xref: /linux/arch/powerpc/kvm/book3s_pr.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Alexander Graf <agraf@suse.de>
7  *    Kevin Wolf <mail@kevin-wolf.de>
8  *    Paul Mackerras <paulus@samba.org>
9  *
10  * Description:
11  * Functions relating to running KVM on Book 3S processors where
12  * we don't have access to hypervisor mode, and we run the guest
13  * in problem state (user mode).
14  *
15  * This file is derived from arch/powerpc/kvm/44x.c,
16  * by Hollis Blanchard <hollisb@us.ibm.com>.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23 
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/kvm_ppc.h>
30 #include <asm/kvm_book3s.h>
31 #include <asm/mmu_context.h>
32 #include <asm/switch_to.h>
33 #include <asm/firmware.h>
34 #include <asm/setup.h>
35 #include <linux/gfp.h>
36 #include <linux/sched.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/module.h>
40 #include <linux/miscdevice.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/tm.h>
43 
44 #include "book3s.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include "trace_pr.h"
48 
49 /* #define EXIT_DEBUG */
50 /* #define DEBUG_EXT */
51 
52 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
53 			     ulong msr);
54 #ifdef CONFIG_PPC_BOOK3S_64
55 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
56 #endif
57 
58 /* Some compatibility defines */
59 #ifdef CONFIG_PPC_BOOK3S_32
60 #define MSR_USER32 MSR_USER
61 #define MSR_USER64 MSR_USER
62 #define HW_PAGE_SIZE PAGE_SIZE
63 #define HPTE_R_M   _PAGE_COHERENT
64 #endif
65 
66 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
67 {
68 	ulong msr = kvmppc_get_msr(vcpu);
69 	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
70 }
71 
72 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
73 {
74 	ulong msr = kvmppc_get_msr(vcpu);
75 	ulong pc = kvmppc_get_pc(vcpu);
76 
77 	/* We are in DR only split real mode */
78 	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
79 		return;
80 
81 	/* We have not fixed up the guest already */
82 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
83 		return;
84 
85 	/* The code is in fixupable address space */
86 	if (pc & SPLIT_HACK_MASK)
87 		return;
88 
89 	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
90 	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
91 }
92 
93 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
94 {
95 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
96 		ulong pc = kvmppc_get_pc(vcpu);
97 		ulong lr = kvmppc_get_lr(vcpu);
98 		if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
99 			kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
100 		if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
101 			kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
102 		vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
103 	}
104 }
105 
106 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
107 {
108 	unsigned long msr, pc, new_msr, new_pc;
109 
110 	kvmppc_unfixup_split_real(vcpu);
111 
112 	msr = kvmppc_get_msr(vcpu);
113 	pc = kvmppc_get_pc(vcpu);
114 	new_msr = vcpu->arch.intr_msr;
115 	new_pc = to_book3s(vcpu)->hior + vec;
116 
117 #ifdef CONFIG_PPC_BOOK3S_64
118 	/* If transactional, change to suspend mode on IRQ delivery */
119 	if (MSR_TM_TRANSACTIONAL(msr))
120 		new_msr |= MSR_TS_S;
121 	else
122 		new_msr |= msr & MSR_TS_MASK;
123 #endif
124 
125 	kvmppc_set_srr0(vcpu, pc);
126 	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
127 	kvmppc_set_pc(vcpu, new_pc);
128 	kvmppc_set_msr(vcpu, new_msr);
129 }
130 
131 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
132 {
133 #ifdef CONFIG_PPC_BOOK3S_64
134 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
135 	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
136 	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
137 	svcpu->in_use = 0;
138 	svcpu_put(svcpu);
139 #endif
140 
141 	/* Disable AIL if supported */
142 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
143 	    cpu_has_feature(CPU_FTR_ARCH_207S))
144 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145 
146 	vcpu->cpu = smp_processor_id();
147 #ifdef CONFIG_PPC_BOOK3S_32
148 	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
149 #endif
150 
151 	if (kvmppc_is_split_real(vcpu))
152 		kvmppc_fixup_split_real(vcpu);
153 
154 	kvmppc_restore_tm_pr(vcpu);
155 }
156 
157 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
158 {
159 #ifdef CONFIG_PPC_BOOK3S_64
160 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
161 	if (svcpu->in_use) {
162 		kvmppc_copy_from_svcpu(vcpu);
163 	}
164 	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
165 	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
166 	svcpu_put(svcpu);
167 #endif
168 
169 	if (kvmppc_is_split_real(vcpu))
170 		kvmppc_unfixup_split_real(vcpu);
171 
172 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
173 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
174 	kvmppc_save_tm_pr(vcpu);
175 
176 	/* Enable AIL if supported */
177 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
178 	    cpu_has_feature(CPU_FTR_ARCH_207S))
179 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
180 
181 	vcpu->cpu = -1;
182 }
183 
184 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
185 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
186 {
187 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
188 
189 	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
190 	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
191 	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
192 	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
193 	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
194 	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
195 	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
196 	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
197 	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
198 	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
199 	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
200 	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
201 	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
202 	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
203 	svcpu->cr  = vcpu->arch.regs.ccr;
204 	svcpu->xer = vcpu->arch.regs.xer;
205 	svcpu->ctr = vcpu->arch.regs.ctr;
206 	svcpu->lr  = vcpu->arch.regs.link;
207 	svcpu->pc  = vcpu->arch.regs.nip;
208 #ifdef CONFIG_PPC_BOOK3S_64
209 	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
210 #endif
211 	/*
212 	 * Now also save the current time base value. We use this
213 	 * to find the guest purr and spurr value.
214 	 */
215 	vcpu->arch.entry_tb = get_tb();
216 	vcpu->arch.entry_vtb = get_vtb();
217 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
218 		vcpu->arch.entry_ic = mfspr(SPRN_IC);
219 	svcpu->in_use = true;
220 
221 	svcpu_put(svcpu);
222 }
223 
224 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
225 {
226 	ulong guest_msr = kvmppc_get_msr(vcpu);
227 	ulong smsr = guest_msr;
228 
229 	/* Guest MSR values */
230 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
231 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
232 		MSR_TM | MSR_TS_MASK;
233 #else
234 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
235 #endif
236 	/* Process MSR values */
237 	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
238 	/* External providers the guest reserved */
239 	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
240 	/* 64-bit Process MSR values */
241 #ifdef CONFIG_PPC_BOOK3S_64
242 	smsr |= MSR_HV;
243 #endif
244 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
245 	/*
246 	 * in guest privileged state, we want to fail all TM transactions.
247 	 * So disable MSR TM bit so that all tbegin. will be able to be
248 	 * trapped into host.
249 	 */
250 	if (!(guest_msr & MSR_PR))
251 		smsr &= ~MSR_TM;
252 #endif
253 	vcpu->arch.shadow_msr = smsr;
254 }
255 
256 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
257 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
258 {
259 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
260 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
261 	ulong old_msr;
262 #endif
263 
264 	/*
265 	 * Maybe we were already preempted and synced the svcpu from
266 	 * our preempt notifiers. Don't bother touching this svcpu then.
267 	 */
268 	if (!svcpu->in_use)
269 		goto out;
270 
271 	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
272 	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
273 	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
274 	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
275 	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
276 	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
277 	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
278 	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
279 	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
280 	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
281 	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
282 	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
283 	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
284 	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
285 	vcpu->arch.regs.ccr  = svcpu->cr;
286 	vcpu->arch.regs.xer = svcpu->xer;
287 	vcpu->arch.regs.ctr = svcpu->ctr;
288 	vcpu->arch.regs.link  = svcpu->lr;
289 	vcpu->arch.regs.nip  = svcpu->pc;
290 	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
291 	vcpu->arch.fault_dar   = svcpu->fault_dar;
292 	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
293 	vcpu->arch.last_inst   = svcpu->last_inst;
294 #ifdef CONFIG_PPC_BOOK3S_64
295 	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
296 #endif
297 	/*
298 	 * Update purr and spurr using time base on exit.
