xref: /linux/arch/powerpc/kvm/book3s_hv_nested.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corporation, 2018
4  * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5  *	   Paul Mackerras <paulus@ozlabs.org>
6  *
7  * Description: KVM functions specific to running nested KVM-HV guests
8  * on Book3S processors (specifically POWER9 and later).
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15 
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23 #include <asm/firmware.h>
24 
25 static struct patb_entry *pseries_partition_tb;
26 
27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
29 
30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
31 {
32 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
33 
34 	hr->pcr = vc->pcr | PCR_MASK;
35 	hr->dpdes = vcpu->arch.doorbell_request;
36 	hr->hfscr = vcpu->arch.hfscr;
37 	hr->tb_offset = vc->tb_offset;
38 	hr->dawr0 = vcpu->arch.dawr0;
39 	hr->dawrx0 = vcpu->arch.dawrx0;
40 	hr->ciabr = vcpu->arch.ciabr;
41 	hr->purr = vcpu->arch.purr;
42 	hr->spurr = vcpu->arch.spurr;
43 	hr->ic = vcpu->arch.ic;
44 	hr->vtb = vc->vtb;
45 	hr->srr0 = vcpu->arch.shregs.srr0;
46 	hr->srr1 = vcpu->arch.shregs.srr1;
47 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
48 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
49 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
50 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
51 	hr->pidr = vcpu->arch.pid;
52 	hr->cfar = vcpu->arch.cfar;
53 	hr->ppr = vcpu->arch.ppr;
54 	hr->dawr1 = vcpu->arch.dawr1;
55 	hr->dawrx1 = vcpu->arch.dawrx1;
56 }
57 
58 /* Use noinline_for_stack due to https://llvm.org/pr49610 */
59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
60 {
61 	unsigned long *addr = (unsigned long *) regs;
62 
63 	for (; addr < ((unsigned long *) (regs + 1)); addr++)
64 		*addr = swab64(*addr);
65 }
66 
67 static void byteswap_hv_regs(struct hv_guest_state *hr)
68 {
69 	hr->version = swab64(hr->version);
70 	hr->lpid = swab32(hr->lpid);
71 	hr->vcpu_token = swab32(hr->vcpu_token);
72 	hr->lpcr = swab64(hr->lpcr);
73 	hr->pcr = swab64(hr->pcr) | PCR_MASK;
74 	hr->amor = swab64(hr->amor);
75 	hr->dpdes = swab64(hr->dpdes);
76 	hr->hfscr = swab64(hr->hfscr);
77 	hr->tb_offset = swab64(hr->tb_offset);
78 	hr->dawr0 = swab64(hr->dawr0);
79 	hr->dawrx0 = swab64(hr->dawrx0);
80 	hr->ciabr = swab64(hr->ciabr);
81 	hr->hdec_expiry = swab64(hr->hdec_expiry);
82 	hr->purr = swab64(hr->purr);
83 	hr->spurr = swab64(hr->spurr);
84 	hr->ic = swab64(hr->ic);
85 	hr->vtb = swab64(hr->vtb);
86 	hr->hdar = swab64(hr->hdar);
87 	hr->hdsisr = swab64(hr->hdsisr);
88 	hr->heir = swab64(hr->heir);
89 	hr->asdr = swab64(hr->asdr);
90 	hr->srr0 = swab64(hr->srr0);
91 	hr->srr1 = swab64(hr->srr1);
92 	hr->sprg[0] = swab64(hr->sprg[0]);
93 	hr->sprg[1] = swab64(hr->sprg[1]);
94 	hr->sprg[2] = swab64(hr->sprg[2]);
95 	hr->sprg[3] = swab64(hr->sprg[3]);
96 	hr->pidr = swab64(hr->pidr);
97 	hr->cfar = swab64(hr->cfar);
98 	hr->ppr = swab64(hr->ppr);
99 	hr->dawr1 = swab64(hr->dawr1);
100 	hr->dawrx1 = swab64(hr->dawrx1);
101 }
102 
103 static void save_hv_return_state(struct kvm_vcpu *vcpu,
104 				 struct hv_guest_state *hr)
105 {
106 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
107 
108 	hr->dpdes = vcpu->arch.doorbell_request;
109 	hr->purr = vcpu->arch.purr;
110 	hr->spurr = vcpu->arch.spurr;
111 	hr->ic = vcpu->arch.ic;
112 	hr->vtb = vc->vtb;
113 	hr->srr0 = vcpu->arch.shregs.srr0;
114 	hr->srr1 = vcpu->arch.shregs.srr1;
115 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
116 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
117 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
118 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
119 	hr->pidr = vcpu->arch.pid;
120 	hr->cfar = vcpu->arch.cfar;
121 	hr->ppr = vcpu->arch.ppr;
122 	switch (vcpu->arch.trap) {
123 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
124 		hr->hdar = vcpu->arch.fault_dar;
125 		hr->hdsisr = vcpu->arch.fault_dsisr;
126 		hr->asdr = vcpu->arch.fault_gpa;
127 		break;
128 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
129 		hr->asdr = vcpu->arch.fault_gpa;
130 		break;
131 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
132 		hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
133 			     (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
134 		break;
135 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
136 		hr->heir = vcpu->arch.emul_inst;
137 		break;
138 	}
139 }
140 
141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
142 {
143 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
144 
145 	vc->pcr = hr->pcr | PCR_MASK;
146 	vcpu->arch.doorbell_request = hr->dpdes;
147 	vcpu->arch.hfscr = hr->hfscr;
148 	vcpu->arch.dawr0 = hr->dawr0;
149 	vcpu->arch.dawrx0 = hr->dawrx0;
150 	vcpu->arch.ciabr = hr->ciabr;
151 	vcpu->arch.purr = hr->purr;
152 	vcpu->arch.spurr = hr->spurr;
153 	vcpu->arch.ic = hr->ic;
154 	vc->vtb = hr->vtb;
155 	vcpu->arch.shregs.srr0 = hr->srr0;
156 	vcpu->arch.shregs.srr1 = hr->srr1;
157 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
158 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
159 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
160 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
161 	vcpu->arch.pid = hr->pidr;
162 	vcpu->arch.cfar = hr->cfar;
163 	vcpu->arch.ppr = hr->ppr;
164 	vcpu->arch.dawr1 = hr->dawr1;
165 	vcpu->arch.dawrx1 = hr->dawrx1;
166 }
167 
168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
169 				   struct hv_guest_state *hr)
170 {
171 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
172 
173 	/*
174 	 * This L2 vCPU might have received a doorbell while H_ENTER_NESTED was being handled.
