1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 #include <linux/irqdomain.h> 46 #include <linux/smp.h> 47 48 #include <asm/ftrace.h> 49 #include <asm/reg.h> 50 #include <asm/ppc-opcode.h> 51 #include <asm/asm-prototypes.h> 52 #include <asm/archrandom.h> 53 #include <asm/debug.h> 54 #include <asm/disassemble.h> 55 #include <asm/cputable.h> 56 #include <asm/cacheflush.h> 57 #include <linux/uaccess.h> 58 #include <asm/interrupt.h> 59 #include <asm/io.h> 60 #include <asm/kvm_ppc.h> 61 #include <asm/kvm_book3s.h> 62 #include <asm/mmu_context.h> 63 #include <asm/lppaca.h> 64 #include <asm/pmc.h> 65 #include <asm/processor.h> 66 #include <asm/cputhreads.h> 67 #include <asm/page.h> 68 #include <asm/hvcall.h> 69 #include <asm/switch_to.h> 70 #include <asm/smp.h> 71 #include <asm/dbell.h> 72 #include <asm/hmi.h> 73 #include <asm/pnv-pci.h> 74 #include <asm/mmu.h> 75 #include <asm/opal.h> 76 #include <asm/xics.h> 77 #include <asm/xive.h> 78 #include <asm/hw_breakpoint.h> 79 #include <asm/kvm_book3s_uvmem.h> 80 #include <asm/ultravisor.h> 81 #include <asm/dtl.h> 82 #include <asm/plpar_wrappers.h> 83 84 #include <trace/events/ipi.h> 85 86 #include "book3s.h" 87 #include "book3s_hv.h" 88 89 #define CREATE_TRACE_POINTS 90 #include "trace_hv.h" 91 92 /* #define EXIT_DEBUG */ 93 /* #define EXIT_DEBUG_SIMPLE */ 94 /* #define EXIT_DEBUG_INT */ 95 96 /* Used to indicate that a guest page fault needs to be handled */ 97 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 98 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 99 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 100 101 /* Used as a "null" value for timebase values */ 102 #define TB_NIL (~(u64)0) 103 104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 105 106 static int dynamic_mt_modes = 6; 107 module_param(dynamic_mt_modes, int, 0644); 108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 109 static int target_smt_mode; 110 module_param(target_smt_mode, int, 0644); 111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 112 113 static bool one_vm_per_core; 114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 116 117 #ifdef CONFIG_KVM_XICS 118 static const struct kernel_param_ops module_param_ops = { 119 .set = param_set_int, 120 .get = param_get_int, 121 }; 122 123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 125 126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 128 #endif 129 130 /* If set, guests are allowed to create and control nested guests */ 131 static bool nested = true; 132 module_param(nested, bool, S_IRUGO | S_IWUSR); 133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 134 135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 136 137 /* 138 * RWMR values for POWER8. These control the rate at which PURR 139 * and SPURR count and should be set according to the number of 140 * online threads in the vcore being run. 141 */ 142 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 143 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 144 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 146 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 150 151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 152 RWMR_RPA_P8_1THREAD, 153 RWMR_RPA_P8_1THREAD, 154 RWMR_RPA_P8_2THREAD, 155 RWMR_RPA_P8_3THREAD, 156 RWMR_RPA_P8_4THREAD, 157 RWMR_RPA_P8_5THREAD, 158 RWMR_RPA_P8_6THREAD, 159 RWMR_RPA_P8_7THREAD, 160 RWMR_RPA_P8_8THREAD, 161 }; 162 163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 164 int *ip) 165 { 166 int i = *ip; 167 struct kvm_vcpu *vcpu; 168 169 while (++i < MAX_SMT_THREADS) { 170 vcpu = READ_ONCE(vc->runnable_threads[i]); 171 if (vcpu) { 172 *ip = i; 173 return vcpu; 174 } 175 } 176 return NULL; 177 } 178 179 /* Used to traverse the list of runnable threads for a given vcore */ 180 #define for_each_runnable_thread(i, vcpu, vc) \ 181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 182 183 static bool kvmppc_ipi_thread(int cpu) 184 { 185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 186 187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 188 if (kvmhv_on_pseries()) 189 return false; 190 191 /* On POWER9 we can use msgsnd to IPI any cpu */ 192 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 193 msg |= get_hard_smp_processor_id(cpu); 194 smp_mb(); 195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 196 return true; 197 } 198 199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 201 preempt_disable(); 202 if (cpu_first_thread_sibling(cpu) == 203 cpu_first_thread_sibling(smp_processor_id())) { 204 msg |= cpu_thread_in_core(cpu); 205 smp_mb(); 206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 207 preempt_enable(); 208 return true; 209 } 210 preempt_enable(); 211 } 212 213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 214 if (cpu >= 0 && cpu < nr_cpu_ids) { 215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 216 xics_wake_cpu(cpu); 217 return true; 218 } 219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 220 return true; 221 } 222 #endif 223 224 return false; 225 } 226 227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 228 { 229 int cpu; 230 struct rcuwait *waitp; 231 232 /* 233 * rcuwait_wake_up contains smp_mb() which orders prior stores that 234 * create pending work vs below loads of cpu fields. The other side 235 * is the barrier in vcpu run that orders setting the cpu fields vs 236 * testing for pending work. 237 */ 238 239 waitp = kvm_arch_vcpu_get_wait(vcpu); 240 if (rcuwait_wake_up(waitp)) 241 ++vcpu->stat.generic.halt_wakeup; 242 243 cpu = READ_ONCE(vcpu->arch.thread_cpu); 244 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 245 return; 246 247 /* CPU points to the first thread of the core */ 248 cpu = vcpu->cpu; 249 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 250 smp_send_reschedule(cpu); 251 } 252 253 /* 254 * We use the vcpu_load/put functions to measure stolen time. 255 * 256 * Stolen time is counted as time when either the vcpu is able to 257 * run as part of a virtual core, but the task running the vcore 258 * is preempted or sleeping, or when the vcpu needs something done 259 * in the kernel by the task running the vcpu, but that task is 260 * preempted or sleeping. Those two things have to be counted 261 * separately, since one of the vcpu tasks will take on the job 262 * of running the core, and the other vcpu tasks in the vcore will 263 * sleep waiting for it to do that, but that sleep shouldn't count 264 * as stolen time. 265 * 266 * Hence we accumulate stolen time when the vcpu can run as part of 267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 268 * needs its task to do other things in the kernel (for example, 269 * service a page fault) in busy_stolen. We don't accumulate 270 * stolen time for a vcore when it is inactive, or for a vcpu 271 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 272 * a misnomer; it means that the vcpu task is not executing in 273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 274 * the kernel. We don't have any way of dividing up that time 275 * between time that the vcpu is genuinely stopped, time that 276 * the task is actively working on behalf of the vcpu, and time 277 * that the task is preempted, so we don't count any of it as 278 * stolen. 279 * 280 * Updates to busy_stolen are protected by arch.tbacct_lock; 281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 282 * lock. The stolen times are measured in units of timebase ticks. 283 * (Note that the != TB_NIL checks below are purely defensive; 284 * they should never fail.) 285 * 286 * The POWER9 path is simpler, one vcpu per virtual core so the 287 * former case does not exist. If a vcpu is preempted when it is 288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate 289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible 290 * state in the P9 path. 291 */ 292 293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb) 294 { 295 unsigned long flags; 296 297 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 298 299 spin_lock_irqsave(&vc->stoltb_lock, flags); 300 vc->preempt_tb = tb; 301 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 302 } 303 304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb) 305 { 306 unsigned long flags; 307 308 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 309 310 spin_lock_irqsave(&vc->stoltb_lock, flags); 311 if (vc->preempt_tb != TB_NIL) { 312 vc->stolen_tb += tb - vc->preempt_tb; 313 vc->preempt_tb = TB_NIL; 314 } 315 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 316 } 317 318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 319 { 320 struct kvmppc_vcore *vc = vcpu->arch.vcore; 321 unsigned long flags; 322 u64 now; 323 324 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 325 if (vcpu->arch.busy_preempt != TB_NIL) { 326 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST); 327 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt; 328 vcpu->arch.busy_preempt = TB_NIL; 329 } 330 return; 331 } 332 333 now = mftb(); 334 335 /* 336 * We can test vc->runner without taking the vcore lock, 337 * because only this task ever sets vc->runner to this 338 * vcpu, and once it is set to this vcpu, only this task 339 * ever sets it to NULL. 340 */ 341 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 342 kvmppc_core_end_stolen(vc, now); 343 344 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 345 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 346 vcpu->arch.busy_preempt != TB_NIL) { 347 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt; 348 vcpu->arch.busy_preempt = TB_NIL; 349 } 350 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 351 } 352 353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 354 { 355 struct kvmppc_vcore *vc = vcpu->arch.vcore; 356 unsigned long flags; 357 u64 now; 358 359 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 360 /* 361 * In the P9 path, RUNNABLE is not preemptible 362 * (nor takes host interrupts) 363 */ 364 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE); 365 /* 366 * Account stolen time when preempted while the vcpu task is 367 * running in the kernel (but not in qemu, which is INACTIVE). 368 */ 369 if (task_is_running(current) && 370 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 371 vcpu->arch.busy_preempt = mftb(); 372 return; 373 } 374 375 now = mftb(); 376 377 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 378 kvmppc_core_start_stolen(vc, now); 379 380 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 381 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 382 vcpu->arch.busy_preempt = now; 383 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 384 } 385 386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 387 { 388 vcpu->arch.pvr = pvr; 389 } 390 391 /* Dummy value used in computing PCR value below */ 392 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 393 394 static inline unsigned long map_pcr_to_cap(unsigned long pcr) 395 { 396 unsigned long cap = 0; 397 398 switch (pcr) { 399 case PCR_ARCH_300: 400 cap = H_GUEST_CAP_POWER9; 401 break; 402 case PCR_ARCH_31: 403 cap = H_GUEST_CAP_POWER10; 404 break; 405 default: 406 break; 407 } 408 409 return cap; 410 } 411 412 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 413 { 414 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0; 415 struct kvmppc_vcore *vc = vcpu->arch.vcore; 416 417 /* We can (emulate) our own architecture version and anything older */ 418 if (cpu_has_feature(CPU_FTR_ARCH_31)) 419 host_pcr_bit = PCR_ARCH_31; 420 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 421 host_pcr_bit = PCR_ARCH_300; 422 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 423 host_pcr_bit = PCR_ARCH_207; 424 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 425 host_pcr_bit = PCR_ARCH_206; 426 else 427 host_pcr_bit = PCR_ARCH_205; 428 429 /* Determine lowest PCR bit needed to run guest in given PVR level */ 430 guest_pcr_bit = host_pcr_bit; 431 if (arch_compat) { 432 switch (arch_compat) { 433 case PVR_ARCH_205: 434 guest_pcr_bit = PCR_ARCH_205; 435 break; 436 case PVR_ARCH_206: 437 case PVR_ARCH_206p: 438 guest_pcr_bit = PCR_ARCH_206; 439 break; 440 case PVR_ARCH_207: 441 guest_pcr_bit = PCR_ARCH_207; 442 break; 443 case PVR_ARCH_300: 444 guest_pcr_bit = PCR_ARCH_300; 445 break; 446 case PVR_ARCH_31: 447 guest_pcr_bit = PCR_ARCH_31; 448 break; 449 default: 450 return -EINVAL; 451 } 452 } 453 454 /* Check requested PCR bits don't exceed our capabilities */ 455 if (guest_pcr_bit > host_pcr_bit) 456 return -EINVAL; 457 458 if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) { 459 /* 460 * 'arch_compat == 0' would mean the guest should default to 461 * L1's compatibility. In this case, the guest would pick 462 * host's PCR and evaluate the corresponding capabilities. 463 */ 464 cap = map_pcr_to_cap(guest_pcr_bit); 465 if (!(cap & nested_capabilities)) 466 return -EINVAL; 467 } 468 469 spin_lock(&vc->lock); 470 vc->arch_compat = arch_compat; 471 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR); 472 /* 473 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 474 * Also set all reserved PCR bits 475 */ 476 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 477 spin_unlock(&vc->lock); 478 479 return 0; 480 } 481 482 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 483 { 484 int r; 485 486 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 487 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 488 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 489 for (r = 0; r < 16; ++r) 490 pr_err("r%2d = %.16lx r%d = %.16lx\n", 491 r, kvmppc_get_gpr(vcpu, r), 492 r+16, kvmppc_get_gpr(vcpu, r+16)); 493 pr_err("ctr = %.16lx lr = %.16lx\n", 494 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 495 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 496 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 497 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 498 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 499 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 500 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 501 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 502 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 503 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 504 pr_err("fault dar = %.16lx dsisr = %.8x\n", 505 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 506 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 507 for (r = 0; r < vcpu->arch.slb_max; ++r) 508 pr_err(" ESID = %.16llx VSID = %.16llx\n", 509 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 510 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n", 511 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 512 vcpu->arch.last_inst); 513 } 514 515 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 516 { 517 return kvm_get_vcpu_by_id(kvm, id); 518 } 519 520 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 521 { 522 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 523 vpa->yield_count = cpu_to_be32(1); 524 } 525 526 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 527 unsigned long addr, unsigned long len) 528 { 529 /* check address is cacheline aligned */ 530 if (addr & (L1_CACHE_BYTES - 1)) 531 return -EINVAL; 532 spin_lock(&vcpu->arch.vpa_update_lock); 533 if (v->next_gpa != addr || v->len != len) { 534 v->next_gpa = addr; 535 v->len = addr ? len : 0; 536 v->update_pending = 1; 537 } 538 spin_unlock(&vcpu->arch.vpa_update_lock); 539 return 0; 540 } 541 542 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 543 struct reg_vpa { 544 u32 dummy; 545 union { 546 __be16 hword; 547 __be32 word; 548 } length; 549 }; 550 551 static int vpa_is_registered(struct kvmppc_vpa *vpap) 552 { 553 if (vpap->update_pending) 554 return vpap->next_gpa != 0; 555 return vpap->pinned_addr != NULL; 556 } 557 558 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 559 unsigned long flags, 560 unsigned long vcpuid, unsigned long vpa) 561 { 562 struct kvm *kvm = vcpu->kvm; 563 unsigned long len, nb; 564 void *va; 565 struct kvm_vcpu *tvcpu; 566 int err; 567 int subfunc; 568 struct kvmppc_vpa *vpap; 569 570 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 571 if (!tvcpu) 572 return H_PARAMETER; 573 574 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 575 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 576 subfunc == H_VPA_REG_SLB) { 577 /* Registering new area - address must be cache-line aligned */ 578 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 579 return H_PARAMETER; 580 581 /* convert logical addr to kernel addr and read length */ 582 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 583 if (va == NULL) 584 return H_PARAMETER; 585 if (subfunc == H_VPA_REG_VPA) 586 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 587 else 588 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 589 kvmppc_unpin_guest_page(kvm, va, vpa, false); 590 591 /* Check length */ 592 if (len > nb || len < sizeof(struct reg_vpa)) 593 return H_PARAMETER; 594 } else { 595 vpa = 0; 596 len = 0; 597 } 598 599 err = H_PARAMETER; 600 vpap = NULL; 601 spin_lock(&tvcpu->arch.vpa_update_lock); 602 603 switch (subfunc) { 604 case H_VPA_REG_VPA: /* register VPA */ 605 /* 606 * The size of our lppaca is 1kB because of the way we align 607 * it for the guest to avoid crossing a 4kB boundary. We only 608 * use 640 bytes of the structure though, so we should accept 609 * clients that set a size of 640. 610 */ 611 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 612 if (len < sizeof(struct lppaca)) 613 break; 614 vpap = &tvcpu->arch.vpa; 615 err = 0; 616 break; 617 618 case H_VPA_REG_DTL: /* register DTL */ 619 if (len < sizeof(struct dtl_entry)) 620 break; 621 len -= len % sizeof(struct dtl_entry); 622 623 /* Check that they have previously registered a VPA */ 624 err = H_RESOURCE; 625 if (!vpa_is_registered(&tvcpu->arch.vpa)) 626 break; 627 628 vpap = &tvcpu->arch.dtl; 629 err = 0; 630 break; 631 632 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 633 /* Check that they have previously registered a VPA */ 634 err = H_RESOURCE; 635 if (!vpa_is_registered(&tvcpu->arch.vpa)) 636 break; 637 638 vpap = &tvcpu->arch.slb_shadow; 639 err = 0; 640 break; 641 642 case H_VPA_DEREG_VPA: /* deregister VPA */ 643 /* Check they don't still have a DTL or SLB buf registered */ 644 err = H_RESOURCE; 645 if (vpa_is_registered(&tvcpu->arch.dtl) || 646 vpa_is_registered(&tvcpu->arch.slb_shadow)) 647 break; 648 649 vpap = &tvcpu->arch.vpa; 650 err = 0; 651 break; 652 653 case H_VPA_DEREG_DTL: /* deregister DTL */ 654 vpap = &tvcpu->arch.dtl; 655 err = 0; 656 break; 657 658 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 659 vpap = &tvcpu->arch.slb_shadow; 660 err = 0; 661 break; 662 } 663 664 if (vpap) { 665 vpap->next_gpa = vpa; 666 vpap->len = len; 667 vpap->update_pending = 1; 668 } 669 670 spin_unlock(&tvcpu->arch.vpa_update_lock); 671 672 return err; 673 } 674 675 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap, 676 struct kvmppc_vpa *old_vpap) 677 { 678 struct kvm *kvm = vcpu->kvm; 679 void *va; 680 unsigned long nb; 681 unsigned long gpa; 682 683 /* 684 * We need to pin the page pointed to by vpap->next_gpa, 685 * but we can't call kvmppc_pin_guest_page under the lock 686 * as it does get_user_pages() and down_read(). So we 687 * have to drop the lock, pin the page, then get the lock 688 * again and check that a new area didn't get registered 689 * in the meantime. 690 */ 691 for (;;) { 692 gpa = vpap->next_gpa; 693 spin_unlock(&vcpu->arch.vpa_update_lock); 694 va = NULL; 695 nb = 0; 696 if (gpa) 697 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 698 spin_lock(&vcpu->arch.vpa_update_lock); 699 if (gpa == vpap->next_gpa) 700 break; 701 /* sigh... unpin that one and try again */ 702 if (va) 703 kvmppc_unpin_guest_page(kvm, va, gpa, false); 704 } 705 706 vpap->update_pending = 0; 707 if (va && nb < vpap->len) { 708 /* 709 * If it's now too short, it must be that userspace 710 * has changed the mappings underlying guest memory, 711 * so unregister the region. 712 */ 713 kvmppc_unpin_guest_page(kvm, va, gpa, false); 714 va = NULL; 715 } 716 *old_vpap = *vpap; 717 718 vpap->gpa = gpa; 719 vpap->pinned_addr = va; 720 vpap->dirty = false; 721 if (va) 722 vpap->pinned_end = va + vpap->len; 723 } 724 725 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 726 { 727 struct kvm *kvm = vcpu->kvm; 728 struct kvmppc_vpa old_vpa = { 0 }; 729 730 if (!(vcpu->arch.vpa.update_pending || 731 vcpu->arch.slb_shadow.update_pending || 732 vcpu->arch.dtl.update_pending)) 733 return; 734 735 spin_lock(&vcpu->arch.vpa_update_lock); 736 if (vcpu->arch.vpa.update_pending) { 737 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa, &old_vpa); 738 if (old_vpa.pinned_addr) { 739 if (kvmhv_is_nestedv2()) 740 kvmhv_nestedv2_set_vpa(vcpu, ~0ull); 741 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 742 old_vpa.dirty); 743 } 744 if (vcpu->arch.vpa.pinned_addr) { 745 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 746 if (kvmhv_is_nestedv2()) 747 kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr)); 748 } 749 } 750 if (vcpu->arch.dtl.update_pending) { 751 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl, &old_vpa); 752 if (old_vpa.pinned_addr) 753 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 754 old_vpa.dirty); 755 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 756 vcpu->arch.dtl_index = 0; 757 } 758 if (vcpu->arch.slb_shadow.update_pending) { 759 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow, &old_vpa); 760 if (old_vpa.pinned_addr) 761 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 762 old_vpa.dirty); 763 } 764 765 spin_unlock(&vcpu->arch.vpa_update_lock); 766 } 767 768 /* 769 * Return the accumulated stolen time for the vcore up until `now'. 770 * The caller should hold the vcore lock. 771 */ 772 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 773 { 774 u64 p; 775 unsigned long flags; 776 777 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 778 779 spin_lock_irqsave(&vc->stoltb_lock, flags); 780 p = vc->stolen_tb; 781 if (vc->vcore_state != VCORE_INACTIVE && 782 vc->preempt_tb != TB_NIL) 783 p += now - vc->preempt_tb; 784 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 785 return p; 786 } 787 788 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 789 struct lppaca *vpa, 790 unsigned int pcpu, u64 now, 791 unsigned long stolen) 792 { 793 struct dtl_entry *dt; 794 795 dt = vcpu->arch.dtl_ptr; 796 797 if (!dt) 798 return; 799 800 dt->dispatch_reason = 7; 801 dt->preempt_reason = 0; 802 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid); 803 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 804 dt->ready_to_enqueue_time = 0; 805 dt->waiting_to_ready_time = 0; 806 dt->timebase = cpu_to_be64(now); 807 dt->fault_addr = 0; 808 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 809 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 810 811 ++dt; 812 if (dt == vcpu->arch.dtl.pinned_end) 813 dt = vcpu->arch.dtl.pinned_addr; 814 vcpu->arch.dtl_ptr = dt; 815 /* order writing *dt vs. writing vpa->dtl_idx */ 816 smp_wmb(); 817 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 818 819 /* vcpu->arch.dtl.dirty is set by the caller */ 820 } 821 822 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu, 823 struct kvmppc_vcore *vc) 824 { 825 struct lppaca *vpa; 826 unsigned long stolen; 827 unsigned long core_stolen; 828 u64 now; 829 unsigned long flags; 830 831 vpa = vcpu->arch.vpa.pinned_addr; 832 if (!vpa) 833 return; 834 835 now = mftb(); 836 837 core_stolen = vcore_stolen_time(vc, now); 838 stolen = core_stolen - vcpu->arch.stolen_logged; 839 vcpu->arch.stolen_logged = core_stolen; 840 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 841 stolen += vcpu->arch.busy_stolen; 842 vcpu->arch.busy_stolen = 0; 843 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 844 845 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen); 846 847 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen); 848 849 vcpu->arch.vpa.dirty = true; 850 } 851 852 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu, 853 struct kvmppc_vcore *vc, 854 u64 now) 855 { 856 struct lppaca *vpa; 857 unsigned long stolen; 858 unsigned long stolen_delta; 859 860 vpa = vcpu->arch.vpa.pinned_addr; 861 if (!vpa) 862 return; 863 864 stolen = vc->stolen_tb; 865 stolen_delta = stolen - vcpu->arch.stolen_logged; 866 vcpu->arch.stolen_logged = stolen; 867 868 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen); 869 870 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta); 871 872 vcpu->arch.vpa.dirty = true; 873 } 874 875 /* See if there is a doorbell interrupt pending for a vcpu */ 876 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 877 { 878 int thr; 879 struct kvmppc_vcore *vc; 880 881 if (vcpu->arch.doorbell_request) 882 return true; 883 if (cpu_has_feature(CPU_FTR_ARCH_300)) 884 return false; 885 /* 886 * Ensure that the read of vcore->dpdes comes after the read 887 * of vcpu->doorbell_request. This barrier matches the 888 * smp_wmb() in kvmppc_guest_entry_inject(). 