299 	 */
300 	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
301 	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
302 	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
303 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
304 		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
305 
306 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
307 	/*
308 	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
309 	 * notifying host:
310 	 *  modified by unprivileged instructions like "tbegin"/"tend"/
311 	 * "tresume"/"tsuspend" in PR KVM guest.
312 	 *
313 	 * It is necessary to sync here to calculate a correct shadow_msr.
314 	 *
315 	 * privileged guest's tbegin will be failed at present. So we
316 	 * only take care of problem state guest.
317 	 */
318 	old_msr = kvmppc_get_msr(vcpu);
319 	if (unlikely((old_msr & MSR_PR) &&
320 		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
321 				(old_msr & (MSR_TS_MASK)))) {
322 		old_msr &= ~(MSR_TS_MASK);
323 		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
324 		kvmppc_set_msr_fast(vcpu, old_msr);
325 		kvmppc_recalc_shadow_msr(vcpu);
326 	}
327 #endif
328 
329 	svcpu->in_use = false;
330 
331 out:
332 	svcpu_put(svcpu);
333 }
334 
335 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
336 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
337 {
338 	tm_enable();
339 	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
340 	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
341 	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
342 	tm_disable();
343 }
344 
345 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
346 {
347 	tm_enable();
348 	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
349 	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
350 	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
351 	tm_disable();
352 }
353 
354 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
355  * hardware.
356  */
357 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
358 {
359 	ulong exit_nr;
360 	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
361 		(MSR_FP | MSR_VEC | MSR_VSX);
362 
363 	if (!ext_diff)
364 		return;
365 
366 	if (ext_diff == MSR_FP)
367 		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
368 	else if (ext_diff == MSR_VEC)
369 		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
370 	else
371 		exit_nr = BOOK3S_INTERRUPT_VSX;
372 
373 	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
374 }
375 
376 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
377 {
378 	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
379 		kvmppc_save_tm_sprs(vcpu);
380 		return;
381 	}
382 
383 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
384 	kvmppc_giveup_ext(vcpu, MSR_VSX);
385 
386 	preempt_disable();
387 	_kvmppc_save_tm_pr(vcpu, mfmsr());
388 	preempt_enable();
389 }
390 
391 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
392 {
393 	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
394 		kvmppc_restore_tm_sprs(vcpu);
395 		if (kvmppc_get_msr(vcpu) & MSR_TM) {
396 			kvmppc_handle_lost_math_exts(vcpu);
397 			if (vcpu->arch.fscr & FSCR_TAR)
398 				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
399 		}
400 		return;
401 	}
402 
403 	preempt_disable();
404 	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
405 	preempt_enable();
406 
407 	if (kvmppc_get_msr(vcpu) & MSR_TM) {
408 		kvmppc_handle_lost_math_exts(vcpu);
409 		if (vcpu->arch.fscr & FSCR_TAR)
410 			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
411 	}
412 }
413 #endif
414 
415 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
416 {
417 	int r = 1; /* Indicate we want to get back into the guest */
418 
419 	/* We misuse TLB_FLUSH to indicate that we want to clear
420 	   all shadow cache entries */
421 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
422 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
423 
424 	return r;
425 }
426 
427 /************* MMU Notifiers *************/
428 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
429 			     unsigned long end)
430 {
431 	long i;
432 	struct kvm_vcpu *vcpu;
433 	struct kvm_memslots *slots;
434 	struct kvm_memory_slot *memslot;
435 
436 	slots = kvm_memslots(kvm);
437 	kvm_for_each_memslot(memslot, slots) {
438 		unsigned long hva_start, hva_end;
439 		gfn_t gfn, gfn_end;
440 
441 		hva_start = max(start, memslot->userspace_addr);
442 		hva_end = min(end, memslot->userspace_addr +
443 					(memslot->npages << PAGE_SHIFT));
444 		if (hva_start >= hva_end)
445 			continue;
446 		/*
447 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
448 		 * {gfn, gfn+1, ..., gfn_end-1}.
449 		 */
450 		gfn = hva_to_gfn_memslot(hva_start, memslot);
451 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
452 		kvm_for_each_vcpu(i, vcpu, kvm)
453 			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
454 					      gfn_end << PAGE_SHIFT);
455 	}
456 }
457 
458 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
459 				  unsigned long end)
460 {
461 	do_kvm_unmap_hva(kvm, start, end);
462 
463 	return 0;
464 }
465 
466 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
467 			  unsigned long end)
468 {
469 	/* XXX could be more clever ;) */
470 	return 0;
471 }
472 
473 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
474 {
475 	/* XXX could be more clever ;) */
476 	return 0;
477 }
478 
479 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
480 {
481 	/* The page will get remapped properly on its next fault */
482 	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
483 }
484 
485 /*****************************************/
486 
487 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
488 {
489 	ulong old_msr;
490 
491 	/* For PAPR guest, make sure MSR reflects guest mode */
492 	if (vcpu->arch.papr_enabled)
493 		msr = (msr & ~MSR_HV) | MSR_ME;
494 
495 #ifdef EXIT_DEBUG
496 	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
497 #endif
498 
499 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
500 	/* We should never target guest MSR to TS=10 && PR=0,
501 	 * since we always fail transaction for guest privilege
502 	 * state.
503 	 */
504 	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
505 		kvmppc_emulate_tabort(vcpu,
506 			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
507 #endif
508 
509 	old_msr = kvmppc_get_msr(vcpu);
510 	msr &= to_book3s(vcpu)->msr_mask;
511 	kvmppc_set_msr_fast(vcpu, msr);
512 	kvmppc_recalc_shadow_msr(vcpu);
513 
514 	if (msr & MSR_POW) {
515 		if (!vcpu->arch.pending_exceptions) {
516 			kvm_vcpu_block(vcpu);
517 			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
518 			vcpu->stat.halt_wakeup++;
519 
520 			/* Unset POW bit after we woke up */
521 			msr &= ~MSR_POW;
522 			kvmppc_set_msr_fast(vcpu, msr);
523 		}
524 	}
525 
526 	if (kvmppc_is_split_real(vcpu))
527 		kvmppc_fixup_split_real(vcpu);
528 	else
529 		kvmppc_unfixup_split_real(vcpu);
530 
531 	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
532 		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
533 		kvmppc_mmu_flush_segments(vcpu);
534 		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
535 
536 		/* Preload magic page segment when in kernel mode */
537 		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
538 			struct kvm_vcpu_arch *a = &vcpu->arch;
539 
540 			if (msr & MSR_DR)
541 				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
542 			else
543 				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
544 		}
545 	}
546 
547 	/*
548 	 * When switching from 32 to 64-bit, we may have a stale 32-bit
549 	 * magic page around, we need to flush it. Typically 32-bit magic
550 	 * page will be instantiated when calling into RTAS. Note: We
551 	 * assume that such transition only happens while in kernel mode,
552 	 * ie, we never transition from user 32-bit to kernel 64-bit with
553 	 * a 32-bit magic page around.
554 	 */
555 	if (vcpu->arch.magic_page_pa &&
556 	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
557 		/* going from RTAS to normal kernel code */
558 		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
559 				     ~0xFFFUL);
560 	}
561 
562 	/* Preload FPU if it's enabled */
563 	if (kvmppc_get_msr(vcpu) & MSR_FP)
564 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
565 
566 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
567 	if (kvmppc_get_msr(vcpu) & MSR_TM)
568 		kvmppc_handle_lost_math_exts(vcpu);
569 #endif
570 }
571 
572 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
573 {
574 	u32 host_pvr;
575 
576 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
577 	vcpu->arch.pvr = pvr;
578 #ifdef CONFIG_PPC_BOOK3S_64
579 	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
580 		kvmppc_mmu_book3s_64_init(vcpu);
581 		if (!to_book3s(vcpu)->hior_explicit)
582 			to_book3s(vcpu)->hior = 0xfff00000;
583 		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
584 		vcpu->arch.cpu_type = KVM_CPU_3S_64;
585 	} else
586 #endif
587 	{
588 		kvmppc_mmu_book3s_32_init(vcpu);
589 		if (!to_book3s(vcpu)->hior_explicit)
590 			to_book3s(vcpu)->hior = 0;
591 		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
592 		vcpu->arch.cpu_type = KVM_CPU_3S_32;
593 	}
594 
595 	kvmppc_sanity_check(vcpu);
596 
597 	/* If we are in hypervisor level on 970, we can tell the CPU to
598 	 * treat DCBZ as 32 bytes store */
599 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
600 	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
601 	    !strcmp(cur_cpu_spec->platform, "ppc970"))
602 		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
603 
604 	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
605 	   really needs them in a VM on Cell and force disable them. */
606 	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
607 		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
608 
609 	/*
610 	 * If they're asking for POWER6 or later, set the flag
611 	 * indicating that we can do multiple large page sizes
612 	 * and 1TB segments.
