xref: /linux/arch/powerpc/kvm/book3s_pr.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Alexander Graf <agraf@suse.de>
7  *    Kevin Wolf <mail@kevin-wolf.de>
8  *    Paul Mackerras <paulus@samba.org>
9  *
10  * Description:
11  * Functions relating to running KVM on Book 3S processors where
12  * we don't have access to hypervisor mode, and we run the guest
13  * in problem state (user mode).
14  *
15  * This file is derived from arch/powerpc/kvm/44x.c,
16  * by Hollis Blanchard <hollisb@us.ibm.com>.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23 
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/interrupt.h>
29 #include <asm/io.h>
30 #include <asm/kvm_ppc.h>
31 #include <asm/kvm_book3s.h>
32 #include <asm/mmu_context.h>
33 #include <asm/switch_to.h>
34 #include <asm/firmware.h>
35 #include <asm/setup.h>
36 #include <linux/gfp.h>
37 #include <linux/sched.h>
38 #include <linux/vmalloc.h>
39 #include <linux/highmem.h>
40 #include <linux/module.h>
41 #include <linux/miscdevice.h>
42 #include <asm/asm-prototypes.h>
43 #include <asm/tm.h>
44 
45 #include "book3s.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include "trace_pr.h"
49 
50 /* #define EXIT_DEBUG */
51 /* #define DEBUG_EXT */
52 
53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54 			     ulong msr);
55 #ifdef CONFIG_PPC_BOOK3S_64
56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57 #endif
58 
59 /* Some compatibility defines */
60 #ifdef CONFIG_PPC_BOOK3S_32
61 #define MSR_USER32 MSR_USER
62 #define MSR_USER64 MSR_USER
63 #define HW_PAGE_SIZE PAGE_SIZE
64 #define HPTE_R_M   _PAGE_COHERENT
65 #endif
66 
67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68 {
69 	ulong msr = kvmppc_get_msr(vcpu);
70 	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71 }
72 
73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74 {
75 	ulong msr = kvmppc_get_msr(vcpu);
76 	ulong pc = kvmppc_get_pc(vcpu);
77 
78 	/* We are in DR only split real mode */
79 	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80 		return;
81 
82 	/* We have not fixed up the guest already */
83 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84 		return;
85 
86 	/* The code is in fixupable address space */
87 	if (pc & SPLIT_HACK_MASK)
88 		return;
89 
90 	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91 	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92 }
93 
94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95 {
96 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97 		ulong pc = kvmppc_get_pc(vcpu);
98 		ulong lr = kvmppc_get_lr(vcpu);
99 		if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100 			kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101 		if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102 			kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103 		vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104 	}
105 }
106 
107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108 {
109 	unsigned long msr, pc, new_msr, new_pc;
110 
111 	kvmppc_unfixup_split_real(vcpu);
112 
113 	msr = kvmppc_get_msr(vcpu);
114 	pc = kvmppc_get_pc(vcpu);
115 	new_msr = vcpu->arch.intr_msr;
116 	new_pc = to_book3s(vcpu)->hior + vec;
117 
118 #ifdef CONFIG_PPC_BOOK3S_64
119 	/* If transactional, change to suspend mode on IRQ delivery */
120 	if (MSR_TM_TRANSACTIONAL(msr))
121 		new_msr |= MSR_TS_S;
122 	else
123 		new_msr |= msr & MSR_TS_MASK;
124 #endif
125 
126 	kvmppc_set_srr0(vcpu, pc);
127 	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128 	kvmppc_set_pc(vcpu, new_pc);
129 	kvmppc_set_msr(vcpu, new_msr);
130 }
131 
132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133 {
134 #ifdef CONFIG_PPC_BOOK3S_64
135 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136 	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137 	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138 	svcpu->in_use = 0;
139 	svcpu_put(svcpu);
140 
141 	/* Disable AIL if supported */
142 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
143 		if (cpu_has_feature(CPU_FTR_ARCH_207S))
144 			mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145 		if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146 			mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147 	}
148 #endif
149 
150 	vcpu->cpu = smp_processor_id();
151 #ifdef CONFIG_PPC_BOOK3S_32
152 	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153 #endif
154 
155 	if (kvmppc_is_split_real(vcpu))
156 		kvmppc_fixup_split_real(vcpu);
157 
158 	kvmppc_restore_tm_pr(vcpu);
159 }
160 
161 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162 {
163 #ifdef CONFIG_PPC_BOOK3S_64
164 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165 	if (svcpu->in_use) {
166 		kvmppc_copy_from_svcpu(vcpu);
167 	}
168 	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169 	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170 	svcpu_put(svcpu);
171 
172 	/* Enable AIL if supported */
173 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
174 		if (cpu_has_feature(CPU_FTR_ARCH_207S))
175 			mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176 		if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177 			mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178 	}
179 #endif
180 
181 	if (kvmppc_is_split_real(vcpu))
182 		kvmppc_unfixup_split_real(vcpu);
183 
184 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186 	kvmppc_save_tm_pr(vcpu);
187 
188 	vcpu->cpu = -1;
189 }
190 
191 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
192 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193 {
194 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195 
196 	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197 	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198 	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199 	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200 	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201 	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202 	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203 	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204 	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205 	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206 	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207 	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208 	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209 	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210 	svcpu->cr  = vcpu->arch.regs.ccr;
211 	svcpu->xer = vcpu->arch.regs.xer;
212 	svcpu->ctr = vcpu->arch.regs.ctr;
213 	svcpu->lr  = vcpu->arch.regs.link;
214 	svcpu->pc  = vcpu->arch.regs.nip;
215 #ifdef CONFIG_PPC_BOOK3S_64
216 	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217 #endif
218 	/*
219 	 * Now also save the current time base value. We use this
220 	 * to find the guest purr and spurr value.
221 	 */
222 	vcpu->arch.entry_tb = get_tb();
223 	vcpu->arch.entry_vtb = get_vtb();
224 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
225 		vcpu->arch.entry_ic = mfspr(SPRN_IC);
226 	svcpu->in_use = true;
227 
228 	svcpu_put(svcpu);
229 }
230 
231 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232 {
233 	ulong guest_msr = kvmppc_get_msr(vcpu);
234 	ulong smsr = guest_msr;
235 
236 	/* Guest MSR values */
237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239 		MSR_TM | MSR_TS_MASK;
240 #else
241 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242 #endif
243 	/* Process MSR values */
244 	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245 	/* External providers the guest reserved */
246 	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247 	/* 64-bit Process MSR values */
248 #ifdef CONFIG_PPC_BOOK3S_64
249 	smsr |= MSR_HV;
250 #endif
251 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252 	/*
253 	 * in guest privileged state, we want to fail all TM transactions.
254 	 * So disable MSR TM bit so that all tbegin. will be able to be
255 	 * trapped into host.
256 	 */
257 	if (!(guest_msr & MSR_PR))
258 		smsr &= ~MSR_TM;
259 #endif
260 	vcpu->arch.shadow_msr = smsr;
261 }
262 
263 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
264 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265 {
266 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268 	ulong old_msr;
269 #endif
270 
271 	/*
272 	 * Maybe we were already preempted and synced the svcpu from
273 	 * our preempt notifiers. Don't bother touching this svcpu then.
274 	 */
275 	if (!svcpu->in_use)
276 		goto out;
277 
278 	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279 	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280 	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281 	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282 	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283 	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284 	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285 	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286 	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287 	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288 	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289 	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290 	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291 	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292 	vcpu->arch.regs.ccr  = svcpu->cr;
293 	vcpu->arch.regs.xer = svcpu->xer;
294 	vcpu->arch.regs.ctr = svcpu->ctr;
295 	vcpu->arch.regs.link  = svcpu->lr;
296 	vcpu->arch.regs.nip  = svcpu->pc;
297 	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298 	vcpu->arch.fault_dar   = svcpu->fault_dar;
299 	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300 	vcpu->arch.last_inst   = svcpu->last_inst;
301 #ifdef CONFIG_PPC_BOOK3S_64
302 	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303 #endif
304 	/*
305 	 * Update purr and spurr using time base on exit.
