFIG_PPC64
2015 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2016 #endif
2017 
2018 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2019 		spin_lock(&kvm_global_user_count_lock);
2020 		BUG_ON(kvm_global_user_count == 0);
2021 		if (--kvm_global_user_count == 0)
2022 			pseries_enable_reloc_on_exc();
2023 		spin_unlock(&kvm_global_user_count_lock);
2024 	}
2025 }
2026 
2027 static int kvmppc_core_check_processor_compat_pr(void)
2028 {
2029 	/*
2030 	 * PR KVM can work on POWER9 inside a guest partition
2031 	 * running in HPT mode.  It can't work if we are using
2032 	 * radix translation (because radix provides no way for
2033 	 * a process to have unique translations in quadrant 3).
2034 	 */
2035 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2036 		return -EIO;
2037 	return 0;
2038 }
2039 
2040 static int kvm_arch_vm_ioctl_pr(struct file *filp,
2041 				unsigned int ioctl, unsigned long arg)
2042 {
2043 	return -ENOTTY;
2044 }
2045 
2046 static struct kvmppc_ops kvm_ops_pr = {
2047 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2048 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2049 	.get_one_reg = kvmppc_get_one_reg_pr,
2050 	.set_one_reg = kvmppc_set_one_reg_pr,
2051 	.vcpu_load   = kvmppc_core_vcpu_load_pr,
2052 	.vcpu_put    = kvmppc_core_vcpu_put_pr,
2053 	.inject_interrupt = kvmppc_inject_interrupt_pr,
2054 	.set_msr     = kvmppc_set_msr_pr,
2055 	.vcpu_run    = kvmppc_vcpu_run_pr,
2056 	.vcpu_create = kvmppc_core_vcpu_create_pr,
2057 	.vcpu_free   = kvmppc_core_vcpu_free_pr,
2058 	.check_requests = kvmppc_core_check_requests_pr,
2059 	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2060 	.flush_memslot = kvmppc_core_flush_memslot_pr,
2061 	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2062 	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
2063 	.unmap_gfn_range = kvm_unmap_gfn_range_pr,
2064 	.age_gfn  = kvm_age_gfn_pr,
2065 	.test_age_gfn = kvm_test_age_gfn_pr,
2066 	.free_memslot = kvmppc_core_free_memslot_pr,
2067 	.init_vm = kvmppc_core_init_vm_pr,
2068 	.destroy_vm = kvmppc_core_destroy_vm_pr,
2069 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2070 	.emulate_op = kvmppc_core_emulate_op_pr,
2071 	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2072 	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2073 	.fast_vcpu_kick = kvm_vcpu_kick,
2074 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2075 #ifdef CONFIG_PPC_BOOK3S_64
2076 	.hcall_implemented = kvmppc_hcall_impl_pr,
2077 	.configure_mmu = kvm_configure_mmu_pr,
2078 #endif
2079 	.giveup_ext = kvmppc_giveup_ext,
2080 };
2081 
2082 
2083 int kvmppc_book3s_init_pr(void)
2084 {
2085 	int r;
2086 
2087 	r = kvmppc_core_check_processor_compat_pr();
2088 	if (r < 0)
2089 		return r;
2090 
2091 	kvm_ops_pr.owner = THIS_MODULE;
2092 	kvmppc_pr_ops = &kvm_ops_pr;
2093 
2094 	r = kvmppc_mmu_hpte_sysinit();
2095 	return r;
2096 }
2097 
2098 void kvmppc_book3s_exit_pr(void)
2099 {
2100 	kvmppc_pr_ops = NULL;
2101 	kvmppc_mmu_hpte_sysexit();
2102 }
2103 
2104 /*
2105  * We only support separate modules for book3s 64
2106  */
2107 #ifdef CONFIG_PPC_BOOK3S_64
2108 
2109 module_init(kvmppc_book3s_init_pr);
2110 module_exit(kvmppc_book3s_exit_pr);
2111 
2112 MODULE_DESCRIPTION("KVM on Book3S without using hypervisor mode");
2113 MODULE_LICENSE("GPL");
2114 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2115 MODULE_ALIAS("devname:kvm");
2116 #endif
2117