1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corporation, 2018 4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com> 5 * Paul Mackerras <paulus@ozlabs.org> 6 * 7 * Description: KVM functions specific to running nested KVM-HV guests 8 * on Book3S processors (specifically POWER9 and later). 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/llist.h> 14 #include <linux/pgtable.h> 15 16 #include <asm/kvm_ppc.h> 17 #include <asm/kvm_book3s.h> 18 #include <asm/mmu.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 #include <asm/reg.h> 22 #include <asm/plpar_wrappers.h> 23 #include <asm/firmware.h> 24 25 static struct patb_entry *pseries_partition_tb; 26 27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp); 28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free); 29 30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 31 { 32 struct kvmppc_vcore *vc = vcpu->arch.vcore; 33 34 hr->pcr = vc->pcr | PCR_MASK; 35 hr->dpdes = vc->dpdes; 36 hr->hfscr = vcpu->arch.hfscr; 37 hr->tb_offset = vc->tb_offset; 38 hr->dawr0 = vcpu->arch.dawr0; 39 hr->dawrx0 = vcpu->arch.dawrx0; 40 hr->ciabr = vcpu->arch.ciabr; 41 hr->purr = vcpu->arch.purr; 42 hr->spurr = vcpu->arch.spurr; 43 hr->ic = vcpu->arch.ic; 44 hr->vtb = vc->vtb; 45 hr->srr0 = vcpu->arch.shregs.srr0; 46 hr->srr1 = vcpu->arch.shregs.srr1; 47 hr->sprg[0] = vcpu->arch.shregs.sprg0; 48 hr->sprg[1] = vcpu->arch.shregs.sprg1; 49 hr->sprg[2] = vcpu->arch.shregs.sprg2; 50 hr->sprg[3] = vcpu->arch.shregs.sprg3; 51 hr->pidr = vcpu->arch.pid; 52 hr->cfar = vcpu->arch.cfar; 53 hr->ppr = vcpu->arch.ppr; 54 hr->dawr1 = vcpu->arch.dawr1; 55 hr->dawrx1 = vcpu->arch.dawrx1; 56 } 57 58 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */ 59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs) 60 { 61 unsigned long *addr = (unsigned long *) regs; 62 63 for (; addr < ((unsigned long *) (regs + 1)); addr++) 64 *addr = swab64(*addr); 65 } 66 67 static void byteswap_hv_regs(struct hv_guest_state *hr) 68 { 69 hr->version = swab64(hr->version); 70 hr->lpid = swab32(hr->lpid); 71 hr->vcpu_token = swab32(hr->vcpu_token); 72 hr->lpcr = swab64(hr->lpcr); 73 hr->pcr = swab64(hr->pcr) | PCR_MASK; 74 hr->amor = swab64(hr->amor); 75 hr->dpdes = swab64(hr->dpdes); 76 hr->hfscr = swab64(hr->hfscr); 77 hr->tb_offset = swab64(hr->tb_offset); 78 hr->dawr0 = swab64(hr->dawr0); 79 hr->dawrx0 = swab64(hr->dawrx0); 80 hr->ciabr = swab64(hr->ciabr); 81 hr->hdec_expiry = swab64(hr->hdec_expiry); 82 hr->purr = swab64(hr->purr); 83 hr->spurr = swab64(hr->spurr); 84 hr->ic = swab64(hr->ic); 85 hr->vtb = swab64(hr->vtb); 86 hr->hdar = swab64(hr->hdar); 87 hr->hdsisr = swab64(hr->hdsisr); 88 hr->heir = swab64(hr->heir); 89 hr->asdr = swab64(hr->asdr); 90 hr->srr0 = swab64(hr->srr0); 91 hr->srr1 = swab64(hr->srr1); 92 hr->sprg[0] = swab64(hr->sprg[0]); 93 hr->sprg[1] = swab64(hr->sprg[1]); 94 hr->sprg[2] = swab64(hr->sprg[2]); 95 hr->sprg[3] = swab64(hr->sprg[3]); 96 hr->pidr = swab64(hr->pidr); 97 hr->cfar = swab64(hr->cfar); 98 hr->ppr = swab64(hr->ppr); 99 hr->dawr1 = swab64(hr->dawr1); 100 hr->dawrx1 = swab64(hr->dawrx1); 101 } 102 103 static void save_hv_return_state(struct kvm_vcpu *vcpu, 104 struct hv_guest_state *hr) 105 { 106 struct kvmppc_vcore *vc = vcpu->arch.vcore; 107 108 hr->dpdes = vc->dpdes; 109 hr->purr = vcpu->arch.purr; 110 hr->spurr = vcpu->arch.spurr; 111 hr->ic = vcpu->arch.ic; 112 hr->vtb = vc->vtb; 113 hr->srr0 = vcpu->arch.shregs.srr0; 114 hr->srr1 = vcpu->arch.shregs.srr1; 115 hr->sprg[0] = vcpu->arch.shregs.sprg0; 116 hr->sprg[1] = vcpu->arch.shregs.sprg1; 117 hr->sprg[2] = vcpu->arch.shregs.sprg2; 118 hr->sprg[3] = vcpu->arch.shregs.sprg3; 119 hr->pidr = vcpu->arch.pid; 120 hr->cfar = vcpu->arch.cfar; 121 hr->ppr = vcpu->arch.ppr; 122 switch (vcpu->arch.trap) { 123 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 124 hr->hdar = vcpu->arch.fault_dar; 125 hr->hdsisr = vcpu->arch.fault_dsisr; 126 hr->asdr = vcpu->arch.fault_gpa; 127 break; 128 case BOOK3S_INTERRUPT_H_INST_STORAGE: 129 hr->asdr = vcpu->arch.fault_gpa; 130 break; 131 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 132 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) | 133 (HFSCR_INTR_CAUSE & vcpu->arch.hfscr)); 134 break; 135 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 136 hr->heir = vcpu->arch.emul_inst; 137 break; 138 } 139 } 140 141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr) 142 { 143 struct kvmppc_vcore *vc = vcpu->arch.vcore; 144 145 vc->pcr = hr->pcr | PCR_MASK; 146 vc->dpdes = hr->dpdes; 147 vcpu->arch.hfscr = hr->hfscr; 148 vcpu->arch.dawr0 = hr->dawr0; 149 vcpu->arch.dawrx0 = hr->dawrx0; 150 vcpu->arch.ciabr = hr->ciabr; 151 vcpu->arch.purr = hr->purr; 152 vcpu->arch.spurr = hr->spurr; 153 vcpu->arch.ic = hr->ic; 154 vc->vtb = hr->vtb; 155 vcpu->arch.shregs.srr0 = hr->srr0; 156 vcpu->arch.shregs.srr1 = hr->srr1; 157 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 158 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 159 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 160 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 161 vcpu->arch.pid = hr->pidr; 162 vcpu->arch.cfar = hr->cfar; 163 vcpu->arch.ppr = hr->ppr; 164 vcpu->arch.dawr1 = hr->dawr1; 165 vcpu->arch.dawrx1 = hr->dawrx1; 166 } 167 168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, 169 struct hv_guest_state *hr) 170 { 171 struct kvmppc_vcore *vc = vcpu->arch.vcore; 172 173 vc->dpdes = hr->dpdes; 174 vcpu->arch.hfscr = hr->hfscr; 175 vcpu->arch.purr = hr->purr; 176 vcpu->arch.spurr = hr->spurr; 177 vcpu->arch.ic = hr->ic; 178 vc->vtb = hr->vtb; 179 vcpu->arch.fault_dar = hr->hdar; 180 vcpu->arch.fault_dsisr = hr->hdsisr; 181 vcpu->arch.fault_gpa = hr->asdr; 182 vcpu->arch.emul_inst = hr->heir; 183 vcpu->arch.shregs.srr0 = hr->srr0; 184 vcpu->arch.shregs.srr1 = hr->srr1; 185 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 186 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 187 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 188 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 189 vcpu->arch.pid = hr->pidr; 190 vcpu->arch.cfar = hr->cfar; 191 vcpu->arch.ppr = hr->ppr; 192 } 193 194 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr) 195 { 196 /* No need to