xref: /linux/arch/powerpc/kvm/book3s_hv_rm_xics.c (revision 0b8061c340b643e01da431dd60c75a41bb1d31ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2012 Michael Ellerman, IBM Corporation.
4  * Copyright 2012 Benjamin Herrenschmidt, IBM Corporation
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/kvm_host.h>
9 #include <linux/err.h>
10 #include <linux/kernel_stat.h>
11 #include <linux/pgtable.h>
12 
13 #include <asm/kvm_book3s.h>
14 #include <asm/kvm_ppc.h>
15 #include <asm/hvcall.h>
16 #include <asm/xics.h>
17 #include <asm/synch.h>
18 #include <asm/cputhreads.h>
19 #include <asm/ppc-opcode.h>
20 #include <asm/pnv-pci.h>
21 #include <asm/opal.h>
22 #include <asm/smp.h>
23 
24 #include "book3s_xics.h"
25 
26 #define DEBUG_PASSUP
27 
28 int h_ipi_redirect = 1;
29 EXPORT_SYMBOL(h_ipi_redirect);
30 int kvm_irq_bypass = 1;
31 EXPORT_SYMBOL(kvm_irq_bypass);
32 
33 static void icp_rm_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
34 			    u32 new_irq, bool check_resend);
35 static int xics_opal_set_server(unsigned int hw_irq, int server_cpu);
36 
37 /* -- ICS routines -- */
38 static void ics_rm_check_resend(struct kvmppc_xics *xics,
39 				struct kvmppc_ics *ics, struct kvmppc_icp *icp)
40 {
41 	int i;
42 
43 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
44 		struct ics_irq_state *state = &ics->irq_state[i];
45 		if (state->resend)
46 			icp_rm_deliver_irq(xics, icp, state->number, true);
47 	}
48 
49 }
50 
51 /* -- ICP routines -- */
52 
53 #ifdef CONFIG_SMP
54 static inline void icp_send_hcore_msg(int hcore, struct kvm_vcpu *vcpu)
55 {
56 	int hcpu;
57 
58 	hcpu = hcore << threads_shift;
59 	kvmppc_host_rm_ops_hv->rm_core[hcore].rm_data = vcpu;
60 	smp_muxed_ipi_set_message(hcpu, PPC_MSG_RM_HOST_ACTION);
61 	kvmppc_set_host_ipi(hcpu);
62 	smp_mb();
63 	kvmhv_rm_send_ipi(hcpu);
64 }
65 #else
66 static inline void icp_send_hcore_msg(int hcore, struct kvm_vcpu *vcpu) { }
67 #endif
68 
69 /*
70  * We start the search from our current CPU Id in the core map
71  * and go in a circle until we get back to our ID looking for a
72  * core that is running in host context and that hasn't already
73  * been targeted for another rm_host_ops.
74  *
75  * In the future, could consider using a fairer algorithm (one
76  * that distributes the IPIs better)
77  *
78  * Returns -1, if no CPU could be found in the host
79  * Else, returns a CPU Id which has been reserved for use
80  */
81 static inline int grab_next_hostcore(int start,
82 		struct kvmppc_host_rm_core *rm_core, int max, int action)
83 {
84 	bool success;
85 	int core;
86 	union kvmppc_rm_state old, new;
87 
88 	for (core = start + 1; core < max; core++)  {
89 		old = new = READ_ONCE(rm_core[core].rm_state);
90 
91 		if (!old.in_host || old.rm_action)
92 			continue;
93 
94 		/* Try to grab this host core if not taken already. */
95 		new.rm_action = action;
96 
97 		success = cmpxchg64(&rm_core[core].rm_state.raw,
98 						old.raw, new.raw) == old.raw;
99 		if (success) {
100 			/*
101 			 * Make sure that the store to the rm_action is made
102 			 * visible before we return to caller (and the
103 			 * subsequent store to rm_data) to synchronize with
104 			 * the IPI handler.
