1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corporation, 2018 4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com> 5 * Paul Mackerras <paulus@ozlabs.org> 6 * 7 * Description: KVM functions specific to running nested KVM-HV guests 8 * on Book3S processors (specifically POWER9 and later). 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/llist.h> 14 #include <linux/pgtable.h> 15 16 #include <asm/kvm_ppc.h> 17 #include <asm/kvm_book3s.h> 18 #include <asm/mmu.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 #include <asm/reg.h> 22 #include <asm/plpar_wrappers.h> 23 #include <asm/firmware.h> 24 25 static struct patb_entry *pseries_partition_tb; 26 27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp); 28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free); 29 30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 31 { 32 struct kvmppc_vcore *vc = vcpu->arch.vcore; 33 34 hr->pcr = vc->pcr | PCR_MASK; 35 hr->dpdes = vcpu->arch.doorbell_request; 36 hr->hfscr = vcpu->arch.hfscr; 37 hr->tb_offset = vc->tb_offset; 38 hr->dawr0 = vcpu->arch.dawr0; 39 hr->dawrx0 = vcpu->arch.dawrx0; 40 hr->ciabr = vcpu->arch.ciabr; 41 hr->purr = vcpu->arch.purr; 42 hr->spurr = vcpu->arch.spurr; 43 hr->ic = vcpu->arch.ic; 44 hr->vtb = vc->vtb; 45 hr->srr0 = vcpu->arch.shregs.srr0; 46 hr->srr1 = vcpu->arch.shregs.srr1; 47 hr->sprg[0] = vcpu->arch.shregs.sprg0; 48 hr->sprg[1] = vcpu->arch.shregs.sprg1; 49 hr->sprg[2] = vcpu->arch.shregs.sprg2; 50 hr->sprg[3] = vcpu->arch.shregs.sprg3; 51 hr->pidr = vcpu->arch.pid; 52 hr->cfar = vcpu->arch.cfar; 53 hr->ppr = vcpu->arch.ppr; 54 hr->dawr1 = vcpu->arch.dawr1; 55 hr->dawrx1 = vcpu->arch.dawrx1; 56 } 57 58 /* Use noinline_for_stack due to https://llvm.org/pr49610 */ 59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs) 60 { 61 unsigned long *addr = (unsigned long *) regs; 62 63 for (; addr < ((unsigned long *) (regs + 1)); addr++) 64 *addr = swab64(*addr); 65 } 66 67 static void byteswap_hv_regs(struct hv_guest_state *hr) 68 { 69 hr->version = swab64(hr->version); 70 hr->lpid = swab32(hr->lpid); 71 hr->vcpu_token = swab32(hr->vcpu_token); 72 hr->lpcr = swab64(hr->lpcr); 73 hr->pcr = swab64(hr->pcr) | PCR_MASK; 74 hr->amor = swab64(hr->amor); 75 hr->dpdes = swab64(hr->dpdes); 76 hr->hfscr = swab64(hr->hfscr); 77 hr->tb_offset = swab64(hr->tb_offset); 78 hr->dawr0 = swab64(hr->dawr0); 79 hr->dawrx0 = swab64(hr->dawrx0); 80 hr->ciabr = swab64(hr->ciabr); 81 hr->hdec_expiry = swab64(hr->hdec_expiry); 82 hr->purr = swab64(hr->purr); 83 hr->spurr = swab64(hr->spurr); 84 hr->ic = swab64(hr->ic); 85 hr->vtb = swab64(hr->vtb); 86 hr->hdar = swab64(hr->hdar); 87 hr->hdsisr = swab64(hr->hdsisr); 88 hr->heir = swab64(hr->heir); 89 hr->asdr = swab64(hr->asdr); 90 hr->srr0 = swab64(hr->srr0); 91 hr->srr1 = swab64(hr->srr1); 92 hr->sprg[0] = swab64(hr->sprg[0]); 93 hr->sprg[1] = swab64(hr->sprg[1]); 94 hr->sprg[2] = swab64(hr->sprg[2]); 95 hr->sprg[3] = swab64(hr->sprg[3]); 96 hr->pidr = swab64(hr->pidr); 97 hr->cfar = swab64(hr->cfar); 98 hr->ppr = swab64(hr->ppr); 99 hr->dawr1 = swab64(hr->dawr1); 100 hr->dawrx1 = swab64(hr->dawrx1); 101 } 102 103 static void save_hv_return_state(struct kvm_vcpu *vcpu, 104 struct hv_guest_state *hr) 105 { 106 struct kvmppc_vcore *vc = vcpu->arch.vcore; 107 108 hr->dpdes = vcpu->arch.doorbell_request; 109 hr->purr = vcpu->arch.purr; 110 hr->spurr = vcpu->arch.spurr; 111 hr->ic = vcpu->arch.ic; 112 hr->vtb = vc->vtb; 113 hr->srr0 = vcpu->arch.shregs.srr0; 114 hr->srr1 = vcpu->arch.shregs.srr1; 115 hr->sprg[0] = vcpu->arch.shregs.sprg0; 116 hr->sprg[1] = vcpu->arch.shregs.sprg1; 117 hr->sprg[2] = vcpu->arch.shregs.sprg2; 118 hr->sprg[3] = vcpu->arch.shregs.sprg3; 119 hr->pidr = vcpu->arch.pid; 120 hr->cfar = vcpu->arch.cfar; 121 hr->ppr = vcpu->arch.ppr; 122 switch (vcpu->arch.trap) { 123 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 124 hr->hdar = vcpu->arch.fault_dar; 125 hr->hdsisr = vcpu->arch.fault_dsisr; 126 hr->asdr = vcpu->arch.fault_gpa; 127 break; 128 case BOOK3S_INTERRUPT_H_INST_STORAGE: 129 hr->asdr = vcpu->arch.fault_gpa; 130 break; 131 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 132 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) | 133 (HFSCR_INTR_CAUSE & vcpu->arch.hfscr)); 134 break; 135 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 136 hr->heir = vcpu->arch.emul_inst; 137 break; 138 } 139 } 140 141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr) 142 { 143 struct kvmppc_vcore *vc = vcpu->arch.vcore; 144 145 vc->pcr = hr->pcr | PCR_MASK; 146 vcpu->arch.doorbell_request = hr->dpdes; 147 vcpu->arch.hfscr = hr->hfscr; 148 vcpu->arch.dawr0 = hr->dawr0; 149 vcpu->arch.dawrx0 = hr->dawrx0; 150 vcpu->arch.ciabr = hr->ciabr; 151 vcpu->arch.purr = hr->purr; 152 vcpu->arch.spurr = hr->spurr; 153 vcpu->arch.ic = hr->ic; 154 vc->vtb = hr->vtb; 155 vcpu->arch.shregs.srr0 = hr->srr0; 156 vcpu->arch.shregs.srr1 = hr->srr1; 157 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 158 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 159 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 160 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 161 vcpu->arch.pid = hr->pidr; 162 vcpu->arch.cfar = hr->cfar; 163 vcpu->arch.ppr = hr->ppr; 164 vcpu->arch.dawr1 = hr->dawr1; 165 vcpu->arch.dawrx1 = hr->dawrx1; 166 } 167 168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, 169 struct hv_guest_state *hr) 170 { 171 struct kvmppc_vcore *vc = vcpu->arch.vcore; 172 173 /* 174 * This L2 vCPU might have received a doorbell while H_ENTER_NESTED was being handled. 