xref: /linux/arch/powerpc/kvm/book3s_hv_nested.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corporation, 2018
4  * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5  *	   Paul Mackerras <paulus@ozlabs.org>
6  *
7  * Description: KVM functions specific to running nested KVM-HV guests
8  * on Book3S processors (specifically POWER9 and later).
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15 
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23 #include <asm/firmware.h>
24 
25 static struct patb_entry *pseries_partition_tb;
26 
27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
29 
30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
31 {
32 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
33 
34 	hr->pcr = vc->pcr | PCR_MASK;
35 	hr->dpdes = vc->dpdes;
36 	hr->hfscr = vcpu->arch.hfscr;
37 	hr->tb_offset = vc->tb_offset;
38 	hr->dawr0 = vcpu->arch.dawr0;
39 	hr->dawrx0 = vcpu->arch.dawrx0;
40 	hr->ciabr = vcpu->arch.ciabr;
41 	hr->purr = vcpu->arch.purr;
42 	hr->spurr = vcpu->arch.spurr;
43 	hr->ic = vcpu->arch.ic;
44 	hr->vtb = vc->vtb;
45 	hr->srr0 = vcpu->arch.shregs.srr0;
46 	hr->srr1 = vcpu->arch.shregs.srr1;
47 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
48 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
49 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
50 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
51 	hr->pidr = vcpu->arch.pid;
52 	hr->cfar = vcpu->arch.cfar;
53 	hr->ppr = vcpu->arch.ppr;
54 	hr->dawr1 = vcpu->arch.dawr1;
55 	hr->dawrx1 = vcpu->arch.dawrx1;
56 }
57 
58 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
60 {
61 	unsigned long *addr = (unsigned long *) regs;
62 
63 	for (; addr < ((unsigned long *) (regs + 1)); addr++)
64 		*addr = swab64(*addr);
65 }
66 
67 static void byteswap_hv_regs(struct hv_guest_state *hr)
68 {
69 	hr->version = swab64(hr->version);
70 	hr->lpid = swab32(hr->lpid);
71 	hr->vcpu_token = swab32(hr->vcpu_token);
72 	hr->lpcr = swab64(hr->lpcr);
73 	hr->pcr = swab64(hr->pcr) | PCR_MASK;
74 	hr->amor = swab64(hr->amor);
75 	hr->dpdes = swab64(hr->dpdes);
76 	hr->hfscr = swab64(hr->hfscr);
77 	hr->tb_offset = swab64(hr->tb_offset);
78 	hr->dawr0 = swab64(hr->dawr0);
79 	hr->dawrx0 = swab64(hr->dawrx0);
80 	hr->ciabr = swab64(hr->ciabr);
81 	hr->hdec_expiry = swab64(hr->hdec_expiry);
82 	hr->purr = swab64(hr->purr);
83 	hr->spurr = swab64(hr->spurr);
84 	hr->ic = swab64(hr->ic);
85 	hr->vtb = swab64(hr->vtb);
86 	hr->hdar = swab64(hr->hdar);
87 	hr->hdsisr = swab64(hr->hdsisr);
88 	hr->heir = swab64(hr->heir);
89 	hr->asdr = swab64(hr->asdr);
90 	hr->srr0 = swab64(hr->srr0);
91 	hr->srr1 = swab64(hr->srr1);
92 	hr->sprg[0] = swab64(hr->sprg[0]);
93 	hr->sprg[1] = swab64(hr->sprg[1]);
94 	hr->sprg[2] = swab64(hr->sprg[2]);
95 	hr->sprg[3] = swab64(hr->sprg[3]);
96 	hr->pidr = swab64(hr->pidr);
97 	hr->cfar = swab64(hr->cfar);
98 	hr->ppr = swab64(hr->ppr);
99 	hr->dawr1 = swab64(hr->dawr1);
100 	hr->dawrx1 = swab64(hr->dawrx1);
101 }
102 
103 static void save_hv_return_state(struct kvm_vcpu *vcpu,
104 				 struct hv_guest_state *hr)
105 {
106 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
107 
108 	hr->dpdes = vc->dpdes;
109 	hr->purr = vcpu->arch.purr;
110 	hr->spurr = vcpu->arch.spurr;
111 	hr->ic = vcpu->arch.ic;
112 	hr->vtb = vc->vtb;
113 	hr->srr0 = vcpu->arch.shregs.srr0;
114 	hr->srr1 = vcpu->arch.shregs.srr1;
115 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
116 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
117 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
118 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
119 	hr->pidr = vcpu->arch.pid;
120 	hr->cfar = vcpu->arch.cfar;
121 	hr->ppr = vcpu->arch.ppr;
122 	switch (vcpu->arch.trap) {
123 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
124 		hr->hdar = vcpu->arch.fault_dar;
125 		hr->hdsisr = vcpu->arch.fault_dsisr;
126 		hr->asdr = vcpu->arch.fault_gpa;
127 		break;
128 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
129 		hr->asdr = vcpu->arch.fault_gpa;
130 		break;
131 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
132 		hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
133 			     (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
134 		break;
135 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
136 		hr->heir = vcpu->arch.emul_inst;
137 		break;
138 	}
139 }
140 
141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
142 {
143 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
144 
145 	vc->pcr = hr->pcr | PCR_MASK;
146 	vc->dpdes = hr->dpdes;
147 	vcpu->arch.hfscr = hr->hfscr;
148 	vcpu->arch.dawr0 = hr->dawr0;
149 	vcpu->arch.dawrx0 = hr->dawrx0;
150 	vcpu->arch.ciabr = hr->ciabr;
151 	vcpu->arch.purr = hr->purr;
152 	vcpu->arch.spurr = hr->spurr;
153 	vcpu->arch.ic = hr->ic;
154 	vc->vtb = hr->vtb;
155 	vcpu->arch.shregs.srr0 = hr->srr0;
156 	vcpu->arch.shregs.srr1 = hr->srr1;
157 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
158 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
159 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
160 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
161 	vcpu->arch.pid = hr->pidr;
162 	vcpu->arch.cfar = hr->cfar;
163 	vcpu->arch.ppr = hr->ppr;
164 	vcpu->arch.dawr1 = hr->dawr1;
165 	vcpu->arch.dawrx1 = hr->dawrx1;
166 }
167 
168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
169 				   struct hv_guest_state *hr)
170 {
171 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
172 
173 	vc->dpdes = hr->dpdes;
174 	vcpu->arch.hfscr = hr->hfscr;
175 	vcpu->arch.purr = hr->purr;
176 	vcpu->arch.spurr = hr->spurr;
177 	vcpu->arch.ic = hr->ic;
178 	vc->vtb = hr->vtb;
179 	vcpu->arch.fault_dar = hr->hdar;
180 	vcpu->arch.fault_dsisr = hr->hdsisr;
181 	vcpu->arch.fault_gpa = hr->asdr;
182 	vcpu->arch.emul_inst = hr->heir;
183 	vcpu->arch.shregs.srr0 = hr->srr0;
184 	vcpu->arch.shregs.srr1 = hr->srr1;
185 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
186 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
187 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
188 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
189 	vcpu->arch.pid = hr->pidr;
190 	vcpu->arch.cfar = hr->cfar;
191 	vcpu->arch.ppr = hr->ppr;