reflect the page fault to L1, we've handled it */ 197 vcpu->arch.trap = 0; 198 199 /* 200 * Since the L2 gprs have already been written back into L1 memory when 201 * we complete the mmio, store the L1 memory location of the L2 gpr 202 * being loaded into by the mmio so that the loaded value can be 203 * written there in kvmppc_complete_mmio_load() 204 */ 205 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR) 206 && (vcpu->mmio_is_write == 0)) { 207 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr + 208 offsetof(struct pt_regs, 209 gpr[vcpu->arch.io_gpr]); 210 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR; 211 } 212 } 213 214 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu, 215 struct hv_guest_state *l2_hv, 216 struct pt_regs *l2_regs, 217 u64 hv_ptr, u64 regs_ptr) 218 { 219 int size; 220 221 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version, 222 sizeof(l2_hv->version))) 223 return -1; 224 225 if (kvmppc_need_byteswap(vcpu)) 226 l2_hv->version = swab64(l2_hv->version); 227 228 size = hv_guest_state_size(l2_hv->version); 229 if (size < 0) 230 return -1; 231 232 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) || 233 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs, 234 sizeof(struct pt_regs)); 235 } 236 237 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu, 238 struct hv_guest_state *l2_hv, 239 struct pt_regs *l2_regs, 240 u64 hv_ptr, u64 regs_ptr) 241 { 242 int size; 243 244 size = hv_guest_state_size(l2_hv->version); 245 if (size < 0) 246 return -1; 247 248 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) || 249 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs, 250 sizeof(struct pt_regs)); 251 } 252 253 static void load_l2_hv_regs(struct kvm_vcpu *vcpu, 254 const struct hv_guest_state *l2_hv, 255 const struct hv_guest_state *l1_hv, u64 *lpcr) 256 { 257 struct kvmppc_vcore *vc = vcpu->arch.vcore; 258 u64 mask; 259 260 restore_hv_regs(vcpu, l2_hv); 261 262 /* 263 * Don't let L1 change LPCR bits for the L2 except these: 264 */ 265 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER; 266 267 /* 268 * Additional filtering is required depending on hardware 269 * and configuration. 270 */ 271 *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm, 272 (vc->lpcr & ~mask) | (*lpcr & mask)); 273 274 /* 275 * Don't let L1 enable features for L2 which we don't allow for L1, 276 * but preserve the interrupt cause field. 277 */ 278 vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted); 279 280 /* Don't let data address watchpoint match in hypervisor state */ 281 vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP; 282 vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP; 283 284 /* Don't let completed instruction address breakpt match in HV state */ 285 if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 286 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV; 287 } 288 289 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) 290 { 291 long int err, r; 292 struct kvm_nested_guest *l2; 293 struct pt_regs l2_regs, saved_l1_regs; 294 struct hv_guest_state l2_hv = {0}, saved_l1_hv; 295 struct kvmppc_vcore *vc = vcpu->arch.vcore; 296 u64 hv_ptr, regs_ptr; 297 u64 hdec_exp, lpcr; 298 s64 delta_purr, delta_spurr, delta_ic, delta_vtb; 299 300 if (vcpu->kvm->arch.l1_ptcr == 0) 301 return H_NOT_AVAILABLE; 302 303 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 304 return H_BAD_MODE; 305 306 /* copy parameters in */ 307 hv_ptr = kvmppc_get_gpr(vcpu, 4); 308 regs_ptr = kvmppc_get_gpr(vcpu, 5); 309 kvm_vcpu_srcu_read_lock(vcpu); 310 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 311 hv_ptr, regs_ptr); 312 kvm_vcpu_srcu_read_unlock(vcpu); 313 if (err) 314 return H_PARAMETER; 315 316 if (kvmppc_need_byteswap(vcpu)) 317 byteswap_hv_regs(&l2_hv); 318 if (l2_hv.version > HV_GUEST_STATE_VERSION) 319 return H_P2; 320 321 if (kvmppc_need_byteswap(vcpu)) 322 byteswap_pt_regs(&l2_regs); 323 if (l2_hv.vcpu_token >= NR_CPUS) 324 return H_PARAMETER; 325 326 /* 327 * L1 must have set up a suspended state to enter the L2 in a 328 * transactional state, and only in that case. These have to be 329 * filtered out here to prevent causing a TM Bad Thing in the 330 * host HRFID. We could synthesize a TM Bad Thing back to the L1 331 * here but there doesn't seem like much point. 332 */ 333 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) { 334 if (!MSR_TM_ACTIVE(l2_regs.msr)) 335 return H_BAD_MODE; 336 } else { 337 if (l2_regs.msr & MSR_TS_MASK) 338 return H_BAD_MODE; 339 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK)) 340 return H_BAD_MODE; 341 } 342 343 /* translate lpid */ 344 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true); 345 if (!l2) 346 return H_PARAMETER; 347 if (!l2->l1_gr_to_hr) { 348 mutex_lock(&l2->tlb_lock); 349 kvmhv_update_ptbl_cache(l2); 350 mutex_unlock(&l2->tlb_lock); 351 } 352 353 /* save l1 values of things */ 354 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 355 saved_l1_regs = vcpu->arch.regs; 356 kvmhv_save_hv_regs(vcpu, &saved_l1_hv); 357 358 /* convert TB values/offsets to host (L0) values */ 359 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset; 360 vc->tb_offset += l2_hv.tb_offset; 361 vcpu->arch.dec_expires += l2_hv.tb_offset; 362 363 /* set L1 state to L2 state */ 364 vcpu->arch.nested = l2; 365 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token; 366 vcpu->arch.nested_hfscr = l2_hv.hfscr; 367 vcpu->arch.regs = l2_regs; 368 369 /* Guest must always run with ME enabled, HV disabled. */ 370 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV; 371 372 lpcr = l2_hv.lpcr; 373 load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr); 374 375 vcpu->arch.ret = RESUME_GUEST; 376 vcpu->arch.trap = 0; 377 do { 378 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr); 379 } while (is_kvmppc_resume_guest(r)); 380 381 /* save L2 state for return */ 382 l2_regs = vcpu->arch.regs; 383 l2_regs.msr = vcpu->arch.shregs.msr; 384 delta_purr = vcpu->arch.purr - l2_hv.purr; 385 delta_spurr = vcpu->arch.spurr - l2_hv.spurr; 386 delta_ic = vcpu->arch.ic - l2_hv.ic; 387 delta_vtb = vc->vtb - l2_hv.vtb; 388 save_hv_return_state(vcpu, &l2_hv); 389 390 /* restore L1 state */ 391 vcpu->arch.nested = NULL; 392 