175 * Make sure we preserve the doorbell if it was either: 176 * a) Sent after H_ENTER_NESTED was called on this vCPU (arch.doorbell_request would be 1) 177 * b) Doorbell was not handled and L2 exited for some other reason (hr->dpdes would be 1) 178 */ 179 vcpu->arch.doorbell_request = vcpu->arch.doorbell_request | hr->dpdes; 180 vcpu->arch.hfscr = hr->hfscr; 181 vcpu->arch.purr = hr->purr; 182 vcpu->arch.spurr = hr->spurr; 183 vcpu->arch.ic = hr->ic; 184 vc->vtb = hr->vtb; 185 vcpu->arch.fault_dar = hr->hdar; 186 vcpu->arch.fault_dsisr = hr->hdsisr; 187 vcpu->arch.fault_gpa = hr->asdr; 188 vcpu->arch.emul_inst = hr->heir; 189 vcpu->arch.shregs.srr0 = hr->srr0; 190 vcpu->arch.shregs.srr1 = hr->srr1; 191 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 192 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 193 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 194 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 195 vcpu->arch.pid = hr->pidr; 196 vcpu->arch.cfar = hr->cfar; 197 vcpu->arch.ppr = hr->ppr; 198 } 199 200 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr) 201 { 202 /* No need to reflect the page fault to L1, we've handled it */ 203 vcpu->arch.trap = 0; 204 205 /* 206 * Since the L2 gprs have already been written back into L1 memory when 207 * we complete the mmio, store the L1 memory location of the L2 gpr 208 * being loaded into by the mmio so that the loaded value can be 209 * written there in kvmppc_complete_mmio_load() 210 */ 211 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR) 212 && (vcpu->mmio_is_write == 0)) { 213 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr + 214 offsetof(struct pt_regs, 215 gpr[vcpu->arch.io_gpr]); 216 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR; 217 } 218 } 219 220 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu, 221 struct hv_guest_state *l2_hv, 222 struct pt_regs *l2_regs, 223 u64 hv_ptr, u64 regs_ptr) 224 { 225 int size; 226 227 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version, 228 sizeof(l2_hv->version))) 229 return -1; 230 231 if (kvmppc_need_byteswap(vcpu)) 232 l2_hv->version = swab64(l2_hv->version); 233 234 size = hv_guest_state_size(l2_hv->version); 235 if (size < 0) 236 return -1; 237 238 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) || 239 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs, 240 sizeof(struct pt_regs)); 241 } 242 243 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu, 244 struct hv_guest_state *l2_hv, 245 struct pt_regs *l2_regs, 246 u64 hv_ptr, u64 regs_ptr) 247 { 248 int size; 249 250 size = hv_guest_state_size(l2_hv->version); 251 if (size < 0) 252 return -1; 253 254 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) || 255 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs, 256 sizeof(struct pt_regs)); 257 } 258 259 static void load_l2_hv_regs(struct kvm_vcpu *vcpu, 260 const struct hv_guest_state *l2_hv, 261 const struct hv_guest_state *l1_hv, u64 *lpcr) 262 { 263 struct kvmppc_vcore *vc = vcpu->arch.vcore; 264 u64 mask; 265 266 restore_hv_regs(vcpu, l2_hv); 267 268 /* 269 * Don't let L1 change LPCR bits for the L2 except these: 270 */ 271 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER; 272 273 /* 274 * Additional filtering is required depending on hardware 275 * and configuration. 276 */ 277 *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm, 278 (vc->lpcr & ~mask) | (*lpcr & mask)); 279 280 /* 281 * Don't let L1 enable features for L2 which we don't allow for L1, 282 * but preserve the interrupt cause field. 283 */ 284 vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted); 285 286 /* Don't let data address watchpoint match in hypervisor state */ 287 vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP; 288 vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP; 289 290 /* Don't let completed instruction address breakpt match in HV state */ 291 if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 292 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV; 293 } 294 295 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) 296 { 297 long int err, r; 298 struct kvm_nested_guest *l2; 299 struct pt_regs l2_regs, saved_l1_regs; 300 struct hv_guest_state l2_hv = {0}, saved_l1_hv; 301 struct kvmppc_vcore *vc = vcpu->arch.vcore; 302 u64 hv_ptr, regs_ptr; 303 u64 hdec_exp, lpcr; 304 s64 delta_purr, delta_spurr, delta_ic, delta_vtb; 305 306 if (vcpu->kvm->arch.l1_ptcr == 0) 307 return H_NOT_AVAILABLE; 308 309 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 310 return H_BAD_MODE; 311 312 /* copy parameters in */ 313 hv_ptr = kvmppc_get_gpr(vcpu, 4); 314 regs_ptr = kvmppc_get_gpr(vcpu, 5); 315 kvm_vcpu_srcu_read_lock(vcpu); 316 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 317 hv_ptr, regs_ptr); 318 kvm_vcpu_srcu_read_unlock(vcpu); 319 if (err) 320 return H_PARAMETER; 321 322 if (kvmppc_need_byteswap(vcpu)) 323 byteswap_hv_regs(&l2_hv); 324 if (l2_hv.version > HV_GUEST_STATE_VERSION) 325 return H_P2; 326 327 if (kvmppc_need_byteswap(vcpu)) 328 byteswap_pt_regs(&l2_regs); 329 if (l2_hv.vcpu_token >= NR_CPUS) 330 return H_PARAMETER; 331 332 /* 333 * L1 must have set up a suspended state to enter the L2 in a 334 * transactional state, and only in that case. These have to be 335 * filtered out here to prevent causing a TM Bad Thing in the 336 * host HRFID. We could synthesize a TM Bad Thing back to the L1 337 * here but there doesn't seem like much point. 338 */ 339 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) { 340 if (!MSR_TM_ACTIVE(l2_regs.msr)) 341 return H_BAD_MODE; 342 } else { 343 if (l2_regs.msr & MSR_TS_MASK) 344 return H_BAD_MODE; 345 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK)) 346 return H_BAD_MODE; 347 } 348 349 /* translate lpid */ 350 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true); 351 if (!l2) 352 return H_PARAMETER; 353 if (!l2->l1_gr_to_hr) { 354 mutex_lock(&l2->tlb_lock); 355 kvmhv_update_ptbl_cache(l2); 356 mutex_unlock(&l2->tlb_lock); 357 } 358 359 /* save l1 values of things */ 360 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 361 saved_l1_regs = vcpu->arch.regs; 362 kvmhv_save_hv_regs(vcpu, &saved_l1_hv); 363 364 /* convert TB values/offsets to host (L0) values */ 365 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset; 366 vc->tb_offset += l2_hv.tb_offset; 367 vcpu->arch.dec_expires += l2_hv.tb_offset; 368 369 /* set L1 state to L2 state */ 370 vcpu->arch.nested = l2; 371 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token; 372 vcpu->arch.nested_hfscr = l2_hv.hfscr; 373 vcpu->arch.regs = l2_regs; 374 375 /* Guest must always run with ME enabled, HV disabled. */ 376 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV; 377 378 lpcr = l2_hv.lpcr; 379 load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr); 380 381 vcpu->arch.ret = RESUME_GUEST; 382 vcpu->arch.trap = 0; 383 do { 384 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr); 385 } while (is_kvmppc_resume_guest(r)); 386 387 /* save L2 state for return */ 388 l2_regs = vcpu->arch.regs; 389 l2_regs.msr = vcpu->arch.shregs.msr; 390 delta_purr = vcpu->arch.purr - l2_hv.purr; 391 delta_spurr = vcpu->arch.spurr - l2_hv.spurr; 392 delta_ic = vcpu->arch.ic - l2_hv.ic; 393 delta_vtb = vc->vtb - l2_hv.vtb; 394 save_hv_return_state(vcpu, &l2_hv); 395 396 /* restore L1 state */ 397 vcpu->arch.nested = NULL; 398 vcpu->arch.regs = saved_l1_regs; 399 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK; 400 /* set L1 MSR TS field according to L2 transaction state */ 401 if (l2_regs.msr & MSR_TS_MASK) 402 vcpu->arch.shregs.msr |= MSR_TS_S; 403 vc->tb_offset = saved_l1_hv.tb_offset; 404 /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */ 405 vcpu->arch.dec_expires -= l2_hv.tb_offset; 406 restore_hv_regs(vcpu, &saved_l1_hv); 407 vcpu->arch.purr += delta_purr; 408 vcpu->arch.spurr += delta_spurr; 409 vcpu->arch.ic += delta_ic; 410 vc->vtb += delta_vtb; 411 412 kvmhv_put_nested(l2); 413 414 /* copy l2_hv_state and regs back to guest */ 415 if (kvmppc_need_byteswap(vcpu)) { 416 byteswap_hv_regs(&l2_hv); 417 byteswap_pt_regs(&l2_regs); 418 } 419 kvm_vcpu_srcu_read_lock(vcpu); 420 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 421 hv_ptr, regs_ptr); 422 kvm_vcpu_srcu_read_unlock(vcpu); 423 if (err) 424 return H_AUTHORITY; 425 426 if (r == -EINTR) 427 return H_INTERRUPT; 428 429 if (vcpu->mmio_needed) { 430 kvmhv_nested_mmio_needed(vcpu, regs_ptr); 431 return H_TOO_HARD; 432 } 433 434 return vcpu->arch.trap; 435 } 436 437 unsigned long nested_capabilities; 438 439 long kvmhv_nested_init(void) 440 { 441 long int ptb_order; 442 unsigned long ptcr, host_capabilities; 443 long rc; 444 445 if (!kvmhv_on_pseries()) 446 return 0; 447 if (!radix_enabled()) 448 return -ENODEV; 449 450 rc = plpar_guest_get_capabilities(0, &host_capabilities); 451 if (rc == H_SUCCESS) { 452 unsigned long capabilities = 0; 453 454 if (cpu_has_feature(CPU_FTR_P11_PVR)) 455 capabilities |= H_GUEST_CAP_POWER11; 456 if (cpu_has_feature(CPU_FTR_ARCH_31)) 457 capabilities |= H_GUEST_CAP_POWER10; 458 if (cpu_has_feature(CPU_FTR_ARCH_300)) 459 capabilities |= H_GUEST_CAP_POWER9; 460 461 nested_capabilities = capabilities & host_capabilities; 462 rc = plpar_guest_set_capabilities(0, nested_capabilities); 463 if (rc != H_SUCCESS) { 464 pr_err("kvm-hv: Could not configure parent hypervisor capabilities (rc=%ld)", 465 rc); 466 return -ENODEV; 467 } 468 469 static_branch_enable(&__kvmhv_is_nestedv2); 470 return 0; 471 } 472 473 pr_info("kvm-hv: nestedv2 get capabilities hcall failed, falling back to nestedv1 (rc=%ld)\n", 474 rc); 475 /* Partition table entry is 1<<4 bytes in size, hence the 4. */ 476 ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4; 477 /* Minimum partition table size is 1<<12 bytes */ 478 if (ptb_order < 12) 479 ptb_order = 12; 480 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order, 481 GFP_KERNEL); 482 if (!pseries_partition_tb) { 483 pr_err("kvm-hv: failed to allocated nested partition table\n"); 484 return -ENOMEM; 485 } 486 487 ptcr = __pa(pseries_partition_tb) | (ptb_order - 12); 488 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr); 489 if (rc != H_SUCCESS) { 490 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n", 491 rc); 492 kfree(pseries_partition_tb); 493 pseries_partition_tb = NULL; 494 return -ENODEV; 495 } 496 497 return 0; 498 } 499 500 void kvmhv_nested_exit(void) 501 { 502 /* 503 * N.B. the kvmhv_on_pseries() test is there because it enables 504 * the compiler to remove the call to plpar_hcall_norets() 505 * when CONFIG_PPC_PSERIES=n. 506 */ 507 if (kvmhv_on_pseries() && pseries_partition_tb) { 508 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0); 509 kfree(pseries_partition_tb); 510 pseries_partition_tb = NULL; 511 } 512 } 513 514 void kvmhv_flush_lpid(u64 lpid) 515 { 516 long rc; 517 518 if (!kvmhv_on_pseries()) { 519 radix__flush_all_lpid(lpid); 520 return; 521 } 522 523 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) 524 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1), 525 lpid, TLBIEL_INVAL_SET_LPID); 526 else 527 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, 528 H_RPTI_TYPE_NESTED | 529 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | 530 H_RPTI_TYPE_PAT, 531 H_RPTI_PAGE_ALL, 0, -1UL); 532 if (rc) 533 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc); 534 } 535 536 void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1) 537 { 538 if (!kvmhv_on_pseries()) { 539 mmu_partition_table_set_entry(lpid, dw0, dw1, true); 540 return; 541 } 542 543 if (kvmhv_is_nestedv1()) { 544 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0); 545 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1); 546 /* L0 will do the necessary barriers */ 547 kvmhv_flush_lpid(lpid); 548 } 549 550 if (kvmhv_is_nestedv2()) 551 kvmhv_nestedv2_set_ptbl_entry(lpid, dw0, dw1); 552 } 553 554 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp) 555 { 556 unsigned long dw0; 557 558 dw0 = PATB_HR | radix__get_tree_size() | 559 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE; 560 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table); 561 } 562 563 /* 564 * Handle the H_SET_PARTITION_TABLE hcall. 565 * r4 = guest real address of partition table + log_2(size) - 12 566 * (formatted as for the PTCR). 567 */ 568 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu) 569 { 570 struct kvm *kvm = vcpu->kvm; 571 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4); 572 int srcu_idx; 573 long ret = H_SUCCESS; 574 575 srcu_idx = srcu_read_lock(&kvm->srcu); 576 /* Check partition size and base address. */ 577 if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT || 578 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT)) 579 ret = H_PARAMETER; 580 srcu_read_unlock(&kvm->srcu, srcu_idx); 581 if (ret == H_SUCCESS) 582 kvm->arch.l1_ptcr = ptcr; 583 584 return ret; 585 } 586 587 /* 588 * Handle the H_COPY_TOFROM_GUEST hcall. 