xref: /linux/arch/powerpc/kvm/book3s_hv_builtin.c (revision b77e0ce62d63a761ffb7f7245a215a49f5921c2f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/kvm_host.h>
8 #include <linux/preempt.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/init.h>
13 #include <linux/memblock.h>
14 #include <linux/sizes.h>
15 #include <linux/cma.h>
16 #include <linux/bitops.h>
17 
18 #include <asm/asm-prototypes.h>
19 #include <asm/cputable.h>
20 #include <asm/interrupt.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/archrandom.h>
24 #include <asm/xics.h>
25 #include <asm/xive.h>
26 #include <asm/dbell.h>
27 #include <asm/cputhreads.h>
28 #include <asm/io.h>
29 #include <asm/opal.h>
30 #include <asm/smp.h>
31 
32 #define KVM_CMA_CHUNK_ORDER	18
33 
34 #include "book3s_xics.h"
35 #include "book3s_xive.h"
36 
37 /*
38  * The XIVE module will populate these when it loads
39  */
40 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
41 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
42 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
43 		       unsigned long mfrr);
44 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
45 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
46 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
47 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
50 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
51 
52 /*
53  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
54  * should be power of 2.
55  */
56 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
57 /*
58  * By default we reserve 5% of memory for hash pagetable allocation.
59  */
60 static unsigned long kvm_cma_resv_ratio = 5;
61 
62 static struct cma *kvm_cma;
63 
64 static int __init early_parse_kvm_cma_resv(char *p)
65 {
66 	pr_debug("%s(%s)\n", __func__, p);
67 	if (!p)
68 		return -EINVAL;
69 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
70 }
71 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
72 
73 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
74 {
75 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
76 
77 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
78 			 false);
79 }
80 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
81 
82 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
83 {
84 	cma_release(kvm_cma, page, nr_pages);
85 }
86 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
87 
88 /**
89  * kvm_cma_reserve() - reserve area for kvm hash pagetable
90  *
91  * This function reserves memory from early allocator. It should be
92  * called by arch specific code once the memblock allocator
93  * has been activated and all other subsystems have already allocated/reserved
94  * memory.
95  */
96 void __init kvm_cma_reserve(void)
97 {
98 	unsigned long align_size;
99 	phys_addr_t selected_size;
100 
101 	/*
102 	 * We need CMA reservation only when we are in HV mode
103 	 */
104 	if (!cpu_has_feature(CPU_FTR_HVMODE))
105 		return;
106 
107 	selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
108 	if (selected_size) {
109 		pr_info("%s: reserving %ld MiB for global area\n", __func__,
110 			 (unsigned long)selected_size / SZ_1M);
111 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
112 		cma_declare_contiguous(0, selected_size, 0, align_size,
113 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
114 			&kvm_cma);
115 	}
116 }
117 
118 /*
119  * Real-mode H_CONFER implementation.
120  * We check if we are the only vcpu out of this virtual core
121  * still running in the guest and not ceded.  If so, we pop up
122  * to the virtual-mode implementation; if not, just return to
123  * the guest.
124  */
125 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
126 			    unsigned int yield_count)
127 {
128 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
129 	int ptid = local_paca->kvm_hstate.ptid;
130 	int threads_running;
131 	int threads_ceded;
132 	int threads_conferring;
133 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
134 	int rv = H_SUCCESS; /* => don't yield */
135 
136 	set_bit(ptid, &vc->conferring_threads);
137 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
138 		threads_running = VCORE_ENTRY_MAP(vc);
139 		threads_ceded = vc->napping_threads;
140 		threads_conferring = vc->conferring_threads;
141 		if ((threads_ceded | threads_conferring) == threads_running) {
142 			rv = H_TOO_HARD; /* => do yield */
143 			break;
144 		}
145 	}
146 	clear_bit(ptid, &vc->conferring_threads);
147 	return rv;
148 }
149 
150 /*
151  * When running HV mode KVM we need to block certain operations while KVM VMs
152  * exist in the system. We use a counter of VMs to track this.
153  *
154  * One of the operations we need to block is onlining of secondaries, so we
155  * protect hv_vm_count with get/put_online_cpus().
