1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 */ 5 6 #include <linux/cpu.h> 7 #include <linux/kvm_host.h> 8 #include <linux/preempt.h> 9 #include <linux/export.h> 10 #include <linux/sched.h> 11 #include <linux/spinlock.h> 12 #include <linux/init.h> 13 #include <linux/memblock.h> 14 #include <linux/sizes.h> 15 #include <linux/cma.h> 16 #include <linux/bitops.h> 17 18 #include <asm/cputable.h> 19 #include <asm/interrupt.h> 20 #include <asm/kvm_ppc.h> 21 #include <asm/kvm_book3s.h> 22 #include <asm/machdep.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/dbell.h> 26 #include <asm/cputhreads.h> 27 #include <asm/io.h> 28 #include <asm/opal.h> 29 #include <asm/smp.h> 30 31 #define KVM_CMA_CHUNK_ORDER 18 32 33 #include "book3s_xics.h" 34 #include "book3s_xive.h" 35 #include "book3s_hv.h" 36 37 /* 38 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) 39 * should be power of 2. 40 */ 41 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */ 42 /* 43 * By default we reserve 5% of memory for hash pagetable allocation. 44 */ 45 static unsigned long kvm_cma_resv_ratio = 5; 46 47 static struct cma *kvm_cma; 48 49 static int __init early_parse_kvm_cma_resv(char *p) 50 { 51 pr_debug("%s(%s)\n", __func__, p); 52 if (!p) 53 return -EINVAL; 54 return kstrtoul(p, 0, &kvm_cma_resv_ratio); 55 } 56 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv); 57 58 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages) 59 { 60 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT); 61 62 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES), 63 false); 64 } 65 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma); 66 67 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages) 68 { 69 cma_release(kvm_cma, page, nr_pages); 70 } 71 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma); 72 73 /** 74 * kvm_cma_reserve() - reserve area for kvm hash pagetable 75 * 76 * This function reserves memory from early allocator. It should be 77 * called by arch specific code once the memblock allocator 78 * has been activated and all other subsystems have already allocated/reserved 79 * memory. 80 */ 81 void __init kvm_cma_reserve(void) 82 { 83 unsigned long align_size; 84 phys_addr_t selected_size; 85 86 /* 87 * We need CMA reservation only when we are in HV mode 88 */ 89 if (!cpu_has_feature(CPU_FTR_HVMODE)) 90 return; 91 92 selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100); 93 if (selected_size) { 94 pr_info("%s: reserving %ld MiB for global area\n", __func__, 95 (unsigned long)selected_size / SZ_1M); 96 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT; 97 cma_declare_contiguous(0, selected_size, 0, align_size, 98 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma", 99 &kvm_cma); 100 } 101 } 102 103 /* 104 * Real-mode H_CONFER implementation. 105 * We check if we are the only vcpu out of this virtual core 106 * still running in the guest and not ceded. If so, we pop up 107 * to the virtual-mode implementation; if not, just return to 108 * the guest. 109 */ 110 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target, 111 unsigned int yield_count) 112 { 113 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 114 int ptid = local_paca->kvm_hstate.ptid; 115 int threads_running; 116 int threads_ceded; 117 int threads_conferring; 118 u64 stop = get_tb() + 10 * tb_ticks_per_usec; 119 int rv = H_SUCCESS; /* => don't yield */ 120 121 set_bit(ptid, &vc->conferring_threads); 122 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) { 123 threads_running = VCORE_ENTRY_MAP(vc); 124 threads_ceded = vc->napping_threads; 125 threads_conferring = vc->conferring_threads; 126 if ((threads_ceded | threads_conferring) == threads_running) { 127 rv = H_TOO_HARD; /* => do yield */ 128 break; 129 } 130 } 131 clear_bit(ptid, &vc->conferring_threads); 132 return rv; 133 } 134 135 /* 136 * When running HV mode KVM we need to block certain operations while KVM VMs 137 * exist in the system. We use a counter of VMs to track this. 138 * 139 * One of the operations we need to block is onlining of secondaries, so we 140 * protect hv_vm_count with cpus_read_lock/unlock(). 