xref: /linux/arch/powerpc/kvm/book3s_hv_ras.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <asm/opal.h>
15 #include <asm/mce.h>
16 #include <asm/machdep.h>
17 #include <asm/cputhreads.h>
18 #include <asm/hmi.h>
19 #include <asm/kvm_ppc.h>
20 
21 /* SRR1 bits for machine check on POWER7 */
22 #define SRR1_MC_LDSTERR		(1ul << (63-42))
23 #define SRR1_MC_IFETCH_SH	(63-45)
24 #define SRR1_MC_IFETCH_MASK	0x7
25 #define SRR1_MC_IFETCH_SLBPAR		2	/* SLB parity error */
26 #define SRR1_MC_IFETCH_SLBMULTI		3	/* SLB multi-hit */
27 #define SRR1_MC_IFETCH_SLBPARMULTI	4	/* SLB parity + multi-hit */
28 #define SRR1_MC_IFETCH_TLBMULTI		5	/* I-TLB multi-hit */
29 
30 /* DSISR bits for machine check on POWER7 */
31 #define DSISR_MC_DERAT_MULTI	0x800		/* D-ERAT multi-hit */
32 #define DSISR_MC_TLB_MULTI	0x400		/* D-TLB multi-hit */
33 #define DSISR_MC_SLB_PARITY	0x100		/* SLB parity error */
34 #define DSISR_MC_SLB_MULTI	0x080		/* SLB multi-hit */
35 #define DSISR_MC_SLB_PARMULTI	0x040		/* SLB parity + multi-hit */
36 
37 /* POWER7 SLB flush and reload */
38 static void reload_slb(struct kvm_vcpu *vcpu)
39 {
40 	struct slb_shadow *slb;
41 	unsigned long i, n;
42 
43 	/* First clear out SLB */
44 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
45 
46 	/* Do they have an SLB shadow buffer registered? */
47 	slb = vcpu->arch.slb_shadow.pinned_addr;
48 	if (!slb)
49 		return;
50 
51 	/* Sanity check */
52 	n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
53 	if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
54 		return;
55 
56 	/* Load up the SLB from that */
57 	for (i = 0; i < n; ++i) {
58 		unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
59 		unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
60 
61 		rb = (rb & ~0xFFFul) | i;	/* insert entry number */
62 		asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
63 	}
64 }
65 
66 /*
67  * On POWER7, see if we can handle a machine check that occurred inside
68  * the guest in real mode, without switching to the host partition.
69  *
70  * Returns: 0 => exit guest, 1 => deliver machine check to guest
71  */
72 static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
73 {
74 	unsigned long srr1 = vcpu->arch.shregs.msr;
75 	struct machine_check_event mce_evt;
76 	long handled = 1;
77 
78 	if (srr1 & SRR1_MC_LDSTERR) {
79 		/* error on load/store */
80 		unsigned long dsisr = vcpu->arch.shregs.dsisr;
81 
82 		if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
83 			     DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
84 			/* flush and reload SLB; flushes D-ERAT too */
85 			reload_slb(vcpu);
86 			dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
87 				   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
88 		}
89 		if (dsisr & DSISR_MC_TLB_MULTI) {
90 			tlbiel_all_lpid(vcpu->kvm->arch.radix);
91 			dsisr &= ~DSISR_MC_TLB_MULTI;
92 		}
93 		/* Any other errors we don't understand? */
94 		if (dsisr & 0xffffffffUL)
95 			handled = 0;
96 	}
97 
98 	switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
99 	case 0:
100 		break;
101 	case SRR1_MC_IFETCH_SLBPAR:
102 	case SRR1_MC_IFETCH_SLBMULTI:
103 	case SRR1_MC_IFETCH_SLBPARMULTI:
104 		reload_slb(vcpu);
105 		break;
106 	case SRR1_MC_IFETCH_TLBMULTI:
107 		tlbiel_all_lpid(vcpu->kvm->arch.radix);
108 		break;
109 	default:
110 		handled = 0;
111 	}
112 
113 	/*
114 	 * See if we have already handled the condition in the linux host.
115 	 * We assume that if the condition is recovered then linux host
116 	 * will have generated an error log event that we will pick
117 	 * up and log later.
118 	 * Don't release mce event now. We will queue up the event so that
119 	 * we can log the MCE event info on host console.
