1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 34 #include <asm/reg.h> 35 #include <asm/cputable.h> 36 #include <asm/cacheflush.h> 37 #include <asm/tlbflush.h> 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/kvm_ppc.h> 41 #include <asm/kvm_book3s.h> 42 #include <asm/mmu_context.h> 43 #include <asm/lppaca.h> 44 #include <asm/processor.h> 45 #include <asm/cputhreads.h> 46 #include <asm/page.h> 47 #include <linux/gfp.h> 48 #include <linux/sched.h> 49 #include <linux/vmalloc.h> 50 #include <linux/highmem.h> 51 52 /* 53 * For now, limit memory to 64GB and require it to be large pages. 54 * This value is chosen because it makes the ram_pginfo array be 55 * 64kB in size, which is about as large as we want to be trying 56 * to allocate with kmalloc. 57 */ 58 #define MAX_MEM_ORDER 36 59 60 #define LARGE_PAGE_ORDER 24 /* 16MB pages */ 61 62 /* #define EXIT_DEBUG */ 63 /* #define EXIT_DEBUG_SIMPLE */ 64 /* #define EXIT_DEBUG_INT */ 65 66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 67 68 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 69 { 70 local_paca->kvm_hstate.kvm_vcpu = vcpu; 71 local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore; 72 } 73 74 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) 75 { 76 } 77 78 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) 79 { 80 vcpu->arch.shregs.msr = msr; 81 kvmppc_end_cede(vcpu); 82 } 83 84 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) 85 { 86 vcpu->arch.pvr = pvr; 87 } 88 89 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 90 { 91 int r; 92 93 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 94 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 95 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 96 for (r = 0; r < 16; ++r) 97 pr_err("r%2d = %.16lx r%d = %.16lx\n", 98 r, kvmppc_get_gpr(vcpu, r), 99 r+16, kvmppc_get_gpr(vcpu, r+16)); 100 pr_err("ctr = %.16lx lr = %.16lx\n", 101 vcpu->arch.ctr, vcpu->arch.lr); 102 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 103 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 104 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 105 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 106 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 107 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 108 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 109 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 110 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 111 pr_err("fault dar = %.16lx dsisr = %.8x\n", 112 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 113 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 114 for (r = 0; r < vcpu->arch.slb_max; ++r) 115 pr_err(" ESID = %.16llx VSID = %.16llx\n", 116 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 117 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 118 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, 119 vcpu->arch.last_inst); 120 } 121 122 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 123 { 124 int r; 125 struct kvm_vcpu *v, *ret = NULL; 126 127 mutex_lock(&kvm->lock); 128 kvm_for_each_vcpu(r, v, kvm) { 129 if (v->vcpu_id == id) { 130 ret = v; 131 break; 132 } 133 } 134 mutex_unlock(&kvm->lock); 135 return ret; 136 } 137 138 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 139 { 140 vpa->shared_proc = 1; 141 vpa->yield_count = 1; 142 } 143 144 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 145 unsigned long flags, 146 unsigned long vcpuid, unsigned long vpa) 147 { 148 struct kvm *kvm = vcpu->kvm; 149 unsigned long pg_index, ra, len; 150 unsigned long pg_offset; 151 void *va; 152 struct kvm_vcpu *tvcpu; 153 154 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 155 if (!tvcpu) 156 return H_PARAMETER; 157 158 flags >>= 63 - 18; 159 flags &= 7; 160 if (flags == 0 || flags == 4) 161 return H_PARAMETER; 162 if (flags < 4) { 163 if (vpa & 0x7f) 164 return H_PARAMETER; 165 /* registering new area; convert logical addr to real */ 166 pg_index = vpa >> kvm->arch.ram_porder; 167 pg_offset = vpa & (kvm->arch.ram_psize - 1); 168 if (pg_index >= kvm->arch.ram_npages) 169 return H_PARAMETER; 170 if (kvm->arch.ram_pginfo[pg_index].pfn == 0) 171 return H_PARAMETER; 172 ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT; 173 ra |= pg_offset; 174 va = __va(ra); 175 if (flags <= 