306 	 */
307 	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308 	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309 	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
311 		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312 
313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314 	/*
315 	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316 	 * notifying host:
317 	 *  modified by unprivileged instructions like "tbegin"/"tend"/
318 	 * "tresume"/"tsuspend" in PR KVM guest.
319 	 *
320 	 * It is necessary to sync here to calculate a correct shadow_msr.
321 	 *
322 	 * privileged guest's tbegin will be failed at present. So we
323 	 * only take care of problem state guest.
324 	 */
325 	old_msr = kvmppc_get_msr(vcpu);
326 	if (unlikely((old_msr & MSR_PR) &&
327 		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328 				(old_msr & (MSR_TS_MASK)))) {
329 		old_msr &= ~(MSR_TS_MASK);
330 		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331 		kvmppc_set_msr_fast(vcpu, old_msr);
332 		kvmppc_recalc_shadow_msr(vcpu);
333 	}
334 #endif
335 
336 	svcpu->in_use = false;
337 
338 out:
339 	svcpu_put(svcpu);
340 }
341 
342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
343 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344 {
345 	tm_enable();
346 	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347 	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348 	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349 	tm_disable();
350 }
351 
352 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353 {
354 	tm_enable();
355 	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356 	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357 	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358 	tm_disable();
359 }
360 
361 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362  * hardware.
363  */
364 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365 {
366 	ulong exit_nr;
367 	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368 		(MSR_FP | MSR_VEC | MSR_VSX);
369 
370 	if (!ext_diff)
371 		return;
372 
373 	if (ext_diff == MSR_FP)
374 		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375 	else if (ext_diff == MSR_VEC)
376 		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377 	else
378 		exit_nr = BOOK3S_INTERRUPT_VSX;
379 
380 	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381 }
382 
383 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384 {
385 	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386 		kvmppc_save_tm_sprs(vcpu);
387 		return;
388 	}
389 
390 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391 	kvmppc_giveup_ext(vcpu, MSR_VSX);
392 
393 	preempt_disable();
394 	_kvmppc_save_tm_pr(vcpu, mfmsr());
395 	preempt_enable();
396 }
397 
398 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399 {
400 	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401 		kvmppc_restore_tm_sprs(vcpu);
402 		if (kvmppc_get_msr(vcpu) & MSR_TM) {
403 			kvmppc_handle_lost_math_exts(vcpu);
404 			if (vcpu->arch.fscr & FSCR_TAR)
405 				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406 		}
407 		return;
408 	}
409 
410 	preempt_disable();
411 	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412 	preempt_enable();
413 
414 	if (kvmppc_get_msr(vcpu) & MSR_TM) {
415 		kvmppc_handle_lost_math_exts(vcpu);
416 		if (vcpu->arch.fscr & FSCR_TAR)
417 			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418 	}
419 }
420 #endif
421 
422 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423 {
424 	int r = 1; /* Indicate we want to get back into the guest */
425 
426 	/* We misuse TLB_FLUSH to indicate that we want to clear
427 	   all shadow cache entries */
428 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
430 
431 	return r;
432 }
433 
434 /************* MMU Notifiers *************/
435 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436 {
437 	unsigned long i;
438 	struct kvm_vcpu *vcpu;
439 
440 	kvm_for_each_vcpu(i, vcpu, kvm)
441 		kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442 				      range->end << PAGE_SHIFT);
443 
444 	return false;
445 }
446 
447 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449 	return do_kvm_unmap_gfn(kvm, range);
450 }
451 
452 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454 	/* XXX could be more clever ;) */
455 	return false;
456 }
457 
458 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459 {
460 	/* XXX could be more clever ;) */
461 	return false;
462 }
463 
464 /*****************************************/
465 
466 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
467 {
468 	ulong old_msr;
469 
470 	/* For PAPR guest, make sure MSR reflects guest mode */
471 	if (vcpu->arch.papr_enabled)
472 		msr = (msr & ~MSR_HV) | MSR_ME;
473 
474 #ifdef EXIT_DEBUG
475 	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
476 #endif
477 
478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479 	/* We should never target guest MSR to TS=10 && PR=0,
480 	 * since we always fail transaction for guest privilege
481 	 * state.
482 	 */
483 	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
484 		kvmppc_emulate_tabort(vcpu,
485 			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
486 #endif
487 
488 	old_msr = kvmppc_get_msr(vcpu);
489 	msr &= to_book3s(vcpu)->msr_mask;
490 	kvmppc_set_msr_fast(vcpu, msr);
491 	kvmppc_recalc_shadow_msr(vcpu);
492 
493 	if (msr & MSR_POW) {
494 		if (!vcpu->arch.pending_exceptions) {
495 			kvm_vcpu_halt(vcpu);
496 			vcpu->stat.generic.halt_wakeup++;
497 
498 			/* Unset POW bit after we woke up */
499 			msr &= ~MSR_POW;
500 			kvmppc_set_msr_fast(vcpu, msr);
501 		}
502 	}
503 
504 	if (kvmppc_is_split_real(vcpu))
505 		kvmppc_fixup_split_real(vcpu);
506 	else
507 		kvmppc_unfixup_split_real(vcpu);
508 
509 	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
510 		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
511 		kvmppc_mmu_flush_segments(vcpu);
512 		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
513 
514 		/* Preload magic page segment when in kernel mode */
515 		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
516 			struct kvm_vcpu_arch *a = &vcpu->arch;
517 
518 			if (msr & MSR_DR)
519 				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
520 			else
521 				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
522 		}
523 	}
524 
525 	/*
526 	 * When switching from 32 to 64-bit, we may have a stale 32-bit
527 	 * magic page around, we need to flush it. Typically 32-bit magic
528 	 * page will be instantiated when calling into RTAS. Note: We
529 	 * assume that such transition only happens while in kernel mode,
530 	 * ie, we never transition from user 32-bit to kernel 64-bit with
531 	 * a 32-bit magic page around.
532 	 */
533 	if (vcpu->arch.magic_page_pa &&
534 	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
535 		/* going from RTAS to normal kernel code */
536 		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
537 				     ~0xFFFUL);
538 	}
539 
540 	/* Preload FPU if it's enabled */
541 	if (kvmppc_get_msr(vcpu) & MSR_FP)
542 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
543 
544 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
545 	if (kvmppc_get_msr(vcpu) & MSR_TM)
546 		kvmppc_handle_lost_math_exts(vcpu);
547 #endif
548 }
549 
550 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
551 {
552 	u32 host_pvr;
553 
554 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
555 	vcpu->arch.pvr = pvr;
556 #ifdef CONFIG_PPC_BOOK3S_64
557 	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
558 		kvmppc_mmu_book3s_64_init(vcpu);
559 		if (!to_book3s(vcpu)->hior_explicit)
560 			to_book3s(vcpu)->hior = 0xfff00000;
561 		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
562 		vcpu->arch.cpu_type = KVM_CPU_3S_64;
563 	} else
564 #endif
565 	{
566 		kvmppc_mmu_book3s_32_init(vcpu);
567 		if (!to_book3s(vcpu)->hior_explicit)
568 			to_book3s(vcpu)->hior = 0;
569 		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
570 		vcpu->arch.cpu_type = KVM_CPU_3S_32;
571 	}
572 
573 	kvmppc_sanity_check(vcpu);
574 
575 	/* If we are in hypervisor level on 970, we can tell the CPU to
576 	 * treat DCBZ as 32 bytes store */
577 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
578 	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
579 	    !strcmp(cur_cpu_spec->platform, "ppc970"))
580 		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
581 
582 	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
583 	   really needs them in a VM on Cell and force disable them. */
584 	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
585 		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
586 
587 	/*
588 	 * If they're asking for POWER6 or later, set the flag
589 	 * indicating that we can do multiple large page sizes
590 	 * and 1TB segments.
