xref: /linux/arch/powerpc/kvm/book3s_pr.c (revision 2169e6daa1ffa6e9869fcc56ff7df23c9287f1ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Alexander Graf <agraf@suse.de>
7  *    Kevin Wolf <mail@kevin-wolf.de>
8  *    Paul Mackerras <paulus@samba.org>
9  *
10  * Description:
11  * Functions relating to running KVM on Book 3S processors where
12  * we don't have access to hypervisor mode, and we run the guest
13  * in problem state (user mode).
14  *
15  * This file is derived from arch/powerpc/kvm/44x.c,
16  * by Hollis Blanchard <hollisb@us.ibm.com>.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23 
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/kvm_ppc.h>
30 #include <asm/kvm_book3s.h>
31 #include <asm/mmu_context.h>
32 #include <asm/switch_to.h>
33 #include <asm/firmware.h>
34 #include <asm/setup.h>
35 #include <linux/gfp.h>
36 #include <linux/sched.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/module.h>
40 #include <linux/miscdevice.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/tm.h>
43 
44 #include "book3s.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include "trace_pr.h"
48 
49 /* #define EXIT_DEBUG */
50 /* #define DEBUG_EXT */
51 
52 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
53 			     ulong msr);
54 #ifdef CONFIG_PPC_BOOK3S_64
55 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
56 #endif
57 
58 /* Some compatibility defines */
59 #ifdef CONFIG_PPC_BOOK3S_32
60 #define MSR_USER32 MSR_USER
61 #define MSR_USER64 MSR_USER
62 #define HW_PAGE_SIZE PAGE_SIZE
63 #define HPTE_R_M   _PAGE_COHERENT
64 #endif
65 
66 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
67 {
68 	ulong msr = kvmppc_get_msr(vcpu);
69 	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
70 }
71 
72 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
73 {
74 	ulong msr = kvmppc_get_msr(vcpu);
75 	ulong pc = kvmppc_get_pc(vcpu);
76 
77 	/* We are in DR only split real mode */
78 	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
79 		return;
80 
81 	/* We have not fixed up the guest already */
82 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
83 		return;
84 
85 	/* The code is in fixupable address space */
86 	if (pc & SPLIT_HACK_MASK)
87 		return;
88 
89 	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
90 	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
91 }
92 
93 void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);
94 
95 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
96 {
97 #ifdef CONFIG_PPC_BOOK3S_64
98 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
99 	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
100 	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
101 	svcpu->in_use = 0;
102 	svcpu_put(svcpu);
103 #endif
104 
105 	/* Disable AIL if supported */
106 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
107 	    cpu_has_feature(CPU_FTR_ARCH_207S))
108 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
109 
110 	vcpu->cpu = smp_processor_id();
111 #ifdef CONFIG_PPC_BOOK3S_32
112 	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
113 #endif
114 
115 	if (kvmppc_is_split_real(vcpu))
116 		kvmppc_fixup_split_real(vcpu);
117 
118 	kvmppc_restore_tm_pr(vcpu);
119 }
120 
121 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
122 {
123 #ifdef CONFIG_PPC_BOOK3S_64
124 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
125 	if (svcpu->in_use) {
126 		kvmppc_copy_from_svcpu(vcpu);
127 	}
128 	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
129 	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
130 	svcpu_put(svcpu);
131 #endif
132 
133 	if (kvmppc_is_split_real(vcpu))
134 		kvmppc_unfixup_split_real(vcpu);
135 
136 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
137 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
138 	kvmppc_save_tm_pr(vcpu);
139 
140 	/* Enable AIL if supported */
141 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
142 	    cpu_has_feature(CPU_FTR_ARCH_207S))
143 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
144 
145 	vcpu->cpu = -1;
146 }
147 
148 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
149 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
150 {
151 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
152 
153 	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
154 	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
155 	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
156 	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
157 	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
158 	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
159 	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
160 	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
161 	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
162 	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
163 	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
164 	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
165 	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
166 	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
167 	svcpu->cr  = vcpu->arch.regs.ccr;
168 	svcpu->xer = vcpu->arch.regs.xer;
169 	svcpu->ctr = vcpu->arch.regs.ctr;
170 	svcpu->lr  = vcpu->arch.regs.link;
171 	svcpu->pc  = vcpu->arch.regs.nip;
172 #ifdef CONFIG_PPC_BOOK3S_64
173 	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
174 #endif
175 	/*
176 	 * Now also save the current time base value. We use this
177 	 * to find the guest purr and spurr value.
178 	 */
179 	vcpu->arch.entry_tb = get_tb();
180 	vcpu->arch.entry_vtb = get_vtb();
181 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
182 		vcpu->arch.entry_ic = mfspr(SPRN_IC);
183 	svcpu->in_use = true;
184 
185 	svcpu_put(svcpu);
186 }
187 
188 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
189 {
190 	ulong guest_msr = kvmppc_get_msr(vcpu);
191 	ulong smsr = guest_msr;
192 
193 	/* Guest MSR values */
194 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
195 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
196 		MSR_TM | MSR_TS_MASK;
197 #else
198 	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
199 #endif
200 	/* Process MSR values */
201 	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
202 	/* External providers the guest reserved */
203 	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
204 	/* 64-bit Process MSR values */
205 #ifdef CONFIG_PPC_BOOK3S_64
206 	smsr |= MSR_ISF | MSR_HV;
207 #endif
208 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
209 	/*
210 	 * in guest privileged state, we want to fail all TM transactions.
211 	 * So disable MSR TM bit so that all tbegin. will be able to be
212 	 * trapped into host.
213 	 */
214 	if (!(guest_msr & MSR_PR))
215 		smsr &= ~MSR_TM;
216 #endif
217 	vcpu->arch.shadow_msr = smsr;
218 }
219 
220 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
221 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
222 {
223 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
224 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
225 	ulong old_msr;
226 #endif
227 
228 	/*
229 	 * Maybe we were already preempted and synced the svcpu from
230 	 * our preempt notifiers. Don't bother touching this svcpu then.
231 	 */
232 	if (!svcpu->in_use)
233 		goto out;
234 
235 	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
236 	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
237 	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
238 	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
239 	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
240 	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
241 	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
242 	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
243 	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
244 	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
245 	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
246 	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
247 	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
248 	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
249 	vcpu->arch.regs.ccr  = svcpu->cr;
250 	vcpu->arch.regs.xer = svcpu->xer;
251 	vcpu->arch.regs.ctr = svcpu->ctr;
252 	vcpu->arch.regs.link  = svcpu->lr;
253 	vcpu->arch.regs.nip  = svcpu->pc;
254 	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
255 	vcpu->arch.fault_dar   = svcpu->fault_dar;
256 	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
257 	vcpu->arch.last_inst   = svcpu->last_inst;
258 #ifdef CONFIG_PPC_BOOK3S_64
259 	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
260 #endif
261 	/*
262 	 * Update purr and spurr using time base on exit.
263 	 */
264 	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
265 	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
266 	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
267 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
268 		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
269 
270 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
271 	/*
272 	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
273 	 * notifying host:
274 	 *  modified by unprivileged instructions like "tbegin"/"tend"/
275 	 * "tresume"/"tsuspend" in PR KVM guest.
276 	 *
277 	 * It is necessary to sync here to calculate a correct shadow_msr.
278 	 *
279 	 * privileged guest's tbegin will be failed at present. So we
280 	 * only take care of problem state guest.
281 	 */
282 	old_msr = kvmppc_get_msr(vcpu);
283 	if (unlikely((old_msr & MSR_PR) &&
284 		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
285 				(old_msr & (MSR_TS_MASK)))) {
286 		old_msr &= ~(MSR_TS_MASK);
287 		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
288 		kvmppc_set_msr_fast(vcpu, old_msr);
289 		kvmppc_recalc_shadow_msr(vcpu);
290 	}
291 #endif
292 
293 	svcpu->in_use = false;
294 
295 out:
296 	svcpu_put(svcpu);
297 }
298 
299 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
300 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
301 {
302 	tm_enable();
303 	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
304 	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
305 	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
306 	tm_disable();
307 }
308 
309 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
310 {
311 	tm_enable();
312 	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
313 	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
314 	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
315 	tm_disable();
316 }
317 
318 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
319  * hardware.