120 	 */
121 	if (!get_mce_event(&mce_evt, MCE_EVENT_DONTRELEASE))
122 		goto out;
123 
124 	if (mce_evt.version == MCE_V1 &&
125 	    (mce_evt.severity == MCE_SEV_NO_ERROR ||
126 	     mce_evt.disposition == MCE_DISPOSITION_RECOVERED))
127 		handled = 1;
128 
129 out:
130 	/*
131 	 * For guest that supports FWNMI capability, hook the MCE event into
132 	 * vcpu structure. We are going to exit the guest with KVM_EXIT_NMI
133 	 * exit reason. On our way to exit we will pull this event from vcpu
134 	 * structure and print it from thread 0 of the core/subcore.
135 	 *
136 	 * For guest that does not support FWNMI capability (old QEMU):
137 	 * We are now going enter guest either through machine check
138 	 * interrupt (for unhandled errors) or will continue from
139 	 * current HSRR0 (for handled errors) in guest. Hence
140 	 * queue up the event so that we can log it from host console later.
141 	 */
142 	if (vcpu->kvm->arch.fwnmi_enabled) {
143 		/*
144 		 * Hook up the mce event on to vcpu structure.
145 		 * First clear the old event.
146 		 */
147 		memset(&vcpu->arch.mce_evt, 0, sizeof(vcpu->arch.mce_evt));
148 		if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
149 			vcpu->arch.mce_evt = mce_evt;
150 		}
151 	} else
152 		machine_check_queue_event();
153 
154 	return handled;
155 }
156 
157 long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
158 {
159 	return kvmppc_realmode_mc_power7(vcpu);
160 }
161 
162 /* Check if dynamic split is in force and return subcore size accordingly. */
163 static inline int kvmppc_cur_subcore_size(void)
164 {
165 	if (local_paca->kvm_hstate.kvm_split_mode)
166 		return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
167 
168 	return threads_per_subcore;
169 }
170 
171 void kvmppc_subcore_enter_guest(void)
172 {
173 	int thread_id, subcore_id;
174 
175 	thread_id = cpu_thread_in_core(local_paca->paca_index);
176 	subcore_id = thread_id / kvmppc_cur_subcore_size();
177 
178 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
179 }
180 EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
181 
182 void kvmppc_subcore_exit_guest(void)
183 {
184 	int thread_id, subcore_id;
185 
186 	thread_id = cpu_thread_in_core(local_paca->paca_index);
187 	subcore_id = thread_id / kvmppc_cur_subcore_size();
188 
189 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
190 }
191 EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
192 
193 static bool kvmppc_tb_resync_required(void)
194 {
195 	if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
196 				&local_paca->sibling_subcore_state->flags))
197 		return false;
198 
199 	return true;
200 }
201 
202 static void kvmppc_tb_resync_done(void)
203 {
204 	clear_bit(CORE_TB_RESYNC_REQ_BIT,
205 			&local_paca->sibling_subcore_state->flags);
206 }
207 
208 /*
209  * kvmppc_realmode_hmi_handler() is called only by primary thread during
210  * guest exit path.
211  *
212  * There are multiple reasons why HMI could occur, one of them is
213  * Timebase (TB) error. If this HMI is due to TB error, then TB would
214  * have been in stopped state. The opal hmi handler Will fix it and
215  * restore the TB value with host timebase value. For HMI caused due
216  * to non-TB errors, opal hmi handler will not touch/restore TB register
217  * and hence there won't be any change in TB value.
218  *
219  * Since we are not sure about the cause of this HMI, we can't be sure
220  * about the content of TB register whether it holds guest or host timebase
221  * value. Hence the idea is to resync the TB on every HMI, so that we
222  * know about the exact state of the TB value. Resync TB call will
223  * restore TB to host timebase.
224  *
225  * Things to consider:
226  * - On TB error, HMI interrupt is reported on all the threads of the core
227  *   that has encountered TB error irrespective of split-core mode.
228  * - The very first thread on the core that get chance to fix TB error
229  *   would rsync the TB with local chipTOD value.
230  * - The resync TB is a core level action i.e. it will sync all the TBs
231  *   in that core independent of split-core mode. This means if we trigger
232  *   TB sync from a thread from one subcore, it would affect TB values of
233  *   sibling subcores of the same core.
234  *
235  * All threads need to co-ordinate before making opal hmi handler.