192 }
193 
194 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
195 {
196 	/* No need to reflect the page fault to L1, we've handled it */
197 	vcpu->arch.trap = 0;
198 
199 	/*
200 	 * Since the L2 gprs have already been written back into L1 memory when
201 	 * we complete the mmio, store the L1 memory location of the L2 gpr
202 	 * being loaded into by the mmio so that the loaded value can be
203 	 * written there in kvmppc_complete_mmio_load()
204 	 */
205 	if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
206 	    && (vcpu->mmio_is_write == 0)) {
207 		vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
208 					   offsetof(struct pt_regs,
209 						    gpr[vcpu->arch.io_gpr]);
210 		vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
211 	}
212 }
213 
214 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
215 					   struct hv_guest_state *l2_hv,
216 					   struct pt_regs *l2_regs,
217 					   u64 hv_ptr, u64 regs_ptr)
218 {
219 	int size;
220 
221 	if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
222 				sizeof(l2_hv->version)))
223 		return -1;
224 
225 	if (kvmppc_need_byteswap(vcpu))
226 		l2_hv->version = swab64(l2_hv->version);
227 
228 	size = hv_guest_state_size(l2_hv->version);
229 	if (size < 0)
230 		return -1;
231 
232 	return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
233 		kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
234 				    sizeof(struct pt_regs));
235 }
236 
237 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
238 					    struct hv_guest_state *l2_hv,
239 					    struct pt_regs *l2_regs,
240 					    u64 hv_ptr, u64 regs_ptr)
241 {
242 	int size;
243 
244 	size = hv_guest_state_size(l2_hv->version);
245 	if (size < 0)
246 		return -1;
247 
248 	return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
249 		kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
250 				     sizeof(struct pt_regs));
251 }
252 
253 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
254 			    const struct hv_guest_state *l2_hv,
255 			    const struct hv_guest_state *l1_hv, u64 *lpcr)
256 {
257 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
258 	u64 mask;
259 
260 	restore_hv_regs(vcpu, l2_hv);
261 
262 	/*
263 	 * Don't let L1 change LPCR bits for the L2 except these:
264 	 */
265 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
266 
267 	/*
268 	 * Additional filtering is required depending on hardware
269 	 * and configuration.
270 	 */
271 	*lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
272 				      (vc->lpcr & ~mask) | (*lpcr & mask));
273 
274 	/*
275 	 * Don't let L1 enable features for L2 which we don't allow for L1,
276 	 * but preserve the interrupt cause field.
277 	 */
278 	vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
279 
280 	/* Don't let data address watchpoint match in hypervisor state */
281 	vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
282 	vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
283 
284 	/* Don't let completed instruction address breakpt match in HV state */
285 	if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
286 		vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
287 }
288 
289 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
290 {
291 	long int err, r;
292 	struct kvm_nested_guest *l2;
293 	struct pt_regs l2_regs, saved_l1_regs;
294 	struct hv_guest_state l2_hv = {0}, saved_l1_hv;
295 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
296 	u64 hv_ptr, regs_ptr;
297 	u64 hdec_exp, lpcr;
298 	s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
299 
300 	if (vcpu->kvm->arch.l1_ptcr == 0)
301 		return H_NOT_AVAILABLE;
302 
303 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
304 		return H_BAD_MODE;
305 
306 	/* copy parameters in */
307 	hv_ptr = kvmppc_get_gpr(vcpu, 4);
308 	regs_ptr = kvmppc_get_gpr(vcpu, 5);
309 	kvm_vcpu_srcu_read_lock(vcpu);
310 	err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
311 					      hv_ptr, regs_ptr);
312 	kvm_vcpu_srcu_read_unlock(vcpu);
313 	if (err)
314 		return H_PARAMETER;
315 
316 	if (kvmppc_need_byteswap(vcpu))
317 		byteswap_hv_regs(&l2_hv);
318 	if (l2_hv.version > HV_GUEST_STATE_VERSION)
319 		return H_P2;
320 
321 	if (kvmppc_need_byteswap(vcpu))
322 		byteswap_pt_regs(&l2_regs);
323 	if (l2_hv.vcpu_token >= NR_CPUS)
324 		return H_PARAMETER;
325 
326 	/*
327 	 * L1 must have set up a suspended state to enter the L2 in a
328 	 * transactional state, and only in that case. These have to be
329 	 * filtered out here to prevent causing a TM Bad Thing in the
330 	 * host HRFID. We could synthesize a TM Bad Thing back to the L1
331 	 * here but there doesn't seem like much point.
332 	 */
333 	if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
334 		if (!MSR_TM_ACTIVE(l2_regs.msr))
335 			return H_BAD_MODE;
336 	} else {
337 		if (l2_regs.msr & MSR_TS_MASK)
338 			return H_BAD_MODE;
339 		if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
340 			return H_BAD_MODE;
341 	}
342 
343 	/* translate lpid */
344 	l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
345 	if (!l2)
346 		return H_PARAMETER;
347 	if (!l2->l1_gr_to_hr) {
348 		mutex_lock(&l2->tlb_lock);
349 		kvmhv_update_ptbl_cache(l2);
350 		mutex_unlock(&l2->tlb_lock);
351 	}
352 
353 	/* save l1 values of things */
354 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
355 	saved_l1_regs = vcpu->arch.regs;
356 	kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
357 
358 	/* convert TB values/offsets to host (L0) values */
359 	hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
360 	vc->tb_offset += l2_hv.tb_offset;
361 	vcpu->arch.dec_expires += l2_hv.tb_offset;
362 
363 	/* set L1 state to L2 state */
364 	vcpu->arch.nested = l2;
365 	vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
366 	vcpu->arch.nested_hfscr = l2_hv.hfscr;
367 	vcpu->arch.regs = l2_regs;
368 
369 	/* Guest must always run with ME enabled, HV disabled. */
370 	vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
371 
372 	lpcr = l2_hv.lpcr;
373 	load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
374 
375 	vcpu->arch.ret = RESUME_GUEST;
376 	vcpu->arch.trap = 0;
377 	do {
378 		r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
