1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 #include <linux/irqdomain.h> 46 #include <linux/smp.h> 47 48 #include <asm/ftrace.h> 49 #include <asm/reg.h> 50 #include <asm/ppc-opcode.h> 51 #include <asm/asm-prototypes.h> 52 #include <asm/archrandom.h> 53 #include <asm/debug.h> 54 #include <asm/disassemble.h> 55 #include <asm/cputable.h> 56 #include <asm/cacheflush.h> 57 #include <linux/uaccess.h> 58 #include <asm/interrupt.h> 59 #include <asm/io.h> 60 #include <asm/kvm_ppc.h> 61 #include <asm/kvm_book3s.h> 62 #include <asm/mmu_context.h> 63 #include <asm/lppaca.h> 64 #include <asm/pmc.h> 65 #include <asm/processor.h> 66 #include <asm/cputhreads.h> 67 #include <asm/page.h> 68 #include <asm/hvcall.h> 69 #include <asm/switch_to.h> 70 #include <asm/smp.h> 71 #include <asm/dbell.h> 72 #include <asm/hmi.h> 73 #include <asm/pnv-pci.h> 74 #include <asm/mmu.h> 75 #include <asm/opal.h> 76 #include <asm/xics.h> 77 #include <asm/xive.h> 78 #include <asm/hw_breakpoint.h> 79 #include <asm/kvm_book3s_uvmem.h> 80 #include <asm/ultravisor.h> 81 #include <asm/dtl.h> 82 #include <asm/plpar_wrappers.h> 83 84 #include <trace/events/ipi.h> 85 86 #include "book3s.h" 87 #include "book3s_hv.h" 88 89 #define CREATE_TRACE_POINTS 90 #include "trace_hv.h" 91 92 /* #define EXIT_DEBUG */ 93 /* #define EXIT_DEBUG_SIMPLE */ 94 /* #define EXIT_DEBUG_INT */ 95 96 /* Used to indicate that a guest page fault needs to be handled */ 97 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 98 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 99 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 100 101 /* Used as a "null" value for timebase values */ 102 #define TB_NIL (~(u64)0) 103 104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 105 106 static int dynamic_mt_modes = 6; 107 module_param(dynamic_mt_modes, int, 0644); 108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 109 static int target_smt_mode; 110 module_param(target_smt_mode, int, 0644); 111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 112 113 static bool one_vm_per_core; 114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 116 117 #ifdef CONFIG_KVM_XICS 118 static const struct kernel_param_ops module_param_ops = { 119 .set = param_set_int, 120 .get = param_get_int, 121 }; 122 123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 125 126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 128 #endif 129 130 /* If set, guests are allowed to create and control nested guests */ 131 static bool nested = true; 132 module_param(nested, bool, S_IRUGO | S_IWUSR); 133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 134 135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 136 137 /* 138 * RWMR values for POWER8. These control the rate at which PURR 139 * and SPURR count and should be set according to the number of 140 * online threads in the vcore being run. 141 */ 142 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 143 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 144 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 146 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 150 151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 152 RWMR_RPA_P8_1THREAD, 153 RWMR_RPA_P8_1THREAD, 154 RWMR_RPA_P8_2THREAD, 155 RWMR_RPA_P8_3THREAD, 156 RWMR_RPA_P8_4THREAD, 157 RWMR_RPA_P8_5THREAD, 158 RWMR_RPA_P8_6THREAD, 159 RWMR_RPA_P8_7THREAD, 160 RWMR_RPA_P8_8THREAD, 161 }; 162 163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 164 int *ip) 165 { 166 int i = *ip; 167 struct kvm_vcpu *vcpu; 168 169 while (++i < MAX_SMT_THREADS) { 170 vcpu = READ_ONCE(vc->runnable_threads[i]); 171 if (vcpu) { 172 *ip = i; 173 return vcpu; 174 } 175 } 176 return NULL; 177 } 178 179 /* Used to traverse the list of runnable threads for a given vcore */ 180 #define for_each_runnable_thread(i, vcpu, vc) \ 181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 182 183 static bool kvmppc_ipi_thread(int cpu) 184 { 185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 186 187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 188 if (kvmhv_on_pseries()) 189 return false; 190 191 /* On POWER9 we can use msgsnd to IPI any cpu */ 192 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 193 msg |= get_hard_smp_processor_id(cpu); 194 smp_mb(); 195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 196 return true; 197 } 198 199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 201 preempt_disable(); 202 if (cpu_first_thread_sibling(cpu) == 203 cpu_first_thread_sibling(smp_processor_id())) { 204 msg |= cpu_thread_in_core(cpu); 205 smp_mb(); 206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 207 preempt_enable(); 208 return true; 209 } 210 preempt_enable(); 211 } 212 213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 214 if (cpu >= 0 && cpu < nr_cpu_ids) { 215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 216 xics_wake_cpu(cpu); 217 return true; 218 } 219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 