320  */
321 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
322 {
323 	ulong exit_nr;
324 	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
325 		(MSR_FP | MSR_VEC | MSR_VSX);
326 
327 	if (!ext_diff)
328 		return;
329 
330 	if (ext_diff == MSR_FP)
331 		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
332 	else if (ext_diff == MSR_VEC)
333 		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
334 	else
335 		exit_nr = BOOK3S_INTERRUPT_VSX;
336 
337 	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
338 }
339 
340 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
341 {
342 	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
343 		kvmppc_save_tm_sprs(vcpu);
344 		return;
345 	}
346 
347 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
348 	kvmppc_giveup_ext(vcpu, MSR_VSX);
349 
350 	preempt_disable();
351 	_kvmppc_save_tm_pr(vcpu, mfmsr());
352 	preempt_enable();
353 }
354 
355 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
356 {
357 	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
358 		kvmppc_restore_tm_sprs(vcpu);
359 		if (kvmppc_get_msr(vcpu) & MSR_TM) {
360 			kvmppc_handle_lost_math_exts(vcpu);
361 			if (vcpu->arch.fscr & FSCR_TAR)
362 				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
363 		}
364 		return;
365 	}
366 
367 	preempt_disable();
368 	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
369 	preempt_enable();
370 
371 	if (kvmppc_get_msr(vcpu) & MSR_TM) {
372 		kvmppc_handle_lost_math_exts(vcpu);
373 		if (vcpu->arch.fscr & FSCR_TAR)
374 			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
375 	}
376 }
377 #endif
378 
379 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
380 {
381 	int r = 1; /* Indicate we want to get back into the guest */
382 
383 	/* We misuse TLB_FLUSH to indicate that we want to clear
384 	   all shadow cache entries */
385 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
386 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
387 
388 	return r;
389 }
390 
391 /************* MMU Notifiers *************/
392 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
393 			     unsigned long end)
394 {
395 	long i;
396 	struct kvm_vcpu *vcpu;
397 	struct kvm_memslots *slots;
398 	struct kvm_memory_slot *memslot;
399 
400 	slots = kvm_memslots(kvm);
401 	kvm_for_each_memslot(memslot, slots) {
402 		unsigned long hva_start, hva_end;
403 		gfn_t gfn, gfn_end;
404 
405 		hva_start = max(start, memslot->userspace_addr);
406 		hva_end = min(end, memslot->userspace_addr +
407 					(memslot->npages << PAGE_SHIFT));
408 		if (hva_start >= hva_end)
409 			continue;
410 		/*
411 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
412 		 * {gfn, gfn+1, ..., gfn_end-1}.
413 		 */
414 		gfn = hva_to_gfn_memslot(hva_start, memslot);
415 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
416 		kvm_for_each_vcpu(i, vcpu, kvm)
417 			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
418 					      gfn_end << PAGE_SHIFT);
419 	}
420 }
421 
422 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
423 				  unsigned long end)
424 {
425 	do_kvm_unmap_hva(kvm, start, end);
426 
427 	return 0;
428 }
429 
430 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
431 			  unsigned long end)
432 {
433 	/* XXX could be more clever ;) */
434 	return 0;
435 }
436 
437 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
438 {
439 	/* XXX could be more clever ;) */
440 	return 0;
441 }
442 
443 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
444 {
445 	/* The page will get remapped properly on its next fault */
446 	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
447 }
448 
449 /*****************************************/
450 
451 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
452 {
453 	ulong old_msr;
454 
455 	/* For PAPR guest, make sure MSR reflects guest mode */
456 	if (vcpu->arch.papr_enabled)
457 		msr = (msr & ~MSR_HV) | MSR_ME;
458 
459 #ifdef EXIT_DEBUG
460 	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
461 #endif
462 
463 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
464 	/* We should never target guest MSR to TS=10 && PR=0,
465 	 * since we always fail transaction for guest privilege
466 	 * state.
467 	 */
468 	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
469 		kvmppc_emulate_tabort(vcpu,
470 			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
471 #endif
472 
473 	old_msr = kvmppc_get_msr(vcpu);
474 	msr &= to_book3s(vcpu)->msr_mask;
475 	kvmppc_set_msr_fast(vcpu, msr);
476 	kvmppc_recalc_shadow_msr(vcpu);
477 
478 	if (msr & MSR_POW) {
479 		if (!vcpu->arch.pending_exceptions) {
480 			kvm_vcpu_block(vcpu);
481 			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
482 			vcpu->stat.halt_wakeup++;
483 
484 			/* Unset POW bit after we woke up */
485 			msr &= ~MSR_POW;
486 			kvmppc_set_msr_fast(vcpu, msr);
487 		}
488 	}
489 
490 	if (kvmppc_is_split_real(vcpu))
491 		kvmppc_fixup_split_real(vcpu);
492 	else
493 		kvmppc_unfixup_split_real(vcpu);
494 
495 	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
496 		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
497 		kvmppc_mmu_flush_segments(vcpu);
498 		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
499 
500 		/* Preload magic page segment when in kernel mode */
501 		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
502 			struct kvm_vcpu_arch *a = &vcpu->arch;
503 
504 			if (msr & MSR_DR)
505 				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
506 			else
507 				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
508 		}
509 	}
510 
511 	/*
512 	 * When switching from 32 to 64-bit, we may have a stale 32-bit
513 	 * magic page around, we need to flush it. Typically 32-bit magic
514 	 * page will be instantiated when calling into RTAS. Note: We
515 	 * assume that such transition only happens while in kernel mode,
516 	 * ie, we never transition from user 32-bit to kernel 64-bit with
517 	 * a 32-bit magic page around.
518 	 */
519 	if (vcpu->arch.magic_page_pa &&
520 	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
521 		/* going from RTAS to normal kernel code */
522 		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
523 				     ~0xFFFUL);
524 	}
525 
526 	/* Preload FPU if it's enabled */
527 	if (kvmppc_get_msr(vcpu) & MSR_FP)
528 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
529 
530 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
531 	if (kvmppc_get_msr(vcpu) & MSR_TM)
532 		kvmppc_handle_lost_math_exts(vcpu);
533 #endif
534 }
535 
536 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
537 {
538 	u32 host_pvr;
539 
540 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
541 	vcpu->arch.pvr = pvr;
542 #ifdef CONFIG_PPC_BOOK3S_64
543 	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
544 		kvmppc_mmu_book3s_64_init(vcpu);
545 		if (!to_book3s(vcpu)->hior_explicit)
546 			to_book3s(vcpu)->hior = 0xfff00000;
547 		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
548 		vcpu->arch.cpu_type = KVM_CPU_3S_64;
549 	} else
550 #endif
551 	{
552 		kvmppc_mmu_book3s_32_init(vcpu);
553 		if (!to_book3s(vcpu)->hior_explicit)
554 			to_book3s(vcpu)->hior = 0;
555 		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
556 		vcpu->arch.cpu_type = KVM_CPU_3S_32;
557 	}
558 
559 	kvmppc_sanity_check(vcpu);
560 
561 	/* If we are in hypervisor level on 970, we can tell the CPU to
562 	 * treat DCBZ as 32 bytes store */
563 	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
564 	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
565 	    !strcmp(cur_cpu_spec->platform, "ppc970"))
566 		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
567 
568 	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
569 	   really needs them in a VM on Cell and force disable them. */
570 	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
571 		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
572 
573 	/*
574 	 * If they're asking for POWER6 or later, set the flag
575 	 * indicating that we can do multiple large page sizes
576 	 * and 1TB segments.
577 	 * Also set the flag that indicates that tlbie has the large
578 	 * page bit in the RB operand instead of the instruction.
