xref: /linux/arch/powerpc/kvm/book3s_hv_builtin.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20 
21 #include <asm/asm-prototypes.h>
22 #include <asm/cputable.h>
23 #include <asm/kvm_ppc.h>
24 #include <asm/kvm_book3s.h>
25 #include <asm/archrandom.h>
26 #include <asm/xics.h>
27 #include <asm/xive.h>
28 #include <asm/dbell.h>
29 #include <asm/cputhreads.h>
30 #include <asm/io.h>
31 #include <asm/opal.h>
32 #include <asm/smp.h>
33 
34 #define KVM_CMA_CHUNK_ORDER	18
35 
36 #include "book3s_xics.h"
37 #include "book3s_xive.h"
38 
39 /*
40  * The XIVE module will populate these when it loads
41  */
42 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
43 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
44 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
45 		       unsigned long mfrr);
46 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
47 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
50 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
51 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
52 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
53 
54 /*
55  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
56  * should be power of 2.
57  */
58 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
59 /*
60  * By default we reserve 5% of memory for hash pagetable allocation.
61  */
62 static unsigned long kvm_cma_resv_ratio = 5;
63 
64 static struct cma *kvm_cma;
65 
66 static int __init early_parse_kvm_cma_resv(char *p)
67 {
68 	pr_debug("%s(%s)\n", __func__, p);
69 	if (!p)
70 		return -EINVAL;
71 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
72 }
73 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
74 
75 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
76 {
77 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
78 
79 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
80 			 GFP_KERNEL);
81 }
82 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
83 
84 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
85 {
86 	cma_release(kvm_cma, page, nr_pages);
87 }
88 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
89 
90 /**
91  * kvm_cma_reserve() - reserve area for kvm hash pagetable
92  *
93  * This function reserves memory from early allocator. It should be
94  * called by arch specific code once the memblock allocator
95  * has been activated and all other subsystems have already allocated/reserved
96  * memory.
97  */
98 void __init kvm_cma_reserve(void)
99 {
100 	unsigned long align_size;
101 	struct memblock_region *reg;
102 	phys_addr_t selected_size = 0;
103 
104 	/*
105 	 * We need CMA reservation only when we are in HV mode
106 	 */
107 	if (!cpu_has_feature(CPU_FTR_HVMODE))
108 		return;
109 	/*
110 	 * We cannot use memblock_phys_mem_size() here, because
111 	 * memblock_analyze() has not been called yet.
112 	 */
113 	for_each_memblock(memory, reg)
114 		selected_size += memblock_region_memory_end_pfn(reg) -
115 				 memblock_region_memory_base_pfn(reg);
116 
117 	selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
118 	if (selected_size) {
119 		pr_debug("%s: reserving %ld MiB for global area\n", __func__,
120 			 (unsigned long)selected_size / SZ_1M);
121 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
122 		cma_declare_contiguous(0, selected_size, 0, align_size,
123 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
124 			&kvm_cma);
125 	}
126 }
127 
128 /*
129  * Real-mode H_CONFER implementation.
130  * We check if we are the only vcpu out of this virtual core
131  * still running in the guest and not ceded.  If so, we pop up
132  * to the virtual-mode implementation; if not, just return to
133  * the guest.
134  */
135 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
136 			    unsigned int yield_count)
137 {
138 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
139 	int ptid = local_paca->kvm_hstate.ptid;
140 	int threads_running;
141 	int threads_ceded;
142 	int threads_conferring;
143 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
144 	int rv = H_SUCCESS; /* => don't yield */
145 
146 	set_bit(ptid, &vc->conferring_threads);
147 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
148 		threads_running = VCORE_ENTRY_MAP(vc);
149 		threads_ceded = vc->napping_threads;
150 		threads_conferring = vc->conferring_threads;
151 		if ((threads_ceded | threads_conferring) == threads_running) {
152 			rv = H_TOO_HARD; /* => do yield */
153 			break;
154 		}
155 	}
156 	clear_bit(ptid, &vc->conferring_threads);
157 	return rv;
158 }
159 
160 /*
161  * When running HV mode KVM we need to block certain operations while KVM VMs
162  * exist in the system. We use a counter of VMs to track this.
163  *
164  * One of the operations we need to block is onlining of secondaries, so we
165  * protect hv_vm_count with get/put_online_cpus().
