1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Alexander Graf <agraf@suse.de> 7 * Kevin Wolf <mail@kevin-wolf.de> 8 * Paul Mackerras <paulus@samba.org> 9 * 10 * Description: 11 * Functions relating to running KVM on Book 3S processors where 12 * we don't have access to hypervisor mode, and we run the guest 13 * in problem state (user mode). 14 * 15 * This file is derived from arch/powerpc/kvm/44x.c, 16 * by Hollis Blanchard <hollisb@us.ibm.com>. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/export.h> 21 #include <linux/err.h> 22 #include <linux/slab.h> 23 24 #include <asm/reg.h> 25 #include <asm/cputable.h> 26 #include <asm/cacheflush.h> 27 #include <linux/uaccess.h> 28 #include <asm/interrupt.h> 29 #include <asm/io.h> 30 #include <asm/kvm_ppc.h> 31 #include <asm/kvm_book3s.h> 32 #include <asm/mmu_context.h> 33 #include <asm/switch_to.h> 34 #include <asm/firmware.h> 35 #include <asm/setup.h> 36 #include <linux/gfp.h> 37 #include <linux/sched.h> 38 #include <linux/vmalloc.h> 39 #include <linux/highmem.h> 40 #include <linux/module.h> 41 #include <linux/miscdevice.h> 42 #include <asm/asm-prototypes.h> 43 #include <asm/tm.h> 44 45 #include "book3s.h" 46 47 #define CREATE_TRACE_POINTS 48 #include "trace_pr.h" 49 50 /* #define EXIT_DEBUG */ 51 /* #define DEBUG_EXT */ 52 53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 54 ulong msr); 55 #ifdef CONFIG_PPC_BOOK3S_64 56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac); 57 #endif 58 59 /* Some compatibility defines */ 60 #ifdef CONFIG_PPC_BOOK3S_32 61 #define MSR_USER32 MSR_USER 62 #define MSR_USER64 MSR_USER 63 #define HW_PAGE_SIZE PAGE_SIZE 64 #define HPTE_R_M _PAGE_COHERENT 65 #endif 66 67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) 68 { 69 ulong msr = kvmppc_get_msr(vcpu); 70 return (msr & (MSR_IR|MSR_DR)) == MSR_DR; 71 } 72 73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) 74 { 75 ulong msr = kvmppc_get_msr(vcpu); 76 ulong pc = kvmppc_get_pc(vcpu); 77 78 /* We are in DR only split real mode */ 79 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) 80 return; 81 82 /* We have not fixed up the guest already */ 83 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) 84 return; 85 86 /* The code is in fixupable address space */ 87 if (pc & SPLIT_HACK_MASK) 88 return; 89 90 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; 91 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); 92 } 93 94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu) 95 { 96 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) { 97 ulong pc = kvmppc_get_pc(vcpu); 98 ulong lr = kvmppc_get_lr(vcpu); 99 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) 100 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK); 101 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) 102 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK); 103 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK; 104 } 105 } 106 107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 108 { 109 unsigned long msr, pc, new_msr, new_pc; 110 111 kvmppc_unfixup_split_real(vcpu); 112 113 msr = kvmppc_get_msr(vcpu); 114 pc = kvmppc_get_pc(vcpu); 115 new_msr = vcpu->arch.intr_msr; 116 new_pc = to_book3s(vcpu)->hior + vec; 117 118 #ifdef CONFIG_PPC_BOOK3S_64 119 /* If transactional, change to suspend mode on IRQ delivery */ 120 if (MSR_TM_TRANSACTIONAL(msr)) 121 new_msr |= MSR_TS_S; 122 else 123 new_msr |= msr & MSR_TS_MASK; 124 #endif 125 126 kvmppc_set_srr0(vcpu, pc); 127 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 128 kvmppc_set_pc(vcpu, new_pc); 129 kvmppc_set_msr(vcpu, new_msr); 130 } 131 132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) 133 { 134 #ifdef CONFIG_PPC_BOOK3S_64 135 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 136 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); 137 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; 138 svcpu->in_use = 0; 139 svcpu_put(svcpu); 140 141 /* Disable AIL if supported */ 142 if (cpu_has_feature(CPU_FTR_HVMODE)) { 143 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 144 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); 145 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV)) 146 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV); 147 } 148 #endif 149 150 vcpu->cpu = smp_processor_id(); 151 #ifdef CONFIG_PPC_BOOK3S_32 152 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; 153 #endif 154 155 if (kvmppc_is_split_real(vcpu)) 156 kvmppc_fixup_split_real(vcpu); 157 158 kvmppc_restore_tm_pr(vcpu); 159 } 160 161 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) 162 { 163 #ifdef CONFIG_PPC_BOOK3S_64 164 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 165 if (svcpu->in_use) { 166 kvmppc_copy_from_svcpu(vcpu); 167 } 168 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); 169 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; 170 svcpu_put(svcpu); 171 172 /* Enable AIL if supported */ 173 if (cpu_has_feature(CPU_FTR_HVMODE)) { 174 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 175 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); 176 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV)) 177 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV); 178 } 179 #endif 180 181 if (kvmppc_is_split_real(vcpu)) 182 kvmppc_unfixup_split_real(vcpu); 183 184 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 185 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 186 kvmppc_save_tm_pr(vcpu); 187 188 vcpu->cpu = -1; 189 } 190 191 /* Copy data needed by real-mode code from vcpu to shadow vcpu */ 192 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu) 193 { 194 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 195 196 svcpu->gpr[0] = vcpu->arch.regs.gpr[0]; 197 svcpu->gpr[1] = vcpu->arch.regs.gpr[1]; 198 svcpu->gpr[2] = vcpu->arch.regs.gpr[2]; 199 svcpu->gpr[3] = vcpu->arch.regs.gpr[3]; 200 svcpu->gpr[4] = vcpu->arch.regs.gpr[4]; 201 svcpu->gpr[5] = vcpu->arch.regs.gpr[5]; 202 svcpu->gpr[6] = vcpu->arch.regs.gpr[6]; 203 svcpu->gpr[7] = vcpu->arch.regs.gpr[7]; 204 svcpu->gpr[8] = vcpu->arch.regs.gpr[8]; 205 svcpu->gpr[9] = vcpu->arch.regs.gpr[9]; 206 svcpu->gpr[10] = vcpu->arch.regs.gpr[10]; 207 svcpu->gpr[11] = vcpu->arch.regs.gpr[11]; 208 svcpu->gpr[12] = vcpu->arch.regs.gpr[12]; 209 svcpu->gpr[13] = vcpu->arch.regs.gpr[13]; 210 svcpu->cr = vcpu->arch.regs.ccr; 211 svcpu->xer = vcpu->arch.regs.xer; 212 svcpu->ctr = vcpu->arch.regs.ctr; 213 svcpu->lr = vcpu->arch.regs.link; 214 svcpu->pc = vcpu->arch.regs.nip; 215 #ifdef CONFIG_PPC_BOOK3S_64 216 svcpu->shadow_fscr = vcpu->arch.shadow_fscr; 217 #endif 218 /* 219 * Now also save the current time base value. We use this 220 * to find the guest purr and spurr value. 221 */ 222 vcpu->arch.entry_tb = get_tb(); 223 vcpu->arch.entry_vtb = get_vtb(); 224 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 225 vcpu->arch.entry_ic = mfspr(SPRN_IC); 226 svcpu->in_use = true; 227 228 svcpu_put(svcpu); 229 } 230 231 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) 232 { 233 ulong guest_msr = kvmppc_get_msr(vcpu); 234 ulong smsr = guest_msr; 235 236 /* Guest MSR values */ 237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 238 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE | 239 MSR_TM | MSR_TS_MASK; 240 #else 241 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; 242 #endif 243 /* Process MSR values */ 244 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; 245 /* External providers the guest reserved */ 246 smsr |= (guest_msr & vcpu->arch.guest_owned_ext); 247 /* 64-bit Process MSR values */ 248 #ifdef CONFIG_PPC_BOOK3S_64 249 smsr |= MSR_HV; 250 #endif 251 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 252 /* 253 * in guest privileged state, we want to fail all TM transactions. 