vcpu->arch.regs = saved_l1_regs; 393 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK; 394 /* set L1 MSR TS field according to L2 transaction state */ 395 if (l2_regs.msr & MSR_TS_MASK) 396 vcpu->arch.shregs.msr |= MSR_TS_S; 397 vc->tb_offset = saved_l1_hv.tb_offset; 398 /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */ 399 vcpu->arch.dec_expires -= l2_hv.tb_offset; 400 restore_hv_regs(vcpu, &saved_l1_hv); 401 vcpu->arch.purr += delta_purr; 402 vcpu->arch.spurr += delta_spurr; 403 vcpu->arch.ic += delta_ic; 404 vc->vtb += delta_vtb; 405 406 kvmhv_put_nested(l2); 407 408 /* copy l2_hv_state and regs back to guest */ 409 if (kvmppc_need_byteswap(vcpu)) { 410 byteswap_hv_regs(&l2_hv); 411 byteswap_pt_regs(&l2_regs); 412 } 413 kvm_vcpu_srcu_read_lock(vcpu); 414 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 415 hv_ptr, regs_ptr); 416 kvm_vcpu_srcu_read_unlock(vcpu); 417 if (err) 418 return H_AUTHORITY; 419 420 if (r == -EINTR) 421 return H_INTERRUPT; 422 423 if (vcpu->mmio_needed) { 424 kvmhv_nested_mmio_needed(vcpu, regs_ptr); 425 return H_TOO_HARD; 426 } 427 428 return vcpu->arch.trap; 429 } 430 431 unsigned long nested_capabilities; 432 433 long kvmhv_nested_init(void) 434 { 435 long int ptb_order; 436 unsigned long ptcr, host_capabilities; 437 long rc; 438 439 if (!kvmhv_on_pseries()) 440 return 0; 441 if (!radix_enabled()) 442 return -ENODEV; 443 444 rc = plpar_guest_get_capabilities(0, &host_capabilities); 445 if (rc == H_SUCCESS) { 446 unsigned long capabilities = 0; 447 448 if (cpu_has_feature(CPU_FTR_ARCH_31)) 449 capabilities |= H_GUEST_CAP_POWER10; 450 if (cpu_has_feature(CPU_FTR_ARCH_300)) 451 capabilities |= H_GUEST_CAP_POWER9; 452 453 nested_capabilities = capabilities & host_capabilities; 454 rc = plpar_guest_set_capabilities(0, nested_capabilities); 455 if (rc != H_SUCCESS) { 456 pr_err("kvm-hv: Could not configure parent hypervisor capabilities (rc=%ld)", 457 rc); 458 return -ENODEV; 459 } 460 461 static_branch_enable(&__kvmhv_is_nestedv2); 462 return 0; 463 } 464 465 pr_info("kvm-hv: nestedv2 get capabilities hcall failed, falling back to nestedv1 (rc=%ld)\n", 466 rc); 467 /* Partition table entry is 1<<4 bytes in size, hence the 4. */ 468 ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4; 469 /* Minimum partition table size is 1<<12 bytes */ 470 if (ptb_order < 12) 471 ptb_order = 12; 472 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order, 473 GFP_KERNEL); 474 if (!pseries_partition_tb) { 475 pr_err("kvm-hv: failed to allocated nested partition table\n"); 476 return -ENOMEM; 477 } 478 479 ptcr = __pa(pseries_partition_tb) | (ptb_order - 12); 480 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr); 481 if (rc != H_SUCCESS) { 482 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n", 483 rc); 484 kfree(pseries_partition_tb); 485 pseries_partition_tb = NULL; 486 return -ENODEV; 487 } 488 489 return 0; 490 } 491 492 void kvmhv_nested_exit(void) 493 { 494 /* 495 * N.B. the kvmhv_on_pseries() test is there because it enables 496 * the compiler to remove the call to plpar_hcall_norets() 497 * when CONFIG_PPC_PSERIES=n. 498 */ 499 if (kvmhv_on_pseries() && pseries_partition_tb) { 500 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0); 501 kfree(pseries_partition_tb); 502 pseries_partition_tb = NULL; 503 } 504 } 505 506 void kvmhv_flush_lpid(u64 lpid) 507 { 508 long rc; 509 510 if (!kvmhv_on_pseries()) { 511 radix__flush_all_lpid(lpid); 512 return; 513 } 514 515 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) 516 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1), 517 lpid, TLBIEL_INVAL_SET_LPID); 518 else 519 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, 520 H_RPTI_TYPE_NESTED | 521 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | 522 H_RPTI_TYPE_PAT, 523 H_RPTI_PAGE_ALL, 0, -1UL); 524 if (rc) 525 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc); 526 } 527 528 void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1) 529 { 530 if (!kvmhv_on_pseries()) { 531 mmu_partition_table_set_entry(lpid, dw0, dw1, true); 532 return; 533 } 534 535 if (kvmhv_is_nestedv1()) { 536 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0); 537 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1); 538 /* L0 will do the necessary barriers */ 539 kvmhv_flush_lpid(lpid); 540 } 541 542 if (kvmhv_is_nestedv2()) 543 kvmhv_nestedv2_set_ptbl_entry(lpid, dw0, dw1); 544 } 545 546 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp) 547 { 548 unsigned long dw0; 549 550 dw0 = PATB_HR | radix__get_tree_size() | 551 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE; 552 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table); 553 } 554 555 /* 556 * Handle the H_SET_PARTITION_TABLE hcall. 557 * r4 = guest real address of partition table + log_2(size) - 12 558 * (formatted as for the PTCR). 559 */ 560 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu) 561 { 562 struct kvm *kvm = vcpu->kvm; 563 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4); 564 int srcu_idx; 565 long ret = H_SUCCESS; 566 567 srcu_idx = srcu_read_lock(&kvm->srcu); 568 /* Check partition size and base address. */ 569 if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT || 570 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT)) 571 ret = H_PARAMETER; 572 srcu_read_unlock(&kvm->srcu, srcu_idx); 573 if (ret == H_SUCCESS) 574 kvm->arch.l1_ptcr = ptcr; 575 576 return ret; 577 } 578 579 /* 580 * Handle the H_COPY_TOFROM_GUEST hcall. 