105 			 */
106 			smp_wmb();
107 			return core;
108 		}
109 	}
110 
111 	return -1;
112 }
113 
114 static inline int find_available_hostcore(int action)
115 {
116 	int core;
117 	int my_core = smp_processor_id() >> threads_shift;
118 	struct kvmppc_host_rm_core *rm_core = kvmppc_host_rm_ops_hv->rm_core;
119 
120 	core = grab_next_hostcore(my_core, rm_core, cpu_nr_cores(), action);
121 	if (core == -1)
122 		core = grab_next_hostcore(core, rm_core, my_core, action);
123 
124 	return core;
125 }
126 
127 static void icp_rm_set_vcpu_irq(struct kvm_vcpu *vcpu,
128 				struct kvm_vcpu *this_vcpu)
129 {
130 	struct kvmppc_icp *this_icp = this_vcpu->arch.icp;
131 	int cpu;
132 	int hcore;
133 
134 	/* Mark the target VCPU as having an interrupt pending */
135 	vcpu->stat.queue_intr++;
136 	set_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
137 
138 	/* Kick self ? Just set MER and return */
139 	if (vcpu == this_vcpu) {
140 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_MER);
141 		return;
142 	}
143 
144 	if (xive_enabled() && kvmhv_on_pseries()) {
145 		/* No XICS access or hypercalls available, too hard */
146 		this_icp->rm_action |= XICS_RM_KICK_VCPU;
147 		this_icp->rm_kick_target = vcpu;
148 		return;
149 	}
150 
151 	/*
152 	 * Check if the core is loaded,
153 	 * if not, find an available host core to post to wake the VCPU,
154 	 * if we can't find one, set up state to eventually return too hard.
155 	 */
156 	cpu = vcpu->arch.thread_cpu;
157 	if (cpu < 0 || cpu >= nr_cpu_ids) {
158 		hcore = -1;
159 		if (kvmppc_host_rm_ops_hv && h_ipi_redirect)
160 			hcore = find_available_hostcore(XICS_RM_KICK_VCPU);
161 		if (hcore != -1) {
162 			icp_send_hcore_msg(hcore, vcpu);
163 		} else {
164 			this_icp->rm_action |= XICS_RM_KICK_VCPU;
165 			this_icp->rm_kick_target = vcpu;
166 		}
167 		return;
168 	}
169 
170 	smp_mb();
171 	kvmhv_rm_send_ipi(cpu);
172 }
173 
174 static void icp_rm_clr_vcpu_irq(struct kvm_vcpu *vcpu)
175 {
176 	/* Note: Only called on self ! */
177 	clear_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
178 	mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_MER);
179 }
180 
181 static inline bool icp_rm_try_update(struct kvmppc_icp *icp,
182 				     union kvmppc_icp_state old,
183 				     union kvmppc_icp_state new)
184 {
185 	struct kvm_vcpu *this_vcpu = local_paca->kvm_hstate.kvm_vcpu;
186 	bool success;
187 
188 	/* Calculate new output value */
189 	new.out_ee = (new.xisr && (new.pending_pri < new.cppr));
190 
191 	/* Attempt atomic update */
192 	success = cmpxchg64(&icp->state.raw, old.raw, new.raw) == old.raw;
193 	if (!success)
194 		goto bail;
195 
196 	/*
197 	 * Check for output state update
198 	 *
199 	 * Note that this is racy since another processor could be updating
200 	 * the state already. This is why we never clear the interrupt output
201 	 * here, we only ever set it. The clear only happens prior to doing
202 	 * an update and only by the processor itself. Currently we do it
203 	 * in Accept (H_XIRR) and Up_Cppr (H_XPPR).
204 	 *
205 	 * We also do not try to figure out whether the EE state has changed,
206 	 * we unconditionally set it if the new state calls for it. The reason
207 	 * for that is that we opportunistically remove the pending interrupt
208 	 * flag when raising CPPR, so we need to set it back here if an
209 	 * interrupt is still pending.