254 * So disable MSR TM bit so that all tbegin. will be able to be 255 * trapped into host. 256 */ 257 if (!(guest_msr & MSR_PR)) 258 smsr &= ~MSR_TM; 259 #endif 260 vcpu->arch.shadow_msr = smsr; 261 } 262 263 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ 264 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu) 265 { 266 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 268 ulong old_msr; 269 #endif 270 271 /* 272 * Maybe we were already preempted and synced the svcpu from 273 * our preempt notifiers. Don't bother touching this svcpu then. 274 */ 275 if (!svcpu->in_use) 276 goto out; 277 278 vcpu->arch.regs.gpr[0] = svcpu->gpr[0]; 279 vcpu->arch.regs.gpr[1] = svcpu->gpr[1]; 280 vcpu->arch.regs.gpr[2] = svcpu->gpr[2]; 281 vcpu->arch.regs.gpr[3] = svcpu->gpr[3]; 282 vcpu->arch.regs.gpr[4] = svcpu->gpr[4]; 283 vcpu->arch.regs.gpr[5] = svcpu->gpr[5]; 284 vcpu->arch.regs.gpr[6] = svcpu->gpr[6]; 285 vcpu->arch.regs.gpr[7] = svcpu->gpr[7]; 286 vcpu->arch.regs.gpr[8] = svcpu->gpr[8]; 287 vcpu->arch.regs.gpr[9] = svcpu->gpr[9]; 288 vcpu->arch.regs.gpr[10] = svcpu->gpr[10]; 289 vcpu->arch.regs.gpr[11] = svcpu->gpr[11]; 290 vcpu->arch.regs.gpr[12] = svcpu->gpr[12]; 291 vcpu->arch.regs.gpr[13] = svcpu->gpr[13]; 292 vcpu->arch.regs.ccr = svcpu->cr; 293 vcpu->arch.regs.xer = svcpu->xer; 294 vcpu->arch.regs.ctr = svcpu->ctr; 295 vcpu->arch.regs.link = svcpu->lr; 296 vcpu->arch.regs.nip = svcpu->pc; 297 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; 298 vcpu->arch.fault_dar = svcpu->fault_dar; 299 vcpu->arch.fault_dsisr = svcpu->fault_dsisr; 300 vcpu->arch.last_inst = svcpu->last_inst; 301 #ifdef CONFIG_PPC_BOOK3S_64 302 vcpu->arch.shadow_fscr = svcpu->shadow_fscr; 303 #endif 304 /* 305 * Update purr and spurr using time base on exit. 306 */ 307 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; 308 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; 309 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; 310 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 311 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; 312 313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 314 /* 315 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without 316 * notifying host: 317 * modified by unprivileged instructions like "tbegin"/"tend"/ 318 * "tresume"/"tsuspend" in PR KVM guest. 319 * 320 * It is necessary to sync here to calculate a correct shadow_msr. 321 * 322 * privileged guest's tbegin will be failed at present. So we 323 * only take care of problem state guest. 324 */ 325 old_msr = kvmppc_get_msr(vcpu); 326 if (unlikely((old_msr & MSR_PR) && 327 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) != 328 (old_msr & (MSR_TS_MASK)))) { 329 old_msr &= ~(MSR_TS_MASK); 330 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)); 331 kvmppc_set_msr_fast(vcpu, old_msr); 332 kvmppc_recalc_shadow_msr(vcpu); 333 } 334 #endif 335 336 svcpu->in_use = false; 337 338 out: 339 svcpu_put(svcpu); 340 } 341 342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 343 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) 344 { 345 tm_enable(); 346 vcpu->arch.tfhar = mfspr(SPRN_TFHAR); 347 vcpu->arch.texasr = mfspr(SPRN_TEXASR); 348 vcpu->arch.tfiar = mfspr(SPRN_TFIAR); 349 tm_disable(); 350 } 351 352 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) 353 { 354 tm_enable(); 355 mtspr(SPRN_TFHAR, vcpu->arch.tfhar); 356 mtspr(SPRN_TEXASR, vcpu->arch.texasr); 357 mtspr(SPRN_TFIAR, vcpu->arch.tfiar); 358 tm_disable(); 359 } 360 361 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at 362 * hardware. 363 */ 364 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu) 365 { 366 ulong exit_nr; 367 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) & 368 (MSR_FP | MSR_VEC | MSR_VSX); 369 370 if (!ext_diff) 371 return; 372 373 if (ext_diff == MSR_FP) 374 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL; 375 else if (ext_diff == MSR_VEC) 376 exit_nr = BOOK3S_INTERRUPT_ALTIVEC; 377 else 378 exit_nr = BOOK3S_INTERRUPT_VSX; 379 380 kvmppc_handle_ext(vcpu, exit_nr, ext_diff); 381 } 382 383 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) 384 { 385 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) { 386 kvmppc_save_tm_sprs(vcpu); 387 return; 388 } 389 390 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 391 kvmppc_giveup_ext(vcpu, MSR_VSX); 392 393 preempt_disable(); 394 _kvmppc_save_tm_pr(vcpu, mfmsr()); 395 preempt_enable(); 396 } 397 398 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) 399 { 400 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) { 401 kvmppc_restore_tm_sprs(vcpu); 402 if (kvmppc_get_msr(vcpu) & MSR_TM) { 403 kvmppc_handle_lost_math_exts(vcpu); 404 if (vcpu->arch.fscr & FSCR_TAR) 405 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 406 } 407 return; 408 } 409 410 preempt_disable(); 411 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu)); 412 preempt_enable(); 413 414 if (kvmppc_get_msr(vcpu) & MSR_TM) { 415 kvmppc_handle_lost_math_exts(vcpu); 416 if (vcpu->arch.fscr & FSCR_TAR) 417 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 418 } 419 } 420 #endif 421 422 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) 423 { 424 int r = 1; /* Indicate we want to get back into the guest */ 425 426 /* We misuse TLB_FLUSH to indicate that we want to clear 427 all shadow cache entries */ 428 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 429 kvmppc_mmu_pte_flush(vcpu, 0, 0); 430 431 return r; 432 } 433 434 /************* MMU Notifiers *************/ 435 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 436 { 437 unsigned long i; 438 struct kvm_vcpu *vcpu; 439 440 kvm_for_each_vcpu(i, vcpu, kvm) 441 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT, 442 range->end << PAGE_SHIFT); 443 444 return false; 445 } 446 447 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range) 448 { 449 return do_kvm_unmap_gfn(kvm, range); 450 } 451 452 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) 453 { 454 /* XXX could be more clever ;) */ 455 return false; 456 } 457 458 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) 459 { 460 /* XXX could be more clever ;) */ 461 return false; 462 } 463 464 static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) 465 { 466 /* The page will get remapped properly on its next fault */ 467 return do_kvm_unmap_gfn(kvm, range); 468 } 469 470 /*****************************************/ 471 472 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) 473 { 474 ulong old_msr; 475 476 /* For PAPR guest, make sure MSR reflects guest mode */ 477 if (vcpu->arch.papr_enabled) 478 msr = (msr & ~MSR_HV) | MSR_ME; 479 480 #ifdef EXIT_DEBUG 481 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); 482 #endif 483 484 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 485 /* We should never target guest MSR to TS=10 && PR=0, 486 * since we always fail transaction for guest privilege 487 * state. 488 */ 489 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr)) 490 kvmppc_emulate_tabort(vcpu, 491 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT); 492 #endif 493 494 old_msr = kvmppc_get_msr(vcpu); 495 msr &= to_book3s(vcpu)->msr_mask; 496 kvmppc_set_msr_fast(vcpu, msr); 497 kvmppc_recalc_shadow_msr(vcpu); 498 499 if (msr & MSR_POW) { 500 if (!vcpu->arch.pending_exceptions) { 501 kvm_vcpu_halt(vcpu); 502 vcpu->stat.generic.halt_wakeup++; 503 504 /* Unset POW bit after we woke up */ 505 msr &= ~MSR_POW; 506 kvmppc_set_msr_fast(vcpu, msr); 507 } 508 } 509 510 if (kvmppc_is_split_real(vcpu)) 511 kvmppc_fixup_split_real(vcpu); 512 else 513 kvmppc_unfixup_split_real(vcpu); 514 515 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != 516 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { 517 kvmppc_mmu_flush_segments(vcpu); 518 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 519 520 /* Preload magic page segment when in kernel mode */ 521 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { 522 struct kvm_vcpu_arch *a = &vcpu->arch; 523 524 if (msr & MSR_DR) 525 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); 526 else 527 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); 528 } 529 } 530 531 /* 532 * When switching from 32 to 64-bit, we may have a stale 32-bit 533 * magic page around, we need to flush it. Typically 32-bit magic 534 * page will be instantiated when calling into RTAS. Note: We 535 * assume that such transition only happens while in kernel mode, 536 * ie, we never transition from user 32-bit to kernel 64-bit with 537 * a 32-bit magic page around. 538 */ 539 if (vcpu->arch.magic_page_pa && 540 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { 541 /* going from RTAS to normal kernel code */ 542 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, 543 ~0xFFFUL); 544 } 545 546 /* Preload FPU if it's enabled */ 547 if (kvmppc_get_msr(vcpu) & MSR_FP) 548 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 549 550 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 551 if (kvmppc_get_msr(vcpu) & MSR_TM) 552 kvmppc_handle_lost_math_exts(vcpu); 553 #endif 554 } 555 556 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) 557 { 558 u32 host_pvr; 559 560 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; 561 vcpu->arch.pvr = pvr; 562 #ifdef CONFIG_PPC_BOOK3S_64 563 if ((pvr >= 0x330000) && (pvr < 0x70330000)) { 564 kvmppc_mmu_book3s_64_init(vcpu); 565 if (!to_book3s(vcpu)->hior_explicit) 566 to_book3s(vcpu)->hior = 0xfff00000; 567 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; 568 vcpu->arch.cpu_type = KVM_CPU_3S_64; 569 } else 570 #endif 571 { 572 kvmppc_mmu_book3s_32_init(vcpu); 573 if (!to_book3s(vcpu)->hior_explicit) 574 to_book3s(vcpu)->hior = 0; 575 to_book3s(vcpu)->msr_mask = 0xffffffffULL; 576 vcpu->arch.cpu_type = KVM_CPU_3S_32; 577 } 578 579 kvmppc_sanity_check(vcpu); 580 581 /* If we are in hypervisor level on 970, we can tell the CPU to 582 * treat DCBZ as 32 bytes store */ 583 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; 584 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && 585 !strcmp(cur_cpu_spec->platform, "ppc970")) 586 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 587 588 /* Cell performs badly if MSR_FEx are set. So let's hope nobody 589 really needs them in a VM on Cell and force disable them. */ 590 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) 591 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); 592 593 /* 594 * If they're asking for POWER6 or later, set the flag 595 * indicating that we can do multiple large page sizes 596 * and 1TB segments. 597 * Also set the flag that indicates that tlbie has the large 598 * page bit in the RB operand instead of the instruction. 599 */ 600 switch (PVR_VER(pvr)) { 601 case PVR_POWER6: 602 case PVR_POWER7: 603 case PVR_POWER7p: 604 case PVR_POWER8: 605 case PVR_POWER8E: 606 case PVR_POWER8NVL: 607 case PVR_HX_C2000: 608 case PVR_POWER9: 609 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | 610 BOOK3S_HFLAG_NEW_TLBIE; 611 break; 612 } 613 614 #ifdef CONFIG_PPC_BOOK3S_32 615 /* 32 bit Book3S always has 32 byte dcbz */ 616 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 617 #endif 618 619 /* On some CPUs we can execute paired single operations natively */ 620 asm ( "mfpvr %0" : "=r"(host_pvr)); 621 switch (host_pvr) { 622 case 0x00080200: /* lonestar 2.0 */ 623 case 0x00088202: /* lonestar 2.2 */ 624 case 0x70000100: /* gekko 1.0 */ 625 case 0x00080100: /* gekko 2.0 */ 626 case 0x00083203: /* gekko 2.3a */ 627 case 0x00083213: /* gekko 2.3b */ 628 case 0x00083204: /* gekko 2.4 */ 629 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ 630 case 0x00087200: /* broadway */ 631 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; 632 /* Enable HID2.PSE - in case we need it later */ 633 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); 634 } 635 } 636 637 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To 638 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to 639 * emulate 32 bytes dcbz length. 640 * 641 * The Book3s_64 inventors also realized this case and implemented a special bit 642 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. 643 * 644 * My approach here is to patch the dcbz instruction on executing pages. 645 */ 646 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) 647 { 648 struct page *hpage; 649 u64 hpage_offset; 650 u32 *page; 651 int i; 652 653 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); 654 if (is_error_page(hpage)) 655 return; 656 657 hpage_offset = pte->raddr & ~PAGE_MASK; 658 hpage_offset &= ~0xFFFULL; 659 hpage_offset /= 4; 660 661 get_page(hpage); 662 page = kmap_atomic(hpage); 663 664 /* patch dcbz into reserved instruction, so we trap */ 665 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) 666 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) 667 page[i] &= cpu_to_be32(0xfffffff7); 668 669 kunmap_atomic(page); 670 put_page(hpage); 671 } 672 673 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 674 { 675 ulong mp_pa = vcpu->arch.magic_page_pa; 676 677 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) 678 mp_pa = (uint32_t)mp_pa; 679 680 gpa &= ~0xFFFULL; 681 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { 682 return true; 683 } 684 685 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); 686 } 687 688 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu, 689 ulong eaddr, int vec) 690 { 691 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); 692 bool iswrite = false; 693 int r = RESUME_GUEST; 694 int relocated; 695 int page_found = 0; 696 struct kvmppc_pte pte = { 0 }; 697 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; 698 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; 699 u64 vsid; 700 701 relocated = data ? dr : ir; 702 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) 703 iswrite = true; 704 705 /* Resolve real address if translation turned on */ 706 if (relocated) { 707 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); 708 } else { 709 pte.may_execute = true; 710 pte.may_read = true; 711 pte.may_write = true; 712 pte.raddr = eaddr & KVM_PAM; 713 pte.eaddr = eaddr; 714 pte.vpage = eaddr >> 12; 715 pte.page_size = MMU_PAGE_64K; 716 pte.wimg = HPTE_R_M; 717 } 718 719 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { 720 case 0: 721 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); 722 break; 723 case MSR_DR: 724 if (!data && 725 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && 726 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) 727 pte.raddr &= ~SPLIT_HACK_MASK; 728 fallthrough; 729 case MSR_IR: 730 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); 731 732 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) 733 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); 734 else 735 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); 736 pte.vpage |= vsid; 737 738 if (vsid == -1) 739 page_found = -EINVAL; 740 break; 741 } 742 743 if (vcpu->arch.mmu.is_dcbz32(vcpu) && 744 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 745 /* 746 * If we do the dcbz hack, we have to NX on every execution, 747 * so we can patch the executing code. This renders our guest 748 * NX-less. 749 */ 750 pte.may_execute = !data; 751 } 752 753 if (page_found == -ENOENT || page_found == -EPERM) { 754 /* Page not found in guest PTE entries, or protection fault */ 755 u64 flags; 756 757 if (page_found == -EPERM) 758 flags = DSISR_PROTFAULT; 759 else 760 flags = DSISR_NOHPTE; 761 if (data) { 762 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE; 763 kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags); 764 } else { 765 kvmppc_core_queue_inst_storage(vcpu, flags); 766 } 767 } else if (page_found == -EINVAL) { 768 /* Page not found in guest SLB */ 769 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 770 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); 771 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { 772 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { 773 /* 774 * There is already a host HPTE there, presumably 775 * a read-only one for a page the guest thinks 776 * is writable, so get rid of it first. 