156  */
157 static atomic_t hv_vm_count;
158 
159 void kvm_hv_vm_activated(void)
160 {
161 	get_online_cpus();
162 	atomic_inc(&hv_vm_count);
163 	put_online_cpus();
164 }
165 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
166 
167 void kvm_hv_vm_deactivated(void)
168 {
169 	get_online_cpus();
170 	atomic_dec(&hv_vm_count);
171 	put_online_cpus();
172 }
173 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
174 
175 bool kvm_hv_mode_active(void)
176 {
177 	return atomic_read(&hv_vm_count) != 0;
178 }
179 
180 extern int hcall_real_table[], hcall_real_table_end[];
181 
182 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
183 {
184 	cmd /= 4;
185 	if (cmd < hcall_real_table_end - hcall_real_table &&
186 	    hcall_real_table[cmd])
187 		return 1;
188 
189 	return 0;
190 }
191 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
192 
193 int kvmppc_hwrng_present(void)
194 {
195 	return powernv_hwrng_present();
196 }
197 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
198 
199 long kvmppc_h_random(struct kvm_vcpu *vcpu)
200 {
201 	int r;
202 
203 	/* Only need to do the expensive mfmsr() on radix */
204 	if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
205 		r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]);
206 	else
207 		r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]);
208 	if (r)
209 		return H_SUCCESS;
210 
211 	return H_HARDWARE;
212 }
213 
214 /*
215  * Send an interrupt or message to another CPU.
216  * The caller needs to include any barrier needed to order writes
217  * to memory vs. the IPI/message.
218  */
219 void kvmhv_rm_send_ipi(int cpu)
220 {
221 	void __iomem *xics_phys;
222 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
223 
224 	/* For a nested hypervisor, use the XICS via hcall */
225 	if (kvmhv_on_pseries()) {
226 		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
227 
228 		plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu),
229 				IPI_PRIORITY);
230 		return;
231 	}
232 
233 	/* On POWER9 we can use msgsnd for any destination cpu. */
234 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
235 		msg |= get_hard_smp_processor_id(cpu);
236 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
237 		return;
238 	}
239 
240 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
241 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
242 	    cpu_first_thread_sibling(cpu) ==
243 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
244 		msg |= cpu_thread_in_core(cpu);
245 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
246 		return;
247 	}
248 
249 	/* We should never reach this */
250 	if (WARN_ON_ONCE(xics_on_xive()))
251 	    return;
252 
253 	/* Else poke the target with an IPI */
254 	xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
255 	if (xics_phys)
256 		__raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
257 	else
258 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
259 }
260 
261 /*
262  * The following functions are called from the assembly code
263  * in book3s_hv_rmhandlers.S.
264  */
265 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
266 {
267 	int cpu = vc->pcpu;
268 
269 	/* Order setting of exit map vs. msgsnd/IPI */
270 	smp_mb();
271 	for (; active; active >>= 1, ++cpu)
272 		if (active & 1)
273 			kvmhv_rm_send_ipi(cpu);
274 }
275 
276 void kvmhv_commence_exit(int trap)
277 {
278 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
279 	int ptid = local_paca->kvm_hstate.ptid;
280 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
281 	int me, ee, i;
282 
283 	/* Set our bit in the threads-exiting-guest map in the 0xff00
284 	   bits of vcore->entry_exit_map */
285 	me = 0x100 << ptid;
286 	do {
287 		ee = vc->entry_exit_map;
288 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
289 
290 	/* Are we the first here? */
291 	if ((ee >> 8) != 0)
292 		return;
293 
294 	/*
295 	 * Trigger the other threads in this vcore to exit the guest.
296 	 * If this is a hypervisor decrementer interrupt then they
297 	 * will be already on their way out of the guest.
298 	 */
299 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
300 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
301 
302 	/*
303 	 * If we are doing dynamic micro-threading, interrupt the other
304 	 * subcores to pull them out of their guests too.