613 	 * Also set the flag that indicates that tlbie has the large
614 	 * page bit in the RB operand instead of the instruction.
615 	 */
616 	switch (PVR_VER(pvr)) {
617 	case PVR_POWER6:
618 	case PVR_POWER7:
619 	case PVR_POWER7p:
620 	case PVR_POWER8:
621 	case PVR_POWER8E:
622 	case PVR_POWER8NVL:
623 	case PVR_POWER9:
624 		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
625 			BOOK3S_HFLAG_NEW_TLBIE;
626 		break;
627 	}
628 
629 #ifdef CONFIG_PPC_BOOK3S_32
630 	/* 32 bit Book3S always has 32 byte dcbz */
631 	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
632 #endif
633 
634 	/* On some CPUs we can execute paired single operations natively */
635 	asm ( "mfpvr %0" : "=r"(host_pvr));
636 	switch (host_pvr) {
637 	case 0x00080200:	/* lonestar 2.0 */
638 	case 0x00088202:	/* lonestar 2.2 */
639 	case 0x70000100:	/* gekko 1.0 */
640 	case 0x00080100:	/* gekko 2.0 */
641 	case 0x00083203:	/* gekko 2.3a */
642 	case 0x00083213:	/* gekko 2.3b */
643 	case 0x00083204:	/* gekko 2.4 */
644 	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
645 	case 0x00087200:	/* broadway */
646 		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
647 		/* Enable HID2.PSE - in case we need it later */
648 		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
649 	}
650 }
651 
652 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
653  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
654  * emulate 32 bytes dcbz length.
655  *
656  * The Book3s_64 inventors also realized this case and implemented a special bit
657  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
658  *
659  * My approach here is to patch the dcbz instruction on executing pages.
660  */
661 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
662 {
663 	struct page *hpage;
664 	u64 hpage_offset;
665 	u32 *page;
666 	int i;
667 
668 	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
669 	if (is_error_page(hpage))
670 		return;
671 
672 	hpage_offset = pte->raddr & ~PAGE_MASK;
673 	hpage_offset &= ~0xFFFULL;
674 	hpage_offset /= 4;
675 
676 	get_page(hpage);
677 	page = kmap_atomic(hpage);
678 
679 	/* patch dcbz into reserved instruction, so we trap */
680 	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
681 		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
682 			page[i] &= cpu_to_be32(0xfffffff7);
683 
684 	kunmap_atomic(page);
685 	put_page(hpage);
686 }
687 
688 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
689 {
690 	ulong mp_pa = vcpu->arch.magic_page_pa;
691 
692 	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
693 		mp_pa = (uint32_t)mp_pa;
694 
695 	gpa &= ~0xFFFULL;
696 	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
697 		return true;
698 	}
699 
700 	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
701 }
702 
703 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
704 			    ulong eaddr, int vec)
705 {
706 	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
707 	bool iswrite = false;
708 	int r = RESUME_GUEST;
709 	int relocated;
710 	int page_found = 0;
711 	struct kvmppc_pte pte = { 0 };
712 	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
713 	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
714 	u64 vsid;
715 
716 	relocated = data ? dr : ir;
717 	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
718 		iswrite = true;
719 
720 	/* Resolve real address if translation turned on */
721 	if (relocated) {
722 		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
723 	} else {
724 		pte.may_execute = true;
725 		pte.may_read = true;
726 		pte.may_write = true;
727 		pte.raddr = eaddr & KVM_PAM;
728 		pte.eaddr = eaddr;
729 		pte.vpage = eaddr >> 12;
730 		pte.page_size = MMU_PAGE_64K;
731 		pte.wimg = HPTE_R_M;
732 	}
733 
734 	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
735 	case 0:
736 		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
737 		break;
738 	case MSR_DR:
739 		if (!data &&
740 		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
741 		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
742 			pte.raddr &= ~SPLIT_HACK_MASK;
743 		fallthrough;
744 	case MSR_IR:
745 		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
746 
747 		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
748 			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
749 		else
750 			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
751 		pte.vpage |= vsid;
752 
753 		if (vsid == -1)
754 			page_found = -EINVAL;
755 		break;
756 	}
757 
758 	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
759 	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
760 		/*
761 		 * If we do the dcbz hack, we have to NX on every execution,
762 		 * so we can patch the executing code. This renders our guest
763 		 * NX-less.
764 		 */
765 		pte.may_execute = !data;
766 	}
767 
768 	if (page_found == -ENOENT || page_found == -EPERM) {
769 		/* Page not found in guest PTE entries, or protection fault */
770 		u64 flags;
771 
772 		if (page_found == -EPERM)
773 			flags = DSISR_PROTFAULT;
774 		else
775 			flags = DSISR_NOHPTE;
776 		if (data) {
777 			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
778 			kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
779 		} else {
780 			kvmppc_core_queue_inst_storage(vcpu, flags);
781 		}
782 	} else if (page_found == -EINVAL) {
783 		/* Page not found in guest SLB */
784 		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
785 		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
786 	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
787 		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
788 			/*
789 			 * There is already a host HPTE there, presumably
790 			 * a read-only one for a page the guest thinks
791 			 * is writable, so get rid of it first.
792 			 */
793 			kvmppc_mmu_unmap_page(vcpu, &pte);
794 		}
795 		/* The guest's PTE is not mapped yet. Map on the host */
796 		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
797 			/* Exit KVM if mapping failed */
798 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
799 			return RESUME_HOST;
800 		}
801 		if (data)
802 			vcpu->stat.sp_storage++;
803 		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
804 			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
805 			kvmppc_patch_dcbz(vcpu, &pte);
806 	} else {
807 		/* MMIO */
808 		vcpu->stat.mmio_exits++;
809 		vcpu->arch.paddr_accessed = pte.raddr;
810 		vcpu->arch.vaddr_accessed = pte.eaddr;
811 		r = kvmppc_emulate_mmio(vcpu);
812 		if ( r == RESUME_HOST_NV )
813 			r = RESUME_HOST;
814 	}
815 
816 	return r;
817 }
818 
819 /* Give up external provider (FPU, Altivec, VSX) */
820 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
821 {
822 	struct thread_struct *t = &current->thread;
823 
824 	/*
825 	 * VSX instructions can access FP and vector registers, so if
826 	 * we are giving up VSX, make sure we give up FP and VMX as well.
827 	 */
828 	if (msr & MSR_VSX)
829 		msr |= MSR_FP | MSR_VEC;
830 
831 	msr &= vcpu->arch.guest_owned_ext;
832 	if (!msr)
833 		return;
834 
835 #ifdef DEBUG_EXT
836 	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
837 #endif
838 
839 	if (msr & MSR_FP) {
840 		/*
841 		 * Note that on CPUs with VSX, giveup_fpu stores
842 		 * both the traditional FP registers and the added VSX
843 		 * registers into thread.fp_state.fpr[].
