xref: /linux/arch/powerpc/kvm/book3s_hv_ras.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <asm/opal.h>
15 #include <asm/mce.h>
16 #include <asm/machdep.h>
17 #include <asm/cputhreads.h>
18 #include <asm/hmi.h>
19 #include <asm/kvm_ppc.h>
20 
21 /* SRR1 bits for machine check on POWER7 */
22 #define SRR1_MC_LDSTERR		(1ul << (63-42))
23 #define SRR1_MC_IFETCH_SH	(63-45)
24 #define SRR1_MC_IFETCH_MASK	0x7
25 #define SRR1_MC_IFETCH_SLBPAR		2	/* SLB parity error */
26 #define SRR1_MC_IFETCH_SLBMULTI		3	/* SLB multi-hit */
27 #define SRR1_MC_IFETCH_SLBPARMULTI	4	/* SLB parity + multi-hit */
28 #define SRR1_MC_IFETCH_TLBMULTI		5	/* I-TLB multi-hit */
29 
30 /* DSISR bits for machine check on POWER7 */
31 #define DSISR_MC_DERAT_MULTI	0x800		/* D-ERAT multi-hit */
32 #define DSISR_MC_TLB_MULTI	0x400		/* D-TLB multi-hit */
33 #define DSISR_MC_SLB_PARITY	0x100		/* SLB parity error */
34 #define DSISR_MC_SLB_MULTI	0x080		/* SLB multi-hit */
35 #define DSISR_MC_SLB_PARMULTI	0x040		/* SLB parity + multi-hit */
36 
37 /* POWER7 SLB flush and reload */
38 static void reload_slb(struct kvm_vcpu *vcpu)
39 {
40 	struct slb_shadow *slb;
41 	unsigned long i, n;
42 
43 	/* First clear out SLB */
44 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
45 
46 	/* Do they have an SLB shadow buffer registered? */
47 	slb = vcpu->arch.slb_shadow.pinned_addr;
48 	if (!slb)
49 		return;
50 
51 	/* Sanity check */
52 	n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
53 	if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
54 		return;
55 
56 	/* Load up the SLB from that */
57 	for (i = 0; i < n; ++i) {
58 		unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
59 		unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
60 
61 		rb = (rb & ~0xFFFul) | i;	/* insert entry number */
62 		asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
63 	}
64 }
65 
66 /*
67  * On POWER7, see if we can handle a machine check that occurred inside
68  * the guest in real mode, without switching to the host partition.
69  *
70  * Returns: 0 => exit guest, 1 => deliver machine check to guest
71  */
72 static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
73 {
74 	unsigned long srr1 = vcpu->arch.shregs.msr;
75 	struct machine_check_event mce_evt;
76 	long handled = 1;
77 
78 	if (srr1 & SRR1_MC_LDSTERR) {
79 		/* error on load/store */
80 		unsigned long dsisr = vcpu->arch.shregs.dsisr;
81 
82 		if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
83 			     DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
84 			/* flush and reload SLB; flushes D-ERAT too */
85 			reload_slb(vcpu);
86 			dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
87 				   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
88 		}
89 		if (dsisr & DSISR_MC_TLB_MULTI) {
90 			if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
91 				cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
92 			dsisr &= ~DSISR_MC_TLB_MULTI;
93 		}
94 		/* Any other errors we don't understand? */
95 		if (dsisr & 0xffffffffUL)
96 			handled = 0;
97 	}
98 
99 	switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
100 	case 0:
101 		break;
102 	case SRR1_MC_IFETCH_SLBPAR:
103 	case SRR1_MC_IFETCH_SLBMULTI:
104 	case SRR1_MC_IFETCH_SLBPARMULTI:
105 		reload_slb(vcpu);
106 		break;
107 	case SRR1_MC_IFETCH_TLBMULTI:
108 		if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
109 			cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
110 		break;
111 	default:
112 		handled = 0;
113 	}
114 
115 	/*
116 	 * See if we have already handled the condition in the linux host.