175 	 * Make sure we preserve the doorbell if it was either:
176 	 *   a) Sent after H_ENTER_NESTED was called on this vCPU (arch.doorbell_request would be 1)
177 	 *   b) Doorbell was not handled and L2 exited for some other reason (hr->dpdes would be 1)
178 	 */
179 	vcpu->arch.doorbell_request = vcpu->arch.doorbell_request | hr->dpdes;
180 	vcpu->arch.hfscr = hr->hfscr;
181 	vcpu->arch.purr = hr->purr;
182 	vcpu->arch.spurr = hr->spurr;
183 	vcpu->arch.ic = hr->ic;
184 	vc->vtb = hr->vtb;
185 	vcpu->arch.fault_dar = hr->hdar;
186 	vcpu->arch.fault_dsisr = hr->hdsisr;
187 	vcpu->arch.fault_gpa = hr->asdr;
188 	vcpu->arch.emul_inst = hr->heir;
189 	vcpu->arch.shregs.srr0 = hr->srr0;
190 	vcpu->arch.shregs.srr1 = hr->srr1;
191 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
192 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
193 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
194 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
195 	vcpu->arch.pid = hr->pidr;
196 	vcpu->arch.cfar = hr->cfar;
197 	vcpu->arch.ppr = hr->ppr;
198 }
199 
200 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
201 {
202 	/* No need to reflect the page fault to L1, we've handled it */
203 	vcpu->arch.trap = 0;
204 
205 	/*
206 	 * Since the L2 gprs have already been written back into L1 memory when
207 	 * we complete the mmio, store the L1 memory location of the L2 gpr
208 	 * being loaded into by the mmio so that the loaded value can be
209 	 * written there in kvmppc_complete_mmio_load()
210 	 */
211 	if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
212 	    && (vcpu->mmio_is_write == 0)) {
213 		vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
214 					   offsetof(struct pt_regs,
215 						    gpr[vcpu->arch.io_gpr]);
216 		vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
217 	}
218 }
219 
220 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
221 					   struct hv_guest_state *l2_hv,
222 					   struct pt_regs *l2_regs,
223 					   u64 hv_ptr, u64 regs_ptr)
224 {
225 	int size;
226 
227 	if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
228 				sizeof(l2_hv->version)))
229 		return -1;
230 
231 	if (kvmppc_need_byteswap(vcpu))
232 		l2_hv->version = swab64(l2_hv->version);
233 
234 	size = hv_guest_state_size(l2_hv->version);
235 	if (size < 0)
236 		return -1;
237 
238 	return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
239 		kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
240 				    sizeof(struct pt_regs));
241 }
242 
243 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
244 					    struct hv_guest_state *l2_hv,
245 					    struct pt_regs *l2_regs,
246 					    u64 hv_ptr, u64 regs_ptr)
247 {
248 	int size;
249 
250 	size = hv_guest_state_size(l2_hv->version);
251 	if (size < 0)
252 		return -1;
253 
254 	return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
255 		kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
256 				     sizeof(struct pt_regs));
257 }
258 
259 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
260 			    const struct hv_guest_state *l2_hv,
261 			    const struct hv_guest_state *l1_hv, u64 *lpcr)
262 {
263 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
264 	u64 mask;
265 
266 	restore_hv_regs(vcpu, l2_hv);
267 
268 	/*
269 	 * Don't let L1 change LPCR bits for the L2 except these:
270 	 */
271 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
272 
273 	/*
274 	 * Additional filtering is required depending on hardware
275 	 * and configuration.
276 	 */
277 	*lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
278 				      (vc->lpcr & ~mask) | (*lpcr & mask));
279 
280 	/*
281 	 * Don't let L1 enable features for L2 which we don't allow for L1,
282 	 * but preserve the interrupt cause field.
283 	 */
284 	vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
285 
286 	/* Don't let data address watchpoint match in hypervisor state */
287 	vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
288 	vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
289 
290 	/* Don't let completed instruction address breakpt match in HV state */
291 	if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
292 		vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
293 }
294 
295 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
296 {
297 	long int err, r;
298 	struct kvm_nested_guest *l2;
299 	struct pt_regs l2_regs, saved_l1_regs;
300 	struct hv_guest_state l2_hv = {0}, saved_l1_hv;
301 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
302 	u64 hv_ptr, regs_ptr;
303 	u64 hdec_exp, lpcr;
304 	s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
305 
306 	if (vcpu->kvm->arch.l1_ptcr == 0)
307 		return H_NOT_AVAILABLE;
308 
309 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
310 		return H_BAD_MODE;
311 
312 	/* copy parameters in */
313 	hv_ptr = kvmppc_get_gpr(vcpu, 4);
314 	regs_ptr = kvmppc_get_gpr(vcpu, 5);
315 	kvm_vcpu_srcu_read_lock(vcpu);
316 	err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
317 					      hv_ptr, regs_ptr);
318 	kvm_vcpu_srcu_read_unlock(vcpu);
319 	if (err)
320 		return H_PARAMETER;
321 
322 	if (kvmppc_need_byteswap(vcpu))
323 		byteswap_hv_regs(&l2_hv);
324 	if (l2_hv.version > HV_GUEST_STATE_VERSION)
325 		return H_P2;
326 
327 	if (kvmppc_need_byteswap(vcpu))
328 		byteswap_pt_regs(&l2_regs);
329 	if (l2_hv.vcpu_token >= NR_CPUS)
330 		return H_PARAMETER;
331 
332 	/*
333 	 * L1 must have set up a suspended state to enter the L2 in a
334 	 * transactional state, and only in that case. These have to be
335 	 * filtered out here to prevent causing a TM Bad Thing in the
336 	 * host HRFID. We could synthesize a TM Bad Thing back to the L1
337 	 * here but there doesn't seem like much point.