889 */ 890 smp_rmb(); 891 vc = vcpu->arch.vcore; 892 thr = vcpu->vcpu_id - vc->first_vcpuid; 893 return !!(vc->dpdes & (1 << thr)); 894 } 895 896 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 897 { 898 if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207) 899 return true; 900 if ((!kvmppc_get_arch_compat(vcpu)) && 901 cpu_has_feature(CPU_FTR_ARCH_207S)) 902 return true; 903 return false; 904 } 905 906 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 907 unsigned long resource, unsigned long value1, 908 unsigned long value2) 909 { 910 switch (resource) { 911 case H_SET_MODE_RESOURCE_SET_CIABR: 912 if (!kvmppc_power8_compatible(vcpu)) 913 return H_P2; 914 if (value2) 915 return H_P4; 916 if (mflags) 917 return H_UNSUPPORTED_FLAG_START; 918 /* Guests can't breakpoint the hypervisor */ 919 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 920 return H_P3; 921 kvmppc_set_ciabr_hv(vcpu, value1); 922 return H_SUCCESS; 923 case H_SET_MODE_RESOURCE_SET_DAWR0: 924 if (!kvmppc_power8_compatible(vcpu)) 925 return H_P2; 926 if (!ppc_breakpoint_available()) 927 return H_P2; 928 if (mflags) 929 return H_UNSUPPORTED_FLAG_START; 930 if (value2 & DABRX_HYP) 931 return H_P4; 932 kvmppc_set_dawr0_hv(vcpu, value1); 933 kvmppc_set_dawrx0_hv(vcpu, value2); 934 return H_SUCCESS; 935 case H_SET_MODE_RESOURCE_SET_DAWR1: 936 if (!kvmppc_power8_compatible(vcpu)) 937 return H_P2; 938 if (!ppc_breakpoint_available()) 939 return H_P2; 940 if (!cpu_has_feature(CPU_FTR_DAWR1)) 941 return H_P2; 942 if (!vcpu->kvm->arch.dawr1_enabled) 943 return H_FUNCTION; 944 if (mflags) 945 return H_UNSUPPORTED_FLAG_START; 946 if (value2 & DABRX_HYP) 947 return H_P4; 948 kvmppc_set_dawr1_hv(vcpu, value1); 949 kvmppc_set_dawrx1_hv(vcpu, value2); 950 return H_SUCCESS; 951 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 952 /* 953 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 954 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 955 */ 956 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 957 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 958 return H_UNSUPPORTED_FLAG_START; 959 return H_TOO_HARD; 960 default: 961 return H_TOO_HARD; 962 } 963 } 964 965 /* Copy guest memory in place - must reside within a single memslot */ 966 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 967 unsigned long len) 968 { 969 struct kvm_memory_slot *to_memslot = NULL; 970 struct kvm_memory_slot *from_memslot = NULL; 971 unsigned long to_addr, from_addr; 972 int r; 973 974 /* Get HPA for from address */ 975 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 976 if (!from_memslot) 977 return -EFAULT; 978 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 979 << PAGE_SHIFT)) 980 return -EINVAL; 981 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 982 if (kvm_is_error_hva(from_addr)) 983 return -EFAULT; 984 from_addr |= (from & (PAGE_SIZE - 1)); 985 986 /* Get HPA for to address */ 987 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 988 if (!to_memslot) 989 return -EFAULT; 990 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 991 << PAGE_SHIFT)) 992 return -EINVAL; 993 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 994 if (kvm_is_error_hva(to_addr)) 995 return -EFAULT; 996 to_addr |= (to & (PAGE_SIZE - 1)); 997 998 /* Perform copy */ 999 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 1000 len); 1001 if (r) 1002 return -EFAULT; 1003 mark_page_dirty(kvm, to >> PAGE_SHIFT); 1004 return 0; 1005 } 1006 1007 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 1008 unsigned long dest, unsigned long src) 1009 { 1010 u64 pg_sz = SZ_4K; /* 4K page size */ 1011 u64 pg_mask = SZ_4K - 1; 1012 int ret; 1013 1014 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 1015 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 1016 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 1017 return H_PARAMETER; 1018 1019 /* dest (and src if copy_page flag set) must be page aligned */ 1020 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 1021 return H_PARAMETER; 1022 1023 /* zero and/or copy the page as determined by the flags */ 1024 if (flags & H_COPY_PAGE) { 1025 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 1026 if (ret < 0) 1027 return H_PARAMETER; 1028 } else if (flags & H_ZERO_PAGE) { 1029 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 1030 if (ret < 0) 1031 return H_PARAMETER; 1032 } 1033 1034 /* We can ignore the remaining flags */ 1035 1036 return H_SUCCESS; 1037 } 1038 1039 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 1040 { 1041 struct kvmppc_vcore *vcore = target->arch.vcore; 1042 1043 /* 1044 * We expect to have been called by the real mode handler 1045 * (kvmppc_rm_h_confer()) which would have directly returned 1046 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 1047 * have useful work to do and should not confer) so we don't 1048 * recheck that here. 1049 * 1050 * In the case of the P9 single vcpu per vcore case, the real 1051 * mode handler is not called but no other threads are in the 1052 * source vcore. 1053 */ 1054 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1055 spin_lock(&vcore->lock); 1056 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 1057 vcore->vcore_state != VCORE_INACTIVE && 1058 vcore->runner) 1059 target = vcore->runner; 1060 spin_unlock(&vcore->lock); 1061 } 1062 1063 return kvm_vcpu_yield_to(target); 1064 } 1065 1066 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 1067 { 1068 int yield_count = 0; 1069 struct lppaca *lppaca; 1070 1071 spin_lock(&vcpu->arch.vpa_update_lock); 1072 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 1073 if (lppaca) 1074 yield_count = be32_to_cpu(lppaca->yield_count); 1075 spin_unlock(&vcpu->arch.vpa_update_lock); 1076 return yield_count; 1077 } 1078 1079 /* 1080 * H_RPT_INVALIDATE hcall handler for nested guests. 1081 * 1082 * Handles only nested process-scoped invalidation requests in L0. 1083 */ 1084 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) 1085 { 1086 unsigned long type = kvmppc_get_gpr(vcpu, 6); 1087 unsigned long pid, pg_sizes, start, end; 1088 1089 /* 1090 * The partition-scoped invalidations aren't handled here in L0. 1091 */ 1092 if (type & H_RPTI_TYPE_NESTED) 1093 return RESUME_HOST; 1094 1095 pid = kvmppc_get_gpr(vcpu, 4); 1096 pg_sizes = kvmppc_get_gpr(vcpu, 7); 1097 start = kvmppc_get_gpr(vcpu, 8); 1098 end = kvmppc_get_gpr(vcpu, 9); 1099 1100 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, 1101 type, pg_sizes, start, end); 1102 1103 kvmppc_set_gpr(vcpu, 3, H_SUCCESS); 1104 return RESUME_GUEST; 1105 } 1106 1107 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, 1108 unsigned long id, unsigned long target, 1109 unsigned long type, unsigned long pg_sizes, 1110 unsigned long start, unsigned long end) 1111 { 1112 if (!kvm_is_radix(vcpu->kvm)) 1113 return H_UNSUPPORTED; 1114 1115 if (end < start) 1116 return H_P5; 1117 1118 /* 1119 * Partition-scoped invalidation for nested guests. 1120 */ 1121 if (type & H_RPTI_TYPE_NESTED) { 1122 if (!nesting_enabled(vcpu->kvm)) 1123 return H_FUNCTION; 1124 1125 /* Support only cores as target */ 1126 if (target != H_RPTI_TARGET_CMMU) 1127 return H_P2; 1128 1129 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, 1130 start, end); 1131 } 1132 1133 /* 1134 * Process-scoped invalidation for L1 guests. 1135 */ 1136 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, 1137 type, pg_sizes, start, end); 1138 return H_SUCCESS; 1139 } 1140 1141 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 1142 { 1143 struct kvm *kvm = vcpu->kvm; 1144 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1145 unsigned long target, ret = H_SUCCESS; 1146 int yield_count; 1147 struct kvm_vcpu *tvcpu; 1148 int idx, rc; 1149 1150 if (req <= MAX_HCALL_OPCODE && 1151 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 1152 return RESUME_HOST; 1153 1154 switch (req) { 1155 case H_REMOVE: 1156 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 1157 kvmppc_get_gpr(vcpu, 5), 1158 kvmppc_get_gpr(vcpu, 6)); 1159 if (ret == H_TOO_HARD) 1160 return RESUME_HOST; 1161 break; 1162 case H_ENTER: 1163 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 1164 kvmppc_get_gpr(vcpu, 5), 1165 kvmppc_get_gpr(vcpu, 6), 1166 kvmppc_get_gpr(vcpu, 7)); 1167 if (ret == H_TOO_HARD) 1168 return RESUME_HOST; 1169 break; 1170 case H_READ: 1171 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 1172 kvmppc_get_gpr(vcpu, 5)); 1173 if (ret == H_TOO_HARD) 1174 return RESUME_HOST; 1175 break; 1176 case H_CLEAR_MOD: 1177 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 1178 kvmppc_get_gpr(vcpu, 5)); 1179 if (ret == H_TOO_HARD) 1180 return RESUME_HOST; 1181 break; 1182 case H_CLEAR_REF: 1183 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 1184 kvmppc_get_gpr(vcpu, 5)); 1185 if (ret == H_TOO_HARD) 1186 return RESUME_HOST; 1187 break; 1188 case H_PROTECT: 1189 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 1190 kvmppc_get_gpr(vcpu, 5), 1191 kvmppc_get_gpr(vcpu, 6)); 1192 if (ret == H_TOO_HARD) 1193 return RESUME_HOST; 1194 break; 1195 case H_BULK_REMOVE: 1196 ret = kvmppc_h_bulk_remove(vcpu); 1197 if (ret == H_TOO_HARD) 1198 return RESUME_HOST; 1199 break; 1200 1201 case H_CEDE: 1202 break; 1203 case H_PROD: 1204 target = kvmppc_get_gpr(vcpu, 4); 1205 tvcpu = kvmppc_find_vcpu(kvm, target); 1206 if (!tvcpu) { 1207 ret = H_PARAMETER; 1208 break; 1209 } 1210 tvcpu->arch.prodded = 1; 1211 smp_mb(); /* This orders prodded store vs ceded load */ 1212 if (tvcpu->arch.ceded) 1213 kvmppc_fast_vcpu_kick_hv(tvcpu); 1214 break; 1215 case H_CONFER: 1216 target = kvmppc_get_gpr(vcpu, 4); 1217 if (target == -1) 1218 break; 1219 tvcpu = kvmppc_find_vcpu(kvm, target); 1220 if (!tvcpu) { 1221 ret = H_PARAMETER; 1222 break; 1223 } 1224 yield_count = kvmppc_get_gpr(vcpu, 5); 1225 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1226 break; 1227 kvm_arch_vcpu_yield_to(tvcpu); 1228 break; 1229 case H_REGISTER_VPA: 1230 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1231 kvmppc_get_gpr(vcpu, 5), 1232 kvmppc_get_gpr(vcpu, 6)); 1233 break; 1234 case H_RTAS: 1235 if (list_empty(&kvm->arch.rtas_tokens)) 1236 return RESUME_HOST; 1237 1238 idx = srcu_read_lock(&kvm->srcu); 1239 rc = kvmppc_rtas_hcall(vcpu); 1240 srcu_read_unlock(&kvm->srcu, idx); 1241 1242 if (rc == -ENOENT) 1243 return RESUME_HOST; 1244 else if (rc == 0) 1245 break; 1246 1247 /* Send the error out to userspace via KVM_RUN */ 1248 return rc; 1249 case H_LOGICAL_CI_LOAD: 1250 ret = kvmppc_h_logical_ci_load(vcpu); 1251 if (ret == H_TOO_HARD) 1252 return RESUME_HOST; 1253 break; 1254 case H_LOGICAL_CI_STORE: 1255 ret = kvmppc_h_logical_ci_store(vcpu); 1256 if (ret == H_TOO_HARD) 1257 return RESUME_HOST; 1258 break; 1259 case H_SET_MODE: 1260 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1261 kvmppc_get_gpr(vcpu, 5), 1262 kvmppc_get_gpr(vcpu, 6), 1263 kvmppc_get_gpr(vcpu, 7)); 1264 if (ret == H_TOO_HARD) 1265 return RESUME_HOST; 1266 break; 1267 case H_XIRR: 1268 case H_CPPR: 1269 case H_EOI: 1270 case H_IPI: 1271 case H_IPOLL: 1272 case H_XIRR_X: 1273 if (kvmppc_xics_enabled(vcpu)) { 1274 if (xics_on_xive()) { 1275 ret = H_NOT_AVAILABLE; 1276 return RESUME_GUEST; 1277 } 1278 ret = kvmppc_xics_hcall(vcpu, req); 1279 break; 1280 } 1281 return RESUME_HOST; 1282 case H_SET_DABR: 1283 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1284 break; 1285 case H_SET_XDABR: 1286 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1287 kvmppc_get_gpr(vcpu, 5)); 1288 break; 1289 #ifdef CONFIG_SPAPR_TCE_IOMMU 1290 case H_GET_TCE: 1291 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1292 kvmppc_get_gpr(vcpu, 5)); 1293 if (ret == H_TOO_HARD) 1294 return RESUME_HOST; 1295 break; 1296 case H_PUT_TCE: 1297 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1298 kvmppc_get_gpr(vcpu, 5), 1299 kvmppc_get_gpr(vcpu, 6)); 1300 if (ret == H_TOO_HARD) 1301 return RESUME_HOST; 1302 break; 1303 case H_PUT_TCE_INDIRECT: 1304 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1305 kvmppc_get_gpr(vcpu, 5), 1306 kvmppc_get_gpr(vcpu, 6), 1307 kvmppc_get_gpr(vcpu, 7)); 1308 if (ret == H_TOO_HARD) 1309 return RESUME_HOST; 1310 break; 1311 case H_STUFF_TCE: 1312 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1313 kvmppc_get_gpr(vcpu, 5), 1314 kvmppc_get_gpr(vcpu, 6), 1315 kvmppc_get_gpr(vcpu, 7)); 1316 if (ret == H_TOO_HARD) 1317 return RESUME_HOST; 1318 break; 1319 #endif 1320 case H_RANDOM: { 1321 unsigned long rand; 1322 1323 if (!arch_get_random_seed_longs(&rand, 1)) 1324 ret = H_HARDWARE; 1325 kvmppc_set_gpr(vcpu, 4, rand); 1326 break; 1327 } 1328 case H_RPT_INVALIDATE: 1329 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), 1330 kvmppc_get_gpr(vcpu, 5), 1331 kvmppc_get_gpr(vcpu, 6), 1332 kvmppc_get_gpr(vcpu, 7), 1333 kvmppc_get_gpr(vcpu, 8), 1334 kvmppc_get_gpr(vcpu, 9)); 1335 break; 1336 1337 case H_SET_PARTITION_TABLE: 1338 ret = H_FUNCTION; 1339 if (nesting_enabled(kvm)) 1340 ret = kvmhv_set_partition_table(vcpu); 1341 break; 1342 case H_ENTER_NESTED: 1343 ret = H_FUNCTION; 1344 if (!nesting_enabled(kvm)) 1345 break; 1346 ret = kvmhv_enter_nested_guest(vcpu); 1347 if (ret == H_INTERRUPT) { 1348 kvmppc_set_gpr(vcpu, 3, 0); 1349 vcpu->arch.hcall_needed = 0; 1350 return -EINTR; 1351 } else if (ret == H_TOO_HARD) { 1352 kvmppc_set_gpr(vcpu, 3, 0); 1353 vcpu->arch.hcall_needed = 0; 1354 return RESUME_HOST; 1355 } 1356 break; 1357 case H_TLB_INVALIDATE: 1358 ret = H_FUNCTION; 1359 if (nesting_enabled(kvm)) 1360 ret = kvmhv_do_nested_tlbie(vcpu); 1361 break; 1362 case H_COPY_TOFROM_GUEST: 1363 ret = H_FUNCTION; 1364 if (nesting_enabled(kvm)) 1365 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1366 break; 1367 case H_PAGE_INIT: 1368 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1369 kvmppc_get_gpr(vcpu, 5), 1370 kvmppc_get_gpr(vcpu, 6)); 1371 break; 1372 case H_SVM_PAGE_IN: 1373 ret = H_UNSUPPORTED; 1374 if (kvmppc_get_srr1(vcpu) & MSR_S) 1375 ret = kvmppc_h_svm_page_in(kvm, 1376 kvmppc_get_gpr(vcpu, 4), 1377 kvmppc_get_gpr(vcpu, 5), 1378 kvmppc_get_gpr(vcpu, 6)); 1379 break; 1380 case H_SVM_PAGE_OUT: 1381 ret = H_UNSUPPORTED; 1382 if (kvmppc_get_srr1(vcpu) & MSR_S) 1383 ret = kvmppc_h_svm_page_out(kvm, 1384 kvmppc_get_gpr(vcpu, 4), 1385 kvmppc_get_gpr(vcpu, 5), 1386 kvmppc_get_gpr(vcpu, 6)); 1387 break; 1388 case H_SVM_INIT_START: 1389 ret = H_UNSUPPORTED; 1390 if (kvmppc_get_srr1(vcpu) & MSR_S) 1391 ret = kvmppc_h_svm_init_start(kvm); 1392 break; 1393 case H_SVM_INIT_DONE: 1394 ret = H_UNSUPPORTED; 1395 if (kvmppc_get_srr1(vcpu) & MSR_S) 1396 ret = kvmppc_h_svm_init_done(kvm); 1397 break; 1398 case H_SVM_INIT_ABORT: 1399 /* 1400 * Even if that call is made by the Ultravisor, the SSR1 value 1401 * is the guest context one, with the secure bit clear as it has 1402 * not yet been secured. So we can't check it here. 1403 * Instead the kvm->arch.secure_guest flag is checked inside 1404 * kvmppc_h_svm_init_abort(). 1405 */ 1406 ret = kvmppc_h_svm_init_abort(kvm); 1407 break; 1408 1409 default: 1410 return RESUME_HOST; 1411 } 1412 WARN_ON_ONCE(ret == H_TOO_HARD); 1413 kvmppc_set_gpr(vcpu, 3, ret); 1414 vcpu->arch.hcall_needed = 0; 1415 return RESUME_GUEST; 1416 } 1417 1418 /* 1419 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1420 * handlers in book3s_hv_rmhandlers.S. 1421 * 1422 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1423 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1424 */ 1425 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1426 { 1427 __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE); 1428 vcpu->arch.ceded = 1; 1429 smp_mb(); 1430 if (vcpu->arch.prodded) { 1431 vcpu->arch.prodded = 0; 1432 smp_mb(); 1433 vcpu->arch.ceded = 0; 1434 } 1435 } 1436 1437 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1438 { 1439 switch (cmd) { 1440 case H_CEDE: 1441 case H_PROD: 1442 case H_CONFER: 1443 case H_REGISTER_VPA: 1444 case H_SET_MODE: 1445 #ifdef CONFIG_SPAPR_TCE_IOMMU 1446 case H_GET_TCE: 1447 case H_PUT_TCE: 1448 case H_PUT_TCE_INDIRECT: 1449 case H_STUFF_TCE: 1450 #endif 1451 case H_LOGICAL_CI_LOAD: 1452 case H_LOGICAL_CI_STORE: 1453 #ifdef CONFIG_KVM_XICS 1454 case H_XIRR: 1455 case H_CPPR: 1456 case H_EOI: 1457 case H_IPI: 1458 case H_IPOLL: 1459 case H_XIRR_X: 1460 #endif 1461 case H_PAGE_INIT: 1462 case H_RPT_INVALIDATE: 1463 return 1; 1464 } 1465 1466 /* See if it's in the real-mode table */ 1467 return kvmppc_hcall_impl_hv_realmode(cmd); 1468 } 1469 1470 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1471 { 1472 ppc_inst_t last_inst; 1473 1474 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1475 EMULATE_DONE) { 1476 /* 1477 * Fetch failed, so return to guest and 1478 * try executing it again. 1479 */ 1480 return RESUME_GUEST; 1481 } 1482 1483 if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) { 1484 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1485 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1486 return RESUME_HOST; 1487 } else { 1488 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1489 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1490 return RESUME_GUEST; 1491 } 1492 } 1493 1494 static void do_nothing(void *x) 1495 { 1496 } 1497 1498 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1499 { 1500 int thr, cpu, pcpu, nthreads; 1501 struct kvm_vcpu *v; 1502 unsigned long dpdes; 1503 1504 nthreads = vcpu->kvm->arch.emul_smt_mode; 1505 dpdes = 0; 1506 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1507 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1508 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1509 if (!v) 1510 continue; 1511 /* 1512 * If the vcpu is currently running on a physical cpu thread, 1513 * interrupt it in order to pull it out of the guest briefly, 1514 * which will update its vcore->dpdes value. 1515 */ 1516 pcpu = READ_ONCE(v->cpu); 1517 if (pcpu >= 0) 1518 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1519 if (kvmppc_doorbell_pending(v)) 1520 dpdes |= 1 << thr; 1521 } 1522 return dpdes; 1523 } 1524 1525 /* 1526 * On POWER9, emulate doorbell-related instructions in order to 1527 * give the guest the illusion of running on a multi-threaded core. 1528 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1529 * and mfspr DPDES. 1530 */ 1531 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1532 { 1533 u32 inst, rb, thr; 1534 unsigned long arg; 1535 struct kvm *kvm = vcpu->kvm; 1536 struct kvm_vcpu *tvcpu; 1537 ppc_inst_t pinst; 1538 1539 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE) 1540 return RESUME_GUEST; 1541 inst = ppc_inst_val(pinst); 1542 if (get_op(inst) != 31) 1543 return EMULATE_FAIL; 1544 rb = get_rb(inst); 1545 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1546 switch (get_xop(inst)) { 1547 case OP_31_XOP_MSGSNDP: 1548 arg = kvmppc_get_gpr(vcpu, rb); 1549 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1550 break; 1551 arg &= 0x7f; 1552 if (arg >= kvm->arch.emul_smt_mode) 1553 break; 1554 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1555 if (!tvcpu) 1556 break; 1557 if (!tvcpu->arch.doorbell_request) { 1558 tvcpu->arch.doorbell_request = 1; 1559 kvmppc_fast_vcpu_kick_hv(tvcpu); 1560 } 1561 break; 1562 case OP_31_XOP_MSGCLRP: 1563 arg = kvmppc_get_gpr(vcpu, rb); 1564 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1565 break; 1566 vcpu->arch.vcore->dpdes = 0; 1567 vcpu->arch.doorbell_request = 0; 1568 break; 1569 case OP_31_XOP_MFSPR: 1570 switch (get_sprn(inst)) { 1571 case SPRN_TIR: 1572 arg = thr; 1573 break; 1574 case SPRN_DPDES: 1575 arg = kvmppc_read_dpdes(vcpu); 1576 break; 1577 default: 1578 return EMULATE_FAIL; 1579 } 1580 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1581 break; 1582 default: 1583 return EMULATE_FAIL; 1584 } 1585 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1586 return RESUME_GUEST; 1587 } 1588 1589 /* 1590 * If the lppaca had pmcregs_in_use clear when we exited the guest, then 1591 * HFSCR_PM is cleared for next entry. If the guest then tries to access 1592 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM 1593 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and 1594 * allow the guest access to continue. 1595 */ 1596 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu) 1597 { 1598 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM)) 1599 return EMULATE_FAIL; 1600 1601 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM); 1602 1603 return RESUME_GUEST; 1604 } 1605 1606 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu) 1607 { 1608 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB)) 1609 return EMULATE_FAIL; 1610 1611 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB); 1612 1613 return RESUME_GUEST; 1614 } 1615 1616 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu) 1617 { 1618 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM)) 1619 return EMULATE_FAIL; 1620 1621 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM); 1622 1623 return RESUME_GUEST; 1624 } 1625 1626 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1627 struct task_struct *tsk) 1628 { 1629 struct kvm_run *run = vcpu->run; 1630 int r = RESUME_HOST; 1631 1632 vcpu->stat.sum_exits++; 1633 1634 /* 1635 * This can happen if an interrupt occurs in the last stages 1636 * of guest entry or the first stages of guest exit (i.e. after 1637 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1638 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1639 * That can happen due to a bug, or due to a machine check 1640 * occurring at just the wrong time. 1641 */ 1642 if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) { 1643 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1644 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1645 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1646 vcpu->arch.shregs.msr); 1647 kvmppc_dump_regs(vcpu); 1648 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1649 run->hw.hardware_exit_reason = vcpu->arch.trap; 1650 return RESUME_HOST; 1651 } 1652 run->exit_reason = KVM_EXIT_UNKNOWN; 1653 run->ready_for_interrupt_injection = 1; 1654 switch (vcpu->arch.trap) { 1655 /* We're good on these - the host merely wanted to get our attention */ 1656 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1657 WARN_ON_ONCE(1); /* Should never happen */ 1658 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1659 fallthrough; 1660 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1661 vcpu->stat.dec_exits++; 1662 r = RESUME_GUEST; 1663 break; 1664 case BOOK3S_INTERRUPT_EXTERNAL: 1665 case BOOK3S_INTERRUPT_H_DOORBELL: 1666 case BOOK3S_INTERRUPT_H_VIRT: 1667 vcpu->stat.ext_intr_exits++; 1668 r = RESUME_GUEST; 1669 break; 1670 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1671 case BOOK3S_INTERRUPT_HMI: 1672 case BOOK3S_INTERRUPT_PERFMON: 1673 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1674 r = RESUME_GUEST; 1675 break; 1676 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1677 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1678 DEFAULT_RATELIMIT_BURST); 1679 /* 1680 * Print the MCE event to host console. Ratelimit so the guest 1681 * can't flood the host log. 1682 */ 1683 if (__ratelimit(&rs)) 1684 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1685 1686 /* 1687 * If the guest can do FWNMI, exit to userspace so it can 1688 * deliver a FWNMI to the guest. 