591 	 * Also set the flag that indicates that tlbie has the large
592 	 * page bit in the RB operand instead of the instruction.
593 	 */
594 	switch (PVR_VER(pvr)) {
595 	case PVR_POWER6:
596 	case PVR_POWER7:
597 	case PVR_POWER7p:
598 	case PVR_POWER8:
599 	case PVR_POWER8E:
600 	case PVR_POWER8NVL:
601 	case PVR_HX_C2000:
602 	case PVR_POWER9:
603 		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
604 			BOOK3S_HFLAG_NEW_TLBIE;
605 		break;
606 	}
607 
608 #ifdef CONFIG_PPC_BOOK3S_32
609 	/* 32 bit Book3S always has 32 byte dcbz */
610 	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
611 #endif
612 
613 	/* On some CPUs we can execute paired single operations natively */
614 	asm ( "mfpvr %0" : "=r"(host_pvr));
615 	switch (host_pvr) {
616 	case 0x00080200:	/* lonestar 2.0 */
617 	case 0x00088202:	/* lonestar 2.2 */
618 	case 0x70000100:	/* gekko 1.0 */
619 	case 0x00080100:	/* gekko 2.0 */
620 	case 0x00083203:	/* gekko 2.3a */
621 	case 0x00083213:	/* gekko 2.3b */
622 	case 0x00083204:	/* gekko 2.4 */
623 	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
624 	case 0x00087200:	/* broadway */
625 		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
626 		/* Enable HID2.PSE - in case we need it later */
627 		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
628 	}
629 }
630 
631 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
632  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
633  * emulate 32 bytes dcbz length.
634  *
635  * The Book3s_64 inventors also realized this case and implemented a special bit
636  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
637  *
638  * My approach here is to patch the dcbz instruction on executing pages.
639  */
640 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
641 {
642 	struct page *hpage;
643 	u64 hpage_offset;
644 	u32 *page;
645 	int i;
646 
647 	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
648 	if (is_error_page(hpage))
649 		return;
650 
651 	hpage_offset = pte->raddr & ~PAGE_MASK;
652 	hpage_offset &= ~0xFFFULL;
653 	hpage_offset /= 4;
654 
655 	get_page(hpage);
656 	page = kmap_atomic(hpage);
657 
658 	/* patch dcbz into reserved instruction, so we trap */
659 	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
660 		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
661 			page[i] &= cpu_to_be32(0xfffffff7);
662 
663 	kunmap_atomic(page);
664 	put_page(hpage);
665 }
666 
667 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
668 {
669 	ulong mp_pa = vcpu->arch.magic_page_pa;
670 
671 	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
672 		mp_pa = (uint32_t)mp_pa;
673 
674 	gpa &= ~0xFFFULL;
675 	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
676 		return true;
677 	}
678 
679 	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
680 }
681 
682 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
683 			    ulong eaddr, int vec)
684 {
685 	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
686 	bool iswrite = false;
687 	int r = RESUME_GUEST;
688 	int relocated;
689 	int page_found = 0;
690 	struct kvmppc_pte pte = { 0 };
691 	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
692 	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
693 	u64 vsid;
694 
695 	relocated = data ? dr : ir;
696 	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
697 		iswrite = true;
698 
699 	/* Resolve real address if translation turned on */
700 	if (relocated) {
701 		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
702 	} else {
703 		pte.may_execute = true;
704 		pte.may_read = true;
705 		pte.may_write = true;
706 		pte.raddr = eaddr & KVM_PAM;
707 		pte.eaddr = eaddr;
708 		pte.vpage = eaddr >> 12;
709 		pte.page_size = MMU_PAGE_64K;
710 		pte.wimg = HPTE_R_M;
711 	}
712 
713 	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
714 	case 0:
715 		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
716 		break;
717 	case MSR_DR:
718 		if (!data &&
719 		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
720 		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
721 			pte.raddr &= ~SPLIT_HACK_MASK;
722 		fallthrough;
723 	case MSR_IR:
724 		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
725 
726 		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
727 			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
728 		else
729 			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
730 		pte.vpage |= vsid;
731 
732 		if (vsid == -1)
733 			page_found = -EINVAL;
734 		break;
735 	}
736 
737 	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
738 	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
739 		/*
740 		 * If we do the dcbz hack, we have to NX on every execution,
741 		 * so we can patch the executing code. This renders our guest
742 		 * NX-less.
743 		 */
744 		pte.may_execute = !data;
745 	}
746 
747 	if (page_found == -ENOENT || page_found == -EPERM) {
748 		/* Page not found in guest PTE entries, or protection fault */
749 		u64 flags;
750 
751 		if (page_found == -EPERM)
752 			flags = DSISR_PROTFAULT;
753 		else
754 			flags = DSISR_NOHPTE;
755 		if (data) {
756 			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
757 			kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags);
758 		} else {
759 			kvmppc_core_queue_inst_storage(vcpu, flags);
760 		}
761 	} else if (page_found == -EINVAL) {
762 		/* Page not found in guest SLB */
763 		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
764 		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
765 	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
766 		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
767 			/*
768 			 * There is already a host HPTE there, presumably
769 			 * a read-only one for a page the guest thinks
770 			 * is writable, so get rid of it first.
771 			 */
772 			kvmppc_mmu_unmap_page(vcpu, &pte);
773 		}
774 		/* The guest's PTE is not mapped yet. Map on the host */
775 		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
776 			/* Exit KVM if mapping failed */
777 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
778 			return RESUME_HOST;
779 		}
780 		if (data)
781 			vcpu->stat.sp_storage++;
782 		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
783 			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
784 			kvmppc_patch_dcbz(vcpu, &pte);
785 	} else {
786 		/* MMIO */
787 		vcpu->stat.mmio_exits++;
788 		vcpu->arch.paddr_accessed = pte.raddr;
789 		vcpu->arch.vaddr_accessed = pte.eaddr;
790 		r = kvmppc_emulate_mmio(vcpu);
791 		if ( r == RESUME_HOST_NV )
792 			r = RESUME_HOST;
793 	}
794 
795 	return r;
796 }
797 
798 /* Give up external provider (FPU, Altivec, VSX) */
799 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
800 {
801 	struct thread_struct *t = &current->thread;
802 
803 	/*
804 	 * VSX instructions can access FP and vector registers, so if
805 	 * we are giving up VSX, make sure we give up FP and VMX as well.
806 	 */
807 	if (msr & MSR_VSX)
808 		msr |= MSR_FP | MSR_VEC;
809 
810 	msr &= vcpu->arch.guest_owned_ext;
811 	if (!msr)
812 		return;
813 
814 #ifdef DEBUG_EXT
815 	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
816 #endif
817 
818 	if (msr & MSR_FP) {
819 		/*
820 		 * Note that on CPUs with VSX, giveup_fpu stores
821 		 * both the traditional FP registers and the added VSX
822 		 * registers into thread.fp_state.fpr[].