1) 176 len = *(unsigned short *)(va + 4); 177 else 178 len = *(unsigned int *)(va + 4); 179 if (pg_offset + len > kvm->arch.ram_psize) 180 return H_PARAMETER; 181 switch (flags) { 182 case 1: /* register VPA */ 183 if (len < 640) 184 return H_PARAMETER; 185 tvcpu->arch.vpa = va; 186 init_vpa(vcpu, va); 187 break; 188 case 2: /* register DTL */ 189 if (len < 48) 190 return H_PARAMETER; 191 if (!tvcpu->arch.vpa) 192 return H_RESOURCE; 193 len -= len % 48; 194 tvcpu->arch.dtl = va; 195 tvcpu->arch.dtl_end = va + len; 196 break; 197 case 3: /* register SLB shadow buffer */ 198 if (len < 8) 199 return H_PARAMETER; 200 if (!tvcpu->arch.vpa) 201 return H_RESOURCE; 202 tvcpu->arch.slb_shadow = va; 203 len = (len - 16) / 16; 204 tvcpu->arch.slb_shadow = va; 205 break; 206 } 207 } else { 208 switch (flags) { 209 case 5: /* unregister VPA */ 210 if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl) 211 return H_RESOURCE; 212 tvcpu->arch.vpa = NULL; 213 break; 214 case 6: /* unregister DTL */ 215 tvcpu->arch.dtl = NULL; 216 break; 217 case 7: /* unregister SLB shadow buffer */ 218 tvcpu->arch.slb_shadow = NULL; 219 break; 220 } 221 } 222 return H_SUCCESS; 223 } 224 225 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 226 { 227 unsigned long req = kvmppc_get_gpr(vcpu, 3); 228 unsigned long target, ret = H_SUCCESS; 229 struct kvm_vcpu *tvcpu; 230 231 switch (req) { 232 case H_CEDE: 233 break; 234 case H_PROD: 235 target = kvmppc_get_gpr(vcpu, 4); 236 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 237 if (!tvcpu) { 238 ret = H_PARAMETER; 239 break; 240 } 241 tvcpu->arch.prodded = 1; 242 smp_mb(); 243 if (vcpu->arch.ceded) { 244 if (waitqueue_active(&vcpu->wq)) { 245 wake_up_interruptible(&vcpu->wq); 246 vcpu->stat.halt_wakeup++; 247 } 248 } 249 break; 250 case H_CONFER: 251 break; 252 case H_REGISTER_VPA: 253 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 254 kvmppc_get_gpr(vcpu, 5), 255 kvmppc_get_gpr(vcpu, 6)); 256 break; 257 default: 258 return RESUME_HOST; 259 } 260 kvmppc_set_gpr(vcpu, 3, ret); 261 vcpu->arch.hcall_needed = 0; 262 return RESUME_GUEST; 263 } 264 265 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, 266 struct task_struct *tsk) 267 { 268 int r = RESUME_HOST; 269 270 vcpu->stat.sum_exits++; 271 272 run->exit_reason = KVM_EXIT_UNKNOWN; 273 run->ready_for_interrupt_injection = 1; 274 switch (vcpu->arch.trap) { 275 /* We're good on these - the host merely wanted to get our attention */ 276 case BOOK3S_INTERRUPT_HV_DECREMENTER: 277 vcpu->stat.dec_exits++; 278 r = RESUME_GUEST; 279 break; 280 case BOOK3S_INTERRUPT_EXTERNAL: 281 vcpu->stat.ext_intr_exits++; 282 r = RESUME_GUEST; 283 break; 284 case BOOK3S_INTERRUPT_PERFMON: 285 r = RESUME_GUEST; 286 break; 287 case BOOK3S_INTERRUPT_PROGRAM: 288 { 289 ulong flags; 290 /* 291 * Normally program interrupts are delivered directly 292 * to the guest by the hardware, but we can get here 293 * as a result of a hypervisor emulation interrupt 294 * (e40) getting turned into a 700 by BML RTAS. 295 */ 296 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 297 kvmppc_core_queue_program(vcpu, flags); 298 r = RESUME_GUEST; 299 break; 300 } 301 case BOOK3S_INTERRUPT_SYSCALL: 302 { 303 /* hcall - punt to userspace */ 304 int i; 305 306 if (vcpu->arch.shregs.msr & MSR_PR) { 307 /* sc 1 from userspace - reflect to guest syscall */ 308 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); 309 r = RESUME_GUEST; 310 break; 311 } 312 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 313 for (i = 0; i < 9; ++i) 314 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 315 run->exit_reason = KVM_EXIT_PAPR_HCALL; 316 vcpu->arch.hcall_needed = 1; 317 r = RESUME_HOST; 318 break; 319 } 320 /* 321 * We get these next two if the guest does a bad real-mode access, 322 * as we have enabled VRMA (virtualized real mode area) mode in the 323 * LPCR. We just generate an appropriate DSI/ISI to the guest. 324 */ 325 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 326 vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr; 327 vcpu->arch.shregs.dar = vcpu->arch.fault_dar; 328 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0); 329 r = RESUME_GUEST; 330 break; 331 case BOOK3S_INTERRUPT_H_INST_STORAGE: 332 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE, 333 0x08000000); 334 r = RESUME_GUEST; 335 break; 336 /* 337 * This occurs if the guest executes an illegal instruction. 