777 */ 778 kvmppc_mmu_unmap_page(vcpu, &pte); 779 } 780 /* The guest's PTE is not mapped yet. Map on the host */ 781 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { 782 /* Exit KVM if mapping failed */ 783 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 784 return RESUME_HOST; 785 } 786 if (data) 787 vcpu->stat.sp_storage++; 788 else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 789 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) 790 kvmppc_patch_dcbz(vcpu, &pte); 791 } else { 792 /* MMIO */ 793 vcpu->stat.mmio_exits++; 794 vcpu->arch.paddr_accessed = pte.raddr; 795 vcpu->arch.vaddr_accessed = pte.eaddr; 796 r = kvmppc_emulate_mmio(vcpu); 797 if ( r == RESUME_HOST_NV ) 798 r = RESUME_HOST; 799 } 800 801 return r; 802 } 803 804 /* Give up external provider (FPU, Altivec, VSX) */ 805 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) 806 { 807 struct thread_struct *t = ¤t->thread; 808 809 /* 810 * VSX instructions can access FP and vector registers, so if 811 * we are giving up VSX, make sure we give up FP and VMX as well. 812 */ 813 if (msr & MSR_VSX) 814 msr |= MSR_FP | MSR_VEC; 815 816 msr &= vcpu->arch.guest_owned_ext; 817 if (!msr) 818 return; 819 820 #ifdef DEBUG_EXT 821 printk(KERN_INFO "Giving up ext 0x%lx\n", msr); 822 #endif 823 824 if (msr & MSR_FP) { 825 /* 826 * Note that on CPUs with VSX, giveup_fpu stores 827 * both the traditional FP registers and the added VSX 828 * registers into thread.fp_state.fpr[]. 829 */ 830 if (t->regs->msr & MSR_FP) 831 giveup_fpu(current); 832 t->fp_save_area = NULL; 833 } 834 835 #ifdef CONFIG_ALTIVEC 836 if (msr & MSR_VEC) { 837 if (current->thread.regs->msr & MSR_VEC) 838 giveup_altivec(current); 839 t->vr_save_area = NULL; 840 } 841 #endif 842 843 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); 844 kvmppc_recalc_shadow_msr(vcpu); 845 } 846 847 /* Give up facility (TAR / EBB / DSCR) */ 848 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) 849 { 850 #ifdef CONFIG_PPC_BOOK3S_64 851 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { 852 /* Facility not available to the guest, ignore giveup request*/ 853 return; 854 } 855 856 switch (fac) { 857 case FSCR_TAR_LG: 858 vcpu->arch.tar = mfspr(SPRN_TAR); 859 mtspr(SPRN_TAR, current->thread.tar); 860 vcpu->arch.shadow_fscr &= ~FSCR_TAR; 861 break; 862 } 863 #endif 864 } 865 866 /* Handle external providers (FPU, Altivec, VSX) */ 867 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 868 ulong msr) 869 { 870 struct thread_struct *t = ¤t->thread; 871 872 /* When we have paired singles, we emulate in software */ 873 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) 874 return RESUME_GUEST; 875 876 if (!(kvmppc_get_msr(vcpu) & msr)) { 877 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 878 return RESUME_GUEST; 879 } 880 881 if (msr == MSR_VSX) { 882 /* No VSX? Give an illegal instruction interrupt */ 883 #ifdef CONFIG_VSX 884 if (!cpu_has_feature(CPU_FTR_VSX)) 885 #endif 886 { 887 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 888 return RESUME_GUEST; 889 } 890 891 /* 892 * We have to load up all the FP and VMX registers before 893 * we can let the guest use VSX instructions. 894 */ 895 msr = MSR_FP | MSR_VEC | MSR_VSX; 896 } 897 898 /* See if we already own all the ext(s) needed */ 899 msr &= ~vcpu->arch.guest_owned_ext; 900 if (!msr) 901 return RESUME_GUEST; 902 903 #ifdef DEBUG_EXT 904 printk(KERN_INFO "Loading up ext 0x%lx\n", msr); 905 #endif 906 907 if (msr & MSR_FP) { 908 preempt_disable(); 909 enable_kernel_fp(); 910 load_fp_state(&vcpu->arch.fp); 911 disable_kernel_fp(); 912 t->fp_save_area = &vcpu->arch.fp; 913 preempt_enable(); 914 } 915 916 if (msr & MSR_VEC) { 917 #ifdef CONFIG_ALTIVEC 918 preempt_disable(); 919 enable_kernel_altivec(); 920 load_vr_state(&vcpu->arch.vr); 921 disable_kernel_altivec(); 922 t->vr_save_area = &vcpu->arch.vr; 923 preempt_enable(); 924 #endif 925 } 926 927 t->regs->msr |= msr; 928 vcpu->arch.guest_owned_ext |= msr; 929 kvmppc_recalc_shadow_msr(vcpu); 930 931 return RESUME_GUEST; 932 } 933 934 /* 935 * Kernel code using FP or VMX could have flushed guest state to 936 * the thread_struct; if so, get it back now. 937 */ 938 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) 939 { 940 unsigned long lost_ext; 941 942 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; 943 if (!lost_ext) 944 return; 945 946 if (lost_ext & MSR_FP) { 947 preempt_disable(); 948 enable_kernel_fp(); 949 load_fp_state(&vcpu->arch.fp); 950 disable_kernel_fp(); 951 preempt_enable(); 952 } 953 #ifdef CONFIG_ALTIVEC 954 if (lost_ext & MSR_VEC) { 955 preempt_disable(); 956 enable_kernel_altivec(); 957 load_vr_state(&vcpu->arch.vr); 958 disable_kernel_altivec(); 959 preempt_enable(); 960 } 961 #endif 962 current->thread.regs->msr |= lost_ext; 963 } 964 965 #ifdef CONFIG_PPC_BOOK3S_64 966 967 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) 968 { 969 /* Inject the Interrupt Cause field and trigger a guest interrupt */ 970 vcpu->arch.fscr &= ~(0xffULL << 56); 971 vcpu->arch.fscr |= (fac << 56); 972 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); 973 } 974 975 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) 976 { 977 enum emulation_result er = EMULATE_FAIL; 978 979 if (!(kvmppc_get_msr(vcpu) & MSR_PR)) 980 er = kvmppc_emulate_instruction(vcpu); 981 982 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { 983 /* Couldn't emulate, trigger interrupt in guest */ 984 kvmppc_trigger_fac_interrupt(vcpu, fac); 985 } 986 } 987 988 /* Enable facilities (TAR, EBB, DSCR) for the guest */ 989 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) 990 { 991 bool guest_fac_enabled; 992 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); 993 994 /* 995 * Not every facility is enabled by FSCR bits, check whether the 996 * guest has this facility enabled at all. 997 */ 998 switch (fac) { 999 case FSCR_TAR_LG: 1000 case FSCR_EBB_LG: 1001 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); 1002 break; 1003 case FSCR_TM_LG: 1004 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; 1005 break; 1006 default: 1007 guest_fac_enabled = false; 1008 break; 1009 } 1010 1011 if (!guest_fac_enabled) { 1012 /* Facility not enabled by the guest */ 1013 kvmppc_trigger_fac_interrupt(vcpu, fac); 1014 return RESUME_GUEST; 1015 } 1016 1017 switch (fac) { 1018 case FSCR_TAR_LG: 1019 /* TAR switching isn't lazy in Linux yet */ 1020 current->thread.tar = mfspr(SPRN_TAR); 1021 mtspr(SPRN_TAR, vcpu->arch.tar); 1022 vcpu->arch.shadow_fscr |= FSCR_TAR; 1023 break; 1024 default: 1025 kvmppc_emulate_fac(vcpu, fac); 1026 break; 1027 } 1028 1029 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1030 /* Since we disabled MSR_TM at privilege state, the mfspr instruction 1031 * for TM spr can trigger TM fac unavailable. In this case, the 1032 * emulation is handled by kvmppc_emulate_fac(), which invokes 1033 * kvmppc_emulate_mfspr() finally. But note the mfspr can include 1034 * RT for NV registers. So it need to restore those NV reg to reflect 1035 * the update. 