589 * r4 = L1 lpid of nested guest 590 * r5 = pid 591 * r6 = eaddr to access 592 * r7 = to buffer (L1 gpa) 593 * r8 = from buffer (L1 gpa) 594 * r9 = n bytes to copy 595 */ 596 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu) 597 { 598 struct kvm_nested_guest *gp; 599 int l1_lpid = kvmppc_get_gpr(vcpu, 4); 600 int pid = kvmppc_get_gpr(vcpu, 5); 601 gva_t eaddr = kvmppc_get_gpr(vcpu, 6); 602 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7); 603 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8); 604 void *buf; 605 unsigned long n = kvmppc_get_gpr(vcpu, 9); 606 bool is_load = !!gp_to; 607 long rc; 608 609 if (gp_to && gp_from) /* One must be NULL to determine the direction */ 610 return H_PARAMETER; 611 612 if (eaddr & (0xFFFUL << 52)) 613 return H_PARAMETER; 614 615 buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN); 616 if (!buf) 617 return H_NO_MEM; 618 619 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false); 620 if (!gp) { 621 rc = H_PARAMETER; 622 goto out_free; 623 } 624 625 mutex_lock(&gp->tlb_lock); 626 627 if (is_load) { 628 /* Load from the nested guest into our buffer */ 629 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 630 eaddr, buf, NULL, n); 631 if (rc) 632 goto not_found; 633 634 /* Write what was loaded into our buffer back to the L1 guest */ 635 kvm_vcpu_srcu_read_lock(vcpu); 636 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n); 637 kvm_vcpu_srcu_read_unlock(vcpu); 638 if (rc) 639 goto not_found; 640 } else { 641 /* Load the data to be stored from the L1 guest into our buf */ 642 kvm_vcpu_srcu_read_lock(vcpu); 643 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n); 644 kvm_vcpu_srcu_read_unlock(vcpu); 645 if (rc) 646 goto not_found; 647 648 /* Store from our buffer into the nested guest */ 649 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 650 eaddr, NULL, buf, n); 651 if (rc) 652 goto not_found; 653 } 654 655 out_unlock: 656 mutex_unlock(&gp->tlb_lock); 657 kvmhv_put_nested(gp); 658 out_free: 659 kfree(buf); 660 return rc; 661 not_found: 662 rc = H_NOT_FOUND; 663 goto out_unlock; 664 } 665 666 /* 667 * Reload the partition table entry for a guest. 668 * Caller must hold gp->tlb_lock. 669 */ 670 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp) 671 { 672 int ret; 673 struct patb_entry ptbl_entry; 674 unsigned long ptbl_addr; 675 struct kvm *kvm = gp->l1_host; 676 677 ret = -EFAULT; 678 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4); 679 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) { 680 int srcu_idx = srcu_read_lock(&kvm->srcu); 681 ret = kvm_read_guest(kvm, ptbl_addr, 682 &ptbl_entry, sizeof(ptbl_entry)); 683 srcu_read_unlock(&kvm->srcu, srcu_idx); 684 } 685 if (ret) { 686 gp->l1_gr_to_hr = 0; 687 gp->process_table = 0; 688 } else { 689 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0); 690 gp->process_table = be64_to_cpu(ptbl_entry.patb1); 691 } 692 kvmhv_set_nested_ptbl(gp); 693 } 694 695 void kvmhv_vm_nested_init(struct kvm *kvm) 696 { 697 idr_init(&kvm->arch.kvm_nested_guest_idr); 698 } 699 700 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid) 701 { 702 return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid); 703 } 704 705 static bool __prealloc_nested(struct kvm *kvm, int lpid) 706 { 707 if (idr_alloc(&kvm->arch.kvm_nested_guest_idr, 708 NULL, lpid, lpid + 1, GFP_KERNEL) != lpid) 709 return false; 710 return true; 711 } 712 713 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp) 714 { 715 if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid)) 716 WARN_ON(1); 717 } 718 719 static void __remove_nested(struct kvm *kvm, int lpid) 720 { 721 idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid); 722 } 723 724 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) 725 { 726 struct kvm_nested_guest *gp; 727 long shadow_lpid; 728 729 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 730 if (!gp) 731 return NULL; 732 gp->l1_host = kvm; 733 gp->l1_lpid = lpid; 734 mutex_init(&gp->tlb_lock); 735 gp->shadow_pgtable = pgd_alloc(kvm->mm); 736 if (!gp->shadow_pgtable) 737 goto out_free; 738 shadow_lpid = kvmppc_alloc_lpid(); 739 if (shadow_lpid < 0) 740 goto out_free2; 741 gp->shadow_lpid = shadow_lpid; 742 gp->radix = 1; 743 744 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu)); 745 746 return gp; 747 748 out_free2: 749 pgd_free(kvm->mm, gp->shadow_pgtable); 750 out_free: 751 kfree(gp); 752 return NULL; 753 } 754 755 /* 756 * Free up any resources allocated for a nested guest. 757 */ 758 static void kvmhv_release_nested(struct kvm_nested_guest *gp) 759 { 760 struct kvm *kvm = gp->l1_host; 761 762 if (gp->shadow_pgtable) { 763 /* 764 * No vcpu is using this struct and no call to 765 * kvmhv_get_nested can find this struct, 766 * so we don't need to hold kvm->mmu_lock. 767 */ 768 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 769 gp->shadow_lpid); 770 pgd_free(kvm->mm, gp->shadow_pgtable); 771 } 772 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0); 773 kvmppc_free_lpid(gp->shadow_lpid); 774 kfree(gp); 775 } 776 777 static void kvmhv_remove_nested(struct kvm_nested_guest *gp) 778 { 779 struct kvm *kvm = gp->l1_host; 780 int lpid = gp->l1_lpid; 781 long ref; 782 783 spin_lock(&kvm->mmu_lock); 784 if (gp == __find_nested(kvm, lpid)) { 785 __remove_nested(kvm, lpid); 786 --gp->refcnt; 787 } 788 ref = gp->refcnt; 789 spin_unlock(&kvm->mmu_lock); 790 if (ref == 0) 791 kvmhv_release_nested(gp); 792 } 793 794 /* 795 * Free up all nested resources allocated for this guest. 796 * This is called with no vcpus of the guest running, when 797 * switching the guest to HPT mode or when destroying the 798 * guest. 799 */ 800 void kvmhv_release_all_nested(struct kvm *kvm) 801 { 802 int lpid; 803 struct kvm_nested_guest *gp; 804 struct kvm_nested_guest *freelist = NULL; 805 struct kvm_memory_slot *memslot; 806 int srcu_idx, bkt; 807 808 spin_lock(&kvm->mmu_lock); 809 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) { 810 __remove_nested(kvm, lpid); 811 if (--gp->refcnt == 0) { 812 gp->next = freelist; 813 freelist = gp; 814 } 815 } 816 idr_destroy(&kvm->arch.kvm_nested_guest_idr); 817 /* idr is empty and may be reused at this point */ 818 spin_unlock(&kvm->mmu_lock); 819 while ((gp = freelist) != NULL) { 820 freelist = gp->next; 821 kvmhv_release_nested(gp); 822 } 823 824 srcu_idx = srcu_read_lock(&kvm->srcu); 825 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm)) 826 kvmhv_free_memslot_nest_rmap(memslot); 827 srcu_read_unlock(&kvm->srcu, srcu_idx); 828 } 829 830 /* caller must hold gp->tlb_lock */ 831 static void kvmhv_flush_nested(struct kvm_nested_guest *gp) 832 { 833 struct kvm *kvm = gp->l1_host; 834 835 spin_lock(&kvm->mmu_lock); 836 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid); 837 spin_unlock(&kvm->mmu_lock); 838 kvmhv_flush_lpid(gp->shadow_lpid); 839 kvmhv_update_ptbl_cache(gp); 840 if (gp->l1_gr_to_hr == 0) 841 kvmhv_remove_nested(gp); 842 } 843 844 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, 845 bool create) 846 { 847 struct kvm_nested_guest *gp, *newgp; 848 849 if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) 850 return NULL; 851 852 spin_lock(&kvm->mmu_lock); 853 gp = __find_nested(kvm, l1_lpid); 854 if (gp) 855 ++gp->refcnt; 856 spin_unlock(&kvm->mmu_lock); 857 858 if (gp || !create) 859 return gp; 860 861 newgp = kvmhv_alloc_nested(kvm, l1_lpid); 862 if (!newgp) 863 return NULL; 864 865 if (!