1689 * Otherwise we synthesize a machine check for the guest 1690 * so that it knows that the machine check occurred. 1691 */ 1692 if (!vcpu->kvm->arch.fwnmi_enabled) { 1693 ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) | 1694 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1695 kvmppc_core_queue_machine_check(vcpu, flags); 1696 r = RESUME_GUEST; 1697 break; 1698 } 1699 1700 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1701 run->exit_reason = KVM_EXIT_NMI; 1702 run->hw.hardware_exit_reason = vcpu->arch.trap; 1703 /* Clear out the old NMI status from run->flags */ 1704 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1705 /* Now set the NMI status */ 1706 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1707 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1708 else 1709 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1710 1711 r = RESUME_HOST; 1712 break; 1713 } 1714 case BOOK3S_INTERRUPT_PROGRAM: 1715 { 1716 ulong flags; 1717 /* 1718 * Normally program interrupts are delivered directly 1719 * to the guest by the hardware, but we can get here 1720 * as a result of a hypervisor emulation interrupt 1721 * (e40) getting turned into a 700 by BML RTAS. 1722 */ 1723 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) | 1724 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1725 kvmppc_core_queue_program(vcpu, flags); 1726 r = RESUME_GUEST; 1727 break; 1728 } 1729 case BOOK3S_INTERRUPT_SYSCALL: 1730 { 1731 int i; 1732 1733 if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 1734 /* 1735 * Guest userspace executed sc 1. This can only be 1736 * reached by the P9 path because the old path 1737 * handles this case in realmode hcall handlers. 1738 */ 1739 if (!kvmhv_vcpu_is_radix(vcpu)) { 1740 /* 1741 * A guest could be running PR KVM, so this 1742 * may be a PR KVM hcall. It must be reflected 1743 * to the guest kernel as a sc interrupt. 1744 */ 1745 kvmppc_core_queue_syscall(vcpu); 1746 } else { 1747 /* 1748 * Radix guests can not run PR KVM or nested HV 1749 * hash guests which might run PR KVM, so this 1750 * is always a privilege fault. Send a program 1751 * check to guest kernel. 1752 */ 1753 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1754 } 1755 r = RESUME_GUEST; 1756 break; 1757 } 1758 1759 /* 1760 * hcall - gather args and set exit_reason. This will next be 1761 * handled by kvmppc_pseries_do_hcall which may be able to deal 1762 * with it and resume guest, or may punt to userspace. 1763 */ 1764 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1765 for (i = 0; i < 9; ++i) 1766 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1767 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1768 vcpu->arch.hcall_needed = 1; 1769 r = RESUME_HOST; 1770 break; 1771 } 1772 /* 1773 * We get these next two if the guest accesses a page which it thinks 1774 * it has mapped but which is not actually present, either because 1775 * it is for an emulated I/O device or because the corresonding 1776 * host page has been paged out. 1777 * 1778 * Any other HDSI/HISI interrupts have been handled already for P7/8 1779 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1780 * fault handling is done here. 1781 */ 1782 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1783 unsigned long vsid; 1784 long err; 1785 1786 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 1787 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) { 1788 r = RESUME_GUEST; /* Just retry if it's the canary */ 1789 break; 1790 } 1791 1792 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1793 /* 1794 * Radix doesn't require anything, and pre-ISAv3.0 hash 1795 * already attempted to handle this in rmhandlers. The 1796 * hash fault handling below is v3 only (it uses ASDR 1797 * via fault_gpa). 1798 */ 1799 r = RESUME_PAGE_FAULT; 1800 break; 1801 } 1802 1803 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1804 kvmppc_core_queue_data_storage(vcpu, 1805 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1806 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1807 r = RESUME_GUEST; 1808 break; 1809 } 1810 1811 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR)) 1812 vsid = vcpu->kvm->arch.vrma_slb_v; 1813 else 1814 vsid = vcpu->arch.fault_gpa; 1815 1816 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1817 vsid, vcpu->arch.fault_dsisr, true); 1818 if (err == 0) { 1819 r = RESUME_GUEST; 1820 } else if (err == -1 || err == -2) { 1821 r = RESUME_PAGE_FAULT; 1822 } else { 1823 kvmppc_core_queue_data_storage(vcpu, 1824 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1825 vcpu->arch.fault_dar, err); 1826 r = RESUME_GUEST; 1827 } 1828 break; 1829 } 1830 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1831 unsigned long vsid; 1832 long err; 1833 1834 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1835 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) & 1836 DSISR_SRR1_MATCH_64S; 1837 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1838 /* 1839 * Radix doesn't require anything, and pre-ISAv3.0 hash 1840 * already attempted to handle this in rmhandlers. The 1841 * hash fault handling below is v3 only (it uses ASDR 1842 * via fault_gpa). 1843 */ 1844 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE) 1845 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1846 r = RESUME_PAGE_FAULT; 1847 break; 1848 } 1849 1850 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1851 kvmppc_core_queue_inst_storage(vcpu, 1852 vcpu->arch.fault_dsisr | 1853 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1854 r = RESUME_GUEST; 1855 break; 1856 } 1857 1858 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR)) 1859 vsid = vcpu->kvm->arch.vrma_slb_v; 1860 else 1861 vsid = vcpu->arch.fault_gpa; 1862 1863 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1864 vsid, vcpu->arch.fault_dsisr, false); 1865 if (err == 0) { 1866 r = RESUME_GUEST; 1867 } else if (err == -1) { 1868 r = RESUME_PAGE_FAULT; 1869 } else { 1870 kvmppc_core_queue_inst_storage(vcpu, 1871 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1872 r = RESUME_GUEST; 1873 } 1874 break; 1875 } 1876 1877 /* 1878 * This occurs if the guest executes an illegal instruction. 1879 * If the guest debug is disabled, generate a program interrupt 1880 * to the guest. If guest debug is enabled, we need to check 1881 * whether the instruction is a software breakpoint instruction. 1882 * Accordingly return to Guest or Host. 1883 */ 1884 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1885 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1886 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1887 swab32(vcpu->arch.emul_inst) : 1888 vcpu->arch.emul_inst; 1889 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1890 r = kvmppc_emulate_debug_inst(vcpu); 1891 } else { 1892 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1893 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1894 r = RESUME_GUEST; 1895 } 1896 break; 1897 1898 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1899 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1900 /* 1901 * This occurs for various TM-related instructions that 1902 * we need to emulate on POWER9 DD2.2. We have already 1903 * handled the cases where the guest was in real-suspend 1904 * mode and was transitioning to transactional state. 1905 */ 1906 r = kvmhv_p9_tm_emulation(vcpu); 1907 if (r != -1) 1908 break; 1909 fallthrough; /* go to facility unavailable handler */ 1910 #endif 1911 1912 /* 1913 * This occurs if the guest (kernel or userspace), does something that 1914 * is prohibited by HFSCR. 1915 * On POWER9, this could be a doorbell instruction that we need 1916 * to emulate. 1917 * Otherwise, we just generate a program interrupt to the guest. 1918 */ 1919 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1920 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56; 1921 1922 r = EMULATE_FAIL; 1923 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1924 if (cause == FSCR_MSGP_LG) 1925 r = kvmppc_emulate_doorbell_instr(vcpu); 1926 if (cause == FSCR_PM_LG) 1927 r = kvmppc_pmu_unavailable(vcpu); 1928 if (cause == FSCR_EBB_LG) 1929 r = kvmppc_ebb_unavailable(vcpu); 1930 if (cause == FSCR_TM_LG) 1931 r = kvmppc_tm_unavailable(vcpu); 1932 } 1933 if (r == EMULATE_FAIL) { 1934 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1935 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1936 r = RESUME_GUEST; 1937 } 1938 break; 1939 } 1940 1941 case BOOK3S_INTERRUPT_HV_RM_HARD: 1942 r = RESUME_PASSTHROUGH; 1943 break; 1944 default: 1945 kvmppc_dump_regs(vcpu); 1946 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1947 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1948 __kvmppc_get_msr_hv(vcpu)); 1949 run->hw.hardware_exit_reason = vcpu->arch.trap; 1950 r = RESUME_HOST; 1951 break; 1952 } 1953 1954 return r; 1955 } 1956 1957 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1958 { 1959 int r; 1960 int srcu_idx; 1961 1962 vcpu->stat.sum_exits++; 1963 1964 /* 1965 * This can happen if an interrupt occurs in the last stages 1966 * of guest entry or the first stages of guest exit (i.e. after 1967 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1968 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1969 * That can happen due to a bug, or due to a machine check 1970 * occurring at just the wrong time. 1971 */ 1972 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) { 1973 pr_emerg("KVM trap in HV mode while nested!\n"); 1974 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1975 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1976 __kvmppc_get_msr_hv(vcpu)); 1977 kvmppc_dump_regs(vcpu); 1978 return RESUME_HOST; 1979 } 1980 switch (vcpu->arch.trap) { 1981 /* We're good on these - the host merely wanted to get our attention */ 1982 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1983 vcpu->stat.dec_exits++; 1984 r = RESUME_GUEST; 1985 break; 1986 case BOOK3S_INTERRUPT_EXTERNAL: 1987 vcpu->stat.ext_intr_exits++; 1988 r = RESUME_HOST; 1989 break; 1990 case BOOK3S_INTERRUPT_H_DOORBELL: 1991 case BOOK3S_INTERRUPT_H_VIRT: 1992 vcpu->stat.ext_intr_exits++; 1993 r = RESUME_GUEST; 1994 break; 1995 /* These need to go to the nested HV */ 1996 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1997 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1998 vcpu->stat.dec_exits++; 1999 r = RESUME_HOST; 2000 break; 2001 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 2002 case BOOK3S_INTERRUPT_HMI: 2003 case BOOK3S_INTERRUPT_PERFMON: 2004 case BOOK3S_INTERRUPT_SYSTEM_RESET: 2005 r = RESUME_GUEST; 2006 break; 2007 case BOOK3S_INTERRUPT_MACHINE_CHECK: 2008 { 2009 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 2010 DEFAULT_RATELIMIT_BURST); 2011 /* Pass the machine check to the L1 guest */ 2012 r = RESUME_HOST; 2013 /* Print the MCE event to host console. */ 2014 if (__ratelimit(&rs)) 2015 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 2016 break; 2017 } 2018 /* 2019 * We get these next two if the guest accesses a page which it thinks 2020 * it has mapped but which is not actually present, either because 2021 * it is for an emulated I/O device or because the corresonding 2022 * host page has been paged out. 2023 */ 2024 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 2025 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2026 r = kvmhv_nested_page_fault(vcpu); 2027 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2028 break; 2029 case BOOK3S_INTERRUPT_H_INST_STORAGE: 2030 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 2031 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 2032 DSISR_SRR1_MATCH_64S; 2033 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE) 2034 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 2035 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2036 r = kvmhv_nested_page_fault(vcpu); 2037 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2038 break; 2039 2040 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2041 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 2042 /* 2043 * This occurs for various TM-related instructions that 2044 * we need to emulate on POWER9 DD2.2. We have already 2045 * handled the cases where the guest was in real-suspend 2046 * mode and was transitioning to transactional state. 2047 */ 2048 r = kvmhv_p9_tm_emulation(vcpu); 2049 if (r != -1) 2050 break; 2051 fallthrough; /* go to facility unavailable handler */ 2052 #endif 2053 2054 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 2055 u64 cause = vcpu->arch.hfscr >> 56; 2056 2057 /* 2058 * Only pass HFU interrupts to the L1 if the facility is 2059 * permitted but disabled by the L1's HFSCR, otherwise 2060 * the interrupt does not make sense to the L1 so turn 2061 * it into a HEAI. 2062 */ 2063 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || 2064 (vcpu->arch.nested_hfscr & (1UL << cause))) { 2065 ppc_inst_t pinst; 2066 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; 2067 2068 /* 2069 * If the fetch failed, return to guest and 2070 * try executing it again. 2071 */ 2072 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst); 2073 vcpu->arch.emul_inst = ppc_inst_val(pinst); 2074 if (r != EMULATE_DONE) 2075 r = RESUME_GUEST; 2076 else 2077 r = RESUME_HOST; 2078 } else { 2079 r = RESUME_HOST; 2080 } 2081 2082 break; 2083 } 2084 2085 case BOOK3S_INTERRUPT_HV_RM_HARD: 2086 vcpu->arch.trap = 0; 2087 r = RESUME_GUEST; 2088 if (!xics_on_xive()) 2089 kvmppc_xics_rm_complete(vcpu, 0); 2090 break; 2091 case BOOK3S_INTERRUPT_SYSCALL: 2092 { 2093 unsigned long req = kvmppc_get_gpr(vcpu, 3); 2094 2095 /* 2096 * The H_RPT_INVALIDATE hcalls issued by nested 2097 * guests for process-scoped invalidations when 2098 * GTSE=0, are handled here in L0. 2099 */ 2100 if (req == H_RPT_INVALIDATE) { 2101 r = kvmppc_nested_h_rpt_invalidate(vcpu); 2102 break; 2103 } 2104 2105 r = RESUME_HOST; 2106 break; 2107 } 2108 default: 2109 r = RESUME_HOST; 2110 break; 2111 } 2112 2113 return r; 2114 } 2115 2116 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 2117 struct kvm_sregs *sregs) 2118 { 2119 int i; 2120 2121 memset(sregs, 0, sizeof(struct kvm_sregs)); 2122 sregs->pvr = vcpu->arch.pvr; 2123 for (i = 0; i < vcpu->arch.slb_max; i++) { 2124 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 2125 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 2126 } 2127 2128 return 0; 2129 } 2130 2131 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 2132 struct kvm_sregs *sregs) 2133 { 2134 int i, j; 2135 2136 /* Only accept the same PVR as the host's, since we can't spoof it */ 2137 if (sregs->pvr != vcpu->arch.pvr) 2138 return -EINVAL; 2139 2140 j = 0; 2141 for (i = 0; i < vcpu->arch.slb_nr; i++) { 2142 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 2143 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 2144 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 2145 ++j; 2146 } 2147 } 2148 vcpu->arch.slb_max = j; 2149 2150 return 0; 2151 } 2152 2153 /* 2154 * Enforce limits on guest LPCR values based on hardware availability, 2155 * guest configuration, and possibly hypervisor support and security 2156 * concerns. 2157 */ 2158 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 2159 { 2160 /* LPCR_TC only applies to HPT guests */ 2161 if (kvm_is_radix(kvm)) 2162 lpcr &= ~LPCR_TC; 2163 2164 /* On POWER8 and above, userspace can modify AIL */ 2165 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2166 lpcr &= ~LPCR_AIL; 2167 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 2168 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 2169 /* 2170 * On some POWER9s we force AIL off for radix guests to prevent 2171 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 2172 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 2173 * be cached, which the host TLB management does not expect. 2174 */ 2175 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 2176 lpcr &= ~LPCR_AIL; 2177 2178 /* 2179 * On POWER9, allow userspace to enable large decrementer for the 2180 * guest, whether or not the host has it enabled. 2181 */ 2182 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2183 lpcr &= ~LPCR_LD; 2184 2185 return lpcr; 2186 } 2187 2188 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 2189 { 2190 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 2191 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 2192 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 2193 } 2194 } 2195 2196 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 2197 bool preserve_top32) 2198 { 2199 struct kvm *kvm = vcpu->kvm; 2200 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2201 u64 mask; 2202 2203 spin_lock(&vc->lock); 2204 2205 /* 2206 * Userspace can only modify 2207 * DPFD (default prefetch depth), ILE (interrupt little-endian), 2208 * TC (translation control), AIL (alternate interrupt location), 2209 * LD (large decrementer). 2210 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 2211 */ 2212 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 2213 2214 /* Broken 32-bit version of LPCR must not clear top bits */ 2215 if (preserve_top32) 2216 mask &= 0xFFFFFFFF; 2217 2218 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 2219 (vc->lpcr & ~mask) | (new_lpcr & mask)); 2220 2221 /* 2222 * If ILE (interrupt little-endian) has changed, update the 2223 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 2224 */ 2225 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 2226 struct kvm_vcpu *vcpu; 2227 unsigned long i; 2228 2229 kvm_for_each_vcpu(i, vcpu, kvm) { 2230 if (vcpu->arch.vcore != vc) 2231 continue; 2232 if (new_lpcr & LPCR_ILE) 2233 vcpu->arch.intr_msr |= MSR_LE; 2234 else 2235 vcpu->arch.intr_msr &= ~MSR_LE; 2236 } 2237 } 2238 2239 vc->lpcr = new_lpcr; 2240 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR); 2241 2242 spin_unlock(&vc->lock); 2243 } 2244 2245 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2246 union kvmppc_one_reg *val) 2247 { 2248 int r = 0; 2249 long int i; 2250 2251 switch (id) { 2252 case KVM_REG_PPC_DEBUG_INST: 2253 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 2254 break; 2255 case KVM_REG_PPC_HIOR: 2256 *val = get_reg_val(id, 0); 2257 break; 2258 case KVM_REG_PPC_DABR: 2259 *val = get_reg_val(id, vcpu->arch.dabr); 2260 break; 2261 case KVM_REG_PPC_DABRX: 2262 *val = get_reg_val(id, vcpu->arch.dabrx); 2263 break; 2264 case KVM_REG_PPC_DSCR: 2265 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu)); 2266 break; 2267 case KVM_REG_PPC_PURR: 2268 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu)); 2269 break; 2270 case KVM_REG_PPC_SPURR: 2271 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu)); 2272 break; 2273 case KVM_REG_PPC_AMR: 2274 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu)); 2275 break; 2276 case KVM_REG_PPC_UAMOR: 2277 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu)); 2278 break; 2279 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2280 i = id - KVM_REG_PPC_MMCR0; 2281 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i)); 2282 break; 2283 case KVM_REG_PPC_MMCR2: 2284 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2)); 2285 break; 2286 case KVM_REG_PPC_MMCRA: 2287 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu)); 2288 break; 2289 case KVM_REG_PPC_MMCRS: 2290 *val = get_reg_val(id, vcpu->arch.mmcrs); 2291 break; 2292 case KVM_REG_PPC_MMCR3: 2293 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3)); 2294 break; 2295 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2296 i = id - KVM_REG_PPC_PMC1; 2297 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i)); 2298 break; 2299 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2300 i = id - KVM_REG_PPC_SPMC1; 2301 *val = get_reg_val(id, vcpu->arch.spmc[i]); 2302 break; 2303 case KVM_REG_PPC_SIAR: 2304 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu)); 2305 break; 2306 case KVM_REG_PPC_SDAR: 2307 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu)); 2308 break; 2309 case KVM_REG_PPC_SIER: 2310 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0)); 2311 break; 2312 case KVM_REG_PPC_SIER2: 2313 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1)); 2314 break; 2315 case KVM_REG_PPC_SIER3: 2316 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2)); 2317 break; 2318 case KVM_REG_PPC_IAMR: 2319 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu)); 2320 break; 2321 case KVM_REG_PPC_PSPB: 2322 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu)); 2323 break; 2324 case KVM_REG_PPC_DPDES: 2325 /* 2326 * On POWER9, where we are emulating msgsndp etc., 2327 * we return 1 bit for each vcpu, which can come from 2328 * either vcore->dpdes or doorbell_request. 2329 * On POWER8, doorbell_request is 0. 