844 		 */
845 		if (t->regs->msr & MSR_FP)
846 			giveup_fpu(current);
847 		t->fp_save_area = NULL;
848 	}
849 
850 #ifdef CONFIG_ALTIVEC
851 	if (msr & MSR_VEC) {
852 		if (current->thread.regs->msr & MSR_VEC)
853 			giveup_altivec(current);
854 		t->vr_save_area = NULL;
855 	}
856 #endif
857 
858 	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
859 	kvmppc_recalc_shadow_msr(vcpu);
860 }
861 
862 /* Give up facility (TAR / EBB / DSCR) */
863 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
864 {
865 #ifdef CONFIG_PPC_BOOK3S_64
866 	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
867 		/* Facility not available to the guest, ignore giveup request*/
868 		return;
869 	}
870 
871 	switch (fac) {
872 	case FSCR_TAR_LG:
873 		vcpu->arch.tar = mfspr(SPRN_TAR);
874 		mtspr(SPRN_TAR, current->thread.tar);
875 		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
876 		break;
877 	}
878 #endif
879 }
880 
881 /* Handle external providers (FPU, Altivec, VSX) */
882 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
883 			     ulong msr)
884 {
885 	struct thread_struct *t = &current->thread;
886 
887 	/* When we have paired singles, we emulate in software */
888 	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
889 		return RESUME_GUEST;
890 
891 	if (!(kvmppc_get_msr(vcpu) & msr)) {
892 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
893 		return RESUME_GUEST;
894 	}
895 
896 	if (msr == MSR_VSX) {
897 		/* No VSX?  Give an illegal instruction interrupt */
898 #ifdef CONFIG_VSX
899 		if (!cpu_has_feature(CPU_FTR_VSX))
900 #endif
901 		{
902 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
903 			return RESUME_GUEST;
904 		}
905 
906 		/*
907 		 * We have to load up all the FP and VMX registers before
908 		 * we can let the guest use VSX instructions.
909 		 */
910 		msr = MSR_FP | MSR_VEC | MSR_VSX;
911 	}
912 
913 	/* See if we already own all the ext(s) needed */
914 	msr &= ~vcpu->arch.guest_owned_ext;
915 	if (!msr)
916 		return RESUME_GUEST;
917 
918 #ifdef DEBUG_EXT
919 	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
920 #endif
921 
922 	if (msr & MSR_FP) {
923 		preempt_disable();
924 		enable_kernel_fp();
925 		load_fp_state(&vcpu->arch.fp);
926 		disable_kernel_fp();
927 		t->fp_save_area = &vcpu->arch.fp;
928 		preempt_enable();
929 	}
930 
931 	if (msr & MSR_VEC) {
932 #ifdef CONFIG_ALTIVEC
933 		preempt_disable();
934 		enable_kernel_altivec();
935 		load_vr_state(&vcpu->arch.vr);
936 		disable_kernel_altivec();
937 		t->vr_save_area = &vcpu->arch.vr;
938 		preempt_enable();
939 #endif
940 	}
941 
942 	t->regs->msr |= msr;
943 	vcpu->arch.guest_owned_ext |= msr;
944 	kvmppc_recalc_shadow_msr(vcpu);
945 
946 	return RESUME_GUEST;
947 }
948 
949 /*
950  * Kernel code using FP or VMX could have flushed guest state to
951  * the thread_struct; if so, get it back now.
952  */
953 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
954 {
955 	unsigned long lost_ext;
956 
957 	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
958 	if (!lost_ext)
959 		return;
960 
961 	if (lost_ext & MSR_FP) {
962 		preempt_disable();
963 		enable_kernel_fp();
964 		load_fp_state(&vcpu->arch.fp);
965 		disable_kernel_fp();
966 		preempt_enable();
967 	}
968 #ifdef CONFIG_ALTIVEC
969 	if (lost_ext & MSR_VEC) {
970 		preempt_disable();
971 		enable_kernel_altivec();
972 		load_vr_state(&vcpu->arch.vr);
973 		disable_kernel_altivec();
974 		preempt_enable();
975 	}
976 #endif
977 	current->thread.regs->msr |= lost_ext;
978 }
979 
980 #ifdef CONFIG_PPC_BOOK3S_64
981 
982 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
983 {
984 	/* Inject the Interrupt Cause field and trigger a guest interrupt */
985 	vcpu->arch.fscr &= ~(0xffULL << 56);
986 	vcpu->arch.fscr |= (fac << 56);
987 	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
988 }
989 
990 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
991 {
992 	enum emulation_result er = EMULATE_FAIL;
993 
994 	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
995 		er = kvmppc_emulate_instruction(vcpu);
996 
997 	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
998 		/* Couldn't emulate, trigger interrupt in guest */
999 		kvmppc_trigger_fac_interrupt(vcpu, fac);
1000 	}
1001 }
1002 
1003 /* Enable facilities (TAR, EBB, DSCR) for the guest */
1004 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
1005 {
1006 	bool guest_fac_enabled;
1007 	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
1008 
1009 	/*
1010 	 * Not every facility is enabled by FSCR bits, check whether the
1011 	 * guest has this facility enabled at all.
1012 	 */
1013 	switch (fac) {
1014 	case FSCR_TAR_LG:
1015 	case FSCR_EBB_LG:
1016 		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
1017 		break;
1018 	case FSCR_TM_LG:
1019 		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
1020 		break;
1021 	default:
1022 		guest_fac_enabled = false;
1023 		break;
1024 	}
1025 
1026 	if (!guest_fac_enabled) {
1027 		/* Facility not enabled by the guest */
1028 		kvmppc_trigger_fac_interrupt(vcpu, fac);
1029 		return RESUME_GUEST;
1030 	}
1031 
1032 	switch (fac) {
1033 	case FSCR_TAR_LG:
1034 		/* TAR switching isn't lazy in Linux yet */
1035 		current->thread.tar = mfspr(SPRN_TAR);
1036 		mtspr(SPRN_TAR, vcpu->arch.tar);
1037 		vcpu->arch.shadow_fscr |= FSCR_TAR;
1038 		break;
1039 	default:
1040 		kvmppc_emulate_fac(vcpu, fac);
1041 		break;
1042 	}
1043 
1044 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1045 	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
1046 	 * for TM spr can trigger TM fac unavailable. In this case, the
1047 	 * emulation is handled by kvmppc_emulate_fac(), which invokes
1048 	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1049 	 * RT for NV registers. So it need to restore those NV reg to reflect
1050 	 * the update.
1051 	 */
1052 	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1053 		return RESUME_GUEST_NV;
1054 #endif
1055 
1056 	return RESUME_GUEST;
1057 }
1058 
1059 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1060 {
1061 	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1062 		/* TAR got dropped, drop it in shadow too */
1063 		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1064 	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1065 		vcpu->arch.fscr = fscr;
1066 		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1067 		return;
1068 	}
1069 
1070 	vcpu->arch.fscr = fscr;
1071 }
1072 #endif
1073 
1074 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1075 {
1076 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1077 		u64 msr = kvmppc_get_msr(vcpu);
1078 
1079 		kvmppc_set_msr(vcpu, msr | MSR_SE);
1080 	}
1081 }
1082 
1083 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1084 {
1085 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1086 		u64 msr = kvmppc_get_msr(vcpu);
1087 
1088 		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1089 	}
1090 }
1091 
1092 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1093 {
1094 	enum emulation_result er;
1095 	ulong flags;
1096 	u32 last_inst;
1097 	int emul, r;
1098 
1099 	/*
1100 	 * shadow_srr1 only contains valid flags if we came here via a program
1101 	 * exception. The other exceptions (emulation assist, FP unavailable,
1102 	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1103 	 * exception when injecting a program interrupt into the guest.