823 		 */
824 		if (t->regs->msr & MSR_FP)
825 			giveup_fpu(current);
826 		t->fp_save_area = NULL;
827 	}
828 
829 #ifdef CONFIG_ALTIVEC
830 	if (msr & MSR_VEC) {
831 		if (current->thread.regs->msr & MSR_VEC)
832 			giveup_altivec(current);
833 		t->vr_save_area = NULL;
834 	}
835 #endif
836 
837 	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
838 	kvmppc_recalc_shadow_msr(vcpu);
839 }
840 
841 /* Give up facility (TAR / EBB / DSCR) */
842 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
843 {
844 #ifdef CONFIG_PPC_BOOK3S_64
845 	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
846 		/* Facility not available to the guest, ignore giveup request*/
847 		return;
848 	}
849 
850 	switch (fac) {
851 	case FSCR_TAR_LG:
852 		vcpu->arch.tar = mfspr(SPRN_TAR);
853 		mtspr(SPRN_TAR, current->thread.tar);
854 		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
855 		break;
856 	}
857 #endif
858 }
859 
860 /* Handle external providers (FPU, Altivec, VSX) */
861 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
862 			     ulong msr)
863 {
864 	struct thread_struct *t = &current->thread;
865 
866 	/* When we have paired singles, we emulate in software */
867 	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
868 		return RESUME_GUEST;
869 
870 	if (!(kvmppc_get_msr(vcpu) & msr)) {
871 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
872 		return RESUME_GUEST;
873 	}
874 
875 	if (msr == MSR_VSX) {
876 		/* No VSX?  Give an illegal instruction interrupt */
877 #ifdef CONFIG_VSX
878 		if (!cpu_has_feature(CPU_FTR_VSX))
879 #endif
880 		{
881 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
882 			return RESUME_GUEST;
883 		}
884 
885 		/*
886 		 * We have to load up all the FP and VMX registers before
887 		 * we can let the guest use VSX instructions.
888 		 */
889 		msr = MSR_FP | MSR_VEC | MSR_VSX;
890 	}
891 
892 	/* See if we already own all the ext(s) needed */
893 	msr &= ~vcpu->arch.guest_owned_ext;
894 	if (!msr)
895 		return RESUME_GUEST;
896 
897 #ifdef DEBUG_EXT
898 	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
899 #endif
900 
901 	if (msr & MSR_FP) {
902 		preempt_disable();
903 		enable_kernel_fp();
904 		load_fp_state(&vcpu->arch.fp);
905 		disable_kernel_fp();
906 		t->fp_save_area = &vcpu->arch.fp;
907 		preempt_enable();
908 	}
909 
910 	if (msr & MSR_VEC) {
911 #ifdef CONFIG_ALTIVEC
912 		preempt_disable();
913 		enable_kernel_altivec();
914 		load_vr_state(&vcpu->arch.vr);
915 		disable_kernel_altivec();
916 		t->vr_save_area = &vcpu->arch.vr;
917 		preempt_enable();
918 #endif
919 	}
920 
921 	t->regs->msr |= msr;
922 	vcpu->arch.guest_owned_ext |= msr;
923 	kvmppc_recalc_shadow_msr(vcpu);
924 
925 	return RESUME_GUEST;
926 }
927 
928 /*
929  * Kernel code using FP or VMX could have flushed guest state to
930  * the thread_struct; if so, get it back now.
931  */
932 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
933 {
934 	unsigned long lost_ext;
935 
936 	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
937 	if (!lost_ext)
938 		return;
939 
940 	if (lost_ext & MSR_FP) {
941 		preempt_disable();
942 		enable_kernel_fp();
943 		load_fp_state(&vcpu->arch.fp);
944 		disable_kernel_fp();
945 		preempt_enable();
946 	}
947 #ifdef CONFIG_ALTIVEC
948 	if (lost_ext & MSR_VEC) {
949 		preempt_disable();
950 		enable_kernel_altivec();
951 		load_vr_state(&vcpu->arch.vr);
952 		disable_kernel_altivec();
953 		preempt_enable();
954 	}
955 #endif
956 	current->thread.regs->msr |= lost_ext;
957 }
958 
959 #ifdef CONFIG_PPC_BOOK3S_64
960 
961 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
962 {
963 	/* Inject the Interrupt Cause field and trigger a guest interrupt */
964 	vcpu->arch.fscr &= ~(0xffULL << 56);
965 	vcpu->arch.fscr |= (fac << 56);
966 	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
967 }
968 
969 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
970 {
971 	enum emulation_result er = EMULATE_FAIL;
972 
973 	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
974 		er = kvmppc_emulate_instruction(vcpu);
975 
976 	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
977 		/* Couldn't emulate, trigger interrupt in guest */
978 		kvmppc_trigger_fac_interrupt(vcpu, fac);
979 	}
980 }
981 
982 /* Enable facilities (TAR, EBB, DSCR) for the guest */
983 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
984 {
985 	bool guest_fac_enabled;
986 	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
987 
988 	/*
989 	 * Not every facility is enabled by FSCR bits, check whether the
990 	 * guest has this facility enabled at all.
991 	 */
992 	switch (fac) {
993 	case FSCR_TAR_LG:
994 	case FSCR_EBB_LG:
995 		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
996 		break;
997 	case FSCR_TM_LG:
998 		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
999 		break;
1000 	default:
1001 		guest_fac_enabled = false;
1002 		break;
1003 	}
1004 
1005 	if (!guest_fac_enabled) {
1006 		/* Facility not enabled by the guest */
1007 		kvmppc_trigger_fac_interrupt(vcpu, fac);
1008 		return RESUME_GUEST;
1009 	}
1010 
1011 	switch (fac) {
1012 	case FSCR_TAR_LG:
1013 		/* TAR switching isn't lazy in Linux yet */
1014 		current->thread.tar = mfspr(SPRN_TAR);
1015 		mtspr(SPRN_TAR, vcpu->arch.tar);
1016 		vcpu->arch.shadow_fscr |= FSCR_TAR;
1017 		break;
1018 	default:
1019 		kvmppc_emulate_fac(vcpu, fac);
1020 		break;
1021 	}
1022 
1023 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1024 	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
1025 	 * for TM spr can trigger TM fac unavailable. In this case, the
1026 	 * emulation is handled by kvmppc_emulate_fac(), which invokes
1027 	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1028 	 * RT for NV registers. So it need to restore those NV reg to reflect
1029 	 * the update.
1030 	 */
1031 	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1032 		return RESUME_GUEST_NV;
1033 #endif
1034 
1035 	return RESUME_GUEST;
1036 }
1037 
1038 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1039 {
1040 	if (fscr & FSCR_SCV)
1041 		fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1042 	/* Prohibit prefixed instructions for now */
1043 	fscr &= ~FSCR_PREFIX;
1044 	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1045 		/* TAR got dropped, drop it in shadow too */
1046 		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1047 	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1048 		vcpu->arch.fscr = fscr;
1049 		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1050 		return;
1051 	}
1052 
1053 	vcpu->arch.fscr = fscr;
1054 }
1055 #endif
1056 
1057 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1058 {
1059 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1060 		u64 msr = kvmppc_get_msr(vcpu);
1061 
1062 		kvmppc_set_msr(vcpu, msr | MSR_SE);
1063 	}
1064 }
1065 
1066 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1067 {
1068 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1069 		u64 msr = kvmppc_get_msr(vcpu);
1070 
1071 		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1072 	}
1073 }
1074 
1075 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1076 {
1077 	enum emulation_result er;
1078 	ulong flags;
1079 	ppc_inst_t last_inst;
1080 	int emul, r;
1081 
1082 	/*
1083 	 * shadow_srr1 only contains valid flags if we came here via a program
1084 	 * exception. The other exceptions (emulation assist, FP unavailable,
1085 	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1086 	 * exception when injecting a program interrupt into the guest.