581 * r4 = L1 lpid of nested guest 582 * r5 = pid 583 * r6 = eaddr to access 584 * r7 = to buffer (L1 gpa) 585 * r8 = from buffer (L1 gpa) 586 * r9 = n bytes to copy 587 */ 588 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu) 589 { 590 struct kvm_nested_guest *gp; 591 int l1_lpid = kvmppc_get_gpr(vcpu, 4); 592 int pid = kvmppc_get_gpr(vcpu, 5); 593 gva_t eaddr = kvmppc_get_gpr(vcpu, 6); 594 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7); 595 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8); 596 void *buf; 597 unsigned long n = kvmppc_get_gpr(vcpu, 9); 598 bool is_load = !!gp_to; 599 long rc; 600 601 if (gp_to && gp_from) /* One must be NULL to determine the direction */ 602 return H_PARAMETER; 603 604 if (eaddr & (0xFFFUL << 52)) 605 return H_PARAMETER; 606 607 buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN); 608 if (!buf) 609 return H_NO_MEM; 610 611 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false); 612 if (!gp) { 613 rc = H_PARAMETER; 614 goto out_free; 615 } 616 617 mutex_lock(&gp->tlb_lock); 618 619 if (is_load) { 620 /* Load from the nested guest into our buffer */ 621 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 622 eaddr, buf, NULL, n); 623 if (rc) 624 goto not_found; 625 626 /* Write what was loaded into our buffer back to the L1 guest */ 627 kvm_vcpu_srcu_read_lock(vcpu); 628 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n); 629 kvm_vcpu_srcu_read_unlock(vcpu); 630 if (rc) 631 goto not_found; 632 } else { 633 /* Load the data to be stored from the L1 guest into our buf */ 634 kvm_vcpu_srcu_read_lock(vcpu); 635 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n); 636 kvm_vcpu_srcu_read_unlock(vcpu); 637 if (rc) 638 goto not_found; 639 640 /* Store from our buffer into the nested guest */ 641 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 642 eaddr, NULL, buf, n); 643 if (rc) 644 goto not_found; 645 } 646 647 out_unlock: 648 mutex_unlock(&gp->tlb_lock); 649 kvmhv_put_nested(gp); 650 out_free: 651 kfree(buf); 652 return rc; 653 not_found: 654 rc = H_NOT_FOUND; 655 goto out_unlock; 656 } 657 658 /* 659 * Reload the partition table entry for a guest. 660 * Caller must hold gp->tlb_lock. 661 */ 662 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp) 663 { 664 int ret; 665 struct patb_entry ptbl_entry; 666 unsigned long ptbl_addr; 667 struct kvm *kvm = gp->l1_host; 668 669 ret = -EFAULT; 670 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4); 671 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) { 672 int srcu_idx = srcu_read_lock(&kvm->srcu); 673 ret = kvm_read_guest(kvm, ptbl_addr, 674 &ptbl_entry, sizeof(ptbl_entry)); 675 srcu_read_unlock(&kvm->srcu, srcu_idx); 676 } 677 if (ret) { 678 gp->l1_gr_to_hr = 0; 679 gp->process_table = 0; 680 } else { 681 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0); 682 gp->process_table = be64_to_cpu(ptbl_entry.patb1); 683 } 684 kvmhv_set_nested_ptbl(gp); 685 } 686 687 void kvmhv_vm_nested_init(struct kvm *kvm) 688 { 689 idr_init(&kvm->arch.kvm_nested_guest_idr); 690 } 691 692 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid) 693 { 694 return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid); 695 } 696 697 static bool __prealloc_nested(struct kvm *kvm, int lpid) 698 { 699 if (idr_alloc(&kvm->arch.kvm_nested_guest_idr, 700 NULL, lpid, lpid + 1, GFP_KERNEL) != lpid) 701 return false; 702 return true; 703 } 704 705 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp) 706 { 707 if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid)) 708 WARN_ON(1); 709 } 710 711 static void __remove_nested(struct kvm *kvm, int lpid) 712 { 713 idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid); 714 } 715 716 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) 717 { 718 struct kvm_nested_guest *gp; 719 long shadow_lpid; 720 721 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 722 if (!gp) 723 return NULL; 724 gp->l1_host = kvm; 725 gp->l1_lpid = lpid; 726 mutex_init(&gp->tlb_lock); 727 gp->shadow_pgtable = pgd_alloc(kvm->mm); 728 if (!gp->shadow_pgtable) 729 goto out_free; 730 shadow_lpid = kvmppc_alloc_lpid(); 731 if (shadow_lpid < 0) 732 goto out_free2; 733 gp->shadow_lpid = shadow_lpid; 734 gp->radix = 1; 735 736 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu)); 737 738 return gp; 739 740 out_free2: 741 pgd_free(kvm->mm, gp->shadow_pgtable); 742 out_free: 743 kfree(gp); 744 return NULL; 745 } 746 747 /* 748 * Free up any resources allocated for a nested guest. 749 */ 750 static void kvmhv_release_nested(struct kvm_nested_guest *gp) 751 { 752 struct kvm *kvm = gp->l1_host; 753 754 if (gp->shadow_pgtable) { 755 /* 756 * No vcpu is using this struct and no call to 757 * kvmhv_get_nested can find this struct, 758 * so we don't need to hold kvm->mmu_lock. 759 */ 760 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 761 gp->shadow_lpid); 762 pgd_free(kvm->mm, gp->shadow_pgtable); 763 } 764 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0); 765 kvmppc_free_lpid(gp->shadow_lpid); 766 kfree(gp); 767 } 768 769 static void kvmhv_remove_nested(struct kvm_nested_guest *gp) 770 { 771 struct kvm *kvm = gp->l1_host; 772 int lpid = gp->l1_lpid; 773 long ref; 774 775 spin_lock(&kvm->mmu_lock); 776 if (gp == __find_nested(kvm, lpid)) { 777 __remove_nested(kvm, lpid); 778 --gp->refcnt; 779 } 780 ref = gp->refcnt; 781 spin_unlock(&kvm->mmu_lock); 782 if (ref == 0) 783 kvmhv_release_nested(gp); 784 } 785 786 /* 787 * Free up all nested resources allocated for this guest. 788 * This is called with no vcpus of the guest running, when 789 * switching the guest to HPT mode or when destroying the 790 * guest. 791 */ 792 void kvmhv_release_all_nested(struct kvm *kvm) 793 { 794 int lpid; 795 struct kvm_nested_guest *gp; 796 struct kvm_nested_guest *freelist = NULL; 797 struct kvm_memory_slot *memslot; 798 int srcu_idx, bkt; 799 800 spin_lock(&kvm->mmu_lock); 801 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) { 802 __remove_nested(kvm, lpid); 803 if (--gp->refcnt == 0) { 804 gp->next = freelist; 805 freelist = gp; 806 } 807 } 808 idr_destroy(&kvm->arch.kvm_nested_guest_idr); 809 /* idr is empty and may be reused at this point */ 810 spin_unlock(&kvm->mmu_lock); 811 while ((gp = freelist) != NULL) { 812 freelist = gp->next; 813 kvmhv_release_nested(gp); 814 } 815 816 srcu_idx = srcu_read_lock(&kvm->srcu); 817 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm)) 818 kvmhv_free_memslot_nest_rmap(memslot); 819 srcu_read_unlock(&kvm->srcu, srcu_idx); 820 } 821 822 /* caller must hold gp->tlb_lock */ 823 static void kvmhv_flush_nested(struct kvm_nested_guest *gp) 824 { 825 struct kvm *kvm = gp->l1_host; 826 827 spin_lock(&kvm->mmu_lock); 828 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid); 829 spin_unlock(&kvm->mmu_lock); 830 kvmhv_flush_lpid(gp->shadow_lpid); 831 kvmhv_update_ptbl_cache(gp); 832 if (gp->l1_gr_to_hr == 0) 833 kvmhv_remove_nested(gp); 834 } 835 836 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, 837 bool create) 838 { 839 struct kvm_nested_guest *gp, *newgp; 840 841 if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) 842 return NULL; 843 844 spin_lock(&kvm->mmu_lock); 845 gp = __find_nested(kvm, l1_lpid); 846 if (gp) 847 ++gp->refcnt; 848 spin_unlock(&kvm->mmu_lock); 849 850 if (gp || !create) 851 return gp; 852 853 newgp = kvmhv_alloc_nested(kvm, l1_lpid); 854 if (!newgp) 855 return NULL; 856 857 if (!