305 	 */
306 	if (!sip)
307 		return;
308 
309 	for (i = 0; i < MAX_SUBCORES; ++i) {
310 		vc = sip->vc[i];
311 		if (!vc)
312 			break;
313 		do {
314 			ee = vc->entry_exit_map;
315 			/* Already asked to exit? */
316 			if ((ee >> 8) != 0)
317 				break;
318 		} while (cmpxchg(&vc->entry_exit_map, ee,
319 				 ee | VCORE_EXIT_REQ) != ee);
320 		if ((ee >> 8) == 0)
321 			kvmhv_interrupt_vcore(vc, ee);
322 	}
323 }
324 
325 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
326 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
327 
328 #ifdef CONFIG_KVM_XICS
329 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
330 					 u32 xisr)
331 {
332 	int i;
333 
334 	/*
335 	 * We access the mapped array here without a lock.  That
336 	 * is safe because we never reduce the number of entries
337 	 * in the array and we never change the v_hwirq field of
338 	 * an entry once it is set.
339 	 *
340 	 * We have also carefully ordered the stores in the writer
341 	 * and the loads here in the reader, so that if we find a matching
342 	 * hwirq here, the associated GSI and irq_desc fields are valid.
343 	 */
344 	for (i = 0; i < pimap->n_mapped; i++)  {
345 		if (xisr == pimap->mapped[i].r_hwirq) {
346 			/*
347 			 * Order subsequent reads in the caller to serialize
348 			 * with the writer.
349 			 */
350 			smp_rmb();
351 			return &pimap->mapped[i];
352 		}
353 	}
354 	return NULL;
355 }
356 
357 /*
358  * If we have an interrupt that's not an IPI, check if we have a
359  * passthrough adapter and if so, check if this external interrupt
360  * is for the adapter.
361  * We will attempt to deliver the IRQ directly to the target VCPU's
362  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
363  *
364  * If the delivery fails or if this is not for a passthrough adapter,
365  * return to the host to handle this interrupt. We earlier
366  * saved a copy of the XIRR in the PACA, it will be picked up by
367  * the host ICP driver.
368  */
369 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
370 {
371 	struct kvmppc_passthru_irqmap *pimap;
372 	struct kvmppc_irq_map *irq_map;
373 	struct kvm_vcpu *vcpu;
374 
375 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
376 	if (!vcpu)
377 		return 1;
378 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
379 	if (!pimap)
380 		return 1;
381 	irq_map = get_irqmap(pimap, xisr);
382 	if (!irq_map)
383 		return 1;
384 
385 	/* We're handling this interrupt, generic code doesn't need to */
386 	local_paca->kvm_hstate.saved_xirr = 0;
387 
388 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
389 }
390 
391 #else
392 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
393 {
394 	return 1;
395 }
396 #endif
397 
398 /*
399  * Determine what sort of external interrupt is pending (if any).
400  * Returns:
401  *	0 if no interrupt is pending
402  *	1 if an interrupt is pending that needs to be handled by the host
403  *	2 Passthrough that needs completion in the host
404  *	-1 if there was a guest wakeup IPI (which has now been cleared)
405  *	-2 if there is PCI passthrough external interrupt that was handled
406  */
407 static long kvmppc_read_one_intr(bool *again);
408 
409 long kvmppc_read_intr(void)
410 {
411 	long ret = 0;
412 	long rc;
413 	bool again;
414 
415 	if (xive_enabled())
416 		return 1;
417 
418 	do {
419 		again = false;
420 		rc = kvmppc_read_one_intr(&again);
421 		if (rc && (ret == 0 || rc > ret))
422 			ret = rc;
423 	} while (again);
424 	return ret;
425 }
426 
427 static long kvmppc_read_one_intr(bool *again)
428 {
429 	void __iomem *xics_phys;
430 	u32 h_xirr;
431 	__be32 xirr;
432 	u32 xisr;
433 	u8 host_ipi;
434 	int64_t rc;
435 
436 	if (xive_enabled())
437 		return 1;
438 
439 	/* see if a host IPI is pending */
440 	host_ipi = local_paca->kvm_hstate.host_ipi;
441 	if (host_ipi)
442 		return 1;
443 
444 	/* Now read the interrupt from the ICP */
445 	if (kvmhv_on_pseries()) {
446 		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
447 
448 		rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF);
449 		xirr = cpu_to_be32(retbuf[0]);
450 	} else {
451 		xics_phys = local_paca->kvm_hstate.xics_phys;
452 		rc = 0;
453 		if (!xics_phys)
454 			rc = opal_int_get_xirr(&xirr, false);
455 		else
456 			xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
457 	}
458 	if (rc < 0)
459 		return 1;
460 
461 	/*
462 	 * Save XIRR for later. Since we get control in reverse endian
463 	 * on LE systems, save it byte reversed and fetch it back in
464 	 * host endian. Note that xirr is the value read from the
465 	 * XIRR register, while h_xirr is the host endian version.