2330 */ 2331 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2332 *val = get_reg_val(id, vcpu->arch.doorbell_request); 2333 else 2334 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 2335 break; 2336 case KVM_REG_PPC_VTB: 2337 *val = get_reg_val(id, kvmppc_get_vtb(vcpu)); 2338 break; 2339 case KVM_REG_PPC_DAWR: 2340 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu)); 2341 break; 2342 case KVM_REG_PPC_DAWRX: 2343 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu)); 2344 break; 2345 case KVM_REG_PPC_DAWR1: 2346 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu)); 2347 break; 2348 case KVM_REG_PPC_DAWRX1: 2349 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu)); 2350 break; 2351 case KVM_REG_PPC_CIABR: 2352 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu)); 2353 break; 2354 case KVM_REG_PPC_CSIGR: 2355 *val = get_reg_val(id, vcpu->arch.csigr); 2356 break; 2357 case KVM_REG_PPC_TACR: 2358 *val = get_reg_val(id, vcpu->arch.tacr); 2359 break; 2360 case KVM_REG_PPC_TCSCR: 2361 *val = get_reg_val(id, vcpu->arch.tcscr); 2362 break; 2363 case KVM_REG_PPC_PID: 2364 *val = get_reg_val(id, kvmppc_get_pid(vcpu)); 2365 break; 2366 case KVM_REG_PPC_ACOP: 2367 *val = get_reg_val(id, vcpu->arch.acop); 2368 break; 2369 case KVM_REG_PPC_WORT: 2370 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu)); 2371 break; 2372 case KVM_REG_PPC_TIDR: 2373 *val = get_reg_val(id, vcpu->arch.tid); 2374 break; 2375 case KVM_REG_PPC_PSSCR: 2376 *val = get_reg_val(id, vcpu->arch.psscr); 2377 break; 2378 case KVM_REG_PPC_VPA_ADDR: 2379 spin_lock(&vcpu->arch.vpa_update_lock); 2380 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2381 spin_unlock(&vcpu->arch.vpa_update_lock); 2382 break; 2383 case KVM_REG_PPC_VPA_SLB: 2384 spin_lock(&vcpu->arch.vpa_update_lock); 2385 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2386 val->vpaval.length = vcpu->arch.slb_shadow.len; 2387 spin_unlock(&vcpu->arch.vpa_update_lock); 2388 break; 2389 case KVM_REG_PPC_VPA_DTL: 2390 spin_lock(&vcpu->arch.vpa_update_lock); 2391 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2392 val->vpaval.length = vcpu->arch.dtl.len; 2393 spin_unlock(&vcpu->arch.vpa_update_lock); 2394 break; 2395 case KVM_REG_PPC_TB_OFFSET: 2396 *val = get_reg_val(id, kvmppc_get_tb_offset(vcpu)); 2397 break; 2398 case KVM_REG_PPC_LPCR: 2399 case KVM_REG_PPC_LPCR_64: 2400 *val = get_reg_val(id, kvmppc_get_lpcr(vcpu)); 2401 break; 2402 case KVM_REG_PPC_PPR: 2403 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu)); 2404 break; 2405 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2406 case KVM_REG_PPC_TFHAR: 2407 *val = get_reg_val(id, vcpu->arch.tfhar); 2408 break; 2409 case KVM_REG_PPC_TFIAR: 2410 *val = get_reg_val(id, vcpu->arch.tfiar); 2411 break; 2412 case KVM_REG_PPC_TEXASR: 2413 *val = get_reg_val(id, vcpu->arch.texasr); 2414 break; 2415 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2416 i = id - KVM_REG_PPC_TM_GPR0; 2417 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2418 break; 2419 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2420 { 2421 int j; 2422 i = id - KVM_REG_PPC_TM_VSR0; 2423 if (i < 32) 2424 for (j = 0; j < TS_FPRWIDTH; j++) 2425 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2426 else { 2427 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2428 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2429 else 2430 r = -ENXIO; 2431 } 2432 break; 2433 } 2434 case KVM_REG_PPC_TM_CR: 2435 *val = get_reg_val(id, vcpu->arch.cr_tm); 2436 break; 2437 case KVM_REG_PPC_TM_XER: 2438 *val = get_reg_val(id, vcpu->arch.xer_tm); 2439 break; 2440 case KVM_REG_PPC_TM_LR: 2441 *val = get_reg_val(id, vcpu->arch.lr_tm); 2442 break; 2443 case KVM_REG_PPC_TM_CTR: 2444 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2445 break; 2446 case KVM_REG_PPC_TM_FPSCR: 2447 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2448 break; 2449 case KVM_REG_PPC_TM_AMR: 2450 *val = get_reg_val(id, vcpu->arch.amr_tm); 2451 break; 2452 case KVM_REG_PPC_TM_PPR: 2453 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2454 break; 2455 case KVM_REG_PPC_TM_VRSAVE: 2456 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2457 break; 2458 case KVM_REG_PPC_TM_VSCR: 2459 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2460 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2461 else 2462 r = -ENXIO; 2463 break; 2464 case KVM_REG_PPC_TM_DSCR: 2465 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2466 break; 2467 case KVM_REG_PPC_TM_TAR: 2468 *val = get_reg_val(id, vcpu->arch.tar_tm); 2469 break; 2470 #endif 2471 case KVM_REG_PPC_ARCH_COMPAT: 2472 *val = get_reg_val(id, kvmppc_get_arch_compat(vcpu)); 2473 break; 2474 case KVM_REG_PPC_DEC_EXPIRY: 2475 *val = get_reg_val(id, kvmppc_get_dec_expires(vcpu)); 2476 break; 2477 case KVM_REG_PPC_ONLINE: 2478 *val = get_reg_val(id, vcpu->arch.online); 2479 break; 2480 case KVM_REG_PPC_PTCR: 2481 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2482 break; 2483 case KVM_REG_PPC_FSCR: 2484 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu)); 2485 break; 2486 default: 2487 r = -EINVAL; 2488 break; 2489 } 2490 2491 return r; 2492 } 2493 2494 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2495 union kvmppc_one_reg *val) 2496 { 2497 int r = 0; 2498 long int i; 2499 unsigned long addr, len; 2500 2501 switch (id) { 2502 case KVM_REG_PPC_HIOR: 2503 /* Only allow this to be set to zero */ 2504 if (set_reg_val(id, *val)) 2505 r = -EINVAL; 2506 break; 2507 case KVM_REG_PPC_DABR: 2508 vcpu->arch.dabr = set_reg_val(id, *val); 2509 break; 2510 case KVM_REG_PPC_DABRX: 2511 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2512 break; 2513 case KVM_REG_PPC_DSCR: 2514 kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val)); 2515 break; 2516 case KVM_REG_PPC_PURR: 2517 kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val)); 2518 break; 2519 case KVM_REG_PPC_SPURR: 2520 kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val)); 2521 break; 2522 case KVM_REG_PPC_AMR: 2523 kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val)); 2524 break; 2525 case KVM_REG_PPC_UAMOR: 2526 kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val)); 2527 break; 2528 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2529 i = id - KVM_REG_PPC_MMCR0; 2530 kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val)); 2531 break; 2532 case KVM_REG_PPC_MMCR2: 2533 kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val)); 2534 break; 2535 case KVM_REG_PPC_MMCRA: 2536 kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val)); 2537 break; 2538 case KVM_REG_PPC_MMCRS: 2539 vcpu->arch.mmcrs = set_reg_val(id, *val); 2540 break; 2541 case KVM_REG_PPC_MMCR3: 2542 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2543 break; 2544 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2545 i = id - KVM_REG_PPC_PMC1; 2546 kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val)); 2547 break; 2548 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2549 i = id - KVM_REG_PPC_SPMC1; 2550 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2551 break; 2552 case KVM_REG_PPC_SIAR: 2553 kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val)); 2554 break; 2555 case KVM_REG_PPC_SDAR: 2556 kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val)); 2557 break; 2558 case KVM_REG_PPC_SIER: 2559 kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val)); 2560 break; 2561 case KVM_REG_PPC_SIER2: 2562 kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val)); 2563 break; 2564 case KVM_REG_PPC_SIER3: 2565 kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val)); 2566 break; 2567 case KVM_REG_PPC_IAMR: 2568 kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val)); 2569 break; 2570 case KVM_REG_PPC_PSPB: 2571 kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val)); 2572 break; 2573 case KVM_REG_PPC_DPDES: 2574 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2575 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1; 2576 else 2577 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2578 break; 2579 case KVM_REG_PPC_VTB: 2580 kvmppc_set_vtb(vcpu, set_reg_val(id, *val)); 2581 break; 2582 case KVM_REG_PPC_DAWR: 2583 kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val)); 2584 break; 2585 case KVM_REG_PPC_DAWRX: 2586 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP); 2587 break; 2588 case KVM_REG_PPC_DAWR1: 2589 kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val)); 2590 break; 2591 case KVM_REG_PPC_DAWRX1: 2592 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP); 2593 break; 2594 case KVM_REG_PPC_CIABR: 2595 kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val)); 2596 /* Don't allow setting breakpoints in hypervisor code */ 2597 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER) 2598 kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV); 2599 break; 2600 case KVM_REG_PPC_CSIGR: 2601 vcpu->arch.csigr = set_reg_val(id, *val); 2602 break; 2603 case KVM_REG_PPC_TACR: 2604 vcpu->arch.tacr = set_reg_val(id, *val); 2605 break; 2606 case KVM_REG_PPC_TCSCR: 2607 vcpu->arch.tcscr = set_reg_val(id, *val); 2608 break; 2609 case KVM_REG_PPC_PID: 2610 kvmppc_set_pid(vcpu, set_reg_val(id, *val)); 2611 break; 2612 case KVM_REG_PPC_ACOP: 2613 vcpu->arch.acop = set_reg_val(id, *val); 2614 break; 2615 case KVM_REG_PPC_WORT: 2616 kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val)); 2617 break; 2618 case KVM_REG_PPC_TIDR: 2619 vcpu->arch.tid = set_reg_val(id, *val); 2620 break; 2621 case KVM_REG_PPC_PSSCR: 2622 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2623 break; 2624 case KVM_REG_PPC_VPA_ADDR: 2625 addr = set_reg_val(id, *val); 2626 r = -EINVAL; 2627 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2628 vcpu->arch.dtl.next_gpa)) 2629 break; 2630 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2631 break; 2632 case KVM_REG_PPC_VPA_SLB: 2633 addr = val->vpaval.addr; 2634 len = val->vpaval.length; 2635 r = -EINVAL; 2636 if (addr && !vcpu->arch.vpa.next_gpa) 2637 break; 2638 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2639 break; 2640 case KVM_REG_PPC_VPA_DTL: 2641 addr = val->vpaval.addr; 2642 len = val->vpaval.length; 2643 r = -EINVAL; 2644 if (addr && (len < sizeof(struct dtl_entry) || 2645 !vcpu->arch.vpa.next_gpa)) 2646 break; 2647 len -= len % sizeof(struct dtl_entry); 2648 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2649 break; 2650 case KVM_REG_PPC_TB_OFFSET: 2651 { 2652 /* round up to multiple of 2^24 */ 2653 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24); 2654 2655 /* 2656 * Now that we know the timebase offset, update the 2657 * decrementer expiry with a guest timebase value. If 2658 * the userspace does not set DEC_EXPIRY, this ensures 2659 * a migrated vcpu at least starts with an expired 2660 * decrementer, which is better than a large one that 2661 * causes a hang. 2662 */ 2663 kvmppc_set_tb_offset(vcpu, tb_offset); 2664 if (!kvmppc_get_dec_expires(vcpu) && tb_offset) 2665 kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset); 2666 2667 kvmppc_set_tb_offset(vcpu, tb_offset); 2668 break; 2669 } 2670 case KVM_REG_PPC_LPCR: 2671 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2672 break; 2673 case KVM_REG_PPC_LPCR_64: 2674 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2675 break; 2676 case KVM_REG_PPC_PPR: 2677 kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val)); 2678 break; 2679 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2680 case KVM_REG_PPC_TFHAR: 2681 vcpu->arch.tfhar = set_reg_val(id, *val); 2682 break; 2683 case KVM_REG_PPC_TFIAR: 2684 vcpu->arch.tfiar = set_reg_val(id, *val); 2685 break; 2686 case KVM_REG_PPC_TEXASR: 2687 vcpu->arch.texasr = set_reg_val(id, *val); 2688 break; 2689 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2690 i = id - KVM_REG_PPC_TM_GPR0; 2691 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2692 break; 2693 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2694 { 2695 int j; 2696 i = id - KVM_REG_PPC_TM_VSR0; 2697 if (i < 32) 2698 for (j = 0; j < TS_FPRWIDTH; j++) 2699 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2700 else 2701 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2702 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2703 else 2704 r = -ENXIO; 2705 break; 2706 } 2707 case KVM_REG_PPC_TM_CR: 2708 vcpu->arch.cr_tm = set_reg_val(id, *val); 2709 break; 2710 case KVM_REG_PPC_TM_XER: 2711 vcpu->arch.xer_tm = set_reg_val(id, *val); 2712 break; 2713 case KVM_REG_PPC_TM_LR: 2714 vcpu->arch.lr_tm = set_reg_val(id, *val); 2715 break; 2716 case KVM_REG_PPC_TM_CTR: 2717 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2718 break; 2719 case KVM_REG_PPC_TM_FPSCR: 2720 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2721 break; 2722 case KVM_REG_PPC_TM_AMR: 2723 vcpu->arch.amr_tm = set_reg_val(id, *val); 2724 break; 2725 case KVM_REG_PPC_TM_PPR: 2726 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2727 break; 2728 case KVM_REG_PPC_TM_VRSAVE: 2729 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2730 break; 2731 case KVM_REG_PPC_TM_VSCR: 2732 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2733 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2734 else 2735 r = - ENXIO; 2736 break; 2737 case KVM_REG_PPC_TM_DSCR: 2738 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2739 break; 2740 case KVM_REG_PPC_TM_TAR: 2741 vcpu->arch.tar_tm = set_reg_val(id, *val); 2742 break; 2743 #endif 2744 case KVM_REG_PPC_ARCH_COMPAT: 2745 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2746 break; 2747 case KVM_REG_PPC_DEC_EXPIRY: 2748 kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val)); 2749 break; 2750 case KVM_REG_PPC_ONLINE: 2751 i = set_reg_val(id, *val); 2752 if (i && !vcpu->arch.online) 2753 atomic_inc(&vcpu->arch.vcore->online_count); 2754 else if (!i && vcpu->arch.online) 2755 atomic_dec(&vcpu->arch.vcore->online_count); 2756 vcpu->arch.online = i; 2757 break; 2758 case KVM_REG_PPC_PTCR: 2759 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2760 break; 2761 case KVM_REG_PPC_FSCR: 2762 kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val)); 2763 break; 2764 default: 2765 r = -EINVAL; 2766 break; 2767 } 2768 2769 return r; 2770 } 2771 2772 /* 2773 * On POWER9, threads are independent and can be in different partitions. 2774 * Therefore we consider each thread to be a subcore. 2775 * There is a restriction that all threads have to be in the same 2776 * MMU mode (radix or HPT), unfortunately, but since we only support 2777 * HPT guests on a HPT host so far, that isn't an impediment yet. 2778 */ 2779 static int threads_per_vcore(struct kvm *kvm) 2780 { 2781 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2782 return 1; 2783 return threads_per_subcore; 2784 } 2785 2786 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2787 { 2788 struct kvmppc_vcore *vcore; 2789 2790 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2791 2792 if (vcore == NULL) 2793 return NULL; 2794 2795 spin_lock_init(&vcore->lock); 2796 spin_lock_init(&vcore->stoltb_lock); 2797 rcuwait_init(&vcore->wait); 2798 vcore->preempt_tb = TB_NIL; 2799 vcore->lpcr = kvm->arch.lpcr; 2800 vcore->first_vcpuid = id; 2801 vcore->kvm = kvm; 2802 INIT_LIST_HEAD(&vcore->preempt_list); 2803 2804 return vcore; 2805 } 2806 2807 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2808 static struct debugfs_timings_element { 2809 const char *name; 2810 size_t offset; 2811 } timings[] = { 2812 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING 2813 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)}, 2814 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)}, 2815 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)}, 2816 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)}, 2817 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)}, 2818 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)}, 2819 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)}, 2820 #else 2821 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2822 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2823 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2824 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2825 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2826 #endif 2827 }; 2828 2829 #define N_TIMINGS (ARRAY_SIZE(timings)) 2830 2831 struct debugfs_timings_state { 2832 struct kvm_vcpu *vcpu; 2833 unsigned int buflen; 2834 char buf[N_TIMINGS * 100]; 2835 }; 2836 2837 static int debugfs_timings_open(struct inode *inode, struct file *file) 2838 { 2839 struct kvm_vcpu *vcpu = inode->i_private; 2840 struct debugfs_timings_state *p; 2841 2842 p = kzalloc(sizeof(*p), GFP_KERNEL); 2843 if (!p) 2844 return -ENOMEM; 2845 2846 kvm_get_kvm(vcpu->kvm); 2847 p->vcpu = vcpu; 2848 file->private_data = p; 2849 2850 return nonseekable_open(inode, file); 2851 } 2852 2853 static int debugfs_timings_release(struct inode *inode, struct file *file) 2854 { 2855 struct debugfs_timings_state *p = file->private_data; 2856 2857 kvm_put_kvm(p->vcpu->kvm); 2858 kfree(p); 2859 return 0; 2860 } 2861 2862 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2863 size_t len, loff_t *ppos) 2864 { 2865 struct debugfs_timings_state *p = file->private_data; 2866 struct kvm_vcpu *vcpu = p->vcpu; 2867 char *s, *buf_end; 2868 struct kvmhv_tb_accumulator tb; 2869 u64 count; 2870 loff_t pos; 2871 ssize_t n; 2872 int i, loops; 2873 bool ok; 2874 2875 if (!p->buflen) { 2876 s = p->buf; 2877 buf_end = s + sizeof(p->buf); 2878 for (i = 0; i < N_TIMINGS; ++i) { 2879 struct kvmhv_tb_accumulator *acc; 2880 2881 acc = (struct kvmhv_tb_accumulator *) 2882 ((unsigned long)vcpu + timings[i].offset); 2883 ok = false; 2884 for (loops = 0; loops < 1000; ++loops) { 2885 count = acc->seqcount; 2886 if (!(count & 1)) { 2887 smp_rmb(); 2888 tb = *acc; 2889 smp_rmb(); 2890 if (count == acc->seqcount) { 2891 ok = true; 2892 break; 2893 } 2894 } 2895 udelay(1); 2896 } 2897 if (!ok) 2898 snprintf(s, buf_end - s, "%s: stuck\n", 2899 timings[i].name); 2900 else 2901 snprintf(s, buf_end - s, 2902 "%s: %llu %llu %llu %llu\n", 2903 timings[i].name, count / 2, 2904 tb_to_ns(tb.tb_total), 2905 tb_to_ns(tb.tb_min), 2906 tb_to_ns(tb.tb_max)); 2907 s += strlen(s); 2908 } 2909 p->buflen = s - p->buf; 2910 } 2911 2912 pos = *ppos; 2913 if (pos >= p->buflen) 2914 return 0; 2915 if (len > p->buflen - pos) 2916 len = p->buflen - pos; 2917 n = copy_to_user(buf, p->buf + pos, len); 2918 if (n) { 2919 if (n == len) 2920 return -EFAULT; 2921 len -= n; 2922 } 2923 *ppos = pos + len; 2924 return len; 2925 } 2926 2927 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2928 size_t len, loff_t *ppos) 2929 { 2930 return -EACCES; 2931 } 2932 2933 static const struct file_operations debugfs_timings_ops = { 2934 .owner = THIS_MODULE, 2935 .open = debugfs_timings_open, 2936 .release = debugfs_timings_release, 2937 .read = debugfs_timings_read, 2938 .write = debugfs_timings_write, 2939 .llseek = generic_file_llseek, 2940 }; 2941 2942 /* Create a debugfs directory for the vcpu */ 2943 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2944 { 2945 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING)) 2946 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu, 2947 &debugfs_timings_ops); 2948 return 0; 2949 } 2950 2951 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2952 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2953 { 2954 return 0; 2955 } 2956 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2957 2958 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2959 { 2960 int err; 2961 int core; 2962 struct kvmppc_vcore *vcore; 2963 struct kvm *kvm; 2964 unsigned int id; 2965 2966 kvm = vcpu->kvm; 2967 id = vcpu->vcpu_id; 2968 2969 vcpu->arch.shared = &vcpu->arch.shregs; 2970 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2971 /* 2972 * The shared struct is never shared on HV, 2973 * so we can always use host endianness 2974 */ 2975 #ifdef __BIG_ENDIAN__ 2976 vcpu->arch.shared_big_endian = true; 2977 #else 2978 vcpu->arch.shared_big_endian = false; 2979 #endif 2980 #endif 2981 2982 if (kvmhv_is_nestedv2()) { 2983 err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io); 2984 if (err < 0) 2985 return err; 2986 } 2987 2988 kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC); 2989 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 2990 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT); 2991 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE); 2992 } 2993 2994 kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH); 2995 /* default to host PVR, since we can't spoof it */ 2996 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2997 spin_lock_init(&vcpu->arch.vpa_update_lock); 2998 spin_lock_init(&vcpu->arch.tbacct_lock); 2999 vcpu->arch.busy_preempt = TB_NIL; 3000 __kvmppc_set_msr_hv(vcpu, MSR_ME); 3001 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 3002 3003 /* 3004 * Set the default HFSCR for the guest from the host value. 3005 * This value is only used on POWER9 and later. 3006 * On >= POWER9, we want to virtualize the doorbell facility, so we 3007 * don't set the HFSCR_MSGP bit, and that causes those instructions 3008 * to trap and then we emulate them. 3009 */ 3010 kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 3011 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP); 3012 3013 /* On POWER10 and later, allow prefixed instructions */ 3014 if (cpu_has_feature(CPU_FTR_ARCH_31)) 3015 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX); 3016 3017 if (cpu_has_feature(CPU_FTR_HVMODE)) { 3018 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR)); 3019 3020 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 3021 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3022 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM); 3023 #endif 3024 } 3025 if (cpu_has_feature(CPU_FTR_TM_COMP)) 3026 vcpu->arch.hfscr |= HFSCR_TM; 3027 3028 vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu); 3029 3030 /* 3031 * PM, EBB, TM are demand-faulted so start with it clear. 3032 */ 3033 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM)); 3034 3035 kvmppc_mmu_book3s_hv_init(vcpu); 3036 3037 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3038 3039 init_waitqueue_head(&vcpu->arch.cpu_run); 3040 3041 mutex_lock(&kvm->lock); 3042 vcore = NULL; 3043 err = -EINVAL; 3044 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3045 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 3046 pr_devel("KVM: VCPU ID too high\n"); 3047 core = KVM_MAX_VCORES; 3048 } else { 3049 BUG_ON(kvm->arch.smt_mode != 1); 3050 core = kvmppc_pack_vcpu_id(kvm, id); 3051 } 3052 } else { 3053 core = id / kvm->arch.smt_mode; 3054 } 3055 if (core < KVM_MAX_VCORES) { 3056 vcore = kvm->arch.vcores[core]; 3057 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 3058 pr_devel("KVM: collision on id %u", id); 3059 vcore = NULL; 3060 } else if (!vcore) { 3061 /* 3062 * Take mmu_setup_lock for mutual exclusion 3063 * with kvmppc_update_lpcr(). 3064 */ 3065 err = -ENOMEM; 3066 vcore = kvmppc_vcore_create(kvm, 3067 id & ~(kvm->arch.smt_mode - 1)); 3068 mutex_lock(&kvm->arch.mmu_setup_lock); 3069 kvm->arch.vcores[core] = vcore; 3070 kvm->arch.online_vcores++; 3071 mutex_unlock(&kvm->arch.mmu_setup_lock); 3072 } 3073 } 3074 mutex_unlock(&kvm->lock); 3075 3076 if (!vcore) 3077 return err; 3078 3079 spin_lock(&vcore->lock); 3080 ++vcore->num_threads; 3081 spin_unlock(&vcore->lock); 3082 vcpu->arch.vcore = vcore; 3083 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 3084 vcpu->arch.thread_cpu = -1; 3085 vcpu->arch.prev_cpu = -1; 3086 3087 vcpu->arch.cpu_type = KVM_CPU_3S_64; 3088 kvmppc_sanity_check(vcpu); 3089 3090 return 0; 3091 } 3092 3093 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 3094 unsigned long flags) 3095 { 3096 int err; 3097 int esmt = 0; 3098 3099 if (flags) 3100 return -EINVAL; 3101 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 3102 return -EINVAL; 3103 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3104 /* 3105 * On POWER8 (or POWER7), the threading mode is "strict", 3106 * so we pack smt_mode vcpus per vcore. 3107 */ 3108 if (smt_mode > threads_per_subcore) 3109 return -EINVAL; 3110 } else { 3111 /* 3112 * On POWER9, the threading mode is "loose", 3113 * so each vcpu gets its own vcore. 3114 */ 3115 esmt = smt_mode; 3116 smt_mode = 1; 3117 } 3118 mutex_lock(&kvm->lock); 3119 err = -EBUSY; 3120 if (!kvm->arch.online_vcores) { 3121 kvm->arch.smt_mode = smt_mode; 3122 kvm->arch.emul_smt_mode = esmt; 3123 err = 0; 3124 } 3125 mutex_unlock(&kvm->lock); 3126 3127 return err; 3128 } 3129 3130 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 3131 { 3132 if (vpa->pinned_addr) 3133 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 3134 vpa->dirty); 3135 } 3136 3137 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 3138 { 3139 spin_lock(&vcpu->arch.vpa_update_lock); 3140 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 3141 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 3142 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 3143 spin_unlock(&vcpu->arch.vpa_update_lock); 3144 if (kvmhv_is_nestedv2()) 3145 kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io); 3146 } 3147 3148 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 3149 { 3150 /* Indicate we want to get back into the guest */ 3151 return 1; 3152 } 3153 3154 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 3155 { 3156 unsigned long dec_nsec, now; 3157 3158 now = get_tb(); 3159 if (now > kvmppc_dec_expires_host_tb(vcpu)) { 3160 /* decrementer has already gone negative */ 3161 kvmppc_core_queue_dec(vcpu); 3162 kvmppc_core_prepare_to_enter(vcpu); 3163 return; 3164 } 3165 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now); 3166 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 3167 vcpu->arch.timer_running = 1; 3168 } 3169 3170 extern int __kvmppc_vcore_entry(void); 3171 3172 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 3173 struct kvm_vcpu *vcpu, u64 tb) 3174 { 3175 u64 now; 3176 3177 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3178 return; 3179 spin_lock_irq(&vcpu->arch.tbacct_lock); 3180 now = tb; 3181 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 3182 vcpu->arch.stolen_logged; 3183 vcpu->arch.busy_preempt = now; 3184 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3185 spin_unlock_irq(&vcpu->arch.tbacct_lock); 3186 --vc->n_runnable; 3187 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 3188 } 3189 3190 static int kvmppc_grab_hwthread(int cpu) 3191 { 3192 struct paca_struct *tpaca; 3193 long timeout = 10000; 3194 3195 tpaca = paca_ptrs[cpu]; 3196 3197 /* Ensure the thread won't go into the kernel if it wakes */ 3198 tpaca->kvm_hstate.kvm_vcpu = NULL; 3199 tpaca->kvm_hstate.kvm_vcore = NULL; 3200 tpaca->kvm_hstate.napping = 0; 3201 smp_wmb(); 3202 tpaca->kvm_hstate.hwthread_req = 1; 3203 3204 /* 3205 * If the thread is already executing in the kernel (e.g. handling 3206 * a stray interrupt), wait for it to get back to nap mode. 3207 * The smp_mb() is to ensure that our setting of hwthread_req 3208 * is visible before we look at hwthread_state, so if this 3209 * races with the code at system_reset_pSeries and the thread 3210 * misses our setting of hwthread_req, we are sure to see its 3211 * setting of hwthread_state, and vice versa. 