210 	 */
211 	if (new.out_ee)
212 		icp_rm_set_vcpu_irq(icp->vcpu, this_vcpu);
213 
214 	/* Expose the state change for debug purposes */
215 	this_vcpu->arch.icp->rm_dbgstate = new;
216 	this_vcpu->arch.icp->rm_dbgtgt = icp->vcpu;
217 
218  bail:
219 	return success;
220 }
221 
222 static inline int check_too_hard(struct kvmppc_xics *xics,
223 				 struct kvmppc_icp *icp)
224 {
225 	return (xics->real_mode_dbg || icp->rm_action) ? H_TOO_HARD : H_SUCCESS;
226 }
227 
228 static void icp_rm_check_resend(struct kvmppc_xics *xics,
229 			     struct kvmppc_icp *icp)
230 {
231 	u32 icsid;
232 
233 	/* Order this load with the test for need_resend in the caller */
234 	smp_rmb();
235 	for_each_set_bit(icsid, icp->resend_map, xics->max_icsid + 1) {
236 		struct kvmppc_ics *ics = xics->ics[icsid];
237 
238 		if (!test_and_clear_bit(icsid, icp->resend_map))
239 			continue;
240 		if (!ics)
241 			continue;
242 		ics_rm_check_resend(xics, ics, icp);
243 	}
244 }
245 
246 static bool icp_rm_try_to_deliver(struct kvmppc_icp *icp, u32 irq, u8 priority,
247 			       u32 *reject)
248 {
249 	union kvmppc_icp_state old_state, new_state;
250 	bool success;
251 
252 	do {
253 		old_state = new_state = READ_ONCE(icp->state);
254 
255 		*reject = 0;
256 
257 		/* See if we can deliver */
258 		success = new_state.cppr > priority &&
259 			new_state.mfrr > priority &&
260 			new_state.pending_pri > priority;
261 
262 		/*
263 		 * If we can, check for a rejection and perform the
264 		 * delivery
265 		 */
266 		if (success) {
267 			*reject = new_state.xisr;
268 			new_state.xisr = irq;
269 			new_state.pending_pri = priority;
270 		} else {
271 			/*
272 			 * If we failed to deliver we set need_resend
273 			 * so a subsequent CPPR state change causes us
274 			 * to try a new delivery.
275 			 */
276 			new_state.need_resend = true;
277 		}
278 
279 	} while (!icp_rm_try_update(icp, old_state, new_state));
280 
281 	return success;
282 }
283 
284 static void icp_rm_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
285 			    u32 new_irq, bool check_resend)
286 {
287 	struct ics_irq_state *state;
288 	struct kvmppc_ics *ics;
289 	u32 reject;
290 	u16 src;
291 
292 	/*
293 	 * This is used both for initial delivery of an interrupt and
294 	 * for subsequent rejection.
295 	 *
296 	 * Rejection can be racy vs. resends. We have evaluated the
297 	 * rejection in an atomic ICP transaction which is now complete,
298 	 * so potentially the ICP can already accept the interrupt again.
299 	 *
300 	 * So we need to retry the delivery. Essentially the reject path
301 	 * boils down to a failed delivery. Always.
302 	 *
303 	 * Now the interrupt could also have moved to a different target,
304 	 * thus we may need to re-do the ICP lookup as well
305 	 */
306 
307  again:
308 	/* Get the ICS state and lock it */
309 	ics = kvmppc_xics_find_ics(xics, new_irq, &src);
310 	if (!ics) {
311 		/* Unsafe increment, but this does not need to be accurate */
312 		xics->err_noics++;
313 		return;
314 	}
315 	state = &ics->irq_state[src];
316 
317 	/* Get a lock on the ICS */
318 	arch_spin_lock(&ics->lock);
319 
320 	/* Get our server */
321 	if (!icp || state->server != icp->server_num) {
322 		icp = kvmppc_xics_find_server(xics->kvm, state->server);
323 		if (!icp) {
324 			/* Unsafe increment again*/
325 			xics->err_noicp++;
326 			goto out;
327 		}
328 	}
329 
330 	if (check_resend)
331 		if (!state->resend)
332 			goto out;
333 
334 	/* Clear the resend bit of that interrupt */
335 	state->resend = 0;
336 
337 	/*
338 	 * If masked, bail out
339 	 *
340 	 * Note: PAPR doesn't mention anything about masked pending
341 	 * when doing a resend, only when doing a delivery.
342 	 *
343 	 * However that would have the effect of losing a masked
344 	 * interrupt that was rejected and isn't consistent with
345 	 * the whole masked_pending business which is about not
346 	 * losing interrupts that occur while masked.
347 	 *
348 	 * I don't differentiate normal deliveries and resends, this
349 	 * implementation will differ from PAPR and not lose such
350 	 * interrupts.