1104 	 */
1105 	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1106 		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1107 	else
1108 		flags = SRR1_PROGILL;
1109 
1110 	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1111 	if (emul != EMULATE_DONE)
1112 		return RESUME_GUEST;
1113 
1114 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
1115 #ifdef EXIT_DEBUG
1116 		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1117 			kvmppc_get_pc(vcpu), last_inst);
1118 #endif
1119 		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1120 			kvmppc_core_queue_program(vcpu, flags);
1121 			return RESUME_GUEST;
1122 		}
1123 	}
1124 
1125 	vcpu->stat.emulated_inst_exits++;
1126 	er = kvmppc_emulate_instruction(vcpu);
1127 	switch (er) {
1128 	case EMULATE_DONE:
1129 		r = RESUME_GUEST_NV;
1130 		break;
1131 	case EMULATE_AGAIN:
1132 		r = RESUME_GUEST;
1133 		break;
1134 	case EMULATE_FAIL:
1135 		pr_crit("%s: emulation at %lx failed (%08x)\n",
1136 			__func__, kvmppc_get_pc(vcpu), last_inst);
1137 		kvmppc_core_queue_program(vcpu, flags);
1138 		r = RESUME_GUEST;
1139 		break;
1140 	case EMULATE_DO_MMIO:
1141 		vcpu->run->exit_reason = KVM_EXIT_MMIO;
1142 		r = RESUME_HOST_NV;
1143 		break;
1144 	case EMULATE_EXIT_USER:
1145 		r = RESUME_HOST_NV;
1146 		break;
1147 	default:
1148 		BUG();
1149 	}
1150 
1151 	return r;
1152 }
1153 
1154 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1155 {
1156 	struct kvm_run *run = vcpu->run;
1157 	int r = RESUME_HOST;
1158 	int s;
1159 
1160 	vcpu->stat.sum_exits++;
1161 
1162 	run->exit_reason = KVM_EXIT_UNKNOWN;
1163 	run->ready_for_interrupt_injection = 1;
1164 
1165 	/* We get here with MSR.EE=1 */
1166 
1167 	trace_kvm_exit(exit_nr, vcpu);
1168 	guest_exit();
1169 
1170 	switch (exit_nr) {
1171 	case BOOK3S_INTERRUPT_INST_STORAGE:
1172 	{
1173 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1174 		vcpu->stat.pf_instruc++;
1175 
1176 		if (kvmppc_is_split_real(vcpu))
1177 			kvmppc_fixup_split_real(vcpu);
1178 
1179 #ifdef CONFIG_PPC_BOOK3S_32
1180 		/* We set segments as unused segments when invalidating them. So
1181 		 * treat the respective fault as segment fault. */
1182 		{
1183 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1184 			u32 sr;
1185 
1186 			svcpu = svcpu_get(vcpu);
1187 			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1188 			svcpu_put(svcpu);
1189 			if (sr == SR_INVALID) {
1190 				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1191 				r = RESUME_GUEST;
1192 				break;
1193 			}
1194 		}
1195 #endif
1196 
1197 		/* only care about PTEG not found errors, but leave NX alone */
1198 		if (shadow_srr1 & 0x40000000) {
1199 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1200 			r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1201 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1202 			vcpu->stat.sp_instruc++;
1203 		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1204 			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1205 			/*
1206 			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1207 			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1208 			 *     that no guest that needs the dcbz hack does NX.
1209 			 */
1210 			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1211 			r = RESUME_GUEST;
1212 		} else {
1213 			kvmppc_core_queue_inst_storage(vcpu,
1214 						shadow_srr1 & 0x58000000);
1215 			r = RESUME_GUEST;
1216 		}
1217 		break;
1218 	}
1219 	case BOOK3S_INTERRUPT_DATA_STORAGE:
1220 	{
1221 		ulong dar = kvmppc_get_fault_dar(vcpu);
1222 		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1223 		vcpu->stat.pf_storage++;
1224 
1225 #ifdef CONFIG_PPC_BOOK3S_32
1226 		/* We set segments as unused segments when invalidating them. So
1227 		 * treat the respective fault as segment fault. */
1228 		{
1229 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1230 			u32 sr;
1231 
1232 			svcpu = svcpu_get(vcpu);
1233 			sr = svcpu->sr[dar >> SID_SHIFT];
1234 			svcpu_put(svcpu);
1235 			if (sr == SR_INVALID) {
1236 				kvmppc_mmu_map_segment(vcpu, dar);
1237 				r = RESUME_GUEST;
1238 				break;
1239 			}
1240 		}
1241 #endif
1242 
1243 		/*
1244 		 * We need to handle missing shadow PTEs, and
1245 		 * protection faults due to us mapping a page read-only
1246 		 * when the guest thinks it is writable.
1247 		 */
1248 		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1249 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1250 			r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1251 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1252 		} else {
1253 			kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1254 			r = RESUME_GUEST;
1255 		}
1256 		break;
1257 	}
1258 	case BOOK3S_INTERRUPT_DATA_SEGMENT:
1259 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1260 			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1261 			kvmppc_book3s_queue_irqprio(vcpu,
1262 				BOOK3S_INTERRUPT_DATA_SEGMENT);
1263 		}
1264 		r = RESUME_GUEST;
1265 		break;
1266 	case BOOK3S_INTERRUPT_INST_SEGMENT:
1267 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1268 			kvmppc_book3s_queue_irqprio(vcpu,
1269 				BOOK3S_INTERRUPT_INST_SEGMENT);
1270 		}
1271 		r = RESUME_GUEST;
1272 		break;
1273 	/* We're good on these - the host merely wanted to get our attention */
1274 	case BOOK3S_INTERRUPT_DECREMENTER:
1275 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1276 	case BOOK3S_INTERRUPT_DOORBELL:
1277 	case BOOK3S_INTERRUPT_H_DOORBELL:
1278 		vcpu->stat.dec_exits++;
1279 		r = RESUME_GUEST;
1280 		break;
1281 	case BOOK3S_INTERRUPT_EXTERNAL:
1282 	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1283 	case BOOK3S_INTERRUPT_H_VIRT:
1284 		vcpu->stat.ext_intr_exits++;
1285 		r = RESUME_GUEST;
1286 		break;
1287 	case BOOK3S_INTERRUPT_HMI:
1288 	case BOOK3S_INTERRUPT_PERFMON:
1289 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1290 		r = RESUME_GUEST;
1291 		break;
1292 	case BOOK3S_INTERRUPT_PROGRAM:
1293 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1294 		r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1295 		break;
1296 	case BOOK3S_INTERRUPT_SYSCALL:
1297 	{
1298 		u32 last_sc;
1299 		int emul;
1300 
1301 		/* Get last sc for papr */
1302 		if (vcpu->arch.papr_enabled) {
1303 			/* The sc instuction points SRR0 to the next inst */
1304 			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1305 			if (emul != EMULATE_DONE) {
1306 				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1307 				r = RESUME_GUEST;
1308 				break;
1309 			}
1310 		}
1311 
1312 		if (vcpu->arch.papr_enabled &&
1313 		    (last_sc == 0x44000022) &&
1314 		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1315 			/* SC 1 papr hypercalls */
1316 			ulong cmd = kvmppc_get_gpr(vcpu, 3);
1317 			int i;
1318 
1319 #ifdef CONFIG_PPC_BOOK3S_64
1320 			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1321 				r = RESUME_GUEST;
1322 				break;
1323 			}
1324 #endif
1325 
1326 			run->papr_hcall.nr = cmd;
1327 			for (i = 0; i < 9; ++i) {
1328 				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1329 				run->papr_hcall.args[i] = gpr;
1330 			}
1331 			run->exit_reason = KVM_EXIT_PAPR_HCALL;
1332 			vcpu->arch.hcall_needed = 1;
1333 			r = RESUME_HOST;
1334 		} else if (vcpu->arch.osi_enabled &&
1335 		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1336 		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1337 			/* MOL hypercalls */
1338 			u64 *gprs = run->osi.gprs;
1339 			int i;
1340 
1341 			run->exit_reason = KVM_EXIT_OSI;
1342 			for (i = 0; i < 32; i++)
1343 				gprs[i] = kvmppc_get_gpr(vcpu, i);
1344 			vcpu->arch.osi_needed = 1;
1345 			r = RESUME_HOST_NV;
1346 		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1347 		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1348 			/* KVM PV hypercalls */