466 	 */
467 	h_xirr = be32_to_cpu(xirr);
468 	local_paca->kvm_hstate.saved_xirr = h_xirr;
469 	xisr = h_xirr & 0xffffff;
470 	/*
471 	 * Ensure that the store/load complete to guarantee all side
472 	 * effects of loading from XIRR has completed
473 	 */
474 	smp_mb();
475 
476 	/* if nothing pending in the ICP */
477 	if (!xisr)
478 		return 0;
479 
480 	/* We found something in the ICP...
481 	 *
482 	 * If it is an IPI, clear the MFRR and EOI it.
483 	 */
484 	if (xisr == XICS_IPI) {
485 		rc = 0;
486 		if (kvmhv_on_pseries()) {
487 			unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
488 
489 			plpar_hcall_raw(H_IPI, retbuf,
490 					hard_smp_processor_id(), 0xff);
491 			plpar_hcall_raw(H_EOI, retbuf, h_xirr);
492 		} else if (xics_phys) {
493 			__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
494 			__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
495 		} else {
496 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
497 			rc = opal_int_eoi(h_xirr);
498 		}
499 		/* If rc > 0, there is another interrupt pending */
500 		*again = rc > 0;
501 
502 		/*
503 		 * Need to ensure side effects of above stores
504 		 * complete before proceeding.
505 		 */
506 		smp_mb();
507 
508 		/*
509 		 * We need to re-check host IPI now in case it got set in the
510 		 * meantime. If it's clear, we bounce the interrupt to the
511 		 * guest
512 		 */
513 		host_ipi = local_paca->kvm_hstate.host_ipi;
514 		if (unlikely(host_ipi != 0)) {
515 			/* We raced with the host,
516 			 * we need to resend that IPI, bummer
517 			 */
518 			if (kvmhv_on_pseries()) {
519 				unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
520 
521 				plpar_hcall_raw(H_IPI, retbuf,
522 						hard_smp_processor_id(),
523 						IPI_PRIORITY);
524 			} else if (xics_phys)
525 				__raw_rm_writeb(IPI_PRIORITY,
526 						xics_phys + XICS_MFRR);
527 			else
528 				opal_int_set_mfrr(hard_smp_processor_id(),
529 						  IPI_PRIORITY);
530 			/* Let side effects complete */
531 			smp_mb();
532 			return 1;
533 		}
534 
535 		/* OK, it's an IPI for us */
536 		local_paca->kvm_hstate.saved_xirr = 0;
537 		return -1;
538 	}
539 
540 	return kvmppc_check_passthru(xisr, xirr, again);
541 }
542 
543 #ifdef CONFIG_KVM_XICS
544 static inline bool is_rm(void)
545 {
546 	return !(mfmsr() & MSR_DR);
547 }
548 
549 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
550 {
551 	if (!kvmppc_xics_enabled(vcpu))
552 		return H_TOO_HARD;
553 	if (xics_on_xive()) {
554 		if (is_rm())
555 			return xive_rm_h_xirr(vcpu);
556 		if (unlikely(!__xive_vm_h_xirr))
557 			return H_NOT_AVAILABLE;
558 		return __xive_vm_h_xirr(vcpu);
559 	} else
560 		return xics_rm_h_xirr(vcpu);
561 }
562 
563 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
564 {
565 	if (!kvmppc_xics_enabled(vcpu))
566 		return H_TOO_HARD;
567 	vcpu->arch.regs.gpr[5] = get_tb();
568 	if (xics_on_xive()) {
569 		if (is_rm())
570 			return xive_rm_h_xirr(vcpu);
571 		if (unlikely(!__xive_vm_h_xirr))
572 			return H_NOT_AVAILABLE;
573 		return __xive_vm_h_xirr(vcpu);
574 	} else
575 		return xics_rm_h_xirr(vcpu);
576 }
577 
578 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
579 {
580 	if (!kvmppc_xics_enabled(vcpu))
581 		return H_TOO_HARD;