351 	 */
352 	if (state->priority == MASKED) {
353 		state->masked_pending = 1;
354 		goto out;
355 	}
356 
357 	/*
358 	 * Try the delivery, this will set the need_resend flag
359 	 * in the ICP as part of the atomic transaction if the
360 	 * delivery is not possible.
361 	 *
362 	 * Note that if successful, the new delivery might have itself
363 	 * rejected an interrupt that was "delivered" before we took the
364 	 * ics spin lock.
365 	 *
366 	 * In this case we do the whole sequence all over again for the
367 	 * new guy. We cannot assume that the rejected interrupt is less
368 	 * favored than the new one, and thus doesn't need to be delivered,
369 	 * because by the time we exit icp_rm_try_to_deliver() the target
370 	 * processor may well have already consumed & completed it, and thus
371 	 * the rejected interrupt might actually be already acceptable.
372 	 */
373 	if (icp_rm_try_to_deliver(icp, new_irq, state->priority, &reject)) {
374 		/*
375 		 * Delivery was successful, did we reject somebody else ?
376 		 */
377 		if (reject && reject != XICS_IPI) {
378 			arch_spin_unlock(&ics->lock);
379 			icp->n_reject++;
380 			new_irq = reject;
381 			check_resend = 0;
382 			goto again;
383 		}
384 	} else {
385 		/*
386 		 * We failed to deliver the interrupt we need to set the
387 		 * resend map bit and mark the ICS state as needing a resend
388 		 */
389 		state->resend = 1;
390 
391 		/*
392 		 * Make sure when checking resend, we don't miss the resend
393 		 * if resend_map bit is seen and cleared.
394 		 */
395 		smp_wmb();
396 		set_bit(ics->icsid, icp->resend_map);
397 
398 		/*
399 		 * If the need_resend flag got cleared in the ICP some time
400 		 * between icp_rm_try_to_deliver() atomic update and now, then
401 		 * we know it might have missed the resend_map bit. So we
402 		 * retry
403 		 */
404 		smp_mb();
405 		if (!icp->state.need_resend) {
406 			state->resend = 0;
407 			arch_spin_unlock(&ics->lock);
408 			check_resend = 0;
409 			goto again;
410 		}
411 	}
412  out:
413 	arch_spin_unlock(&ics->lock);
414 }
415 
416 static void icp_rm_down_cppr(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
417 			     u8 new_cppr)
418 {
419 	union kvmppc_icp_state old_state, new_state;
420 	bool resend;
421 
422 	/*
423 	 * This handles several related states in one operation:
424 	 *
425 	 * ICP State: Down_CPPR
426 	 *
427 	 * Load CPPR with new value and if the XISR is 0
428 	 * then check for resends:
429 	 *
430 	 * ICP State: Resend
431 	 *
432 	 * If MFRR is more favored than CPPR, check for IPIs
433 	 * and notify ICS of a potential resend. This is done
434 	 * asynchronously (when used in real mode, we will have
435 	 * to exit here).
436 	 *
437 	 * We do not handle the complete Check_IPI as documented
438 	 * here. In the PAPR, this state will be used for both
439 	 * Set_MFRR and Down_CPPR. However, we know that we aren't
440 	 * changing the MFRR state here so we don't need to handle
441 	 * the case of an MFRR causing a reject of a pending irq,
442 	 * this will have been handled when the MFRR was set in the
443 	 * first place.
444 	 *
445 	 * Thus we don't have to handle rejects, only resends.
446 	 *
447 	 * When implementing real mode for HV KVM, resend will lead to
448 	 * a H_TOO_HARD return and the whole transaction will be handled
449 	 * in virtual mode.