__prealloc_nested(kvm, l1_lpid)) { 866 kvmhv_release_nested(newgp); 867 return NULL; 868 } 869 870 spin_lock(&kvm->mmu_lock); 871 gp = __find_nested(kvm, l1_lpid); 872 if (!gp) { 873 __add_nested(kvm, l1_lpid, newgp); 874 ++newgp->refcnt; 875 gp = newgp; 876 newgp = NULL; 877 } 878 ++gp->refcnt; 879 spin_unlock(&kvm->mmu_lock); 880 881 if (newgp) 882 kvmhv_release_nested(newgp); 883 884 return gp; 885 } 886 887 void kvmhv_put_nested(struct kvm_nested_guest *gp) 888 { 889 struct kvm *kvm = gp->l1_host; 890 long ref; 891 892 spin_lock(&kvm->mmu_lock); 893 ref = --gp->refcnt; 894 spin_unlock(&kvm->mmu_lock); 895 if (ref == 0) 896 kvmhv_release_nested(gp); 897 } 898 899 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, 900 unsigned long ea, unsigned *hshift) 901 { 902 struct kvm_nested_guest *gp; 903 pte_t *pte; 904 905 gp = __find_nested(kvm, lpid); 906 if (!gp) 907 return NULL; 908 909 VM_WARN(!spin_is_locked(&kvm->mmu_lock), 910 "%s called with kvm mmu_lock not held \n", __func__); 911 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift); 912 913 return pte; 914 } 915 916 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2) 917 { 918 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK | 919 RMAP_NESTED_GPA_MASK)); 920 } 921 922 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, 923 struct rmap_nested **n_rmap) 924 { 925 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 926 struct rmap_nested *cursor; 927 u64 rmap, new_rmap = (*n_rmap)->rmap; 928 929 /* Are there any existing entries? */ 930 if (!(*rmapp)) { 931 /* No -> use the rmap as a single entry */ 932 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY; 933 return; 934 } 935 936 /* Do any entries match what we're trying to insert? */ 937 for_each_nest_rmap_safe(cursor, entry, &rmap) { 938 if (kvmhv_n_rmap_is_equal(rmap, new_rmap)) 939 return; 940 } 941 942 /* Do we need to create a list or just add the new entry? */ 943 rmap = *rmapp; 944 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 945 *rmapp = 0UL; 946 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp); 947 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 948 (*n_rmap)->list.next = (struct llist_node *) rmap; 949 950 /* Set NULL so not freed by caller */ 951 *n_rmap = NULL; 952 } 953 954 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap, 955 unsigned long clr, unsigned long set, 956 unsigned long hpa, unsigned long mask) 957 { 958 unsigned long gpa; 959 unsigned int shift, lpid; 960 pte_t *ptep; 961 962 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 963 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 964 965 /* Find the pte */ 966 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 967 /* 968 * If the pte is present and the pfn is still the same, update the pte. 969 * If the pfn has changed then this is a stale rmap entry, the nested 970 * gpa actually points somewhere else now, and there is nothing to do. 971 * XXX A future optimisation would be to remove the rmap entry here. 972 */ 973 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) { 974 __radix_pte_update(ptep, clr, set); 975 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 976 } 977 } 978 979 /* 980 * For a given list of rmap entries, update the rc bits in all ptes in shadow 981 * page tables for nested guests which are referenced by the rmap list. 982 */ 983 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, 984 unsigned long clr, unsigned long set, 985 unsigned long hpa, unsigned long nbytes) 986 { 987 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 988 struct rmap_nested *cursor; 989 unsigned long rmap, mask; 990 991 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED)) 992 return; 993 994 mask = PTE_RPN_MASK & ~(nbytes - 1); 995 hpa &= mask; 996 997 for_each_nest_rmap_safe(cursor, entry, &rmap) 998 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask); 999 } 1000 1001 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap, 1002 unsigned long hpa, unsigned long mask) 1003 { 1004 struct kvm_nested_guest *gp; 1005 unsigned long gpa; 1006 unsigned int shift, lpid; 1007 pte_t *ptep; 1008 1009 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 1010 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 1011 gp = __find_nested(kvm, lpid); 1012 if (!gp) 1013 return; 1014 1015 /* Find and invalidate the pte */ 1016 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 1017 /* Don't spuriously invalidate ptes if the pfn has changed */ 1018 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) 1019 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 1020 } 1021 1022 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp, 1023 unsigned long hpa, unsigned long mask) 1024 { 1025 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp); 1026 struct rmap_nested *cursor; 1027 unsigned long rmap; 1028 1029 for_each_nest_rmap_safe(cursor, entry, &rmap) { 1030 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask); 1031 kfree(cursor); 1032 } 1033 } 1034 1035 /* called with kvm->mmu_lock held */ 1036 void kvmhv_remove_nest_rmap_range(struct kvm *kvm, 1037 const struct kvm_memory_slot *memslot, 1038 unsigned long gpa, unsigned long hpa, 1039 unsigned long nbytes) 1040 { 1041 unsigned long gfn, end_gfn; 1042 unsigned long addr_mask; 1043 1044 if (!memslot) 1045 return; 1046 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn; 1047 end_gfn = gfn + (nbytes >> PAGE_SHIFT); 1048 1049 addr_mask = PTE_RPN_MASK & ~(nbytes - 1); 1050 hpa &= addr_mask; 1051 1052 for (; gfn < end_gfn; gfn++) { 1053 unsigned long *rmap = &memslot->arch.rmap[gfn]; 1054 