338 	 */
339 	if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
340 		if (!MSR_TM_ACTIVE(l2_regs.msr))
341 			return H_BAD_MODE;
342 	} else {
343 		if (l2_regs.msr & MSR_TS_MASK)
344 			return H_BAD_MODE;
345 		if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
346 			return H_BAD_MODE;
347 	}
348 
349 	/* translate lpid */
350 	l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
351 	if (!l2)
352 		return H_PARAMETER;
353 	if (!l2->l1_gr_to_hr) {
354 		mutex_lock(&l2->tlb_lock);
355 		kvmhv_update_ptbl_cache(l2);
356 		mutex_unlock(&l2->tlb_lock);
357 	}
358 
359 	/* save l1 values of things */
360 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
361 	saved_l1_regs = vcpu->arch.regs;
362 	kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
363 
364 	/* convert TB values/offsets to host (L0) values */
365 	hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
366 	vc->tb_offset += l2_hv.tb_offset;
367 	vcpu->arch.dec_expires += l2_hv.tb_offset;
368 
369 	/* set L1 state to L2 state */
370 	vcpu->arch.nested = l2;
371 	vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
372 	vcpu->arch.nested_hfscr = l2_hv.hfscr;
373 	vcpu->arch.regs = l2_regs;
374 
375 	/* Guest must always run with ME enabled, HV disabled. */
376 	vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
377 
378 	lpcr = l2_hv.lpcr;
379 	load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
380 
381 	vcpu->arch.ret = RESUME_GUEST;
382 	vcpu->arch.trap = 0;
383 	do {
384 		r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
385 	} while (is_kvmppc_resume_guest(r));
386 
387 	/* save L2 state for return */
388 	l2_regs = vcpu->arch.regs;
389 	l2_regs.msr = vcpu->arch.shregs.msr;
390 	delta_purr = vcpu->arch.purr - l2_hv.purr;
391 	delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
392 	delta_ic = vcpu->arch.ic - l2_hv.ic;
393 	delta_vtb = vc->vtb - l2_hv.vtb;
394 	save_hv_return_state(vcpu, &l2_hv);
395 
396 	/* restore L1 state */
397 	vcpu->arch.nested = NULL;
398 	vcpu->arch.regs = saved_l1_regs;
399 	vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
400 	/* set L1 MSR TS field according to L2 transaction state */
401 	if (l2_regs.msr & MSR_TS_MASK)
402 		vcpu->arch.shregs.msr |= MSR_TS_S;
403 	vc->tb_offset = saved_l1_hv.tb_offset;
404 	/* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
405 	vcpu->arch.dec_expires -= l2_hv.tb_offset;
406 	restore_hv_regs(vcpu, &saved_l1_hv);
407 	vcpu->arch.purr += delta_purr;
408 	vcpu->arch.spurr += delta_spurr;
409 	vcpu->arch.ic += delta_ic;
410 	vc->vtb += delta_vtb;
411 
412 	kvmhv_put_nested(l2);
413 
414 	/* copy l2_hv_state and regs back to guest */
415 	if (kvmppc_need_byteswap(vcpu)) {
416 		byteswap_hv_regs(&l2_hv);
417 		byteswap_pt_regs(&l2_regs);
418 	}
419 	kvm_vcpu_srcu_read_lock(vcpu);
420 	err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
421 					       hv_ptr, regs_ptr);
422 	kvm_vcpu_srcu_read_unlock(vcpu);
423 	if (err)
424 		return H_AUTHORITY;
425 
426 	if (r == -EINTR)
427 		return H_INTERRUPT;
428 
429 	if (vcpu->mmio_needed) {
430 		kvmhv_nested_mmio_needed(vcpu, regs_ptr);
431 		return H_TOO_HARD;
432 	}
433 
434 	return vcpu->arch.trap;
435 }
436 
437 unsigned long nested_capabilities;
438 
439 long kvmhv_nested_init(void)
440 {
441 	long int ptb_order;
442 	unsigned long ptcr, host_capabilities;
443 	long rc;
444 
445 	if (!kvmhv_on_pseries())
446 		return 0;
447 	if (!radix_enabled())
448 		return -ENODEV;
449 
450 	rc = plpar_guest_get_capabilities(0, &host_capabilities);
451 	if (rc == H_SUCCESS) {
452 		unsigned long capabilities = 0;
453 
454 		if (cpu_has_feature(CPU_FTR_P11_PVR))
455 			capabilities |= H_GUEST_CAP_POWER11;
456 		if (cpu_has_feature(CPU_FTR_ARCH_31))
457 			capabilities |= H_GUEST_CAP_POWER10;
458 		if (cpu_has_feature(CPU_FTR_ARCH_300))
459 			capabilities |= H_GUEST_CAP_POWER9;
460 
461 		nested_capabilities = capabilities & host_capabilities;
462 		rc = plpar_guest_set_capabilities(0, nested_capabilities);
463 		if (rc != H_SUCCESS) {
464 			pr_err("kvm-hv: Could not configure parent hypervisor capabilities (rc=%ld)",
465 			       rc);
466 			return -ENODEV;
467 		}
468 
469 		static_branch_enable(&__kvmhv_is_nestedv2);
470 		return 0;
471 	}
472 
473 	pr_info("kvm-hv: nestedv2 get capabilities hcall failed, falling back to nestedv1 (rc=%ld)\n",
474 		rc);
475 	/* Partition table entry is 1<<4 bytes in size, hence the 4. */
476 	ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
477 	/* Minimum partition table size is 1<<12 bytes */
478 	if (ptb_order < 12)
479 		ptb_order = 12;
480 	pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
481 				       GFP_KERNEL);
482 	if (!pseries_partition_tb) {
483 		pr_err("kvm-hv: failed to allocated nested partition table\n");
484 		return -ENOMEM;
485 	}
486 
487 	ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
488 	rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
489 	if (rc != H_SUCCESS) {
490 		pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
491 		       rc);
492 		kfree(pseries_partition_tb);
493 		pseries_partition_tb = NULL;
494 		return -ENODEV;
495 	}
496 
497 	return 0;
498 }
499 
500 void kvmhv_nested_exit(void)
501 {
502 	/*
503 	 * N.B. the kvmhv_on_pseries() test is there because it enables
504 	 * the compiler to remove the call to plpar_hcall_norets()
505 	 * when CONFIG_PPC_PSERIES=n.
506 	 */
507 	if (kvmhv_on_pseries() && pseries_partition_tb) {
508 		plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
509 		kfree(pseries_partition_tb);
510 		pseries_partition_tb = NULL;
511 	}
512 }
513 
514 void kvmhv_flush_lpid(u64 lpid)
515 {
516 	long rc;
517 
518 	if (!kvmhv_on_pseries()) {
519 		radix__flush_all_lpid(lpid);
520 		return;
521 	}
522 
523 	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
524 		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
525 					lpid, TLBIEL_INVAL_SET_LPID);
526 	else
527 		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
528 					    H_RPTI_TYPE_NESTED |
529 					    H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
530 					    H_RPTI_TYPE_PAT,
531 					    H_RPTI_PAGE_ALL, 0, -1UL);
532 	if (rc)
533 		pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
534 }
535 
536 void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1)
537 {
538 	if (!kvmhv_on_pseries()) {
539 		mmu_partition_table_set_entry(lpid, dw0, dw1, true);
540 		return;
541 	}
542 
543 	if (kvmhv_is_nestedv1()) {
544 		pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
545 		pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
546 		/* L0 will do the necessary barriers */
547 		kvmhv_flush_lpid(lpid);
548 	}
549 
550 	if (kvmhv_is_nestedv2())
551 		kvmhv_nestedv2_set_ptbl_entry(lpid, dw0, dw1);
552 }
553 
554 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
555 {
556 	unsigned long dw0;
557 
558 	dw0 = PATB_HR | radix__get_tree_size() |
559 		__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
560 	kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
561 }
562 
563 /*
564  * Handle the H_SET_PARTITION_TABLE hcall.
565  * r4 = guest real address of partition table + log_2(size) - 12
566  * (formatted as for the PTCR).
567  */
568 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
569 {
570 	struct kvm *kvm = vcpu->kvm;
571 	unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
572 	int srcu_idx;
573 	long ret = H_SUCCESS;
574 
575 	srcu_idx = srcu_read_lock(&kvm->srcu);
576 	/* Check partition size and base address. */
577 	if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
578 	    !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
579 		ret = H_PARAMETER;
580 	srcu_read_unlock(&kvm->srcu, srcu_idx);
581 	if (ret == H_SUCCESS)
582 		kvm->arch.l1_ptcr = ptcr;
583 
584 	return ret;
585 }
586 
587 /*
588  * Handle the H_COPY_TOFROM_GUEST hcall.