166  */
167 static atomic_t hv_vm_count;
168 
169 void kvm_hv_vm_activated(void)
170 {
171 	get_online_cpus();
172 	atomic_inc(&hv_vm_count);
173 	put_online_cpus();
174 }
175 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
176 
177 void kvm_hv_vm_deactivated(void)
178 {
179 	get_online_cpus();
180 	atomic_dec(&hv_vm_count);
181 	put_online_cpus();
182 }
183 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
184 
185 bool kvm_hv_mode_active(void)
186 {
187 	return atomic_read(&hv_vm_count) != 0;
188 }
189 
190 extern int hcall_real_table[], hcall_real_table_end[];
191 
192 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
193 {
194 	cmd /= 4;
195 	if (cmd < hcall_real_table_end - hcall_real_table &&
196 	    hcall_real_table[cmd])
197 		return 1;
198 
199 	return 0;
200 }
201 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
202 
203 int kvmppc_hwrng_present(void)
204 {
205 	return powernv_hwrng_present();
206 }
207 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
208 
209 long kvmppc_h_random(struct kvm_vcpu *vcpu)
210 {
211 	int r;
212 
213 	/* Only need to do the expensive mfmsr() on radix */
214 	if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
215 		r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]);
216 	else
217 		r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]);
218 	if (r)
219 		return H_SUCCESS;
220 
221 	return H_HARDWARE;
222 }
223 
224 /*
225  * Send an interrupt or message to another CPU.
226  * The caller needs to include any barrier needed to order writes
227  * to memory vs. the IPI/message.
228  */
229 void kvmhv_rm_send_ipi(int cpu)
230 {
231 	void __iomem *xics_phys;
232 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
233 
234 	/* On POWER9 we can use msgsnd for any destination cpu. */
235 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
236 		msg |= get_hard_smp_processor_id(cpu);
237 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
238 		return;
239 	}
240 
241 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
242 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
243 	    cpu_first_thread_sibling(cpu) ==
244 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
245 		msg |= cpu_thread_in_core(cpu);
246 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
247 		return;
248 	}
249 
250 	/* We should never reach this */
251 	if (WARN_ON_ONCE(xive_enabled()))
252 	    return;
253 
254 	/* Else poke the target with an IPI */
255 	xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
256 	if (xics_phys)
257 		__raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
258 	else
259 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
260 }
261 
262 /*
263  * The following functions are called from the assembly code
264  * in book3s_hv_rmhandlers.S.
265  */
266 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
267 {
268 	int cpu = vc->pcpu;
269 
270 	/* Order setting of exit map vs. msgsnd/IPI */
271 	smp_mb();
272 	for (; active; active >>= 1, ++cpu)
273 		if (active & 1)
274 			kvmhv_rm_send_ipi(cpu);
275 }
276 
277 void kvmhv_commence_exit(int trap)
278 {
279 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
280 	int ptid = local_paca->kvm_hstate.ptid;
281 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
282 	int me, ee, i, t;
283 	int cpu0;
284 
285 	/* Set our bit in the threads-exiting-guest map in the 0xff00
286 	   bits of vcore->entry_exit_map */
287 	me = 0x100 << ptid;
288 	do {
289 		ee = vc->entry_exit_map;
290 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
291 
292 	/* Are we the first here? */
293 	if ((ee >> 8) != 0)
294 		return;
295 
296 	/*
297 	 * Trigger the other threads in this vcore to exit the guest.
298 	 * If this is a hypervisor decrementer interrupt then they
299 	 * will be already on their way out of the guest.
300 	 */
301 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
302 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
303 
304 	/*
305 	 * If we are doing dynamic micro-threading, interrupt the other
306 	 * subcores to pull them out of their guests too.
307 	 */
308 	if (!sip)
309 		return;
310 
311 	for (i = 0; i < MAX_SUBCORES; ++i) {
312 		vc = sip->vc[i];
313 		if (!vc)
314 			break;
315 		do {
316 			ee = vc->entry_exit_map;
317 			/* Already asked to exit? */
318 			if ((ee >> 8) != 0)
319 				break;
320 		} while (cmpxchg(&vc->entry_exit_map, ee,
321 				 ee | VCORE_EXIT_REQ) != ee);
322 		if ((ee >> 8) == 0)
323 			kvmhv_interrupt_vcore(vc, ee);
324 	}
325 
326 	/*
327 	 * On POWER9 when running a HPT guest on a radix host (sip != NULL),
328 	 * we have to interrupt inactive CPU threads to get them to
329 	 * restore the host LPCR value.