582 	if (xics_on_xive()) {
583 		if (is_rm())
584 			return xive_rm_h_ipoll(vcpu, server);
585 		if (unlikely(!__xive_vm_h_ipoll))
586 			return H_NOT_AVAILABLE;
587 		return __xive_vm_h_ipoll(vcpu, server);
588 	} else
589 		return H_TOO_HARD;
590 }
591 
592 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
593 		    unsigned long mfrr)
594 {
595 	if (!kvmppc_xics_enabled(vcpu))
596 		return H_TOO_HARD;
597 	if (xics_on_xive()) {
598 		if (is_rm())
599 			return xive_rm_h_ipi(vcpu, server, mfrr);
600 		if (unlikely(!__xive_vm_h_ipi))
601 			return H_NOT_AVAILABLE;
602 		return __xive_vm_h_ipi(vcpu, server, mfrr);
603 	} else
604 		return xics_rm_h_ipi(vcpu, server, mfrr);
605 }
606 
607 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
608 {
609 	if (!kvmppc_xics_enabled(vcpu))
610 		return H_TOO_HARD;
611 	if (xics_on_xive()) {
612 		if (is_rm())
613 			return xive_rm_h_cppr(vcpu, cppr);
614 		if (unlikely(!__xive_vm_h_cppr))
615 			return H_NOT_AVAILABLE;
616 		return __xive_vm_h_cppr(vcpu, cppr);
617 	} else
618 		return xics_rm_h_cppr(vcpu, cppr);
619 }
620 
621 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
622 {
623 	if (!kvmppc_xics_enabled(vcpu))
624 		return H_TOO_HARD;
625 	if (xics_on_xive()) {
626 		if (is_rm())
627 			return xive_rm_h_eoi(vcpu, xirr);
628 		if (unlikely(!__xive_vm_h_eoi))
629 			return H_NOT_AVAILABLE;
630 		return __xive_vm_h_eoi(vcpu, xirr);
631 	} else
632 		return xics_rm_h_eoi(vcpu, xirr);
633 }
634 #endif /* CONFIG_KVM_XICS */
635 
636 void kvmppc_bad_interrupt(struct pt_regs *regs)
637 {
638 	/*
639 	 * 100 could happen at any time, 200 can happen due to invalid real
640 	 * address access for example (or any time due to a hardware problem).
641 	 */
642 	if (TRAP(regs) == 0x100) {
643 		get_paca()->in_nmi++;
644 		system_reset_exception(regs);
645 		get_paca()->in_nmi--;
646 	} else if (TRAP(regs) == 0x200) {
647 		machine_check_exception(regs);
648 	} else {
649 		die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
650 	}
651 	panic("Bad KVM trap");
652 }
653 
654 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
655 {
656 	vcpu->arch.ceded = 0;
657 	if (vcpu->arch.timer_running) {
658 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
659 		vcpu->arch.timer_running = 0;
660 	}
661 }
662 
663 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
664 {
665 	/*
666 	 * Check for illegal transactional state bit combination
667 	 * and if we find it, force the TS field to a safe state.
668 	 */
669 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
670 		msr &= ~MSR_TS_MASK;
671 	vcpu->arch.shregs.msr = msr;
672 	kvmppc_end_cede(vcpu);
673 }
674 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
675 
676 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
677 {
678 	unsigned long msr, pc, new_msr, new_pc;
679 
680 	msr = kvmppc_get_msr(vcpu);
681 	pc = kvmppc_get_pc(vcpu);
682 	new_msr = vcpu->arch.intr_msr;
683 	new_pc = vec;
684 
685 	/* If transactional, change to suspend mode on IRQ delivery */
686 	if (MSR_TM_TRANSACTIONAL(msr))
687 		new_msr |= MSR_TS_S;
688 	else
689 		new_msr |= msr & MSR_TS_MASK;
690 
691 	/*
692 	 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
693 	 * applicable. AIL=2 is not supported.