589  * r4 = L1 lpid of nested guest
590  * r5 = pid
591  * r6 = eaddr to access
592  * r7 = to buffer (L1 gpa)
593  * r8 = from buffer (L1 gpa)
594  * r9 = n bytes to copy
595  */
596 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
597 {
598 	struct kvm_nested_guest *gp;
599 	int l1_lpid = kvmppc_get_gpr(vcpu, 4);
600 	int pid = kvmppc_get_gpr(vcpu, 5);
601 	gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
602 	gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
603 	gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
604 	void *buf;
605 	unsigned long n = kvmppc_get_gpr(vcpu, 9);
606 	bool is_load = !!gp_to;
607 	long rc;
608 
609 	if (gp_to && gp_from) /* One must be NULL to determine the direction */
610 		return H_PARAMETER;
611 
612 	if (eaddr & (0xFFFUL << 52))
613 		return H_PARAMETER;
614 
615 	buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
616 	if (!buf)
617 		return H_NO_MEM;
618 
619 	gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
620 	if (!gp) {
621 		rc = H_PARAMETER;
622 		goto out_free;
623 	}
624 
625 	mutex_lock(&gp->tlb_lock);
626 
627 	if (is_load) {
628 		/* Load from the nested guest into our buffer */
629 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
630 						     eaddr, buf, NULL, n);
631 		if (rc)
632 			goto not_found;
633 
634 		/* Write what was loaded into our buffer back to the L1 guest */
635 		kvm_vcpu_srcu_read_lock(vcpu);
636 		rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
637 		kvm_vcpu_srcu_read_unlock(vcpu);
638 		if (rc)
639 			goto not_found;
640 	} else {
641 		/* Load the data to be stored from the L1 guest into our buf */
642 		kvm_vcpu_srcu_read_lock(vcpu);
643 		rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
644 		kvm_vcpu_srcu_read_unlock(vcpu);
645 		if (rc)
646 			goto not_found;
647 
648 		/* Store from our buffer into the nested guest */
649 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
650 						     eaddr, NULL, buf, n);
651 		if (rc)
652 			goto not_found;
653 	}
654 
655 out_unlock:
656 	mutex_unlock(&gp->tlb_lock);
657 	kvmhv_put_nested(gp);
658 out_free:
659 	kfree(buf);
660 	return rc;
661 not_found:
662 	rc = H_NOT_FOUND;
663 	goto out_unlock;
664 }
665 
666 /*
667  * Reload the partition table entry for a guest.
668  * Caller must hold gp->tlb_lock.
669  */
670 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
671 {
672 	int ret;
673 	struct patb_entry ptbl_entry;
674 	unsigned long ptbl_addr;
675 	struct kvm *kvm = gp->l1_host;
676 
677 	ret = -EFAULT;
678 	ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
679 	if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
680 		int srcu_idx = srcu_read_lock(&kvm->srcu);
681 		ret = kvm_read_guest(kvm, ptbl_addr,
682 				     &ptbl_entry, sizeof(ptbl_entry));
683 		srcu_read_unlock(&kvm->srcu, srcu_idx);
684 	}
685 	if (ret) {
686 		gp->l1_gr_to_hr = 0;
687 		gp->process_table = 0;
688 	} else {
689 		gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
690 		gp->process_table = be64_to_cpu(ptbl_entry.patb1);
691 	}
692 	kvmhv_set_nested_ptbl(gp);
693 }
694 
695 void kvmhv_vm_nested_init(struct kvm *kvm)
696 {
697 	idr_init(&kvm->arch.kvm_nested_guest_idr);
698 }
699 
700 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
701 {
702 	return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
703 }
704 
705 static bool __prealloc_nested(struct kvm *kvm, int lpid)
706 {
707 	if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
708 				NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
709 		return false;
710 	return true;
711 }
712 
713 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
714 {
715 	if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
716 		WARN_ON(1);
717 }
718 
719 static void __remove_nested(struct kvm *kvm, int lpid)
720 {
721 	idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
722 }
723 
724 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
725 {
726 	struct kvm_nested_guest *gp;
727 	long shadow_lpid;
728 
729 	gp = kzalloc(sizeof(*gp), GFP_KERNEL);
730 	if (!gp)
731 		return NULL;
732 	gp->l1_host = kvm;
733 	gp->l1_lpid = lpid;
734 	mutex_init(&gp->tlb_lock);
735 	gp->shadow_pgtable = pgd_alloc(kvm->mm);
736 	if (!gp->shadow_pgtable)
737 		goto out_free;
738 	shadow_lpid = kvmppc_alloc_lpid();
739 	if (shadow_lpid < 0)
740 		goto out_free2;
741 	gp->shadow_lpid = shadow_lpid;
742 	gp->radix = 1;
743 
744 	memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
745 
746 	return gp;
747 
748  out_free2:
749 	pgd_free(kvm->mm, gp->shadow_pgtable);
750  out_free:
751 	kfree(gp);
752 	return NULL;
753 }
754 
755 /*
756  * Free up any resources allocated for a nested guest.
757  */
758 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
759 {
760 	struct kvm *kvm = gp->l1_host;
761 
762 	if (gp->shadow_pgtable) {
763 		/*
764 		 * No vcpu is using this struct and no call to
765 		 * kvmhv_get_nested can find this struct,
766 		 * so we don't need to hold kvm->mmu_lock.
767 		 */
768 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
769 					  gp->shadow_lpid);
770 		pgd_free(kvm->mm, gp->shadow_pgtable);
771 	}
772 	kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
773 	kvmppc_free_lpid(gp->shadow_lpid);
774 	kfree(gp);
775 }
776 
777 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
778 {
779 	struct kvm *kvm = gp->l1_host;
780 	int lpid = gp->l1_lpid;
781 	long ref;
782 
783 	spin_lock(&kvm->mmu_lock);
784 	if (gp == __find_nested(kvm, lpid)) {
785 		__remove_nested(kvm, lpid);
786 		--gp->refcnt;
787 	}
788 	ref = gp->refcnt;
789 	spin_unlock(&kvm->mmu_lock);
790 	if (ref == 0)
791 		kvmhv_release_nested(gp);
792 }
793 
794 /*
795  * Free up all nested resources allocated for this guest.
796  * This is called with no vcpus of the guest running, when
797  * switching the guest to HPT mode or when destroying the
798  * guest.
