1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7 #include <linux/types.h> 8 #include <linux/string.h> 9 #include <linux/kvm.h> 10 #include <linux/kvm_host.h> 11 #include <linux/kernel.h> 12 #include <asm/lppaca.h> 13 #include <asm/opal.h> 14 #include <asm/mce.h> 15 #include <asm/machdep.h> 16 #include <asm/cputhreads.h> 17 #include <asm/hmi.h> 18 #include <asm/kvm_ppc.h> 19 20 /* SRR1 bits for machine check on POWER7 */ 21 #define SRR1_MC_LDSTERR (1ul << (63-42)) 22 #define SRR1_MC_IFETCH_SH (63-45) 23 #define SRR1_MC_IFETCH_MASK 0x7 24 #define SRR1_MC_IFETCH_SLBPAR 2 /* SLB parity error */ 25 #define SRR1_MC_IFETCH_SLBMULTI 3 /* SLB multi-hit */ 26 #define SRR1_MC_IFETCH_SLBPARMULTI 4 /* SLB parity + multi-hit */ 27 #define SRR1_MC_IFETCH_TLBMULTI 5 /* I-TLB multi-hit */ 28 29 /* DSISR bits for machine check on POWER7 */ 30 #define DSISR_MC_DERAT_MULTI 0x800 /* D-ERAT multi-hit */ 31 #define DSISR_MC_TLB_MULTI 0x400 /* D-TLB multi-hit */ 32 #define DSISR_MC_SLB_PARITY 0x100 /* SLB parity error */ 33 #define DSISR_MC_SLB_MULTI 0x080 /* SLB multi-hit */ 34 #define DSISR_MC_SLB_PARMULTI 0x040 /* SLB parity + multi-hit */ 35 36 /* POWER7 SLB flush and reload */ 37 static void reload_slb(struct kvm_vcpu *vcpu) 38 { 39 struct slb_shadow *slb; 40 unsigned long i, n; 41 42 /* First clear out SLB */ 43 asm volatile("slbmte %0,%0; slbia" : : "r" (0)); 44 45 /* Do they have an SLB shadow buffer registered? */ 46 slb = vcpu->arch.slb_shadow.pinned_addr; 47 if (!slb) 48 return; 49 50 /* Sanity check */ 51 n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE); 52 if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end) 53 return; 54 55 /* Load up the SLB from that */ 56 for (i = 0; i < n; ++i) { 57 unsigned long rb = be64_to_cpu(slb->save_area[i].esid); 58 unsigned long rs = be64_to_cpu(slb->save_area[i].vsid); 59 60 rb = (rb & ~0xFFFul) | i; /* insert entry number */ 61 asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb)); 62 } 63 } 64 65 /* 66 * On POWER7, see if we can handle a machine check that occurred inside 67 * the guest in real mode, without switching to the host partition. 68 */ 69 static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu) 70 { 71 unsigned long srr1 = vcpu->arch.shregs.msr; 72 long handled = 1; 73 74 if (srr1 & SRR1_MC_LDSTERR) { 75 /* error on load/store */ 76 unsigned long dsisr = vcpu->arch.shregs.dsisr; 77 78 if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI | 79 DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) { 80 /* flush and reload SLB; flushes D-ERAT too */ 81 reload_slb(vcpu); 82 dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI | 83 DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI); 84 } 85 if (dsisr & DSISR_MC_TLB_MULTI) { 86 tlbiel_all_lpid(vcpu->kvm->arch.radix); 87 dsisr &= ~DSISR_MC_TLB_MULTI; 88 } 89 /* Any other errors we don't understand? */ 90 if (dsisr & 0xffffffffUL) 91 handled = 0; 92 } 93 94 switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) { 95 case 0: 96 break; 97 case SRR1_MC_IFETCH_SLBPAR: 98 case SRR1_MC_IFETCH_SLBMULTI: 99 case SRR1_MC_IFETCH_SLBPARMULTI: 100 reload_slb(vcpu); 101 break; 102 case SRR1_MC_IFETCH_TLBMULTI: 103 tlbiel_all_lpid(vcpu->kvm->arch.radix); 104 break; 105 default: 106 handled = 0; 107 } 108 109 return handled; 110 } 111 112 void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu) 113 { 114 struct machine_check_event mce_evt; 115 long handled; 116 117 if (vcpu->kvm->arch.fwnmi_enabled) { 118 /* FWNMI guests handle their own recovery */ 119 handled = 0; 120 } else { 121 handled = kvmppc_realmode_mc_power7(vcpu); 122 } 123 124 /* 125 * Now get the event and stash it in the vcpu struct so it can 126 * be handled by the primary thread in virtual mode. We can't 127 * call machine_check_queue_event() here if we are running on 128 * an offline secondary thread. 129 */ 130 if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) { 131 if (handled && mce_evt.version == MCE_V1) 132 mce_evt.disposition = MCE_DISPOSITION_RECOVERED; 133 } else { 134 memset(&mce_evt, 0, sizeof(mce_evt)); 135 } 136 137 vcpu->arch.mce_evt = mce_evt; 138 } 139 140 141 long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu) 142 { 143 struct kvmppc_vcore *vc = vcpu->arch.vcore; 144 long ret = 0; 145 146 /* 147 * Unapply and clear the offset first. That way, if the TB was not 148 * resynced then it will remain in host-offset, and if it was resynced 149 * then it is brought into host-offset. Then the tb offset is 150 * re-applied before continuing with the KVM exit. 151 * 152 * This way, we don't need to actually know whether not OPAL resynced 153 * the timebase or do any of the complicated dance that the P7/8 154 * path requires. 