579 	 */
580 	switch (PVR_VER(pvr)) {
581 	case PVR_POWER6:
582 	case PVR_POWER7:
583 	case PVR_POWER7p:
584 	case PVR_POWER8:
585 	case PVR_POWER8E:
586 	case PVR_POWER8NVL:
587 	case PVR_POWER9:
588 		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
589 			BOOK3S_HFLAG_NEW_TLBIE;
590 		break;
591 	}
592 
593 #ifdef CONFIG_PPC_BOOK3S_32
594 	/* 32 bit Book3S always has 32 byte dcbz */
595 	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
596 #endif
597 
598 	/* On some CPUs we can execute paired single operations natively */
599 	asm ( "mfpvr %0" : "=r"(host_pvr));
600 	switch (host_pvr) {
601 	case 0x00080200:	/* lonestar 2.0 */
602 	case 0x00088202:	/* lonestar 2.2 */
603 	case 0x70000100:	/* gekko 1.0 */
604 	case 0x00080100:	/* gekko 2.0 */
605 	case 0x00083203:	/* gekko 2.3a */
606 	case 0x00083213:	/* gekko 2.3b */
607 	case 0x00083204:	/* gekko 2.4 */
608 	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
609 	case 0x00087200:	/* broadway */
610 		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
611 		/* Enable HID2.PSE - in case we need it later */
612 		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
613 	}
614 }
615 
616 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
617  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
618  * emulate 32 bytes dcbz length.
619  *
620  * The Book3s_64 inventors also realized this case and implemented a special bit
621  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
622  *
623  * My approach here is to patch the dcbz instruction on executing pages.
624  */
625 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
626 {
627 	struct page *hpage;
628 	u64 hpage_offset;
629 	u32 *page;
630 	int i;
631 
632 	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
633 	if (is_error_page(hpage))
634 		return;
635 
636 	hpage_offset = pte->raddr & ~PAGE_MASK;
637 	hpage_offset &= ~0xFFFULL;
638 	hpage_offset /= 4;
639 
640 	get_page(hpage);
641 	page = kmap_atomic(hpage);
642 
643 	/* patch dcbz into reserved instruction, so we trap */
644 	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
645 		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
646 			page[i] &= cpu_to_be32(0xfffffff7);
647 
648 	kunmap_atomic(page);
649 	put_page(hpage);
650 }
651 
652 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
653 {
654 	ulong mp_pa = vcpu->arch.magic_page_pa;
655 
656 	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
657 		mp_pa = (uint32_t)mp_pa;
658 
659 	gpa &= ~0xFFFULL;
660 	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
661 		return true;
662 	}
663 
664 	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
665 }
666 
667 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
668 			    ulong eaddr, int vec)
669 {
670 	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
671 	bool iswrite = false;
672 	int r = RESUME_GUEST;
673 	int relocated;
674 	int page_found = 0;
675 	struct kvmppc_pte pte = { 0 };
676 	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
677 	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
678 	u64 vsid;
679 
680 	relocated = data ? dr : ir;
681 	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
682 		iswrite = true;
683 
684 	/* Resolve real address if translation turned on */
685 	if (relocated) {
686 		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
687 	} else {
688 		pte.may_execute = true;
689 		pte.may_read = true;
690 		pte.may_write = true;
691 		pte.raddr = eaddr & KVM_PAM;
692 		pte.eaddr = eaddr;
693 		pte.vpage = eaddr >> 12;
694 		pte.page_size = MMU_PAGE_64K;
695 		pte.wimg = HPTE_R_M;
696 	}
697 
698 	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
699 	case 0:
700 		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
701 		break;
702 	case MSR_DR:
703 		if (!data &&
704 		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
705 		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
706 			pte.raddr &= ~SPLIT_HACK_MASK;
707 		/* fall through */
708 	case MSR_IR:
709 		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
710 
711 		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
712 			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
713 		else
714 			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
715 		pte.vpage |= vsid;
716 
717 		if (vsid == -1)
718 			page_found = -EINVAL;
719 		break;
720 	}
721 
722 	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
723 	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
724 		/*
725 		 * If we do the dcbz hack, we have to NX on every execution,
726 		 * so we can patch the executing code. This renders our guest
727 		 * NX-less.
728 		 */
729 		pte.may_execute = !data;
730 	}
731 
732 	if (page_found == -ENOENT || page_found == -EPERM) {
733 		/* Page not found in guest PTE entries, or protection fault */
734 		u64 flags;
735 
736 		if (page_found == -EPERM)
737 			flags = DSISR_PROTFAULT;
738 		else
739 			flags = DSISR_NOHPTE;
740 		if (data) {
741 			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
742 			kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
743 		} else {
744 			kvmppc_core_queue_inst_storage(vcpu, flags);
745 		}
746 	} else if (page_found == -EINVAL) {
747 		/* Page not found in guest SLB */
748 		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
749 		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
750 	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
751 		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
752 			/*
753 			 * There is already a host HPTE there, presumably
754 			 * a read-only one for a page the guest thinks
755 			 * is writable, so get rid of it first.
756 			 */
757 			kvmppc_mmu_unmap_page(vcpu, &pte);
758 		}
759 		/* The guest's PTE is not mapped yet. Map on the host */
760 		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
761 			/* Exit KVM if mapping failed */
762 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
763 			return RESUME_HOST;
764 		}
765 		if (data)
766 			vcpu->stat.sp_storage++;
767 		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
768 			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
769 			kvmppc_patch_dcbz(vcpu, &pte);
770 	} else {
771 		/* MMIO */
772 		vcpu->stat.mmio_exits++;
773 		vcpu->arch.paddr_accessed = pte.raddr;
774 		vcpu->arch.vaddr_accessed = pte.eaddr;
775 		r = kvmppc_emulate_mmio(run, vcpu);
776 		if ( r == RESUME_HOST_NV )
777 			r = RESUME_HOST;
778 	}
779 
780 	return r;
781 }
782 
783 /* Give up external provider (FPU, Altivec, VSX) */
784 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
785 {
786 	struct thread_struct *t = &current->thread;
787 
788 	/*
789 	 * VSX instructions can access FP and vector registers, so if
790 	 * we are giving up VSX, make sure we give up FP and VMX as well.
791 	 */
792 	if (msr & MSR_VSX)
793 		msr |= MSR_FP | MSR_VEC;
794 
795 	msr &= vcpu->arch.guest_owned_ext;
796 	if (!msr)
797 		return;
798 
799 #ifdef DEBUG_EXT
800 	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
801 #endif
802 
803 	if (msr & MSR_FP) {
804 		/*
805 		 * Note that on CPUs with VSX, giveup_fpu stores
806 		 * both the traditional FP registers and the added VSX
807 		 * registers into thread.fp_state.fpr[].
808 		 */
809 		if (t->regs->msr & MSR_FP)
810 			giveup_fpu(current);
811 		t->fp_save_area = NULL;
812 	}
813 
814 #ifdef CONFIG_ALTIVEC
815 	if (msr & MSR_VEC) {
816 		if (current->thread.regs->msr & MSR_VEC)
817 			giveup_altivec(current);
818 		t->vr_save_area = NULL;
819 	}
820 #endif
821 
822 	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
823 	kvmppc_recalc_shadow_msr(vcpu);
824 }
825 
826 /* Give up facility (TAR / EBB / DSCR) */
827 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
828 {
829 #ifdef CONFIG_PPC_BOOK3S_64
830 	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
831 		/* Facility not available to the guest, ignore giveup request*/
832 		return;
833 	}
834 
835 	switch (fac) {
836 	case FSCR_TAR_LG:
837 		vcpu->arch.tar = mfspr(SPRN_TAR);
838 		mtspr(SPRN_TAR, current->thread.tar);
839 		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
840 		break;
841 	}
842 #endif
843 }
844 
845 /* Handle external providers (FPU, Altivec, VSX) */
846 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
847 			     ulong msr)
848 {
849 	struct thread_struct *t = &current->thread;
850 
851 	/* When we have paired singles, we emulate in software */
852 	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
853 		return RESUME_GUEST;
854 
855 	if (!(kvmppc_get_msr(vcpu) & msr)) {
856 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
857 		return RESUME_GUEST;
858 	}
859 
860 	if (msr == MSR_VSX) {
861 		/* No VSX?  Give an illegal instruction interrupt */
862 #ifdef CONFIG_VSX
863 		if (!cpu_has_feature(CPU_FTR_VSX))
864 #endif
865 		{
866 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
867 			return RESUME_GUEST;
868 		}
869 
870 		/*
871 		 * We have to load up all the FP and VMX registers before
872 		 * we can let the guest use VSX instructions.