220 return true; 221 } 222 #endif 223 224 return false; 225 } 226 227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 228 { 229 int cpu; 230 struct rcuwait *waitp; 231 232 /* 233 * rcuwait_wake_up contains smp_mb() which orders prior stores that 234 * create pending work vs below loads of cpu fields. The other side 235 * is the barrier in vcpu run that orders setting the cpu fields vs 236 * testing for pending work. 237 */ 238 239 waitp = kvm_arch_vcpu_get_wait(vcpu); 240 if (rcuwait_wake_up(waitp)) 241 ++vcpu->stat.generic.halt_wakeup; 242 243 cpu = READ_ONCE(vcpu->arch.thread_cpu); 244 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 245 return; 246 247 /* CPU points to the first thread of the core */ 248 cpu = vcpu->cpu; 249 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 250 smp_send_reschedule(cpu); 251 } 252 253 /* 254 * We use the vcpu_load/put functions to measure stolen time. 255 * 256 * Stolen time is counted as time when either the vcpu is able to 257 * run as part of a virtual core, but the task running the vcore 258 * is preempted or sleeping, or when the vcpu needs something done 259 * in the kernel by the task running the vcpu, but that task is 260 * preempted or sleeping. Those two things have to be counted 261 * separately, since one of the vcpu tasks will take on the job 262 * of running the core, and the other vcpu tasks in the vcore will 263 * sleep waiting for it to do that, but that sleep shouldn't count 264 * as stolen time. 265 * 266 * Hence we accumulate stolen time when the vcpu can run as part of 267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 268 * needs its task to do other things in the kernel (for example, 269 * service a page fault) in busy_stolen. We don't accumulate 270 * stolen time for a vcore when it is inactive, or for a vcpu 271 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 272 * a misnomer; it means that the vcpu task is not executing in 273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 274 * the kernel. We don't have any way of dividing up that time 275 * between time that the vcpu is genuinely stopped, time that 276 * the task is actively working on behalf of the vcpu, and time 277 * that the task is preempted, so we don't count any of it as 278 * stolen. 279 * 280 * Updates to busy_stolen are protected by arch.tbacct_lock; 281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 282 * lock. The stolen times are measured in units of timebase ticks. 283 * (Note that the != TB_NIL checks below are purely defensive; 284 * they should never fail.) 285 * 286 * The POWER9 path is simpler, one vcpu per virtual core so the 287 * former case does not exist. If a vcpu is preempted when it is 288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate 289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible 290 * state in the P9 path. 291 */ 292 293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb) 294 { 295 unsigned long flags; 296 297 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 298 299 spin_lock_irqsave(&vc->stoltb_lock, flags); 300 vc->preempt_tb = tb; 301 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 302 } 303 304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb) 305 { 306 unsigned long flags; 307 308 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 309 310 spin_lock_irqsave(&vc->stoltb_lock, flags); 311 if (vc->preempt_tb != TB_NIL) { 312 vc->stolen_tb += tb - vc->preempt_tb; 313 vc->preempt_tb = TB_NIL; 314 } 315 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 316 } 317 318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 319 { 320 struct kvmppc_vcore *vc = vcpu->arch.vcore; 321 unsigned long flags; 322 u64 now; 323 324 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 325 if (vcpu->arch.busy_preempt != TB_NIL) { 326 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST); 327 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt; 328 vcpu->arch.busy_preempt = TB_NIL; 329 } 330 return; 331 } 332 333 now = mftb(); 334 335 /* 336 * We can test vc->runner without taking the vcore lock, 337 * because only this task ever sets vc->runner to this 338 * vcpu, and once it is set to this vcpu, only this task 339 * ever sets it to NULL. 340 */ 341 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 342 kvmppc_core_end_stolen(vc, now); 343 344 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 345 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 346 vcpu->arch.busy_preempt != TB_NIL) { 347 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt; 348 vcpu->arch.busy_preempt = TB_NIL; 349 } 350 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 351 } 352 353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 354 { 355 struct kvmppc_vcore *vc = vcpu->arch.vcore; 356 unsigned long flags; 357 u64 now; 358 359 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 360 /* 361 * In the P9 path, RUNNABLE is not preemptible 362 * (nor takes host interrupts) 363 */ 364 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE); 365 /* 366 * Account stolen time when preempted while the vcpu task is 367 * running in the kernel (but not in qemu, which is INACTIVE). 