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask); 1055 } 1056 } 1057 1058 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free) 1059 { 1060 unsigned long page; 1061 1062 for (page = 0; page < free->npages; page++) { 1063 unsigned long rmap, *rmapp = &free->arch.rmap[page]; 1064 struct rmap_nested *cursor; 1065 struct llist_node *entry; 1066 1067 entry = llist_del_all((struct llist_head *) rmapp); 1068 for_each_nest_rmap_safe(cursor, entry, &rmap) 1069 kfree(cursor); 1070 } 1071 } 1072 1073 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu, 1074 struct kvm_nested_guest *gp, 1075 long gpa, int *shift_ret) 1076 { 1077 struct kvm *kvm = vcpu->kvm; 1078 bool ret = false; 1079 pte_t *ptep; 1080 int shift; 1081 1082 spin_lock(&kvm->mmu_lock); 1083 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift); 1084 if (!shift) 1085 shift = PAGE_SHIFT; 1086 if (ptep && pte_present(*ptep)) { 1087 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 1088 ret = true; 1089 } 1090 spin_unlock(&kvm->mmu_lock); 1091 1092 if (shift_ret) 1093 *shift_ret = shift; 1094 return ret; 1095 } 1096 1097 static inline int get_ric(unsigned int instr) 1098 { 1099 return (instr >> 18) & 0x3; 1100 } 1101 1102 static inline int get_prs(unsigned int instr) 1103 { 1104 return (instr >> 17) & 0x1; 1105 } 1106 1107 static inline int get_r(unsigned int instr) 1108 { 1109 return (instr >> 16) & 0x1; 1110 } 1111 1112 static inline int get_lpid(unsigned long r_val) 1113 { 1114 return r_val & 0xffffffff; 1115 } 1116 1117 static inline int get_is(unsigned long r_val) 1118 { 1119 return (r_val >> 10) & 0x3; 1120 } 1121 1122 static inline int get_ap(unsigned long r_val) 1123 { 1124 return (r_val >> 5) & 0x7; 1125 } 1126 1127 static inline long get_epn(unsigned long r_val) 1128 { 1129 return r_val >> 12; 1130 } 1131 1132 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid, 1133 int ap, long epn) 1134 { 1135 struct kvm *kvm = vcpu->kvm; 1136 struct kvm_nested_guest *gp; 1137 long npages; 1138 int shift, shadow_shift; 1139 unsigned long addr; 1140 1141 shift = ap_to_shift(ap); 1142 addr = epn << 12; 1143 if (shift < 0) 1144 /* Invalid ap encoding */ 1145 return -EINVAL; 1146 1147 addr &= ~((1UL << shift) - 1); 1148 npages = 1UL << (shift - PAGE_SHIFT); 1149 1150 gp = kvmhv_get_nested(kvm, lpid, false); 1151 if (!gp) /* No such guest -> nothing to do */ 1152 return 0; 1153 mutex_lock(&gp->tlb_lock); 1154 1155 /* There may be more than one host page backing this single guest pte */ 1156 do { 1157 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift); 1158 1159 npages -= 1UL << (shadow_shift - PAGE_SHIFT); 1160 addr += 1UL << shadow_shift; 1161 } while (npages > 0); 1162 1163 mutex_unlock(&gp->tlb_lock); 1164 kvmhv_put_nested(gp); 1165 return 0; 1166 } 1167 1168 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu, 1169 struct kvm_nested_guest *gp, int ric) 1170 { 1171 struct kvm *kvm = vcpu->kvm; 1172 1173 mutex_lock(&gp->tlb_lock); 1174 switch (ric) { 1175 case 0: 1176 /* Invalidate TLB */ 1177 spin_lock(&kvm->mmu_lock); 1178 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 1179 gp->shadow_lpid); 1180 kvmhv_flush_lpid(gp->shadow_lpid); 1181 spin_unlock(&kvm->mmu_lock); 1182 break; 1183 case 1: 1184 /* 1185 * Invalidate PWC 1186 * We don't cache this -> nothing to do 1187 */ 1188 break; 1189 case 2: 1190 /* Invalidate TLB, PWC and caching of partition table entries */ 1191 kvmhv_flush_nested(gp); 1192 break; 1193 default: 1194 break; 1195 } 1196 mutex_unlock(&gp->tlb_lock); 1197 } 1198 1199 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric) 1200 { 1201 struct kvm *kvm = vcpu->kvm; 1202 struct kvm_nested_guest *gp; 1203 int lpid; 1204 1205 spin_lock(&kvm->mmu_lock); 1206 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) { 1207 spin_unlock(&kvm->mmu_lock); 1208 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1209 spin_lock(&kvm->mmu_lock); 1210 } 1211 spin_unlock(&kvm->mmu_lock); 1212 } 1213 1214 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr, 1215 unsigned long rsval, unsigned long rbval) 1216 { 1217 struct kvm *kvm = vcpu->kvm; 1218 struct kvm_nested_guest *gp; 1219 int r, ric, prs, is, ap; 1220 int lpid; 1221 long epn; 1222 int ret = 0; 1223 1224 ric = get_ric(instr); 1225 prs = get_prs(instr); 1226 r = get_r(instr); 1227 lpid = get_lpid(rsval); 1228 is = get_is(rbval); 1229 1230 /* 1231 * These cases are invalid and are not handled: 1232 * r != 1 -> Only radix supported 1233 * prs == 1 -> Not HV privileged 1234 * ric == 3 -> No cluster bombs for radix 1235 * is == 1 -> Partition scoped translations not associated with pid 1236 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA 1237 */ 1238 if ((!r) || (prs) || (ric == 3) || (is == 1) || 1239 ((!is) && (ric == 1 || ric == 2))) 1240 return -EINVAL; 1241 1242 switch (is) { 1243 case 0: 1244 /* 1245 * We know ric == 0 1246 * Invalidate TLB for a given target address 1247 */ 1248 epn = get_epn(rbval); 1249 ap = get_ap(rbval); 1250 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn); 1251 break; 1252 case 2: 1253 /* Invalidate matching LPID */ 1254 gp = kvmhv_get_nested(kvm, lpid, false); 1255 if (gp) { 1256 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1257 kvmhv_put_nested(gp); 1258 } 1259 break; 1260 case 3: 1261 /* Invalidate ALL LPIDs */ 1262 kvmhv_emulate_tlbie_all_lpid(vcpu, ric); 1263 break; 1264 default: 1265 ret = -EINVAL; 1266 break; 1267 } 1268 1269 return ret; 1270 } 1271 1272 /* 1273 * This handles the H_TLB_INVALIDATE hcall. 1274 * Parameters are (r4) tlbie instruction code, (r5) rS contents, 1275 * (r6) rB contents. 1276 */ 1277 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu) 1278 { 1279 int ret; 1280 1281 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4), 1282 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); 1283 if (ret) 1284 return H_PARAMETER; 1285 return H_SUCCESS; 1286 } 1287 1288 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu, 1289 unsigned long lpid, unsigned long ric) 1290 { 1291 struct kvm *kvm = vcpu->kvm; 1292 struct kvm_nested_guest *gp; 1293 1294 gp = kvmhv_get_nested(kvm, lpid, false); 1295 if (gp) { 1296 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1297 kvmhv_put_nested(gp); 1298 } 1299 return H_SUCCESS; 1300 } 1301 1302 /* 1303 * Number of pages above which we invalidate the entire LPID rather than 1304 * flush individual pages. 