338 * We just generate a program interrupt to the guest, since 339 * we don't emulate any guest instructions at this stage. 340 */ 341 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 342 kvmppc_core_queue_program(vcpu, 0x80000); 343 r = RESUME_GUEST; 344 break; 345 default: 346 kvmppc_dump_regs(vcpu); 347 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 348 vcpu->arch.trap, kvmppc_get_pc(vcpu), 349 vcpu->arch.shregs.msr); 350 r = RESUME_HOST; 351 BUG(); 352 break; 353 } 354 355 return r; 356 } 357 358 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 359 struct kvm_sregs *sregs) 360 { 361 int i; 362 363 sregs->pvr = vcpu->arch.pvr; 364 365 memset(sregs, 0, sizeof(struct kvm_sregs)); 366 for (i = 0; i < vcpu->arch.slb_max; i++) { 367 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 368 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 369 } 370 371 return 0; 372 } 373 374 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 375 struct kvm_sregs *sregs) 376 { 377 int i, j; 378 379 kvmppc_set_pvr(vcpu, sregs->pvr); 380 381 j = 0; 382 for (i = 0; i < vcpu->arch.slb_nr; i++) { 383 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 384 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 385 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 386 ++j; 387 } 388 } 389 vcpu->arch.slb_max = j; 390 391 return 0; 392 } 393 394 int kvmppc_core_check_processor_compat(void) 395 { 396 if (cpu_has_feature(CPU_FTR_HVMODE)) 397 return 0; 398 return -EIO; 399 } 400 401 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) 402 { 403 struct kvm_vcpu *vcpu; 404 int err = -EINVAL; 405 int core; 406 struct kvmppc_vcore *vcore; 407 408 core = id / threads_per_core; 409 if (core >= KVM_MAX_VCORES) 410 goto out; 411 412 err = -ENOMEM; 413 vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL); 414 if (!vcpu) 415 goto out; 416 417 err = kvm_vcpu_init(vcpu, kvm, id); 418 if (err) 419 goto free_vcpu; 420 421 vcpu->arch.shared = &vcpu->arch.shregs; 422 vcpu->arch.last_cpu = -1; 423 vcpu->arch.mmcr[0] = MMCR0_FC; 424 vcpu->arch.ctrl = CTRL_RUNLATCH; 425 /* default to host PVR, since we can't spoof it */ 426 vcpu->arch.pvr = mfspr(SPRN_PVR); 427 kvmppc_set_pvr(vcpu, vcpu->arch.pvr); 428 429 kvmppc_mmu_book3s_hv_init(vcpu); 430 431 /* 432 * We consider the vcpu stopped until we see the first run ioctl for it. 433 */ 434 vcpu->arch.state = KVMPPC_VCPU_STOPPED; 435 436 init_waitqueue_head(&vcpu->arch.cpu_run); 437 438 mutex_lock(&kvm->lock); 439 vcore = kvm->arch.vcores[core]; 440 if (!vcore) { 441 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 442 if (vcore) { 443 INIT_LIST_HEAD(&vcore->runnable_threads); 444 spin_lock_init(&vcore->lock); 445 init_waitqueue_head(&vcore->wq); 446 } 447 kvm->arch.vcores[core] = vcore; 448 } 449 mutex_unlock(&kvm->lock); 450 451 if (!vcore) 452 goto free_vcpu; 453 454 spin_lock(&vcore->lock); 455 ++vcore->num_threads; 456 spin_unlock(&vcore->lock); 457 vcpu->arch.vcore = vcore; 458 459 vcpu->arch.cpu_type = KVM_CPU_3S_64; 460 kvmppc_sanity_check(vcpu); 461 462 return vcpu; 463 464 free_vcpu: 465 kfree(vcpu); 466 out: 467 return ERR_PTR(err); 468 } 469 470 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) 471 { 472 kvm_vcpu_uninit(vcpu); 473 kfree(vcpu); 474 } 475 476 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 477 { 478 unsigned long dec_nsec, now; 479 480 now = get_tb(); 481 if (now > vcpu->arch.dec_expires) { 482 /* decrementer has already gone negative */ 483 kvmppc_core_queue_dec(vcpu); 484 kvmppc_core_deliver_interrupts(vcpu); 485 return; 486 } 487 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 488 / tb_ticks_per_sec; 489 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 490 HRTIMER_MODE_REL); 491 vcpu->arch.timer_running = 1; 492 } 493 494 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 495 { 496 vcpu->arch.ceded = 0; 497 if (vcpu->arch.timer_running) { 498 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 499 vcpu->arch.timer_running = 0; 500 } 501 } 502 503 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); 504 extern void xics_wake_cpu(int cpu); 505 506 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 507 struct kvm_vcpu *vcpu) 508 { 509 struct