141 */ 142 static atomic_t hv_vm_count; 143 144 void kvm_hv_vm_activated(void) 145 { 146 cpus_read_lock(); 147 atomic_inc(&hv_vm_count); 148 cpus_read_unlock(); 149 } 150 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated); 151 152 void kvm_hv_vm_deactivated(void) 153 { 154 cpus_read_lock(); 155 atomic_dec(&hv_vm_count); 156 cpus_read_unlock(); 157 } 158 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated); 159 160 bool kvm_hv_mode_active(void) 161 { 162 return atomic_read(&hv_vm_count) != 0; 163 } 164 165 extern int hcall_real_table[], hcall_real_table_end[]; 166 167 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd) 168 { 169 cmd /= 4; 170 if (cmd < hcall_real_table_end - hcall_real_table && 171 hcall_real_table[cmd]) 172 return 1; 173 174 return 0; 175 } 176 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode); 177 178 int kvmppc_hwrng_present(void) 179 { 180 return ppc_md.get_random_seed != NULL; 181 } 182 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present); 183 184 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu) 185 { 186 unsigned long rand; 187 188 if (ppc_md.get_random_seed && 189 ppc_md.get_random_seed(&rand)) { 190 kvmppc_set_gpr(vcpu, 4, rand); 191 return H_SUCCESS; 192 } 193 194 return H_HARDWARE; 195 } 196 197 /* 198 * Send an interrupt or message to another CPU. 199 * The caller needs to include any barrier needed to order writes 200 * to memory vs. the IPI/message. 201 */ 202 void kvmhv_rm_send_ipi(int cpu) 203 { 204 void __iomem *xics_phys; 205 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 206 207 /* On POWER9 we can use msgsnd for any destination cpu. */ 208 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 209 msg |= get_hard_smp_processor_id(cpu); 210 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 211 return; 212 } 213 214 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */ 215 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 216 cpu_first_thread_sibling(cpu) == 217 cpu_first_thread_sibling(raw_smp_processor_id())) { 218 msg |= cpu_thread_in_core(cpu); 219 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 220 return; 221 } 222 223 /* We should never reach this */ 224 if (WARN_ON_ONCE(xics_on_xive())) 225 return; 226 227 /* Else poke the target with an IPI */ 228 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys; 229 if (xics_phys) 230 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR); 231 else 232 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 233 } 234 235 /* 236 * The following functions are called from the assembly code 237 * in book3s_hv_rmhandlers.S. 238 */ 239 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active) 240 { 241 int cpu = vc->pcpu; 242 243 /* Order setting of exit map vs. msgsnd/IPI */ 244 smp_mb(); 245 for (; active; active >>= 1, ++cpu) 246 if (active & 1) 247 kvmhv_rm_send_ipi(cpu); 248 } 249 250 void kvmhv_commence_exit(int trap) 251 { 252 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 253 int ptid = local_paca->kvm_hstate.ptid; 254 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode; 255 int me, ee, i; 256 257 /* Set our bit in the threads-exiting-guest map in the 0xff00 258 bits of vcore->entry_exit_map */ 259 me = 0x100 << ptid; 260 do { 261 ee = vc->entry_exit_map; 262 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee); 263 264 /* Are we the first here? */ 265 if ((ee >> 8) != 0) 266 return; 267 268 /* 269 * Trigger the other threads in this vcore to exit the guest. 270 * If this is a hypervisor decrementer interrupt then they 271 * will be already on their way out of the guest. 272 */ 273 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER) 274 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid)); 275 276 /* 277 * If we are doing dynamic micro-threading, interrupt the other 278 * subcores to pull them out of their guests too. 279 */ 280 if (!sip) 281 return; 282 283 for (i = 0; i < MAX_SUBCORES; ++i) { 284 vc = sip->vc[i]; 285 if (!vc) 286 break; 287 do { 288 ee = vc->entry_exit_map; 289 /* Already asked to exit? */ 290 if ((ee >> 8) != 0) 291 break; 292 } while (cmpxchg(&vc->entry_exit_map, ee, 293 ee | VCORE_EXIT_REQ) != ee); 294 if ((ee >> 8) == 0) 295 kvmhv_interrupt_vcore(vc, ee); 296 } 297 } 298 299 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv; 300 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv); 301 302 #ifdef CONFIG_KVM_XICS 303 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap, 304 u32 xisr) 305 { 306 int i; 307 308 /* 309 * We access the mapped array here without a lock. That 310 * is safe because we never reduce the number of entries 311 * in the array and we never change the v_hwirq field of 312 * an entry once it is set. 313 * 314 * We have also carefully ordered the stores in the writer 315 * and the loads here in the reader, so that if we find a matching 316 * hwirq here, the associated GSI and irq_desc fields are valid. 