450 	 */
451 	do {
452 		old_state = new_state = READ_ONCE(icp->state);
453 
454 		/* Down_CPPR */
455 		new_state.cppr = new_cppr;
456 
457 		/*
458 		 * Cut down Resend / Check_IPI / IPI
459 		 *
460 		 * The logic is that we cannot have a pending interrupt
461 		 * trumped by an IPI at this point (see above), so we
462 		 * know that either the pending interrupt is already an
463 		 * IPI (in which case we don't care to override it) or
464 		 * it's either more favored than us or non existent
465 		 */
466 		if (new_state.mfrr < new_cppr &&
467 		    new_state.mfrr <= new_state.pending_pri) {
468 			new_state.pending_pri = new_state.mfrr;
469 			new_state.xisr = XICS_IPI;
470 		}
471 
472 		/* Latch/clear resend bit */
473 		resend = new_state.need_resend;
474 		new_state.need_resend = 0;
475 
476 	} while (!icp_rm_try_update(icp, old_state, new_state));
477 
478 	/*
479 	 * Now handle resend checks. Those are asynchronous to the ICP
480 	 * state update in HW (ie bus transactions) so we can handle them
481 	 * separately here as well.
482 	 */
483 	if (resend) {
484 		icp->n_check_resend++;
485 		icp_rm_check_resend(xics, icp);
486 	}
487 }
488 
489 
490 unsigned long xics_rm_h_xirr(struct kvm_vcpu *vcpu)
491 {
492 	union kvmppc_icp_state old_state, new_state;
493 	struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
494 	struct kvmppc_icp *icp = vcpu->arch.icp;
495 	u32 xirr;
496 
497 	if (!xics || !xics->real_mode)
498 		return H_TOO_HARD;
499 
500 	/* First clear the interrupt */
501 	icp_rm_clr_vcpu_irq(icp->vcpu);
502 
503 	/*
504 	 * ICP State: Accept_Interrupt
505 	 *
506 	 * Return the pending interrupt (if any) along with the
507 	 * current CPPR, then clear the XISR & set CPPR to the
508 	 * pending priority
509 	 */
510 	do {
511 		old_state = new_state = READ_ONCE(icp->state);
512 
513 		xirr = old_state.xisr | (((u32)old_state.cppr) << 24);
514 		if (!old_state.xisr)
515 			break;
516 		new_state.cppr = new_state.pending_pri;
517 		new_state.pending_pri = 0xff;
518 		new_state.xisr = 0;
519 
520 	} while (!icp_rm_try_update(icp, old_state, new_state));
521 
522 	/* Return the result in GPR4 */
523 	vcpu->arch.regs.gpr[4] = xirr;
524 
525 	return check_too_hard(xics, icp);
526 }
527 
528 int xics_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
529 		  unsigned long mfrr)
530 {
531 	union kvmppc_icp_state old_state, new_state;
532 	struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
533 	struct kvmppc_icp *icp, *this_icp = vcpu->arch.icp;
534 	u32 reject;
535 	bool resend;
536 	bool local;
537 
538 	if (!xics || !xics->real_mode)
539 		return H_TOO_HARD;
540 
541 	local = this_icp->server_num == server;
542 	if (local)
543 		icp = this_icp;
544 	else
545 		icp = kvmppc_xics_find_server(vcpu->kvm, server);
546 	if (!icp)
547 		return H_PARAMETER;
548 
549 	/*
550 	 * ICP state: Set_MFRR
551 	 *
552 	 * If the CPPR is more favored than the new MFRR, then
553 	 * nothing needs to be done as there can be no XISR to
554 	 * reject.
555 	 *
556 	 * ICP state: Check_IPI
557 	 *
558 	 * If the CPPR is less favored, then we might be replacing
559 	 * an interrupt, and thus need to possibly reject it.
560 	 *
561 	 * ICP State: IPI
562 	 *
563 	 * Besides rejecting any pending interrupts, we also
564 	 * update XISR and pending_pri to mark IPI as pending.
565 	 *
566 	 * PAPR does not describe this state, but if the MFRR is being
567 	 * made less favored than its earlier value, there might be
568 	 * a previously-rejected interrupt needing to be resent.
569 	 * Ideally, we would want to resend only if
570 	 *	prio(pending_interrupt) < mfrr &&
571 	 *	prio(pending_interrupt) < cppr
572 	 * where pending interrupt is the one that was rejected. But
573 	 * we don't have that state, so we simply trigger a resend
574 	 * whenever the MFRR is made less favored.