799  */
800 void kvmhv_release_all_nested(struct kvm *kvm)
801 {
802 	int lpid;
803 	struct kvm_nested_guest *gp;
804 	struct kvm_nested_guest *freelist = NULL;
805 	struct kvm_memory_slot *memslot;
806 	int srcu_idx, bkt;
807 
808 	spin_lock(&kvm->mmu_lock);
809 	idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
810 		__remove_nested(kvm, lpid);
811 		if (--gp->refcnt == 0) {
812 			gp->next = freelist;
813 			freelist = gp;
814 		}
815 	}
816 	idr_destroy(&kvm->arch.kvm_nested_guest_idr);
817 	/* idr is empty and may be reused at this point */
818 	spin_unlock(&kvm->mmu_lock);
819 	while ((gp = freelist) != NULL) {
820 		freelist = gp->next;
821 		kvmhv_release_nested(gp);
822 	}
823 
824 	srcu_idx = srcu_read_lock(&kvm->srcu);
825 	kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
826 		kvmhv_free_memslot_nest_rmap(memslot);
827 	srcu_read_unlock(&kvm->srcu, srcu_idx);
828 }
829 
830 /* caller must hold gp->tlb_lock */
831 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
832 {
833 	struct kvm *kvm = gp->l1_host;
834 
835 	spin_lock(&kvm->mmu_lock);
836 	kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
837 	spin_unlock(&kvm->mmu_lock);
838 	kvmhv_flush_lpid(gp->shadow_lpid);
839 	kvmhv_update_ptbl_cache(gp);
840 	if (gp->l1_gr_to_hr == 0)
841 		kvmhv_remove_nested(gp);
842 }
843 
844 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
845 					  bool create)
846 {
847 	struct kvm_nested_guest *gp, *newgp;
848 
849 	if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
850 		return NULL;
851 
852 	spin_lock(&kvm->mmu_lock);
853 	gp = __find_nested(kvm, l1_lpid);
854 	if (gp)
855 		++gp->refcnt;
856 	spin_unlock(&kvm->mmu_lock);
857 
858 	if (gp || !create)
859 		return gp;
860 
861 	newgp = kvmhv_alloc_nested(kvm, l1_lpid);
862 	if (!newgp)
863 		return NULL;
864 
865 	if (!__prealloc_nested(kvm, l1_lpid)) {
866 		kvmhv_release_nested(newgp);
867 		return NULL;
868 	}
869 
870 	spin_lock(&kvm->mmu_lock);
871 	gp = __find_nested(kvm, l1_lpid);
872 	if (!gp) {
873 		__add_nested(kvm, l1_lpid, newgp);
874 		++newgp->refcnt;
875 		gp = newgp;
876 		newgp = NULL;
877 	}
878 	++gp->refcnt;
879 	spin_unlock(&kvm->mmu_lock);
880 
881 	if (newgp)
882 		kvmhv_release_nested(newgp);
883 
884 	return gp;
885 }
886 
887 void kvmhv_put_nested(struct kvm_nested_guest *gp)
888 {
889 	struct kvm *kvm = gp->l1_host;
890 	long ref;
891 
892 	spin_lock(&kvm->mmu_lock);
893 	ref = --gp->refcnt;
894 	spin_unlock(&kvm->mmu_lock);
895 	if (ref == 0)
896 		kvmhv_release_nested(gp);
897 }
898 
899 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
900 				 unsigned long ea, unsigned *hshift)
901 {
902 	struct kvm_nested_guest *gp;
903 	pte_t *pte;
904 
905 	gp = __find_nested(kvm, lpid);
906 	if (!gp)
907 		return NULL;
908 
909 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
910 		"%s called with kvm mmu_lock not held \n", __func__);
911 	pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
912 
913 	return pte;
914 }
915 
916 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
917 {
918 	return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
919 				       RMAP_NESTED_GPA_MASK));
920 }
921 
922 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
923 			    struct rmap_nested **n_rmap)
924 {
925 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
926 	struct rmap_nested *cursor;
927 	u64 rmap, new_rmap = (*n_rmap)->rmap;
928 
929 	/* Are there any existing entries? */
930 	if (!(*rmapp)) {
931 		/* No -> use the rmap as a single entry */
932 		*rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
933 		return;
934 	}
935 
936 	/* Do any entries match what we're trying to insert? */
937 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
938 		if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
939 			return;
940 	}
941 
942 	/* Do we need to create a list or just add the new entry? */
943 	rmap = *rmapp;
944 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
945 		*rmapp = 0UL;
946 	llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
947 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
948 		(*n_rmap)->list.next = (struct llist_node *) rmap;
949 
950 	/* Set NULL so not freed by caller */
951 	*n_rmap = NULL;
952 }
953 
954 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
955 				      unsigned long clr, unsigned long set,
956 				      unsigned long hpa, unsigned long mask)
957 {
958 	unsigned long gpa;
959 	unsigned int shift, lpid;
960 	pte_t *ptep;
961 
962 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
963 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
964 
965 	/* Find the pte */
966 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
967 	/*
968 	 * If the pte is present and the pfn is still the same, update the pte.
969 	 * If the pfn has changed then this is a stale rmap entry, the nested
970 	 * gpa actually points somewhere else now, and there is nothing to do.
971 	 * XXX A future optimisation would be to remove the rmap entry here.
972 	 */
973 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
974 		__radix_pte_update(ptep, clr, set);
975 		kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
976 	}
977 }
978 
979 /*
980  * For a given list of rmap entries, update the rc bits in all ptes in shadow
981  * page tables for nested guests which are referenced by the rmap list.
982  */
983 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
984 				    unsigned long clr, unsigned long set,
985 				    unsigned long hpa, unsigned long nbytes)
986 {
987 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
988 	struct rmap_nested *cursor;
989 	unsigned long rmap, mask;
990 
991 	if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
992 		return;
993 
994 	mask = PTE_RPN_MASK & ~(nbytes - 1);
995 	hpa &= mask;
996 
997 	for_each_nest_rmap_safe(cursor, entry, &rmap)
998 		kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
999 }
1000 
1001 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
1002 				   unsigned long hpa, unsigned long mask)
1003 {
1004 	struct kvm_nested_guest *gp;
1005 	unsigned long gpa;
1006 	unsigned int shift, lpid;
1007 	pte_t *ptep;
1008 
1009 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
1010 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
1011 	gp = __find_nested(kvm, lpid);
1012 	if (!gp)
1013 		return;
1014 
1015 	/* Find and invalidate the pte */
1016 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
1017 	/* Don't spuriously invalidate ptes if the pfn has changed */
1018 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
1019 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1020 }
1021 
1022 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
1023 					unsigned long hpa, unsigned long mask)
1024 {
1025 	struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
1026 	struct rmap_nested *cursor;
1027 	unsigned long rmap;
1028 
1029 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
1030 		kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
1031 		kfree(cursor);
1032 	}
1033 }
1034 
1035 /* called with kvm->mmu_lock held */
1036 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
1037 				  const struct kvm_memory_slot *memslot,