117 	 * We assume that if the condition is recovered then linux host
118 	 * will have generated an error log event that we will pick
119 	 * up and log later.
120 	 * Don't release mce event now. We will queue up the event so that
121 	 * we can log the MCE event info on host console.
122 	 */
123 	if (!get_mce_event(&mce_evt, MCE_EVENT_DONTRELEASE))
124 		goto out;
125 
126 	if (mce_evt.version == MCE_V1 &&
127 	    (mce_evt.severity == MCE_SEV_NO_ERROR ||
128 	     mce_evt.disposition == MCE_DISPOSITION_RECOVERED))
129 		handled = 1;
130 
131 out:
132 	/*
133 	 * We are now going enter guest either through machine check
134 	 * interrupt (for unhandled errors) or will continue from
135 	 * current HSRR0 (for handled errors) in guest. Hence
136 	 * queue up the event so that we can log it from host console later.
137 	 */
138 	machine_check_queue_event();
139 
140 	return handled;
141 }
142 
143 long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
144 {
145 	return kvmppc_realmode_mc_power7(vcpu);
146 }
147 
148 /* Check if dynamic split is in force and return subcore size accordingly. */
149 static inline int kvmppc_cur_subcore_size(void)
150 {
151 	if (local_paca->kvm_hstate.kvm_split_mode)
152 		return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
153 
154 	return threads_per_subcore;
155 }
156 
157 void kvmppc_subcore_enter_guest(void)
158 {
159 	int thread_id, subcore_id;
160 
161 	thread_id = cpu_thread_in_core(local_paca->paca_index);
162 	subcore_id = thread_id / kvmppc_cur_subcore_size();
163 
164 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
165 }
166 
167 void kvmppc_subcore_exit_guest(void)
168 {
169 	int thread_id, subcore_id;
170 
171 	thread_id = cpu_thread_in_core(local_paca->paca_index);
172 	subcore_id = thread_id / kvmppc_cur_subcore_size();
173 
174 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
175 }
176 
177 static bool kvmppc_tb_resync_required(void)
178 {
179 	if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
180 				&local_paca->sibling_subcore_state->flags))
181 		return false;
182 
183 	return true;
184 }
185 
186 static void kvmppc_tb_resync_done(void)
187 {
188 	clear_bit(CORE_TB_RESYNC_REQ_BIT,
189 			&local_paca->sibling_subcore_state->flags);
190 }
191 
192 /*
193  * kvmppc_realmode_hmi_handler() is called only by primary thread during
194  * guest exit path.
195  *
196  * There are multiple reasons why HMI could occur, one of them is
197  * Timebase (TB) error. If this HMI is due to TB error, then TB would
198  * have been in stopped state. The opal hmi handler Will fix it and
199  * restore the TB value with host timebase value. For HMI caused due
200  * to non-TB errors, opal hmi handler will not touch/restore TB register
201  * and hence there won't be any change in TB value.
202  *
203  * Since we are not sure about the cause of this HMI, we can't be sure
204  * about the content of TB register whether it holds guest or host timebase
205  * value. Hence the idea is to resync the TB on every HMI, so that we
206  * know about the exact state of the TB value. Resync TB call will
207  * restore TB to host timebase.
208  *
209  * Things to consider:
210  * - On TB error, HMI interrupt is reported on all the threads of the core
211  *   that has encountered TB error irrespective of split-core mode.
212  * - The very first thread on the core that get chance to fix TB error
213  *   would rsync the TB with local chipTOD value.
214  * - The resync TB is a core level action i.e. it will sync all the TBs
215  *   in that core independent of split-core mode. This means if we trigger
216  *   TB sync from a thread from one subcore, it would affect TB values of
217  *   sibling subcores of the same core.
218  *
219  * All threads need to co-ordinate before making opal hmi handler.