155 */ 156 if (vc->tb_offset_applied) { 157 u64 new_tb = mftb() - vc->tb_offset_applied; 158 mtspr(SPRN_TBU40, new_tb); 159 if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) { 160 new_tb += 0x1000000; 161 mtspr(SPRN_TBU40, new_tb); 162 } 163 vc->tb_offset_applied = 0; 164 } 165 166 local_paca->hmi_irqs++; 167 168 if (hmi_handle_debugtrig(NULL) >= 0) { 169 ret = 1; 170 goto out; 171 } 172 173 if (ppc_md.hmi_exception_early) 174 ppc_md.hmi_exception_early(NULL); 175 176 out: 177 if (kvmppc_get_tb_offset(vcpu)) { 178 u64 new_tb = mftb() + vc->tb_offset; 179 mtspr(SPRN_TBU40, new_tb); 180 if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) { 181 new_tb += 0x1000000; 182 mtspr(SPRN_TBU40, new_tb); 183 } 184 vc->tb_offset_applied = kvmppc_get_tb_offset(vcpu); 185 } 186 187 return ret; 188 } 189 190 /* 191 * The following subcore HMI handling is all only for pre-POWER9 CPUs. 192 */ 193 194 /* Check if dynamic split is in force and return subcore size accordingly. */ 195 static inline int kvmppc_cur_subcore_size(void) 196 { 197 if (local_paca->kvm_hstate.kvm_split_mode) 198 return local_paca->kvm_hstate.kvm_split_mode->subcore_size; 199 200 return threads_per_subcore; 201 } 202 203 void kvmppc_subcore_enter_guest(void) 204 { 205 int thread_id, subcore_id; 206 207 thread_id = cpu_thread_in_core(local_paca->paca_index); 208 subcore_id = thread_id / kvmppc_cur_subcore_size(); 209 210 local_paca->sibling_subcore_state->in_guest[subcore_id] = 1; 211 } 212 EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest); 213 214 void kvmppc_subcore_exit_guest(void) 215 { 216 int thread_id, subcore_id; 217 218 thread_id = cpu_thread_in_core(local_paca->paca_index); 219 subcore_id = thread_id / kvmppc_cur_subcore_size(); 220 221 local_paca->sibling_subcore_state->in_guest[subcore_id] = 0; 222 } 223 EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest); 224 225 static bool kvmppc_tb_resync_required(void) 226 { 227 if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT, 228 &local_paca->sibling_subcore_state->flags)) 229 return false; 230 231 return true; 232 } 233 234 static void kvmppc_tb_resync_done(void) 235 { 236 clear_bit(CORE_TB_RESYNC_REQ_BIT, 237 &local_paca->sibling_subcore_state->flags); 238 } 239 240 /* 241 * kvmppc_realmode_hmi_handler() is called only by primary thread during 242 * guest exit path. 243 * 244 * There are multiple reasons why HMI could occur, one of them is 245 * Timebase (TB) error. If this HMI is due to TB error, then TB would 246 * have been in stopped state. The opal hmi handler Will fix it and 247 * restore the TB value with host timebase value. For HMI caused due 248 * to non-TB errors, opal hmi handler will not touch/restore TB register 249 * and hence there won't be any change in TB value. 250 * 251 * Since we are not sure about the cause of this HMI, we can't be sure 252 * about the content of TB register whether it holds guest or host timebase 253 * value. Hence the idea is to resync the TB on every HMI, so that we 254 * know about the exact state of the TB value. Resync TB call will 255 * restore TB to host timebase. 256 * 257 * Things to consider: 258 * - On TB error, HMI interrupt is reported on all the threads of the core 259 * that has encountered TB error irrespective of split-core mode. 260 * - The very first thread on the core that get chance to fix TB error 261 * would rsync the TB with local chipTOD value. 262 * - The resync TB is a core level action i.e. it will sync all the TBs 263 * in that core independent of split-core mode. This means if we trigger 264 * TB sync from a thread from one subcore, it would affect TB values of 265 * sibling subcores of the same core. 266 * 267 * All threads need to co-ordinate before making opal hmi handler. 