379 	} while (is_kvmppc_resume_guest(r));
380 
381 	/* save L2 state for return */
382 	l2_regs = vcpu->arch.regs;
383 	l2_regs.msr = vcpu->arch.shregs.msr;
384 	delta_purr = vcpu->arch.purr - l2_hv.purr;
385 	delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
386 	delta_ic = vcpu->arch.ic - l2_hv.ic;
387 	delta_vtb = vc->vtb - l2_hv.vtb;
388 	save_hv_return_state(vcpu, &l2_hv);
389 
390 	/* restore L1 state */
391 	vcpu->arch.nested = NULL;
392 	vcpu->arch.regs = saved_l1_regs;
393 	vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
394 	/* set L1 MSR TS field according to L2 transaction state */
395 	if (l2_regs.msr & MSR_TS_MASK)
396 		vcpu->arch.shregs.msr |= MSR_TS_S;
397 	vc->tb_offset = saved_l1_hv.tb_offset;
398 	/* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
399 	vcpu->arch.dec_expires -= l2_hv.tb_offset;
400 	restore_hv_regs(vcpu, &saved_l1_hv);
401 	vcpu->arch.purr += delta_purr;
402 	vcpu->arch.spurr += delta_spurr;
403 	vcpu->arch.ic += delta_ic;
404 	vc->vtb += delta_vtb;
405 
406 	kvmhv_put_nested(l2);
407 
408 	/* copy l2_hv_state and regs back to guest */
409 	if (kvmppc_need_byteswap(vcpu)) {
410 		byteswap_hv_regs(&l2_hv);
411 		byteswap_pt_regs(&l2_regs);
412 	}
413 	kvm_vcpu_srcu_read_lock(vcpu);
414 	err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
415 					       hv_ptr, regs_ptr);
416 	kvm_vcpu_srcu_read_unlock(vcpu);
417 	if (err)
418 		return H_AUTHORITY;
419 
420 	if (r == -EINTR)
421 		return H_INTERRUPT;
422 
423 	if (vcpu->mmio_needed) {
424 		kvmhv_nested_mmio_needed(vcpu, regs_ptr);
425 		return H_TOO_HARD;
426 	}
427 
428 	return vcpu->arch.trap;
429 }
430 
431 unsigned long nested_capabilities;
432 
433 long kvmhv_nested_init(void)
434 {
435 	long int ptb_order;
436 	unsigned long ptcr, host_capabilities;
437 	long rc;
438 
439 	if (!kvmhv_on_pseries())
440 		return 0;
441 	if (!radix_enabled())
442 		return -ENODEV;
443 
444 	rc = plpar_guest_get_capabilities(0, &host_capabilities);
445 	if (rc == H_SUCCESS) {
446 		unsigned long capabilities = 0;
447 
448 		if (cpu_has_feature(CPU_FTR_ARCH_31))
449 			capabilities |= H_GUEST_CAP_POWER10;
450 		if (cpu_has_feature(CPU_FTR_ARCH_300))
451 			capabilities |= H_GUEST_CAP_POWER9;
452 
453 		nested_capabilities = capabilities & host_capabilities;
454 		rc = plpar_guest_set_capabilities(0, nested_capabilities);
455 		if (rc != H_SUCCESS) {
456 			pr_err("kvm-hv: Could not configure parent hypervisor capabilities (rc=%ld)",
457 			       rc);
458 			return -ENODEV;
459 		}
460 
461 		static_branch_enable(&__kvmhv_is_nestedv2);
462 		return 0;
463 	}
464 
465 	pr_info("kvm-hv: nestedv2 get capabilities hcall failed, falling back to nestedv1 (rc=%ld)\n",
466 		rc);
467 	/* Partition table entry is 1<<4 bytes in size, hence the 4. */
468 	ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
469 	/* Minimum partition table size is 1<<12 bytes */
470 	if (ptb_order < 12)
471 		ptb_order = 12;
472 	pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
473 				       GFP_KERNEL);
474 	if (!pseries_partition_tb) {
475 		pr_err("kvm-hv: failed to allocated nested partition table\n");
476 		return -ENOMEM;
477 	}
478 
479 	ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
480 	rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
481 	if (rc != H_SUCCESS) {
482 		pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
483 		       rc);
484 		kfree(pseries_partition_tb);
485 		pseries_partition_tb = NULL;
486 		return -ENODEV;
487 	}
488 
489 	return 0;
490 }
491 
492 void kvmhv_nested_exit(void)
493 {
494 	/*
495 	 * N.B. the kvmhv_on_pseries() test is there because it enables
496 	 * the compiler to remove the call to plpar_hcall_norets()
497 	 * when CONFIG_PPC_PSERIES=n.
498 	 */
499 	if (kvmhv_on_pseries() && pseries_partition_tb) {
500 		plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
501 		kfree(pseries_partition_tb);
502 		pseries_partition_tb = NULL;
503 	}
504 }
505 
506 static void kvmhv_flush_lpid(u64 lpid)
507 {
508 	long rc;
509 
510 	if (!kvmhv_on_pseries()) {
511 		radix__flush_all_lpid(lpid);
512 		return;
513 	}
514 
515 	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
516 		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
517 					lpid, TLBIEL_INVAL_SET_LPID);
518 	else
519 		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
520 					    H_RPTI_TYPE_NESTED |
521 					    H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
522 					    H_RPTI_TYPE_PAT,
523 					    H_RPTI_PAGE_ALL, 0, -1UL);
524 	if (rc)
525 		pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
526 }
527 
528 void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1)
529 {
530 	if (!kvmhv_on_pseries()) {
531 		mmu_partition_table_set_entry(lpid, dw0, dw1, true);
532 		return;
533 	}
534 
535 	if (kvmhv_is_nestedv1()) {
536 		pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
537 		pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
538 		/* L0 will do the necessary barriers */
539 		kvmhv_flush_lpid(lpid);
540 	}
541 
542 	if (kvmhv_is_nestedv2())
543 		kvmhv_nestedv2_set_ptbl_entry(lpid, dw0, dw1);
544 }
545 
546 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
547 {
548 	unsigned long dw0;
549 
550 	dw0 = PATB_HR | radix__get_tree_size() |
551 		__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
552 	kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
553 }
554 
555 /*
556  * Handle the H_SET_PARTITION_TABLE hcall.
557  * r4 = guest real address of partition table + log_2(size) - 12
558  * (formatted as for the PTCR).
559  */
560 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
561 {
562 	struct kvm *kvm = vcpu->kvm;
563 	unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
564 	int srcu_idx;
565 	long ret = H_SUCCESS;
566 
567 	srcu_idx = srcu_read_lock(&kvm->srcu);
568 	/* Check partition size and base address. */
569 	if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
570 	    !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
571 		ret = H_PARAMETER;
572 	srcu_read_unlock(&kvm->srcu, srcu_idx);
573 	if (ret == H_SUCCESS)
574 		kvm->arch.l1_ptcr = ptcr;
575 
576 	return ret;
577 }
578 
579 /*
580  * Handle the H_COPY_TOFROM_GUEST hcall.