873 		 */
874 		msr = MSR_FP | MSR_VEC | MSR_VSX;
875 	}
876 
877 	/* See if we already own all the ext(s) needed */
878 	msr &= ~vcpu->arch.guest_owned_ext;
879 	if (!msr)
880 		return RESUME_GUEST;
881 
882 #ifdef DEBUG_EXT
883 	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
884 #endif
885 
886 	if (msr & MSR_FP) {
887 		preempt_disable();
888 		enable_kernel_fp();
889 		load_fp_state(&vcpu->arch.fp);
890 		disable_kernel_fp();
891 		t->fp_save_area = &vcpu->arch.fp;
892 		preempt_enable();
893 	}
894 
895 	if (msr & MSR_VEC) {
896 #ifdef CONFIG_ALTIVEC
897 		preempt_disable();
898 		enable_kernel_altivec();
899 		load_vr_state(&vcpu->arch.vr);
900 		disable_kernel_altivec();
901 		t->vr_save_area = &vcpu->arch.vr;
902 		preempt_enable();
903 #endif
904 	}
905 
906 	t->regs->msr |= msr;
907 	vcpu->arch.guest_owned_ext |= msr;
908 	kvmppc_recalc_shadow_msr(vcpu);
909 
910 	return RESUME_GUEST;
911 }
912 
913 /*
914  * Kernel code using FP or VMX could have flushed guest state to
915  * the thread_struct; if so, get it back now.
916  */
917 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
918 {
919 	unsigned long lost_ext;
920 
921 	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
922 	if (!lost_ext)
923 		return;
924 
925 	if (lost_ext & MSR_FP) {
926 		preempt_disable();
927 		enable_kernel_fp();
928 		load_fp_state(&vcpu->arch.fp);
929 		disable_kernel_fp();
930 		preempt_enable();
931 	}
932 #ifdef CONFIG_ALTIVEC
933 	if (lost_ext & MSR_VEC) {
934 		preempt_disable();
935 		enable_kernel_altivec();
936 		load_vr_state(&vcpu->arch.vr);
937 		disable_kernel_altivec();
938 		preempt_enable();
939 	}
940 #endif
941 	current->thread.regs->msr |= lost_ext;
942 }
943 
944 #ifdef CONFIG_PPC_BOOK3S_64
945 
946 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
947 {
948 	/* Inject the Interrupt Cause field and trigger a guest interrupt */
949 	vcpu->arch.fscr &= ~(0xffULL << 56);
950 	vcpu->arch.fscr |= (fac << 56);
951 	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
952 }
953 
954 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
955 {
956 	enum emulation_result er = EMULATE_FAIL;
957 
958 	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
959 		er = kvmppc_emulate_instruction(vcpu->run, vcpu);
960 
961 	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
962 		/* Couldn't emulate, trigger interrupt in guest */
963 		kvmppc_trigger_fac_interrupt(vcpu, fac);
964 	}
965 }
966 
967 /* Enable facilities (TAR, EBB, DSCR) for the guest */
968 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
969 {
970 	bool guest_fac_enabled;
971 	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
972 
973 	/*
974 	 * Not every facility is enabled by FSCR bits, check whether the
975 	 * guest has this facility enabled at all.
976 	 */
977 	switch (fac) {
978 	case FSCR_TAR_LG:
979 	case FSCR_EBB_LG:
980 		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
981 		break;
982 	case FSCR_TM_LG:
983 		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
984 		break;
985 	default:
986 		guest_fac_enabled = false;
987 		break;
988 	}
989 
990 	if (!guest_fac_enabled) {
991 		/* Facility not enabled by the guest */
992 		kvmppc_trigger_fac_interrupt(vcpu, fac);
993 		return RESUME_GUEST;
994 	}
995 
996 	switch (fac) {
997 	case FSCR_TAR_LG:
998 		/* TAR switching isn't lazy in Linux yet */
999 		current->thread.tar = mfspr(SPRN_TAR);
1000 		mtspr(SPRN_TAR, vcpu->arch.tar);
1001 		vcpu->arch.shadow_fscr |= FSCR_TAR;
1002 		break;
1003 	default:
1004 		kvmppc_emulate_fac(vcpu, fac);
1005 		break;
1006 	}
1007 
1008 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1009 	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
1010 	 * for TM spr can trigger TM fac unavailable. In this case, the
1011 	 * emulation is handled by kvmppc_emulate_fac(), which invokes
1012 	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1013 	 * RT for NV registers. So it need to restore those NV reg to reflect
1014 	 * the update.
1015 	 */
1016 	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1017 		return RESUME_GUEST_NV;
1018 #endif
1019 
1020 	return RESUME_GUEST;
1021 }
1022 
1023 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1024 {
1025 	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1026 		/* TAR got dropped, drop it in shadow too */
1027 		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1028 	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1029 		vcpu->arch.fscr = fscr;
1030 		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1031 		return;
1032 	}
1033 
1034 	vcpu->arch.fscr = fscr;
1035 }
1036 #endif
1037 
1038 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1039 {
1040 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1041 		u64 msr = kvmppc_get_msr(vcpu);
1042 
1043 		kvmppc_set_msr(vcpu, msr | MSR_SE);
1044 	}
1045 }
1046 
1047 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1048 {
1049 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1050 		u64 msr = kvmppc_get_msr(vcpu);
1051 
1052 		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1053 	}
1054 }
1055 
1056 static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
1057 				  unsigned int exit_nr)
1058 {
1059 	enum emulation_result er;
1060 	ulong flags;
1061 	u32 last_inst;
1062 	int emul, r;
1063 
1064 	/*
1065 	 * shadow_srr1 only contains valid flags if we came here via a program
1066 	 * exception. The other exceptions (emulation assist, FP unavailable,
1067 	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1068 	 * exception when injecting a program interrupt into the guest.
