xref: /linux/arch/powerpc/kvm/book3s_hv_ras.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <asm/opal.h>
15 #include <asm/mce.h>
16 #include <asm/machdep.h>
17 #include <asm/cputhreads.h>
18 #include <asm/hmi.h>
19 #include <asm/kvm_ppc.h>
20 
21 /* SRR1 bits for machine check on POWER7 */
22 #define SRR1_MC_LDSTERR		(1ul << (63-42))
23 #define SRR1_MC_IFETCH_SH	(63-45)
24 #define SRR1_MC_IFETCH_MASK	0x7
25 #define SRR1_MC_IFETCH_SLBPAR		2	/* SLB parity error */
26 #define SRR1_MC_IFETCH_SLBMULTI		3	/* SLB multi-hit */
27 #define SRR1_MC_IFETCH_SLBPARMULTI	4	/* SLB parity + multi-hit */
28 #define SRR1_MC_IFETCH_TLBMULTI		5	/* I-TLB multi-hit */
29 
30 /* DSISR bits for machine check on POWER7 */
31 #define DSISR_MC_DERAT_MULTI	0x800		/* D-ERAT multi-hit */
32 #define DSISR_MC_TLB_MULTI	0x400		/* D-TLB multi-hit */
33 #define DSISR_MC_SLB_PARITY	0x100		/* SLB parity error */
34 #define DSISR_MC_SLB_MULTI	0x080		/* SLB multi-hit */
35 #define DSISR_MC_SLB_PARMULTI	0x040		/* SLB parity + multi-hit */
36 
37 /* POWER7 SLB flush and reload */
38 static void reload_slb(struct kvm_vcpu *vcpu)
39 {
40 	struct slb_shadow *slb;
41 	unsigned long i, n;
42 
43 	/* First clear out SLB */
44 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
45 
46 	/* Do they have an SLB shadow buffer registered? */
47 	slb = vcpu->arch.slb_shadow.pinned_addr;
48 	if (!slb)
49 		return;
50 
51 	/* Sanity check */
52 	n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
53 	if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
54 		return;
55 
56 	/* Load up the SLB from that */
57 	for (i = 0; i < n; ++i) {
58 		unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
59 		unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
60 
61 		rb = (rb & ~0xFFFul) | i;	/* insert entry number */
62 		asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
63 	}
64 }
65 
66 /*
67  * On POWER7, see if we can handle a machine check that occurred inside
68  * the guest in real mode, without switching to the host partition.
69  */
70 static void kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
71 {
72 	unsigned long srr1 = vcpu->arch.shregs.msr;
73 	struct machine_check_event mce_evt;
74 	long handled = 1;
75 
76 	if (srr1 & SRR1_MC_LDSTERR) {
77 		/* error on load/store */
78 		unsigned long dsisr = vcpu->arch.shregs.dsisr;
79 
80 		if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
81 			     DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
82 			/* flush and reload SLB; flushes D-ERAT too */
83 			reload_slb(vcpu);
84 			dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
85 				   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
86 		}
87 		if (dsisr & DSISR_MC_TLB_MULTI) {
88 			tlbiel_all_lpid(vcpu->kvm->arch.radix);
89 			dsisr &= ~DSISR_MC_TLB_MULTI;
90 		}
91 		/* Any other errors we don't understand? */
92 		if (dsisr & 0xffffffffUL)
93 			handled = 0;
94 	}
95 
96 	switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
97 	case 0:
98 		break;
99 	case SRR1_MC_IFETCH_SLBPAR:
100 	case SRR1_MC_IFETCH_SLBMULTI:
101 	case SRR1_MC_IFETCH_SLBPARMULTI:
102 		reload_slb(vcpu);
103 		break;
104 	case SRR1_MC_IFETCH_TLBMULTI:
105 		tlbiel_all_lpid(vcpu->kvm->arch.radix);
106 		break;
107 	default:
108 		handled = 0;
109 	}
110 
111 	/*
112 	 * Now get the event and stash it in the vcpu struct so it can
113 	 * be handled by the primary thread in virtual mode.  We can't
114 	 * call machine_check_queue_event() here if we are running on
115 	 * an offline secondary thread.