1036 */ 1037 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR)) 1038 return RESUME_GUEST_NV; 1039 #endif 1040 1041 return RESUME_GUEST; 1042 } 1043 1044 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) 1045 { 1046 if (fscr & FSCR_SCV) 1047 fscr &= ~FSCR_SCV; /* SCV must not be enabled */ 1048 /* Prohibit prefixed instructions for now */ 1049 fscr &= ~FSCR_PREFIX; 1050 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { 1051 /* TAR got dropped, drop it in shadow too */ 1052 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1053 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) { 1054 vcpu->arch.fscr = fscr; 1055 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 1056 return; 1057 } 1058 1059 vcpu->arch.fscr = fscr; 1060 } 1061 #endif 1062 1063 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) 1064 { 1065 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1066 u64 msr = kvmppc_get_msr(vcpu); 1067 1068 kvmppc_set_msr(vcpu, msr | MSR_SE); 1069 } 1070 } 1071 1072 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) 1073 { 1074 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1075 u64 msr = kvmppc_get_msr(vcpu); 1076 1077 kvmppc_set_msr(vcpu, msr & ~MSR_SE); 1078 } 1079 } 1080 1081 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr) 1082 { 1083 enum emulation_result er; 1084 ulong flags; 1085 ppc_inst_t last_inst; 1086 int emul, r; 1087 1088 /* 1089 * shadow_srr1 only contains valid flags if we came here via a program 1090 * exception. The other exceptions (emulation assist, FP unavailable, 1091 * etc.) do not provide flags in SRR1, so use an illegal-instruction 1092 * exception when injecting a program interrupt into the guest. 1093 */ 1094 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) 1095 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; 1096 else 1097 flags = SRR1_PROGILL; 1098 1099 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1100 if (emul != EMULATE_DONE) 1101 return RESUME_GUEST; 1102 1103 if (kvmppc_get_msr(vcpu) & MSR_PR) { 1104 #ifdef EXIT_DEBUG 1105 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", 1106 kvmppc_get_pc(vcpu), ppc_inst_val(last_inst)); 1107 #endif 1108 if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { 1109 kvmppc_core_queue_program(vcpu, flags); 1110 return RESUME_GUEST; 1111 } 1112 } 1113 1114 vcpu->stat.emulated_inst_exits++; 1115 er = kvmppc_emulate_instruction(vcpu); 1116 switch (er) { 1117 case EMULATE_DONE: 1118 r = RESUME_GUEST_NV; 1119 break; 1120 case EMULATE_AGAIN: 1121 r = RESUME_GUEST; 1122 break; 1123 case EMULATE_FAIL: 1124 pr_crit("%s: emulation at %lx failed (%08x)\n", 1125 __func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst)); 1126 kvmppc_core_queue_program(vcpu, flags); 1127 r = RESUME_GUEST; 1128 break; 1129 case EMULATE_DO_MMIO: 1130 vcpu->run->exit_reason = KVM_EXIT_MMIO; 1131 r = RESUME_HOST_NV; 1132 break; 1133 case EMULATE_EXIT_USER: 1134 r = RESUME_HOST_NV; 1135 break; 1136 default: 1137 BUG(); 1138 } 1139 1140 return r; 1141 } 1142 1143 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr) 1144 { 1145 struct kvm_run *run = vcpu->run; 1146 int r = RESUME_HOST; 1147 int s; 1148 1149 vcpu->stat.sum_exits++; 1150 1151 run->exit_reason = KVM_EXIT_UNKNOWN; 1152 run->ready_for_interrupt_injection = 1; 1153 1154 /* We get here with MSR.EE=1 */ 1155 1156 trace_kvm_exit(exit_nr, vcpu); 1157 guest_exit(); 1158 1159 switch (exit_nr) { 1160 case BOOK3S_INTERRUPT_INST_STORAGE: 1161 { 1162 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1163 vcpu->stat.pf_instruc++; 1164 1165 if (kvmppc_is_split_real(vcpu)) 1166 kvmppc_fixup_split_real(vcpu); 1167 1168 #ifdef CONFIG_PPC_BOOK3S_32 1169 /* We set segments as unused segments when invalidating them. So 1170 * treat the respective fault as segment fault. */ 1171 { 1172 struct kvmppc_book3s_shadow_vcpu *svcpu; 1173 u32 sr; 1174 1175 svcpu = svcpu_get(vcpu); 1176 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; 1177 svcpu_put(svcpu); 1178 if (sr == SR_INVALID) { 1179 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 1180 r = RESUME_GUEST; 1181 break; 1182 } 1183 } 1184 #endif 1185 1186 /* only care about PTEG not found errors, but leave NX alone */ 1187 if (shadow_srr1 & 0x40000000) { 1188 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1189 r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr); 1190 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1191 vcpu->stat.sp_instruc++; 1192 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 1193 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 1194 /* 1195 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, 1196 * so we can't use the NX bit inside the guest. Let's cross our fingers, 1197 * that no guest that needs the dcbz hack does NX. 1198 */ 1199 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); 1200 r = RESUME_GUEST; 1201 } else { 1202 kvmppc_core_queue_inst_storage(vcpu, 1203 shadow_srr1 & 0x58000000); 1204 r = RESUME_GUEST; 1205 } 1206 break; 1207 } 1208 case BOOK3S_INTERRUPT_DATA_STORAGE: 1209 { 1210 ulong dar = kvmppc_get_fault_dar(vcpu); 1211 u32 fault_dsisr = vcpu->arch.fault_dsisr; 1212 vcpu->stat.pf_storage++; 1213 1214 #ifdef CONFIG_PPC_BOOK3S_32 1215 /* We set segments as unused segments when invalidating them. So 1216 * treat the respective fault as segment fault. */ 1217 { 1218 struct kvmppc_book3s_shadow_vcpu *svcpu; 1219 u32 sr; 1220 1221 svcpu = svcpu_get(vcpu); 1222 sr = svcpu->sr[dar >> SID_SHIFT]; 1223 svcpu_put(svcpu); 1224 if (sr == SR_INVALID) { 1225 kvmppc_mmu_map_segment(vcpu, dar); 1226 r = RESUME_GUEST; 1227 break; 1228 } 1229 } 1230 #endif 1231 1232 /* 1233 * We need to handle missing shadow PTEs, and 1234 * protection faults due to us mapping a page read-only 1235 * when the guest thinks it is writable. 1236 */ 1237 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { 1238 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1239 r = kvmppc_handle_pagefault(vcpu, dar, exit_nr); 1240 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1241 } else { 1242 kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr); 1243 r = RESUME_GUEST; 1244 } 1245 break; 1246 } 1247 case BOOK3S_INTERRUPT_DATA_SEGMENT: 1248 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { 1249 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 1250 kvmppc_book3s_queue_irqprio(vcpu, 1251 BOOK3S_INTERRUPT_DATA_SEGMENT); 1252 } 1253 r = RESUME_GUEST; 1254 break; 1255 case BOOK3S_INTERRUPT_INST_SEGMENT: 1256 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { 1257 kvmppc_book3s_queue_irqprio(vcpu, 1258 BOOK3S_INTERRUPT_INST_SEGMENT); 1259 } 1260 r = RESUME_GUEST; 1261 break; 1262 /* We're good on these - the host merely wanted to get our attention */ 1263 case BOOK3S_INTERRUPT_DECREMENTER: 1264 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1265 case BOOK3S_INTERRUPT_DOORBELL: 1266 case BOOK3S_INTERRUPT_H_DOORBELL: 1267 vcpu->stat.dec_exits++; 1268 r = RESUME_GUEST; 1269 break; 1270 case BOOK3S_INTERRUPT_EXTERNAL: 1271 case BOOK3S_INTERRUPT_EXTERNAL_HV: 1272 case BOOK3S_INTERRUPT_H_VIRT: 1273 vcpu->stat.ext_intr_exits++; 1274 r = RESUME_GUEST; 1275 break; 1276 case BOOK3S_INTERRUPT_HMI: 1277 case BOOK3S_INTERRUPT_PERFMON: 1278 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1279 r = RESUME_GUEST; 1280 break; 1281 case BOOK3S_INTERRUPT_PROGRAM: 1282 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1283 r = kvmppc_exit_pr_progint(vcpu, exit_nr); 1284 break; 1285 case BOOK3S_INTERRUPT_SYSCALL: 1286 { 1287 ppc_inst_t last_sc; 1288 int emul; 1289 1290 /* Get last sc for papr */ 1291 if (vcpu->arch.papr_enabled) { 1292 /* The sc instruction points SRR0 to the next inst */ 1293 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); 1294 if (emul != EMULATE_DONE) { 1295 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); 1296 r = RESUME_GUEST; 1297 break; 1298 } 1299 } 1300 1301 if (vcpu->arch.papr_enabled && 1302 (ppc_inst_val(last_sc) == 0x44000022) && 1303 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 1304 /* SC 1 papr hypercalls */ 1305 ulong cmd = kvmppc_get_gpr(vcpu, 3); 1306 int i; 1307 1308 #ifdef CONFIG_PPC_BOOK3S_64 1309 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { 1310 r = RESUME_GUEST; 1311 break; 1312 } 1313 #endif 1314 1315 run->papr_hcall.nr = cmd; 1316 for (i = 0; i < 9; ++i) { 1317 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); 1318 run->papr_hcall.args[i] = gpr; 1319 } 1320 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1321 vcpu->arch.hcall_needed = 1; 1322 r = RESUME_HOST; 1323 } else if (vcpu->arch.osi_enabled && 1324 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && 1325 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { 1326 /* MOL hypercalls */ 1327 u64 *gprs = run->osi.gprs; 1328 int i; 1329 1330 run->exit_reason = KVM_EXIT_OSI; 1331 for (i = 0; i < 32; i++) 1332 gprs[i] = kvmppc_get_gpr(vcpu, i); 1333 vcpu->arch.osi_needed = 1; 1334 r = RESUME_HOST_NV; 1335 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && 1336 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { 1337 /* KVM PV hypercalls */ 1338 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); 1339 r = RESUME_GUEST; 1340 } else { 1341 /* Guest syscalls */ 1342 vcpu->stat.syscall_exits++; 1343 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1344 r = RESUME_GUEST; 1345 } 1346 break; 1347 } 1348 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1349 case BOOK3S_INTERRUPT_ALTIVEC: 1350 case BOOK3S_INTERRUPT_VSX: 1351 { 1352 int ext_msr = 0; 1353 int emul; 1354 ppc_inst_t last_inst; 1355 1356 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { 1357 /* Do paired single instruction emulation */ 1358 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, 1359 &last_inst); 1360 if (emul == EMULATE_DONE) 1361 r = kvmppc_exit_pr_progint(vcpu, exit_nr); 1362 else 1363 r = RESUME_GUEST; 1364 1365 break; 1366 } 1367 1368 /* Enable external provider */ 1369 switch (exit_nr) { 1370 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1371 ext_msr = MSR_FP; 1372 break; 1373 1374 case BOOK3S_INTERRUPT_ALTIVEC: 1375 ext_msr = MSR_VEC; 1376 break; 1377 1378 case BOOK3S_INTERRUPT_VSX: 1379 ext_msr = MSR_VSX; 1380 break; 1381 } 1382 1383 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); 1384 break; 1385 } 1386 case BOOK3S_INTERRUPT_ALIGNMENT: 1387 { 1388 ppc_inst_t last_inst; 1389 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1390 1391 if (emul == EMULATE_DONE) { 1392 u32 dsisr; 1393 u64 dar; 1394 1395 dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst)); 1396 dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst)); 1397 1398 kvmppc_set_dsisr(vcpu, dsisr); 1399 kvmppc_set_dar(vcpu, dar); 1400 1401 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1402 } 1403 r = RESUME_GUEST; 1404 break; 1405 } 1406 #ifdef CONFIG_PPC_BOOK3S_64 1407 case BOOK3S_INTERRUPT_FAC_UNAVAIL: 1408 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); 1409 break; 1410 #endif 1411 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1412 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1413 r = RESUME_GUEST; 1414 break; 1415 case BOOK3S_INTERRUPT_TRACE: 1416 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1417 run->exit_reason = KVM_EXIT_DEBUG; 1418 r = RESUME_HOST; 1419 } else { 1420 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1421 r = RESUME_GUEST; 1422 } 1423 break; 1424 default: 1425 { 1426 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1427 /* Ugh - bork here! What did we get? */ 1428 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", 1429 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); 1430 r = RESUME_HOST; 1431 BUG(); 1432 break; 1433 } 1434 } 1435 1436 if (!(r & RESUME_HOST)) { 1437 /* To avoid clobbering exit_reason, only check for signals if 1438 * we aren't already exiting to userspace for some other 1439 * reason. */ 1440 1441 /* 1442 * Interrupts could be timers for the guest which we have to 1443 * inject again, so let's postpone them until we're in the guest 1444 * and if we really did time things so badly, then we just exit 1445 * again due to a host external interrupt. 1446 */ 1447 s = kvmppc_prepare_to_enter(vcpu); 1448 if (s <= 0) 1449 r = s; 1450 else { 1451 /* interrupts now hard-disabled */ 1452 kvmppc_fix_ee_before_entry(); 1453 } 1454 1455 kvmppc_handle_lost_ext(vcpu); 1456 } 1457 1458 trace_kvm_book3s_reenter(r, vcpu); 1459 1460 return r; 1461 } 1462 1463 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, 1464 struct kvm_sregs *sregs) 1465 { 1466 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1467 int i; 1468 1469 sregs->pvr = vcpu->arch.pvr; 1470 1471 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; 1472 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1473 for (i = 0; i < 64; i++) { 1474 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; 1475 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1476 } 1477 } else { 1478 for (i = 0; i < 16; i++) 1479 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); 1480 1481 for (i = 0; i < 8; i++) { 1482 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; 1483 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; 1484 } 1485 } 1486 1487 return 0; 1488 } 1489 1490 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, 1491 struct kvm_sregs *sregs) 1492 { 1493 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1494 int i; 1495 1496 kvmppc_set_pvr_pr(vcpu, sregs->pvr); 1497 1498 vcpu3s->sdr1 = sregs->u.s.sdr1; 1499 #ifdef CONFIG_PPC_BOOK3S_64 1500 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1501 /* Flush all SLB entries */ 1502 vcpu->arch.mmu.slbmte(vcpu, 0, 0); 1503 vcpu->arch.mmu.slbia(vcpu); 1504 1505 for (i = 0; i < 64; i++) { 1506 u64 rb = sregs->u.s.ppc64.slb[i].slbe; 1507 u64 rs = sregs->u.s.ppc64.slb[i].slbv; 1508 1509 if (rb & SLB_ESID_V) 1510 vcpu->arch.mmu.slbmte(vcpu, rs, rb); 1511 } 1512 } else 1513 #endif 1514 { 1515 for (i = 0; i < 16; i++) { 1516 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); 1517 } 1518 for (i = 0; i < 8; i++) { 1519 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, 1520 (u32)sregs->u.s.ppc32.ibat[i]); 1521 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, 1522 (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); 1523 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, 1524 (u32)sregs->u.s.ppc32.dbat[i]); 1525 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, 1526 (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); 1527 } 1528 } 1529 1530 /* Flush the MMU after messing with the segments */ 1531 kvmppc_mmu_pte_flush(vcpu, 0, 0); 1532 1533 return 0; 1534 } 1535 1536 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1537 union kvmppc_one_reg *val) 1538 { 1539 int r = 0; 1540 1541 switch (id) { 1542 case KVM_REG_PPC_DEBUG_INST: 1543 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1544 break; 1545 case KVM_REG_PPC_HIOR: 1546 *val = get_reg_val(id, to_book3s(vcpu)->hior); 1547 break; 1548 case KVM_REG_PPC_VTB: 1549 *val = get_reg_val(id, to_book3s(vcpu)->vtb); 1550 break; 1551 case KVM_REG_PPC_LPCR: 1552 case KVM_REG_PPC_LPCR_64: 1553 /* 1554 * We are only interested in the LPCR_ILE bit 1555 */ 1556 if (vcpu->arch.intr_msr & MSR_LE) 1557 *val = get_reg_val(id, LPCR_ILE); 1558 else 1559 *val = get_reg_val(id, 0); 1560 break; 1561 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1562 case KVM_REG_PPC_TFHAR: 1563 *val = get_reg_val(id, vcpu->arch.tfhar); 1564 break; 1565 case KVM_REG_PPC_TFIAR: 1566 *val = get_reg_val(id, vcpu->arch.tfiar); 1567 break; 1568 case KVM_REG_PPC_TEXASR: 1569 *val = get_reg_val(id, vcpu->arch.texasr); 1570 break; 1571 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1572 *val = get_reg_val(id, 1573 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]); 1574 break; 1575 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1576 { 1577 int i, j; 1578 1579 i = id - KVM_REG_PPC_TM_VSR0; 1580 if (i < 32) 