1069 	 */
1070 	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1071 		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1072 	else
1073 		flags = SRR1_PROGILL;
1074 
1075 	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1076 	if (emul != EMULATE_DONE)
1077 		return RESUME_GUEST;
1078 
1079 	if (kvmppc_get_msr(vcpu) & MSR_PR) {
1080 #ifdef EXIT_DEBUG
1081 		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1082 			kvmppc_get_pc(vcpu), last_inst);
1083 #endif
1084 		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1085 			kvmppc_core_queue_program(vcpu, flags);
1086 			return RESUME_GUEST;
1087 		}
1088 	}
1089 
1090 	vcpu->stat.emulated_inst_exits++;
1091 	er = kvmppc_emulate_instruction(run, vcpu);
1092 	switch (er) {
1093 	case EMULATE_DONE:
1094 		r = RESUME_GUEST_NV;
1095 		break;
1096 	case EMULATE_AGAIN:
1097 		r = RESUME_GUEST;
1098 		break;
1099 	case EMULATE_FAIL:
1100 		pr_crit("%s: emulation at %lx failed (%08x)\n",
1101 			__func__, kvmppc_get_pc(vcpu), last_inst);
1102 		kvmppc_core_queue_program(vcpu, flags);
1103 		r = RESUME_GUEST;
1104 		break;
1105 	case EMULATE_DO_MMIO:
1106 		run->exit_reason = KVM_EXIT_MMIO;
1107 		r = RESUME_HOST_NV;
1108 		break;
1109 	case EMULATE_EXIT_USER:
1110 		r = RESUME_HOST_NV;
1111 		break;
1112 	default:
1113 		BUG();
1114 	}
1115 
1116 	return r;
1117 }
1118 
1119 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
1120 			  unsigned int exit_nr)
1121 {
1122 	int r = RESUME_HOST;
1123 	int s;
1124 
1125 	vcpu->stat.sum_exits++;
1126 
1127 	run->exit_reason = KVM_EXIT_UNKNOWN;
1128 	run->ready_for_interrupt_injection = 1;
1129 
1130 	/* We get here with MSR.EE=1 */
1131 
1132 	trace_kvm_exit(exit_nr, vcpu);
1133 	guest_exit();
1134 
1135 	switch (exit_nr) {
1136 	case BOOK3S_INTERRUPT_INST_STORAGE:
1137 	{
1138 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1139 		vcpu->stat.pf_instruc++;
1140 
1141 		if (kvmppc_is_split_real(vcpu))
1142 			kvmppc_fixup_split_real(vcpu);
1143 
1144 #ifdef CONFIG_PPC_BOOK3S_32
1145 		/* We set segments as unused segments when invalidating them. So
1146 		 * treat the respective fault as segment fault. */
1147 		{
1148 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1149 			u32 sr;
1150 
1151 			svcpu = svcpu_get(vcpu);
1152 			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1153 			svcpu_put(svcpu);
1154 			if (sr == SR_INVALID) {
1155 				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1156 				r = RESUME_GUEST;
1157 				break;
1158 			}
1159 		}
1160 #endif
1161 
1162 		/* only care about PTEG not found errors, but leave NX alone */
1163 		if (shadow_srr1 & 0x40000000) {
1164 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1165 			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1166 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1167 			vcpu->stat.sp_instruc++;
1168 		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1169 			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1170 			/*
1171 			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1172 			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1173 			 *     that no guest that needs the dcbz hack does NX.
1174 			 */
1175 			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1176 			r = RESUME_GUEST;
1177 		} else {
1178 			kvmppc_core_queue_inst_storage(vcpu,
1179 						shadow_srr1 & 0x58000000);
1180 			r = RESUME_GUEST;
1181 		}
1182 		break;
1183 	}
1184 	case BOOK3S_INTERRUPT_DATA_STORAGE:
1185 	{
1186 		ulong dar = kvmppc_get_fault_dar(vcpu);
1187 		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1188 		vcpu->stat.pf_storage++;
1189 
1190 #ifdef CONFIG_PPC_BOOK3S_32
1191 		/* We set segments as unused segments when invalidating them. So
1192 		 * treat the respective fault as segment fault. */
1193 		{
1194 			struct kvmppc_book3s_shadow_vcpu *svcpu;
1195 			u32 sr;
1196 
1197 			svcpu = svcpu_get(vcpu);
1198 			sr = svcpu->sr[dar >> SID_SHIFT];
1199 			svcpu_put(svcpu);
1200 			if (sr == SR_INVALID) {
1201 				kvmppc_mmu_map_segment(vcpu, dar);
1202 				r = RESUME_GUEST;
1203 				break;
1204 			}
1205 		}
1206 #endif
1207 
1208 		/*
1209 		 * We need to handle missing shadow PTEs, and
1210 		 * protection faults due to us mapping a page read-only
1211 		 * when the guest thinks it is writable.
1212 		 */
1213 		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1214 			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1215 			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1216 			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1217 		} else {
1218 			kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1219 			r = RESUME_GUEST;
1220 		}
1221 		break;
1222 	}
1223 	case BOOK3S_INTERRUPT_DATA_SEGMENT:
1224 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1225 			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1226 			kvmppc_book3s_queue_irqprio(vcpu,
1227 				BOOK3S_INTERRUPT_DATA_SEGMENT);
1228 		}
1229 		r = RESUME_GUEST;
1230 		break;
1231 	case BOOK3S_INTERRUPT_INST_SEGMENT:
1232 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1233 			kvmppc_book3s_queue_irqprio(vcpu,
1234 				BOOK3S_INTERRUPT_INST_SEGMENT);
1235 		}
1236 		r = RESUME_GUEST;
1237 		break;
1238 	/* We're good on these - the host merely wanted to get our attention */
1239 	case BOOK3S_INTERRUPT_DECREMENTER:
1240 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1241 	case BOOK3S_INTERRUPT_DOORBELL:
1242 	case BOOK3S_INTERRUPT_H_DOORBELL:
1243 		vcpu->stat.dec_exits++;
1244 		r = RESUME_GUEST;
1245 		break;
1246 	case BOOK3S_INTERRUPT_EXTERNAL:
1247 	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1248 	case BOOK3S_INTERRUPT_H_VIRT:
1249 		vcpu->stat.ext_intr_exits++;
1250 		r = RESUME_GUEST;
1251 		break;
1252 	case BOOK3S_INTERRUPT_HMI:
1253 	case BOOK3S_INTERRUPT_PERFMON:
1254 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1255 		r = RESUME_GUEST;
1256 		break;
1257 	case BOOK3S_INTERRUPT_PROGRAM:
1258 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1259 		r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1260 		break;
1261 	case BOOK3S_INTERRUPT_SYSCALL:
1262 	{
1263 		u32 last_sc;
1264 		int emul;
1265 
1266 		/* Get last sc for papr */
1267 		if (vcpu->arch.papr_enabled) {
1268 			/* The sc instuction points SRR0 to the next inst */
1269 			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1270 			if (emul != EMULATE_DONE) {
1271 				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1272 				r = RESUME_GUEST;
1273 				break;
1274 			}
1275 		}
1276 
1277 		if (vcpu->arch.papr_enabled &&
1278 		    (last_sc == 0x44000022) &&
1279 		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1280 			/* SC 1 papr hypercalls */
1281 			ulong cmd = kvmppc_get_gpr(vcpu, 3);
1282 			int i;
1283 
1284 #ifdef CONFIG_PPC_BOOK3S_64
1285 			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1286 				r = RESUME_GUEST;
1287 				break;
1288 			}
1289 #endif
1290 
1291 			run->papr_hcall.nr = cmd;
1292 			for (i = 0; i < 9; ++i) {
1293 				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1294 				run->papr_hcall.args[i] = gpr;
1295 			}
1296 			run->exit_reason = KVM_EXIT_PAPR_HCALL;
1297 			vcpu->arch.hcall_needed = 1;
1298 			r = RESUME_HOST;
1299 		} else if (vcpu->arch.osi_enabled &&
1300 		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1301 		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1302 			/* MOL hypercalls */
1303 			u64 *gprs = run->osi.gprs;
1304 			int i;
1305 
1306 			run->exit_reason = KVM_EXIT_OSI;
1307 			for (i = 0; i < 32; i++)
1308 				gprs[i] = kvmppc_get_gpr(vcpu, i);
1309 			vcpu->arch.osi_needed = 1;
1310 			r = RESUME_HOST_NV;
1311 		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1312 		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1313 			/* KVM PV hypercalls */
1314 			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1315 			r = RESUME_GUEST;
1316 		} else {
1317 			/* Guest syscalls */
1318 			vcpu->stat.syscall_exits++;
1319 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1320 			r = RESUME_GUEST;
1321 		}
1322 		break;
1323 	}
1324 	case BOOK3S_INTERRUPT_FP_UNAVAIL:
1325 	case BOOK3S_INTERRUPT_ALTIVEC:
1326 	case BOOK3S_INTERRUPT_VSX:
1327 	{
1328 		int ext_msr = 0;
1329 		int emul;
1330 		u32 last_inst;
1331 
1332 		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1333 			/* Do paired single instruction emulation */
1334 			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1335 						    &last_inst);
1336 			if (emul == EMULATE_DONE)
1337 				r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1338 			else
1339 				r = RESUME_GUEST;
1340 
1341 			break;
1342 		}
1343 
1344 		/* Enable external provider */
1345 		switch (exit_nr) {
1346 		case BOOK3S_INTERRUPT_FP_UNAVAIL:
1347 			ext_msr = MSR_FP;
1348 			break;
1349 
1350 		case BOOK3S_INTERRUPT_ALTIVEC:
1351 			ext_msr = MSR_VEC;
1352 			break;
1353 
1354 		case BOOK3S_INTERRUPT_VSX:
1355 			ext_msr = MSR_VSX;
1356 			break;
1357 		}
1358 
1359 		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1360 		break;
1361 	}
1362 	case BOOK3S_INTERRUPT_ALIGNMENT:
1363 	{
1364 		u32 last_inst;
1365 		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1366 
1367 		if (emul == EMULATE_DONE) {
1368 			u32 dsisr;
1369 			u64 dar;
1370 
1371 			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1372 			dar = kvmppc_alignment_dar(vcpu, last_inst);
1373 
1374 			kvmppc_set_dsisr(vcpu, dsisr);
1375 			kvmppc_set_dar(vcpu, dar);
1376 
1377 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1378 		}
1379 		r = RESUME_GUEST;
1380 		break;
1381 	}
1382 #ifdef CONFIG_PPC_BOOK3S_64
1383 	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1384 		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1385 		break;
1386 #endif
1387 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1388 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1389 		r = RESUME_GUEST;
1390 		break;
1391 	case BOOK3S_INTERRUPT_TRACE:
1392 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1393 			run->exit_reason = KVM_EXIT_DEBUG;
1394 			r = RESUME_HOST;
1395 		} else {
1396 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1397 			r = RESUME_GUEST;
1398 		}
1399 		break;
1400 	default:
1401 	{
1402 		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1403 		/* Ugh - bork here! What did we get? */
1404 		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1405 			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1406 		r = RESUME_HOST;
1407 		BUG();
1408 		break;
1409 	}
1410 	}
1411 
1412 	if (!(r & RESUME_HOST)) {
1413 		/* To avoid clobbering exit_reason, only check for signals if
1414 		 * we aren't already exiting to userspace for some other
1415 		 * reason. */
1416 
1417 		/*
1418 		 * Interrupts could be timers for the guest which we have to
1419 		 * inject again, so let's postpone them until we're in the guest
1420 		 * and if we really did time things so badly, then we just exit
1421 		 * again due to a host external interrupt.