116 	 */
117 	if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
118 		if (handled && mce_evt.version == MCE_V1)
119 			mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
120 	} else {
121 		memset(&mce_evt, 0, sizeof(mce_evt));
122 	}
123 
124 	vcpu->arch.mce_evt = mce_evt;
125 }
126 
127 void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
128 {
129 	kvmppc_realmode_mc_power7(vcpu);
130 }
131 
132 /* Check if dynamic split is in force and return subcore size accordingly. */
133 static inline int kvmppc_cur_subcore_size(void)
134 {
135 	if (local_paca->kvm_hstate.kvm_split_mode)
136 		return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
137 
138 	return threads_per_subcore;
139 }
140 
141 void kvmppc_subcore_enter_guest(void)
142 {
143 	int thread_id, subcore_id;
144 
145 	thread_id = cpu_thread_in_core(local_paca->paca_index);
146 	subcore_id = thread_id / kvmppc_cur_subcore_size();
147 
148 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
149 }
150 EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
151 
152 void kvmppc_subcore_exit_guest(void)
153 {
154 	int thread_id, subcore_id;
155 
156 	thread_id = cpu_thread_in_core(local_paca->paca_index);
157 	subcore_id = thread_id / kvmppc_cur_subcore_size();
158 
159 	local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
160 }
161 EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
162 
163 static bool kvmppc_tb_resync_required(void)
164 {
165 	if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
166 				&local_paca->sibling_subcore_state->flags))
167 		return false;
168 
169 	return true;
170 }
171 
172 static void kvmppc_tb_resync_done(void)
173 {
174 	clear_bit(CORE_TB_RESYNC_REQ_BIT,
175 			&local_paca->sibling_subcore_state->flags);
176 }
177 
178 /*
179  * kvmppc_realmode_hmi_handler() is called only by primary thread during
180  * guest exit path.
181  *
182  * There are multiple reasons why HMI could occur, one of them is
183  * Timebase (TB) error. If this HMI is due to TB error, then TB would
184  * have been in stopped state. The opal hmi handler Will fix it and
185  * restore the TB value with host timebase value. For HMI caused due
186  * to non-TB errors, opal hmi handler will not touch/restore TB register
187  * and hence there won't be any change in TB value.
188  *
189  * Since we are not sure about the cause of this HMI, we can't be sure
190  * about the content of TB register whether it holds guest or host timebase
191  * value. Hence the idea is to resync the TB on every HMI, so that we
192  * know about the exact state of the TB value. Resync TB call will
193  * restore TB to host timebase.
194  *
195  * Things to consider:
196  * - On TB error, HMI interrupt is reported on all the threads of the core
197  *   that has encountered TB error irrespective of split-core mode.
198  * - The very first thread on the core that get chance to fix TB error
199  *   would rsync the TB with local chipTOD value.
200  * - The resync TB is a core level action i.e. it will sync all the TBs
201  *   in that core independent of split-core mode. This means if we trigger
202  *   TB sync from a thread from one subcore, it would affect TB values of
203  *   sibling subcores of the same core.
204  *
205  * All threads need to co-ordinate before making opal hmi handler.
206  * All threads will use sibling_subcore_state->in_guest[] (shared by all
207  * threads in the core) in paca which holds information about whether
208  * sibling subcores are in Guest mode or host mode. The in_guest[] array
209  * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
210  * subcore status. Only primary threads from each subcore is responsible
211  * to set/unset its designated array element while entering/exiting the
212  * guset.
213  *
214  * After invoking opal hmi handler call, one of the thread (of entire core)
215  * will need to resync the TB. Bit 63 from subcore state bitmap flags
216  * (sibling_subcore_state->flags) will be used to co-ordinate between
217  * primary threads to decide who takes up the responsibility.