1305 */ 1306 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33; 1307 1308 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu, 1309 unsigned long lpid, 1310 unsigned long pg_sizes, 1311 unsigned long start, 1312 unsigned long end) 1313 { 1314 int ret = H_P4; 1315 unsigned long addr, nr_pages; 1316 struct mmu_psize_def *def; 1317 unsigned long psize, ap, page_size; 1318 bool flush_lpid; 1319 1320 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1321 def = &mmu_psize_defs[psize]; 1322 if (!(pg_sizes & def->h_rpt_pgsize)) 1323 continue; 1324 1325 nr_pages = (end - start) >> def->shift; 1326 flush_lpid = nr_pages > tlb_range_flush_page_ceiling; 1327 if (flush_lpid) 1328 return do_tlb_invalidate_nested_all(vcpu, lpid, 1329 RIC_FLUSH_TLB); 1330 addr = start; 1331 ap = mmu_get_ap(psize); 1332 page_size = 1UL << def->shift; 1333 do { 1334 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, 1335 get_epn(addr)); 1336 if (ret) 1337 return H_P4; 1338 addr += page_size; 1339 } while (addr < end); 1340 } 1341 return ret; 1342 } 1343 1344 /* 1345 * Performs partition-scoped invalidations for nested guests 1346 * as part of H_RPT_INVALIDATE hcall. 1347 */ 1348 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid, 1349 unsigned long type, unsigned long pg_sizes, 1350 unsigned long start, unsigned long end) 1351 { 1352 /* 1353 * If L2 lpid isn't valid, we need to return H_PARAMETER. 1354 * 1355 * However, nested KVM issues a L2 lpid flush call when creating 1356 * partition table entries for L2. This happens even before the 1357 * corresponding shadow lpid is created in HV which happens in 1358 * H_ENTER_NESTED call. Since we can't differentiate this case from 1359 * the invalid case, we ignore such flush requests and return success. 1360 */ 1361 if (!__find_nested(vcpu->kvm, lpid)) 1362 return H_SUCCESS; 1363 1364 /* 1365 * A flush all request can be handled by a full lpid flush only. 1366 */ 1367 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL) 1368 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL); 1369 1370 /* 1371 * We don't need to handle a PWC flush like process table here, 1372 * because intermediate partition scoped table in nested guest doesn't 1373 * really have PWC. Only level we have PWC is in L0 and for nested 1374 * invalidate at L0 we always do kvm_flush_lpid() which does 1375 * radix__flush_all_lpid(). For range invalidate at any level, we 1376 * are not removing the higher level page tables and hence there is 1377 * no PWC invalidate needed. 1378 * 1379 * if (type & H_RPTI_TYPE_PWC) { 1380 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC); 1381 * if (ret) 1382 * return H_P4; 1383 * } 1384 */ 1385 1386 if (start == 0 && end == -1) 1387 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB); 1388 1389 if (type & H_RPTI_TYPE_TLB) 1390 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes, 1391 start, end); 1392 return H_SUCCESS; 1393 } 1394 1395 /* Used to convert a nested guest real address to a L1 guest real address */ 1396 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu, 1397 struct kvm_nested_guest *gp, 1398 unsigned long n_gpa, unsigned long dsisr, 1399 struct kvmppc_pte *gpte_p) 1400 { 1401 u64 fault_addr, flags = dsisr & DSISR_ISSTORE; 1402 int ret; 1403 1404 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr, 1405 &fault_addr); 1406 1407 if (ret) { 1408 /* We didn't find a pte */ 1409 if (ret == -EINVAL) { 1410 /* Unsupported mmu config */ 1411 flags |= DSISR_UNSUPP_MMU; 1412 } else if (ret == -ENOENT) { 1413 /* No translation found */ 1414 flags |= DSISR_NOHPTE; 1415 } else if (ret == -EFAULT) { 1416 /* Couldn't access L1 real address */ 1417 flags |= DSISR_PRTABLE_FAULT; 1418 vcpu->arch.fault_gpa = fault_addr; 1419 } else { 1420 /* Unknown error */ 1421 return ret; 1422 } 1423 goto forward_to_l1; 1424 } else { 1425 /* We found a pte -> check permissions */ 1426 if (dsisr & DSISR_ISSTORE) { 1427 /* Can we write? */ 1428 if (!gpte_p->may_write) { 1429 flags |= DSISR_PROTFAULT; 1430 goto forward_to_l1; 1431 } 1432 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1433 /* Can we execute? */ 1434 if (!gpte_p->may_execute) { 1435 flags |= SRR1_ISI_N_G_OR_CIP; 1436 goto forward_to_l1; 1437 } 1438 } else { 1439 /* Can we read? */ 1440 if (!gpte_p->may_read && !gpte_p->may_write) { 1441 flags |= DSISR_PROTFAULT; 1442 goto forward_to_l1; 1443 } 1444 } 1445 } 1446 1447 return 0; 1448 1449 forward_to_l1: 1450 vcpu->arch.fault_dsisr = flags; 1451 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1452 vcpu->arch.shregs.msr &= SRR1_MSR_BITS; 1453 vcpu->arch.shregs.msr |= flags; 1454 } 1455 return RESUME_HOST; 1456 } 1457 1458 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, 1459 struct kvm_nested_guest *gp, 1460 unsigned long n_gpa, 1461 struct kvmppc_pte gpte, 1462 unsigned long dsisr) 1463 { 1464 struct kvm *kvm = vcpu->kvm; 1465 bool writing = !!(dsisr & DSISR_ISSTORE); 1466 u64 pgflags; 1467 long ret; 1468 1469 /* Are the rc bits set in the L1 partition scoped pte? */ 1470 pgflags = _PAGE_ACCESSED; 1471 if (writing) 1472 pgflags |= _PAGE_DIRTY; 1473 if (pgflags & ~gpte.rc) 1474 return RESUME_HOST; 1475 1476 spin_lock(&kvm->mmu_lock); 1477 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */ 1478 ret = kvmppc_hv_handle_set_rc(kvm, false, writing, 1479 gpte.raddr, kvm->arch.lpid); 1480 if (!ret) { 1481 ret = -EINVAL; 1482 goto out_unlock; 1483 } 1484 1485 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */ 1486 ret = kvmppc_hv_handle_set_rc(kvm, true, writing, 1487 n_gpa, gp->l1_lpid); 1488 if (!ret) 1489 ret = -EINVAL; 1490 else 1491 ret = 0; 1492 1493 out_unlock: 1494 spin_unlock(&kvm->mmu_lock); 1495 return ret; 1496 } 1497 1498 static inline int kvmppc_radix_level_to_shift(int level) 1499 { 1500 switch (level) { 1501 case 2: 1502 return PUD_SHIFT; 1503 case 1: 1504 return PMD_SHIFT; 1505 default: 1506 return PAGE_SHIFT; 1507 } 1508 } 1509 1510 static inline int kvmppc_radix_shift_to_level(int shift) 1511 { 1512 if (shift == PUD_SHIFT) 1513 return 2; 1514 if (shift == PMD_SHIFT) 1515 return 1; 1516 if (shift == PAGE_SHIFT) 1517 return 0; 1518 WARN_ON_ONCE(1); 1519 return 0; 1520 } 1521 1522 /* called with gp->tlb_lock held */ 1523 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, 1524 struct kvm_nested_guest *gp) 1525 { 1526 struct kvm *kvm = vcpu->kvm; 1527 struct kvm_memory_slot *memslot; 1528 struct rmap_nested *n_rmap; 1529 struct kvmppc_pte gpte; 1530 pte_t pte, *pte_p; 1531 unsigned long mmu_seq; 1532 unsigned long dsisr = vcpu->arch.fault_dsisr; 1533 unsigned long ea = vcpu->arch.fault_dar; 1534 unsigned long *rmapp; 1535 unsigned long n_gpa, gpa, gfn, perm = 0UL; 1536 unsigned int shift, l1_shift, level; 1537 bool writing = !!