__prealloc_nested(kvm, l1_lpid)) { 858 kvmhv_release_nested(newgp); 859 return NULL; 860 } 861 862 spin_lock(&kvm->mmu_lock); 863 gp = __find_nested(kvm, l1_lpid); 864 if (!gp) { 865 __add_nested(kvm, l1_lpid, newgp); 866 ++newgp->refcnt; 867 gp = newgp; 868 newgp = NULL; 869 } 870 ++gp->refcnt; 871 spin_unlock(&kvm->mmu_lock); 872 873 if (newgp) 874 kvmhv_release_nested(newgp); 875 876 return gp; 877 } 878 879 void kvmhv_put_nested(struct kvm_nested_guest *gp) 880 { 881 struct kvm *kvm = gp->l1_host; 882 long ref; 883 884 spin_lock(&kvm->mmu_lock); 885 ref = --gp->refcnt; 886 spin_unlock(&kvm->mmu_lock); 887 if (ref == 0) 888 kvmhv_release_nested(gp); 889 } 890 891 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, 892 unsigned long ea, unsigned *hshift) 893 { 894 struct kvm_nested_guest *gp; 895 pte_t *pte; 896 897 gp = __find_nested(kvm, lpid); 898 if (!gp) 899 return NULL; 900 901 VM_WARN(!spin_is_locked(&kvm->mmu_lock), 902 "%s called with kvm mmu_lock not held \n", __func__); 903 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift); 904 905 return pte; 906 } 907 908 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2) 909 { 910 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK | 911 RMAP_NESTED_GPA_MASK)); 912 } 913 914 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, 915 struct rmap_nested **n_rmap) 916 { 917 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 918 struct rmap_nested *cursor; 919 u64 rmap, new_rmap = (*n_rmap)->rmap; 920 921 /* Are there any existing entries? */ 922 if (!(*rmapp)) { 923 /* No -> use the rmap as a single entry */ 924 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY; 925 return; 926 } 927 928 /* Do any entries match what we're trying to insert? */ 929 for_each_nest_rmap_safe(cursor, entry, &rmap) { 930 if (kvmhv_n_rmap_is_equal(rmap, new_rmap)) 931 return; 932 } 933 934 /* Do we need to create a list or just add the new entry? */ 935 rmap = *rmapp; 936 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 937 *rmapp = 0UL; 938 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp); 939 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 940 (*n_rmap)->list.next = (struct llist_node *) rmap; 941 942 /* Set NULL so not freed by caller */ 943 *n_rmap = NULL; 944 } 945 946 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap, 947 unsigned long clr, unsigned long set, 948 unsigned long hpa, unsigned long mask) 949 { 950 unsigned long gpa; 951 unsigned int shift, lpid; 952 pte_t *ptep; 953 954 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 955 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 956 957 /* Find the pte */ 958 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 959 /* 960 * If the pte is present and the pfn is still the same, update the pte. 961 * If the pfn has changed then this is a stale rmap entry, the nested 962 * gpa actually points somewhere else now, and there is nothing to do. 963 * XXX A future optimisation would be to remove the rmap entry here. 964 */ 965 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) { 966 __radix_pte_update(ptep, clr, set); 967 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 968 } 969 } 970 971 /* 972 * For a given list of rmap entries, update the rc bits in all ptes in shadow 973 * page tables for nested guests which are referenced by the rmap list. 974 */ 975 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, 976 unsigned long clr, unsigned long set, 977 unsigned long hpa, unsigned long nbytes) 978 { 979 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 980 struct rmap_nested *cursor; 981 unsigned long rmap, mask; 982 983 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED)) 984 return; 985 986 mask = PTE_RPN_MASK & ~(nbytes - 1); 987 hpa &= mask; 988 989 for_each_nest_rmap_safe(cursor, entry, &rmap) 990 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask); 991 } 992 993 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap, 994 unsigned long hpa, unsigned long mask) 995 { 996 struct kvm_nested_guest *gp; 997 unsigned long gpa; 998 unsigned int shift, lpid; 999 pte_t *ptep; 1000 1001 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 1002 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 1003 gp = __find_nested(kvm, lpid); 1004 if (!gp) 1005 return; 1006 1007 /* Find and invalidate the pte */ 1008 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 1009 /* Don't spuriously invalidate ptes if the pfn has changed */ 1010 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) 1011 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 1012 } 1013 1014 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp, 1015 unsigned long hpa, unsigned long mask) 1016 { 1017 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp); 1018 struct rmap_nested *cursor; 1019 unsigned long rmap; 1020 1021 for_each_nest_rmap_safe(cursor, entry, &rmap) { 1022 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask); 1023 kfree(cursor); 1024 } 1025 } 1026 1027 /* called with kvm->mmu_lock held */ 1028 void kvmhv_remove_nest_rmap_range(struct kvm *kvm, 1029 const struct kvm_memory_slot *memslot, 1030 unsigned long gpa, unsigned long hpa, 1031 unsigned long nbytes) 1032 { 1033 unsigned long gfn, end_gfn; 1034 unsigned long addr_mask; 1035 1036 if (!memslot) 1037 return; 1038 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn; 1039 end_gfn = gfn + (nbytes >> PAGE_SHIFT); 1040 1041 addr_mask = PTE_RPN_MASK & ~(nbytes - 1); 1042 hpa &= addr_mask; 1043 1044 for (; gfn < end_gfn; gfn++) { 1045 unsigned long *rmap = &memslot->arch.rmap[gfn]; 1046 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask); 1047 } 1048 } 1049 1050 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free) 1051 { 1052 unsigned long page; 1053 1054 for (page = 0; page < free->npages; page++) { 1055 unsigned