1349 			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1350 			r = RESUME_GUEST;
1351 		} else {
1352 			/* Guest syscalls */
1353 			vcpu->stat.syscall_exits++;
1354 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1355 			r = RESUME_GUEST;
1356 		}
1357 		break;
1358 	}
1359 	case BOOK3S_INTERRUPT_FP_UNAVAIL:
1360 	case BOOK3S_INTERRUPT_ALTIVEC:
1361 	case BOOK3S_INTERRUPT_VSX:
1362 	{
1363 		int ext_msr = 0;
1364 		int emul;
1365 		u32 last_inst;
1366 
1367 		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1368 			/* Do paired single instruction emulation */
1369 			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1370 						    &last_inst);
1371 			if (emul == EMULATE_DONE)
1372 				r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1373 			else
1374 				r = RESUME_GUEST;
1375 
1376 			break;
1377 		}
1378 
1379 		/* Enable external provider */
1380 		switch (exit_nr) {
1381 		case BOOK3S_INTERRUPT_FP_UNAVAIL:
1382 			ext_msr = MSR_FP;
1383 			break;
1384 
1385 		case BOOK3S_INTERRUPT_ALTIVEC:
1386 			ext_msr = MSR_VEC;
1387 			break;
1388 
1389 		case BOOK3S_INTERRUPT_VSX:
1390 			ext_msr = MSR_VSX;
1391 			break;
1392 		}
1393 
1394 		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1395 		break;
1396 	}
1397 	case BOOK3S_INTERRUPT_ALIGNMENT:
1398 	{
1399 		u32 last_inst;
1400 		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1401 
1402 		if (emul == EMULATE_DONE) {
1403 			u32 dsisr;
1404 			u64 dar;
1405 
1406 			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1407 			dar = kvmppc_alignment_dar(vcpu, last_inst);
1408 
1409 			kvmppc_set_dsisr(vcpu, dsisr);
1410 			kvmppc_set_dar(vcpu, dar);
1411 
1412 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1413 		}
1414 		r = RESUME_GUEST;
1415 		break;
1416 	}
1417 #ifdef CONFIG_PPC_BOOK3S_64
1418 	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1419 		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1420 		break;
1421 #endif
1422 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1423 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1424 		r = RESUME_GUEST;
1425 		break;
1426 	case BOOK3S_INTERRUPT_TRACE:
1427 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1428 			run->exit_reason = KVM_EXIT_DEBUG;
1429 			r = RESUME_HOST;
1430 		} else {
1431 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1432 			r = RESUME_GUEST;
1433 		}
1434 		break;
1435 	default:
1436 	{
1437 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1438 		/* Ugh - bork here! What did we get? */
1439 		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1440 			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1441 		r = RESUME_HOST;
1442 		BUG();
1443 		break;
1444 	}
1445 	}
1446 
1447 	if (!(r & RESUME_HOST)) {
1448 		/* To avoid clobbering exit_reason, only check for signals if
1449 		 * we aren't already exiting to userspace for some other
1450 		 * reason. */
1451 
1452 		/*
1453 		 * Interrupts could be timers for the guest which we have to
1454 		 * inject again, so let's postpone them until we're in the guest
1455 		 * and if we really did time things so badly, then we just exit
1456 		 * again due to a host external interrupt.
1457 		 */
1458 		s = kvmppc_prepare_to_enter(vcpu);
1459 		if (s <= 0)
1460 			r = s;
1461 		else {
1462 			/* interrupts now hard-disabled */
1463 			kvmppc_fix_ee_before_entry();
1464 		}
1465 
1466 		kvmppc_handle_lost_ext(vcpu);
1467 	}
1468 
1469 	trace_kvm_book3s_reenter(r, vcpu);
1470 
1471 	return r;
1472 }
1473 
1474 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1475 					    struct kvm_sregs *sregs)
1476 {
1477 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1478 	int i;
1479 
1480 	sregs->pvr = vcpu->arch.pvr;
1481 
1482 	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1483 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1484 		for (i = 0; i < 64; i++) {
1485 			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1486 			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1487 		}
1488 	} else {
1489 		for (i = 0; i < 16; i++)
1490 			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1491 
1492 		for (i = 0; i < 8; i++) {
1493 			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1494 			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1495 		}
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1502 					    struct kvm_sregs *sregs)
1503 {
1504 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1505 	int i;
1506 
1507 	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1508 
1509 	vcpu3s->sdr1 = sregs->u.s.sdr1;
1510 #ifdef CONFIG_PPC_BOOK3S_64
1511 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1512 		/* Flush all SLB entries */
1513 		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1514 		vcpu->arch.mmu.slbia(vcpu);
1515 
1516 		for (i = 0; i < 64; i++) {
1517 			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1518 			u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1519 
1520 			if (rb & SLB_ESID_V)
1521 				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1522 		}
1523 	} else
1524 #endif
1525 	{
1526 		for (i = 0; i < 16; i++) {
1527 			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1528 		}
1529 		for (i = 0; i < 8; i++) {
1530 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1531 				       (u32)sregs->u.s.ppc32.ibat[i]);
1532 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1533 				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1534 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1535 				       (u32)sregs->u.s.ppc32.dbat[i]);
1536 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1537 				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1538 		}
1539 	}
1540 
1541 	/* Flush the MMU after messing with the segments */
1542 	kvmppc_mmu_pte_flush(vcpu, 0, 0);
1543 
1544 	return 0;
1545 }
1546 
1547 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1548 				 union kvmppc_one_reg *val)
1549 {
1550 	int r = 0;
1551 
1552 	switch (id) {
1553 	case KVM_REG_PPC_DEBUG_INST:
1554 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1555 		break;
1556 	case KVM_REG_PPC_HIOR:
1557 		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1558 		break;
1559 	case KVM_REG_PPC_VTB:
1560 		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
1561 		break;
1562 	case KVM_REG_PPC_LPCR:
1563 	case KVM_REG_PPC_LPCR_64:
1564 		/*
1565 		 * We are only interested in the LPCR_ILE bit
1566 		 */
1567 		if (vcpu->arch.intr_msr & MSR_LE)
1568 			*val = get_reg_val(id, LPCR_ILE);
1569 		else
1570 			*val = get_reg_val(id, 0);
1571 		break;
1572 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1573 	case KVM_REG_PPC_TFHAR:
1574 		*val = get_reg_val(id, vcpu->arch.tfhar);
1575 		break;
1576 	case KVM_REG_PPC_TFIAR:
1577 		*val = get_reg_val(id, vcpu->arch.tfiar);
1578 		break;
1579 	case KVM_REG_PPC_TEXASR:
1580 		*val = get_reg_val(id, vcpu->arch.texasr);
1581 		break;
1582 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1583 		*val = get_reg_val(id,
1584 				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1585 		break;
1586 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1587 	{
1588 		int i, j;
1589 
1590 		i = id - KVM_REG_PPC_TM_VSR0;
1591 		if (i < 32)
1592 			for (j = 0; j < TS_FPRWIDTH; j++)
1593 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1594 		else {
1595 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1596 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1597 			else
1598 				r = -ENXIO;
1599 		}
1600 		break;
1601 	}
1602 	case KVM_REG_PPC_TM_CR:
1603 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1604 		break;
1605 	case KVM_REG_PPC_TM_XER:
1606 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1607 		break;
1608 	case KVM_REG_PPC_TM_LR:
1609 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1610 		break;
1611 	case KVM_REG_PPC_TM_CTR:
1612 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1613 		break;