368 */ 369 if (task_is_running(current) && 370 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 371 vcpu->arch.busy_preempt = mftb(); 372 return; 373 } 374 375 now = mftb(); 376 377 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 378 kvmppc_core_start_stolen(vc, now); 379 380 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 381 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 382 vcpu->arch.busy_preempt = now; 383 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 384 } 385 386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 387 { 388 vcpu->arch.pvr = pvr; 389 } 390 391 /* Dummy value used in computing PCR value below */ 392 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 393 394 static inline unsigned long map_pcr_to_cap(unsigned long pcr) 395 { 396 unsigned long cap = 0; 397 398 switch (pcr) { 399 case PCR_ARCH_300: 400 cap = H_GUEST_CAP_POWER9; 401 break; 402 case PCR_ARCH_31: 403 cap = H_GUEST_CAP_POWER10; 404 break; 405 default: 406 break; 407 } 408 409 return cap; 410 } 411 412 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 413 { 414 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0; 415 struct kvmppc_vcore *vc = vcpu->arch.vcore; 416 417 /* We can (emulate) our own architecture version and anything older */ 418 if (cpu_has_feature(CPU_FTR_ARCH_31)) 419 host_pcr_bit = PCR_ARCH_31; 420 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 421 host_pcr_bit = PCR_ARCH_300; 422 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 423 host_pcr_bit = PCR_ARCH_207; 424 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 425 host_pcr_bit = PCR_ARCH_206; 426 else 427 host_pcr_bit = PCR_ARCH_205; 428 429 /* Determine lowest PCR bit needed to run guest in given PVR level */ 430 guest_pcr_bit = host_pcr_bit; 431 if (arch_compat) { 432 switch (arch_compat) { 433 case PVR_ARCH_205: 434 guest_pcr_bit = PCR_ARCH_205; 435 break; 436 case PVR_ARCH_206: 437 case PVR_ARCH_206p: 438 guest_pcr_bit = PCR_ARCH_206; 439 break; 440 case PVR_ARCH_207: 441 guest_pcr_bit = PCR_ARCH_207; 442 break; 443 case PVR_ARCH_300: 444 guest_pcr_bit = PCR_ARCH_300; 445 break; 446 case PVR_ARCH_31: 447 case PVR_ARCH_31_P11: 448 guest_pcr_bit = PCR_ARCH_31; 449 break; 450 default: 451 return -EINVAL; 452 } 453 } 454 455 /* Check requested PCR bits don't exceed our capabilities */ 456 if (guest_pcr_bit > host_pcr_bit) 457 return -EINVAL; 458 459 if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) { 460 /* 461 * 'arch_compat == 0' would mean the guest should default to 462 * L1's compatibility. In this case, the guest would pick 463 * host's PCR and evaluate the corresponding capabilities. 464 */ 465 cap = map_pcr_to_cap(guest_pcr_bit); 466 if (!(cap & nested_capabilities)) 467 return -EINVAL; 468 } 469 470 spin_lock(&vc->lock); 471 vc->arch_compat = arch_compat; 472 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR); 473 /* 474 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 475 * Also set all reserved PCR bits 476 */ 477 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 478 spin_unlock(&vc->lock); 479 480 return 0; 481 } 482 483 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 484 { 485 int r; 486 487 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 488 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 489 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 490 for (r = 0; r < 16; ++r) 491 pr_err("r%2d = %.16lx r%d = %.16lx\n", 492 r, kvmppc_get_gpr(vcpu, r), 493 r+16, kvmppc_get_gpr(vcpu, r+16)); 494 pr_err("ctr = %.16lx lr = %.16lx\n", 495 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 496 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 497 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 498 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 499 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 500 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 501 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 502 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 503 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 504 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 505 pr_err("fault dar = %.16lx dsisr = %.8x\n", 506 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 507 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 508 for (r = 0; r < vcpu->arch.slb_max; ++r) 509 pr_err(" ESID = %.16llx VSID = %.16llx\n", 510 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 511 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n", 512 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 513 vcpu->arch.last_inst); 514 } 515 516 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 517 { 518 return kvm_get_vcpu_by_id(kvm, id); 519 } 520 521 