575 	 */
576 	do {
577 		old_state = new_state = READ_ONCE(icp->state);
578 
579 		/* Set_MFRR */
580 		new_state.mfrr = mfrr;
581 
582 		/* Check_IPI */
583 		reject = 0;
584 		resend = false;
585 		if (mfrr < new_state.cppr) {
586 			/* Reject a pending interrupt if not an IPI */
587 			if (mfrr <= new_state.pending_pri) {
588 				reject = new_state.xisr;
589 				new_state.pending_pri = mfrr;
590 				new_state.xisr = XICS_IPI;
591 			}
592 		}
593 
594 		if (mfrr > old_state.mfrr) {
595 			resend = new_state.need_resend;
596 			new_state.need_resend = 0;
597 		}
598 	} while (!icp_rm_try_update(icp, old_state, new_state));
599 
600 	/* Handle reject in real mode */
601 	if (reject && reject != XICS_IPI) {
602 		this_icp->n_reject++;
603 		icp_rm_deliver_irq(xics, icp, reject, false);
604 	}
605 
606 	/* Handle resends in real mode */
607 	if (resend) {
608 		this_icp->n_check_resend++;
609 		icp_rm_check_resend(xics, icp);
610 	}
611 
612 	return check_too_hard(xics, this_icp);
613 }
614 
615 int xics_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
616 {
617 	union kvmppc_icp_state old_state, new_state;
618 	struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
619 	struct kvmppc_icp *icp = vcpu->arch.icp;
620 	u32 reject;
621 
622 	if (!xics || !xics->real_mode)
623 		return H_TOO_HARD;
624 
625 	/*
626 	 * ICP State: Set_CPPR
627 	 *
628 	 * We can safely compare the new value with the current
629 	 * value outside of the transaction as the CPPR is only
630 	 * ever changed by the processor on itself
631 	 */
632 	if (cppr > icp->state.cppr) {
633 		icp_rm_down_cppr(xics, icp, cppr);
634 		goto bail;
635 	} else if (cppr == icp->state.cppr)
636 		return H_SUCCESS;
637 
638 	/*
639 	 * ICP State: Up_CPPR
640 	 *
641 	 * The processor is raising its priority, this can result
642 	 * in a rejection of a pending interrupt:
643 	 *
644 	 * ICP State: Reject_Current
645 	 *
646 	 * We can remove EE from the current processor, the update
647 	 * transaction will set it again if needed
648 	 */
649 	icp_rm_clr_vcpu_irq(icp->vcpu);
650 
651 	do {
652 		old_state = new_state = READ_ONCE(icp->state);
653 
654 		reject = 0;
655 		new_state.cppr = cppr;
656 
657 		if (cppr <= new_state.pending_pri) {
658 			reject = new_state.xisr;
659 			new_state.xisr = 0;
660 			new_state.pending_pri = 0xff;
661 		}
662 
663 	} while (!icp_rm_try_update(icp, old_state, new_state));
664 
665 	/*
666 	 * Check for rejects. They are handled by doing a new delivery
667 	 * attempt (see comments in icp_rm_deliver_irq).
668 	 */
669 	if (reject && reject != XICS_IPI) {
670 		icp->n_reject++;
671 		icp_rm_deliver_irq(xics, icp, reject, false);
672 	}
673  bail:
674 	return check_too_hard(xics, icp);
675 }
676 
677 static int ics_rm_eoi(struct kvm_vcpu *vcpu, u32 irq)
678 {
679 	struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
680 	struct kvmppc_icp *icp = vcpu->arch.icp;
681 	struct kvmppc_ics *ics;
682 	struct ics_irq_state *state;
683 	u16 src;
684 	u32 pq_old, pq_new;
685 
686 	/*
687 	 * ICS EOI handling: For LSI, if P bit is still set, we need to
688 	 * resend it.
689 	 *
690 	 * For MSI, we move Q bit into P (and clear Q). If it is set,
691 	 * resend it.