1087 	 */
1088 	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1089 		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1090 	else
1091 		flags = SRR1_PROGILL;
1092 
1093 	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1094 	if (emul != EMULATE_DONE)
1095 		return RESUME_GUEST;
1096 
1097 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
1098 #ifdef EXIT_DEBUG
1099 		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1100 			kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1101 #endif
1102 		if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1103 			kvmppc_core_queue_program(vcpu, flags);
1104 			return RESUME_GUEST;
1105 		}
1106 	}
1107 
1108 	vcpu->stat.emulated_inst_exits++;
1109 	er = kvmppc_emulate_instruction(vcpu);
1110 	switch (er) {
1111 	case EMULATE_DONE:
1112 		r = RESUME_GUEST_NV;
1113 		break;
1114 	case EMULATE_AGAIN:
1115 		r = RESUME_GUEST;
1116 		break;
1117 	case EMULATE_FAIL:
1118 		pr_crit("%s: emulation at %lx failed (%08x)\n",
1119 			__func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1120 		kvmppc_core_queue_program(vcpu, flags);
1121 		r = RESUME_GUEST;
1122 		break;
1123 	case EMULATE_DO_MMIO:
1124 		vcpu->run->exit_reason = KVM_EXIT_MMIO;
1125 		r = RESUME_HOST_NV;
1126 		break;
1127 	case EMULATE_EXIT_USER:
1128 		r = RESUME_HOST_NV;
1129 		break;
1130 	default:
1131 		BUG();
1132 	}
1133 
1134 	return r;
1135 }
1136 
1137 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1138 {
1139 	struct kvm_run *run = vcpu->run;
1140 	int r = RESUME_HOST;
1141 	int s;
1142 
1143 	vcpu->stat.sum_exits++;
1144 
1145 	run->exit_reason = KVM_EXIT_UNKNOWN;
1146 	run->ready_for_interrupt_injection = 1;
1147 
1148 	/* We get here with MSR.EE=1 */
1149 
1150 	trace_kvm_exit(exit_nr, vcpu);
1151 	guest_exit();
1152 
1153 	switch (exit_nr) {
1154 	case BOOK3S_INTERRUPT_INST_STORAGE:
1155 	{
1156 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1157 		vcpu->stat.pf_instruc++;
1158 
1159 		if (kvmppc_is_split_real(vcpu))
1160 			kvmppc_fixup_split_real(vcpu);
1161 
1162 #ifdef CONFIG_PPC_BOOK3S_32
1163 		/* We set segments as unused segments when invalidating them. So
1164 		 * treat the respective fault as segment fault. */
1165 		{
1166 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1167 			u32 sr;
1168 
1169 			svcpu = svcpu_get(vcpu);
1170 			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1171 			svcpu_put(svcpu);
1172 			if (sr == SR_INVALID) {
1173 				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1174 				r = RESUME_GUEST;
1175 				break;
1176 			}
1177 		}
1178 #endif
1179 
1180 		/* only care about PTEG not found errors, but leave NX alone */
1181 		if (shadow_srr1 & 0x40000000) {
1182 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1183 			r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1184 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1185 			vcpu->stat.sp_instruc++;
1186 		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1187 			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1188 			/*
1189 			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1190 			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1191 			 *     that no guest that needs the dcbz hack does NX.
1192 			 */
1193 			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1194 			r = RESUME_GUEST;
1195 		} else {
1196 			kvmppc_core_queue_inst_storage(vcpu,
1197 						shadow_srr1 & 0x58000000);
1198 			r = RESUME_GUEST;
1199 		}
1200 		break;
1201 	}
1202 	case BOOK3S_INTERRUPT_DATA_STORAGE:
1203 	{
1204 		ulong dar = kvmppc_get_fault_dar(vcpu);
1205 		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1206 		vcpu->stat.pf_storage++;
1207 
1208 #ifdef CONFIG_PPC_BOOK3S_32
1209 		/* We set segments as unused segments when invalidating them. So
1210 		 * treat the respective fault as segment fault. */
1211 		{
1212 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1213 			u32 sr;
1214 
1215 			svcpu = svcpu_get(vcpu);
1216 			sr = svcpu->sr[dar >> SID_SHIFT];
1217 			svcpu_put(svcpu);
1218 			if (sr == SR_INVALID) {
1219 				kvmppc_mmu_map_segment(vcpu, dar);
1220 				r = RESUME_GUEST;
1221 				break;
1222 			}
1223 		}
1224 #endif
1225 
1226 		/*
1227 		 * We need to handle missing shadow PTEs, and
1228 		 * protection faults due to us mapping a page read-only
1229 		 * when the guest thinks it is writable.
1230 		 */
1231 		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1232 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1233 			r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1234 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1235 		} else {
1236 			kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr);
1237 			r = RESUME_GUEST;
1238 		}
1239 		break;
1240 	}
1241 	case BOOK3S_INTERRUPT_DATA_SEGMENT:
1242 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1243 			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1244 			kvmppc_book3s_queue_irqprio(vcpu,
1245 				BOOK3S_INTERRUPT_DATA_SEGMENT);
1246 		}
1247 		r = RESUME_GUEST;
1248 		break;
1249 	case BOOK3S_INTERRUPT_INST_SEGMENT:
1250 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1251 			kvmppc_book3s_queue_irqprio(vcpu,
1252 				BOOK3S_INTERRUPT_INST_SEGMENT);
1253 		}
1254 		r = RESUME_GUEST;
1255 		break;
1256 	/* We're good on these - the host merely wanted to get our attention */
1257 	case BOOK3S_INTERRUPT_DECREMENTER:
1258 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1259 	case BOOK3S_INTERRUPT_DOORBELL:
1260 	case BOOK3S_INTERRUPT_H_DOORBELL:
1261 		vcpu->stat.dec_exits++;
1262 		r = RESUME_GUEST;
1263 		break;
1264 	case BOOK3S_INTERRUPT_EXTERNAL:
1265 	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1266 	case BOOK3S_INTERRUPT_H_VIRT:
1267 		vcpu->stat.ext_intr_exits++;
1268 		r = RESUME_GUEST;
1269 		break;
1270 	case BOOK3S_INTERRUPT_HMI:
1271 	case BOOK3S_INTERRUPT_PERFMON:
1272 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1273 		r = RESUME_GUEST;
1274 		break;
1275 	case BOOK3S_INTERRUPT_PROGRAM:
1276 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1277 		r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1278 		break;
1279 	case BOOK3S_INTERRUPT_SYSCALL:
1280 	{
1281 		ppc_inst_t last_sc;
1282 		int emul;
1283 
1284 		/* Get last sc for papr */
1285 		if (vcpu->arch.papr_enabled) {
1286 			/* The sc instruction points SRR0 to the next inst */
1287 			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1288 			if (emul != EMULATE_DONE) {
1289 				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1290 				r = RESUME_GUEST;
1291 				break;
1292 			}
1293 		}
1294 
1295 		if (vcpu->arch.papr_enabled &&
1296 		    (ppc_inst_val(last_sc) == 0x44000022) &&
1297 		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1298 			/* SC 1 papr hypercalls */
1299 			ulong cmd = kvmppc_get_gpr(vcpu, 3);
1300 			int i;
1301 
1302 #ifdef CONFIG_PPC_BOOK3S_64
1303 			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1304 				r = RESUME_GUEST;
1305 				break;
1306 			}
1307 #endif
1308 
1309 			run->papr_hcall.nr = cmd;
1310 			for (i = 0; i < 9; ++i) {
1311 				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1312 				run->papr_hcall.args[i] = gpr;
1313 			}
1314 			run->exit_reason = KVM_EXIT_PAPR_HCALL;
1315 			vcpu->arch.hcall_needed = 1;
1316 			r = RESUME_HOST;
1317 		} else if (vcpu->arch.osi_enabled &&
1318 		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1319 		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1320 			/* MOL hypercalls */
1321 			u64 *gprs = run->osi.gprs;
1322 			int i;
1323 
1324 			run->exit_reason = KVM_EXIT_OSI;
1325 			for (i = 0; i < 32; i++)
1326 				gprs[i] = kvmppc_get_gpr(vcpu, i);
1327 			vcpu->arch.osi_needed = 1;
1328 			r = RESUME_HOST_NV;
1329 		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1330 		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1331 			/* KVM PV hypercalls */