1581 for (j = 0; j < TS_FPRWIDTH; j++) 1582 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1583 else { 1584 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1585 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1586 else 1587 r = -ENXIO; 1588 } 1589 break; 1590 } 1591 case KVM_REG_PPC_TM_CR: 1592 *val = get_reg_val(id, vcpu->arch.cr_tm); 1593 break; 1594 case KVM_REG_PPC_TM_XER: 1595 *val = get_reg_val(id, vcpu->arch.xer_tm); 1596 break; 1597 case KVM_REG_PPC_TM_LR: 1598 *val = get_reg_val(id, vcpu->arch.lr_tm); 1599 break; 1600 case KVM_REG_PPC_TM_CTR: 1601 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1602 break; 1603 case KVM_REG_PPC_TM_FPSCR: 1604 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1605 break; 1606 case KVM_REG_PPC_TM_AMR: 1607 *val = get_reg_val(id, vcpu->arch.amr_tm); 1608 break; 1609 case KVM_REG_PPC_TM_PPR: 1610 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1611 break; 1612 case KVM_REG_PPC_TM_VRSAVE: 1613 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1614 break; 1615 case KVM_REG_PPC_TM_VSCR: 1616 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1617 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1618 else 1619 r = -ENXIO; 1620 break; 1621 case KVM_REG_PPC_TM_DSCR: 1622 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1623 break; 1624 case KVM_REG_PPC_TM_TAR: 1625 *val = get_reg_val(id, vcpu->arch.tar_tm); 1626 break; 1627 #endif 1628 default: 1629 r = -EINVAL; 1630 break; 1631 } 1632 1633 return r; 1634 } 1635 1636 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) 1637 { 1638 if (new_lpcr & LPCR_ILE) 1639 vcpu->arch.intr_msr |= MSR_LE; 1640 else 1641 vcpu->arch.intr_msr &= ~MSR_LE; 1642 } 1643 1644 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1645 union kvmppc_one_reg *val) 1646 { 1647 int r = 0; 1648 1649 switch (id) { 1650 case KVM_REG_PPC_HIOR: 1651 to_book3s(vcpu)->hior = set_reg_val(id, *val); 1652 to_book3s(vcpu)->hior_explicit = true; 1653 break; 1654 case KVM_REG_PPC_VTB: 1655 to_book3s(vcpu)->vtb = set_reg_val(id, *val); 1656 break; 1657 case KVM_REG_PPC_LPCR: 1658 case KVM_REG_PPC_LPCR_64: 1659 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); 1660 break; 1661 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1662 case KVM_REG_PPC_TFHAR: 1663 vcpu->arch.tfhar = set_reg_val(id, *val); 1664 break; 1665 case KVM_REG_PPC_TFIAR: 1666 vcpu->arch.tfiar = set_reg_val(id, *val); 1667 break; 1668 case KVM_REG_PPC_TEXASR: 1669 vcpu->arch.texasr = set_reg_val(id, *val); 1670 break; 1671 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1672 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] = 1673 set_reg_val(id, *val); 1674 break; 1675 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1676 { 1677 int i, j; 1678 1679 i = id - KVM_REG_PPC_TM_VSR0; 1680 if (i < 32) 1681 for (j = 0; j < TS_FPRWIDTH; j++) 1682 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1683 else 1684 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1685 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1686 else 1687 r = -ENXIO; 1688 break; 1689 } 1690 case KVM_REG_PPC_TM_CR: 1691 vcpu->arch.cr_tm = set_reg_val(id, *val); 1692 break; 1693 case KVM_REG_PPC_TM_XER: 1694 vcpu->arch.xer_tm = set_reg_val(id, *val); 1695 break; 1696 case KVM_REG_PPC_TM_LR: 1697 vcpu->arch.lr_tm = set_reg_val(id, *val); 1698 break; 1699 case KVM_REG_PPC_TM_CTR: 1700 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1701 break; 1702 case KVM_REG_PPC_TM_FPSCR: 1703 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1704 break; 1705 case KVM_REG_PPC_TM_AMR: 1706 vcpu->arch.amr_tm = set_reg_val(id, *val); 1707 break; 1708 case KVM_REG_PPC_TM_PPR: 1709 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1710 break; 1711 case KVM_REG_PPC_TM_VRSAVE: 1712 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1713 break; 1714 case KVM_REG_PPC_TM_VSCR: 1715 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1716 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1717 else 1718 r = -ENXIO; 1719 break; 1720 case KVM_REG_PPC_TM_DSCR: 1721 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1722 break; 1723 case KVM_REG_PPC_TM_TAR: 1724 vcpu->arch.tar_tm = set_reg_val(id, *val); 1725 break; 1726 #endif 1727 default: 1728 r = -EINVAL; 1729 break; 1730 } 1731 1732 return r; 1733 } 1734 1735 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu) 1736 { 1737 struct kvmppc_vcpu_book3s *vcpu_book3s; 1738 unsigned long p; 1739 int err; 1740 1741 err = -ENOMEM; 1742 1743 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); 1744 if (!vcpu_book3s) 1745 goto out; 1746 vcpu->arch.book3s = vcpu_book3s; 1747 1748 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1749 vcpu->arch.shadow_vcpu = 1750 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); 1751 if (!vcpu->arch.shadow_vcpu) 1752 goto free_vcpu3s; 1753 #endif 1754 1755 p = __get_free_page(GFP_KERNEL|__GFP_ZERO); 1756 if (!p) 1757 goto free_shadow_vcpu; 1758 vcpu->arch.shared = (void *)p; 1759 #ifdef CONFIG_PPC_BOOK3S_64 1760 /* Always start the shared struct in native endian mode */ 1761 #ifdef __BIG_ENDIAN__ 1762 vcpu->arch.shared_big_endian = true; 1763 #else 1764 vcpu->arch.shared_big_endian = false; 1765 #endif 1766 1767 /* 1768 * Default to the same as the host if we're on sufficiently 1769 * recent machine that we have 1TB segments; 1770 * otherwise default to PPC970FX. 1771 */ 1772 vcpu->arch.pvr = 0x3C0301; 1773 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1774 vcpu->arch.pvr = mfspr(SPRN_PVR); 1775 vcpu->arch.intr_msr = MSR_SF; 1776 #else 1777 /* default to book3s_32 (750) */ 1778 vcpu->arch.pvr = 0x84202; 1779 vcpu->arch.intr_msr = 0; 1780 #endif 1781 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); 1782 vcpu->arch.slb_nr = 64; 1783 1784 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; 1785 1786 err = kvmppc_mmu_init_pr(vcpu); 1787 if (err < 0) 1788 goto free_shared_page; 1789 1790 return 0; 1791 1792 free_shared_page: 1793 free_page((unsigned long)vcpu->arch.shared); 1794 free_shadow_vcpu: 1795 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1796 kfree(vcpu->arch.shadow_vcpu); 1797 free_vcpu3s: 1798 #endif 1799 vfree(vcpu_book3s); 1800 out: 1801 return err; 1802 } 1803 1804 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) 1805 { 1806 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 1807 1808 kvmppc_mmu_destroy_pr(vcpu); 1809 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); 1810 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1811 kfree(vcpu->arch.shadow_vcpu); 1812 #endif 1813 vfree(vcpu_book3s); 1814 } 1815 1816 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu) 1817 { 1818 int ret; 1819 1820 /* Check if we can run the vcpu at all */ 1821 if (!vcpu->arch.sane) { 1822 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1823 ret = -EINVAL; 1824 goto out; 1825 } 1826 1827 kvmppc_setup_debug(vcpu); 1828 1829 /* 1830 * Interrupts could be timers for the guest which we have to inject 1831 * again, so let's postpone them until we're in the guest and if we 1832 * really did time things so badly, then we just exit again due to 1833 * a host external interrupt. 