3212 */ 3213 smp_mb(); 3214 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 3215 if (--timeout <= 0) { 3216 pr_err("KVM: couldn't grab cpu %d\n", cpu); 3217 return -EBUSY; 3218 } 3219 udelay(1); 3220 } 3221 return 0; 3222 } 3223 3224 static void kvmppc_release_hwthread(int cpu) 3225 { 3226 struct paca_struct *tpaca; 3227 3228 tpaca = paca_ptrs[cpu]; 3229 tpaca->kvm_hstate.hwthread_req = 0; 3230 tpaca->kvm_hstate.kvm_vcpu = NULL; 3231 tpaca->kvm_hstate.kvm_vcore = NULL; 3232 tpaca->kvm_hstate.kvm_split_mode = NULL; 3233 } 3234 3235 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest); 3236 3237 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 3238 { 3239 struct kvm_nested_guest *nested = vcpu->arch.nested; 3240 cpumask_t *need_tlb_flush; 3241 int i; 3242 3243 if (nested) 3244 need_tlb_flush = &nested->need_tlb_flush; 3245 else 3246 need_tlb_flush = &kvm->arch.need_tlb_flush; 3247 3248 cpu = cpu_first_tlb_thread_sibling(cpu); 3249 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3250 i += cpu_tlb_thread_sibling_step()) 3251 cpumask_set_cpu(i, need_tlb_flush); 3252 3253 /* 3254 * Make sure setting of bit in need_tlb_flush precedes testing of 3255 * cpu_in_guest. The matching barrier on the other side is hwsync 3256 * when switching to guest MMU mode, which happens between 3257 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit 3258 * being tested. 3259 */ 3260 smp_mb(); 3261 3262 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3263 i += cpu_tlb_thread_sibling_step()) { 3264 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i); 3265 3266 if (running == kvm) 3267 smp_call_function_single(i, do_nothing, NULL, 1); 3268 } 3269 } 3270 3271 static void do_migrate_away_vcpu(void *arg) 3272 { 3273 struct kvm_vcpu *vcpu = arg; 3274 struct kvm *kvm = vcpu->kvm; 3275 3276 /* 3277 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync; 3278 * ptesync sequence on the old CPU before migrating to a new one, in 3279 * case we interrupted the guest between a tlbie ; eieio ; 3280 * tlbsync; ptesync sequence. 3281 * 3282 * Otherwise, ptesync is sufficient for ordering tlbiel sequences. 3283 */ 3284 if (kvm->arch.lpcr & LPCR_GTSE) 3285 asm volatile("eieio; tlbsync; ptesync"); 3286 else 3287 asm volatile("ptesync"); 3288 } 3289 3290 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 3291 { 3292 struct kvm_nested_guest *nested = vcpu->arch.nested; 3293 struct kvm *kvm = vcpu->kvm; 3294 int prev_cpu; 3295 3296 if (!cpu_has_feature(CPU_FTR_HVMODE)) 3297 return; 3298 3299 if (nested) 3300 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 3301 else 3302 prev_cpu = vcpu->arch.prev_cpu; 3303 3304 /* 3305 * With radix, the guest can do TLB invalidations itself, 3306 * and it could choose to use the local form (tlbiel) if 3307 * it is invalidating a translation that has only ever been 3308 * used on one vcpu. However, that doesn't mean it has 3309 * only ever been used on one physical cpu, since vcpus 3310 * can move around between pcpus. To cope with this, when 3311 * a vcpu moves from one pcpu to another, we need to tell 3312 * any vcpus running on the same core as this vcpu previously 3313 * ran to flush the TLB. 3314 */ 3315 if (prev_cpu != pcpu) { 3316 if (prev_cpu >= 0) { 3317 if (cpu_first_tlb_thread_sibling(prev_cpu) != 3318 cpu_first_tlb_thread_sibling(pcpu)) 3319 radix_flush_cpu(kvm, prev_cpu, vcpu); 3320 3321 smp_call_function_single(prev_cpu, 3322 do_migrate_away_vcpu, vcpu, 1); 3323 } 3324 if (nested) 3325 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 3326 else 3327 vcpu->arch.prev_cpu = pcpu; 3328 } 3329 } 3330 3331 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 3332 { 3333 int cpu; 3334 struct paca_struct *tpaca; 3335 3336 cpu = vc->pcpu; 3337 if (vcpu) { 3338 if (vcpu->arch.timer_running) { 3339 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 3340 vcpu->arch.timer_running = 0; 3341 } 3342 cpu += vcpu->arch.ptid; 3343 vcpu->cpu = vc->pcpu; 3344 vcpu->arch.thread_cpu = cpu; 3345 } 3346 tpaca = paca_ptrs[cpu]; 3347 tpaca->kvm_hstate.kvm_vcpu = vcpu; 3348 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 3349 tpaca->kvm_hstate.fake_suspend = 0; 3350 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 3351 smp_wmb(); 3352 tpaca->kvm_hstate.kvm_vcore = vc; 3353 if (cpu != smp_processor_id()) 3354 kvmppc_ipi_thread(cpu); 3355 } 3356 3357 static void kvmppc_wait_for_nap(int n_threads) 3358 { 3359 int cpu = smp_processor_id(); 3360 int i, loops; 3361 3362 if (n_threads <= 1) 3363 return; 3364 for (loops = 0; loops < 1000000; ++loops) { 3365 /* 3366 * Check if all threads are finished. 3367 * We set the vcore pointer when starting a thread 3368 * and the thread clears it when finished, so we look 3369 * for any threads that still have a non-NULL vcore ptr. 3370 */ 3371 for (i = 1; i < n_threads; ++i) 3372 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3373 break; 3374 if (i == n_threads) { 3375 HMT_medium(); 3376 return; 3377 } 3378 HMT_low(); 3379 } 3380 HMT_medium(); 3381 for (i = 1; i < n_threads; ++i) 3382 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3383 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 3384 } 3385 3386 /* 3387 * Check that we are on thread 0 and that any other threads in 3388 * this core are off-line. Then grab the threads so they can't 3389 * enter the kernel. 3390 */ 3391 static int on_primary_thread(void) 3392 { 3393 int cpu = smp_processor_id(); 3394 int thr; 3395 3396 /* Are we on a primary subcore? */ 3397 if (cpu_thread_in_subcore(cpu)) 3398 return 0; 3399 3400 thr = 0; 3401 while (++thr < threads_per_subcore) 3402 if (cpu_online(cpu + thr)) 3403 return 0; 3404 3405 /* Grab all hw threads so they can't go into the kernel */ 3406 for (thr = 1; thr < threads_per_subcore; ++thr) { 3407 if (kvmppc_grab_hwthread(cpu + thr)) { 3408 /* Couldn't grab one; let the others go */ 3409 do { 3410 kvmppc_release_hwthread(cpu + thr); 3411 } while (--thr > 0); 3412 return 0; 3413 } 3414 } 3415 return 1; 3416 } 3417 3418 /* 3419 * A list of virtual cores for each physical CPU. 3420 * These are vcores that could run but their runner VCPU tasks are 3421 * (or may be) preempted. 3422 */ 3423 struct preempted_vcore_list { 3424 struct list_head list; 3425 spinlock_t lock; 3426 }; 3427 3428 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 3429 3430 static void init_vcore_lists(void) 3431 { 3432 int cpu; 3433 3434 for_each_possible_cpu(cpu) { 3435 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 3436 spin_lock_init(&lp->lock); 3437 INIT_LIST_HEAD(&lp->list); 3438 } 3439 } 3440 3441 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 3442 { 3443 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3444 3445 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3446 3447 vc->vcore_state = VCORE_PREEMPT; 3448 vc->pcpu = smp_processor_id(); 3449 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 3450 spin_lock(&lp->lock); 3451 list_add_tail(&vc->preempt_list, &lp->list); 3452 spin_unlock(&lp->lock); 3453 } 3454 3455 /* Start accumulating stolen time */ 3456 kvmppc_core_start_stolen(vc, mftb()); 3457 } 3458 3459 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3460 { 3461 struct preempted_vcore_list *lp; 3462 3463 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3464 3465 kvmppc_core_end_stolen(vc, mftb()); 3466 if (!list_empty(&vc->preempt_list)) { 3467 lp = &per_cpu(preempted_vcores, vc->pcpu); 3468 spin_lock(&lp->lock); 3469 list_del_init(&vc->preempt_list); 3470 spin_unlock(&lp->lock); 3471 } 3472 vc->vcore_state = VCORE_INACTIVE; 3473 } 3474 3475 /* 3476 * This stores information about the virtual cores currently 3477 * assigned to a physical core. 3478 */ 3479 struct core_info { 3480 int n_subcores; 3481 int max_subcore_threads; 3482 int total_threads; 3483 int subcore_threads[MAX_SUBCORES]; 3484 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3485 }; 3486 3487 /* 3488 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3489 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3490 */ 3491 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3492 3493 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3494 { 3495 memset(cip, 0, sizeof(*cip)); 3496 cip->n_subcores = 1; 3497 cip->max_subcore_threads = vc->num_threads; 3498 cip->total_threads = vc->num_threads; 3499 cip->subcore_threads[0] = vc->num_threads; 3500 cip->vc[0] = vc; 3501 } 3502 3503 static bool subcore_config_ok(int n_subcores, int n_threads) 3504 { 3505 /* 3506 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3507 * split-core mode, with one thread per subcore. 3508 */ 3509 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3510 return n_subcores <= 4 && n_threads == 1; 3511 3512 /* On POWER8, can only dynamically split if unsplit to begin with */ 3513 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3514 return false; 3515 if (n_subcores > MAX_SUBCORES) 3516 return false; 3517 if (n_subcores > 1) { 3518 if (!(dynamic_mt_modes & 2)) 3519 n_subcores = 4; 3520 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3521 return false; 3522 } 3523 3524 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3525 } 3526 3527 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3528 { 3529 vc->entry_exit_map = 0; 3530 vc->in_guest = 0; 3531 vc->napping_threads = 0; 3532 vc->conferring_threads = 0; 3533 vc->tb_offset_applied = 0; 3534 } 3535 3536 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3537 { 3538 int n_threads = vc->num_threads; 3539 int sub; 3540 3541 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3542 return false; 3543 3544 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3545 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3546 return false; 3547 3548 if (n_threads < cip->max_subcore_threads) 3549 n_threads = cip->max_subcore_threads; 3550 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3551 return false; 3552 cip->max_subcore_threads = n_threads; 3553 3554 sub = cip->n_subcores; 3555 ++cip->n_subcores; 3556 cip->total_threads += vc->num_threads; 3557 cip->subcore_threads[sub] = vc->num_threads; 3558 cip->vc[sub] = vc; 3559 init_vcore_to_run(vc); 3560 list_del_init(&vc->preempt_list); 3561 3562 return true; 3563 } 3564 3565 /* 3566 * Work out whether it is possible to piggyback the execution of 3567 * vcore *pvc onto the execution of the other vcores described in *cip. 3568 */ 3569 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3570 int target_threads) 3571 { 3572 if (cip->total_threads + pvc->num_threads > target_threads) 3573 return false; 3574 3575 return can_dynamic_split(pvc, cip); 3576 } 3577 3578 static void prepare_threads(struct kvmppc_vcore *vc) 3579 { 3580 int i; 3581 struct kvm_vcpu *vcpu; 3582 3583 for_each_runnable_thread(i, vcpu, vc) { 3584 if (signal_pending(vcpu->arch.run_task)) 3585 vcpu->arch.ret = -EINTR; 3586 else if (vcpu->arch.vpa.update_pending || 3587 vcpu->arch.slb_shadow.update_pending || 3588 vcpu->arch.dtl.update_pending) 3589 vcpu->arch.ret = RESUME_GUEST; 3590 else 3591 continue; 3592 kvmppc_remove_runnable(vc, vcpu, mftb()); 3593 wake_up(&vcpu->arch.cpu_run); 3594 } 3595 } 3596 3597 static void collect_piggybacks(struct core_info *cip, int target_threads) 3598 { 3599 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3600 struct kvmppc_vcore *pvc, *vcnext; 3601 3602 spin_lock(&lp->lock); 3603 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3604 if (!spin_trylock(&pvc->lock)) 3605 continue; 3606 prepare_threads(pvc); 3607 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3608 list_del_init(&pvc->preempt_list); 3609 if (pvc->runner == NULL) { 3610 pvc->vcore_state = VCORE_INACTIVE; 3611 kvmppc_core_end_stolen(pvc, mftb()); 3612 } 3613 spin_unlock(&pvc->lock); 3614 continue; 3615 } 3616 if (!can_piggyback(pvc, cip, target_threads)) { 3617 spin_unlock(&pvc->lock); 3618 continue; 3619 } 3620 kvmppc_core_end_stolen(pvc, mftb()); 3621 pvc->vcore_state = VCORE_PIGGYBACK; 3622 if (cip->total_threads >= target_threads) 3623 break; 3624 } 3625 spin_unlock(&lp->lock); 3626 } 3627 3628 static bool recheck_signals_and_mmu(struct core_info *cip) 3629 { 3630 int sub, i; 3631 struct kvm_vcpu *vcpu; 3632 struct kvmppc_vcore *vc; 3633 3634 for (sub = 0; sub < cip->n_subcores; ++sub) { 3635 vc = cip->vc[sub]; 3636 if (!vc->kvm->arch.mmu_ready) 3637 return true; 3638 for_each_runnable_thread(i, vcpu, vc) 3639 if (signal_pending(vcpu->arch.run_task)) 3640 return true; 3641 } 3642 return false; 3643 } 3644 3645 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3646 { 3647 int still_running = 0, i; 3648 u64 now; 3649 long ret; 3650 struct kvm_vcpu *vcpu; 3651 3652 spin_lock(&vc->lock); 3653 now = get_tb(); 3654 for_each_runnable_thread(i, vcpu, vc) { 3655 /* 3656 * It's safe to unlock the vcore in the loop here, because 3657 * for_each_runnable_thread() is safe against removal of 3658 * the vcpu, and the vcore state is VCORE_EXITING here, 3659 * so any vcpus becoming runnable will have their arch.trap 3660 * set to zero and can't actually run in the guest. 3661 */ 3662 spin_unlock(&vc->lock); 3663 /* cancel pending dec exception if dec is positive */ 3664 if (now < kvmppc_dec_expires_host_tb(vcpu) && 3665 kvmppc_core_pending_dec(vcpu)) 3666 kvmppc_core_dequeue_dec(vcpu); 3667 3668 trace_kvm_guest_exit(vcpu); 3669 3670 ret = RESUME_GUEST; 3671 if (vcpu->arch.trap) 3672 ret = kvmppc_handle_exit_hv(vcpu, 3673 vcpu->arch.run_task); 3674 3675 vcpu->arch.ret = ret; 3676 vcpu->arch.trap = 0; 3677 3678 spin_lock(&vc->lock); 3679 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3680 if (vcpu->arch.pending_exceptions) 3681 kvmppc_core_prepare_to_enter(vcpu); 3682 if (vcpu->arch.ceded) 3683 kvmppc_set_timer(vcpu); 3684 else 3685 ++still_running; 3686 } else { 3687 kvmppc_remove_runnable(vc, vcpu, mftb()); 3688 wake_up(&vcpu->arch.cpu_run); 3689 } 3690 } 3691 if (!is_master) { 3692 if (still_running > 0) { 3693 kvmppc_vcore_preempt(vc); 3694 } else if (vc->runner) { 3695 vc->vcore_state = VCORE_PREEMPT; 3696 kvmppc_core_start_stolen(vc, mftb()); 3697 } else { 3698 vc->vcore_state = VCORE_INACTIVE; 3699 } 3700 if (vc->n_runnable > 0 && vc->runner == NULL) { 3701 /* make sure there's a candidate runner awake */ 3702 i = -1; 3703 vcpu = next_runnable_thread(vc, &i); 3704 wake_up(&vcpu->arch.cpu_run); 3705 } 3706 } 3707 spin_unlock(&vc->lock); 3708 } 3709 3710 /* 3711 * Clear core from the list of active host cores as we are about to 3712 * enter the guest. Only do this if it is the primary thread of the 3713 * core (not if a subcore) that is entering the guest. 3714 */ 3715 static inline int kvmppc_clear_host_core(unsigned int cpu) 3716 { 3717 int core; 3718 3719 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3720 return 0; 3721 /* 3722 * Memory barrier can be omitted here as we will do a smp_wmb() 3723 * later in kvmppc_start_thread and we need ensure that state is 3724 * visible to other CPUs only after we enter guest. 3725 */ 3726 core = cpu >> threads_shift; 3727 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3728 return 0; 3729 } 3730 3731 /* 3732 * Advertise this core as an active host core since we exited the guest 3733 * Only need to do this if it is the primary thread of the core that is 3734 * exiting. 3735 */ 3736 static inline int kvmppc_set_host_core(unsigned int cpu) 3737 { 3738 int core; 3739 3740 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3741 return 0; 3742 3743 /* 3744 * Memory barrier can be omitted here because we do a spin_unlock 3745 * immediately after this which provides the memory barrier. 3746 */ 3747 core = cpu >> threads_shift; 3748 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3749 return 0; 3750 } 3751 3752 static void set_irq_happened(int trap) 3753 { 3754 switch (trap) { 3755 case BOOK3S_INTERRUPT_EXTERNAL: 3756 local_paca->irq_happened |= PACA_IRQ_EE; 3757 break; 3758 case BOOK3S_INTERRUPT_H_DOORBELL: 3759 local_paca->irq_happened |= PACA_IRQ_DBELL; 3760 break; 3761 case BOOK3S_INTERRUPT_HMI: 3762 local_paca->irq_happened |= PACA_IRQ_HMI; 3763 break; 3764 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3765 replay_system_reset(); 3766 break; 3767 } 3768 } 3769 3770 /* 3771 * Run a set of guest threads on a physical core. 3772 * Called with vc->lock held. 3773 */ 3774 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3775 { 3776 struct kvm_vcpu *vcpu; 3777 int i; 3778 int srcu_idx; 3779 struct core_info core_info; 3780 struct kvmppc_vcore *pvc; 3781 struct kvm_split_mode split_info, *sip; 3782 int split, subcore_size, active; 3783 int sub; 3784 bool thr0_done; 3785 unsigned long cmd_bit, stat_bit; 3786 int pcpu, thr; 3787 int target_threads; 3788 int controlled_threads; 3789 int trap; 3790 bool is_power8; 3791 3792 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3793 return; 3794 3795 /* 3796 * Remove from the list any threads that have a signal pending 3797 * or need a VPA update done 3798 */ 3799 prepare_threads(vc); 3800 3801 /* if the runner is no longer runnable, let the caller pick a new one */ 3802 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3803 return; 3804 3805 /* 3806 * Initialize *vc. 3807 */ 3808 init_vcore_to_run(vc); 3809 vc->preempt_tb = TB_NIL; 3810 3811 /* 3812 * Number of threads that we will be controlling: the same as 3813 * the number of threads per subcore, except on POWER9, 3814 * where it's 1 because the threads are (mostly) independent. 3815 */ 3816 controlled_threads = threads_per_vcore(vc->kvm); 3817 3818 /* 3819 * Make sure we are running on primary threads, and that secondary 3820 * threads are offline. Also check if the number of threads in this 3821 * guest are greater than the current system threads per guest. 3822 */ 3823 if ((controlled_threads > 1) && 3824 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3825 for_each_runnable_thread(i, vcpu, vc) { 3826 vcpu->arch.ret = -EBUSY; 3827 kvmppc_remove_runnable(vc, vcpu, mftb()); 3828 wake_up(&vcpu->arch.cpu_run); 3829 } 3830 goto out; 3831 } 3832 3833 /* 3834 * See if we could run any other vcores on the physical core 3835 * along with this one. 3836 */ 3837 init_core_info(&core_info, vc); 3838 pcpu = smp_processor_id(); 3839 target_threads = controlled_threads; 3840 if (target_smt_mode && target_smt_mode < target_threads) 3841 target_threads = target_smt_mode; 3842 if (vc->num_threads < target_threads) 3843 collect_piggybacks(&core_info, target_threads); 3844 3845 /* 3846 * Hard-disable interrupts, and check resched flag and signals. 3847 * If we need to reschedule or deliver a signal, clean up 3848 * and return without going into the guest(s). 3849 * If the mmu_ready flag has been cleared, don't go into the 3850 * guest because that means a HPT resize operation is in progress. 3851 */ 3852 local_irq_disable(); 3853 hard_irq_disable(); 3854 if (lazy_irq_pending() || need_resched() || 3855 recheck_signals_and_mmu(&core_info)) { 3856 local_irq_enable(); 3857 vc->vcore_state = VCORE_INACTIVE; 3858 /* Unlock all except the primary vcore */ 3859 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3860 pvc = core_info.vc[sub]; 3861 /* Put back on to the preempted vcores list */ 3862 kvmppc_vcore_preempt(pvc); 3863 spin_unlock(&pvc->lock); 3864 } 3865 for (i = 0; i < controlled_threads; ++i) 3866 kvmppc_release_hwthread(pcpu + i); 3867 return; 3868 } 3869 3870 kvmppc_clear_host_core(pcpu); 3871 3872 /* Decide on micro-threading (split-core) mode */ 3873 subcore_size = threads_per_subcore; 3874 cmd_bit = stat_bit = 0; 3875 split = core_info.n_subcores; 3876 sip = NULL; 3877 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3878 3879 if (split > 1) { 3880 sip = &split_info; 3881 memset(&split_info, 0, sizeof(split_info)); 3882 for (sub = 0; sub < core_info.n_subcores; ++sub) 3883 split_info.vc[sub] = core_info.vc[sub]; 3884 3885 if (is_power8) { 3886 if (split == 2 && (dynamic_mt_modes & 2)) { 3887 cmd_bit = HID0_POWER8_1TO2LPAR; 3888 stat_bit = HID0_POWER8_2LPARMODE; 3889 } else { 3890 split = 4; 3891 cmd_bit = HID0_POWER8_1TO4LPAR; 3892 stat_bit = HID0_POWER8_4LPARMODE; 3893 } 3894 subcore_size = MAX_SMT_THREADS / split; 3895 split_info.rpr = mfspr(SPRN_RPR); 3896 split_info.pmmar = mfspr(SPRN_PMMAR); 3897 split_info.ldbar = mfspr(SPRN_LDBAR); 3898 split_info.subcore_size = subcore_size; 3899 } else { 3900 split_info.subcore_size = 1; 3901 } 3902 3903 /* order writes to split_info before kvm_split_mode pointer */ 3904 smp_wmb(); 3905 } 3906 3907 for (thr = 0; thr < controlled_threads; ++thr) { 3908 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3909 3910 paca->kvm_hstate.napping = 0; 3911 paca->kvm_hstate.kvm_split_mode = sip; 3912 } 3913 3914 /* Initiate micro-threading (split-core) on POWER8 if required */ 3915 if (cmd_bit) { 3916 unsigned long hid0 = mfspr(SPRN_HID0); 3917 3918 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3919 mb(); 3920 mtspr(SPRN_HID0, hid0); 3921 isync(); 3922 for (;;) { 3923 hid0 = mfspr(SPRN_HID0); 3924 if (hid0 & stat_bit) 3925 break; 3926 cpu_relax(); 3927 } 3928 } 3929 3930 /* 3931 * On POWER8, set RWMR register. 3932 * Since it only affects PURR and SPURR, it doesn't affect 3933 * the host, so we don't save/restore the host value. 3934 */ 3935 if (is_power8) { 3936 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3937 int n_online = atomic_read(&vc->online_count); 3938 3939 /* 3940 * Use the 8-thread value if we're doing split-core 3941 * or if the vcore's online count looks bogus. 3942 */ 3943 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3944 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3945 rwmr_val = p8_rwmr_values[n_online]; 3946 mtspr(SPRN_RWMR, rwmr_val); 3947 } 3948 3949 /* Start all the threads */ 3950 active = 0; 3951 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3952 thr = is_power8 ? subcore_thread_map[sub] : sub; 3953 thr0_done = false; 3954 active |= 1 << thr; 3955 pvc = core_info.vc[sub]; 3956 pvc->pcpu = pcpu + thr; 3957 for_each_runnable_thread(i, vcpu, pvc) { 3958 /* 3959 * XXX: is kvmppc_start_thread called too late here? 3960 * It updates vcpu->cpu and vcpu->arch.thread_cpu 3961 * which are used by kvmppc_fast_vcpu_kick_hv(), but 3962 * kick is called after new exceptions become available 3963 * and exceptions are checked earlier than here, by 3964 * kvmppc_core_prepare_to_enter. 3965 */ 3966 kvmppc_start_thread(vcpu, pvc); 3967 kvmppc_update_vpa_dispatch(vcpu, pvc); 3968 trace_kvm_guest_enter(vcpu); 3969 if (!vcpu->arch.ptid) 3970 thr0_done = true; 3971 active |= 1 << (thr + vcpu->arch.ptid); 3972 } 3973 /* 3974 * We need to start the first thread of each subcore 3975 * even if it doesn't have a vcpu. 3976 */ 3977 if (!thr0_done) 3978 kvmppc_start_thread(NULL, pvc); 3979 } 3980 3981 /* 3982 * Ensure that split_info.do_nap is set after setting 3983 * the vcore pointer in the PACA of the secondaries. 3984 */ 3985 smp_mb(); 3986 3987 /* 3988 * When doing micro-threading, poke the inactive threads as well. 3989 * This gets them to the nap instruction after kvm_do_nap, 3990 * which reduces the time taken to unsplit later. 3991 */ 3992 if (cmd_bit) { 3993 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3994 for (thr = 1; thr < threads_per_subcore; ++thr) 3995 if (!