1614 	case KVM_REG_PPC_TM_FPSCR:
1615 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1616 		break;
1617 	case KVM_REG_PPC_TM_AMR:
1618 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1619 		break;
1620 	case KVM_REG_PPC_TM_PPR:
1621 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1622 		break;
1623 	case KVM_REG_PPC_TM_VRSAVE:
1624 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1625 		break;
1626 	case KVM_REG_PPC_TM_VSCR:
1627 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1628 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1629 		else
1630 			r = -ENXIO;
1631 		break;
1632 	case KVM_REG_PPC_TM_DSCR:
1633 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1634 		break;
1635 	case KVM_REG_PPC_TM_TAR:
1636 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1637 		break;
1638 #endif
1639 	default:
1640 		r = -EINVAL;
1641 		break;
1642 	}
1643 
1644 	return r;
1645 }
1646 
1647 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1648 {
1649 	if (new_lpcr & LPCR_ILE)
1650 		vcpu->arch.intr_msr |= MSR_LE;
1651 	else
1652 		vcpu->arch.intr_msr &= ~MSR_LE;
1653 }
1654 
1655 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1656 				 union kvmppc_one_reg *val)
1657 {
1658 	int r = 0;
1659 
1660 	switch (id) {
1661 	case KVM_REG_PPC_HIOR:
1662 		to_book3s(vcpu)->hior = set_reg_val(id, *val);
1663 		to_book3s(vcpu)->hior_explicit = true;
1664 		break;
1665 	case KVM_REG_PPC_VTB:
1666 		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1667 		break;
1668 	case KVM_REG_PPC_LPCR:
1669 	case KVM_REG_PPC_LPCR_64:
1670 		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1671 		break;
1672 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1673 	case KVM_REG_PPC_TFHAR:
1674 		vcpu->arch.tfhar = set_reg_val(id, *val);
1675 		break;
1676 	case KVM_REG_PPC_TFIAR:
1677 		vcpu->arch.tfiar = set_reg_val(id, *val);
1678 		break;
1679 	case KVM_REG_PPC_TEXASR:
1680 		vcpu->arch.texasr = set_reg_val(id, *val);
1681 		break;
1682 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1683 		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1684 			set_reg_val(id, *val);
1685 		break;
1686 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1687 	{
1688 		int i, j;
1689 
1690 		i = id - KVM_REG_PPC_TM_VSR0;
1691 		if (i < 32)
1692 			for (j = 0; j < TS_FPRWIDTH; j++)
1693 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1694 		else
1695 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1696 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1697 			else
1698 				r = -ENXIO;
1699 		break;
1700 	}
1701 	case KVM_REG_PPC_TM_CR:
1702 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1703 		break;
1704 	case KVM_REG_PPC_TM_XER:
1705 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1706 		break;
1707 	case KVM_REG_PPC_TM_LR:
1708 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1709 		break;
1710 	case KVM_REG_PPC_TM_CTR:
1711 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1712 		break;
1713 	case KVM_REG_PPC_TM_FPSCR:
1714 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1715 		break;
1716 	case KVM_REG_PPC_TM_AMR:
1717 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1718 		break;
1719 	case KVM_REG_PPC_TM_PPR:
1720 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1721 		break;
1722 	case KVM_REG_PPC_TM_VRSAVE:
1723 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1724 		break;
1725 	case KVM_REG_PPC_TM_VSCR:
1726 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1727 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1728 		else
1729 			r = -ENXIO;
1730 		break;
1731 	case KVM_REG_PPC_TM_DSCR:
1732 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1733 		break;
1734 	case KVM_REG_PPC_TM_TAR:
1735 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1736 		break;
1737 #endif
1738 	default:
1739 		r = -EINVAL;
1740 		break;
1741 	}
1742 
1743 	return r;
1744 }
1745 
1746 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1747 {
1748 	struct kvmppc_vcpu_book3s *vcpu_book3s;
1749 	unsigned long p;
1750 	int err;
1751 
1752 	err = -ENOMEM;
1753 
1754 	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1755 	if (!vcpu_book3s)
1756 		goto out;
1757 	vcpu->arch.book3s = vcpu_book3s;
1758 
1759 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1760 	vcpu->arch.shadow_vcpu =
1761 		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1762 	if (!vcpu->arch.shadow_vcpu)
1763 		goto free_vcpu3s;
1764 #endif
1765 
1766 	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1767 	if (!p)
1768 		goto free_shadow_vcpu;
1769 	vcpu->arch.shared = (void *)p;
1770 #ifdef CONFIG_PPC_BOOK3S_64
1771 	/* Always start the shared struct in native endian mode */
1772 #ifdef __BIG_ENDIAN__
1773         vcpu->arch.shared_big_endian = true;
1774 #else
1775         vcpu->arch.shared_big_endian = false;
1776 #endif
1777 
1778 	/*
1779 	 * Default to the same as the host if we're on sufficiently
1780 	 * recent machine that we have 1TB segments;
1781 	 * otherwise default to PPC970FX.
1782 	 */
1783 	vcpu->arch.pvr = 0x3C0301;
1784 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1785 		vcpu->arch.pvr = mfspr(SPRN_PVR);
1786 	vcpu->arch.intr_msr = MSR_SF;
1787 #else
1788 	/* default to book3s_32 (750) */
1789 	vcpu->arch.pvr = 0x84202;
1790 	vcpu->arch.intr_msr = 0;
1791 #endif
1792 	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1793 	vcpu->arch.slb_nr = 64;
1794 
1795 	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1796 
1797 	err = kvmppc_mmu_init_pr(vcpu);
1798 	if (err < 0)
1799 		goto free_shared_page;
1800 
1801 	return 0;
1802 
1803 free_shared_page:
1804 	free_page((unsigned long)vcpu->arch.shared);
1805 free_shadow_vcpu:
1806 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1807 	kfree(vcpu->arch.shadow_vcpu);
1808 free_vcpu3s:
1809 #endif
1810 	vfree(vcpu_book3s);
1811 out:
1812 	return err;
1813 }
1814 
1815 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1816 {
1817 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1818 
1819 	kvmppc_mmu_destroy_pr(vcpu);
1820 	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1821 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1822 	kfree(vcpu->arch.shadow_vcpu);
1823 #endif
1824 	vfree(vcpu_book3s);
1825 }
1826 
1827 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1828 {
1829 	int ret;
1830 
1831 	/* Check if we can run the vcpu at all */
1832 	if (!vcpu->arch.sane) {
1833 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1834 		ret = -EINVAL;
1835 		goto out;
1836 	}
1837 
1838 	kvmppc_setup_debug(vcpu);
1839 
1840 	/*
1841 	 * Interrupts could be timers for the guest which we have to inject
1842 	 * again, so let's postpone them until we're in the guest and if we
1843 	 * really did time things so badly, then we just exit again due to
1844 	 * a host external interrupt.
1845 	 */
1846 	ret = kvmppc_prepare_to_enter(vcpu);
1847 	if (ret <= 0)
1848 		goto out;
1849 	/* interrupts now hard-disabled */
1850 
1851 	/* Save FPU, Altivec and VSX state */
1852 	giveup_all(current);
1853 
1854 	/* Preload FPU if it's enabled */
1855 	if (kvmppc_get_msr(vcpu) & MSR_FP)
1856 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1857 
1858 	kvmppc_fix_ee_before_entry();
1859 
1860 	ret = __kvmppc_vcpu_run(vcpu);
1861 
1862 	kvmppc_clear_debug(vcpu);
1863 
1864 	/* No need for guest_exit. It's done in handle_exit.
1865 	   We also get here with interrupts enabled. */
1866 
1867 	/* Make sure we save the guest FPU/Altivec/VSX state */
1868 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1869 
1870 	/* Make sure we save the guest TAR/EBB/DSCR state */
1871 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1872 
1873 out:
1874 	vcpu->mode = OUTSIDE_GUEST_MODE;
1875 	return ret;
1876 }
1877 
1878 /*
1879  * Get (and clear) the dirty memory log for a memory slot.