581  * r4 = L1 lpid of nested guest
582  * r5 = pid
583  * r6 = eaddr to access
584  * r7 = to buffer (L1 gpa)
585  * r8 = from buffer (L1 gpa)
586  * r9 = n bytes to copy
587  */
588 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
589 {
590 	struct kvm_nested_guest *gp;
591 	int l1_lpid = kvmppc_get_gpr(vcpu, 4);
592 	int pid = kvmppc_get_gpr(vcpu, 5);
593 	gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
594 	gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
595 	gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
596 	void *buf;
597 	unsigned long n = kvmppc_get_gpr(vcpu, 9);
598 	bool is_load = !!gp_to;
599 	long rc;
600 
601 	if (gp_to && gp_from) /* One must be NULL to determine the direction */
602 		return H_PARAMETER;
603 
604 	if (eaddr & (0xFFFUL << 52))
605 		return H_PARAMETER;
606 
607 	buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
608 	if (!buf)
609 		return H_NO_MEM;
610 
611 	gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
612 	if (!gp) {
613 		rc = H_PARAMETER;
614 		goto out_free;
615 	}
616 
617 	mutex_lock(&gp->tlb_lock);
618 
619 	if (is_load) {
620 		/* Load from the nested guest into our buffer */
621 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
622 						     eaddr, buf, NULL, n);
623 		if (rc)
624 			goto not_found;
625 
626 		/* Write what was loaded into our buffer back to the L1 guest */
627 		kvm_vcpu_srcu_read_lock(vcpu);
628 		rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
629 		kvm_vcpu_srcu_read_unlock(vcpu);
630 		if (rc)
631 			goto not_found;
632 	} else {
633 		/* Load the data to be stored from the L1 guest into our buf */
634 		kvm_vcpu_srcu_read_lock(vcpu);
635 		rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
636 		kvm_vcpu_srcu_read_unlock(vcpu);
637 		if (rc)
638 			goto not_found;
639 
640 		/* Store from our buffer into the nested guest */
641 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
642 						     eaddr, NULL, buf, n);
643 		if (rc)
644 			goto not_found;
645 	}
646 
647 out_unlock:
648 	mutex_unlock(&gp->tlb_lock);
649 	kvmhv_put_nested(gp);
650 out_free:
651 	kfree(buf);
652 	return rc;
653 not_found:
654 	rc = H_NOT_FOUND;
655 	goto out_unlock;
656 }
657 
658 /*
659  * Reload the partition table entry for a guest.
660  * Caller must hold gp->tlb_lock.
661  */
662 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
663 {
664 	int ret;
665 	struct patb_entry ptbl_entry;
666 	unsigned long ptbl_addr;
667 	struct kvm *kvm = gp->l1_host;
668 
669 	ret = -EFAULT;
670 	ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
671 	if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
672 		int srcu_idx = srcu_read_lock(&kvm->srcu);
673 		ret = kvm_read_guest(kvm, ptbl_addr,
674 				     &ptbl_entry, sizeof(ptbl_entry));
675 		srcu_read_unlock(&kvm->srcu, srcu_idx);
676 	}
677 	if (ret) {
678 		gp->l1_gr_to_hr = 0;
679 		gp->process_table = 0;
680 	} else {
681 		gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
682 		gp->process_table = be64_to_cpu(ptbl_entry.patb1);
683 	}
684 	kvmhv_set_nested_ptbl(gp);
685 }
686 
687 void kvmhv_vm_nested_init(struct kvm *kvm)
688 {
689 	idr_init(&kvm->arch.kvm_nested_guest_idr);
690 }
691 
692 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
693 {
694 	return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
695 }
696 
697 static bool __prealloc_nested(struct kvm *kvm, int lpid)
698 {
699 	if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
700 				NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
701 		return false;
702 	return true;
703 }
704 
705 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
706 {
707 	if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
708 		WARN_ON(1);
709 }
710 
711 static void __remove_nested(struct kvm *kvm, int lpid)
712 {
713 	idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
714 }
715 
716 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
717 {
718 	struct kvm_nested_guest *gp;
719 	long shadow_lpid;
720 
721 	gp = kzalloc(sizeof(*gp), GFP_KERNEL);
722 	if (!gp)
723 		return NULL;
724 	gp->l1_host = kvm;
725 	gp->l1_lpid = lpid;
726 	mutex_init(&gp->tlb_lock);
727 	gp->shadow_pgtable = pgd_alloc(kvm->mm);
728 	if (!gp->shadow_pgtable)
729 		goto out_free;
730 	shadow_lpid = kvmppc_alloc_lpid();
731 	if (shadow_lpid < 0)
732 		goto out_free2;
733 	gp->shadow_lpid = shadow_lpid;
734 	gp->radix = 1;
735 
736 	memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
737 
738 	return gp;
739 
740  out_free2:
741 	pgd_free(kvm->mm, gp->shadow_pgtable);
742  out_free:
743 	kfree(gp);
744 	return NULL;
745 }
746 
747 /*
748  * Free up any resources allocated for a nested guest.
749  */
750 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
751 {
752 	struct kvm *kvm = gp->l1_host;
753 
754 	if (gp->shadow_pgtable) {
755 		/*
756 		 * No vcpu is using this struct and no call to
757 		 * kvmhv_get_nested can find this struct,
758 		 * so we don't need to hold kvm->mmu_lock.
759 		 */
760 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
761 					  gp->shadow_lpid);
762 		pgd_free(kvm->mm, gp->shadow_pgtable);
763 	}
764 	kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
765 	kvmppc_free_lpid(gp->shadow_lpid);
766 	kfree(gp);
767 }
768 
769 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
770 {
771 	struct kvm *kvm = gp->l1_host;
772 	int lpid = gp->l1_lpid;
773 	long ref;
774 
775 	spin_lock(&kvm->mmu_lock);
776 	if (gp == __find_nested(kvm, lpid)) {
777 		__remove_nested(kvm, lpid);
778 		--gp->refcnt;
779 	}
780 	ref = gp->refcnt;
781 	spin_unlock(&kvm->mmu_lock);
782 	if (ref == 0)
783 		kvmhv_release_nested(gp);
784 }
785 
786 /*
787  * Free up all nested resources allocated for this guest.
788  * This is called with no vcpus of the guest running, when
789  * switching the guest to HPT mode or when destroying the
790  * guest.