317 */ 318 for (i = 0; i < pimap->n_mapped; i++) { 319 if (xisr == pimap->mapped[i].r_hwirq) { 320 /* 321 * Order subsequent reads in the caller to serialize 322 * with the writer. 323 */ 324 smp_rmb(); 325 return &pimap->mapped[i]; 326 } 327 } 328 return NULL; 329 } 330 331 /* 332 * If we have an interrupt that's not an IPI, check if we have a 333 * passthrough adapter and if so, check if this external interrupt 334 * is for the adapter. 335 * We will attempt to deliver the IRQ directly to the target VCPU's 336 * ICP, the virtual ICP (based on affinity - the xive value in ICS). 337 * 338 * If the delivery fails or if this is not for a passthrough adapter, 339 * return to the host to handle this interrupt. We earlier 340 * saved a copy of the XIRR in the PACA, it will be picked up by 341 * the host ICP driver. 342 */ 343 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 344 { 345 struct kvmppc_passthru_irqmap *pimap; 346 struct kvmppc_irq_map *irq_map; 347 struct kvm_vcpu *vcpu; 348 349 vcpu = local_paca->kvm_hstate.kvm_vcpu; 350 if (!vcpu) 351 return 1; 352 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm); 353 if (!pimap) 354 return 1; 355 irq_map = get_irqmap(pimap, xisr); 356 if (!irq_map) 357 return 1; 358 359 /* We're handling this interrupt, generic code doesn't need to */ 360 local_paca->kvm_hstate.saved_xirr = 0; 361 362 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again); 363 } 364 365 #else 366 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 367 { 368 return 1; 369 } 370 #endif 371 372 /* 373 * Determine what sort of external interrupt is pending (if any). 374 * Returns: 375 * 0 if no interrupt is pending 376 * 1 if an interrupt is pending that needs to be handled by the host 377 * 2 Passthrough that needs completion in the host 378 * -1 if there was a guest wakeup IPI (which has now been cleared) 379 * -2 if there is PCI passthrough external interrupt that was handled 380 */ 381 static long kvmppc_read_one_intr(bool *again); 382 383 long kvmppc_read_intr(void) 384 { 385 long ret = 0; 386 long rc; 387 bool again; 388 389 if (xive_enabled()) 390 return 1; 391 392 do { 393 again = false; 394 rc = kvmppc_read_one_intr(&again); 395 if (rc && (ret == 0 || rc > ret)) 396 ret = rc; 397 } while (again); 398 return ret; 399 } 400 401 static long kvmppc_read_one_intr(bool *again) 402 { 403 void __iomem *xics_phys; 404 u32 h_xirr; 405 __be32 xirr; 406 u32 xisr; 407 u8 host_ipi; 408 int64_t rc; 409 410 if (xive_enabled()) 411 return 1; 412 413 /* see if a host IPI is pending */ 414 host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi); 415 if (host_ipi) 416 return 1; 417 418 /* Now read the interrupt from the ICP */ 419 xics_phys = local_paca->kvm_hstate.xics_phys; 420 rc = 0; 421 if (!xics_phys) 422 rc = opal_int_get_xirr(&xirr, false); 423 else 424 xirr = __raw_rm_readl(xics_phys + XICS_XIRR); 425 if (rc < 0) 426 return 1; 427 428 /* 429 * Save XIRR for later. Since we get control in reverse endian 430 * on LE systems, save it byte reversed and fetch it back in 431 * host endian. Note that xirr is the value read from the 432 * XIRR register, while h_xirr is the host endian version. 433 */ 434 h_xirr = be32_to_cpu(xirr); 435 local_paca->kvm_hstate.saved_xirr = h_xirr; 436 xisr = h_xirr & 0xffffff; 437 /* 438 * Ensure that the store/load complete to guarantee all side 439 * effects of loading from XIRR has completed 440 */ 441 smp_mb(); 442 443 /* if nothing pending in the ICP */ 444 if (!xisr) 445 return 0; 446 447 /* We found something in the ICP... 448 * 449 * If it is an IPI, clear the MFRR and EOI it. 450 */ 451 if (xisr == XICS_IPI) { 452 rc = 0; 453 if (xics_phys) { 454 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR); 455 __raw_rm_writel(xirr, xics_phys + XICS_XIRR); 456 } else { 457 opal_int_set_mfrr(hard_smp_processor_id(), 0xff); 458 rc = opal_int_eoi(h_xirr); 459 } 460 /* If rc > 0, there is another interrupt pending */ 461 *again = rc > 0; 462 463 /* 464 * Need to ensure side effects of above stores 465 * complete before proceeding. 