long rmap, *rmapp = &free->arch.rmap[page]; 1056 struct rmap_nested *cursor; 1057 struct llist_node *entry; 1058 1059 entry = llist_del_all((struct llist_head *) rmapp); 1060 for_each_nest_rmap_safe(cursor, entry, &rmap) 1061 kfree(cursor); 1062 } 1063 } 1064 1065 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu, 1066 struct kvm_nested_guest *gp, 1067 long gpa, int *shift_ret) 1068 { 1069 struct kvm *kvm = vcpu->kvm; 1070 bool ret = false; 1071 pte_t *ptep; 1072 int shift; 1073 1074 spin_lock(&kvm->mmu_lock); 1075 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift); 1076 if (!shift) 1077 shift = PAGE_SHIFT; 1078 if (ptep && pte_present(*ptep)) { 1079 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 1080 ret = true; 1081 } 1082 spin_unlock(&kvm->mmu_lock); 1083 1084 if (shift_ret) 1085 *shift_ret = shift; 1086 return ret; 1087 } 1088 1089 static inline int get_ric(unsigned int instr) 1090 { 1091 return (instr >> 18) & 0x3; 1092 } 1093 1094 static inline int get_prs(unsigned int instr) 1095 { 1096 return (instr >> 17) & 0x1; 1097 } 1098 1099 static inline int get_r(unsigned int instr) 1100 { 1101 return (instr >> 16) & 0x1; 1102 } 1103 1104 static inline int get_lpid(unsigned long r_val) 1105 { 1106 return r_val & 0xffffffff; 1107 } 1108 1109 static inline int get_is(unsigned long r_val) 1110 { 1111 return (r_val >> 10) & 0x3; 1112 } 1113 1114 static inline int get_ap(unsigned long r_val) 1115 { 1116 return (r_val >> 5) & 0x7; 1117 } 1118 1119 static inline long get_epn(unsigned long r_val) 1120 { 1121 return r_val >> 12; 1122 } 1123 1124 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid, 1125 int ap, long epn) 1126 { 1127 struct kvm *kvm = vcpu->kvm; 1128 struct kvm_nested_guest *gp; 1129 long npages; 1130 int shift, shadow_shift; 1131 unsigned long addr; 1132 1133 shift = ap_to_shift(ap); 1134 addr = epn << 12; 1135 if (shift < 0) 1136 /* Invalid ap encoding */ 1137 return -EINVAL; 1138 1139 addr &= ~((1UL << shift) - 1); 1140 npages = 1UL << (shift - PAGE_SHIFT); 1141 1142 gp = kvmhv_get_nested(kvm, lpid, false); 1143 if (!gp) /* No such guest -> nothing to do */ 1144 return 0; 1145 mutex_lock(&gp->tlb_lock); 1146 1147 /* There may be more than one host page backing this single guest pte */ 1148 do { 1149 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift); 1150 1151 npages -= 1UL << (shadow_shift - PAGE_SHIFT); 1152 addr += 1UL << shadow_shift; 1153 } while (npages > 0); 1154 1155 mutex_unlock(&gp->tlb_lock); 1156 kvmhv_put_nested(gp); 1157 return 0; 1158 } 1159 1160 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu, 1161 struct kvm_nested_guest *gp, int ric) 1162 { 1163 struct kvm *kvm = vcpu->kvm; 1164 1165 mutex_lock(&gp->tlb_lock); 1166 switch (ric) { 1167 case 0: 1168 /* Invalidate TLB */ 1169 spin_lock(&kvm->mmu_lock); 1170 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 1171 gp->shadow_lpid); 1172 kvmhv_flush_lpid(gp->shadow_lpid); 1173 spin_unlock(&kvm->mmu_lock); 1174 break; 1175 case 1: 1176 /* 1177 * Invalidate PWC 1178 * We don't cache this -> nothing to do 1179 */ 1180 break; 1181 case 2: 1182 /* Invalidate TLB, PWC and caching of partition table entries */ 1183 kvmhv_flush_nested(gp); 1184 break; 1185 default: 1186 break; 1187 } 1188 mutex_unlock(&gp->tlb_lock); 1189 } 1190 1191 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric) 1192 { 1193 struct kvm *kvm = vcpu->kvm; 1194 struct kvm_nested_guest *gp; 1195 int lpid; 1196 1197 spin_lock(&kvm->mmu_lock); 1198 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) { 1199 spin_unlock(&kvm->mmu_lock); 1200 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1201 spin_lock(&kvm->mmu_lock); 1202 } 1203 spin_unlock(&kvm->mmu_lock); 1204 } 1205 1206 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr, 1207 unsigned long rsval, unsigned long rbval) 1208 { 1209 struct kvm *kvm = vcpu->kvm; 1210 struct kvm_nested_guest *gp; 1211 int r, ric, prs, is, ap; 1212 int lpid; 1213 long epn; 1214 int ret = 0; 1215 1216 ric = get_ric(instr); 1217 prs = get_prs(instr); 1218 r = get_r(instr); 1219 lpid = get_lpid(rsval); 1220 is = get_is(rbval); 1221 1222 /* 1223 * These cases are invalid and are not handled: 1224 * r != 1 -> Only radix supported 1225 * prs == 1 -> Not HV privileged 1226 * ric == 3 -> No cluster bombs for radix 1227 * is == 1 -> Partition scoped translations not associated with pid 1228 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA 1229 */ 1230 if ((!r) || (prs) || (ric == 3) || (is == 1) || 1231 ((!is) && (ric == 1 || ric == 2))) 1232 return -EINVAL; 1233 1234 switch (is) { 1235 case 0: 1236 /* 1237 * We know ric == 0 1238 * Invalidate TLB for a given target address 1239 */ 1240 epn = get_epn(rbval); 1241 ap = get_ap(rbval); 1242 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn); 1243 break; 1244 case 2: 1245 /* Invalidate matching LPID */ 1246 gp = kvmhv_get_nested(kvm, lpid, false); 1247 if (gp) { 1248 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1249 kvmhv_put_nested(gp); 1250 } 1251 break; 1252 case 3: 1253 /* Invalidate ALL LPIDs */ 1254 kvmhv_emulate_tlbie_all_lpid(vcpu, ric); 1255 break; 1256 default: 1257 ret = -EINVAL; 1258 break; 1259 } 1260 1261 return ret; 1262 } 1263 1264 /* 1265 * This handles the H_TLB_INVALIDATE hcall. 1266 * Parameters are (r4) tlbie instruction code, (r5) rS contents, 1267 * (r6) rB contents. 1268 */ 1269 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu) 1270 { 1271 int ret; 1272 1273 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4), 1274 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); 1275 if (ret) 1276 return H_PARAMETER; 1277 return H_SUCCESS; 1278 } 1279 1280 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu, 1281 unsigned long lpid, unsigned long ric) 1282 { 1283 struct kvm *kvm = vcpu->kvm; 1284 struct kvm_nested_guest *gp; 1285 1286 gp = kvmhv_get_nested(kvm, lpid, false); 1287 if (gp) { 1288 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1289 kvmhv_put_nested(gp); 1290 } 1291 return H_SUCCESS; 1292 } 1293 1294 /* 1295 * Number of pages above which we invalidate the entire LPID rather than 1296 * flush individual pages. 