694 	 *
695 	 * AIL does not apply to SRESET, MCE, or HMI (which is never
696 	 * delivered to the guest), and does not apply if IR=0 or DR=0.
697 	 */
698 	if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
699 	    vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
700 	    (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
701 	    (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
702 		new_msr |= MSR_IR | MSR_DR;
703 		new_pc += 0xC000000000004000ULL;
704 	}
705 
706 	kvmppc_set_srr0(vcpu, pc);
707 	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
708 	kvmppc_set_pc(vcpu, new_pc);
709 	vcpu->arch.shregs.msr = new_msr;
710 }
711 
712 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
713 {
714 	inject_interrupt(vcpu, vec, srr1_flags);
715 	kvmppc_end_cede(vcpu);
716 }
717 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
718 
719 /*
720  * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
721  * Can we inject a Decrementer or a External interrupt?
722  */
723 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
724 {
725 	int ext;
726 	unsigned long lpcr;
727 
728 	/* Insert EXTERNAL bit into LPCR at the MER bit position */
729 	ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
730 	lpcr = mfspr(SPRN_LPCR);
731 	lpcr |= ext << LPCR_MER_SH;
732 	mtspr(SPRN_LPCR, lpcr);
733 	isync();
734 
735 	if (vcpu->arch.shregs.msr & MSR_EE) {
736 		if (ext) {
737 			inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
738 		} else {
739 			long int dec = mfspr(SPRN_DEC);
740 			if (!(lpcr & LPCR_LD))
741 				dec = (int) dec;
742 			if (dec < 0)
743 				inject_interrupt(vcpu,
744 					BOOK3S_INTERRUPT_DECREMENTER, 0);
745 		}
746 	}
747 
748 	if (vcpu->arch.doorbell_request) {
749 		mtspr(SPRN_DPDES, 1);
750 		vcpu->arch.vcore->dpdes = 1;
751 		smp_wmb();
752 		vcpu->arch.doorbell_request = 0;
753 	}
754 }
755 
756 static void flush_guest_tlb(struct kvm *kvm)
757 {
758 	unsigned long rb, set;
759 
760 	rb = PPC_BIT(52);	/* IS = 2 */
761 	if (kvm_is_radix(kvm)) {
762 		/* R=1 PRS=1 RIC=2 */
763 		asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
764 			     : : "r" (rb), "i" (1), "i" (1), "i" (2),
765 			       "r" (0) : "memory");
766 		for (set = 1; set < kvm->arch.tlb_sets; ++set) {
767 			rb += PPC_BIT(51);	/* increment set number */
768 			/* R=1 PRS=1 RIC=0 */
769 			asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
770 				     : : "r" (rb), "i" (1), "i" (1), "i" (0),
771 				       "r" (0) : "memory");
772 		}
773 		asm volatile("ptesync": : :"memory");
774 		asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory");
775 	} else {
776 		for (set = 0; set < kvm->arch.tlb_sets; ++set) {
777 			/* R=0 PRS=0 RIC=0 */
778 			asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
779 				     : : "r" (rb), "i" (0), "i" (0), "i" (0),
780 				       "r" (0) : "memory");
781 			rb += PPC_BIT(51);	/* increment set number */
782 		}
783 		asm volatile("ptesync": : :"memory");
784 		asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
785 	}
786 }
787 
788 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu,
789 				 struct kvm_nested_guest *nested)
790 {
791 	cpumask_t *need_tlb_flush;
792 
793 	/*
794 	 * On POWER9, individual threads can come in here, but the
795 	 * TLB is shared between the 4 threads in a core, hence
796 	 * invalidating on one thread invalidates for all.
797 	 * Thus we make all 4 threads use the same bit.
798 	 */
799 	if (cpu_has_feature(CPU_FTR_ARCH_300))
800 		pcpu = cpu_first_thread_sibling(pcpu);
801 
802 	if (nested)
803 		need_tlb_flush = &nested->need_tlb_flush;
804 	else
805 		need_tlb_flush = &kvm->arch.need_tlb_flush;
806 
807 	if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
808 		flush_guest_tlb(kvm);
809 
810 		/* Clear the bit after the TLB flush */
811 		cpumask_clear_cpu(pcpu, need_tlb_flush);
812 	}
813 }
814 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
815