1834 */ 1835 ret = kvmppc_prepare_to_enter(vcpu); 1836 if (ret <= 0) 1837 goto out; 1838 /* interrupts now hard-disabled */ 1839 1840 /* Save FPU, Altivec and VSX state */ 1841 giveup_all(current); 1842 1843 /* Preload FPU if it's enabled */ 1844 if (kvmppc_get_msr(vcpu) & MSR_FP) 1845 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 1846 1847 kvmppc_fix_ee_before_entry(); 1848 1849 ret = __kvmppc_vcpu_run(vcpu); 1850 1851 kvmppc_clear_debug(vcpu); 1852 1853 /* No need for guest_exit. It's done in handle_exit. 1854 We also get here with interrupts enabled. */ 1855 1856 /* Make sure we save the guest FPU/Altivec/VSX state */ 1857 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 1858 1859 /* Make sure we save the guest TAR/EBB/DSCR state */ 1860 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1861 1862 srr_regs_clobbered(); 1863 out: 1864 vcpu->mode = OUTSIDE_GUEST_MODE; 1865 return ret; 1866 } 1867 1868 /* 1869 * Get (and clear) the dirty memory log for a memory slot. 1870 */ 1871 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, 1872 struct kvm_dirty_log *log) 1873 { 1874 struct kvm_memory_slot *memslot; 1875 struct kvm_vcpu *vcpu; 1876 ulong ga, ga_end; 1877 int is_dirty = 0; 1878 int r; 1879 unsigned long n; 1880 1881 mutex_lock(&kvm->slots_lock); 1882 1883 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 1884 if (r) 1885 goto out; 1886 1887 /* If nothing is dirty, don't bother messing with page tables. */ 1888 if (is_dirty) { 1889 ga = memslot->base_gfn << PAGE_SHIFT; 1890 ga_end = ga + (memslot->npages << PAGE_SHIFT); 1891 1892 kvm_for_each_vcpu(n, vcpu, kvm) 1893 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); 1894 1895 n = kvm_dirty_bitmap_bytes(memslot); 1896 memset(memslot->dirty_bitmap, 0, n); 1897 } 1898 1899 r = 0; 1900 out: 1901 mutex_unlock(&kvm->slots_lock); 1902 return r; 1903 } 1904 1905 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, 1906 struct kvm_memory_slot *memslot) 1907 { 1908 return; 1909 } 1910 1911 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, 1912 const struct kvm_memory_slot *old, 1913 struct kvm_memory_slot *new, 1914 enum kvm_mr_change change) 1915 { 1916 return 0; 1917 } 1918 1919 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, 1920 struct kvm_memory_slot *old, 1921 const struct kvm_memory_slot *new, 1922 enum kvm_mr_change change) 1923 { 1924 return; 1925 } 1926 1927 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot) 1928 { 1929 return; 1930 } 1931 1932 #ifdef CONFIG_PPC64 1933 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1934 struct kvm_ppc_smmu_info *info) 1935 { 1936 long int i; 1937 struct kvm_vcpu *vcpu; 1938 1939 info->flags = 0; 1940 1941 /* SLB is always 64 entries */ 1942 info->slb_size = 64; 1943 1944 /* Standard 4k base page size segment */ 1945 info->sps[0].page_shift = 12; 1946 info->sps[0].slb_enc = 0; 1947 info->sps[0].enc[0].page_shift = 12; 1948 info->sps[0].enc[0].pte_enc = 0; 1949 1950 /* 1951 * 64k large page size. 1952 * We only want to put this in if the CPUs we're emulating 1953 * support it, but unfortunately we don't have a vcpu easily 1954 * to hand here to test. Just pick the first vcpu, and if 1955 * that doesn't exist yet, report the minimum capability, 1956 * i.e., no 64k pages. 1957 * 1T segment support goes along with 64k pages. 1958 */ 1959 i = 1; 1960 vcpu = kvm_get_vcpu(kvm, 0); 1961 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { 1962 info->flags = KVM_PPC_1T_SEGMENTS; 1963 info->sps[i].page_shift = 16; 1964 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; 1965 info->sps[i].enc[0].page_shift = 16; 1966 info->sps[i].enc[0].pte_enc = 1; 1967 ++i; 1968 } 1969 1970 /* Standard 16M large page size segment */ 1971 info->sps[i].page_shift = 24; 1972 info->sps[i].slb_enc = SLB_VSID_L; 1973 info->sps[i].enc[0].page_shift = 24; 1974 info->sps[i].enc[0].pte_enc = 0; 1975 1976 return 0; 1977 } 1978 1979 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 1980 { 1981 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1982 return -ENODEV; 1983 /* Require flags and process table base and size to all be zero. */ 1984 if (cfg->flags || cfg->process_table) 1985 return -EINVAL; 1986 return 0; 1987 } 1988 1989 #else 1990 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1991 struct kvm_ppc_smmu_info *info) 1992 { 1993 /* We should not get called */ 1994 BUG(); 1995 return 0; 1996 } 1997 #endif /* CONFIG_PPC64 */ 1998 1999 static unsigned int kvm_global_user_count = 0; 2000 static DEFINE_SPINLOCK(kvm_global_user_count_lock); 2001 2002 static int kvmppc_core_init_vm_pr(struct kvm *kvm) 2003 { 2004 mutex_init(&kvm->arch.hpt_mutex); 2005 2006 #ifdef CONFIG_PPC_BOOK3S_64 2007 /* Start out with the default set of hcalls enabled */ 2008 kvmppc_pr_init_default_hcalls(kvm); 2009 #endif 2010 2011 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2012 spin_lock(&kvm_global_user_count_lock); 2013 if (++kvm_global_user_count == 1) 2014 pseries_disable_reloc_on_exc(); 2015 spin_unlock(&kvm_global_user_count_lock); 2016 } 2017 return 0; 2018 } 2019 2020 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) 2021 { 2022 #ifdef CONFIG_PPC64 2023 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 2024 #endif 2025 2026 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2027 spin_lock(&kvm_global_user_count_lock); 2028 BUG_ON(kvm_global_user_count == 0); 2029 if (--kvm_global_user_count == 0) 2030 pseries_enable_reloc_on_exc(); 2031 spin_unlock(&kvm_global_user_count_lock); 2032 } 2033 } 2034 2035 static int kvmppc_core_check_processor_compat_pr(void) 2036 { 2037 /* 2038 * PR KVM can work on POWER9 inside a guest partition 2039 * running in HPT mode. It can't work if we are using 2040 * radix translation (because radix provides no way for 2041 * a process to have unique translations in quadrant 3). 2042 */ 2043 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 2044 return -EIO; 2045 return 0; 2046 } 2047 2048 static int kvm_arch_vm_ioctl_pr(struct file *filp, 2049 unsigned int ioctl, unsigned long arg) 2050 { 2051 return -ENOTTY; 2052 } 2053 2054 static struct kvmppc_ops kvm_ops_pr = { 2055 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, 2056 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, 2057 .get_one_reg = kvmppc_get_one_reg_pr, 2058 .set_one_reg = kvmppc_set_one_reg_pr, 2059 .vcpu_load = kvmppc_core_vcpu_load_pr, 2060 .vcpu_put = kvmppc_core_vcpu_put_pr, 2061 .inject_interrupt = kvmppc_inject_interrupt_pr, 2062 .set_msr = kvmppc_set_msr_pr, 2063 .vcpu_run = kvmppc_vcpu_run_pr, 2064 .vcpu_create = kvmppc_core_vcpu_create_pr, 2065 .vcpu_free = kvmppc_core_vcpu_free_pr, 2066 .check_requests = kvmppc_core_check_requests_pr, 2067 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, 2068 .flush_memslot = kvmppc_core_flush_memslot_pr, 2069 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, 2070 .commit_memory_region = kvmppc_core_commit_memory_region_pr, 2071 .unmap_gfn_range = kvm_unmap_gfn_range_pr, 2072 .age_gfn = kvm_age_gfn_pr, 2073 .test_age_gfn = kvm_test_age_gfn_pr, 2074 .set_spte_gfn = kvm_set_spte_gfn_pr, 2075 .free_memslot = kvmppc_core_free_memslot_pr, 2076 .init_vm = kvmppc_core_init_vm_pr, 2077 .destroy_vm = kvmppc_core_destroy_vm_pr, 2078 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, 2079 .emulate_op = kvmppc_core_emulate_op_pr, 2080 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, 2081 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, 2082 .fast_vcpu_kick = kvm_vcpu_kick, 2083 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr, 2084 #ifdef CONFIG_PPC_BOOK3S_64 2085 .hcall_implemented = kvmppc_hcall_impl_pr, 2086 .configure_mmu = kvm_configure_mmu_pr, 2087 #endif 2088 .giveup_ext = kvmppc_giveup_ext, 2089 }; 2090 2091 2092 int kvmppc_book3s_init_pr(void) 2093 { 2094 int r; 2095 2096 r = kvmppc_core_check_processor_compat_pr(); 2097 if (r < 0) 2098 return r; 2099 2100 kvm_ops_pr.owner = THIS_MODULE; 2101 kvmppc_pr_ops = &kvm_ops_pr; 2102 2103 r = kvmppc_mmu_hpte_sysinit(); 2104 return r; 2105 } 2106 2107 void kvmppc_book3s_exit_pr(void) 2108 { 2109 kvmppc_pr_ops = NULL; 2110 kvmppc_mmu_hpte_sysexit(); 2111 } 2112 2113 /* 2114 * We only support separate modules for book3s 64 2115 */ 2116 #ifdef CONFIG_PPC_BOOK3S_64 2117 2118 module_init(kvmppc_book3s_init_pr); 2119 module_exit(kvmppc_book3s_exit_pr); 2120 2121 MODULE_LICENSE("GPL"); 2122 MODULE_ALIAS_MISCDEV(KVM_MINOR); 2123 MODULE_ALIAS("devname:kvm"); 2124 #endif 2125