1880  */
1881 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1882 					 struct kvm_dirty_log *log)
1883 {
1884 	struct kvm_memory_slot *memslot;
1885 	struct kvm_vcpu *vcpu;
1886 	ulong ga, ga_end;
1887 	int is_dirty = 0;
1888 	int r;
1889 	unsigned long n;
1890 
1891 	mutex_lock(&kvm->slots_lock);
1892 
1893 	r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1894 	if (r)
1895 		goto out;
1896 
1897 	/* If nothing is dirty, don't bother messing with page tables. */
1898 	if (is_dirty) {
1899 		ga = memslot->base_gfn << PAGE_SHIFT;
1900 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1901 
1902 		kvm_for_each_vcpu(n, vcpu, kvm)
1903 			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1904 
1905 		n = kvm_dirty_bitmap_bytes(memslot);
1906 		memset(memslot->dirty_bitmap, 0, n);
1907 	}
1908 
1909 	r = 0;
1910 out:
1911 	mutex_unlock(&kvm->slots_lock);
1912 	return r;
1913 }
1914 
1915 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1916 					 struct kvm_memory_slot *memslot)
1917 {
1918 	return;
1919 }
1920 
1921 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1922 					struct kvm_memory_slot *memslot,
1923 					const struct kvm_userspace_memory_region *mem,
1924 					enum kvm_mr_change change)
1925 {
1926 	return 0;
1927 }
1928 
1929 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1930 				const struct kvm_userspace_memory_region *mem,
1931 				const struct kvm_memory_slot *old,
1932 				const struct kvm_memory_slot *new,
1933 				enum kvm_mr_change change)
1934 {
1935 	return;
1936 }
1937 
1938 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1939 {
1940 	return;
1941 }
1942 
1943 #ifdef CONFIG_PPC64
1944 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1945 					 struct kvm_ppc_smmu_info *info)
1946 {
1947 	long int i;
1948 	struct kvm_vcpu *vcpu;
1949 
1950 	info->flags = 0;
1951 
1952 	/* SLB is always 64 entries */
1953 	info->slb_size = 64;
1954 
1955 	/* Standard 4k base page size segment */
1956 	info->sps[0].page_shift = 12;
1957 	info->sps[0].slb_enc = 0;
1958 	info->sps[0].enc[0].page_shift = 12;
1959 	info->sps[0].enc[0].pte_enc = 0;
1960 
1961 	/*
1962 	 * 64k large page size.
1963 	 * We only want to put this in if the CPUs we're emulating
1964 	 * support it, but unfortunately we don't have a vcpu easily
1965 	 * to hand here to test.  Just pick the first vcpu, and if
1966 	 * that doesn't exist yet, report the minimum capability,
1967 	 * i.e., no 64k pages.
1968 	 * 1T segment support goes along with 64k pages.
1969 	 */
1970 	i = 1;
1971 	vcpu = kvm_get_vcpu(kvm, 0);
1972 	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1973 		info->flags = KVM_PPC_1T_SEGMENTS;
1974 		info->sps[i].page_shift = 16;
1975 		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1976 		info->sps[i].enc[0].page_shift = 16;
1977 		info->sps[i].enc[0].pte_enc = 1;
1978 		++i;
1979 	}
1980 
1981 	/* Standard 16M large page size segment */
1982 	info->sps[i].page_shift = 24;
1983 	info->sps[i].slb_enc = SLB_VSID_L;
1984 	info->sps[i].enc[0].page_shift = 24;
1985 	info->sps[i].enc[0].pte_enc = 0;
1986 
1987 	return 0;
1988 }
1989 
1990 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1991 {
1992 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1993 		return -ENODEV;
1994 	/* Require flags and process table base and size to all be zero. */
1995 	if (cfg->flags || cfg->process_table)
1996 		return -EINVAL;
1997 	return 0;
1998 }
1999 
2000 #else
2001 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
2002 					 struct kvm_ppc_smmu_info *info)
2003 {
2004 	/* We should not get called */
2005 	BUG();
2006 	return 0;
2007 }
2008 #endif /* CONFIG_PPC64 */
2009 
2010 static unsigned int kvm_global_user_count = 0;
2011 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
2012 
2013 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2014 {
2015 	mutex_init(&kvm->arch.hpt_mutex);
2016 
2017 #ifdef CONFIG_PPC_BOOK3S_64
2018 	/* Start out with the default set of hcalls enabled */
2019 	kvmppc_pr_init_default_hcalls(kvm);
2020 #endif
2021 
2022 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2023 		spin_lock(&kvm_global_user_count_lock);
2024 		if (++kvm_global_user_count == 1)
2025 			pseries_disable_reloc_on_exc();
2026 		spin_unlock(&kvm_global_user_count_lock);
2027 	}
2028 	return 0;
2029 }
2030 
2031 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2032 {
2033 #ifdef CONFIG_PPC64
2034 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2035 #endif
2036 
2037 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2038 		spin_lock(&kvm_global_user_count_lock);
2039 		BUG_ON(kvm_global_user_count == 0);
2040 		if (--kvm_global_user_count == 0)
2041 			pseries_enable_reloc_on_exc();
2042 		spin_unlock(&kvm_global_user_count_lock);
2043 	}
2044 }
2045 
2046 static int kvmppc_core_check_processor_compat_pr(void)
2047 {
2048 	/*
2049 	 * PR KVM can work on POWER9 inside a guest partition
2050 	 * running in HPT mode.  It can't work if we are using
2051 	 * radix translation (because radix provides no way for
2052 	 * a process to have unique translations in quadrant 3).
2053 	 */
2054 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2055 		return -EIO;
2056 	return 0;
2057 }
2058 
2059 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2060 				 unsigned int ioctl, unsigned long arg)
2061 {
2062 	return -ENOTTY;
2063 }
2064 
2065 static struct kvmppc_ops kvm_ops_pr = {
2066 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2067 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2068 	.get_one_reg = kvmppc_get_one_reg_pr,
2069 	.set_one_reg = kvmppc_set_one_reg_pr,
2070 	.vcpu_load   = kvmppc_core_vcpu_load_pr,
2071 	.vcpu_put    = kvmppc_core_vcpu_put_pr,
2072 	.inject_interrupt = kvmppc_inject_interrupt_pr,
2073 	.set_msr     = kvmppc_set_msr_pr,
2074 	.vcpu_run    = kvmppc_vcpu_run_pr,
2075 	.vcpu_create = kvmppc_core_vcpu_create_pr,
2076 	.vcpu_free   = kvmppc_core_vcpu_free_pr,
2077 	.check_requests = kvmppc_core_check_requests_pr,
2078 	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2079 	.flush_memslot = kvmppc_core_flush_memslot_pr,
2080 	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2081 	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
2082 	.unmap_hva_range = kvm_unmap_hva_range_pr,
2083 	.age_hva  = kvm_age_hva_pr,
2084 	.test_age_hva = kvm_test_age_hva_pr,
2085 	.set_spte_hva = kvm_set_spte_hva_pr,
2086 	.free_memslot = kvmppc_core_free_memslot_pr,
2087 	.init_vm = kvmppc_core_init_vm_pr,
2088 	.destroy_vm = kvmppc_core_destroy_vm_pr,
2089 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2090 	.emulate_op = kvmppc_core_emulate_op_pr,
2091 	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2092 	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2093 	.fast_vcpu_kick = kvm_vcpu_kick,
2094 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2095 #ifdef CONFIG_PPC_BOOK3S_64
2096 	.hcall_implemented = kvmppc_hcall_impl_pr,
2097 	.configure_mmu = kvm_configure_mmu_pr,
2098 #endif
2099 	.giveup_ext = kvmppc_giveup_ext,
2100 };
2101 
2102 
2103 int kvmppc_book3s_init_pr(void)
2104 {
2105 	int r;
2106 
2107 	r = kvmppc_core_check_processor_compat_pr();
2108 	if (r < 0)
2109 		return r;
2110 
2111 	kvm_ops_pr.owner = THIS_MODULE;
2112 	kvmppc_pr_ops = &kvm_ops_pr;
2113 
2114 	r = kvmppc_mmu_hpte_sysinit();
2115 	return r;
2116 }
2117 
2118 void kvmppc_book3s_exit_pr(void)
2119 {
2120 	kvmppc_pr_ops = NULL;
2121 	kvmppc_mmu_hpte_sysexit();
2122 }
2123 
2124 /*
2125  * We only support separate modules for book3s 64
2126  */
2127 #ifdef CONFIG_PPC_BOOK3S_64
2128 
2129 module_init(kvmppc_book3s_init_pr);
2130 module_exit(kvmppc_book3s_exit_pr);
2131 
2132 MODULE_LICENSE("GPL");
2133 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2134 MODULE_ALIAS("devname:kvm");
2135 #endif
2136