kvm_vcpu *v; 510 511 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 512 return; 513 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 514 --vc->n_runnable; 515 ++vc->n_busy; 516 /* decrement the physical thread id of each following vcpu */ 517 v = vcpu; 518 list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list) 519 --v->arch.ptid; 520 list_del(&vcpu->arch.run_list); 521 } 522 523 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 524 { 525 int cpu; 526 struct paca_struct *tpaca; 527 struct kvmppc_vcore *vc = vcpu->arch.vcore; 528 529 if (vcpu->arch.timer_running) { 530 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 531 vcpu->arch.timer_running = 0; 532 } 533 cpu = vc->pcpu + vcpu->arch.ptid; 534 tpaca = &paca[cpu]; 535 tpaca->kvm_hstate.kvm_vcpu = vcpu; 536 tpaca->kvm_hstate.kvm_vcore = vc; 537 tpaca->kvm_hstate.napping = 0; 538 vcpu->cpu = vc->pcpu; 539 smp_wmb(); 540 #ifdef CONFIG_PPC_ICP_NATIVE 541 if (vcpu->arch.ptid) { 542 tpaca->cpu_start = 0x80; 543 wmb(); 544 xics_wake_cpu(cpu); 545 ++vc->n_woken; 546 } 547 #endif 548 } 549 550 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 551 { 552 int i; 553 554 HMT_low(); 555 i = 0; 556 while (vc->nap_count < vc->n_woken) { 557 if (++i >= 1000000) { 558 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 559 vc->nap_count, vc->n_woken); 560 break; 561 } 562 cpu_relax(); 563 } 564 HMT_medium(); 565 } 566 567 /* 568 * Check that we are on thread 0 and that any other threads in 569 * this core are off-line. 570 */ 571 static int on_primary_thread(void) 572 { 573 int cpu = smp_processor_id(); 574 int thr = cpu_thread_in_core(cpu); 575 576 if (thr) 577 return 0; 578 while (++thr < threads_per_core) 579 if (cpu_online(cpu + thr)) 580 return 0; 581 return 1; 582 } 583 584 /* 585 * Run a set of guest threads on a physical core. 586 * Called with vc->lock held. 587 */ 588 static int kvmppc_run_core(struct kvmppc_vcore *vc) 589 { 590 struct kvm_vcpu *vcpu, *vcpu0, *vnext; 591 long ret; 592 u64 now; 593 int ptid; 594 595 /* don't start if any threads have a signal pending */ 596 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 597 if (signal_pending(vcpu->arch.run_task)) 598 return 0; 599 600 /* 601 * Make sure we are running on thread 0, and that 602 * secondary threads are offline. 603 * XXX we should also block attempts to bring any 604 * secondary threads online. 605 */ 606 if (threads_per_core > 1 && !on_primary_thread()) { 607 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 608 vcpu->arch.ret = -EBUSY; 609 goto out; 610 } 611 612 /* 613 * Assign physical thread IDs, first to non-ceded vcpus 614 * and then to ceded ones. 615 */ 616 ptid = 0; 617 vcpu0 = NULL; 618 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 619 if (!vcpu->arch.ceded) { 620 if (!ptid) 621 vcpu0 = vcpu; 622 vcpu->arch.ptid = ptid++; 623 } 624 } 625 if (!vcpu0) 626 return 0; /* nothing to run */ 627 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 628 if (vcpu->arch.ceded) 629 vcpu->arch.ptid = ptid++; 630 631 vc->n_woken = 0; 632 vc->nap_count = 0; 633 vc->entry_exit_count = 0; 634 vc->vcore_state = VCORE_RUNNING; 635 vc->in_guest = 0; 636 vc->pcpu = smp_processor_id(); 637 vc->napping_threads = 0; 638 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 639 kvmppc_start_thread(vcpu); 640 641 preempt_disable(); 642 spin_unlock(&vc->lock); 643 644 kvm_guest_enter(); 645 __kvmppc_vcore_entry(NULL, vcpu0); 646 647 spin_lock(&vc->lock); 648 /* disable sending of IPIs on virtual external irqs */ 649 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 650 vcpu->cpu = -1; 651 /* wait for secondary threads to finish writing their state to memory */ 652 if (vc->nap_count < vc->n_woken) 653 kvmppc_wait_for_nap(vc); 654 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 655 vc->vcore_state = VCORE_EXITING; 656 spin_unlock(&vc->lock); 657 658 /* make sure updates to secondary vcpu structs are visible now */ 659 smp_mb(); 660 kvm_guest_exit(); 661 662 preempt_enable(); 663 kvm_resched(vcpu); 664 665 now = get_tb(); 666 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 667 /* cancel pending dec exception if dec is positive */ 668 if (now < vcpu->arch.dec_expires && 669 kvmppc_core_pending_dec(vcpu)) 670 kvmppc_core_dequeue_dec(vcpu); 671 672 ret = RESUME_GUEST; 673 if (vcpu->arch.trap) 674 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, 675 vcpu->arch.run_task); 676 677 vcpu->arch.ret = ret; 678 vcpu->arch.trap = 0; 679 680 if (vcpu->arch.ceded) { 681 if (ret != RESUME_GUEST) 682 kvmppc_end_cede(vcpu); 683 else 684 kvmppc_set_timer(vcpu); 685 } 686 } 687 688 spin_lock(&vc->lock); 689 out: 690 vc->vcore_state = VCORE_INACTIVE; 691 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 692 arch.run_list) { 693 if (vcpu->arch.ret != RESUME_GUEST) { 694 kvmppc_remove_runnable(vc, vcpu); 695 wake_up(&vcpu->arch.cpu_run); 696 } 697 } 698 699 return 1; 700 } 701 702 /* 703 * Wait for some other vcpu thread to execute us, and 704 * wake us up when we need to handle something in the host. 705 */ 706 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 707 { 708 DEFINE_WAIT(wait); 709 710 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 711 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 712 schedule(); 713 finish_wait(&vcpu->arch.cpu_run, &wait); 714 } 715 716 /* 717 * All the vcpus in this vcore are idle, so wait for a decrementer 718 * or external interrupt to one of the vcpus. vc->lock is held. 719 */ 720 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 721 { 722 DEFINE_WAIT(wait); 723 struct kvm_vcpu *v; 724 int all_idle = 1; 725 726 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 727 vc->vcore_state = VCORE_SLEEPING; 728 spin_unlock(&vc->lock); 729 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 730 if (!v->arch.ceded || v->arch.pending_exceptions) { 731 all_idle = 0; 732 break; 733 } 734 } 735 if (all_idle) 736 schedule(); 737 finish_wait(&vc->wq, &wait); 738 spin_lock(&vc->lock); 739 vc->vcore_state = VCORE_INACTIVE; 740 } 741 742 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 743 { 744 int n_ceded; 745 int prev_state; 746 struct kvmppc_vcore *vc; 747 struct kvm_vcpu *v, *vn; 748 749 kvm_run->exit_reason = 0; 750 vcpu->arch.ret = RESUME_GUEST; 751 vcpu->arch.trap = 0; 752 753 /* 754 * Synchronize with other threads in this virtual core 755 */ 756 vc = vcpu->arch.vcore; 757 spin_lock(&vc->lock); 758 vcpu->arch.ceded = 0; 759 vcpu->arch.run_task = current; 760 vcpu->arch.kvm_run = kvm_run; 761 prev_state = vcpu->arch.state; 762 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 763 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 764 ++vc->n_runnable; 765 766 /* 767 * This happens the first time this is called for a vcpu. 768 * If the vcore is already running, we may be able to start 769 * this thread straight away and have it join in. 770 */ 771 if (prev_state == KVMPPC_VCPU_STOPPED) { 772 if (vc->vcore_state == VCORE_RUNNING && 773 VCORE_EXIT_COUNT(vc) == 0) { 774 vcpu->arch.ptid = vc->n_runnable - 1; 775 kvmppc_start_thread(vcpu); 776 } 777 778 } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST) 779 --vc->n_busy; 780 781 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 782 !signal_pending(current)) { 783 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) { 784 spin_unlock(&vc->lock); 785 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 786 spin_lock(&vc->lock); 787 continue; 788 } 789 n_ceded = 0; 790 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) 791 n_ceded += v->arch.ceded; 792 if (n_ceded == vc->n_runnable) 793 kvmppc_vcore_blocked(vc); 794 else 795 kvmppc_run_core(vc); 796 797 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 798 arch.run_list) { 799 kvmppc_core_deliver_interrupts(v); 800 if (signal_pending(v->arch.run_task)) { 801 kvmppc_remove_runnable(vc, v); 802 v->stat.signal_exits++; 803 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 804 v->arch.ret = -EINTR; 805 wake_up(&v->arch.cpu_run); 806 } 807 } 808 } 809 810 if (signal_pending(current)) { 811 if (vc->vcore_state == VCORE_RUNNING || 812 vc->vcore_state == VCORE_EXITING) { 813 spin_unlock(&vc->lock); 814 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 815 spin_lock(&vc->lock); 816 } 817 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 818 kvmppc_remove_runnable(vc, vcpu); 819 vcpu->stat.signal_exits++; 820 kvm_run->exit_reason = KVM_EXIT_INTR; 821 vcpu->arch.ret = -EINTR; 822 } 823 } 824 825 spin_unlock(&vc->lock); 826 return vcpu->arch.ret; 827 } 828 829 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) 830 { 831 int r; 832 833 if (!vcpu->arch.sane) { 834 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 835 return -EINVAL; 836 } 837 838 /* No need to go into the guest when all we'll do is come back out */ 839 if (signal_pending(current)) { 840 run->exit_reason = KVM_EXIT_INTR; 841 return -EINTR; 842 } 843 844 /* On PPC970, check that we have an RMA region */ 845 if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201)) 846 return -EPERM; 847 848 flush_fp_to_thread(current); 849 flush_altivec_to_thread(current); 850 flush_vsx_to_thread(current); 851 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 852 853 do { 854 r = kvmppc_run_vcpu(run, vcpu); 855 856 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 857 !(vcpu->arch.shregs.msr & MSR_PR)) { 858 r = kvmppc_pseries_do_hcall(vcpu); 859 kvmppc_core_deliver_interrupts(vcpu); 860 } 861 } while (r == RESUME_GUEST); 862 return r; 863 } 864 865 static long kvmppc_stt_npages(unsigned long window_size) 866 { 867 return ALIGN((window_size >> SPAPR_TCE_SHIFT) 868 * sizeof(u64), PAGE_SIZE) / PAGE_SIZE; 869 } 870 871 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt) 872 { 873 struct kvm *kvm = stt->kvm; 874 int i; 875 876 mutex_lock(&kvm->lock); 877 list_del(&stt->list); 878 for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++) 879 __free_page(stt->pages[i]); 880 kfree(stt); 881 mutex_unlock(&kvm->lock); 882 883 kvm_put_kvm(kvm); 884 } 885 886 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 887 { 888 struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data; 889 struct page *page; 890 891 if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size)) 892 return VM_FAULT_SIGBUS; 893 894 page = stt->pages[vmf->pgoff]; 895 get_page(page); 896 vmf->page = page; 897 return 0; 898 } 899 900 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = { 901 .fault = kvm_spapr_tce_fault, 902 }; 903 904 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma) 905 { 906 vma->vm_ops = &kvm_spapr_tce_vm_ops; 907 return 0; 908 } 909 910 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp) 911 { 912 struct kvmppc_spapr_tce_table *stt = filp->private_data; 913 914 release_spapr_tce_table(stt); 915 return 0; 916 } 917 918 static struct file_operations kvm_spapr_tce_fops = { 919 .mmap = kvm_spapr_tce_mmap, 920 .release = kvm_spapr_tce_release, 921 }; 922 923 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm, 924 struct kvm_create_spapr_tce *args) 925 { 926 struct kvmppc_spapr_tce_table *stt = NULL; 927 long npages; 928 int ret = -ENOMEM; 929 int i; 930 931 /* Check this LIOBN hasn't been previously allocated */ 932 list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) { 933 if (stt->liobn == args->liobn) 934 return -EBUSY; 935 } 936 937 npages = kvmppc_stt_npages(args->window_size); 938 939 stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *), 940 GFP_KERNEL); 941 if (!stt) 942 goto fail; 943 944 stt->liobn = args->liobn; 945 stt->window_size = args->window_size; 946 stt->kvm = kvm; 947 948 for (i = 0; i < npages; i++) { 949 stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO); 950 if (!stt->pages[i]) 951 goto fail; 952 } 953 954 kvm_get_kvm(kvm); 955 956 mutex_lock(&kvm->lock); 957 list_add(&stt->list, &kvm->arch.spapr_tce_tables); 958 959 mutex_unlock(&kvm->lock); 960 961 return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops, 962 stt, O_RDWR); 963 964 fail: 965 if (stt) { 966 for (i = 0; i < npages; i++) 967 if (stt->pages[i]) 968 __free_page(stt->pages[i]); 969 970 kfree(stt); 971 } 972 return ret; 973 } 974 975 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 976 Assumes POWER7 or PPC970. */ 977 static inline int lpcr_rmls(unsigned long rma_size) 978 { 979 switch (rma_size) { 980 case 32ul << 20: /* 32 MB */ 981 if (cpu_has_feature(CPU_FTR_ARCH_206)) 982 return 8; /* only supported on POWER7 */ 983 return -1; 984 case 64ul << 20: /* 64 MB */ 985 return 3; 986 case 128ul << 20: /* 128 MB */ 987 return 7; 988 case 256ul << 20: /* 256 MB */ 989 return 4; 990 case 1ul << 30: /* 1 GB */ 991 return 2; 992 case 16ul << 30: /* 16 GB */ 993 return 1; 994 case 256ul << 30: /* 256 GB */ 995 return 0; 996 default: 997 return -1; 998 } 999 } 1000 1001 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1002 { 1003 struct kvmppc_rma_info *ri = vma->vm_file->private_data; 1004 struct page *page; 1005 1006 if (vmf->pgoff >= ri->npages) 1007 return VM_FAULT_SIGBUS; 1008 1009 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 1010 get_page(page); 1011 vmf->page = page; 1012 return 0; 1013 } 1014 1015 static const struct vm_operations_struct kvm_rma_vm_ops = { 1016 .fault = kvm_rma_fault, 1017 }; 1018 1019 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 1020 { 1021 vma->vm_flags |= VM_RESERVED; 1022 vma->vm_ops = &kvm_rma_vm_ops; 1023 return 0; 1024 } 1025 1026 static int kvm_rma_release(struct inode *inode, struct file *filp) 1027 { 1028 struct kvmppc_rma_info *ri = filp->private_data; 1029 1030 kvm_release_rma(ri); 1031 return 0; 1032 } 1033 1034 static struct file_operations kvm_rma_fops = { 1035 .mmap = kvm_rma_mmap, 1036 .release = kvm_rma_release, 1037 }; 1038 1039 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) 1040 { 1041 struct kvmppc_rma_info *ri; 1042 long fd; 1043 1044 ri = kvm_alloc_rma(); 1045 if (!ri) 1046 return -ENOMEM; 1047 1048 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); 1049 if (fd < 0) 1050 kvm_release_rma(ri); 1051 1052 ret->rma_size = ri->npages << PAGE_SHIFT; 1053 return fd; 1054 } 1055 1056 static struct page *hva_to_page(unsigned long addr) 1057 { 1058 struct page *page[1]; 1059 int npages; 1060 1061 might_sleep(); 1062 1063 npages = get_user_pages_fast(addr, 1, 1, page); 1064 1065 if (unlikely(npages != 1)) 1066 return 0; 1067 1068 return page[0]; 1069 } 1070 1071 int kvmppc_core_prepare_memory_region(struct kvm *kvm, 1072 struct kvm_userspace_memory_region *mem) 1073 { 1074 unsigned long psize, porder; 1075 unsigned long i, npages, totalpages; 1076 unsigned long pg_ix; 1077 struct kvmppc_pginfo *pginfo; 1078 unsigned long hva; 1079 struct kvmppc_rma_info *ri = NULL; 1080 struct page *page; 1081 1082 /* For now, only allow 16MB pages */ 1083 porder = LARGE_PAGE_ORDER; 1084 psize = 1ul << porder; 1085 if ((mem->memory_size & (psize - 1)) || 1086 (mem->guest_phys_addr & (psize - 1))) { 1087 pr_err("bad memory_size=%llx @ %llx\n", 1088 mem->memory_size, mem->guest_phys_addr); 1089 return -EINVAL; 1090 } 1091 1092 npages = mem->memory_size >> porder; 1093 totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder; 1094 1095 /* More memory than we have space to track? */ 1096 if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER))) 1097 return -EINVAL; 1098 1099 /* Do we already have an RMA registered? */ 1100 if (mem->guest_phys_addr == 0 && kvm->arch.rma) 1101 return -EINVAL; 1102 1103 if (totalpages > kvm->arch.ram_npages) 1104 kvm->arch.ram_npages = totalpages; 1105 1106 /* Is this one of our preallocated RMAs? */ 1107 if (mem->guest_phys_addr == 0) { 1108 struct vm_area_struct *vma; 1109 1110 down_read(¤t->mm->mmap_sem); 1111 vma = find_vma(current->mm, mem->userspace_addr); 1112 if (vma && vma->vm_file && 1113 vma->vm_file->f_op == &kvm_rma_fops && 1114 mem->userspace_addr == vma->vm_start) 1115 ri = vma->vm_file->private_data; 1116 up_read(¤t->mm->mmap_sem); 1117 if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) { 1118 pr_err("CPU requires an RMO\n"); 1119 return -EINVAL; 1120 } 1121 } 1122 1123 if (ri) { 1124 unsigned long rma_size; 1125 unsigned long lpcr; 1126 long rmls; 1127 1128 rma_size = ri->npages << PAGE_SHIFT; 1129 if (rma_size > mem->memory_size) 1130 rma_size = mem->memory_size; 1131 rmls = lpcr_rmls(rma_size); 1132 if (rmls < 0) { 1133 pr_err("Can't use RMA of 0x%lx bytes\n", rma_size); 1134 return -EINVAL; 1135 } 1136 atomic_inc(&ri->use_count); 1137 kvm->arch.rma = ri; 1138 kvm->arch.n_rma_pages = rma_size >> porder; 1139 1140 /* Update LPCR and RMOR */ 1141 lpcr = kvm->arch.lpcr; 1142 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1143 /* PPC970; insert RMLS value (split field) in HID4 */ 1144 lpcr &= ~((1ul << HID4_RMLS0_SH) | 1145 (3ul << HID4_RMLS2_SH)); 1146 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | 1147 ((rmls & 3) << HID4_RMLS2_SH); 1148 /* RMOR is also in HID4 */ 1149 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 1150 << HID4_RMOR_SH; 1151 } else { 1152 /* POWER7 */ 1153 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); 1154 lpcr |= rmls << LPCR_RMLS_SH; 1155 kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; 1156 } 1157 kvm->arch.lpcr = lpcr; 1158 pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n", 