268 * All threads will use sibling_subcore_state->in_guest[] (shared by all 269 * threads in the core) in paca which holds information about whether 270 * sibling subcores are in Guest mode or host mode. The in_guest[] array 271 * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset 272 * subcore status. Only primary threads from each subcore is responsible 273 * to set/unset its designated array element while entering/exiting the 274 * guset. 275 * 276 * After invoking opal hmi handler call, one of the thread (of entire core) 277 * will need to resync the TB. Bit 63 from subcore state bitmap flags 278 * (sibling_subcore_state->flags) will be used to co-ordinate between 279 * primary threads to decide who takes up the responsibility. 280 * 281 * This is what we do: 282 * - Primary thread from each subcore tries to set resync required bit[63] 283 * of paca->sibling_subcore_state->flags. 284 * - The first primary thread that is able to set the flag takes the 285 * responsibility of TB resync. (Let us call it as thread leader) 286 * - All other threads which are in host will call 287 * wait_for_subcore_guest_exit() and wait for in_guest[0-3] from 288 * paca->sibling_subcore_state to get cleared. 289 * - All the primary thread will clear its subcore status from subcore 290 * state in_guest[] array respectively. 291 * - Once all primary threads clear in_guest[0-3], all of them will invoke 292 * opal hmi handler. 293 * - Now all threads will wait for TB resync to complete by invoking 294 * wait_for_tb_resync() except the thread leader. 295 * - Thread leader will do a TB resync by invoking opal_resync_timebase() 296 * call and the it will clear the resync required bit. 297 * - All other threads will now come out of resync wait loop and proceed 298 * with individual execution. 299 * - On return of this function, primary thread will signal all 300 * secondary threads to proceed. 301 * - All secondary threads will eventually call opal hmi handler on 302 * their exit path. 303 * 304 * Returns 1 if the timebase offset should be applied, 0 if not. 305 */ 306 307 long kvmppc_realmode_hmi_handler(void) 308 { 309 bool resync_req; 310 311 local_paca->hmi_irqs++; 312 313 if (hmi_handle_debugtrig(NULL) >= 0) 314 return 1; 315 316 /* 317 * By now primary thread has already completed guest->host 318 * partition switch but haven't signaled secondaries yet. 319 * All the secondary threads on this subcore is waiting 320 * for primary thread to signal them to go ahead. 321 * 322 * For threads from subcore which isn't in guest, they all will 323 * wait until all other subcores on this core exit the guest. 324 * 325 * Now set the resync required bit. If you are the first to 326 * set this bit then kvmppc_tb_resync_required() function will 327 * return true. For rest all other subcores 328 * kvmppc_tb_resync_required() will return false. 329 * 330 * If resync_req == true, then this thread is responsible to 331 * initiate TB resync after hmi handler has completed. 332 * All other threads on this core will wait until this thread 333 * clears the resync required bit flag. 334 */ 335 resync_req = kvmppc_tb_resync_required(); 336 337 /* Reset the subcore status to indicate it has exited guest */ 338 kvmppc_subcore_exit_guest(); 339 340 /* 341 * Wait for other subcores on this core to exit the guest. 342 * All the primary threads and threads from subcore that are 343 * not in guest will wait here until all subcores are out 344 * of guest context. 345 */ 346 wait_for_subcore_guest_exit(); 347 348 /* 349 * At this point we are sure that primary threads from each 350 * subcore on this core have completed guest->host partition 351 * switch. Now it is safe to call HMI handler. 352 */ 353 if (ppc_md.hmi_exception_early) 354 ppc_md.hmi_exception_early(NULL); 355 356 /* 357 * Check if this thread is responsible to resync TB. 358 * All other threads will wait until this thread completes the 359 * TB resync. 360 */ 361 if (resync_req) { 362 opal_resync_timebase(); 363 /* Reset TB resync req bit */ 364 kvmppc_tb_resync_done(); 365 } else { 366 wait_for_tb_resync(); 367 } 368 369 /* 370 * Reset tb_offset_applied so the guest exit code won't try 371 * to subtract the previous timebase offset from the timebase. 372 */ 373 if (local_paca->kvm_hstate.kvm_vcore) 374 local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0; 375 376 return 0; 377 } 378