1332 			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1333 			r = RESUME_GUEST;
1334 		} else {
1335 			/* Guest syscalls */
1336 			vcpu->stat.syscall_exits++;
1337 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1338 			r = RESUME_GUEST;
1339 		}
1340 		break;
1341 	}
1342 	case BOOK3S_INTERRUPT_FP_UNAVAIL:
1343 	case BOOK3S_INTERRUPT_ALTIVEC:
1344 	case BOOK3S_INTERRUPT_VSX:
1345 	{
1346 		int ext_msr = 0;
1347 		int emul;
1348 		ppc_inst_t last_inst;
1349 
1350 		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1351 			/* Do paired single instruction emulation */
1352 			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1353 						    &last_inst);
1354 			if (emul == EMULATE_DONE)
1355 				r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1356 			else
1357 				r = RESUME_GUEST;
1358 
1359 			break;
1360 		}
1361 
1362 		/* Enable external provider */
1363 		switch (exit_nr) {
1364 		case BOOK3S_INTERRUPT_FP_UNAVAIL:
1365 			ext_msr = MSR_FP;
1366 			break;
1367 
1368 		case BOOK3S_INTERRUPT_ALTIVEC:
1369 			ext_msr = MSR_VEC;
1370 			break;
1371 
1372 		case BOOK3S_INTERRUPT_VSX:
1373 			ext_msr = MSR_VSX;
1374 			break;
1375 		}
1376 
1377 		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1378 		break;
1379 	}
1380 	case BOOK3S_INTERRUPT_ALIGNMENT:
1381 	{
1382 		ppc_inst_t last_inst;
1383 		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1384 
1385 		if (emul == EMULATE_DONE) {
1386 			u32 dsisr;
1387 			u64 dar;
1388 
1389 			dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst));
1390 			dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst));
1391 
1392 			kvmppc_set_dsisr(vcpu, dsisr);
1393 			kvmppc_set_dar(vcpu, dar);
1394 
1395 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1396 		}
1397 		r = RESUME_GUEST;
1398 		break;
1399 	}
1400 #ifdef CONFIG_PPC_BOOK3S_64
1401 	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1402 		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1403 		break;
1404 #endif
1405 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1406 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1407 		r = RESUME_GUEST;
1408 		break;
1409 	case BOOK3S_INTERRUPT_TRACE:
1410 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1411 			run->exit_reason = KVM_EXIT_DEBUG;
1412 			r = RESUME_HOST;
1413 		} else {
1414 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1415 			r = RESUME_GUEST;
1416 		}
1417 		break;
1418 	default:
1419 	{
1420 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1421 		/* Ugh - bork here! What did we get? */
1422 		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1423 			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1424 		r = RESUME_HOST;
1425 		BUG();
1426 		break;
1427 	}
1428 	}
1429 
1430 	if (!(r & RESUME_HOST)) {
1431 		/* To avoid clobbering exit_reason, only check for signals if
1432 		 * we aren't already exiting to userspace for some other
1433 		 * reason. */
1434 
1435 		/*
1436 		 * Interrupts could be timers for the guest which we have to
1437 		 * inject again, so let's postpone them until we're in the guest
1438 		 * and if we really did time things so badly, then we just exit
1439 		 * again due to a host external interrupt.
1440 		 */
1441 		s = kvmppc_prepare_to_enter(vcpu);
1442 		if (s <= 0)
1443 			r = s;
1444 		else {
1445 			/* interrupts now hard-disabled */
1446 			kvmppc_fix_ee_before_entry();
1447 		}
1448 
1449 		kvmppc_handle_lost_ext(vcpu);
1450 	}
1451 
1452 	trace_kvm_book3s_reenter(r, vcpu);
1453 
1454 	return r;
1455 }
1456 
1457 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1458 					    struct kvm_sregs *sregs)
1459 {
1460 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1461 	int i;
1462 
1463 	sregs->pvr = vcpu->arch.pvr;
1464 
1465 	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1466 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1467 		for (i = 0; i < 64; i++) {
1468 			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1469 			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1470 		}
1471 	} else {
1472 		for (i = 0; i < 16; i++)
1473 			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1474 
1475 		for (i = 0; i < 8; i++) {
1476 			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1477 			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1478 		}
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1485 					    struct kvm_sregs *sregs)
1486 {
1487 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1488 	int i;
1489 
1490 	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1491 
1492 	vcpu3s->sdr1 = sregs->u.s.sdr1;
1493 #ifdef CONFIG_PPC_BOOK3S_64
1494 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1495 		/* Flush all SLB entries */
1496 		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1497 		vcpu->arch.mmu.slbia(vcpu);
1498 
1499 		for (i = 0; i < 64; i++) {
1500 			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1501 			u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1502 
1503 			if (rb & SLB_ESID_V)
1504 				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1505 		}
1506 	} else
1507 #endif
1508 	{
1509 		for (i = 0; i < 16; i++) {
1510 			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1511 		}
1512 		for (i = 0; i < 8; i++) {
1513 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1514 				       (u32)sregs->u.s.ppc32.ibat[i]);
1515 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1516 				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1517 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1518 				       (u32)sregs->u.s.ppc32.dbat[i]);
1519 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1520 				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1521 		}
1522 	}
1523 
1524 	/* Flush the MMU after messing with the segments */
1525 	kvmppc_mmu_pte_flush(vcpu, 0, 0);
1526 
1527 	return 0;
1528 }
1529 
1530 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1531 				 union kvmppc_one_reg *val)
1532 {
1533 	int r = 0;
1534 
1535 	switch (id) {
1536 	case KVM_REG_PPC_DEBUG_INST:
1537 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1538 		break;
1539 	case KVM_REG_PPC_HIOR:
1540 		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1541 		break;
1542 	case KVM_REG_PPC_VTB:
1543 		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
1544 		break;
1545 	case KVM_REG_PPC_LPCR:
1546 	case KVM_REG_PPC_LPCR_64:
1547 		/*
1548 		 * We are only interested in the LPCR_ILE bit
1549 		 */
1550 		if (vcpu->arch.intr_msr & MSR_LE)
1551 			*val = get_reg_val(id, LPCR_ILE);
1552 		else
1553 			*val = get_reg_val(id, 0);
1554 		break;
1555 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1556 	case KVM_REG_PPC_TFHAR:
1557 		*val = get_reg_val(id, vcpu->arch.tfhar);
1558 		break;
1559 	case KVM_REG_PPC_TFIAR:
1560 		*val = get_reg_val(id, vcpu->arch.tfiar);
1561 		break;
1562 	case KVM_REG_PPC_TEXASR:
1563 		*val = get_reg_val(id, vcpu->arch.texasr);
1564 		break;
1565 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1566 		*val = get_reg_val(id,
1567 				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1568 		break;
1569 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1570 	{
1571 		int i, j;
1572 
1573 		i = id - KVM_REG_PPC_TM_VSR0;
1574 		if (i < 32)
1575 			for (j = 0; j < TS_FPRWIDTH; j++)
1576 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1577 		else {
1578 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1579 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1580 			else
1581 				r = -ENXIO;
1582 		}
1583 		break;
1584 	}
1585 	case KVM_REG_PPC_TM_CR:
1586 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1587 		break;
1588 	case KVM_REG_PPC_TM_XER:
1589 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1590 		break;
1591 	case KVM_REG_PPC_TM_LR:
1592 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1593 		break;
1594 	case KVM_REG_PPC_TM_CTR:
1595 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1596 		break;
1597 	case KVM_REG_PPC_TM_FPSCR:
1598 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1599 		break;
1600 	case KVM_REG_PPC_TM_AMR:
1601 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1602 		break;
1603 	case KVM_REG_PPC_TM_PPR:
1604 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1605 		break;
1606 	case KVM_REG_PPC_TM_VRSAVE:
1607 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1608 		break;
1609 	case KVM_REG_PPC_TM_VSCR:
1610 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1611 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1612 		else
1613 			r = -ENXIO;
1614 		break;
1615 	case KVM_REG_PPC_TM_DSCR:
1616 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1617 		break;
1618 	case KVM_REG_PPC_TM_TAR:
1619 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1620 		break;
1621 #endif
1622 	default:
1623 		r = -EINVAL;
1624 		break;
1625 	}
1626 
1627 	return r;
1628 }
1629 
1630 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1631 {
1632 	if (new_lpcr & LPCR_ILE)
1633 		vcpu->arch.intr_msr |= MSR_LE;
1634 	else
1635 		vcpu->arch.intr_msr &= ~MSR_LE;
1636 }
1637 
1638 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1639 				 union kvmppc_one_reg *val)
1640 {
1641 	int r = 0;
1642 
1643 	switch (id) {
1644 	case KVM_REG_PPC_HIOR:
1645 		to_book3s(vcpu)->hior = set_reg_val(id, *val);
1646 		to_book3s(vcpu)->hior_explicit = true;
1647 		break;
1648 	case KVM_REG_PPC_VTB:
1649 		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1650 		break;
1651 	case KVM_REG_PPC_LPCR:
1652 	case KVM_REG_PPC_LPCR_64:
1653 		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1654 		break;
1655 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1656 	case KVM_REG_PPC_TFHAR:
1657 		vcpu->arch.tfhar = set_reg_val(id, *val);
1658 		break;
1659 	case KVM_REG_PPC_TFIAR:
1660 		vcpu->arch.tfiar = set_reg_val(id, *val);
1661 		break;
1662 	case KVM_REG_PPC_TEXASR:
1663 		vcpu->arch.texasr = set_reg_val(id, *val);
1664 		break;
1665 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1666 		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1667 			set_reg_val(id, *val);
1668 		break;
1669 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1670 	{
1671 		int i, j;
1672 
1673 		i = id - KVM_REG_PPC_TM_VSR0;
1674 		if (i < 32)
1675 			for (j = 0; j < TS_FPRWIDTH; j++)
1676 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1677 		else
1678 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1679 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1680 			else
1681 				r = -ENXIO;
1682 		break;
1683 	}
1684 	case KVM_REG_PPC_TM_CR:
1685 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1686 		break;
1687 	case KVM_REG_PPC_TM_XER:
1688 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1689 		break;
1690 	case KVM_REG_PPC_TM_LR:
1691 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1692 		break;
1693 	case KVM_REG_PPC_TM_CTR:
1694 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1695 		break;
1696 	case KVM_REG_PPC_TM_FPSCR:
1697 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1698 		break;
1699 	case KVM_REG_PPC_TM_AMR:
1700 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1701 		break;
1702 	case KVM_REG_PPC_TM_PPR:
1703 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1704 		break;
1705 	case KVM_REG_PPC_TM_VRSAVE:
1706 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1707 		break;
1708 	case KVM_REG_PPC_TM_VSCR:
1709 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1710 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1711 		else
1712 			r = -ENXIO;
1713 		break;
1714 	case KVM_REG_PPC_TM_DSCR:
1715 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1716 		break;
1717 	case KVM_REG_PPC_TM_TAR:
1718 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1719 		break;
1720 #endif
1721 	default:
1722 		r = -EINVAL;
1723 		break;
1724 	}
1725 
1726 	return r;
1727 }
1728 
1729 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1730 {
1731 	struct kvmppc_vcpu_book3s *vcpu_book3s;
1732 	unsigned long p;
1733 	int err;
1734 
1735 	err = -ENOMEM;
1736 
1737 	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1738 	if (!vcpu_book3s)
1739 		goto out;
1740 	vcpu->arch.book3s = vcpu_book3s;
1741 
1742 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1743 	vcpu->arch.shadow_vcpu =
1744 		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1745 	if (!vcpu->arch.shadow_vcpu)
1746 		goto free_vcpu3s;
1747 #endif
1748 
1749 	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1750 	if (!p)
1751 		goto free_shadow_vcpu;
1752 	vcpu->arch.shared = (void *)p;
1753 #ifdef CONFIG_PPC_BOOK3S_64
1754 	/* Always start the shared struct in native endian mode */
1755 #ifdef __BIG_ENDIAN__
1756         vcpu->arch.shared_big_endian = true;
1757 #else
1758         vcpu->arch.shared_big_endian = false;
1759 #endif
1760 
1761 	/*
1762 	 * Default to the same as the host if we're on sufficiently
1763 	 * recent machine that we have 1TB segments;
1764 	 * otherwise default to PPC970FX.
1765 	 */
1766 	vcpu->arch.pvr = 0x3C0301;
1767 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1768 		vcpu->arch.pvr = mfspr(SPRN_PVR);
1769 	vcpu->arch.intr_msr = MSR_SF;
1770 #else
1771 	/* default to book3s_32 (750) */
1772 	vcpu->arch.pvr = 0x84202;
1773 	vcpu->arch.intr_msr = 0;
1774 #endif
1775 	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1776 	vcpu->arch.slb_nr = 64;
1777 
1778 	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1779 
1780 	err = kvmppc_mmu_init_pr(vcpu);
1781 	if (err < 0)
1782 		goto free_shared_page;
1783 
1784 	return 0;
1785 
1786 free_shared_page:
1787 	free_page((unsigned long)vcpu->arch.shared);
1788 free_shadow_vcpu:
1789 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1790 	kfree(vcpu->arch.shadow_vcpu);
1791 free_vcpu3s:
1792 #endif
1793 	vfree(vcpu_book3s);
1794 out:
1795 	return err;
1796 }
1797 
1798 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1799 {
1800 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1801 
1802 	kvmppc_mmu_destroy_pr(vcpu);
1803 	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1804 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1805 	kfree(vcpu->arch.shadow_vcpu);
1806 #endif
1807 	vfree(vcpu_book3s);
1808 }
1809 
1810 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1811 {
1812 	int ret;
1813 
1814 	/* Check if we can run the vcpu at all */
1815 	if (!vcpu->arch.sane) {
1816 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1817 		ret = -EINVAL;
1818 		goto out;
1819 	}
1820 
1821 	kvmppc_setup_debug(vcpu);
1822 
1823 	/*
1824 	 * Interrupts could be timers for the guest which we have to inject
1825 	 * again, so let's postpone them until we're in the guest and if we
1826 	 * really did time things so badly, then we just exit again due to
1827 	 * a host external interrupt.
1828 	 */
1829 	ret = kvmppc_prepare_to_enter(vcpu);
1830 	if (ret <= 0)
1831 		goto out;
1832 	/* interrupts now hard-disabled */
1833 
1834 	/* Save FPU, Altivec and VSX state */
1835 	giveup_all(current);
1836 
1837 	/* Preload FPU if it's enabled */
1838 	if (kvmppc_get_msr(vcpu) & MSR_FP)
1839 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1840 
1841 	kvmppc_fix_ee_before_entry();
1842 
1843 	ret = __kvmppc_vcpu_run(vcpu);
1844 
1845 	kvmppc_clear_debug(vcpu);
1846 
1847 	/* No need for guest_exit. It's done in handle_exit.
1848 	   We also get here with interrupts enabled. */
1849 
1850 	/* Make sure we save the guest FPU/Altivec/VSX state */
1851 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1852 
1853 	/* Make sure we save the guest TAR/EBB/DSCR state */
1854 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1855 
1856 	srr_regs_clobbered();
1857 out:
1858 	vcpu->mode = OUTSIDE_GUEST_MODE;
1859 	return ret;
1860 }
1861 
1862 /*
1863  * Get (and clear) the dirty memory log for a memory slot.