218  *
219  * This is what we do:
220  * - Primary thread from each subcore tries to set resync required bit[63]
221  *   of paca->sibling_subcore_state->flags.
222  * - The first primary thread that is able to set the flag takes the
223  *   responsibility of TB resync. (Let us call it as thread leader)
224  * - All other threads which are in host will call
225  *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
226  *   paca->sibling_subcore_state to get cleared.
227  * - All the primary thread will clear its subcore status from subcore
228  *   state in_guest[] array respectively.
229  * - Once all primary threads clear in_guest[0-3], all of them will invoke
230  *   opal hmi handler.
231  * - Now all threads will wait for TB resync to complete by invoking
232  *   wait_for_tb_resync() except the thread leader.
233  * - Thread leader will do a TB resync by invoking opal_resync_timebase()
234  *   call and the it will clear the resync required bit.
235  * - All other threads will now come out of resync wait loop and proceed
236  *   with individual execution.
237  * - On return of this function, primary thread will signal all
238  *   secondary threads to proceed.
239  * - All secondary threads will eventually call opal hmi handler on
240  *   their exit path.
241  *
242  * Returns 1 if the timebase offset should be applied, 0 if not.
243  */
244 
245 long kvmppc_realmode_hmi_handler(void)
246 {
247 	bool resync_req;
248 
249 	__this_cpu_inc(irq_stat.hmi_exceptions);
250 
251 	if (hmi_handle_debugtrig(NULL) >= 0)
252 		return 1;
253 
254 	/*
255 	 * By now primary thread has already completed guest->host
256 	 * partition switch but haven't signaled secondaries yet.
257 	 * All the secondary threads on this subcore is waiting
258 	 * for primary thread to signal them to go ahead.
259 	 *
260 	 * For threads from subcore which isn't in guest, they all will
261 	 * wait until all other subcores on this core exit the guest.
262 	 *
263 	 * Now set the resync required bit. If you are the first to
264 	 * set this bit then kvmppc_tb_resync_required() function will
265 	 * return true. For rest all other subcores
266 	 * kvmppc_tb_resync_required() will return false.
267 	 *
268 	 * If resync_req == true, then this thread is responsible to
269 	 * initiate TB resync after hmi handler has completed.
270 	 * All other threads on this core will wait until this thread
271 	 * clears the resync required bit flag.
272 	 */
273 	resync_req = kvmppc_tb_resync_required();
274 
275 	/* Reset the subcore status to indicate it has exited guest */
276 	kvmppc_subcore_exit_guest();
277 
278 	/*
279 	 * Wait for other subcores on this core to exit the guest.
280 	 * All the primary threads and threads from subcore that are
281 	 * not in guest will wait here until all subcores are out
282 	 * of guest context.
283 	 */
284 	wait_for_subcore_guest_exit();
285 
286 	/*
287 	 * At this point we are sure that primary threads from each
288 	 * subcore on this core have completed guest->host partition
289 	 * switch. Now it is safe to call HMI handler.
290 	 */
291 	if (ppc_md.hmi_exception_early)
292 		ppc_md.hmi_exception_early(NULL);
293 
294 	/*
295 	 * Check if this thread is responsible to resync TB.
296 	 * All other threads will wait until this thread completes the
297 	 * TB resync.
298 	 */
299 	if (resync_req) {
300 		opal_resync_timebase();
301 		/* Reset TB resync req bit */
302 		kvmppc_tb_resync_done();
303 	} else {
304 		wait_for_tb_resync();
305 	}
306 
307 	/*
308 	 * Reset tb_offset_applied so the guest exit code won't try
309 	 * to subtract the previous timebase offset from the timebase.
310 	 */
311 	if (local_paca->kvm_hstate.kvm_vcore)
312 		local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
313 
314 	return 0;
315 }
316