791  */
792 void kvmhv_release_all_nested(struct kvm *kvm)
793 {
794 	int lpid;
795 	struct kvm_nested_guest *gp;
796 	struct kvm_nested_guest *freelist = NULL;
797 	struct kvm_memory_slot *memslot;
798 	int srcu_idx, bkt;
799 
800 	spin_lock(&kvm->mmu_lock);
801 	idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
802 		__remove_nested(kvm, lpid);
803 		if (--gp->refcnt == 0) {
804 			gp->next = freelist;
805 			freelist = gp;
806 		}
807 	}
808 	idr_destroy(&kvm->arch.kvm_nested_guest_idr);
809 	/* idr is empty and may be reused at this point */
810 	spin_unlock(&kvm->mmu_lock);
811 	while ((gp = freelist) != NULL) {
812 		freelist = gp->next;
813 		kvmhv_release_nested(gp);
814 	}
815 
816 	srcu_idx = srcu_read_lock(&kvm->srcu);
817 	kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
818 		kvmhv_free_memslot_nest_rmap(memslot);
819 	srcu_read_unlock(&kvm->srcu, srcu_idx);
820 }
821 
822 /* caller must hold gp->tlb_lock */
823 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
824 {
825 	struct kvm *kvm = gp->l1_host;
826 
827 	spin_lock(&kvm->mmu_lock);
828 	kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
829 	spin_unlock(&kvm->mmu_lock);
830 	kvmhv_flush_lpid(gp->shadow_lpid);
831 	kvmhv_update_ptbl_cache(gp);
832 	if (gp->l1_gr_to_hr == 0)
833 		kvmhv_remove_nested(gp);
834 }
835 
836 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
837 					  bool create)
838 {
839 	struct kvm_nested_guest *gp, *newgp;
840 
841 	if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
842 		return NULL;
843 
844 	spin_lock(&kvm->mmu_lock);
845 	gp = __find_nested(kvm, l1_lpid);
846 	if (gp)
847 		++gp->refcnt;
848 	spin_unlock(&kvm->mmu_lock);
849 
850 	if (gp || !create)
851 		return gp;
852 
853 	newgp = kvmhv_alloc_nested(kvm, l1_lpid);
854 	if (!newgp)
855 		return NULL;
856 
857 	if (!__prealloc_nested(kvm, l1_lpid)) {
858 		kvmhv_release_nested(newgp);
859 		return NULL;
860 	}
861 
862 	spin_lock(&kvm->mmu_lock);
863 	gp = __find_nested(kvm, l1_lpid);
864 	if (!gp) {
865 		__add_nested(kvm, l1_lpid, newgp);
866 		++newgp->refcnt;
867 		gp = newgp;
868 		newgp = NULL;
869 	}
870 	++gp->refcnt;
871 	spin_unlock(&kvm->mmu_lock);
872 
873 	if (newgp)
874 		kvmhv_release_nested(newgp);
875 
876 	return gp;
877 }
878 
879 void kvmhv_put_nested(struct kvm_nested_guest *gp)
880 {
881 	struct kvm *kvm = gp->l1_host;
882 	long ref;
883 
884 	spin_lock(&kvm->mmu_lock);
885 	ref = --gp->refcnt;
886 	spin_unlock(&kvm->mmu_lock);
887 	if (ref == 0)
888 		kvmhv_release_nested(gp);
889 }
890 
891 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
892 				 unsigned long ea, unsigned *hshift)
893 {
894 	struct kvm_nested_guest *gp;
895 	pte_t *pte;
896 
897 	gp = __find_nested(kvm, lpid);
898 	if (!gp)
899 		return NULL;
900 
901 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
902 		"%s called with kvm mmu_lock not held \n", __func__);
903 	pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
904 
905 	return pte;
906 }
907 
908 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
909 {
910 	return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
911 				       RMAP_NESTED_GPA_MASK));
912 }
913 
914 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
915 			    struct rmap_nested **n_rmap)
916 {
917 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
918 	struct rmap_nested *cursor;
919 	u64 rmap, new_rmap = (*n_rmap)->rmap;
920 
921 	/* Are there any existing entries? */
922 	if (!(*rmapp)) {
923 		/* No -> use the rmap as a single entry */
924 		*rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
925 		return;
926 	}
927 
928 	/* Do any entries match what we're trying to insert? */
929 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
930 		if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
931 			return;
932 	}
933 
934 	/* Do we need to create a list or just add the new entry? */
935 	rmap = *rmapp;
936 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
937 		*rmapp = 0UL;
938 	llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
939 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
940 		(*n_rmap)->list.next = (struct llist_node *) rmap;
941 
942 	/* Set NULL so not freed by caller */
943 	*n_rmap = NULL;
944 }
945 
946 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
947 				      unsigned long clr, unsigned long set,
948 				      unsigned long hpa, unsigned long mask)
949 {
950 	unsigned long gpa;
951 	unsigned int shift, lpid;
952 	pte_t *ptep;
953 
954 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
955 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
956 
957 	/* Find the pte */
958 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
959 	/*
960 	 * If the pte is present and the pfn is still the same, update the pte.
961 	 * If the pfn has changed then this is a stale rmap entry, the nested
962 	 * gpa actually points somewhere else now, and there is nothing to do.
963 	 * XXX A future optimisation would be to remove the rmap entry here.
964 	 */
965 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
966 		__radix_pte_update(ptep, clr, set);
967 		kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
968 	}
969 }
970 
971 /*
972  * For a given list of rmap entries, update the rc bits in all ptes in shadow
973  * page tables for nested guests which are referenced by the rmap list.
974  */
975 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
976 				    unsigned long clr, unsigned long set,
977 				    unsigned long hpa, unsigned long nbytes)
978 {
979 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
980 	struct rmap_nested *cursor;
981 	unsigned long rmap, mask;
982 
983 	if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
984 		return;
985 
986 	mask = PTE_RPN_MASK & ~(nbytes - 1);
987 	hpa &= mask;
988 
989 	for_each_nest_rmap_safe(cursor, entry, &rmap)
990 		kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
991 }
992 
993 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
994 				   unsigned long hpa, unsigned long mask)
995 {
996 	struct kvm_nested_guest *gp;
997 	unsigned long gpa;
998 	unsigned int shift, lpid;
999 	pte_t *ptep;
1000 
1001 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
1002 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
1003 	gp = __find_nested(kvm, lpid);
1004 	if (!gp)
1005 		return;
1006 
1007 	/* Find and invalidate the pte */
1008 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
1009 	/* Don't spuriously invalidate ptes if the pfn has changed */
1010 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
1011 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1012 }
1013 
1014 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
1015 					unsigned long hpa, unsigned long mask)
1016 {
1017 	struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
1018 	struct rmap_nested *cursor;
1019 	unsigned long rmap;
1020 
1021 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
1022 		kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
1023 		kfree(cursor);
1024 	}
1025 }
1026 
1027 /* called with kvm->mmu_lock held */
1028 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
1029 				  const struct kvm_memory_slot *memslot,