330 	 */
331 	if (sip->lpcr_req) {
332 		if (cmpxchg(&sip->do_restore, 0, 1) == 0) {
333 			vc = local_paca->kvm_hstate.kvm_vcore;
334 			cpu0 = vc->pcpu + ptid - local_paca->kvm_hstate.tid;
335 			for (t = 1; t < threads_per_core; ++t) {
336 				if (sip->napped[t])
337 					kvmhv_rm_send_ipi(cpu0 + t);
338 			}
339 		}
340 	}
341 }
342 
343 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
344 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
345 
346 #ifdef CONFIG_KVM_XICS
347 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
348 					 u32 xisr)
349 {
350 	int i;
351 
352 	/*
353 	 * We access the mapped array here without a lock.  That
354 	 * is safe because we never reduce the number of entries
355 	 * in the array and we never change the v_hwirq field of
356 	 * an entry once it is set.
357 	 *
358 	 * We have also carefully ordered the stores in the writer
359 	 * and the loads here in the reader, so that if we find a matching
360 	 * hwirq here, the associated GSI and irq_desc fields are valid.
361 	 */
362 	for (i = 0; i < pimap->n_mapped; i++)  {
363 		if (xisr == pimap->mapped[i].r_hwirq) {
364 			/*
365 			 * Order subsequent reads in the caller to serialize
366 			 * with the writer.
367 			 */
368 			smp_rmb();
369 			return &pimap->mapped[i];
370 		}
371 	}
372 	return NULL;
373 }
374 
375 /*
376  * If we have an interrupt that's not an IPI, check if we have a
377  * passthrough adapter and if so, check if this external interrupt
378  * is for the adapter.
379  * We will attempt to deliver the IRQ directly to the target VCPU's
380  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
381  *
382  * If the delivery fails or if this is not for a passthrough adapter,
383  * return to the host to handle this interrupt. We earlier
384  * saved a copy of the XIRR in the PACA, it will be picked up by
385  * the host ICP driver.
386  */
387 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
388 {
389 	struct kvmppc_passthru_irqmap *pimap;
390 	struct kvmppc_irq_map *irq_map;
391 	struct kvm_vcpu *vcpu;
392 
393 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
394 	if (!vcpu)
395 		return 1;
396 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
397 	if (!pimap)
398 		return 1;
399 	irq_map = get_irqmap(pimap, xisr);
400 	if (!irq_map)
401 		return 1;
402 
403 	/* We're handling this interrupt, generic code doesn't need to */
404 	local_paca->kvm_hstate.saved_xirr = 0;
405 
406 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
407 }
408 
409 #else
410 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
411 {
412 	return 1;
413 }
414 #endif
415 
416 /*
417  * Determine what sort of external interrupt is pending (if any).
418  * Returns:
419  *	0 if no interrupt is pending
420  *	1 if an interrupt is pending that needs to be handled by the host
421  *	2 Passthrough that needs completion in the host
422  *	-1 if there was a guest wakeup IPI (which has now been cleared)
423  *	-2 if there is PCI passthrough external interrupt that was handled
424  */
425 static long kvmppc_read_one_intr(bool *again);
426 
427 long kvmppc_read_intr(void)
428 {
429 	long ret = 0;
430 	long rc;
431 	bool again;
432 
433 	if (xive_enabled())
434 		return 1;
435 
436 	do {
437 		again = false;
438 		rc = kvmppc_read_one_intr(&again);
439 		if (rc && (ret == 0 || rc > ret))
440 			ret = rc;
441 	} while (again);
442 	return ret;
443 }
444 
445 static long kvmppc_read_one_intr(bool *again)
446 {
447 	void __iomem *xics_phys;
448 	u32 h_xirr;
449 	__be32 xirr;
450 	u32 xisr;
451 	u8 host_ipi;
452 	int64_t rc;
453 
454 	if (xive_enabled())
455 		return 1;
456 
457 	/* see if a host IPI is pending */
458 	host_ipi = local_paca->kvm_hstate.host_ipi;
459 	if (host_ipi)
460 		return 1;
461 
462 	/* Now read the interrupt from the ICP */
463 	xics_phys = local_paca->kvm_hstate.xics_phys;
464 	rc = 0;
465 	if (!xics_phys)
466 		rc = opal_int_get_xirr(&xirr, false);
467 	else
468 		xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
469 	if (rc < 0)
470 		return 1;
471 
472 	/*
473 	 * Save XIRR for later. Since we get control in reverse endian
474 	 * on LE systems, save it byte reversed and fetch it back in
475 	 * host endian. Note that xirr is the value read from the
476 	 * XIRR register, while h_xirr is the host endian version.