220  * All threads will use sibling_subcore_state->in_guest[] (shared by all
221  * threads in the core) in paca which holds information about whether
222  * sibling subcores are in Guest mode or host mode. The in_guest[] array
223  * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
224  * subcore status. Only primary threads from each subcore is responsible
225  * to set/unset its designated array element while entering/exiting the
226  * guset.
227  *
228  * After invoking opal hmi handler call, one of the thread (of entire core)
229  * will need to resync the TB. Bit 63 from subcore state bitmap flags
230  * (sibling_subcore_state->flags) will be used to co-ordinate between
231  * primary threads to decide who takes up the responsibility.
232  *
233  * This is what we do:
234  * - Primary thread from each subcore tries to set resync required bit[63]
235  *   of paca->sibling_subcore_state->flags.
236  * - The first primary thread that is able to set the flag takes the
237  *   responsibility of TB resync. (Let us call it as thread leader)
238  * - All other threads which are in host will call
239  *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
240  *   paca->sibling_subcore_state to get cleared.
241  * - All the primary thread will clear its subcore status from subcore
242  *   state in_guest[] array respectively.
243  * - Once all primary threads clear in_guest[0-3], all of them will invoke
244  *   opal hmi handler.
245  * - Now all threads will wait for TB resync to complete by invoking
246  *   wait_for_tb_resync() except the thread leader.
247  * - Thread leader will do a TB resync by invoking opal_resync_timebase()
248  *   call and the it will clear the resync required bit.
249  * - All other threads will now come out of resync wait loop and proceed
250  *   with individual execution.
251  * - On return of this function, primary thread will signal all
252  *   secondary threads to proceed.
253  * - All secondary threads will eventually call opal hmi handler on
254  *   their exit path.
255  */
256 
257 long kvmppc_realmode_hmi_handler(void)
258 {
259 	int ptid = local_paca->kvm_hstate.ptid;
260 	bool resync_req;
261 
262 	/* This is only called on primary thread. */
263 	BUG_ON(ptid != 0);
264 	__this_cpu_inc(irq_stat.hmi_exceptions);
265 
266 	/*
267 	 * By now primary thread has already completed guest->host
268 	 * partition switch but haven't signaled secondaries yet.
269 	 * All the secondary threads on this subcore is waiting
270 	 * for primary thread to signal them to go ahead.
271 	 *
272 	 * For threads from subcore which isn't in guest, they all will
273 	 * wait until all other subcores on this core exit the guest.
274 	 *
275 	 * Now set the resync required bit. If you are the first to
276 	 * set this bit then kvmppc_tb_resync_required() function will
277 	 * return true. For rest all other subcores
278 	 * kvmppc_tb_resync_required() will return false.
279 	 *
280 	 * If resync_req == true, then this thread is responsible to
281 	 * initiate TB resync after hmi handler has completed.
282 	 * All other threads on this core will wait until this thread
283 	 * clears the resync required bit flag.
284 	 */
285 	resync_req = kvmppc_tb_resync_required();
286 
287 	/* Reset the subcore status to indicate it has exited guest */
288 	kvmppc_subcore_exit_guest();
289 
290 	/*
291 	 * Wait for other subcores on this core to exit the guest.
292 	 * All the primary threads and threads from subcore that are
293 	 * not in guest will wait here until all subcores are out
294 	 * of guest context.
295 	 */
296 	wait_for_subcore_guest_exit();
297 
298 	/*
299 	 * At this point we are sure that primary threads from each
300 	 * subcore on this core have completed guest->host partition
301 	 * switch. Now it is safe to call HMI handler.
302 	 */
303 	if (ppc_md.hmi_exception_early)
304 		ppc_md.hmi_exception_early(NULL);
305 
306 	/*
307 	 * Check if this thread is responsible to resync TB.
308 	 * All other threads will wait until this thread completes the
309 	 * TB resync.
310 	 */
311 	if (resync_req) {
312 		opal_resync_timebase();
313 		/* Reset TB resync req bit */
314 		kvmppc_tb_resync_done();
315 	} else {
316 		wait_for_tb_resync();
317 	}
318 	return 0;
319 }
320