(active & (1 << thr))) 3996 kvmppc_ipi_thread(pcpu + thr); 3997 } 3998 3999 vc->vcore_state = VCORE_RUNNING; 4000 preempt_disable(); 4001 4002 trace_kvmppc_run_core(vc, 0); 4003 4004 for (sub = 0; sub < core_info.n_subcores; ++sub) 4005 spin_unlock(&core_info.vc[sub]->lock); 4006 4007 guest_timing_enter_irqoff(); 4008 4009 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 4010 4011 guest_state_enter_irqoff(); 4012 this_cpu_disable_ftrace(); 4013 4014 trap = __kvmppc_vcore_entry(); 4015 4016 this_cpu_enable_ftrace(); 4017 guest_state_exit_irqoff(); 4018 4019 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 4020 4021 set_irq_happened(trap); 4022 4023 spin_lock(&vc->lock); 4024 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 4025 vc->vcore_state = VCORE_EXITING; 4026 4027 /* wait for secondary threads to finish writing their state to memory */ 4028 kvmppc_wait_for_nap(controlled_threads); 4029 4030 /* Return to whole-core mode if we split the core earlier */ 4031 if (cmd_bit) { 4032 unsigned long hid0 = mfspr(SPRN_HID0); 4033 unsigned long loops = 0; 4034 4035 hid0 &= ~HID0_POWER8_DYNLPARDIS; 4036 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 4037 mb(); 4038 mtspr(SPRN_HID0, hid0); 4039 isync(); 4040 for (;;) { 4041 hid0 = mfspr(SPRN_HID0); 4042 if (!(hid0 & stat_bit)) 4043 break; 4044 cpu_relax(); 4045 ++loops; 4046 } 4047 split_info.do_nap = 0; 4048 } 4049 4050 kvmppc_set_host_core(pcpu); 4051 4052 if (!vtime_accounting_enabled_this_cpu()) { 4053 local_irq_enable(); 4054 /* 4055 * Service IRQs here before guest_timing_exit_irqoff() so any 4056 * ticks that occurred while running the guest are accounted to 4057 * the guest. If vtime accounting is enabled, accounting uses 4058 * TB rather than ticks, so it can be done without enabling 4059 * interrupts here, which has the problem that it accounts 4060 * interrupt processing overhead to the host. 4061 */ 4062 local_irq_disable(); 4063 } 4064 guest_timing_exit_irqoff(); 4065 4066 local_irq_enable(); 4067 4068 /* Let secondaries go back to the offline loop */ 4069 for (i = 0; i < controlled_threads; ++i) { 4070 kvmppc_release_hwthread(pcpu + i); 4071 if (sip && sip->napped[i]) 4072 kvmppc_ipi_thread(pcpu + i); 4073 } 4074 4075 spin_unlock(&vc->lock); 4076 4077 /* make sure updates to secondary vcpu structs are visible now */ 4078 smp_mb(); 4079 4080 preempt_enable(); 4081 4082 for (sub = 0; sub < core_info.n_subcores; ++sub) { 4083 pvc = core_info.vc[sub]; 4084 post_guest_process(pvc, pvc == vc); 4085 } 4086 4087 spin_lock(&vc->lock); 4088 4089 out: 4090 vc->vcore_state = VCORE_INACTIVE; 4091 trace_kvmppc_run_core(vc, 1); 4092 } 4093 4094 static inline bool hcall_is_xics(unsigned long req) 4095 { 4096 return req == H_EOI || req == H_CPPR || req == H_IPI || 4097 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 4098 } 4099 4100 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu) 4101 { 4102 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 4103 if (lp) { 4104 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 4105 lp->yield_count = cpu_to_be32(yield_count); 4106 vcpu->arch.vpa.dirty = 1; 4107 } 4108 } 4109 4110 static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit, 4111 unsigned long lpcr, u64 *tb) 4112 { 4113 struct kvmhv_nestedv2_io *io; 4114 unsigned long msr, i; 4115 int trap; 4116 long rc; 4117 4118 io = &vcpu->arch.nestedv2_io; 4119 4120 msr = mfmsr(); 4121 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4122 if (lazy_irq_pending()) 4123 return 0; 4124 4125 rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit); 4126 if (rc < 0) 4127 return -EINVAL; 4128 4129 kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr); 4130 4131 accumulate_time(vcpu, &vcpu->arch.in_guest); 4132 rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id, 4133 &trap, &i); 4134 4135 if (rc != H_SUCCESS) { 4136 pr_err("KVM Guest Run VCPU hcall failed\n"); 4137 if (rc == H_INVALID_ELEMENT_ID) 4138 pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i); 4139 else if (rc == H_INVALID_ELEMENT_SIZE) 4140 pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i); 4141 else if (rc == H_INVALID_ELEMENT_VALUE) 4142 pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i); 4143 return -EINVAL; 4144 } 4145 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4146 4147 *tb = mftb(); 4148 kvmppc_gsm_reset(io->vcpu_message); 4149 kvmppc_gsm_reset(io->vcore_message); 4150 kvmppc_gsbm_zero(&io->valids); 4151 4152 rc = kvmhv_nestedv2_parse_output(vcpu); 4153 if (rc < 0) 4154 return -EINVAL; 4155 4156 timer_rearm_host_dec(*tb); 4157 4158 return trap; 4159 } 4160 4161 /* call our hypervisor to load up HV regs and go */ 4162 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) 4163 { 4164 unsigned long host_psscr; 4165 unsigned long msr; 4166 struct hv_guest_state hvregs; 4167 struct p9_host_os_sprs host_os_sprs; 4168 s64 dec; 4169 int trap; 4170 4171 msr = mfmsr(); 4172 4173 save_p9_host_os_sprs(&host_os_sprs); 4174 4175 /* 4176 * We need to save and restore the guest visible part of the 4177 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 4178 * doesn't do this for us. Note only required if pseries since 4179 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 4180 */ 4181 host_psscr = mfspr(SPRN_PSSCR_PR); 4182 4183 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4184 if (lazy_irq_pending()) 4185 return 0; 4186 4187 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) 4188 msr = mfmsr(); /* TM restore can update msr */ 4189 4190 if (vcpu->arch.psscr != host_psscr) 4191 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 4192 4193 kvmhv_save_hv_regs(vcpu, &hvregs); 4194 hvregs.lpcr = lpcr; 4195 hvregs.amor = ~0; 4196 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 4197 hvregs.version = HV_GUEST_STATE_VERSION; 4198 if (vcpu->arch.nested) { 4199 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 4200 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 4201 } else { 4202 hvregs.lpid = vcpu->kvm->arch.lpid; 4203 hvregs.vcpu_token = vcpu->vcpu_id; 4204 } 4205 hvregs.hdec_expiry = time_limit; 4206 4207 /* 4208 * When setting DEC, we must always deal with irq_work_raise 4209 * via NMI vs setting DEC. The problem occurs right as we 4210 * switch into guest mode if a NMI hits and sets pending work 4211 * and sets DEC, then that will apply to the guest and not 4212 * bring us back to the host. 4213 * 4214 * irq_work_raise could check a flag (or possibly LPCR[HDICE] 4215 * for example) and set HDEC to 1? That wouldn't solve the 4216 * nested hv case which needs to abort the hcall or zero the 4217 * time limit. 4218 * 4219 * XXX: Another day's problem. 4220 */ 4221 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb); 4222 4223 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 4224 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 4225 switch_pmu_to_guest(vcpu, &host_os_sprs); 4226 accumulate_time(vcpu, &vcpu->arch.in_guest); 4227 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 4228 __pa(&vcpu->arch.regs)); 4229 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4230 kvmhv_restore_hv_return_state(vcpu, &hvregs); 4231 switch_pmu_to_host(vcpu, &host_os_sprs); 4232 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 4233 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 4234 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 4235 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 4236 4237 store_vcpu_state(vcpu); 4238 4239 dec = mfspr(SPRN_DEC); 4240 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 4241 dec = (s32) dec; 4242 *tb = mftb(); 4243 vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu)); 4244 4245 timer_rearm_host_dec(*tb); 4246 4247 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 4248 if (vcpu->arch.psscr != host_psscr) 4249 mtspr(SPRN_PSSCR_PR, host_psscr); 4250 4251 return trap; 4252 } 4253 4254 /* 4255 * Guest entry for POWER9 and later CPUs. 4256 */ 4257 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 4258 unsigned long lpcr, u64 *tb) 4259 { 4260 struct kvm *kvm = vcpu->kvm; 4261 struct kvm_nested_guest *nested = vcpu->arch.nested; 4262 u64 next_timer; 4263 int trap; 4264 4265 next_timer = timer_get_next_tb(); 4266 if (*tb >= next_timer) 4267 return BOOK3S_INTERRUPT_HV_DECREMENTER; 4268 if (next_timer < time_limit) 4269 time_limit = next_timer; 4270 else if (*tb >= time_limit) /* nested time limit */ 4271 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER; 4272 4273 vcpu->arch.ceded = 0; 4274 4275 vcpu_vpa_increment_dispatch(vcpu); 4276 4277 if (kvmhv_on_pseries()) { 4278 if (kvmhv_is_nestedv1()) 4279 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb); 4280 else 4281 trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb); 4282 4283 /* H_CEDE has to be handled now, not later */ 4284 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested && 4285 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 4286 kvmppc_cede(vcpu); 4287 kvmppc_set_gpr(vcpu, 3, 0); 4288 trap = 0; 4289 } 4290 4291 } else if (nested) { 4292 __this_cpu_write(cpu_in_guest, kvm); 4293 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4294 __this_cpu_write(cpu_in_guest, NULL); 4295 4296 } else { 4297 kvmppc_xive_push_vcpu(vcpu); 4298 4299 __this_cpu_write(cpu_in_guest, kvm); 4300 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4301 __this_cpu_write(cpu_in_guest, NULL); 4302 4303 if (trap == BOOK3S_INTERRUPT_SYSCALL && 4304 !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 4305 unsigned long req = kvmppc_get_gpr(vcpu, 3); 4306 4307 /* 4308 * XIVE rearm and XICS hcalls must be handled 4309 * before xive context is pulled (is this 4310 * true?) 4311 */ 4312 if (req == H_CEDE) { 4313 /* H_CEDE has to be handled now */ 4314 kvmppc_cede(vcpu); 4315 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4316 /* 4317 * Pending escalation so abort 4318 * the cede. 4319 */ 4320 vcpu->arch.ceded = 0; 4321 } 4322 kvmppc_set_gpr(vcpu, 3, 0); 4323 trap = 0; 4324 4325 } else if (req == H_ENTER_NESTED) { 4326 /* 4327 * L2 should not run with the L1 4328 * context so rearm and pull it. 4329 */ 4330 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4331 /* 4332 * Pending escalation so abort 4333 * H_ENTER_NESTED. 4334 */ 4335 kvmppc_set_gpr(vcpu, 3, 0); 4336 trap = 0; 4337 } 4338 4339 } else if (hcall_is_xics(req)) { 4340 int ret; 4341 4342 ret = kvmppc_xive_xics_hcall(vcpu, req); 4343 if (ret != H_TOO_HARD) { 4344 kvmppc_set_gpr(vcpu, 3, ret); 4345 trap = 0; 4346 } 4347 } 4348 } 4349 kvmppc_xive_pull_vcpu(vcpu); 4350 4351 if (kvm_is_radix(kvm)) 4352 vcpu->arch.slb_max = 0; 4353 } 4354 4355 vcpu_vpa_increment_dispatch(vcpu); 4356 4357 return trap; 4358 } 4359 4360 /* 4361 * Wait for some other vcpu thread to execute us, and 4362 * wake us up when we need to handle something in the host. 4363 */ 4364 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 4365 struct kvm_vcpu *vcpu, int wait_state) 4366 { 4367 DEFINE_WAIT(wait); 4368 4369 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 4370 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4371 spin_unlock(&vc->lock); 4372 schedule(); 4373 spin_lock(&vc->lock); 4374 } 4375 finish_wait(&vcpu->arch.cpu_run, &wait); 4376 } 4377 4378 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 4379 { 4380 if (!halt_poll_ns_grow) 4381 return; 4382 4383 vc->halt_poll_ns *= halt_poll_ns_grow; 4384 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 4385 vc->halt_poll_ns = halt_poll_ns_grow_start; 4386 } 4387 4388 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 4389 { 4390 if (halt_poll_ns_shrink == 0) 4391 vc->halt_poll_ns = 0; 4392 else 4393 vc->halt_poll_ns /= halt_poll_ns_shrink; 4394 } 4395 4396 #ifdef CONFIG_KVM_XICS 4397 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4398 { 4399 if (!xics_on_xive()) 4400 return false; 4401 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 4402 vcpu->arch.xive_saved_state.cppr; 4403 } 4404 #else 4405 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4406 { 4407 return false; 4408 } 4409 #endif /* CONFIG_KVM_XICS */ 4410 4411 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 4412 { 4413 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 4414 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 4415 return true; 4416 4417 return false; 4418 } 4419 4420 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu) 4421 { 4422 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 4423 return true; 4424 return false; 4425 } 4426 4427 /* 4428 * Check to see if any of the runnable vcpus on the vcore have pending 4429 * exceptions or are no longer ceded 4430 */ 4431 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 4432 { 4433 struct kvm_vcpu *vcpu; 4434 int i; 4435 4436 for_each_runnable_thread(i, vcpu, vc) { 4437 if (kvmppc_vcpu_check_block(vcpu)) 4438 return 1; 4439 } 4440 4441 return 0; 4442 } 4443 4444 /* 4445 * All the vcpus in this vcore are idle, so wait for a decrementer 4446 * or external interrupt to one of the vcpus. vc->lock is held. 4447 */ 4448 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 4449 { 4450 ktime_t cur, start_poll, start_wait; 4451 int do_sleep = 1; 4452 u64 block_ns; 4453 4454 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 4455 4456 /* Poll for pending exceptions and ceded state */ 4457 cur = start_poll = ktime_get(); 4458 if (vc->halt_poll_ns) { 4459 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4460 ++vc->runner->stat.generic.halt_attempted_poll; 4461 4462 vc->vcore_state = VCORE_POLLING; 4463 spin_unlock(&vc->lock); 4464 4465 do { 4466 if (kvmppc_vcore_check_block(vc)) { 4467 do_sleep = 0; 4468 break; 4469 } 4470 cur = ktime_get(); 4471 } while (kvm_vcpu_can_poll(cur, stop)); 4472 4473 spin_lock(&vc->lock); 4474 vc->vcore_state = VCORE_INACTIVE; 4475 4476 if (!do_sleep) { 4477 ++vc->runner->stat.generic.halt_successful_poll; 4478 goto out; 4479 } 4480 } 4481 4482 prepare_to_rcuwait(&vc->wait); 4483 set_current_state(TASK_INTERRUPTIBLE); 4484 if (kvmppc_vcore_check_block(vc)) { 4485 finish_rcuwait(&vc->wait); 4486 do_sleep = 0; 4487 /* If we polled, count this as a successful poll */ 4488 if (vc->halt_poll_ns) 4489 ++vc->runner->stat.generic.halt_successful_poll; 4490 goto out; 4491 } 4492 4493 start_wait = ktime_get(); 4494 4495 vc->vcore_state = VCORE_SLEEPING; 4496 trace_kvmppc_vcore_blocked(vc->runner, 0); 4497 spin_unlock(&vc->lock); 4498 schedule(); 4499 finish_rcuwait(&vc->wait); 4500 spin_lock(&vc->lock); 4501 vc->vcore_state = VCORE_INACTIVE; 4502 trace_kvmppc_vcore_blocked(vc->runner, 1); 4503 ++vc->runner->stat.halt_successful_wait; 4504 4505 cur = ktime_get(); 4506 4507 out: 4508 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4509 4510 /* Attribute wait time */ 4511 if (do_sleep) { 4512 vc->runner->stat.generic.halt_wait_ns += 4513 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4514 KVM_STATS_LOG_HIST_UPDATE( 4515 vc->runner->stat.generic.halt_wait_hist, 4516 ktime_to_ns(cur) - ktime_to_ns(start_wait)); 4517 /* Attribute failed poll time */ 4518 if (vc->halt_poll_ns) { 4519 vc->runner->stat.generic.halt_poll_fail_ns += 4520 ktime_to_ns(start_wait) - 4521 ktime_to_ns(start_poll); 4522 KVM_STATS_LOG_HIST_UPDATE( 4523 vc->runner->stat.generic.halt_poll_fail_hist, 4524 ktime_to_ns(start_wait) - 4525 ktime_to_ns(start_poll)); 4526 } 4527 } else { 4528 /* Attribute successful poll time */ 4529 if (vc->halt_poll_ns) { 4530 vc->runner->stat.generic.halt_poll_success_ns += 4531 ktime_to_ns(cur) - 4532 ktime_to_ns(start_poll); 4533 KVM_STATS_LOG_HIST_UPDATE( 4534 vc->runner->stat.generic.halt_poll_success_hist, 4535 ktime_to_ns(cur) - ktime_to_ns(start_poll)); 4536 } 4537 } 4538 4539 /* Adjust poll time */ 4540 if (halt_poll_ns) { 4541 if (block_ns <= vc->halt_poll_ns) 4542 ; 4543 /* We slept and blocked for longer than the max halt time */ 4544 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4545 shrink_halt_poll_ns(vc); 4546 /* We slept and our poll time is too small */ 4547 else if (vc->halt_poll_ns < halt_poll_ns && 4548 block_ns < halt_poll_ns) 4549 grow_halt_poll_ns(vc); 4550 if (vc->halt_poll_ns > halt_poll_ns) 4551 vc->halt_poll_ns = halt_poll_ns; 4552 } else 4553 vc->halt_poll_ns = 0; 4554 4555 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4556 } 4557 4558 /* 4559 * This never fails for a radix guest, as none of the operations it does 4560 * for a radix guest can fail or have a way to report failure. 4561 */ 4562 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4563 { 4564 int r = 0; 4565 struct kvm *kvm = vcpu->kvm; 4566 4567 mutex_lock(&kvm->arch.mmu_setup_lock); 4568 if (!kvm->arch.mmu_ready) { 4569 if (!kvm_is_radix(kvm)) 4570 r = kvmppc_hv_setup_htab_rma(vcpu); 4571 if (!r) { 4572 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4573 kvmppc_setup_partition_table(kvm); 4574 kvm->arch.mmu_ready = 1; 4575 } 4576 } 4577 mutex_unlock(&kvm->arch.mmu_setup_lock); 4578 return r; 4579 } 4580 4581 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4582 { 4583 struct kvm_run *run = vcpu->run; 4584 int n_ceded, i, r; 4585 struct kvmppc_vcore *vc; 4586 struct kvm_vcpu *v; 4587 4588 trace_kvmppc_run_vcpu_enter(vcpu); 4589 4590 run->exit_reason = 0; 4591 vcpu->arch.ret = RESUME_GUEST; 4592 vcpu->arch.trap = 0; 4593 kvmppc_update_vpas(vcpu); 4594 4595 /* 4596 * Synchronize with other threads in this virtual core 4597 */ 4598 vc = vcpu->arch.vcore; 4599 spin_lock(&vc->lock); 4600 vcpu->arch.ceded = 0; 4601 vcpu->arch.run_task = current; 4602 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4603 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4604 vcpu->arch.busy_preempt = TB_NIL; 4605 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4606 ++vc->n_runnable; 4607 4608 /* 4609 * This happens the first time this is called for a vcpu. 4610 * If the vcore is already running, we may be able to start 4611 * this thread straight away and have it join in. 4612 */ 4613 if (!signal_pending(current)) { 4614 if ((vc->vcore_state == VCORE_PIGGYBACK || 4615 vc->vcore_state == VCORE_RUNNING) && 4616 !VCORE_IS_EXITING(vc)) { 4617 kvmppc_update_vpa_dispatch(vcpu, vc); 4618 kvmppc_start_thread(vcpu, vc); 4619 trace_kvm_guest_enter(vcpu); 4620 } else if (vc->vcore_state == VCORE_SLEEPING) { 4621 rcuwait_wake_up(&vc->wait); 4622 } 4623 4624 } 4625 4626 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4627 !signal_pending(current)) { 4628 /* See if the MMU is ready to go */ 4629 if (!vcpu->kvm->arch.mmu_ready) { 4630 spin_unlock(&vc->lock); 4631 r = kvmhv_setup_mmu(vcpu); 4632 spin_lock(&vc->lock); 4633 if (r) { 4634 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4635 run->fail_entry. 4636 hardware_entry_failure_reason = 0; 4637 vcpu->arch.ret = r; 4638 break; 4639 } 4640 } 4641 4642 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4643 kvmppc_vcore_end_preempt(vc); 4644 4645 if (vc->vcore_state != VCORE_INACTIVE) { 4646 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4647 continue; 4648 } 4649 for_each_runnable_thread(i, v, vc) { 4650 kvmppc_core_prepare_to_enter(v); 4651 if (signal_pending(v->arch.run_task)) { 4652 kvmppc_remove_runnable(vc, v, mftb()); 4653 v->stat.signal_exits++; 4654 v->run->exit_reason = KVM_EXIT_INTR; 4655 v->arch.ret = -EINTR; 4656 wake_up(&v->arch.cpu_run); 4657 } 4658 } 4659 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4660 break; 4661 n_ceded = 0; 4662 for_each_runnable_thread(i, v, vc) { 4663 if (!kvmppc_vcpu_woken(v)) 4664 n_ceded += v->arch.ceded; 4665 else 4666 v->arch.ceded = 0; 4667 } 4668 vc->runner = vcpu; 4669 if (n_ceded == vc->n_runnable) { 4670 kvmppc_vcore_blocked(vc); 4671 } else if (need_resched()) { 4672 kvmppc_vcore_preempt(vc); 4673 /* Let something else run */ 4674 cond_resched_lock(&vc->lock); 4675 if (vc->vcore_state == VCORE_PREEMPT) 4676 kvmppc_vcore_end_preempt(vc); 4677 } else { 4678 kvmppc_run_core(vc); 4679 } 4680 vc->runner = NULL; 4681 } 4682 4683 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4684 (vc->vcore_state == VCORE_RUNNING || 4685 vc->vcore_state == VCORE_EXITING || 4686 vc->vcore_state == VCORE_PIGGYBACK)) 4687 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4688 4689 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4690 kvmppc_vcore_end_preempt(vc); 4691 4692 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4693 kvmppc_remove_runnable(vc, vcpu, mftb()); 4694 vcpu->stat.signal_exits++; 4695 run->exit_reason = KVM_EXIT_INTR; 4696 vcpu->arch.ret = -EINTR; 4697 } 4698 4699 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4700 /* Wake up some vcpu to run the core */ 4701 i = -1; 4702 v = next_runnable_thread(vc, &i); 4703 wake_up(&v->arch.cpu_run); 4704 } 4705 4706 trace_kvmppc_run_vcpu_exit(vcpu); 4707 spin_unlock(&vc->lock); 4708 return vcpu->arch.ret; 4709 } 4710 4711 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4712 unsigned long lpcr) 4713 { 4714 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 4715 struct kvm_run *run = vcpu->run; 4716 int trap, r, pcpu; 4717 int srcu_idx; 4718 struct kvmppc_vcore *vc; 4719 struct kvm *kvm = vcpu->kvm; 4720 struct kvm_nested_guest *nested = vcpu->arch.nested; 4721 unsigned long flags; 4722 u64 tb; 4723 4724 trace_kvmppc_run_vcpu_enter(vcpu); 4725 4726 run->exit_reason = 0; 4727 vcpu->arch.ret = RESUME_GUEST; 4728 vcpu->arch.trap = 0; 4729 4730 vc = vcpu->arch.vcore; 4731 vcpu->arch.ceded = 0; 4732 vcpu->arch.run_task = current; 4733 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4734 4735 /* See if the MMU is ready to go */ 4736 if (unlikely(!kvm->arch.mmu_ready)) { 4737 r = kvmhv_setup_mmu(vcpu); 4738 if (r) { 4739 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4740 run->fail_entry.hardware_entry_failure_reason = 0; 4741 vcpu->arch.ret = r; 4742 return r; 4743 } 4744 } 4745 4746 if (need_resched()) 4747 cond_resched(); 4748 4749 kvmppc_update_vpas(vcpu); 4750 4751 preempt_disable(); 4752 pcpu = smp_processor_id(); 4753 if (kvm_is_radix(kvm)) 4754 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4755 4756 /* flags save not required, but irq_pmu has no disable/enable API */ 4757 powerpc_local_irq_pmu_save(flags); 4758 4759 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4760 4761 if (signal_pending(current)) 4762 goto sigpend; 4763 if (need_resched() || !kvm->arch.mmu_ready) 4764 goto out; 4765 4766 vcpu->cpu = pcpu; 4767 vcpu->arch.thread_cpu = pcpu; 4768 vc->pcpu = pcpu; 4769 local_paca->kvm_hstate.kvm_vcpu = vcpu; 4770 local_paca->kvm_hstate.ptid = 0; 4771 local_paca->kvm_hstate.fake_suspend = 0; 4772 4773 /* 4774 * Orders set cpu/thread_cpu vs testing for pending interrupts and 4775 * doorbells below. The other side is when these fields are set vs 4776 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to 4777 * kick a vCPU to notice the pending interrupt. 4778 */ 4779 smp_mb(); 4780 4781 if (!nested) { 4782 kvmppc_core_prepare_to_enter(vcpu); 4783 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4784 &vcpu->arch.pending_exceptions) || 4785 xive_interrupt_pending(vcpu)) { 4786 /* 4787 * For nested HV, don't synthesize but always pass MER, 4788 * the L0 will be able to optimise that more 4789 * effectively than manipulating registers directly. 