1038 				  unsigned long gpa, unsigned long hpa,
1039 				  unsigned long nbytes)
1040 {
1041 	unsigned long gfn, end_gfn;
1042 	unsigned long addr_mask;
1043 
1044 	if (!memslot)
1045 		return;
1046 	gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1047 	end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1048 
1049 	addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1050 	hpa &= addr_mask;
1051 
1052 	for (; gfn < end_gfn; gfn++) {
1053 		unsigned long *rmap = &memslot->arch.rmap[gfn];
1054 		kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1055 	}
1056 }
1057 
1058 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1059 {
1060 	unsigned long page;
1061 
1062 	for (page = 0; page < free->npages; page++) {
1063 		unsigned long rmap, *rmapp = &free->arch.rmap[page];
1064 		struct rmap_nested *cursor;
1065 		struct llist_node *entry;
1066 
1067 		entry = llist_del_all((struct llist_head *) rmapp);
1068 		for_each_nest_rmap_safe(cursor, entry, &rmap)
1069 			kfree(cursor);
1070 	}
1071 }
1072 
1073 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1074 					struct kvm_nested_guest *gp,
1075 					long gpa, int *shift_ret)
1076 {
1077 	struct kvm *kvm = vcpu->kvm;
1078 	bool ret = false;
1079 	pte_t *ptep;
1080 	int shift;
1081 
1082 	spin_lock(&kvm->mmu_lock);
1083 	ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1084 	if (!shift)
1085 		shift = PAGE_SHIFT;
1086 	if (ptep && pte_present(*ptep)) {
1087 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1088 		ret = true;
1089 	}
1090 	spin_unlock(&kvm->mmu_lock);
1091 
1092 	if (shift_ret)
1093 		*shift_ret = shift;
1094 	return ret;
1095 }
1096 
1097 static inline int get_ric(unsigned int instr)
1098 {
1099 	return (instr >> 18) & 0x3;
1100 }
1101 
1102 static inline int get_prs(unsigned int instr)
1103 {
1104 	return (instr >> 17) & 0x1;
1105 }
1106 
1107 static inline int get_r(unsigned int instr)
1108 {
1109 	return (instr >> 16) & 0x1;
1110 }
1111 
1112 static inline int get_lpid(unsigned long r_val)
1113 {
1114 	return r_val & 0xffffffff;
1115 }
1116 
1117 static inline int get_is(unsigned long r_val)
1118 {
1119 	return (r_val >> 10) & 0x3;
1120 }
1121 
1122 static inline int get_ap(unsigned long r_val)
1123 {
1124 	return (r_val >> 5) & 0x7;
1125 }
1126 
1127 static inline long get_epn(unsigned long r_val)
1128 {
1129 	return r_val >> 12;
1130 }
1131 
1132 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1133 					int ap, long epn)
1134 {
1135 	struct kvm *kvm = vcpu->kvm;
1136 	struct kvm_nested_guest *gp;
1137 	long npages;
1138 	int shift, shadow_shift;
1139 	unsigned long addr;
1140 
1141 	shift = ap_to_shift(ap);
1142 	addr = epn << 12;
1143 	if (shift < 0)
1144 		/* Invalid ap encoding */
1145 		return -EINVAL;
1146 
1147 	addr &= ~((1UL << shift) - 1);
1148 	npages = 1UL << (shift - PAGE_SHIFT);
1149 
1150 	gp = kvmhv_get_nested(kvm, lpid, false);
1151 	if (!gp) /* No such guest -> nothing to do */
1152 		return 0;
1153 	mutex_lock(&gp->tlb_lock);
1154 
1155 	/* There may be more than one host page backing this single guest pte */
1156 	do {
1157 		kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1158 
1159 		npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1160 		addr += 1UL << shadow_shift;
1161 	} while (npages > 0);
1162 
1163 	mutex_unlock(&gp->tlb_lock);
1164 	kvmhv_put_nested(gp);
1165 	return 0;
1166 }
1167 
1168 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1169 				     struct kvm_nested_guest *gp, int ric)
1170 {
1171 	struct kvm *kvm = vcpu->kvm;
1172 
1173 	mutex_lock(&gp->tlb_lock);
1174 	switch (ric) {
1175 	case 0:
1176 		/* Invalidate TLB */
1177 		spin_lock(&kvm->mmu_lock);
1178 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1179 					  gp->shadow_lpid);
1180 		kvmhv_flush_lpid(gp->shadow_lpid);
1181 		spin_unlock(&kvm->mmu_lock);
1182 		break;
1183 	case 1:
1184 		/*
1185 		 * Invalidate PWC
1186 		 * We don't cache this -> nothing to do
1187 		 */
1188 		break;
1189 	case 2:
1190 		/* Invalidate TLB, PWC and caching of partition table entries */
1191 		kvmhv_flush_nested(gp);
1192 		break;
1193 	default:
1194 		break;
1195 	}
1196 	mutex_unlock(&gp->tlb_lock);
1197 }
1198 
1199 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1200 {
1201 	struct kvm *kvm = vcpu->kvm;
1202 	struct kvm_nested_guest *gp;
1203 	int lpid;
1204 
1205 	spin_lock(&kvm->mmu_lock);
1206 	idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
1207 		spin_unlock(&kvm->mmu_lock);
1208 		kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1209 		spin_lock(&kvm->mmu_lock);
1210 	}
1211 	spin_unlock(&kvm->mmu_lock);
1212 }
1213 
1214 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1215 				    unsigned long rsval, unsigned long rbval)
1216 {
1217 	struct kvm *kvm = vcpu->kvm;
1218 	struct kvm_nested_guest *gp;
1219 	int r, ric, prs, is, ap;
1220 	int lpid;
1221 	long epn;
1222 	int ret = 0;
1223 
1224 	ric = get_ric(instr);
1225 	prs = get_prs(instr);
1226 	r = get_r(instr);
1227 	lpid = get_lpid(rsval);
1228 	is = get_is(rbval);
1229 
1230 	/*
1231 	 * These cases are invalid and are not handled:
1232 	 * r   != 1 -> Only radix supported
1233 	 * prs == 1 -> Not HV privileged
1234 	 * ric == 3 -> No cluster bombs for radix
1235 	 * is  == 1 -> Partition scoped translations not associated with pid
1236 	 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1237 	 */
1238 	if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1239 	    ((!is) && (ric == 1 || ric == 2)))
1240 		return -EINVAL;
1241 
1242 	switch (is) {
1243 	case 0:
1244 		/*
1245 		 * We know ric == 0
1246 		 * Invalidate TLB for a given target address
1247 		 */
1248 		epn = get_epn(rbval);
1249 		ap = get_ap(rbval);
1250 		ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1251 		break;
1252 	case 2:
1253 		/* Invalidate matching LPID */
1254 		gp = kvmhv_get_nested(kvm, lpid, false);
1255 		if (gp) {
1256 			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1257 			kvmhv_put_nested(gp);
1258 		}
1259 		break;
1260 	case 3:
1261 		/* Invalidate ALL LPIDs */
1262 		kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1263 		break;
1264 	default:
1265 		ret = -EINVAL;
1266 		break;
1267 	}
1268 
1269 	return ret;
1270 }
1271 
1272 /*
1273  * This handles the H_TLB_INVALIDATE hcall.
1274  * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1275  * (r6) rB contents.
1276  */
1277 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1278 {
1279 	int ret;
1280 
1281 	ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1282 			kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1283 	if (ret)
1284 		return H_PARAMETER;
1285 	return H_SUCCESS;
1286 }
1287 
1288 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1289 					 unsigned long lpid, unsigned long ric)
1290 {
1291 	struct kvm *kvm = vcpu->kvm;
1292 	struct kvm_nested_guest *gp;
1293 
1294 	gp = kvmhv_get_nested(kvm, lpid, false);
1295 	if (gp) {
1296 		kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1297 		kvmhv_put_nested(gp);
1298 	}
1299 	return H_SUCCESS;
1300 }
1301 
1302 /*
1303  * Number of pages above which we invalidate the entire LPID rather than
1304  * flush individual pages.