1422 		 */
1423 		s = kvmppc_prepare_to_enter(vcpu);
1424 		if (s <= 0)
1425 			r = s;
1426 		else {
1427 			/* interrupts now hard-disabled */
1428 			kvmppc_fix_ee_before_entry();
1429 		}
1430 
1431 		kvmppc_handle_lost_ext(vcpu);
1432 	}
1433 
1434 	trace_kvm_book3s_reenter(r, vcpu);
1435 
1436 	return r;
1437 }
1438 
1439 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1440 					    struct kvm_sregs *sregs)
1441 {
1442 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1443 	int i;
1444 
1445 	sregs->pvr = vcpu->arch.pvr;
1446 
1447 	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1448 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1449 		for (i = 0; i < 64; i++) {
1450 			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1451 			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1452 		}
1453 	} else {
1454 		for (i = 0; i < 16; i++)
1455 			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1456 
1457 		for (i = 0; i < 8; i++) {
1458 			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1459 			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1460 		}
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1467 					    struct kvm_sregs *sregs)
1468 {
1469 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1470 	int i;
1471 
1472 	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1473 
1474 	vcpu3s->sdr1 = sregs->u.s.sdr1;
1475 #ifdef CONFIG_PPC_BOOK3S_64
1476 	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1477 		/* Flush all SLB entries */
1478 		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1479 		vcpu->arch.mmu.slbia(vcpu);
1480 
1481 		for (i = 0; i < 64; i++) {
1482 			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1483 			u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1484 
1485 			if (rb & SLB_ESID_V)
1486 				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1487 		}
1488 	} else
1489 #endif
1490 	{
1491 		for (i = 0; i < 16; i++) {
1492 			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1493 		}
1494 		for (i = 0; i < 8; i++) {
1495 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1496 				       (u32)sregs->u.s.ppc32.ibat[i]);
1497 			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1498 				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1499 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1500 				       (u32)sregs->u.s.ppc32.dbat[i]);
1501 			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1502 				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1503 		}
1504 	}
1505 
1506 	/* Flush the MMU after messing with the segments */
1507 	kvmppc_mmu_pte_flush(vcpu, 0, 0);
1508 
1509 	return 0;
1510 }
1511 
1512 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1513 				 union kvmppc_one_reg *val)
1514 {
1515 	int r = 0;
1516 
1517 	switch (id) {
1518 	case KVM_REG_PPC_DEBUG_INST:
1519 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1520 		break;
1521 	case KVM_REG_PPC_HIOR:
1522 		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1523 		break;
1524 	case KVM_REG_PPC_VTB:
1525 		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
1526 		break;
1527 	case KVM_REG_PPC_LPCR:
1528 	case KVM_REG_PPC_LPCR_64:
1529 		/*
1530 		 * We are only interested in the LPCR_ILE bit
1531 		 */
1532 		if (vcpu->arch.intr_msr & MSR_LE)
1533 			*val = get_reg_val(id, LPCR_ILE);
1534 		else
1535 			*val = get_reg_val(id, 0);
1536 		break;
1537 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1538 	case KVM_REG_PPC_TFHAR:
1539 		*val = get_reg_val(id, vcpu->arch.tfhar);
1540 		break;
1541 	case KVM_REG_PPC_TFIAR:
1542 		*val = get_reg_val(id, vcpu->arch.tfiar);
1543 		break;
1544 	case KVM_REG_PPC_TEXASR:
1545 		*val = get_reg_val(id, vcpu->arch.texasr);
1546 		break;
1547 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1548 		*val = get_reg_val(id,
1549 				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1550 		break;
1551 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1552 	{
1553 		int i, j;
1554 
1555 		i = id - KVM_REG_PPC_TM_VSR0;
1556 		if (i < 32)
1557 			for (j = 0; j < TS_FPRWIDTH; j++)
1558 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1559 		else {
1560 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1561 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1562 			else
1563 				r = -ENXIO;
1564 		}
1565 		break;
1566 	}
1567 	case KVM_REG_PPC_TM_CR:
1568 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1569 		break;
1570 	case KVM_REG_PPC_TM_XER:
1571 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1572 		break;
1573 	case KVM_REG_PPC_TM_LR:
1574 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1575 		break;
1576 	case KVM_REG_PPC_TM_CTR:
1577 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1578 		break;
1579 	case KVM_REG_PPC_TM_FPSCR:
1580 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1581 		break;
1582 	case KVM_REG_PPC_TM_AMR:
1583 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1584 		break;
1585 	case KVM_REG_PPC_TM_PPR:
1586 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1587 		break;
1588 	case KVM_REG_PPC_TM_VRSAVE:
1589 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1590 		break;
1591 	case KVM_REG_PPC_TM_VSCR:
1592 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1593 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1594 		else
1595 			r = -ENXIO;
1596 		break;
1597 	case KVM_REG_PPC_TM_DSCR:
1598 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1599 		break;
1600 	case KVM_REG_PPC_TM_TAR:
1601 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1602 		break;
1603 #endif
1604 	default:
1605 		r = -EINVAL;
1606 		break;
1607 	}
1608 
1609 	return r;
1610 }
1611 
1612 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1613 {
1614 	if (new_lpcr & LPCR_ILE)
1615 		vcpu->arch.intr_msr |= MSR_LE;
1616 	else
1617 		vcpu->arch.intr_msr &= ~MSR_LE;
1618 }
1619 
1620 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1621 				 union kvmppc_one_reg *val)
1622 {
1623 	int r = 0;
1624 
1625 	switch (id) {
1626 	case KVM_REG_PPC_HIOR:
1627 		to_book3s(vcpu)->hior = set_reg_val(id, *val);
1628 		to_book3s(vcpu)->hior_explicit = true;
1629 		break;
1630 	case KVM_REG_PPC_VTB:
1631 		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1632 		break;
1633 	case KVM_REG_PPC_LPCR:
1634 	case KVM_REG_PPC_LPCR_64:
1635 		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1636 		break;
1637 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1638 	case KVM_REG_PPC_TFHAR:
1639 		vcpu->arch.tfhar = set_reg_val(id, *val);