236  * All threads will use sibling_subcore_state->in_guest[] (shared by all
237  * threads in the core) in paca which holds information about whether
238  * sibling subcores are in Guest mode or host mode. The in_guest[] array
239  * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
240  * subcore status. Only primary threads from each subcore is responsible
241  * to set/unset its designated array element while entering/exiting the
242  * guset.
243  *
244  * After invoking opal hmi handler call, one of the thread (of entire core)
245  * will need to resync the TB. Bit 63 from subcore state bitmap flags
246  * (sibling_subcore_state->flags) will be used to co-ordinate between
247  * primary threads to decide who takes up the responsibility.
248  *
249  * This is what we do:
250  * - Primary thread from each subcore tries to set resync required bit[63]
251  *   of paca->sibling_subcore_state->flags.
252  * - The first primary thread that is able to set the flag takes the
253  *   responsibility of TB resync. (Let us call it as thread leader)
254  * - All other threads which are in host will call
255  *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
256  *   paca->sibling_subcore_state to get cleared.
257  * - All the primary thread will clear its subcore status from subcore
258  *   state in_guest[] array respectively.
259  * - Once all primary threads clear in_guest[0-3], all of them will invoke
260  *   opal hmi handler.
261  * - Now all threads will wait for TB resync to complete by invoking
262  *   wait_for_tb_resync() except the thread leader.
263  * - Thread leader will do a TB resync by invoking opal_resync_timebase()
264  *   call and the it will clear the resync required bit.
265  * - All other threads will now come out of resync wait loop and proceed
266  *   with individual execution.
267  * - On return of this function, primary thread will signal all
268  *   secondary threads to proceed.
269  * - All secondary threads will eventually call opal hmi handler on
270  *   their exit path.
271  *
272  * Returns 1 if the timebase offset should be applied, 0 if not.
273  */
274 
275 long kvmppc_realmode_hmi_handler(void)
276 {
277 	bool resync_req;
278 
279 	__this_cpu_inc(irq_stat.hmi_exceptions);
280 
281 	if (hmi_handle_debugtrig(NULL) >= 0)
282 		return 1;
283 
284 	/*
285 	 * By now primary thread has already completed guest->host
286 	 * partition switch but haven't signaled secondaries yet.
287 	 * All the secondary threads on this subcore is waiting
288 	 * for primary thread to signal them to go ahead.
289 	 *
290 	 * For threads from subcore which isn't in guest, they all will
291 	 * wait until all other subcores on this core exit the guest.
292 	 *
293 	 * Now set the resync required bit. If you are the first to
294 	 * set this bit then kvmppc_tb_resync_required() function will
295 	 * return true. For rest all other subcores
296 	 * kvmppc_tb_resync_required() will return false.
297 	 *
298 	 * If resync_req == true, then this thread is responsible to
299 	 * initiate TB resync after hmi handler has completed.
300 	 * All other threads on this core will wait until this thread
301 	 * clears the resync required bit flag.
302 	 */
303 	resync_req = kvmppc_tb_resync_required();
304 
305 	/* Reset the subcore status to indicate it has exited guest */
306 	kvmppc_subcore_exit_guest();
307 
308 	/*
309 	 * Wait for other subcores on this core to exit the guest.
310 	 * All the primary threads and threads from subcore that are
311 	 * not in guest will wait here until all subcores are out
312 	 * of guest context.
313 	 */
314 	wait_for_subcore_guest_exit();
315 
316 	/*
317 	 * At this point we are sure that primary threads from each
318 	 * subcore on this core have completed guest->host partition
319 	 * switch. Now it is safe to call HMI handler.
320 	 */
321 	if (ppc_md.hmi_exception_early)
322 		ppc_md.hmi_exception_early(NULL);
323 
324 	/*
325 	 * Check if this thread is responsible to resync TB.
326 	 * All other threads will wait until this thread completes the
327 	 * TB resync.
328 	 */
329 	if (resync_req) {
330 		opal_resync_timebase();
331 		/* Reset TB resync req bit */
332 		kvmppc_tb_resync_done();
333 	} else {
334 		wait_for_tb_resync();
335 	}
336 
337 	/*
338 	 * Reset tb_offset_applied so the guest exit code won't try
339 	 * to subtract the previous timebase offset from the timebase.
340 	 */
341 	if (local_paca->kvm_hstate.kvm_vcore)
342 		local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
343 
344 	return 0;
345 }
346