1305  */
1306 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1307 
1308 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1309 					 unsigned long lpid,
1310 					 unsigned long pg_sizes,
1311 					 unsigned long start,
1312 					 unsigned long end)
1313 {
1314 	int ret = H_P4;
1315 	unsigned long addr, nr_pages;
1316 	struct mmu_psize_def *def;
1317 	unsigned long psize, ap, page_size;
1318 	bool flush_lpid;
1319 
1320 	for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1321 		def = &mmu_psize_defs[psize];
1322 		if (!(pg_sizes & def->h_rpt_pgsize))
1323 			continue;
1324 
1325 		nr_pages = (end - start) >> def->shift;
1326 		flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1327 		if (flush_lpid)
1328 			return do_tlb_invalidate_nested_all(vcpu, lpid,
1329 							RIC_FLUSH_TLB);
1330 		addr = start;
1331 		ap = mmu_get_ap(psize);
1332 		page_size = 1UL << def->shift;
1333 		do {
1334 			ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1335 						   get_epn(addr));
1336 			if (ret)
1337 				return H_P4;
1338 			addr += page_size;
1339 		} while (addr < end);
1340 	}
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Performs partition-scoped invalidations for nested guests
1346  * as part of H_RPT_INVALIDATE hcall.
1347  */
1348 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1349 			     unsigned long type, unsigned long pg_sizes,
1350 			     unsigned long start, unsigned long end)
1351 {
1352 	/*
1353 	 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1354 	 *
1355 	 * However, nested KVM issues a L2 lpid flush call when creating
1356 	 * partition table entries for L2. This happens even before the
1357 	 * corresponding shadow lpid is created in HV which happens in
1358 	 * H_ENTER_NESTED call. Since we can't differentiate this case from
1359 	 * the invalid case, we ignore such flush requests and return success.
1360 	 */
1361 	if (!__find_nested(vcpu->kvm, lpid))
1362 		return H_SUCCESS;
1363 
1364 	/*
1365 	 * A flush all request can be handled by a full lpid flush only.
1366 	 */
1367 	if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1368 		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1369 
1370 	/*
1371 	 * We don't need to handle a PWC flush like process table here,
1372 	 * because intermediate partition scoped table in nested guest doesn't
1373 	 * really have PWC. Only level we have PWC is in L0 and for nested
1374 	 * invalidate at L0 we always do kvm_flush_lpid() which does
1375 	 * radix__flush_all_lpid(). For range invalidate at any level, we
1376 	 * are not removing the higher level page tables and hence there is
1377 	 * no PWC invalidate needed.
1378 	 *
1379 	 * if (type & H_RPTI_TYPE_PWC) {
1380 	 *	ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1381 	 *	if (ret)
1382 	 *		return H_P4;
1383 	 * }
1384 	 */
1385 
1386 	if (start == 0 && end == -1)
1387 		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1388 
1389 	if (type & H_RPTI_TYPE_TLB)
1390 		return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1391 						    start, end);
1392 	return H_SUCCESS;
1393 }
1394 
1395 /* Used to convert a nested guest real address to a L1 guest real address */
1396 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1397 				       struct kvm_nested_guest *gp,
1398 				       unsigned long n_gpa, unsigned long dsisr,
1399 				       struct kvmppc_pte *gpte_p)
1400 {
1401 	u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1402 	int ret;
1403 
1404 	ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1405 					 &fault_addr);
1406 
1407 	if (ret) {
1408 		/* We didn't find a pte */
1409 		if (ret == -EINVAL) {
1410 			/* Unsupported mmu config */
1411 			flags |= DSISR_UNSUPP_MMU;
1412 		} else if (ret == -ENOENT) {
1413 			/* No translation found */
1414 			flags |= DSISR_NOHPTE;
1415 		} else if (ret == -EFAULT) {
1416 			/* Couldn't access L1 real address */
1417 			flags |= DSISR_PRTABLE_FAULT;
1418 			vcpu->arch.fault_gpa = fault_addr;
1419 		} else {
1420 			/* Unknown error */
1421 			return ret;
1422 		}
1423 		goto forward_to_l1;
1424 	} else {
1425 		/* We found a pte -> check permissions */
1426 		if (dsisr & DSISR_ISSTORE) {
1427 			/* Can we write? */
1428 			if (!gpte_p->may_write) {
1429 				flags |= DSISR_PROTFAULT;
1430 				goto forward_to_l1;
1431 			}
1432 		} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1433 			/* Can we execute? */
1434 			if (!gpte_p->may_execute) {
1435 				flags |= SRR1_ISI_N_G_OR_CIP;
1436 				goto forward_to_l1;
1437 			}
1438 		} else {
1439 			/* Can we read? */
1440 			if (!gpte_p->may_read && !gpte_p->may_write) {
1441 				flags |= DSISR_PROTFAULT;
1442 				goto forward_to_l1;
1443 			}
1444 		}
1445 	}
1446 
1447 	return 0;
1448 
1449 forward_to_l1:
1450 	vcpu->arch.fault_dsisr = flags;
1451 	if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1452 		vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1453 		vcpu->arch.shregs.msr |= flags;
1454 	}
1455 	return RESUME_HOST;
1456 }
1457 
1458 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1459 				       struct kvm_nested_guest *gp,
1460 				       unsigned long n_gpa,
1461 				       struct kvmppc_pte gpte,
1462 				       unsigned long dsisr)
1463 {
1464 	struct kvm *kvm = vcpu->kvm;
1465 	bool writing = !!(dsisr & DSISR_ISSTORE);
1466 	u64 pgflags;
1467 	long ret;
1468 
1469 	/* Are the rc bits set in the L1 partition scoped pte? */
1470 	pgflags = _PAGE_ACCESSED;
1471 	if (writing)
1472 		pgflags |= _PAGE_DIRTY;
1473 	if (pgflags & ~gpte.rc)
1474 		return RESUME_HOST;
1475 
1476 	spin_lock(&kvm->mmu_lock);
1477 	/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1478 	ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1479 				      gpte.raddr, kvm->arch.lpid);
1480 	if (!ret) {
1481 		ret = -EINVAL;
1482 		goto out_unlock;
1483 	}
1484 
1485 	/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1486 	ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1487 				      n_gpa, gp->l1_lpid);
1488 	if (!ret)
1489 		ret = -EINVAL;
1490 	else
1491 		ret = 0;
1492 
1493 out_unlock:
1494 	spin_unlock(&kvm->mmu_lock);
1495 	return ret;
1496 }
1497 
1498 static inline int kvmppc_radix_level_to_shift(int level)
1499 {
1500 	switch (level) {
1501 	case 2:
1502 		return PUD_SHIFT;
1503 	case 1:
1504 		return PMD_SHIFT;
1505 	default:
1506 		return PAGE_SHIFT;
1507 	}
1508 }
1509 
1510 static inline int kvmppc_radix_shift_to_level(int shift)
1511 {
1512 	if (shift == PUD_SHIFT)
1513 		return 2;
1514 	if (shift == PMD_SHIFT)
1515 		return 1;
1516 	if (shift == PAGE_SHIFT)
1517 		return 0;
1518 	WARN_ON_ONCE(1);
1519 	return 0;
1520 }
1521 
1522 /* called with gp->tlb_lock held */
1523 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1524 					  struct kvm_nested_guest *gp)
1525 {
1526 	struct kvm *kvm = vcpu->kvm;
1527 	struct kvm_memory_slot *memslot;
1528 	struct rmap_nested *n_rmap;
1529 	struct kvmppc_pte gpte;
1530 	pte_t pte, *pte_p;
1531 	unsigned long mmu_seq;
1532 	unsigned long dsisr = vcpu->arch.fault_dsisr;
1533 	unsigned long ea = vcpu->arch.fault_dar;
1534 	unsigned long *rmapp;
1535 	unsigned long n_gpa, gpa, gfn, perm = 0UL;
1536 	unsigned int shift, l1_shift, level;
1537 	bool writing = !!(dsisr & DSISR_ISSTORE);
1538 	long int ret;
1539 
1540 	if (!gp->l1_gr_to_hr) {
1541 		kvmhv_update_ptbl_cache(gp);
1542 		if (!gp->l1_gr_to_hr)
1543 			return RESUME_HOST;
1544 	}
1545 
1546 	/* Convert the nested guest real address into a L1 guest real address */
1547 
1548 	n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1549 	if (!(dsisr & DSISR_PRTABLE_FAULT))
1550 		n_gpa |= ea & 0xFFF;
1551 	ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1552 
1553 	/*
1554 	 * If the hardware found a translation but we don't now have a usable
1555 	 * translation in the l1 partition-scoped tree, remove the shadow pte
1556 	 * and let the guest retry.