1297 */ 1298 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33; 1299 1300 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu, 1301 unsigned long lpid, 1302 unsigned long pg_sizes, 1303 unsigned long start, 1304 unsigned long end) 1305 { 1306 int ret = H_P4; 1307 unsigned long addr, nr_pages; 1308 struct mmu_psize_def *def; 1309 unsigned long psize, ap, page_size; 1310 bool flush_lpid; 1311 1312 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1313 def = &mmu_psize_defs[psize]; 1314 if (!(pg_sizes & def->h_rpt_pgsize)) 1315 continue; 1316 1317 nr_pages = (end - start) >> def->shift; 1318 flush_lpid = nr_pages > tlb_range_flush_page_ceiling; 1319 if (flush_lpid) 1320 return do_tlb_invalidate_nested_all(vcpu, lpid, 1321 RIC_FLUSH_TLB); 1322 addr = start; 1323 ap = mmu_get_ap(psize); 1324 page_size = 1UL << def->shift; 1325 do { 1326 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, 1327 get_epn(addr)); 1328 if (ret) 1329 return H_P4; 1330 addr += page_size; 1331 } while (addr < end); 1332 } 1333 return ret; 1334 } 1335 1336 /* 1337 * Performs partition-scoped invalidations for nested guests 1338 * as part of H_RPT_INVALIDATE hcall. 1339 */ 1340 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid, 1341 unsigned long type, unsigned long pg_sizes, 1342 unsigned long start, unsigned long end) 1343 { 1344 /* 1345 * If L2 lpid isn't valid, we need to return H_PARAMETER. 1346 * 1347 * However, nested KVM issues a L2 lpid flush call when creating 1348 * partition table entries for L2. This happens even before the 1349 * corresponding shadow lpid is created in HV which happens in 1350 * H_ENTER_NESTED call. Since we can't differentiate this case from 1351 * the invalid case, we ignore such flush requests and return success. 1352 */ 1353 if (!__find_nested(vcpu->kvm, lpid)) 1354 return H_SUCCESS; 1355 1356 /* 1357 * A flush all request can be handled by a full lpid flush only. 1358 */ 1359 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL) 1360 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL); 1361 1362 /* 1363 * We don't need to handle a PWC flush like process table here, 1364 * because intermediate partition scoped table in nested guest doesn't 1365 * really have PWC. Only level we have PWC is in L0 and for nested 1366 * invalidate at L0 we always do kvm_flush_lpid() which does 1367 * radix__flush_all_lpid(). For range invalidate at any level, we 1368 * are not removing the higher level page tables and hence there is 1369 * no PWC invalidate needed. 1370 * 1371 * if (type & H_RPTI_TYPE_PWC) { 1372 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC); 1373 * if (ret) 1374 * return H_P4; 1375 * } 1376 */ 1377 1378 if (start == 0 && end == -1) 1379 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB); 1380 1381 if (type & H_RPTI_TYPE_TLB) 1382 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes, 1383 start, end); 1384 return H_SUCCESS; 1385 } 1386 1387 /* Used to convert a nested guest real address to a L1 guest real address */ 1388 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu, 1389 struct kvm_nested_guest *gp, 1390 unsigned long n_gpa, unsigned long dsisr, 1391 struct kvmppc_pte *gpte_p) 1392 { 1393 u64 fault_addr, flags = dsisr & DSISR_ISSTORE; 1394 int ret; 1395 1396 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr, 1397 &fault_addr); 1398 1399 if (ret) { 1400 /* We didn't find a pte */ 1401 if (ret == -EINVAL) { 1402 /* Unsupported mmu config */ 1403 flags |= DSISR_UNSUPP_MMU; 1404 } else if (ret == -ENOENT) { 1405 /* No translation found */ 1406 flags |= DSISR_NOHPTE; 1407 } else if (ret == -EFAULT) { 1408 /* Couldn't access L1 real address */ 1409 flags |= DSISR_PRTABLE_FAULT; 1410 vcpu->arch.fault_gpa = fault_addr; 1411 } else { 1412 /* Unknown error */ 1413 return ret; 1414 } 1415 goto forward_to_l1; 1416 } else { 1417 /* We found a pte -> check permissions */ 1418 if (dsisr & DSISR_ISSTORE) { 1419 /* Can we write? */ 1420 if (!gpte_p->may_write) { 1421 flags |= DSISR_PROTFAULT; 1422 goto forward_to_l1; 1423 } 1424 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1425 /* Can we execute? */ 1426 if (!gpte_p->may_execute) { 1427 flags |= SRR1_ISI_N_G_OR_CIP; 1428 goto forward_to_l1; 1429 } 1430 } else { 1431 /* Can we read? */ 1432 if (!gpte_p->may_read && !gpte_p->may_write) { 1433 flags |= DSISR_PROTFAULT; 1434 goto forward_to_l1; 1435 } 1436 } 1437 } 1438 1439 return 0; 1440 1441 forward_to_l1: 1442 vcpu->arch.fault_dsisr = flags; 1443 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1444 vcpu->arch.shregs.msr &= SRR1_MSR_BITS; 1445 vcpu->arch.shregs.msr |= flags; 1446 } 1447 return RESUME_HOST; 1448 } 1449 1450 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, 1451 struct kvm_nested_guest *gp, 1452 unsigned long n_gpa, 1453 struct kvmppc_pte gpte, 1454 unsigned long dsisr) 1455 { 1456 struct kvm *kvm = vcpu->kvm; 1457 bool writing = !!(dsisr & DSISR_ISSTORE); 1458 u64 pgflags; 1459 long ret; 1460 1461 /* Are the rc bits set in the L1 partition scoped pte? */ 1462 pgflags = _PAGE_ACCESSED; 1463 if (writing) 1464 pgflags |= _PAGE_DIRTY; 1465 if (pgflags & ~gpte.rc) 1466 return RESUME_HOST; 1467 1468 spin_lock(&kvm->mmu_lock); 1469 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */ 1470 ret = kvmppc_hv_handle_set_rc(kvm, false, writing, 1471 gpte.raddr, kvm->arch.lpid); 1472 if (!ret) { 1473 ret = -EINVAL; 1474 goto out_unlock; 1475 } 1476 1477 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */ 1478 ret = kvmppc_hv_handle_set_rc(kvm, true, writing, 1479 n_gpa, gp->l1_lpid); 1480 if (!ret) 1481 ret = -EINVAL; 1482 else 1483 ret = 0; 1484 1485 out_unlock: 1486 spin_unlock(&kvm->mmu_lock); 1487 return ret; 1488 } 1489 1490 static inline int kvmppc_radix_level_to_shift(int level) 1491 { 1492 switch (level) { 1493 case 2: 1494 return PUD_SHIFT; 1495 case 1: 1496 return PMD_SHIFT; 1497 default: 1498 return PAGE_SHIFT; 1499 } 1500 } 1501 1502 static inline int kvmppc_radix_shift_to_level(int shift) 1503 { 1504 if (shift == PUD_SHIFT) 1505 return 2; 1506 if (shift == PMD_SHIFT) 1507 return 1; 1508 if (shift == PAGE_SHIFT) 1509 return 0; 1510 WARN_ON_ONCE(1); 1511 return 0; 1512 } 1513 1514 /* called with gp->tlb_lock held */ 1515 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, 1516 struct kvm_nested_guest *gp) 1517 { 1518 struct kvm *kvm = vcpu->kvm; 1519 struct kvm_memory_slot *memslot; 1520 struct rmap_nested *n_rmap; 1521 struct kvmppc_pte gpte; 1522 pte_t pte, *pte_p; 1523 unsigned long mmu_seq; 1524 unsigned long dsisr = vcpu->arch.fault_dsisr; 1525 unsigned long ea = vcpu->arch.fault_dar; 1526 unsigned long *rmapp; 1527 unsigned long n_gpa, gpa, gfn, perm = 0UL; 1528 unsigned int shift, l1_shift, level; 1529 bool writing = !!