4790 */ 4791 if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE)) 4792 kvmppc_inject_interrupt_hv(vcpu, 4793 BOOK3S_INTERRUPT_EXTERNAL, 0); 4794 else 4795 lpcr |= LPCR_MER; 4796 } 4797 } else if (vcpu->arch.pending_exceptions || 4798 vcpu->arch.doorbell_request || 4799 xive_interrupt_pending(vcpu)) { 4800 vcpu->arch.ret = RESUME_HOST; 4801 goto out; 4802 } 4803 4804 if (vcpu->arch.timer_running) { 4805 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 4806 vcpu->arch.timer_running = 0; 4807 } 4808 4809 tb = mftb(); 4810 4811 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu)); 4812 4813 trace_kvm_guest_enter(vcpu); 4814 4815 guest_timing_enter_irqoff(); 4816 4817 srcu_idx = srcu_read_lock(&kvm->srcu); 4818 4819 guest_state_enter_irqoff(); 4820 this_cpu_disable_ftrace(); 4821 4822 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb); 4823 vcpu->arch.trap = trap; 4824 4825 this_cpu_enable_ftrace(); 4826 guest_state_exit_irqoff(); 4827 4828 srcu_read_unlock(&kvm->srcu, srcu_idx); 4829 4830 set_irq_happened(trap); 4831 4832 vcpu->cpu = -1; 4833 vcpu->arch.thread_cpu = -1; 4834 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4835 4836 if (!vtime_accounting_enabled_this_cpu()) { 4837 powerpc_local_irq_pmu_restore(flags); 4838 /* 4839 * Service IRQs here before guest_timing_exit_irqoff() so any 4840 * ticks that occurred while running the guest are accounted to 4841 * the guest. If vtime accounting is enabled, accounting uses 4842 * TB rather than ticks, so it can be done without enabling 4843 * interrupts here, which has the problem that it accounts 4844 * interrupt processing overhead to the host. 4845 */ 4846 powerpc_local_irq_pmu_save(flags); 4847 } 4848 guest_timing_exit_irqoff(); 4849 4850 powerpc_local_irq_pmu_restore(flags); 4851 4852 preempt_enable(); 4853 4854 /* 4855 * cancel pending decrementer exception if DEC is now positive, or if 4856 * entering a nested guest in which case the decrementer is now owned 4857 * by L2 and the L1 decrementer is provided in hdec_expires 4858 */ 4859 if (!kvmhv_is_nestedv2() && kvmppc_core_pending_dec(vcpu) && 4860 ((tb < kvmppc_dec_expires_host_tb(vcpu)) || 4861 (trap == BOOK3S_INTERRUPT_SYSCALL && 4862 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4863 kvmppc_core_dequeue_dec(vcpu); 4864 4865 trace_kvm_guest_exit(vcpu); 4866 r = RESUME_GUEST; 4867 if (trap) { 4868 if (!nested) 4869 r = kvmppc_handle_exit_hv(vcpu, current); 4870 else 4871 r = kvmppc_handle_nested_exit(vcpu); 4872 } 4873 vcpu->arch.ret = r; 4874 4875 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) { 4876 kvmppc_set_timer(vcpu); 4877 4878 prepare_to_rcuwait(wait); 4879 for (;;) { 4880 set_current_state(TASK_INTERRUPTIBLE); 4881 if (signal_pending(current)) { 4882 vcpu->stat.signal_exits++; 4883 run->exit_reason = KVM_EXIT_INTR; 4884 vcpu->arch.ret = -EINTR; 4885 break; 4886 } 4887 4888 if (kvmppc_vcpu_check_block(vcpu)) 4889 break; 4890 4891 trace_kvmppc_vcore_blocked(vcpu, 0); 4892 schedule(); 4893 trace_kvmppc_vcore_blocked(vcpu, 1); 4894 } 4895 finish_rcuwait(wait); 4896 } 4897 vcpu->arch.ceded = 0; 4898 4899 done: 4900 trace_kvmppc_run_vcpu_exit(vcpu); 4901 4902 return vcpu->arch.ret; 4903 4904 sigpend: 4905 vcpu->stat.signal_exits++; 4906 run->exit_reason = KVM_EXIT_INTR; 4907 vcpu->arch.ret = -EINTR; 4908 out: 4909 vcpu->cpu = -1; 4910 vcpu->arch.thread_cpu = -1; 4911 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4912 powerpc_local_irq_pmu_restore(flags); 4913 preempt_enable(); 4914 goto done; 4915 } 4916 4917 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4918 { 4919 struct kvm_run *run = vcpu->run; 4920 int r; 4921 int srcu_idx; 4922 struct kvm *kvm; 4923 unsigned long msr; 4924 4925 start_timing(vcpu, &vcpu->arch.vcpu_entry); 4926 4927 if (!vcpu->arch.sane) { 4928 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4929 return -EINVAL; 4930 } 4931 4932 /* No need to go into the guest when all we'll do is come back out */ 4933 if (signal_pending(current)) { 4934 run->exit_reason = KVM_EXIT_INTR; 4935 return -EINTR; 4936 } 4937 4938 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4939 /* 4940 * Don't allow entry with a suspended transaction, because 4941 * the guest entry/exit code will lose it. 4942 */ 4943 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4944 (current->thread.regs->msr & MSR_TM)) { 4945 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4946 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4947 run->fail_entry.hardware_entry_failure_reason = 0; 4948 return -EINVAL; 4949 } 4950 } 4951 #endif 4952 4953 /* 4954 * Force online to 1 for the sake of old userspace which doesn't 4955 * set it. 4956 */ 4957 if (!vcpu->arch.online) { 4958 atomic_inc(&vcpu->arch.vcore->online_count); 4959 vcpu->arch.online = 1; 4960 } 4961 4962 kvmppc_core_prepare_to_enter(vcpu); 4963 4964 kvm = vcpu->kvm; 4965 atomic_inc(&kvm->arch.vcpus_running); 4966 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4967 smp_mb(); 4968 4969 msr = 0; 4970 if (IS_ENABLED(CONFIG_PPC_FPU)) 4971 msr |= MSR_FP; 4972 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 4973 msr |= MSR_VEC; 4974 if (cpu_has_feature(CPU_FTR_VSX)) 4975 msr |= MSR_VSX; 4976 if ((cpu_has_feature(CPU_FTR_TM) || 4977 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && 4978 (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM)) 4979 msr |= MSR_TM; 4980 msr = msr_check_and_set(msr); 4981 4982 kvmppc_save_user_regs(); 4983 4984 kvmppc_save_current_sprs(); 4985 4986 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4987 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4988 vcpu->arch.pgdir = kvm->mm->pgd; 4989 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4990 4991 do { 4992 accumulate_time(vcpu, &vcpu->arch.guest_entry); 4993 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4994 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4995 vcpu->arch.vcore->lpcr); 4996 else 4997 r = kvmppc_run_vcpu(vcpu); 4998 4999 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 5000 accumulate_time(vcpu, &vcpu->arch.hcall); 5001 5002 if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 5003 /* 5004 * These should have been caught reflected 5005 * into the guest by now. Final sanity check: 5006 * don't allow userspace to execute hcalls in 5007 * the hypervisor. 5008 */ 5009 r = RESUME_GUEST; 5010 continue; 5011 } 5012 trace_kvm_hcall_enter(vcpu); 5013 r = kvmppc_pseries_do_hcall(vcpu); 5014 trace_kvm_hcall_exit(vcpu, r); 5015 kvmppc_core_prepare_to_enter(vcpu); 5016 } else if (r == RESUME_PAGE_FAULT) { 5017 accumulate_time(vcpu, &vcpu->arch.pg_fault); 5018 srcu_idx = srcu_read_lock(&kvm->srcu); 5019 r = kvmppc_book3s_hv_page_fault(vcpu, 5020 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 5021 srcu_read_unlock(&kvm->srcu, srcu_idx); 5022 } else if (r == RESUME_PASSTHROUGH) { 5023 if (WARN_ON(xics_on_xive())) 5024 r = H_SUCCESS; 5025 else 5026 r = kvmppc_xics_rm_complete(vcpu, 0); 5027 } 5028 } while (is_kvmppc_resume_guest(r)); 5029 accumulate_time(vcpu, &vcpu->arch.vcpu_exit); 5030 5031 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 5032 atomic_dec(&kvm->arch.vcpus_running); 5033 5034 srr_regs_clobbered(); 5035 5036 end_timing(vcpu); 5037 5038 return r; 5039 } 5040 5041 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 5042 int shift, int sllp) 5043 { 5044 (*sps)->page_shift = shift; 5045 (*sps)->slb_enc = sllp; 5046 (*sps)->enc[0].page_shift = shift; 5047 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 5048 /* 5049 * Add 16MB MPSS support (may get filtered out by userspace) 5050 */ 5051 if (shift != 24) { 5052 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 5053 if (penc != -1) { 5054 (*sps)->enc[1].page_shift = 24; 5055 (*sps)->enc[1].pte_enc = penc; 5056 } 5057 } 5058 (*sps)++; 5059 } 5060 5061 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 5062 struct kvm_ppc_smmu_info *info) 5063 { 5064 struct kvm_ppc_one_seg_page_size *sps; 5065 5066 /* 5067 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 5068 * POWER7 doesn't support keys for instruction accesses, 5069 * POWER8 and POWER9 do. 5070 */ 5071 info->data_keys = 32; 5072 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 5073 5074 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 5075 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 5076 info->slb_size = 32; 5077 5078 /* We only support these sizes for now, and no muti-size segments */ 5079 sps = &info->sps[0]; 5080 kvmppc_add_seg_page_size(&sps, 12, 0); 5081 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 5082 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 5083 5084 /* If running as a nested hypervisor, we don't support HPT guests */ 5085 if (kvmhv_on_pseries()) 5086 info->flags |= KVM_PPC_NO_HASH; 5087 5088 return 0; 5089 } 5090 5091 /* 5092 * Get (and clear) the dirty memory log for a memory slot. 5093 */ 5094 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 5095 struct kvm_dirty_log *log) 5096 { 5097 struct kvm_memslots *slots; 5098 struct kvm_memory_slot *memslot; 5099 int r; 5100 unsigned long n, i; 5101 unsigned long *buf, *p; 5102 struct kvm_vcpu *vcpu; 5103 5104 mutex_lock(&kvm->slots_lock); 5105 5106 r = -EINVAL; 5107 if (log->slot >= KVM_USER_MEM_SLOTS) 5108 goto out; 5109 5110 slots = kvm_memslots(kvm); 5111 memslot = id_to_memslot(slots, log->slot); 5112 r = -ENOENT; 5113 if (!memslot || !memslot->dirty_bitmap) 5114 goto out; 5115 5116 /* 5117 * Use second half of bitmap area because both HPT and radix 5118 * accumulate bits in the first half. 5119 */ 5120 n = kvm_dirty_bitmap_bytes(memslot); 5121 buf = memslot->dirty_bitmap + n / sizeof(long); 5122 memset(buf, 0, n); 5123 5124 if (kvm_is_radix(kvm)) 5125 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 5126 else 5127 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 5128 if (r) 5129 goto out; 5130 5131 /* 5132 * We accumulate dirty bits in the first half of the 5133 * memslot's dirty_bitmap area, for when pages are paged 5134 * out or modified by the host directly. Pick up these 5135 * bits and add them to the map. 5136 */ 5137 p = memslot->dirty_bitmap; 5138 for (i = 0; i < n / sizeof(long); ++i) 5139 buf[i] |= xchg(&p[i], 0); 5140 5141 /* Harvest dirty bits from VPA and DTL updates */ 5142 /* Note: we never modify the SLB shadow buffer areas */ 5143 kvm_for_each_vcpu(i, vcpu, kvm) { 5144 spin_lock(&vcpu->arch.vpa_update_lock); 5145 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 5146 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 5147 spin_unlock(&vcpu->arch.vpa_update_lock); 5148 } 5149 5150 r = -EFAULT; 5151 if (copy_to_user(log->dirty_bitmap, buf, n)) 5152 goto out; 5153 5154 r = 0; 5155 out: 5156 mutex_unlock(&kvm->slots_lock); 5157 return r; 5158 } 5159 5160 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 5161 { 5162 vfree(slot->arch.rmap); 5163 slot->arch.rmap = NULL; 5164 } 5165 5166 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 5167 const struct kvm_memory_slot *old, 5168 struct kvm_memory_slot *new, 5169 enum kvm_mr_change change) 5170 { 5171 if (change == KVM_MR_CREATE) { 5172 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap)); 5173 5174 if ((size >> PAGE_SHIFT) > totalram_pages()) 5175 return -ENOMEM; 5176 5177 new->arch.rmap = vzalloc(size); 5178 if (!new->arch.rmap) 5179 return -ENOMEM; 5180 } else if (change != KVM_MR_DELETE) { 5181 new->arch.rmap = old->arch.rmap; 5182 } 5183 5184 return 0; 5185 } 5186 5187 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 5188 struct kvm_memory_slot *old, 5189 const struct kvm_memory_slot *new, 5190 enum kvm_mr_change change) 5191 { 5192 /* 5193 * If we are creating or modifying a memslot, it might make 5194 * some address that was previously cached as emulated 5195 * MMIO be no longer emulated MMIO, so invalidate 5196 * all the caches of emulated MMIO translations. 5197 */ 5198 if (change != KVM_MR_DELETE) 5199 atomic64_inc(&kvm->arch.mmio_update); 5200 5201 /* 5202 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 5203 * have already called kvm_arch_flush_shadow_memslot() to 5204 * flush shadow mappings. For KVM_MR_CREATE we have no 5205 * previous mappings. So the only case to handle is 5206 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 5207 * has been changed. 5208 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 5209 * to get rid of any THP PTEs in the partition-scoped page tables 5210 * so we can track dirtiness at the page level; we flush when 5211 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 5212 * using THP PTEs. 5213 */ 5214 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 5215 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 5216 kvmppc_radix_flush_memslot(kvm, old); 5217 /* 5218 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 5219 */ 5220 if (!kvm->arch.secure_guest) 5221 return; 5222 5223 switch (change) { 5224 case KVM_MR_CREATE: 5225 /* 5226 * @TODO kvmppc_uvmem_memslot_create() can fail and 5227 * return error. Fix this. 5228 */ 5229 kvmppc_uvmem_memslot_create(kvm, new); 5230 break; 5231 case KVM_MR_DELETE: 5232 kvmppc_uvmem_memslot_delete(kvm, old); 5233 break; 5234 default: 5235 /* TODO: Handle KVM_MR_MOVE */ 5236 break; 5237 } 5238 } 5239 5240 /* 5241 * Update LPCR values in kvm->arch and in vcores. 5242 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 5243 * of kvm->arch.lpcr update). 5244 */ 5245 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 5246 { 5247 long int i; 5248 u32 cores_done = 0; 5249 5250 if ((kvm->arch.lpcr & mask) == lpcr) 5251 return; 5252 5253 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 5254 5255 for (i = 0; i < KVM_MAX_VCORES; ++i) { 5256 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 5257 if (!vc) 5258 continue; 5259 5260 spin_lock(&vc->lock); 5261 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 5262 verify_lpcr(kvm, vc->lpcr); 5263 spin_unlock(&vc->lock); 5264 if (++cores_done >= kvm->arch.online_vcores) 5265 break; 5266 } 5267 5268 if (kvmhv_is_nestedv2()) { 5269 struct kvm_vcpu *vcpu; 5270 5271 kvm_for_each_vcpu(i, vcpu, kvm) { 5272 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR); 5273 } 5274 } 5275 } 5276 5277 void kvmppc_setup_partition_table(struct kvm *kvm) 5278 { 5279 unsigned long dw0, dw1; 5280 5281 if (!kvm_is_radix(kvm)) { 5282 /* PS field - page size for VRMA */ 5283 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 5284 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 5285 /* HTABSIZE and HTABORG fields */ 5286 dw0 |= kvm->arch.sdr1; 5287 5288 /* Second dword as set by userspace */ 5289 dw1 = kvm->arch.process_table; 5290 } else { 5291 dw0 = PATB_HR | radix__get_tree_size() | 5292 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 5293 dw1 = PATB_GR | kvm->arch.process_table; 5294 } 5295 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 5296 } 5297 5298 /* 5299 * Set up HPT (hashed page table) and RMA (real-mode area). 5300 * Must be called with kvm->arch.mmu_setup_lock held. 5301 */ 5302 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 5303 { 5304 int err = 0; 5305 struct kvm *kvm = vcpu->kvm; 5306 unsigned long hva; 5307 struct kvm_memory_slot *memslot; 5308 struct vm_area_struct *vma; 5309 unsigned long lpcr = 0, senc; 5310 unsigned long psize, porder; 5311 int srcu_idx; 5312 5313 /* Allocate hashed page table (if not done already) and reset it */ 5314 if (!kvm->arch.hpt.virt) { 5315 int order = KVM_DEFAULT_HPT_ORDER; 5316 struct kvm_hpt_info info; 5317 5318 err = kvmppc_allocate_hpt(&info, order); 5319 /* If we get here, it means userspace didn't specify a 5320 * size explicitly. So, try successively smaller 5321 * sizes if the default failed. */ 5322 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 5323 err = kvmppc_allocate_hpt(&info, order); 5324 5325 if (err < 0) { 5326 pr_err("KVM: Couldn't alloc HPT\n"); 5327 goto out; 5328 } 5329 5330 kvmppc_set_hpt(kvm, &info); 5331 } 5332 5333 /* Look up the memslot for guest physical address 0 */ 5334 srcu_idx = srcu_read_lock(&kvm->srcu); 5335 memslot = gfn_to_memslot(kvm, 0); 5336 5337 /* We must have some memory at 0 by now */ 5338 err = -EINVAL; 5339 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 5340 goto out_srcu; 5341 5342 /* Look up the VMA for the start of this memory slot */ 5343 hva = memslot->userspace_addr; 5344 mmap_read_lock(kvm->mm); 5345 vma = vma_lookup(kvm->mm, hva); 5346 if (!vma || (vma->vm_flags & VM_IO)) 5347 goto up_out; 5348 5349 psize = vma_kernel_pagesize(vma); 5350 5351 mmap_read_unlock(kvm->mm); 5352 5353 /* We can handle 4k, 64k or 16M pages in the VRMA */ 5354 if (psize >= 0x1000000) 5355 psize = 0x1000000; 5356 else if (psize >= 0x10000) 5357 psize = 0x10000; 5358 else 5359 psize = 0x1000; 5360 porder = __ilog2(psize); 5361 5362 senc = slb_pgsize_encoding(psize); 5363 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 5364 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5365 /* Create HPTEs in the hash page table for the VRMA */ 5366 kvmppc_map_vrma(vcpu, memslot, porder); 5367 5368 /* Update VRMASD field in the LPCR */ 5369 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 5370 /* the -4 is to account for senc values starting at 0x10 */ 5371 lpcr = senc << (LPCR_VRMASD_SH - 4); 5372 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 5373 } 5374 5375 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 5376 smp_wmb(); 5377 err = 0; 5378 out_srcu: 5379 srcu_read_unlock(&kvm->srcu, srcu_idx); 5380 out: 5381 return err; 5382 5383 up_out: 5384 mmap_read_unlock(kvm->mm); 5385 goto out_srcu; 5386 } 5387 5388 /* 5389 * Must be called with kvm->arch.mmu_setup_lock held and 5390 * mmu_ready = 0 and no vcpus running. 5391 */ 5392 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 5393 { 5394 unsigned long lpcr, lpcr_mask; 5395 5396 if (nesting_enabled(kvm)) 5397 kvmhv_release_all_nested(kvm); 5398 kvmppc_rmap_reset(kvm); 5399 kvm->arch.process_table = 0; 5400 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5401 spin_lock(&kvm->mmu_lock); 5402 kvm->arch.radix = 0; 5403 spin_unlock(&kvm->mmu_lock); 5404 kvmppc_free_radix(kvm); 5405 5406 lpcr = LPCR_VPM1; 5407 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5408 if (cpu_has_feature(CPU_FTR_ARCH_31)) 5409 lpcr_mask |= LPCR_HAIL; 5410 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5411 5412 return 0; 5413 } 5414 5415 /* 5416 * Must be called with kvm->arch.mmu_setup_lock held and 5417 * mmu_ready = 0 and no vcpus running. 5418 */ 5419 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 5420 { 5421 unsigned long lpcr, lpcr_mask; 5422 int err; 5423 5424 err = kvmppc_init_vm_radix(kvm); 5425 if (err) 5426 return err; 5427 kvmppc_rmap_reset(kvm); 5428 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5429 spin_lock(&kvm->mmu_lock); 5430 kvm->arch.radix = 1; 5431 spin_unlock(&kvm->mmu_lock); 5432 kvmppc_free_hpt(&kvm->arch.hpt); 5433 5434 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5435 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5436 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5437 lpcr_mask |= LPCR_HAIL; 5438 if (cpu_has_feature(CPU_FTR_HVMODE) && 5439 (kvm->arch.host_lpcr & LPCR_HAIL)) 5440 lpcr |= LPCR_HAIL; 5441 } 5442 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5443 5444 return 0; 5445 } 5446 5447 #ifdef CONFIG_KVM_XICS 5448 /* 5449 * Allocate a per-core structure for managing state about which cores are 5450 * running in the host versus the guest and for exchanging data between 5451 * real mode KVM and CPU running in the host. 5452 * This is only done for the first VM. 5453 * The allocated structure stays even if all VMs have stopped. 5454 * It is only freed when the kvm-hv module is unloaded. 5455 * It's OK for this routine to fail, we just don't support host 5456 * core operations like redirecting H_IPI wakeups. 5457 */ 5458 void kvmppc_alloc_host_rm_ops(void) 5459 { 5460 struct kvmppc_host_rm_ops *ops; 5461 unsigned long l_ops; 5462 int cpu, core; 5463 int size; 5464 5465 if (cpu_has_feature(CPU_FTR_ARCH_300)) 5466 return; 5467 5468 /* Not the first time here ? */ 5469 if (kvmppc_host_rm_ops_hv != NULL) 5470 return; 5471 5472 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 5473 if (!ops) 5474 return; 5475 5476 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 5477 ops->rm_core = kzalloc(size, GFP_KERNEL); 5478 5479 if (!ops->rm_core) { 5480 kfree(ops); 5481 return; 5482 } 5483 5484 cpus_read_lock(); 5485 5486 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 5487 if (!cpu_online(cpu)) 5488 continue; 5489 5490 core = cpu >> threads_shift; 5491 ops->rm_core[core].rm_state.in_host = 1; 5492 } 5493 5494 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 5495 5496 /* 5497 * Make the contents of the kvmppc_host_rm_ops structure visible 5498 * to other CPUs before we assign it to the global variable. 5499 * Do an atomic assignment (no locks used here), but if someone 5500 * beats us to it, just free our copy and return. 5501 */ 5502 smp_wmb(); 5503 l_ops = (unsigned long) ops; 5504 5505 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 5506 cpus_read_unlock(); 5507 kfree(ops->rm_core); 5508 kfree(ops); 5509 return; 5510 } 5511 5512 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 5513 "ppc/kvm_book3s:prepare", 5514 kvmppc_set_host_core, 5515 kvmppc_clear_host_core); 5516 cpus_read_unlock(); 5517 } 5518 5519 void kvmppc_free_host_rm_ops(void) 5520 { 5521 if (kvmppc_host_rm_ops_hv) { 5522 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 5523 kfree(kvmppc_host_rm_ops_hv->rm_core); 5524 kfree(kvmppc_host_rm_ops_hv); 5525 kvmppc_host_rm_ops_hv = NULL; 5526 } 5527 } 5528 #endif 5529 5530 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5531 { 5532 unsigned long lpcr, lpid; 5533 int ret; 5534 5535 mutex_init(&kvm->arch.uvmem_lock); 5536 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5537 mutex_init(&kvm->arch.mmu_setup_lock); 5538 5539 /* Allocate the guest's logical partition ID */ 5540 5541 if (!kvmhv_is_nestedv2()) { 5542 lpid = kvmppc_alloc_lpid(); 5543 if ((long)lpid < 0) 5544 return -ENOMEM; 5545 kvm->arch.lpid = lpid; 5546 } 5547 5548 kvmppc_alloc_host_rm_ops(); 5549 5550 kvmhv_vm_nested_init(kvm); 5551 5552 if (kvmhv_is_nestedv2()) { 5553 long rc; 5554 unsigned long guest_id; 5555 5556 rc = plpar_guest_create(0, &guest_id); 5557 5558 if (rc != H_SUCCESS) 5559 pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc); 5560 5561 switch (rc) { 5562 case H_PARAMETER: 5563 case H_FUNCTION: 5564 case H_STATE: 5565 return -EINVAL; 5566 case H_NOT_ENOUGH_RESOURCES: 5567 case H_ABORTED: 5568 return -ENOMEM; 5569 case H_AUTHORITY: 5570 return -EPERM; 5571 case H_NOT_AVAILABLE: 5572 return -EBUSY; 5573 } 5574 kvm->arch.lpid = guest_id; 5575 } 5576 5577 5578 /* 5579 * Since we don't flush the TLB when tearing down a VM, 5580 * and this lpid might have previously been used, 5581 * make sure we flush on each core before running the new VM. 5582 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5583 * does this flush for us. 5584 */ 5585 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5586 cpumask_setall(&kvm->arch.need_tlb_flush); 5587 5588 /* Start out with the default set of hcalls enabled */ 5589 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5590 sizeof(kvm->arch.enabled_hcalls)); 5591 5592 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5593 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5594 5595 /* Init LPCR for virtual RMA mode */ 5596 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5597 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5598 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5599 lpcr &= LPCR_PECE | LPCR_LPES; 5600 } else { 5601 /* 5602 * The L2 LPES mode will be set by the L0 according to whether 5603 * or not it needs to take external interrupts in HV mode. 5604 */ 5605 lpcr = 0; 5606 } 5607 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5608 LPCR_VPM0 | LPCR_VPM1; 5609 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5610 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5611 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5612 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5613 lpcr |= LPCR_ONL; 5614 /* 5615 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5616 * Set HVICE bit to enable hypervisor virtualization interrupts. 5617 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5618 * be unnecessary but better safe than sorry in case we re-enable 5619 * EE in HV mode with this LPCR still set) 5620 */ 5621 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5622 lpcr &= ~LPCR_VPM0; 5623 lpcr |= LPCR_HVICE | LPCR_HEIC; 5624 5625 /* 5626 * If xive is enabled, we route 0x500 interrupts directly 5627 * to the guest. 5628 */ 5629 if (xics_on_xive()) 5630 lpcr |= LPCR_LPES; 5631 } 5632 5633 /* 5634 * If the host uses radix, the guest starts out as radix. 