1864  */
1865 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1866 					 struct kvm_dirty_log *log)
1867 {
1868 	struct kvm_memory_slot *memslot;
1869 	struct kvm_vcpu *vcpu;
1870 	ulong ga, ga_end;
1871 	int is_dirty = 0;
1872 	int r;
1873 	unsigned long n;
1874 
1875 	mutex_lock(&kvm->slots_lock);
1876 
1877 	r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1878 	if (r)
1879 		goto out;
1880 
1881 	/* If nothing is dirty, don't bother messing with page tables. */
1882 	if (is_dirty) {
1883 		ga = memslot->base_gfn << PAGE_SHIFT;
1884 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1885 
1886 		kvm_for_each_vcpu(n, vcpu, kvm)
1887 			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1888 
1889 		n = kvm_dirty_bitmap_bytes(memslot);
1890 		memset(memslot->dirty_bitmap, 0, n);
1891 	}
1892 
1893 	r = 0;
1894 out:
1895 	mutex_unlock(&kvm->slots_lock);
1896 	return r;
1897 }
1898 
1899 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1900 					 struct kvm_memory_slot *memslot)
1901 {
1902 	return;
1903 }
1904 
1905 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1906 				const struct kvm_memory_slot *old,
1907 				struct kvm_memory_slot *new,
1908 				enum kvm_mr_change change)
1909 {
1910 	return 0;
1911 }
1912 
1913 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1914 				struct kvm_memory_slot *old,
1915 				const struct kvm_memory_slot *new,
1916 				enum kvm_mr_change change)
1917 {
1918 	return;
1919 }
1920 
1921 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1922 {
1923 	return;
1924 }
1925 
1926 #ifdef CONFIG_PPC64
1927 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1928 					 struct kvm_ppc_smmu_info *info)
1929 {
1930 	long int i;
1931 	struct kvm_vcpu *vcpu;
1932 
1933 	info->flags = 0;
1934 
1935 	/* SLB is always 64 entries */
1936 	info->slb_size = 64;
1937 
1938 	/* Standard 4k base page size segment */
1939 	info->sps[0].page_shift = 12;
1940 	info->sps[0].slb_enc = 0;
1941 	info->sps[0].enc[0].page_shift = 12;
1942 	info->sps[0].enc[0].pte_enc = 0;
1943 
1944 	/*
1945 	 * 64k large page size.
1946 	 * We only want to put this in if the CPUs we're emulating
1947 	 * support it, but unfortunately we don't have a vcpu easily
1948 	 * to hand here to test.  Just pick the first vcpu, and if
1949 	 * that doesn't exist yet, report the minimum capability,
1950 	 * i.e., no 64k pages.
1951 	 * 1T segment support goes along with 64k pages.
1952 	 */
1953 	i = 1;
1954 	vcpu = kvm_get_vcpu(kvm, 0);
1955 	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1956 		info->flags = KVM_PPC_1T_SEGMENTS;
1957 		info->sps[i].page_shift = 16;
1958 		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1959 		info->sps[i].enc[0].page_shift = 16;
1960 		info->sps[i].enc[0].pte_enc = 1;
1961 		++i;
1962 	}
1963 
1964 	/* Standard 16M large page size segment */
1965 	info->sps[i].page_shift = 24;
1966 	info->sps[i].slb_enc = SLB_VSID_L;
1967 	info->sps[i].enc[0].page_shift = 24;
1968 	info->sps[i].enc[0].pte_enc = 0;
1969 
1970 	return 0;
1971 }
1972 
1973 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1974 {
1975 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1976 		return -ENODEV;
1977 	/* Require flags and process table base and size to all be zero. */
1978 	if (cfg->flags || cfg->process_table)
1979 		return -EINVAL;
1980 	return 0;
1981 }
1982 
1983 #else
1984 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1985 					 struct kvm_ppc_smmu_info *info)
1986 {
1987 	/* We should not get called */
1988 	BUG();
1989 	return 0;
1990 }
1991 #endif /* CONFIG_PPC64 */
1992 
1993 static unsigned int kvm_global_user_count = 0;
1994 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1995 
1996 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1997 {
1998 	mutex_init(&kvm->arch.hpt_mutex);
1999 
2000 #ifdef CONFIG_PPC_BOOK3S_64
2001 	/* Start out with the default set of hcalls enabled */
2002 	kvmppc_pr_init_default_hcalls(kvm);
2003 #endif
2004 
2005 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2006 		spin_lock(&kvm_global_user_count_lock);
2007 		if (++kvm_global_user_count == 1)
2008 			pseries_disable_reloc_on_exc();
2009 		spin_unlock(&kvm_global_user_count_lock);
2010 	}
2011 	return 0;
2012 }
2013 
2014 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2015 {
2016 #ifdef CONFIG_PPC64
2017 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2018 #endif
2019 
2020 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2021 		spin_lock(&kvm_global_user_count_lock);
2022 		BUG_ON(kvm_global_user_count == 0);
2023 		if (--kvm_global_user_count == 0)
2024 			pseries_enable_reloc_on_exc();
2025 		spin_unlock(&kvm_global_user_count_lock);
2026 	}
2027 }
2028 
2029 static int kvmppc_core_check_processor_compat_pr(void)
2030 {
2031 	/*
2032 	 * PR KVM can work on POWER9 inside a guest partition
2033 	 * running in HPT mode.  It can't work if we are using
2034 	 * radix translation (because radix provides no way for
2035 	 * a process to have unique translations in quadrant 3).
2036 	 */
2037 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2038 		return -EIO;
2039 	return 0;
2040 }
2041 
2042 static int kvm_arch_vm_ioctl_pr(struct file *filp,
2043 				unsigned int ioctl, unsigned long arg)
2044 {
2045 	return -ENOTTY;
2046 }
2047 
2048 static struct kvmppc_ops kvm_ops_pr = {
2049 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2050 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2051 	.get_one_reg = kvmppc_get_one_reg_pr,
2052 	.set_one_reg = kvmppc_set_one_reg_pr,
2053 	.vcpu_load   = kvmppc_core_vcpu_load_pr,
2054 	.vcpu_put    = kvmppc_core_vcpu_put_pr,
2055 	.inject_interrupt = kvmppc_inject_interrupt_pr,
2056 	.set_msr     = kvmppc_set_msr_pr,
2057 	.vcpu_run    = kvmppc_vcpu_run_pr,
2058 	.vcpu_create = kvmppc_core_vcpu_create_pr,
2059 	.vcpu_free   = kvmppc_core_vcpu_free_pr,
2060 	.check_requests = kvmppc_core_check_requests_pr,
2061 	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2062 	.flush_memslot = kvmppc_core_flush_memslot_pr,
2063 	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2064 	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
2065 	.unmap_gfn_range = kvm_unmap_gfn_range_pr,
2066 	.age_gfn  = kvm_age_gfn_pr,
2067 	.test_age_gfn = kvm_test_age_gfn_pr,
2068 	.free_memslot = kvmppc_core_free_memslot_pr,
2069 	.init_vm = kvmppc_core_init_vm_pr,
2070 	.destroy_vm = kvmppc_core_destroy_vm_pr,
2071 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2072 	.emulate_op = kvmppc_core_emulate_op_pr,
2073 	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2074 	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2075 	.fast_vcpu_kick = kvm_vcpu_kick,
2076 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2077 #ifdef CONFIG_PPC_BOOK3S_64
2078 	.hcall_implemented = kvmppc_hcall_impl_pr,
2079 	.configure_mmu = kvm_configure_mmu_pr,
2080 #endif
2081 	.giveup_ext = kvmppc_giveup_ext,
2082 };
2083 
2084 
2085 int kvmppc_book3s_init_pr(void)
2086 {
2087 	int r;
2088 
2089 	r = kvmppc_core_check_processor_compat_pr();
2090 	if (r < 0)
2091 		return r;
2092 
2093 	kvm_ops_pr.owner = THIS_MODULE;
2094 	kvmppc_pr_ops = &kvm_ops_pr;
2095 
2096 	r = kvmppc_mmu_hpte_sysinit();
2097 	return r;
2098 }
2099 
2100 void kvmppc_book3s_exit_pr(void)
2101 {
2102 	kvmppc_pr_ops = NULL;
2103 	kvmppc_mmu_hpte_sysexit();
2104 }
2105 
2106 /*
2107  * We only support separate modules for book3s 64
2108  */
2109 #ifdef CONFIG_PPC_BOOK3S_64
2110 
2111 module_init(kvmppc_book3s_init_pr);
2112 module_exit(kvmppc_book3s_exit_pr);
2113 
2114 MODULE_DESCRIPTION("KVM on Book3S without using hypervisor mode");
2115 MODULE_LICENSE("GPL");
2116 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2117 MODULE_ALIAS("devname:kvm");
2118 #endif
2119