692 	 */
693 
694 	ics = kvmppc_xics_find_ics(xics, irq, &src);
695 	if (!ics)
696 		goto bail;
697 
698 	state = &ics->irq_state[src];
699 
700 	if (state->lsi)
701 		pq_new = state->pq_state;
702 	else
703 		do {
704 			pq_old = state->pq_state;
705 			pq_new = pq_old >> 1;
706 		} while (cmpxchg(&state->pq_state, pq_old, pq_new) != pq_old);
707 
708 	if (pq_new & PQ_PRESENTED)
709 		icp_rm_deliver_irq(xics, NULL, irq, false);
710 
711 	if (!hlist_empty(&vcpu->kvm->irq_ack_notifier_list)) {
712 		icp->rm_action |= XICS_RM_NOTIFY_EOI;
713 		icp->rm_eoied_irq = irq;
714 	}
715 
716 	if (state->host_irq) {
717 		++vcpu->stat.pthru_all;
718 		if (state->intr_cpu != -1) {
719 			int pcpu = raw_smp_processor_id();
720 
721 			pcpu = cpu_first_thread_sibling(pcpu);
722 			++vcpu->stat.pthru_host;
723 			if (state->intr_cpu != pcpu) {
724 				++vcpu->stat.pthru_bad_aff;
725 				xics_opal_set_server(state->host_irq, pcpu);
726 			}
727 			state->intr_cpu = -1;
728 		}
729 	}
730 
731  bail:
732 	return check_too_hard(xics, icp);
733 }
734 
735 int xics_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
736 {
737 	struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
738 	struct kvmppc_icp *icp = vcpu->arch.icp;
739 	u32 irq = xirr & 0x00ffffff;
740 
741 	if (!xics || !xics->real_mode)
742 		return H_TOO_HARD;
743 
744 	/*
745 	 * ICP State: EOI
746 	 *
747 	 * Note: If EOI is incorrectly used by SW to lower the CPPR
748 	 * value (ie more favored), we do not check for rejection of
749 	 * a pending interrupt, this is a SW error and PAPR specifies
750 	 * that we don't have to deal with it.
751 	 *
752 	 * The sending of an EOI to the ICS is handled after the
753 	 * CPPR update
754 	 *
755 	 * ICP State: Down_CPPR which we handle
756 	 * in a separate function as it's shared with H_CPPR.
757 	 */
758 	icp_rm_down_cppr(xics, icp, xirr >> 24);
759 
760 	/* IPIs have no EOI */
761 	if (irq == XICS_IPI)
762 		return check_too_hard(xics, icp);
763 
764 	return ics_rm_eoi(vcpu, irq);
765 }
766 
767 static unsigned long eoi_rc;
768 
769 static void icp_eoi(struct irq_chip *c, u32 hwirq, __be32 xirr, bool *again)
770 {
771 	void __iomem *xics_phys;
772 	int64_t rc;
773 
774 	if (kvmhv_on_pseries()) {
775 		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
776 
777 		iosync();
778 		plpar_hcall_raw(H_EOI, retbuf, hwirq);
779 		return;
780 	}
781 
782 	rc = pnv_opal_pci_msi_eoi(c, hwirq);
783 
784 	if (rc)
785 		eoi_rc = rc;
786 
787 	iosync();
788 
789 	/* EOI it */
790 	xics_phys = local_paca->kvm_hstate.xics_phys;
791 	if (xics_phys) {
792 		__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
793 	} else {
794 		rc = opal_int_eoi(be32_to_cpu(xirr));
795 		*again = rc > 0;
796 	}
797 }
798 
799 static int xics_opal_set_server(unsigned int hw_irq, int server_cpu)
800 {
801 	unsigned int mangle_cpu = get_hard_smp_processor_id(server_cpu) << 2;
802 
803 	return opal_set_xive(hw_irq, mangle_cpu, DEFAULT_PRIORITY);
804 }
805 
806 /*
807  * Increment a per-CPU 32-bit unsigned integer variable.
808  * Safe to call in real-mode. Handles vmalloc'ed addresses
809  *
810  * ToDo: Make this work for any integral type
811  */
812 
813 static inline void this_cpu_inc_rm(unsigned int __percpu *addr)
814 {
815 	unsigned long l;
816 	unsigned int *raddr;
817 	int cpu = smp_processor_id();
818 
819 	raddr = per_cpu_ptr(addr, cpu);
820 	l = (unsigned long)raddr;
821 
822 	if (get_region_id(l) == VMALLOC_REGION_ID) {
823 		l = vmalloc_to_phys(raddr);
824 		raddr = (unsigned int *)l;
825 	}
826 	++*raddr;
827 }
828 
829 /*
830  * We don't try to update the flags in the irq_desc 'istate' field in
831  * here as would happen in the normal IRQ handling path for several reasons:
832  *  - state flags represent internal IRQ state and are not expected to be
833  *    updated outside the IRQ subsystem
834  *  - more importantly, these are useful for edge triggered interrupts,
835  *    IRQ probing, etc., but we are only handling MSI/MSIx interrupts here
836  *    and these states shouldn't apply to us.