5635 */ 5636 if (radix_enabled()) { 5637 kvm->arch.radix = 1; 5638 kvm->arch.mmu_ready = 1; 5639 lpcr &= ~LPCR_VPM1; 5640 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5641 if (cpu_has_feature(CPU_FTR_HVMODE) && 5642 cpu_has_feature(CPU_FTR_ARCH_31) && 5643 (kvm->arch.host_lpcr & LPCR_HAIL)) 5644 lpcr |= LPCR_HAIL; 5645 ret = kvmppc_init_vm_radix(kvm); 5646 if (ret) { 5647 if (kvmhv_is_nestedv2()) 5648 plpar_guest_delete(0, kvm->arch.lpid); 5649 else 5650 kvmppc_free_lpid(kvm->arch.lpid); 5651 return ret; 5652 } 5653 kvmppc_setup_partition_table(kvm); 5654 } 5655 5656 verify_lpcr(kvm, lpcr); 5657 kvm->arch.lpcr = lpcr; 5658 5659 /* Initialization for future HPT resizes */ 5660 kvm->arch.resize_hpt = NULL; 5661 5662 /* 5663 * Work out how many sets the TLB has, for the use of 5664 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5665 */ 5666 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5667 /* 5668 * P10 will flush all the congruence class with a single tlbiel 5669 */ 5670 kvm->arch.tlb_sets = 1; 5671 } else if (radix_enabled()) 5672 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5673 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5674 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5675 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5676 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5677 else 5678 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5679 5680 /* 5681 * Track that we now have a HV mode VM active. This blocks secondary 5682 * CPU threads from coming online. 5683 */ 5684 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5685 kvm_hv_vm_activated(); 5686 5687 /* 5688 * Initialize smt_mode depending on processor. 5689 * POWER8 and earlier have to use "strict" threading, where 5690 * all vCPUs in a vcore have to run on the same (sub)core, 5691 * whereas on POWER9 the threads can each run a different 5692 * guest. 5693 */ 5694 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5695 kvm->arch.smt_mode = threads_per_subcore; 5696 else 5697 kvm->arch.smt_mode = 1; 5698 kvm->arch.emul_smt_mode = 1; 5699 5700 return 0; 5701 } 5702 5703 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm) 5704 { 5705 kvmppc_mmu_debugfs_init(kvm); 5706 if (radix_enabled()) 5707 kvmhv_radix_debugfs_init(kvm); 5708 return 0; 5709 } 5710 5711 static void kvmppc_free_vcores(struct kvm *kvm) 5712 { 5713 long int i; 5714 5715 for (i = 0; i < KVM_MAX_VCORES; ++i) 5716 kfree(kvm->arch.vcores[i]); 5717 kvm->arch.online_vcores = 0; 5718 } 5719 5720 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5721 { 5722 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5723 kvm_hv_vm_deactivated(); 5724 5725 kvmppc_free_vcores(kvm); 5726 5727 5728 if (kvm_is_radix(kvm)) 5729 kvmppc_free_radix(kvm); 5730 else 5731 kvmppc_free_hpt(&kvm->arch.hpt); 5732 5733 /* Perform global invalidation and return lpid to the pool */ 5734 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5735 if (nesting_enabled(kvm)) 5736 kvmhv_release_all_nested(kvm); 5737 kvm->arch.process_table = 0; 5738 if (kvm->arch.secure_guest) 5739 uv_svm_terminate(kvm->arch.lpid); 5740 if (!kvmhv_is_nestedv2()) 5741 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5742 } 5743 5744 if (kvmhv_is_nestedv2()) { 5745 kvmhv_flush_lpid(kvm->arch.lpid); 5746 plpar_guest_delete(0, kvm->arch.lpid); 5747 } else { 5748 kvmppc_free_lpid(kvm->arch.lpid); 5749 } 5750 5751 kvmppc_free_pimap(kvm); 5752 } 5753 5754 /* We don't need to emulate any privileged instructions or dcbz */ 5755 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5756 unsigned int inst, int *advance) 5757 { 5758 return EMULATE_FAIL; 5759 } 5760 5761 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5762 ulong spr_val) 5763 { 5764 return EMULATE_FAIL; 5765 } 5766 5767 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5768 ulong *spr_val) 5769 { 5770 return EMULATE_FAIL; 5771 } 5772 5773 static int kvmppc_core_check_processor_compat_hv(void) 5774 { 5775 if (cpu_has_feature(CPU_FTR_HVMODE) && 5776 cpu_has_feature(CPU_FTR_ARCH_206)) 5777 return 0; 5778 5779 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5780 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5781 return 0; 5782 5783 return -EIO; 5784 } 5785 5786 #ifdef CONFIG_KVM_XICS 5787 5788 void kvmppc_free_pimap(struct kvm *kvm) 5789 { 5790 kfree(kvm->arch.pimap); 5791 } 5792 5793 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5794 { 5795 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5796 } 5797 5798 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5799 { 5800 struct irq_desc *desc; 5801 struct kvmppc_irq_map *irq_map; 5802 struct kvmppc_passthru_irqmap *pimap; 5803 struct irq_chip *chip; 5804 int i, rc = 0; 5805 struct irq_data *host_data; 5806 5807 if (!kvm_irq_bypass) 5808 return 1; 5809 5810 desc = irq_to_desc(host_irq); 5811 if (!desc) 5812 return -EIO; 5813 5814 mutex_lock(&kvm->lock); 5815 5816 pimap = kvm->arch.pimap; 5817 if (pimap == NULL) { 5818 /* First call, allocate structure to hold IRQ map */ 5819 pimap = kvmppc_alloc_pimap(); 5820 if (pimap == NULL) { 5821 mutex_unlock(&kvm->lock); 5822 return -ENOMEM; 5823 } 5824 kvm->arch.pimap = pimap; 5825 } 5826 5827 /* 5828 * For now, we only support interrupts for which the EOI operation 5829 * is an OPAL call followed by a write to XIRR, since that's 5830 * what our real-mode EOI code does, or a XIVE interrupt 5831 */ 5832 chip = irq_data_get_irq_chip(&desc->irq_data); 5833 if (!chip || !is_pnv_opal_msi(chip)) { 5834 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5835 host_irq, guest_gsi); 5836 mutex_unlock(&kvm->lock); 5837 return -ENOENT; 5838 } 5839 5840 /* 5841 * See if we already have an entry for this guest IRQ number. 5842 * If it's mapped to a hardware IRQ number, that's an error, 5843 * otherwise re-use this entry. 5844 */ 5845 for (i = 0; i < pimap->n_mapped; i++) { 5846 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5847 if (pimap->mapped[i].r_hwirq) { 5848 mutex_unlock(&kvm->lock); 5849 return -EINVAL; 5850 } 5851 break; 5852 } 5853 } 5854 5855 if (i == KVMPPC_PIRQ_MAPPED) { 5856 mutex_unlock(&kvm->lock); 5857 return -EAGAIN; /* table is full */ 5858 } 5859 5860 irq_map = &pimap->mapped[i]; 5861 5862 irq_map->v_hwirq = guest_gsi; 5863 irq_map->desc = desc; 5864 5865 /* 5866 * Order the above two stores before the next to serialize with 5867 * the KVM real mode handler. 5868 */ 5869 smp_wmb(); 5870 5871 /* 5872 * The 'host_irq' number is mapped in the PCI-MSI domain but 5873 * the underlying calls, which will EOI the interrupt in real 5874 * mode, need an HW IRQ number mapped in the XICS IRQ domain. 5875 */ 5876 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); 5877 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); 5878 5879 if (i == pimap->n_mapped) 5880 pimap->n_mapped++; 5881 5882 if (xics_on_xive()) 5883 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); 5884 else 5885 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); 5886 if (rc) 5887 irq_map->r_hwirq = 0; 5888 5889 mutex_unlock(&kvm->lock); 5890 5891 return 0; 5892 } 5893 5894 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5895 { 5896 struct irq_desc *desc; 5897 struct kvmppc_passthru_irqmap *pimap; 5898 int i, rc = 0; 5899 5900 if (!kvm_irq_bypass) 5901 return 0; 5902 5903 desc = irq_to_desc(host_irq); 5904 if (!desc) 5905 return -EIO; 5906 5907 mutex_lock(&kvm->lock); 5908 if (!kvm->arch.pimap) 5909 goto unlock; 5910 5911 pimap = kvm->arch.pimap; 5912 5913 for (i = 0; i < pimap->n_mapped; i++) { 5914 if (guest_gsi == pimap->mapped[i].v_hwirq) 5915 break; 5916 } 5917 5918 if (i == pimap->n_mapped) { 5919 mutex_unlock(&kvm->lock); 5920 return -ENODEV; 5921 } 5922 5923 if (xics_on_xive()) 5924 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); 5925 else 5926 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5927 5928 /* invalidate the entry (what to do on error from the above ?) */ 5929 pimap->mapped[i].r_hwirq = 0; 5930 5931 /* 5932 * We don't free this structure even when the count goes to 5933 * zero. The structure is freed when we destroy the VM. 5934 */ 5935 unlock: 5936 mutex_unlock(&kvm->lock); 5937 return rc; 5938 } 5939 5940 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5941 struct irq_bypass_producer *prod) 5942 { 5943 int ret = 0; 5944 struct kvm_kernel_irqfd *irqfd = 5945 container_of(cons, struct kvm_kernel_irqfd, consumer); 5946 5947 irqfd->producer = prod; 5948 5949 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5950 if (ret) 5951 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5952 prod->irq, irqfd->gsi, ret); 5953 5954 return ret; 5955 } 5956 5957 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5958 struct irq_bypass_producer *prod) 5959 { 5960 int ret; 5961 struct kvm_kernel_irqfd *irqfd = 5962 container_of(cons, struct kvm_kernel_irqfd, consumer); 5963 5964 irqfd->producer = NULL; 5965 5966 /* 5967 * When producer of consumer is unregistered, we change back to 5968 * default external interrupt handling mode - KVM real mode 5969 * will switch back to host. 5970 */ 5971 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5972 if (ret) 5973 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5974 prod->irq, irqfd->gsi, ret); 5975 } 5976 #endif 5977 5978 static int kvm_arch_vm_ioctl_hv(struct file *filp, 5979 unsigned int ioctl, unsigned long arg) 5980 { 5981 struct kvm *kvm __maybe_unused = filp->private_data; 5982 void __user *argp = (void __user *)arg; 5983 int r; 5984 5985 switch (ioctl) { 5986 5987 case KVM_PPC_ALLOCATE_HTAB: { 5988 u32 htab_order; 5989 5990 /* If we're a nested hypervisor, we currently only support radix */ 5991 if (kvmhv_on_pseries()) { 5992 r = -EOPNOTSUPP; 5993 break; 5994 } 5995 5996 r = -EFAULT; 5997 if (get_user(htab_order, (u32 __user *)argp)) 5998 break; 5999 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 6000 if (r) 6001 break; 6002 r = 0; 6003 break; 6004 } 6005 6006 case KVM_PPC_GET_HTAB_FD: { 6007 struct kvm_get_htab_fd ghf; 6008 6009 r = -EFAULT; 6010 if (copy_from_user(&ghf, argp, sizeof(ghf))) 6011 break; 6012 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 6013 break; 6014 } 6015 6016 case KVM_PPC_RESIZE_HPT_PREPARE: { 6017 struct kvm_ppc_resize_hpt rhpt; 6018 6019 r = -EFAULT; 6020 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 6021 break; 6022 6023 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 6024 break; 6025 } 6026 6027 case KVM_PPC_RESIZE_HPT_COMMIT: { 6028 struct kvm_ppc_resize_hpt rhpt; 6029 6030 r = -EFAULT; 6031 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 6032 break; 6033 6034 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 6035 break; 6036 } 6037 6038 default: 6039 r = -ENOTTY; 6040 } 6041 6042 return r; 6043 } 6044 6045 /* 6046 * List of hcall numbers to enable by default. 6047 * For compatibility with old userspace, we enable by default 6048 * all hcalls that were implemented before the hcall-enabling 6049 * facility was added. Note this list should not include H_RTAS. 6050 */ 6051 static unsigned int default_hcall_list[] = { 6052 H_REMOVE, 6053 H_ENTER, 6054 H_READ, 6055 H_PROTECT, 6056 H_BULK_REMOVE, 6057 #ifdef CONFIG_SPAPR_TCE_IOMMU 6058 H_GET_TCE, 6059 H_PUT_TCE, 6060 #endif 6061 H_SET_DABR, 6062 H_SET_XDABR, 6063 H_CEDE, 6064 H_PROD, 6065 H_CONFER, 6066 H_REGISTER_VPA, 6067 #ifdef CONFIG_KVM_XICS 6068 H_EOI, 6069 H_CPPR, 6070 H_IPI, 6071 H_IPOLL, 6072 H_XIRR, 6073 H_XIRR_X, 6074 #endif 6075 0 6076 }; 6077 6078 static void init_default_hcalls(void) 6079 { 6080 int i; 6081 unsigned int hcall; 6082 6083 for (i = 0; default_hcall_list[i]; ++i) { 6084 hcall = default_hcall_list[i]; 6085 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 6086 __set_bit(hcall / 4, default_enabled_hcalls); 6087 } 6088 } 6089 6090 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 6091 { 6092 unsigned long lpcr; 6093 int radix; 6094 int err; 6095 6096 /* If not on a POWER9, reject it */ 6097 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6098 return -ENODEV; 6099 6100 /* If any unknown flags set, reject it */ 6101 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 6102 return -EINVAL; 6103 6104 /* GR (guest radix) bit in process_table field must match */ 6105 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 6106 if (!!(cfg->process_table & PATB_GR) != radix) 6107 return -EINVAL; 6108 6109 /* Process table size field must be reasonable, i.e. <= 24 */ 6110 if ((cfg->process_table & PRTS_MASK) > 24) 6111 return -EINVAL; 6112 6113 /* We can change a guest to/from radix now, if the host is radix */ 6114 if (radix && !radix_enabled()) 6115 return -EINVAL; 6116 6117 /* If we're a nested hypervisor, we currently only support radix */ 6118 if (kvmhv_on_pseries() && !radix) 6119 return -EINVAL; 6120 6121 mutex_lock(&kvm->arch.mmu_setup_lock); 6122 if (radix != kvm_is_radix(kvm)) { 6123 if (kvm->arch.mmu_ready) { 6124 kvm->arch.mmu_ready = 0; 6125 /* order mmu_ready vs. vcpus_running */ 6126 smp_mb(); 6127 if (atomic_read(&kvm->arch.vcpus_running)) { 6128 kvm->arch.mmu_ready = 1; 6129 err = -EBUSY; 6130 goto out_unlock; 6131 } 6132 } 6133 if (radix) 6134 err = kvmppc_switch_mmu_to_radix(kvm); 6135 else 6136 err = kvmppc_switch_mmu_to_hpt(kvm); 6137 if (err) 6138 goto out_unlock; 6139 } 6140 6141 kvm->arch.process_table = cfg->process_table; 6142 kvmppc_setup_partition_table(kvm); 6143 6144 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 6145 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 6146 err = 0; 6147 6148 out_unlock: 6149 mutex_unlock(&kvm->arch.mmu_setup_lock); 6150 return err; 6151 } 6152 6153 static int kvmhv_enable_nested(struct kvm *kvm) 6154 { 6155 if (!nested) 6156 return -EPERM; 6157 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6158 return -ENODEV; 6159 if (!radix_enabled()) 6160 return -ENODEV; 6161 if (kvmhv_is_nestedv2()) 6162 return -ENODEV; 6163 6164 /* kvm == NULL means the caller is testing if the capability exists */ 6165 if (kvm) 6166 kvm->arch.nested_enable = true; 6167 return 0; 6168 } 6169 6170 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 6171 int size) 6172 { 6173 int rc = -EINVAL; 6174 6175 if (kvmhv_vcpu_is_radix(vcpu)) { 6176 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 6177 6178 if (rc > 0) 6179 rc = -EINVAL; 6180 } 6181 6182 /* For now quadrants are the only way to access nested guest memory */ 6183 if (rc && vcpu->arch.nested) 6184 rc = -EAGAIN; 6185 6186 return rc; 6187 } 6188 6189 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 6190 int size) 6191 { 6192 int rc = -EINVAL; 6193 6194 if (kvmhv_vcpu_is_radix(vcpu)) { 6195 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 6196 6197 if (rc > 0) 6198 rc = -EINVAL; 6199 } 6200 6201 /* For now quadrants are the only way to access nested guest memory */ 6202 if (rc && vcpu->arch.nested) 6203 rc = -EAGAIN; 6204 6205 return rc; 6206 } 6207 6208 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 6209 { 6210 unpin_vpa(kvm, vpa); 6211 vpa->gpa = 0; 6212 vpa->pinned_addr = NULL; 6213 vpa->dirty = false; 6214 vpa->update_pending = 0; 6215 } 6216 6217 /* 6218 * Enable a guest to become a secure VM, or test whether 6219 * that could be enabled. 6220 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 6221 * tested (kvm == NULL) or enabled (kvm != NULL). 6222 */ 6223 static int kvmhv_enable_svm(struct kvm *kvm) 6224 { 6225 if (!kvmppc_uvmem_available()) 6226 return -EINVAL; 6227 if (kvm) 6228 kvm->arch.svm_enabled = 1; 6229 return 0; 6230 } 6231 6232 /* 6233 * IOCTL handler to turn off secure mode of guest 6234 * 6235 * - Release all device pages 6236 * - Issue ucall to terminate the guest on the UV side 6237 * - Unpin the VPA pages. 6238 * - Reinit the partition scoped page tables 6239 */ 6240 static int kvmhv_svm_off(struct kvm *kvm) 6241 { 6242 struct kvm_vcpu *vcpu; 6243 int mmu_was_ready; 6244 int srcu_idx; 6245 int ret = 0; 6246 unsigned long i; 6247 6248 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 6249 return ret; 6250 6251 mutex_lock(&kvm->arch.mmu_setup_lock); 6252 mmu_was_ready = kvm->arch.mmu_ready; 6253 if (kvm->arch.mmu_ready) { 6254 kvm->arch.mmu_ready = 0; 6255 /* order mmu_ready vs. vcpus_running */ 6256 smp_mb(); 6257 if (atomic_read(&kvm->arch.vcpus_running)) { 6258 kvm->arch.mmu_ready = 1; 6259 ret = -EBUSY; 6260 goto out; 6261 } 6262 } 6263 6264 srcu_idx = srcu_read_lock(&kvm->srcu); 6265 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6266 struct kvm_memory_slot *memslot; 6267 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 6268 int bkt; 6269 6270 if (!slots) 6271 continue; 6272 6273 kvm_for_each_memslot(memslot, bkt, slots) { 6274 kvmppc_uvmem_drop_pages(memslot, kvm, true); 6275 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 6276 } 6277 } 6278 srcu_read_unlock(&kvm->srcu, srcu_idx); 6279 6280 ret = uv_svm_terminate(kvm->arch.lpid); 6281 if (ret != U_SUCCESS) { 6282 ret = -EINVAL; 6283 goto out; 6284 } 6285 6286 /* 6287 * When secure guest is reset, all the guest pages are sent 6288 * to UV via UV_PAGE_IN before the non-boot vcpus get a 6289 * chance to run and unpin their VPA pages. Unpinning of all 6290 * VPA pages is done here explicitly so that VPA pages 6291 * can be migrated to the secure side. 6292 * 6293 * This is required to for the secure SMP guest to reboot 6294 * correctly. 6295 */ 6296 kvm_for_each_vcpu(i, vcpu, kvm) { 6297 spin_lock(&vcpu->arch.vpa_update_lock); 6298 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 6299 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 6300 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 6301 spin_unlock(&vcpu->arch.vpa_update_lock); 6302 } 6303 6304 kvmppc_setup_partition_table(kvm); 6305 kvm->arch.secure_guest = 0; 6306 kvm->arch.mmu_ready = mmu_was_ready; 6307 out: 6308 mutex_unlock(&kvm->arch.mmu_setup_lock); 6309 return ret; 6310 } 6311 6312 static int kvmhv_enable_dawr1(struct kvm *kvm) 6313 { 6314 if (!cpu_has_feature(CPU_FTR_DAWR1)) 6315 return -ENODEV; 6316 6317 /* kvm == NULL means the caller is testing if the capability exists */ 6318 if (kvm) 6319 kvm->arch.dawr1_enabled = true; 6320 return 0; 6321 } 6322 6323 static bool kvmppc_hash_v3_possible(void) 6324 { 6325 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6326 return false; 6327 6328 if (!cpu_has_feature(CPU_FTR_HVMODE)) 6329 return false; 6330 6331 /* 6332 * POWER9 chips before version 2.02 can't have some threads in 6333 * HPT mode and some in radix mode on the same core. 6334 */ 6335 if (radix_enabled()) { 6336 unsigned int pvr = mfspr(SPRN_PVR); 6337 if ((pvr >> 16) == PVR_POWER9 && 6338 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 6339 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 6340 return false; 6341 } 6342 6343 return true; 6344 } 6345 6346 static struct kvmppc_ops kvm_ops_hv = { 6347 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 6348 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 6349 .get_one_reg = kvmppc_get_one_reg_hv, 6350 .set_one_reg = kvmppc_set_one_reg_hv, 6351 .vcpu_load = kvmppc_core_vcpu_load_hv, 6352 .vcpu_put = kvmppc_core_vcpu_put_hv, 6353 .inject_interrupt = kvmppc_inject_interrupt_hv, 6354 .set_msr = kvmppc_set_msr_hv, 6355 .vcpu_run = kvmppc_vcpu_run_hv, 6356 .vcpu_create = kvmppc_core_vcpu_create_hv, 6357 .vcpu_free = kvmppc_core_vcpu_free_hv, 6358 .check_requests = kvmppc_core_check_requests_hv, 6359 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 6360 .flush_memslot = kvmppc_core_flush_memslot_hv, 6361 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 6362 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 6363 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 6364 .age_gfn = kvm_age_gfn_hv, 6365 .test_age_gfn = kvm_test_age_gfn_hv, 6366 .set_spte_gfn = kvm_set_spte_gfn_hv, 6367 .free_memslot = kvmppc_core_free_memslot_hv, 6368 .init_vm = kvmppc_core_init_vm_hv, 6369 .destroy_vm = kvmppc_core_destroy_vm_hv, 6370 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 6371 .emulate_op = kvmppc_core_emulate_op_hv, 6372 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 6373 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 6374 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 6375 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 6376 .hcall_implemented = kvmppc_hcall_impl_hv, 6377 #ifdef CONFIG_KVM_XICS 6378 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 6379 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 6380 #endif 6381 .configure_mmu = kvmhv_configure_mmu, 6382 .get_rmmu_info = kvmhv_get_rmmu_info, 6383 .set_smt_mode = kvmhv_set_smt_mode, 6384 .enable_nested = kvmhv_enable_nested, 6385 .load_from_eaddr = kvmhv_load_from_eaddr, 6386 .store_to_eaddr = kvmhv_store_to_eaddr, 6387 .enable_svm = kvmhv_enable_svm, 6388 .svm_off = kvmhv_svm_off, 6389 .enable_dawr1 = kvmhv_enable_dawr1, 6390 .hash_v3_possible = kvmppc_hash_v3_possible, 6391 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv, 6392 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv, 6393 }; 6394 6395 static int kvm_init_subcore_bitmap(void) 6396 { 6397 int i, j; 6398 int nr_cores = cpu_nr_cores(); 6399 struct sibling_subcore_state *sibling_subcore_state; 6400 6401 for (i = 0; i < nr_cores; i++) { 6402 int first_cpu = i * threads_per_core; 6403 int node = cpu_to_node(first_cpu); 6404 6405 /* Ignore if it is already allocated. */ 6406 if (paca_ptrs[first_cpu]->sibling_subcore_state) 6407 continue; 6408 6409 sibling_subcore_state = 6410 kzalloc_node(sizeof(struct sibling_subcore_state), 6411 GFP_KERNEL, node); 6412 if (!sibling_subcore_state) 6413 return -ENOMEM; 6414 6415 6416 for (j = 0; j < threads_per_core; j++) { 6417 int cpu = first_cpu + j; 6418 6419 paca_ptrs[cpu]->sibling_subcore_state = 6420 sibling_subcore_state; 6421 } 6422 } 6423 return 0; 6424 } 6425 6426 static int kvmppc_radix_possible(void) 6427 { 6428 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 6429 } 6430 6431 static int kvmppc_book3s_init_hv(void) 6432 { 6433 int r; 6434 6435 if (!tlbie_capable) { 6436 pr_err("KVM-HV: Host does not support TLBIE\n"); 6437 return -ENODEV; 6438 } 6439 6440 /* 6441 * FIXME!! Do we need to check on all cpus ? 6442 */ 6443 r = kvmppc_core_check_processor_compat_hv(); 6444 if (r < 0) 6445 return -ENODEV; 6446 6447 r = kvmhv_nested_init(); 6448 if (r) 6449 return r; 6450 6451 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 6452 r = kvm_init_subcore_bitmap(); 6453 if (r) 6454 goto err; 6455 } 6456 6457 /* 6458 * We need a way of accessing the XICS interrupt controller, 6459 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 6460 * indirectly, via OPAL. 6461 */ 6462 #ifdef CONFIG_SMP 6463 if (!xics_on_xive() && !kvmhv_on_pseries() && 6464 !local_paca->kvm_hstate.xics_phys) { 6465 struct device_node *np; 6466 6467 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 6468 if (!np) { 6469 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 6470 r = -ENODEV; 6471 goto err; 6472 } 6473 /* presence of intc confirmed - node can be dropped again */ 6474 of_node_put(np); 6475 } 6476 #endif 6477 6478 init_default_hcalls(); 6479 6480 init_vcore_lists(); 6481 6482 r = kvmppc_mmu_hv_init(); 6483 if (r) 6484 goto err; 6485 6486 if (kvmppc_radix_possible()) { 6487 r = kvmppc_radix_init(); 6488 if (r) 6489 goto err; 6490 } 6491 6492 r = kvmppc_uvmem_init(); 6493 if (r < 0) { 6494 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 6495 return r; 6496 } 6497 6498 kvm_ops_hv.owner = THIS_MODULE; 6499 kvmppc_hv_ops = &kvm_ops_hv; 6500 6501 return 0; 6502 6503 err: 6504 kvmhv_nested_exit(); 6505 kvmppc_radix_exit(); 6506 6507 return r; 6508 } 6509 6510 static void kvmppc_book3s_exit_hv(void) 6511 { 6512 kvmppc_uvmem_free(); 6513 kvmppc_free_host_rm_ops(); 6514 if (kvmppc_radix_possible()) 6515 kvmppc_radix_exit(); 6516 kvmppc_hv_ops = NULL; 6517 kvmhv_nested_exit(); 6518 } 6519 6520 module_init(kvmppc_book3s_init_hv); 6521 module_exit(kvmppc_book3s_exit_hv); 6522 MODULE_LICENSE("GPL"); 6523 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6524 MODULE_ALIAS("devname:kvm"); 6525