1159 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 1160 } 1161 1162 pg_ix = mem->guest_phys_addr >> porder; 1163 pginfo = kvm->arch.ram_pginfo + pg_ix; 1164 for (i = 0; i < npages; ++i, ++pg_ix) { 1165 if (ri && pg_ix < kvm->arch.n_rma_pages) { 1166 pginfo[i].pfn = ri->base_pfn + 1167 (pg_ix << (porder - PAGE_SHIFT)); 1168 continue; 1169 } 1170 hva = mem->userspace_addr + (i << porder); 1171 page = hva_to_page(hva); 1172 if (!page) { 1173 pr_err("oops, no pfn for hva %lx\n", hva); 1174 goto err; 1175 } 1176 /* Check it's a 16MB page */ 1177 if (!PageHead(page) || 1178 compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) { 1179 pr_err("page at %lx isn't 16MB (o=%d)\n", 1180 hva, compound_order(page)); 1181 goto err; 1182 } 1183 pginfo[i].pfn = page_to_pfn(page); 1184 } 1185 1186 return 0; 1187 1188 err: 1189 return -EINVAL; 1190 } 1191 1192 void kvmppc_core_commit_memory_region(struct kvm *kvm, 1193 struct kvm_userspace_memory_region *mem) 1194 { 1195 if (mem->guest_phys_addr == 0 && mem->memory_size != 0 && 1196 !kvm->arch.rma) 1197 kvmppc_map_vrma(kvm, mem); 1198 } 1199 1200 int kvmppc_core_init_vm(struct kvm *kvm) 1201 { 1202 long r; 1203 unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER); 1204 long err = -ENOMEM; 1205 unsigned long lpcr; 1206 1207 /* Allocate hashed page table */ 1208 r = kvmppc_alloc_hpt(kvm); 1209 if (r) 1210 return r; 1211 1212 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); 1213 1214 kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo), 1215 GFP_KERNEL); 1216 if (!kvm->arch.ram_pginfo) { 1217 pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n", 1218 npages * sizeof(struct kvmppc_pginfo)); 1219 goto out_free; 1220 } 1221 1222 kvm->arch.ram_npages = 0; 1223 kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER; 1224 kvm->arch.ram_porder = LARGE_PAGE_ORDER; 1225 kvm->arch.rma = NULL; 1226 kvm->arch.n_rma_pages = 0; 1227 1228 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 1229 1230 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1231 /* PPC970; HID4 is effectively the LPCR */ 1232 unsigned long lpid = kvm->arch.lpid; 1233 kvm->arch.host_lpid = 0; 1234 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 1235 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 1236 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 1237 ((lpid & 0xf) << HID4_LPID5_SH); 1238 } else { 1239 /* POWER7; init LPCR for virtual RMA mode */ 1240 kvm->arch.host_lpid = mfspr(SPRN_LPID); 1241 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 1242 lpcr &= LPCR_PECE | LPCR_LPES; 1243 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 1244 LPCR_VPM0 | LPCR_VRMA_L; 1245 } 1246 kvm->arch.lpcr = lpcr; 1247 1248 return 0; 1249 1250 out_free: 1251 kvmppc_free_hpt(kvm); 1252 return err; 1253 } 1254 1255 void kvmppc_core_destroy_vm(struct kvm *kvm) 1256 { 1257 struct kvmppc_pginfo *pginfo; 1258 unsigned long i; 1259 1260 if (kvm->arch.ram_pginfo) { 1261 pginfo = kvm->arch.ram_pginfo; 1262 kvm->arch.ram_pginfo = NULL; 1263 for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i) 1264 if (pginfo[i].pfn) 1265 put_page(pfn_to_page(pginfo[i].pfn)); 1266 kfree(pginfo); 1267 } 1268 if (kvm->arch.rma) { 1269 kvm_release_rma(kvm->arch.rma); 1270 kvm->arch.rma = NULL; 1271 } 1272 1273 kvmppc_free_hpt(kvm); 1274 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 1275 } 1276 1277 /* These are stubs for now */ 1278 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) 1279 { 1280 } 1281 1282 /* We don't need to emulate any privileged instructions or dcbz */ 1283 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, 1284 unsigned int inst, int *advance) 1285 { 1286 return EMULATE_FAIL; 1287 } 1288 1289 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) 1290 { 1291 return EMULATE_FAIL; 1292 } 1293 1294 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt) 1295 { 1296 return EMULATE_FAIL; 1297 } 1298 1299 static int kvmppc_book3s_hv_init(void) 1300 { 1301 int r; 1302 1303 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1304 1305 if (r) 1306 return r; 1307 1308 r = kvmppc_mmu_hv_init(); 1309 1310 return r; 1311 } 1312 1313 static void kvmppc_book3s_hv_exit(void) 1314 { 1315 kvm_exit(); 1316 } 1317 1318 module_init(kvmppc_book3s_hv_init); 1319 module_exit(kvmppc_book3s_hv_exit); 1320