837  *
838  * However, we do update irq_stats - we somewhat duplicate the code in
839  * kstat_incr_irqs_this_cpu() for this since this function is defined
840  * in irq/internal.h which we don't want to include here.
841  * The only difference is that desc->kstat_irqs is an allocated per CPU
842  * variable and could have been vmalloc'ed, so we can't directly
843  * call __this_cpu_inc() on it. The kstat structure is a static
844  * per CPU variable and it should be accessible by real-mode KVM.
845  *
846  */
847 static void kvmppc_rm_handle_irq_desc(struct irq_desc *desc)
848 {
849 	this_cpu_inc_rm(desc->kstat_irqs);
850 	__this_cpu_inc(kstat.irqs_sum);
851 }
852 
853 long kvmppc_deliver_irq_passthru(struct kvm_vcpu *vcpu,
854 				 __be32 xirr,
855 				 struct kvmppc_irq_map *irq_map,
856 				 struct kvmppc_passthru_irqmap *pimap,
857 				 bool *again)
858 {
859 	struct kvmppc_xics *xics;
860 	struct kvmppc_icp *icp;
861 	struct kvmppc_ics *ics;
862 	struct ics_irq_state *state;
863 	u32 irq;
864 	u16 src;
865 	u32 pq_old, pq_new;
866 
867 	irq = irq_map->v_hwirq;
868 	xics = vcpu->kvm->arch.xics;
869 	icp = vcpu->arch.icp;
870 
871 	kvmppc_rm_handle_irq_desc(irq_map->desc);
872 
873 	ics = kvmppc_xics_find_ics(xics, irq, &src);
874 	if (!ics)
875 		return 2;
876 
877 	state = &ics->irq_state[src];
878 
879 	/* only MSIs register bypass producers, so it must be MSI here */
880 	do {
881 		pq_old = state->pq_state;
882 		pq_new = ((pq_old << 1) & 3) | PQ_PRESENTED;
883 	} while (cmpxchg(&state->pq_state, pq_old, pq_new) != pq_old);
884 
885 	/* Test P=1, Q=0, this is the only case where we present */
886 	if (pq_new == PQ_PRESENTED)
887 		icp_rm_deliver_irq(xics, icp, irq, false);
888 
889 	/* EOI the interrupt */
890 	icp_eoi(irq_desc_get_chip(irq_map->desc), irq_map->r_hwirq, xirr,
891 		again);
892 
893 	if (check_too_hard(xics, icp) == H_TOO_HARD)
894 		return 2;
895 	else
896 		return -2;
897 }
898 
899 /*  --- Non-real mode XICS-related built-in routines ---  */
900 
901 /**
902  * Host Operations poked by RM KVM
903  */
904 static void rm_host_ipi_action(int action, void *data)
905 {
906 	switch (action) {
907 	case XICS_RM_KICK_VCPU:
908 		kvmppc_host_rm_ops_hv->vcpu_kick(data);
909 		break;
910 	default:
911 		WARN(1, "Unexpected rm_action=%d data=%p\n", action, data);
912 		break;
913 	}
914 
915 }
916 
917 void kvmppc_xics_ipi_action(void)
918 {
919 	int core;
920 	unsigned int cpu = smp_processor_id();
921 	struct kvmppc_host_rm_core *rm_corep;
922 
923 	core = cpu >> threads_shift;
924 	rm_corep = &kvmppc_host_rm_ops_hv->rm_core[core];
925 
926 	if (rm_corep->rm_data) {
927 		rm_host_ipi_action(rm_corep->rm_state.rm_action,
928 							rm_corep->rm_data);
929 		/* Order these stores against the real mode KVM */
930 		rm_corep->rm_data = NULL;
931 		smp_wmb();
932 		rm_corep->rm_state.rm_action = 0;
933 	}
934 }
935