1030 				  unsigned long gpa, unsigned long hpa,
1031 				  unsigned long nbytes)
1032 {
1033 	unsigned long gfn, end_gfn;
1034 	unsigned long addr_mask;
1035 
1036 	if (!memslot)
1037 		return;
1038 	gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1039 	end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1040 
1041 	addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1042 	hpa &= addr_mask;
1043 
1044 	for (; gfn < end_gfn; gfn++) {
1045 		unsigned long *rmap = &memslot->arch.rmap[gfn];
1046 		kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1047 	}
1048 }
1049 
1050 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1051 {
1052 	unsigned long page;
1053 
1054 	for (page = 0; page < free->npages; page++) {
1055 		unsigned long rmap, *rmapp = &free->arch.rmap[page];
1056 		struct rmap_nested *cursor;
1057 		struct llist_node *entry;
1058 
1059 		entry = llist_del_all((struct llist_head *) rmapp);
1060 		for_each_nest_rmap_safe(cursor, entry, &rmap)
1061 			kfree(cursor);
1062 	}
1063 }
1064 
1065 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1066 					struct kvm_nested_guest *gp,
1067 					long gpa, int *shift_ret)
1068 {
1069 	struct kvm *kvm = vcpu->kvm;
1070 	bool ret = false;
1071 	pte_t *ptep;
1072 	int shift;
1073 
1074 	spin_lock(&kvm->mmu_lock);
1075 	ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1076 	if (!shift)
1077 		shift = PAGE_SHIFT;
1078 	if (ptep && pte_present(*ptep)) {
1079 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1080 		ret = true;
1081 	}
1082 	spin_unlock(&kvm->mmu_lock);
1083 
1084 	if (shift_ret)
1085 		*shift_ret = shift;
1086 	return ret;
1087 }
1088 
1089 static inline int get_ric(unsigned int instr)
1090 {
1091 	return (instr >> 18) & 0x3;
1092 }
1093 
1094 static inline int get_prs(unsigned int instr)
1095 {
1096 	return (instr >> 17) & 0x1;
1097 }
1098 
1099 static inline int get_r(unsigned int instr)
1100 {
1101 	return (instr >> 16) & 0x1;
1102 }
1103 
1104 static inline int get_lpid(unsigned long r_val)
1105 {
1106 	return r_val & 0xffffffff;
1107 }
1108 
1109 static inline int get_is(unsigned long r_val)
1110 {
1111 	return (r_val >> 10) & 0x3;
1112 }
1113 
1114 static inline int get_ap(unsigned long r_val)
1115 {
1116 	return (r_val >> 5) & 0x7;
1117 }
1118 
1119 static inline long get_epn(unsigned long r_val)
1120 {
1121 	return r_val >> 12;
1122 }
1123 
1124 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1125 					int ap, long epn)
1126 {
1127 	struct kvm *kvm = vcpu->kvm;
1128 	struct kvm_nested_guest *gp;
1129 	long npages;
1130 	int shift, shadow_shift;
1131 	unsigned long addr;
1132 
1133 	shift = ap_to_shift(ap);
1134 	addr = epn << 12;
1135 	if (shift < 0)
1136 		/* Invalid ap encoding */
1137 		return -EINVAL;
1138 
1139 	addr &= ~((1UL << shift) - 1);
1140 	npages = 1UL << (shift - PAGE_SHIFT);
1141 
1142 	gp = kvmhv_get_nested(kvm, lpid, false);
1143 	if (!gp) /* No such guest -> nothing to do */
1144 		return 0;
1145 	mutex_lock(&gp->tlb_lock);
1146 
1147 	/* There may be more than one host page backing this single guest pte */
1148 	do {
1149 		kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1150 
1151 		npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1152 		addr += 1UL << shadow_shift;
1153 	} while (npages > 0);
1154 
1155 	mutex_unlock(&gp->tlb_lock);
1156 	kvmhv_put_nested(gp);
1157 	return 0;
1158 }
1159 
1160 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1161 				     struct kvm_nested_guest *gp, int ric)
1162 {
1163 	struct kvm *kvm = vcpu->kvm;
1164 
1165 	mutex_lock(&gp->tlb_lock);
1166 	switch (ric) {
1167 	case 0:
1168 		/* Invalidate TLB */
1169 		spin_lock(&kvm->mmu_lock);
1170 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1171 					  gp->shadow_lpid);
1172 		kvmhv_flush_lpid(gp->shadow_lpid);
1173 		spin_unlock(&kvm->mmu_lock);
1174 		break;
1175 	case 1:
1176 		/*
1177 		 * Invalidate PWC
1178 		 * We don't cache this -> nothing to do
1179 		 */
1180 		break;
1181 	case 2:
1182 		/* Invalidate TLB, PWC and caching of partition table entries */
1183 		kvmhv_flush_nested(gp);
1184 		break;
1185 	default:
1186 		break;
1187 	}
1188 	mutex_unlock(&gp->tlb_lock);
1189 }
1190 
1191 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1192 {
1193 	struct kvm *kvm = vcpu->kvm;
1194 	struct kvm_nested_guest *gp;
1195 	int lpid;
1196 
1197 	spin_lock(&kvm->mmu_lock);
1198 	idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
1199 		spin_unlock(&kvm->mmu_lock);
1200 		kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1201 		spin_lock(&kvm->mmu_lock);
1202 	}
1203 	spin_unlock(&kvm->mmu_lock);
1204 }
1205 
1206 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1207 				    unsigned long rsval, unsigned long rbval)
1208 {
1209 	struct kvm *kvm = vcpu->kvm;
1210 	struct kvm_nested_guest *gp;
1211 	int r, ric, prs, is, ap;
1212 	int lpid;
1213 	long epn;
1214 	int ret = 0;
1215 
1216 	ric = get_ric(instr);
1217 	prs = get_prs(instr);
1218 	r = get_r(instr);
1219 	lpid = get_lpid(rsval);
1220 	is = get_is(rbval);
1221 
1222 	/*
1223 	 * These cases are invalid and are not handled:
1224 	 * r   != 1 -> Only radix supported
1225 	 * prs == 1 -> Not HV privileged
1226 	 * ric == 3 -> No cluster bombs for radix
1227 	 * is  == 1 -> Partition scoped translations not associated with pid
1228 	 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1229 	 */
1230 	if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1231 	    ((!is) && (ric == 1 || ric == 2)))
1232 		return -EINVAL;
1233 
1234 	switch (is) {
1235 	case 0:
1236 		/*
1237 		 * We know ric == 0
1238 		 * Invalidate TLB for a given target address
1239 		 */
1240 		epn = get_epn(rbval);
1241 		ap = get_ap(rbval);
1242 		ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1243 		break;
1244 	case 2:
1245 		/* Invalidate matching LPID */
1246 		gp = kvmhv_get_nested(kvm, lpid, false);
1247 		if (gp) {
1248 			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1249 			kvmhv_put_nested(gp);
1250 		}
1251 		break;
1252 	case 3:
1253 		/* Invalidate ALL LPIDs */
1254 		kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1255 		break;
1256 	default:
1257 		ret = -EINVAL;
1258 		break;
1259 	}
1260 
1261 	return ret;
1262 }
1263 
1264 /*
1265  * This handles the H_TLB_INVALIDATE hcall.
1266  * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1267  * (r6) rB contents.
1268  */
1269 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1270 {
1271 	int ret;
1272 
1273 	ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1274 			kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1275 	if (ret)
1276 		return H_PARAMETER;
1277 	return H_SUCCESS;
1278 }
1279 
1280 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1281 					 unsigned long lpid, unsigned long ric)
1282 {
1283 	struct kvm *kvm = vcpu->kvm;
1284 	struct kvm_nested_guest *gp;
1285 
1286 	gp = kvmhv_get_nested(kvm, lpid, false);
1287 	if (gp) {
1288 		kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1289 		kvmhv_put_nested(gp);
1290 	}
1291 	return H_SUCCESS;
1292 }
1293 
1294 /*
1295  * Number of pages above which we invalidate the entire LPID rather than
1296  * flush individual pages.