1640 		break;
1641 	case KVM_REG_PPC_TFIAR:
1642 		vcpu->arch.tfiar = set_reg_val(id, *val);
1643 		break;
1644 	case KVM_REG_PPC_TEXASR:
1645 		vcpu->arch.texasr = set_reg_val(id, *val);
1646 		break;
1647 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1648 		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1649 			set_reg_val(id, *val);
1650 		break;
1651 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1652 	{
1653 		int i, j;
1654 
1655 		i = id - KVM_REG_PPC_TM_VSR0;
1656 		if (i < 32)
1657 			for (j = 0; j < TS_FPRWIDTH; j++)
1658 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1659 		else
1660 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1661 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1662 			else
1663 				r = -ENXIO;
1664 		break;
1665 	}
1666 	case KVM_REG_PPC_TM_CR:
1667 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1668 		break;
1669 	case KVM_REG_PPC_TM_XER:
1670 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1671 		break;
1672 	case KVM_REG_PPC_TM_LR:
1673 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1674 		break;
1675 	case KVM_REG_PPC_TM_CTR:
1676 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1677 		break;
1678 	case KVM_REG_PPC_TM_FPSCR:
1679 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1680 		break;
1681 	case KVM_REG_PPC_TM_AMR:
1682 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1683 		break;
1684 	case KVM_REG_PPC_TM_PPR:
1685 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1686 		break;
1687 	case KVM_REG_PPC_TM_VRSAVE:
1688 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1689 		break;
1690 	case KVM_REG_PPC_TM_VSCR:
1691 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1692 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1693 		else
1694 			r = -ENXIO;
1695 		break;
1696 	case KVM_REG_PPC_TM_DSCR:
1697 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1698 		break;
1699 	case KVM_REG_PPC_TM_TAR:
1700 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1701 		break;
1702 #endif
1703 	default:
1704 		r = -EINVAL;
1705 		break;
1706 	}
1707 
1708 	return r;
1709 }
1710 
1711 static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
1712 						   unsigned int id)
1713 {
1714 	struct kvmppc_vcpu_book3s *vcpu_book3s;
1715 	struct kvm_vcpu *vcpu;
1716 	int err = -ENOMEM;
1717 	unsigned long p;
1718 
1719 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1720 	if (!vcpu)
1721 		goto out;
1722 
1723 	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1724 	if (!vcpu_book3s)
1725 		goto free_vcpu;
1726 	vcpu->arch.book3s = vcpu_book3s;
1727 
1728 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1729 	vcpu->arch.shadow_vcpu =
1730 		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1731 	if (!vcpu->arch.shadow_vcpu)
1732 		goto free_vcpu3s;
1733 #endif
1734 
1735 	err = kvm_vcpu_init(vcpu, kvm, id);
1736 	if (err)
1737 		goto free_shadow_vcpu;
1738 
1739 	err = -ENOMEM;
1740 	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1741 	if (!p)
1742 		goto uninit_vcpu;
1743 	vcpu->arch.shared = (void *)p;
1744 #ifdef CONFIG_PPC_BOOK3S_64
1745 	/* Always start the shared struct in native endian mode */
1746 #ifdef __BIG_ENDIAN__
1747         vcpu->arch.shared_big_endian = true;
1748 #else
1749         vcpu->arch.shared_big_endian = false;
1750 #endif
1751 
1752 	/*
1753 	 * Default to the same as the host if we're on sufficiently
1754 	 * recent machine that we have 1TB segments;
1755 	 * otherwise default to PPC970FX.
1756 	 */
1757 	vcpu->arch.pvr = 0x3C0301;
1758 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1759 		vcpu->arch.pvr = mfspr(SPRN_PVR);
1760 	vcpu->arch.intr_msr = MSR_SF;
1761 #else
1762 	/* default to book3s_32 (750) */
1763 	vcpu->arch.pvr = 0x84202;
1764 #endif
1765 	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1766 	vcpu->arch.slb_nr = 64;
1767 
1768 	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1769 
1770 	err = kvmppc_mmu_init(vcpu);
1771 	if (err < 0)
1772 		goto uninit_vcpu;
1773 
1774 	return vcpu;
1775 
1776 uninit_vcpu:
1777 	kvm_vcpu_uninit(vcpu);
1778 free_shadow_vcpu:
1779 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1780 	kfree(vcpu->arch.shadow_vcpu);
1781 free_vcpu3s:
1782 #endif
1783 	vfree(vcpu_book3s);
1784 free_vcpu:
1785 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1786 out:
1787 	return ERR_PTR(err);
1788 }
1789 
1790 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1791 {
1792 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1793 
1794 	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1795 	kvm_vcpu_uninit(vcpu);
1796 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1797 	kfree(vcpu->arch.shadow_vcpu);
1798 #endif
1799 	vfree(vcpu_book3s);
1800 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1801 }
1802 
1803 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1804 {
1805 	int ret;
1806 #ifdef CONFIG_ALTIVEC
1807 	unsigned long uninitialized_var(vrsave);
1808 #endif
1809 
1810 	/* Check if we can run the vcpu at all */
1811 	if (!vcpu->arch.sane) {
1812 		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1813 		ret = -EINVAL;
1814 		goto out;
1815 	}
1816 
1817 	kvmppc_setup_debug(vcpu);
1818 
1819 	/*
1820 	 * Interrupts could be timers for the guest which we have to inject
1821 	 * again, so let's postpone them until we're in the guest and if we
1822 	 * really did time things so badly, then we just exit again due to
1823 	 * a host external interrupt.
1824 	 */
1825 	ret = kvmppc_prepare_to_enter(vcpu);
1826 	if (ret <= 0)
1827 		goto out;
1828 	/* interrupts now hard-disabled */
1829 
1830 	/* Save FPU, Altivec and VSX state */
1831 	giveup_all(current);
1832 
1833 	/* Preload FPU if it's enabled */
1834 	if (kvmppc_get_msr(vcpu) & MSR_FP)
1835 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1836 
1837 	kvmppc_fix_ee_before_entry();
1838 
1839 	ret = __kvmppc_vcpu_run(kvm_run, vcpu);
1840 
1841 	kvmppc_clear_debug(vcpu);
1842 
1843 	/* No need for guest_exit. It's done in handle_exit.
1844 	   We also get here with interrupts enabled. */
1845 
1846 	/* Make sure we save the guest FPU/Altivec/VSX state */
1847 	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1848 
1849 	/* Make sure we save the guest TAR/EBB/DSCR state */
1850 	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1851 
1852 out:
1853 	vcpu->mode = OUTSIDE_GUEST_MODE;
1854 	return ret;
1855 }
1856 
1857 /*
1858  * Get (and clear) the dirty memory log for a memory slot.