(dsisr & DSISR_ISSTORE); 1538 long int ret; 1539 1540 if (!gp->l1_gr_to_hr) { 1541 kvmhv_update_ptbl_cache(gp); 1542 if (!gp->l1_gr_to_hr) 1543 return RESUME_HOST; 1544 } 1545 1546 /* Convert the nested guest real address into a L1 guest real address */ 1547 1548 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL; 1549 if (!(dsisr & DSISR_PRTABLE_FAULT)) 1550 n_gpa |= ea & 0xFFF; 1551 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte); 1552 1553 /* 1554 * If the hardware found a translation but we don't now have a usable 1555 * translation in the l1 partition-scoped tree, remove the shadow pte 1556 * and let the guest retry. 1557 */ 1558 if (ret == RESUME_HOST && 1559 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G | 1560 DSISR_BAD_COPYPASTE))) 1561 goto inval; 1562 if (ret) 1563 return ret; 1564 1565 /* Failed to set the reference/change bits */ 1566 if (dsisr & DSISR_SET_RC) { 1567 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr); 1568 if (ret == RESUME_HOST) 1569 return ret; 1570 if (ret) 1571 goto inval; 1572 dsisr &= ~DSISR_SET_RC; 1573 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 1574 DSISR_PROTFAULT))) 1575 return RESUME_GUEST; 1576 } 1577 1578 /* 1579 * We took an HISI or HDSI while we were running a nested guest which 1580 * means we have no partition scoped translation for that. This means 1581 * we need to insert a pte for the mapping into our shadow_pgtable. 1582 */ 1583 1584 l1_shift = gpte.page_shift; 1585 if (l1_shift < PAGE_SHIFT) { 1586 /* We don't support l1 using a page size smaller than our own */ 1587 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n", 1588 l1_shift, PAGE_SHIFT); 1589 return -EINVAL; 1590 } 1591 gpa = gpte.raddr; 1592 gfn = gpa >> PAGE_SHIFT; 1593 1594 /* 1. Get the corresponding host memslot */ 1595 1596 memslot = gfn_to_memslot(kvm, gfn); 1597 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 1598 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) { 1599 /* unusual error -> reflect to the guest as a DSI */ 1600 kvmppc_core_queue_data_storage(vcpu, 1601 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1602 ea, dsisr); 1603 return RESUME_GUEST; 1604 } 1605 1606 /* passthrough of emulated MMIO case */ 1607 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); 1608 } 1609 if (memslot->flags & KVM_MEM_READONLY) { 1610 if (writing) { 1611 /* Give the guest a DSI */ 1612 kvmppc_core_queue_data_storage(vcpu, 1613 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1614 ea, DSISR_ISSTORE | DSISR_PROTFAULT); 1615 return RESUME_GUEST; 1616 } 1617 } 1618 1619 /* 2. Find the host pte for this L1 guest real address */ 1620 1621 /* Used to check for invalidations in progress */ 1622 mmu_seq = kvm->mmu_invalidate_seq; 1623 smp_rmb(); 1624 1625 /* See if can find translation in our partition scoped tables for L1 */ 1626 pte = __pte(0); 1627 spin_lock(&kvm->mmu_lock); 1628 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift); 1629 if (!shift) 1630 shift = PAGE_SHIFT; 1631 if (pte_p) 1632 pte = *pte_p; 1633 spin_unlock(&kvm->mmu_lock); 1634 1635 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) { 1636 /* No suitable pte found -> try to insert a mapping */ 1637 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, 1638 writing, &pte, &level); 1639 if (ret == -EAGAIN) 1640 return RESUME_GUEST; 1641 else if (ret) 1642 return ret; 1643 shift = kvmppc_radix_level_to_shift(level); 1644 } 1645 /* Align gfn to the start of the page */ 1646 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT; 1647 1648 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */ 1649 1650 /* The permissions is the combination of the host and l1 guest ptes */ 1651 perm |= gpte.may_read ? 0UL : _PAGE_READ; 1652 perm |= gpte.may_write ? 0UL : _PAGE_WRITE; 1653 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC; 1654 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */ 1655 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED; 1656 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY; 1657 pte = __pte(pte_val(pte) & ~perm); 1658 1659 /* What size pte can we insert? */ 1660 if (shift > l1_shift) { 1661 u64 mask; 1662 unsigned int actual_shift = PAGE_SHIFT; 1663 if (PMD_SHIFT < l1_shift) 1664 actual_shift = PMD_SHIFT; 1665 mask = (1UL << shift) - (1UL << actual_shift); 1666 pte = __pte(pte_val(pte) | (gpa & mask)); 1667 shift = actual_shift; 1668 } 1669 level = kvmppc_radix_shift_to_level(shift); 1670 n_gpa &= ~((1UL << shift) - 1); 1671 1672 /* 4. Insert the pte into our shadow_pgtable */ 1673 1674 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL); 1675 if (!n_rmap) 1676 return RESUME_GUEST; /* Let the guest try again */ 1677 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) | 1678 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT); 1679 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1680 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level, 1681 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap); 1682 kfree(n_rmap); 1683 if (ret == -EAGAIN) 1684 ret = RESUME_GUEST; /* Let the guest try again */ 1685 1686 return ret; 1687 1688 inval: 1689 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL); 1690 return RESUME_GUEST; 1691 } 1692 1693 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) 1694 { 1695 struct kvm_nested_guest *gp = vcpu->arch.nested; 1696 long int ret; 1697 1698 mutex_lock(&gp->tlb_lock); 1699 ret = __kvmhv_nested_page_fault(vcpu, gp); 1700 mutex_unlock(&gp->tlb_lock); 1701 return ret; 1702 } 1703 1704 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid) 1705 { 1706 int ret = lpid + 1; 1707 1708 spin_lock(&kvm->mmu_lock); 1709 if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret)) 1710 ret = -1; 1711 spin_unlock(&kvm->mmu_lock); 1712 1713 return ret; 1714 } 1715