1297  */
1298 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1299 
1300 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1301 					 unsigned long lpid,
1302 					 unsigned long pg_sizes,
1303 					 unsigned long start,
1304 					 unsigned long end)
1305 {
1306 	int ret = H_P4;
1307 	unsigned long addr, nr_pages;
1308 	struct mmu_psize_def *def;
1309 	unsigned long psize, ap, page_size;
1310 	bool flush_lpid;
1311 
1312 	for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1313 		def = &mmu_psize_defs[psize];
1314 		if (!(pg_sizes & def->h_rpt_pgsize))
1315 			continue;
1316 
1317 		nr_pages = (end - start) >> def->shift;
1318 		flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1319 		if (flush_lpid)
1320 			return do_tlb_invalidate_nested_all(vcpu, lpid,
1321 							RIC_FLUSH_TLB);
1322 		addr = start;
1323 		ap = mmu_get_ap(psize);
1324 		page_size = 1UL << def->shift;
1325 		do {
1326 			ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1327 						   get_epn(addr));
1328 			if (ret)
1329 				return H_P4;
1330 			addr += page_size;
1331 		} while (addr < end);
1332 	}
1333 	return ret;
1334 }
1335 
1336 /*
1337  * Performs partition-scoped invalidations for nested guests
1338  * as part of H_RPT_INVALIDATE hcall.
1339  */
1340 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1341 			     unsigned long type, unsigned long pg_sizes,
1342 			     unsigned long start, unsigned long end)
1343 {
1344 	/*
1345 	 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1346 	 *
1347 	 * However, nested KVM issues a L2 lpid flush call when creating
1348 	 * partition table entries for L2. This happens even before the
1349 	 * corresponding shadow lpid is created in HV which happens in
1350 	 * H_ENTER_NESTED call. Since we can't differentiate this case from
1351 	 * the invalid case, we ignore such flush requests and return success.
1352 	 */
1353 	if (!__find_nested(vcpu->kvm, lpid))
1354 		return H_SUCCESS;
1355 
1356 	/*
1357 	 * A flush all request can be handled by a full lpid flush only.
1358 	 */
1359 	if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1360 		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1361 
1362 	/*
1363 	 * We don't need to handle a PWC flush like process table here,
1364 	 * because intermediate partition scoped table in nested guest doesn't
1365 	 * really have PWC. Only level we have PWC is in L0 and for nested
1366 	 * invalidate at L0 we always do kvm_flush_lpid() which does
1367 	 * radix__flush_all_lpid(). For range invalidate at any level, we
1368 	 * are not removing the higher level page tables and hence there is
1369 	 * no PWC invalidate needed.
1370 	 *
1371 	 * if (type & H_RPTI_TYPE_PWC) {
1372 	 *	ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1373 	 *	if (ret)
1374 	 *		return H_P4;
1375 	 * }
1376 	 */
1377 
1378 	if (start == 0 && end == -1)
1379 		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1380 
1381 	if (type & H_RPTI_TYPE_TLB)
1382 		return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1383 						    start, end);
1384 	return H_SUCCESS;
1385 }
1386 
1387 /* Used to convert a nested guest real address to a L1 guest real address */
1388 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1389 				       struct kvm_nested_guest *gp,
1390 				       unsigned long n_gpa, unsigned long dsisr,
1391 				       struct kvmppc_pte *gpte_p)
1392 {
1393 	u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1394 	int ret;
1395 
1396 	ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1397 					 &fault_addr);
1398 
1399 	if (ret) {
1400 		/* We didn't find a pte */
1401 		if (ret == -EINVAL) {
1402 			/* Unsupported mmu config */
1403 			flags |= DSISR_UNSUPP_MMU;
1404 		} else if (ret == -ENOENT) {
1405 			/* No translation found */
1406 			flags |= DSISR_NOHPTE;
1407 		} else if (ret == -EFAULT) {
1408 			/* Couldn't access L1 real address */
1409 			flags |= DSISR_PRTABLE_FAULT;
1410 			vcpu->arch.fault_gpa = fault_addr;
1411 		} else {
1412 			/* Unknown error */
1413 			return ret;
1414 		}
1415 		goto forward_to_l1;
1416 	} else {
1417 		/* We found a pte -> check permissions */
1418 		if (dsisr & DSISR_ISSTORE) {
1419 			/* Can we write? */
1420 			if (!gpte_p->may_write) {
1421 				flags |= DSISR_PROTFAULT;
1422 				goto forward_to_l1;
1423 			}
1424 		} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1425 			/* Can we execute? */
1426 			if (!gpte_p->may_execute) {
1427 				flags |= SRR1_ISI_N_G_OR_CIP;
1428 				goto forward_to_l1;
1429 			}
1430 		} else {
1431 			/* Can we read? */
1432 			if (!gpte_p->may_read && !gpte_p->may_write) {
1433 				flags |= DSISR_PROTFAULT;
1434 				goto forward_to_l1;
1435 			}
1436 		}
1437 	}
1438 
1439 	return 0;
1440 
1441 forward_to_l1:
1442 	vcpu->arch.fault_dsisr = flags;
1443 	if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1444 		vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1445 		vcpu->arch.shregs.msr |= flags;
1446 	}
1447 	return RESUME_HOST;
1448 }
1449 
1450 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1451 				       struct kvm_nested_guest *gp,
1452 				       unsigned long n_gpa,
1453 				       struct kvmppc_pte gpte,
1454 				       unsigned long dsisr)
1455 {
1456 	struct kvm *kvm = vcpu->kvm;
1457 	bool writing = !!(dsisr & DSISR_ISSTORE);
1458 	u64 pgflags;
1459 	long ret;
1460 
1461 	/* Are the rc bits set in the L1 partition scoped pte? */
1462 	pgflags = _PAGE_ACCESSED;
1463 	if (writing)
1464 		pgflags |= _PAGE_DIRTY;
1465 	if (pgflags & ~gpte.rc)
1466 		return RESUME_HOST;
1467 
1468 	spin_lock(&kvm->mmu_lock);
1469 	/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1470 	ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1471 				      gpte.raddr, kvm->arch.lpid);
1472 	if (!ret) {
1473 		ret = -EINVAL;
1474 		goto out_unlock;
1475 	}
1476 
1477 	/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1478 	ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1479 				      n_gpa, gp->l1_lpid);
1480 	if (!ret)
1481 		ret = -EINVAL;
1482 	else
1483 		ret = 0;
1484 
1485 out_unlock:
1486 	spin_unlock(&kvm->mmu_lock);
1487 	return ret;
1488 }
1489 
1490 static inline int kvmppc_radix_level_to_shift(int level)
1491 {
1492 	switch (level) {
1493 	case 2:
1494 		return PUD_SHIFT;
1495 	case 1:
1496 		return PMD_SHIFT;
1497 	default:
1498 		return PAGE_SHIFT;
1499 	}
1500 }
1501 
1502 static inline int kvmppc_radix_shift_to_level(int shift)
1503 {
1504 	if (shift == PUD_SHIFT)
1505 		return 2;
1506 	if (shift == PMD_SHIFT)
1507 		return 1;
1508 	if (shift == PAGE_SHIFT)
1509 		return 0;
1510 	WARN_ON_ONCE(1);
1511 	return 0;
1512 }
1513 
1514 /* called with gp->tlb_lock held */
1515 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1516 					  struct kvm_nested_guest *gp)
1517 {
1518 	struct kvm *kvm = vcpu->kvm;
1519 	struct kvm_memory_slot *memslot;
1520 	struct rmap_nested *n_rmap;
1521 	struct kvmppc_pte gpte;
1522 	pte_t pte, *pte_p;
1523 	unsigned long mmu_seq;
1524 	unsigned long dsisr = vcpu->arch.fault_dsisr;
1525 	unsigned long ea = vcpu->arch.fault_dar;
1526 	unsigned long *rmapp;
1527 	unsigned long n_gpa, gpa, gfn, perm = 0UL;
1528 	unsigned int shift, l1_shift, level;
1529 	bool writing = !!(dsisr & DSISR_ISSTORE);
1530 	bool kvm_ro = false;
1531 	long int ret;
1532 
1533 	if (!gp->l1_gr_to_hr) {
1534 		kvmhv_update_ptbl_cache(gp);
1535 		if (!gp->l1_gr_to_hr)
1536 			return RESUME_HOST;
1537 	}
1538 
1539 	/* Convert the nested guest real address into a L1 guest real address */
1540 
1541 	n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1542 	if (!(dsisr & DSISR_PRTABLE_FAULT))
1543 		n_gpa |= ea & 0xFFF;
1544 	ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1545 
1546 	/*
1547 	 * If the hardware found a translation but we don't now have a usable
1548 	 * translation in the l1 partition-scoped tree, remove the shadow pte
1549 	 * and let the guest retry.