477 	 */
478 	h_xirr = be32_to_cpu(xirr);
479 	local_paca->kvm_hstate.saved_xirr = h_xirr;
480 	xisr = h_xirr & 0xffffff;
481 	/*
482 	 * Ensure that the store/load complete to guarantee all side
483 	 * effects of loading from XIRR has completed
484 	 */
485 	smp_mb();
486 
487 	/* if nothing pending in the ICP */
488 	if (!xisr)
489 		return 0;
490 
491 	/* We found something in the ICP...
492 	 *
493 	 * If it is an IPI, clear the MFRR and EOI it.
494 	 */
495 	if (xisr == XICS_IPI) {
496 		rc = 0;
497 		if (xics_phys) {
498 			__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
499 			__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
500 		} else {
501 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
502 			rc = opal_int_eoi(h_xirr);
503 		}
504 		/* If rc > 0, there is another interrupt pending */
505 		*again = rc > 0;
506 
507 		/*
508 		 * Need to ensure side effects of above stores
509 		 * complete before proceeding.
510 		 */
511 		smp_mb();
512 
513 		/*
514 		 * We need to re-check host IPI now in case it got set in the
515 		 * meantime. If it's clear, we bounce the interrupt to the
516 		 * guest
517 		 */
518 		host_ipi = local_paca->kvm_hstate.host_ipi;
519 		if (unlikely(host_ipi != 0)) {
520 			/* We raced with the host,
521 			 * we need to resend that IPI, bummer
522 			 */
523 			if (xics_phys)
524 				__raw_rm_writeb(IPI_PRIORITY,
525 						xics_phys + XICS_MFRR);
526 			else
527 				opal_int_set_mfrr(hard_smp_processor_id(),
528 						  IPI_PRIORITY);
529 			/* Let side effects complete */
530 			smp_mb();
531 			return 1;
532 		}
533 
534 		/* OK, it's an IPI for us */
535 		local_paca->kvm_hstate.saved_xirr = 0;
536 		return -1;
537 	}
538 
539 	return kvmppc_check_passthru(xisr, xirr, again);
540 }
541 
542 #ifdef CONFIG_KVM_XICS
543 static inline bool is_rm(void)
544 {
545 	return !(mfmsr() & MSR_DR);
546 }
547 
548 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
549 {
550 	if (!kvmppc_xics_enabled(vcpu))
551 		return H_TOO_HARD;
552 	if (xive_enabled()) {
553 		if (is_rm())
554 			return xive_rm_h_xirr(vcpu);
555 		if (unlikely(!__xive_vm_h_xirr))
556 			return H_NOT_AVAILABLE;
557 		return __xive_vm_h_xirr(vcpu);
558 	} else
559 		return xics_rm_h_xirr(vcpu);
560 }
561 
562 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
563 {
564 	if (!kvmppc_xics_enabled(vcpu))
565 		return H_TOO_HARD;
566 	vcpu->arch.regs.gpr[5] = get_tb();
567 	if (xive_enabled()) {
568 		if (is_rm())
569 			return xive_rm_h_xirr(vcpu);
570 		if (unlikely(!__xive_vm_h_xirr))
571 			return H_NOT_AVAILABLE;
572 		return __xive_vm_h_xirr(vcpu);
573 	} else
574 		return xics_rm_h_xirr(vcpu);
575 }
576 
577 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
578 {
579 	if (!kvmppc_xics_enabled(vcpu))
580 		return H_TOO_HARD;
581 	if (xive_enabled()) {
582 		if (is_rm())
583 			return xive_rm_h_ipoll(vcpu, server);
584 		if (unlikely(!__xive_vm_h_ipoll))
585 			return H_NOT_AVAILABLE;
586 		return __xive_vm_h_ipoll(vcpu, server);
587 	} else
588 		return H_TOO_HARD;
589 }
590 
591 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
592 		    unsigned long mfrr)
593 {
594 	if (!kvmppc_xics_enabled(vcpu))
595 		return H_TOO_HARD;
596 	if (xive_enabled()) {
597 		if (is_rm())
598 			return xive_rm_h_ipi(vcpu, server, mfrr);
599 		if (unlikely(!__xive_vm_h_ipi))
600 			return H_NOT_AVAILABLE;
601 		return __xive_vm_h_ipi(vcpu, server, mfrr);
602 	} else
603 		return xics_rm_h_ipi(vcpu, server, mfrr);
604 }
605 
606 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
607 {
608 	if (!kvmppc_xics_enabled(vcpu))
609 		return H_TOO_HARD;
610 	if (xive_enabled()) {
611 		if (is_rm())
612 			return xive_rm_h_cppr(vcpu, cppr);
613 		if (unlikely(!__xive_vm_h_cppr))
614 			return H_NOT_AVAILABLE;
615 		return __xive_vm_h_cppr(vcpu, cppr);
616 	} else
617 		return xics_rm_h_cppr(vcpu, cppr);
618 }
619 
620 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
621 {
622 	if (!kvmppc_xics_enabled(vcpu))
623 		return H_TOO_HARD;
624 	if (xive_enabled()) {
625 		if (is_rm())
626 			return xive_rm_h_eoi(vcpu, xirr);
627 		if (unlikely(!__xive_vm_h_eoi))
628 			return H_NOT_AVAILABLE;
629 		return __xive_vm_h_eoi(vcpu, xirr);
630 	} else
631 		return xics_rm_h_eoi(vcpu, xirr);
632 }
633 #endif /* CONFIG_KVM_XICS */
634 
635 void kvmppc_bad_interrupt(struct pt_regs *regs)
636 {
637 	/*
638 	 * 100 could happen at any time, 200 can happen due to invalid real
639 	 * address access for example (or any time due to a hardware problem).