1859  */
1860 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1861 					 struct kvm_dirty_log *log)
1862 {
1863 	struct kvm_memslots *slots;
1864 	struct kvm_memory_slot *memslot;
1865 	struct kvm_vcpu *vcpu;
1866 	ulong ga, ga_end;
1867 	int is_dirty = 0;
1868 	int r;
1869 	unsigned long n;
1870 
1871 	mutex_lock(&kvm->slots_lock);
1872 
1873 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1874 	if (r)
1875 		goto out;
1876 
1877 	/* If nothing is dirty, don't bother messing with page tables. */
1878 	if (is_dirty) {
1879 		slots = kvm_memslots(kvm);
1880 		memslot = id_to_memslot(slots, log->slot);
1881 
1882 		ga = memslot->base_gfn << PAGE_SHIFT;
1883 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1884 
1885 		kvm_for_each_vcpu(n, vcpu, kvm)
1886 			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1887 
1888 		n = kvm_dirty_bitmap_bytes(memslot);
1889 		memset(memslot->dirty_bitmap, 0, n);
1890 	}
1891 
1892 	r = 0;
1893 out:
1894 	mutex_unlock(&kvm->slots_lock);
1895 	return r;
1896 }
1897 
1898 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1899 					 struct kvm_memory_slot *memslot)
1900 {
1901 	return;
1902 }
1903 
1904 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1905 					struct kvm_memory_slot *memslot,
1906 					const struct kvm_userspace_memory_region *mem)
1907 {
1908 	return 0;
1909 }
1910 
1911 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1912 				const struct kvm_userspace_memory_region *mem,
1913 				const struct kvm_memory_slot *old,
1914 				const struct kvm_memory_slot *new,
1915 				enum kvm_mr_change change)
1916 {
1917 	return;
1918 }
1919 
1920 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
1921 					struct kvm_memory_slot *dont)
1922 {
1923 	return;
1924 }
1925 
1926 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
1927 					 unsigned long npages)
1928 {
1929 	return 0;
1930 }
1931 
1932 
1933 #ifdef CONFIG_PPC64
1934 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1935 					 struct kvm_ppc_smmu_info *info)
1936 {
1937 	long int i;
1938 	struct kvm_vcpu *vcpu;
1939 
1940 	info->flags = 0;
1941 
1942 	/* SLB is always 64 entries */
1943 	info->slb_size = 64;
1944 
1945 	/* Standard 4k base page size segment */
1946 	info->sps[0].page_shift = 12;
1947 	info->sps[0].slb_enc = 0;
1948 	info->sps[0].enc[0].page_shift = 12;
1949 	info->sps[0].enc[0].pte_enc = 0;
1950 
1951 	/*
1952 	 * 64k large page size.
1953 	 * We only want to put this in if the CPUs we're emulating
1954 	 * support it, but unfortunately we don't have a vcpu easily
1955 	 * to hand here to test.  Just pick the first vcpu, and if
1956 	 * that doesn't exist yet, report the minimum capability,
1957 	 * i.e., no 64k pages.
1958 	 * 1T segment support goes along with 64k pages.
1959 	 */
1960 	i = 1;
1961 	vcpu = kvm_get_vcpu(kvm, 0);
1962 	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1963 		info->flags = KVM_PPC_1T_SEGMENTS;
1964 		info->sps[i].page_shift = 16;
1965 		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1966 		info->sps[i].enc[0].page_shift = 16;
1967 		info->sps[i].enc[0].pte_enc = 1;
1968 		++i;
1969 	}
1970 
1971 	/* Standard 16M large page size segment */
1972 	info->sps[i].page_shift = 24;
1973 	info->sps[i].slb_enc = SLB_VSID_L;
1974 	info->sps[i].enc[0].page_shift = 24;
1975 	info->sps[i].enc[0].pte_enc = 0;
1976 
1977 	return 0;
1978 }
1979 
1980 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1981 {
1982 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1983 		return -ENODEV;
1984 	/* Require flags and process table base and size to all be zero. */
1985 	if (cfg->flags || cfg->process_table)
1986 		return -EINVAL;
1987 	return 0;
1988 }
1989 
1990 #else
1991 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1992 					 struct kvm_ppc_smmu_info *info)
1993 {
1994 	/* We should not get called */
1995 	BUG();
1996 }
1997 #endif /* CONFIG_PPC64 */
1998 
1999 static unsigned int kvm_global_user_count = 0;
2000 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
2001 
2002 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2003 {
2004 	mutex_init(&kvm->arch.hpt_mutex);
2005 
2006 #ifdef CONFIG_PPC_BOOK3S_64
2007 	/* Start out with the default set of hcalls enabled */
2008 	kvmppc_pr_init_default_hcalls(kvm);
2009 #endif
2010 
2011 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2012 		spin_lock(&kvm_global_user_count_lock);
2013 		if (++kvm_global_user_count == 1)
2014 			pseries_disable_reloc_on_exc();
2015 		spin_unlock(&kvm_global_user_count_lock);
2016 	}
2017 	return 0;
2018 }
2019 
2020 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2021 {
2022 #ifdef CONFIG_PPC64
2023 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2024 #endif
2025 
2026 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2027 		spin_lock(&kvm_global_user_count_lock);
2028 		BUG_ON(kvm_global_user_count == 0);
2029 		if (--kvm_global_user_count == 0)
2030 			pseries_enable_reloc_on_exc();
2031 		spin_unlock(&kvm_global_user_count_lock);
2032 	}
2033 }
2034 
2035 static int kvmppc_core_check_processor_compat_pr(void)
2036 {
2037 	/*
2038 	 * PR KVM can work on POWER9 inside a guest partition
2039 	 * running in HPT mode.  It can't work if we are using
2040 	 * radix translation (because radix provides no way for
2041 	 * a process to have unique translations in quadrant 3).
2042 	 */
2043 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2044 		return -EIO;
2045 	return 0;
2046 }
2047 
2048 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2049 				 unsigned int ioctl, unsigned long arg)
2050 {
2051 	return -ENOTTY;
2052 }
2053 
2054 static struct kvmppc_ops kvm_ops_pr = {
2055 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2056 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2057 	.get_one_reg = kvmppc_get_one_reg_pr,
2058 	.set_one_reg = kvmppc_set_one_reg_pr,
2059 	.vcpu_load   = kvmppc_core_vcpu_load_pr,
2060 	.vcpu_put    = kvmppc_core_vcpu_put_pr,
2061 	.set_msr     = kvmppc_set_msr_pr,
2062 	.vcpu_run    = kvmppc_vcpu_run_pr,
2063 	.vcpu_create = kvmppc_core_vcpu_create_pr,
2064 	.vcpu_free   = kvmppc_core_vcpu_free_pr,
2065 	.check_requests = kvmppc_core_check_requests_pr,
2066 	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2067 	.flush_memslot = kvmppc_core_flush_memslot_pr,
2068 	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2069 	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
2070 	.unmap_hva_range = kvm_unmap_hva_range_pr,
2071 	.age_hva  = kvm_age_hva_pr,
2072 	.test_age_hva = kvm_test_age_hva_pr,
2073 	.set_spte_hva = kvm_set_spte_hva_pr,
2074 	.mmu_destroy  = kvmppc_mmu_destroy_pr,
2075 	.free_memslot = kvmppc_core_free_memslot_pr,
2076 	.create_memslot = kvmppc_core_create_memslot_pr,
2077 	.init_vm = kvmppc_core_init_vm_pr,
2078 	.destroy_vm = kvmppc_core_destroy_vm_pr,
2079 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2080 	.emulate_op = kvmppc_core_emulate_op_pr,
2081 	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2082 	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2083 	.fast_vcpu_kick = kvm_vcpu_kick,
2084 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2085 #ifdef CONFIG_PPC_BOOK3S_64
2086 	.hcall_implemented = kvmppc_hcall_impl_pr,
2087 	.configure_mmu = kvm_configure_mmu_pr,
2088 #endif
2089 	.giveup_ext = kvmppc_giveup_ext,
2090 };
2091 
2092 
2093 int kvmppc_book3s_init_pr(void)
2094 {
2095 	int r;
2096 
2097 	r = kvmppc_core_check_processor_compat_pr();
2098 	if (r < 0)
2099 		return r;
2100 
2101 	kvm_ops_pr.owner = THIS_MODULE;
2102 	kvmppc_pr_ops = &kvm_ops_pr;
2103 
2104 	r = kvmppc_mmu_hpte_sysinit();
2105 	return r;
2106 }
2107 
2108 void kvmppc_book3s_exit_pr(void)
2109 {
2110 	kvmppc_pr_ops = NULL;
2111 	kvmppc_mmu_hpte_sysexit();
2112 }
2113 
2114 /*
2115  * We only support separate modules for book3s 64
2116  */
2117 #ifdef CONFIG_PPC_BOOK3S_64
2118 
2119 module_init(kvmppc_book3s_init_pr);
2120 module_exit(kvmppc_book3s_exit_pr);
2121 
2122 MODULE_LICENSE("GPL");
2123 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2124 MODULE_ALIAS("devname:kvm");
2125 #endif
2126