466 */ 467 smp_mb(); 468 469 /* 470 * We need to re-check host IPI now in case it got set in the 471 * meantime. If it's clear, we bounce the interrupt to the 472 * guest 473 */ 474 host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi); 475 if (unlikely(host_ipi != 0)) { 476 /* We raced with the host, 477 * we need to resend that IPI, bummer 478 */ 479 if (xics_phys) 480 __raw_rm_writeb(IPI_PRIORITY, 481 xics_phys + XICS_MFRR); 482 else 483 opal_int_set_mfrr(hard_smp_processor_id(), 484 IPI_PRIORITY); 485 /* Let side effects complete */ 486 smp_mb(); 487 return 1; 488 } 489 490 /* OK, it's an IPI for us */ 491 local_paca->kvm_hstate.saved_xirr = 0; 492 return -1; 493 } 494 495 return kvmppc_check_passthru(xisr, xirr, again); 496 } 497 498 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 499 { 500 vcpu->arch.ceded = 0; 501 if (vcpu->arch.timer_running) { 502 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 503 vcpu->arch.timer_running = 0; 504 } 505 } 506 507 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 508 { 509 /* Guest must always run with ME enabled, HV disabled. */ 510 msr = (msr | MSR_ME) & ~MSR_HV; 511 512 /* 513 * Check for illegal transactional state bit combination 514 * and if we find it, force the TS field to a safe state. 515 */ 516 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 517 msr &= ~MSR_TS_MASK; 518 __kvmppc_set_msr_hv(vcpu, msr); 519 kvmppc_end_cede(vcpu); 520 } 521 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv); 522 523 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 524 { 525 unsigned long msr, pc, new_msr, new_pc; 526 527 msr = kvmppc_get_msr(vcpu); 528 pc = kvmppc_get_pc(vcpu); 529 new_msr = vcpu->arch.intr_msr; 530 new_pc = vec; 531 532 /* If transactional, change to suspend mode on IRQ delivery */ 533 if (MSR_TM_TRANSACTIONAL(msr)) 534 new_msr |= MSR_TS_S; 535 else 536 new_msr |= msr & MSR_TS_MASK; 537 538 /* 539 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and 540 * applicable. AIL=2 is not supported. 541 * 542 * AIL does not apply to SRESET, MCE, or HMI (which is never 543 * delivered to the guest), and does not apply if IR=0 or DR=0. 544 */ 545 if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET && 546 vec != BOOK3S_INTERRUPT_MACHINE_CHECK && 547 (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 && 548 (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) { 549 new_msr |= MSR_IR | MSR_DR; 550 new_pc += 0xC000000000004000ULL; 551 } 552 553 kvmppc_set_srr0(vcpu, pc); 554 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 555 kvmppc_set_pc(vcpu, new_pc); 556 __kvmppc_set_msr_hv(vcpu, new_msr); 557 } 558 559 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 560 { 561 inject_interrupt(vcpu, vec, srr1_flags); 562 kvmppc_end_cede(vcpu); 563 } 564 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv); 565 566 /* 567 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)? 568 * Can we inject a Decrementer or a External interrupt? 569 */ 570 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu) 571 { 572 int ext; 573 unsigned long lpcr; 574 575 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 576 577 /* Insert EXTERNAL bit into LPCR at the MER bit position */ 578 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1; 579 lpcr = mfspr(SPRN_LPCR); 580 lpcr |= ext << LPCR_MER_SH; 581 mtspr(SPRN_LPCR, lpcr); 582 isync(); 583 584 if (vcpu->arch.shregs.msr & MSR_EE) { 585 if (ext) { 586 inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0); 587 } else { 588 long int dec = mfspr(SPRN_DEC); 589 if (!(lpcr & LPCR_LD)) 590 dec = (int) dec; 591 if (dec < 0) 592 inject_interrupt(vcpu, 593 BOOK3S_INTERRUPT_DECREMENTER, 0); 594 } 595 } 596 597 if (vcpu->arch.doorbell_request) { 598 mtspr(SPRN_DPDES, 1); 599 vcpu->arch.vcore->dpdes = 1; 600 smp_wmb(); 601 vcpu->arch.doorbell_request = 0; 602 } 603 } 604 605 static void flush_guest_tlb(struct kvm *kvm) 606 { 607 unsigned long rb, set; 608 609 rb = PPC_BIT(52); /* IS = 2 */ 610 for (set = 0; set < kvm->arch.tlb_sets; ++set) { 611 /* R=0 PRS=0 RIC=0 */ 612 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 613 : : "r" (rb), "i" (0), "i" (0), "i" (0), 614 "r" (0) : "memory"); 615 rb += PPC_BIT(51); /* increment set number */ 616 } 617 asm volatile("ptesync": : :"memory"); 618 } 619 620 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu) 621 { 622 if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) { 623 flush_guest_tlb(kvm); 624 625 /* Clear the bit after the TLB flush */ 626 cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush); 627 } 628 } 629 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush); 630