640 	 */
641 	if (TRAP(regs) == 0x100) {
642 		get_paca()->in_nmi++;
643 		system_reset_exception(regs);
644 		get_paca()->in_nmi--;
645 	} else if (TRAP(regs) == 0x200) {
646 		machine_check_exception(regs);
647 	} else {
648 		die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
649 	}
650 	panic("Bad KVM trap");
651 }
652 
653 /*
654  * Functions used to switch LPCR HR and UPRT bits on all threads
655  * when entering and exiting HPT guests on a radix host.
656  */
657 
658 #define PHASE_REALMODE		1	/* in real mode */
659 #define PHASE_SET_LPCR		2	/* have set LPCR */
660 #define PHASE_OUT_OF_GUEST	4	/* have finished executing in guest */
661 #define PHASE_RESET_LPCR	8	/* have reset LPCR to host value */
662 
663 #define ALL(p)		(((p) << 24) | ((p) << 16) | ((p) << 8) | (p))
664 
665 static void wait_for_sync(struct kvm_split_mode *sip, int phase)
666 {
667 	int thr = local_paca->kvm_hstate.tid;
668 
669 	sip->lpcr_sync.phase[thr] |= phase;
670 	phase = ALL(phase);
671 	while ((sip->lpcr_sync.allphases & phase) != phase) {
672 		HMT_low();
673 		barrier();
674 	}
675 	HMT_medium();
676 }
677 
678 void kvmhv_p9_set_lpcr(struct kvm_split_mode *sip)
679 {
680 	unsigned long rb, set;
681 
682 	/* wait for every other thread to get to real mode */
683 	wait_for_sync(sip, PHASE_REALMODE);
684 
685 	/* Set LPCR and LPIDR */
686 	mtspr(SPRN_LPCR, sip->lpcr_req);
687 	mtspr(SPRN_LPID, sip->lpidr_req);
688 	isync();
689 
690 	/* Invalidate the TLB on thread 0 */
691 	if (local_paca->kvm_hstate.tid == 0) {
692 		sip->do_set = 0;
693 		asm volatile("ptesync" : : : "memory");
694 		for (set = 0; set < POWER9_TLB_SETS_RADIX; ++set) {
695 			rb = TLBIEL_INVAL_SET_LPID +
696 				(set << TLBIEL_INVAL_SET_SHIFT);
697 			asm volatile(PPC_TLBIEL(%0, %1, 0, 0, 0) : :
698 				     "r" (rb), "r" (0));
699 		}
700 		asm volatile("ptesync" : : : "memory");
701 	}
702 
703 	/* indicate that we have done so and wait for others */
704 	wait_for_sync(sip, PHASE_SET_LPCR);
705 	/* order read of sip->lpcr_sync.allphases vs. sip->do_set */
706 	smp_rmb();
707 }
708 
709 /*
710  * Called when a thread that has been in the guest needs
711  * to reload the host LPCR value - but only on POWER9 when
712  * running a HPT guest on a radix host.
713  */
714 void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip)
715 {
716 	/* we're out of the guest... */
717 	wait_for_sync(sip, PHASE_OUT_OF_GUEST);
718 
719 	mtspr(SPRN_LPID, 0);
720 	mtspr(SPRN_LPCR, sip->host_lpcr);
721 	isync();
722 
723 	if (local_paca->kvm_hstate.tid == 0) {
724 		sip->do_restore = 0;
725 		smp_wmb();	/* order store of do_restore vs. phase */
726 	}
727 
728 	wait_for_sync(sip, PHASE_RESET_LPCR);
729 	smp_mb();
730 	local_paca->kvm_hstate.kvm_split_mode = NULL;
731 }
732