1557 	 */
1558 	if (ret == RESUME_HOST &&
1559 	    (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1560 		      DSISR_BAD_COPYPASTE)))
1561 		goto inval;
1562 	if (ret)
1563 		return ret;
1564 
1565 	/* Failed to set the reference/change bits */
1566 	if (dsisr & DSISR_SET_RC) {
1567 		ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1568 		if (ret == RESUME_HOST)
1569 			return ret;
1570 		if (ret)
1571 			goto inval;
1572 		dsisr &= ~DSISR_SET_RC;
1573 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1574 			       DSISR_PROTFAULT)))
1575 			return RESUME_GUEST;
1576 	}
1577 
1578 	/*
1579 	 * We took an HISI or HDSI while we were running a nested guest which
1580 	 * means we have no partition scoped translation for that. This means
1581 	 * we need to insert a pte for the mapping into our shadow_pgtable.
1582 	 */
1583 
1584 	l1_shift = gpte.page_shift;
1585 	if (l1_shift < PAGE_SHIFT) {
1586 		/* We don't support l1 using a page size smaller than our own */
1587 		pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1588 			l1_shift, PAGE_SHIFT);
1589 		return -EINVAL;
1590 	}
1591 	gpa = gpte.raddr;
1592 	gfn = gpa >> PAGE_SHIFT;
1593 
1594 	/* 1. Get the corresponding host memslot */
1595 
1596 	memslot = gfn_to_memslot(kvm, gfn);
1597 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1598 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1599 			/* unusual error -> reflect to the guest as a DSI */
1600 			kvmppc_core_queue_data_storage(vcpu,
1601 					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1602 					ea, dsisr);
1603 			return RESUME_GUEST;
1604 		}
1605 
1606 		/* passthrough of emulated MMIO case */
1607 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1608 	}
1609 	if (memslot->flags & KVM_MEM_READONLY) {
1610 		if (writing) {
1611 			/* Give the guest a DSI */
1612 			kvmppc_core_queue_data_storage(vcpu,
1613 					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1614 					ea, DSISR_ISSTORE | DSISR_PROTFAULT);
1615 			return RESUME_GUEST;
1616 		}
1617 	}
1618 
1619 	/* 2. Find the host pte for this L1 guest real address */
1620 
1621 	/* Used to check for invalidations in progress */
1622 	mmu_seq = kvm->mmu_invalidate_seq;
1623 	smp_rmb();
1624 
1625 	/* See if can find translation in our partition scoped tables for L1 */
1626 	pte = __pte(0);
1627 	spin_lock(&kvm->mmu_lock);
1628 	pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1629 	if (!shift)
1630 		shift = PAGE_SHIFT;
1631 	if (pte_p)
1632 		pte = *pte_p;
1633 	spin_unlock(&kvm->mmu_lock);
1634 
1635 	if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1636 		/* No suitable pte found -> try to insert a mapping */
1637 		ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1638 					writing, &pte, &level);
1639 		if (ret == -EAGAIN)
1640 			return RESUME_GUEST;
1641 		else if (ret)
1642 			return ret;
1643 		shift = kvmppc_radix_level_to_shift(level);
1644 	}
1645 	/* Align gfn to the start of the page */
1646 	gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1647 
1648 	/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1649 
1650 	/* The permissions is the combination of the host and l1 guest ptes */
1651 	perm |= gpte.may_read ? 0UL : _PAGE_READ;
1652 	perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1653 	perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1654 	/* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1655 	perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1656 	perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1657 	pte = __pte(pte_val(pte) & ~perm);
1658 
1659 	/* What size pte can we insert? */
1660 	if (shift > l1_shift) {
1661 		u64 mask;
1662 		unsigned int actual_shift = PAGE_SHIFT;
1663 		if (PMD_SHIFT < l1_shift)
1664 			actual_shift = PMD_SHIFT;
1665 		mask = (1UL << shift) - (1UL << actual_shift);
1666 		pte = __pte(pte_val(pte) | (gpa & mask));
1667 		shift = actual_shift;
1668 	}
1669 	level = kvmppc_radix_shift_to_level(shift);
1670 	n_gpa &= ~((1UL << shift) - 1);
1671 
1672 	/* 4. Insert the pte into our shadow_pgtable */
1673 
1674 	n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1675 	if (!n_rmap)
1676 		return RESUME_GUEST; /* Let the guest try again */
1677 	n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1678 		(((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1679 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1680 	ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1681 				mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1682 	kfree(n_rmap);
1683 	if (ret == -EAGAIN)
1684 		ret = RESUME_GUEST;	/* Let the guest try again */
1685 
1686 	return ret;
1687 
1688  inval:
1689 	kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1690 	return RESUME_GUEST;
1691 }
1692 
1693 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1694 {
1695 	struct kvm_nested_guest *gp = vcpu->arch.nested;
1696 	long int ret;
1697 
1698 	mutex_lock(&gp->tlb_lock);
1699 	ret = __kvmhv_nested_page_fault(vcpu, gp);
1700 	mutex_unlock(&gp->tlb_lock);
1701 	return ret;
1702 }
1703 
1704 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1705 {
1706 	int ret = lpid + 1;
1707 
1708 	spin_lock(&kvm->mmu_lock);
1709 	if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
1710 		ret = -1;
1711 	spin_unlock(&kvm->mmu_lock);
1712 
1713 	return ret;
1714 }
1715