1550 	 */
1551 	if (ret == RESUME_HOST &&
1552 	    (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1553 		      DSISR_BAD_COPYPASTE)))
1554 		goto inval;
1555 	if (ret)
1556 		return ret;
1557 
1558 	/* Failed to set the reference/change bits */
1559 	if (dsisr & DSISR_SET_RC) {
1560 		ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1561 		if (ret == RESUME_HOST)
1562 			return ret;
1563 		if (ret)
1564 			goto inval;
1565 		dsisr &= ~DSISR_SET_RC;
1566 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1567 			       DSISR_PROTFAULT)))
1568 			return RESUME_GUEST;
1569 	}
1570 
1571 	/*
1572 	 * We took an HISI or HDSI while we were running a nested guest which
1573 	 * means we have no partition scoped translation for that. This means
1574 	 * we need to insert a pte for the mapping into our shadow_pgtable.
1575 	 */
1576 
1577 	l1_shift = gpte.page_shift;
1578 	if (l1_shift < PAGE_SHIFT) {
1579 		/* We don't support l1 using a page size smaller than our own */
1580 		pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1581 			l1_shift, PAGE_SHIFT);
1582 		return -EINVAL;
1583 	}
1584 	gpa = gpte.raddr;
1585 	gfn = gpa >> PAGE_SHIFT;
1586 
1587 	/* 1. Get the corresponding host memslot */
1588 
1589 	memslot = gfn_to_memslot(kvm, gfn);
1590 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1591 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1592 			/* unusual error -> reflect to the guest as a DSI */
1593 			kvmppc_core_queue_data_storage(vcpu,
1594 					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1595 					ea, dsisr);
1596 			return RESUME_GUEST;
1597 		}
1598 
1599 		/* passthrough of emulated MMIO case */
1600 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1601 	}
1602 	if (memslot->flags & KVM_MEM_READONLY) {
1603 		if (writing) {
1604 			/* Give the guest a DSI */
1605 			kvmppc_core_queue_data_storage(vcpu,
1606 					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1607 					ea, DSISR_ISSTORE | DSISR_PROTFAULT);
1608 			return RESUME_GUEST;
1609 		}
1610 		kvm_ro = true;
1611 	}
1612 
1613 	/* 2. Find the host pte for this L1 guest real address */
1614 
1615 	/* Used to check for invalidations in progress */
1616 	mmu_seq = kvm->mmu_invalidate_seq;
1617 	smp_rmb();
1618 
1619 	/* See if can find translation in our partition scoped tables for L1 */
1620 	pte = __pte(0);
1621 	spin_lock(&kvm->mmu_lock);
1622 	pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1623 	if (!shift)
1624 		shift = PAGE_SHIFT;
1625 	if (pte_p)
1626 		pte = *pte_p;
1627 	spin_unlock(&kvm->mmu_lock);
1628 
1629 	if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1630 		/* No suitable pte found -> try to insert a mapping */
1631 		ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1632 					writing, kvm_ro, &pte, &level);
1633 		if (ret == -EAGAIN)
1634 			return RESUME_GUEST;
1635 		else if (ret)
1636 			return ret;
1637 		shift = kvmppc_radix_level_to_shift(level);
1638 	}
1639 	/* Align gfn to the start of the page */
1640 	gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1641 
1642 	/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1643 
1644 	/* The permissions is the combination of the host and l1 guest ptes */
1645 	perm |= gpte.may_read ? 0UL : _PAGE_READ;
1646 	perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1647 	perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1648 	/* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1649 	perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1650 	perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1651 	pte = __pte(pte_val(pte) & ~perm);
1652 
1653 	/* What size pte can we insert? */
1654 	if (shift > l1_shift) {
1655 		u64 mask;
1656 		unsigned int actual_shift = PAGE_SHIFT;
1657 		if (PMD_SHIFT < l1_shift)
1658 			actual_shift = PMD_SHIFT;
1659 		mask = (1UL << shift) - (1UL << actual_shift);
1660 		pte = __pte(pte_val(pte) | (gpa & mask));
1661 		shift = actual_shift;
1662 	}
1663 	level = kvmppc_radix_shift_to_level(shift);
1664 	n_gpa &= ~((1UL << shift) - 1);
1665 
1666 	/* 4. Insert the pte into our shadow_pgtable */
1667 
1668 	n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1669 	if (!n_rmap)
1670 		return RESUME_GUEST; /* Let the guest try again */
1671 	n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1672 		(((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1673 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1674 	ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1675 				mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1676 	kfree(n_rmap);
1677 	if (ret == -EAGAIN)
1678 		ret = RESUME_GUEST;	/* Let the guest try again */
1679 
1680 	return ret;
1681 
1682  inval:
1683 	kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1684 	return RESUME_GUEST;
1685 }
1686 
1687 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1688 {
1689 	struct kvm_nested_guest *gp = vcpu->arch.nested;
1690 	long int ret;
1691 
1692 	mutex_lock(&gp->tlb_lock);
1693 	ret = __kvmhv_nested_page_fault(vcpu, gp);
1694 	mutex_unlock(&gp->tlb_lock);
1695 	return ret;
1696 }
1697 
1698 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1699 {
1700 	int ret = lpid + 1;
1701 
1702 	spin_lock(&kvm->mmu_lock);
1703 	if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
1704 		ret = -1;
1705 	spin_unlock(&kvm->mmu_lock);
1706 
1707 	return ret;
1708 }
1709