(dsisr & DSISR_ISSTORE); 1530 bool kvm_ro = false; 1531 long int ret; 1532 1533 if (!gp->l1_gr_to_hr) { 1534 kvmhv_update_ptbl_cache(gp); 1535 if (!gp->l1_gr_to_hr) 1536 return RESUME_HOST; 1537 } 1538 1539 /* Convert the nested guest real address into a L1 guest real address */ 1540 1541 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL; 1542 if (!(dsisr & DSISR_PRTABLE_FAULT)) 1543 n_gpa |= ea & 0xFFF; 1544 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte); 1545 1546 /* 1547 * If the hardware found a translation but we don't now have a usable 1548 * translation in the l1 partition-scoped tree, remove the shadow pte 1549 * and let the guest retry. 1550 */ 1551 if (ret == RESUME_HOST && 1552 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G | 1553 DSISR_BAD_COPYPASTE))) 1554 goto inval; 1555 if (ret) 1556 return ret; 1557 1558 /* Failed to set the reference/change bits */ 1559 if (dsisr & DSISR_SET_RC) { 1560 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr); 1561 if (ret == RESUME_HOST) 1562 return ret; 1563 if (ret) 1564 goto inval; 1565 dsisr &= ~DSISR_SET_RC; 1566 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 1567 DSISR_PROTFAULT))) 1568 return RESUME_GUEST; 1569 } 1570 1571 /* 1572 * We took an HISI or HDSI while we were running a nested guest which 1573 * means we have no partition scoped translation for that. This means 1574 * we need to insert a pte for the mapping into our shadow_pgtable. 1575 */ 1576 1577 l1_shift = gpte.page_shift; 1578 if (l1_shift < PAGE_SHIFT) { 1579 /* We don't support l1 using a page size smaller than our own */ 1580 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n", 1581 l1_shift, PAGE_SHIFT); 1582 return -EINVAL; 1583 } 1584 gpa = gpte.raddr; 1585 gfn = gpa >> PAGE_SHIFT; 1586 1587 /* 1. Get the corresponding host memslot */ 1588 1589 memslot = gfn_to_memslot(kvm, gfn); 1590 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 1591 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) { 1592 /* unusual error -> reflect to the guest as a DSI */ 1593 kvmppc_core_queue_data_storage(vcpu, 1594 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1595 ea, dsisr); 1596 return RESUME_GUEST; 1597 } 1598 1599 /* passthrough of emulated MMIO case */ 1600 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); 1601 } 1602 if (memslot->flags & KVM_MEM_READONLY) { 1603 if (writing) { 1604 /* Give the guest a DSI */ 1605 kvmppc_core_queue_data_storage(vcpu, 1606 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1607 ea, DSISR_ISSTORE | DSISR_PROTFAULT); 1608 return RESUME_GUEST; 1609 } 1610 kvm_ro = true; 1611 } 1612 1613 /* 2. Find the host pte for this L1 guest real address */ 1614 1615 /* Used to check for invalidations in progress */ 1616 mmu_seq = kvm->mmu_invalidate_seq; 1617 smp_rmb(); 1618 1619 /* See if can find translation in our partition scoped tables for L1 */ 1620 pte = __pte(0); 1621 spin_lock(&kvm->mmu_lock); 1622 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift); 1623 if (!shift) 1624 shift = PAGE_SHIFT; 1625 if (pte_p) 1626 pte = *pte_p; 1627 spin_unlock(&kvm->mmu_lock); 1628 1629 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) { 1630 /* No suitable pte found -> try to insert a mapping */ 1631 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, 1632 writing, kvm_ro, &pte, &level); 1633 if (ret == -EAGAIN) 1634 return RESUME_GUEST; 1635 else if (ret) 1636 return ret; 1637 shift = kvmppc_radix_level_to_shift(level); 1638 } 1639 /* Align gfn to the start of the page */ 1640 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT; 1641 1642 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */ 1643 1644 /* The permissions is the combination of the host and l1 guest ptes */ 1645 perm |= gpte.may_read ? 0UL : _PAGE_READ; 1646 perm |= gpte.may_write ? 0UL : _PAGE_WRITE; 1647 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC; 1648 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */ 1649 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED; 1650 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY; 1651 pte = __pte(pte_val(pte) & ~perm); 1652 1653 /* What size pte can we insert? */ 1654 if (shift > l1_shift) { 1655 u64 mask; 1656 unsigned int actual_shift = PAGE_SHIFT; 1657 if (PMD_SHIFT < l1_shift) 1658 actual_shift = PMD_SHIFT; 1659 mask = (1UL << shift) - (1UL << actual_shift); 1660 pte = __pte(pte_val(pte) | (gpa & mask)); 1661 shift = actual_shift; 1662 } 1663 level = kvmppc_radix_shift_to_level(shift); 1664 n_gpa &= ~((1UL << shift) - 1); 1665 1666 /* 4. Insert the pte into our shadow_pgtable */ 1667 1668 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL); 1669 if (!n_rmap) 1670 return RESUME_GUEST; /* Let the guest try again */ 1671 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) | 1672 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT); 1673 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1674 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level, 1675 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap); 1676 kfree(n_rmap); 1677 if (ret == -EAGAIN) 1678 ret = RESUME_GUEST; /* Let the guest try again */ 1679 1680 return ret; 1681 1682 inval: 1683 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL); 1684 return RESUME_GUEST; 1685 } 1686 1687 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) 1688 { 1689 struct kvm_nested_guest *gp = vcpu->arch.nested; 1690 long int ret; 1691 1692 mutex_lock(&gp->tlb_lock); 1693 ret = __kvmhv_nested_page_fault(vcpu, gp); 1694 mutex_unlock(&gp->tlb_lock); 1695 return ret; 1696 } 1697 1698 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid) 1699 { 1700 int ret = lpid + 1; 1701 1702 spin_lock(&kvm->mmu_lock); 1703 if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret)) 1704 ret = -1; 1705 spin_unlock(&kvm->mmu_lock); 1706 1707 return ret; 1708 } 1709