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 522 { 523 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 524 vpa->yield_count = cpu_to_be32(1); 525 } 526 527 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 528 unsigned long addr, unsigned long len) 529 { 530 /* check address is cacheline aligned */ 531 if (addr & (L1_CACHE_BYTES - 1)) 532 return -EINVAL; 533 spin_lock(&vcpu->arch.vpa_update_lock); 534 if (v->next_gpa != addr || v->len != len) { 535 v->next_gpa = addr; 536 v->len = addr ? len : 0; 537 v->update_pending = 1; 538 } 539 spin_unlock(&vcpu->arch.vpa_update_lock); 540 return 0; 541 } 542 543 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 544 struct reg_vpa { 545 u32 dummy; 546 union { 547 __be16 hword; 548 __be32 word; 549 } length; 550 }; 551 552 static int vpa_is_registered(struct kvmppc_vpa *vpap) 553 { 554 if (vpap->update_pending) 555 return vpap->next_gpa != 0; 556 return vpap->pinned_addr != NULL; 557 } 558 559 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 560 unsigned long flags, 561 unsigned long vcpuid, unsigned long vpa) 562 { 563 struct kvm *kvm = vcpu->kvm; 564 unsigned long len, nb; 565 void *va; 566 struct kvm_vcpu *tvcpu; 567 int err; 568 int subfunc; 569 struct kvmppc_vpa *vpap; 570 571 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 572 if (!tvcpu) 573 return H_PARAMETER; 574 575 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 576 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 577 subfunc == H_VPA_REG_SLB) { 578 /* Registering new area - address must be cache-line aligned */ 579 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 580 return H_PARAMETER; 581 582 /* convert logical addr to kernel addr and read length */ 583 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 584 if (va == NULL) 585 return H_PARAMETER; 586 if (subfunc == H_VPA_REG_VPA) 587 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 588 else 589 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 590 kvmppc_unpin_guest_page(kvm, va, vpa, false); 591 592 /* Check length */ 593 if (len > nb || len < sizeof(struct reg_vpa)) 594 return H_PARAMETER; 595 } else { 596 vpa = 0; 597 len = 0; 598 } 599 600 err = H_PARAMETER; 601 vpap = NULL; 602 spin_lock(&tvcpu->arch.vpa_update_lock); 603 604 switch (subfunc) { 605 case H_VPA_REG_VPA: /* register VPA */ 606 /* 607 * The size of our lppaca is 1kB because of the way we align 608 * it for the guest to avoid crossing a 4kB boundary. We only 609 * use 640 bytes of the structure though, so we should accept 610 * clients that set a size of 640. 611 */ 612 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 613 if (len < sizeof(struct lppaca)) 614 break; 615 vpap = &tvcpu->arch.vpa; 616 err = 0; 617 break; 618 619 case H_VPA_REG_DTL: /* register DTL */ 620 if (len < sizeof(struct dtl_entry)) 621 break; 622 len -= len % sizeof(struct dtl_entry); 623 624 /* Check that they have previously registered a VPA */ 625 err = H_RESOURCE; 626 if (!vpa_is_registered(&tvcpu->arch.vpa)) 627 break; 628 629 vpap = &tvcpu->arch.dtl; 630 err = 0; 631 break; 632 633 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 634 /* Check that they have previously registered a VPA */ 635 err = H_RESOURCE; 636 if (!vpa_is_registered(&tvcpu->arch.vpa)) 637 break; 638 639 vpap = &tvcpu->arch.slb_shadow; 640 err = 0; 641 break; 642 643 case H_VPA_DEREG_VPA: /* deregister VPA */ 644 /* Check they don't still have a DTL or SLB buf registered */ 645 err = H_RESOURCE; 646 if (vpa_is_registered(&tvcpu->arch.dtl) || 647 vpa_is_registered(&tvcpu->arch.slb_shadow)) 648 break; 649 650 vpap = &tvcpu->arch.vpa; 651 err = 0; 652 break; 653 654 case H_VPA_DEREG_DTL: /* deregister DTL */ 655 vpap = &tvcpu->arch.dtl; 656 err = 0; 657 break; 658 659 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 660 vpap = &tvcpu->arch.slb_shadow; 661 err = 0; 662 break; 663 } 664 665 if (vpap) { 666 vpap->next_gpa = vpa; 667 vpap->len = len; 668 vpap->update_pending = 1; 669 } 670 671 spin_unlock(&tvcpu->arch.vpa_update_lock); 672 673 return err; 674 } 675 676 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap, 677 struct kvmppc_vpa *old_vpap) 678 { 679 struct kvm *kvm = vcpu->kvm; 680 void *va; 681 unsigned long nb; 682 unsigned long gpa; 683 684 /* 685 * We need to pin the page pointed to by vpap->next_gpa, 686 * but we can't call kvmppc_pin_guest_page under the lock 687 * as it does get_user_pages() and down_read(). So we 688 * have to drop the lock, pin the page, then get the lock 689 * again and check that a new area didn't get registered 690 * in the meantime. 691 */ 692 for (;;) { 693 gpa = vpap->next_gpa; 694 spin_unlock(&vcpu->arch.vpa_update_lock); 695 va = NULL; 696 nb = 0; 697 if (gpa) 698 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 699 spin_lock(&vcpu->arch.vpa_update_lock); 700 if (gpa == vpap->next_gpa) 701 break; 702 /* sigh... unpin that one and try again */ 703 if (va) 704 kvmppc_unpin_guest_page(kvm, va, gpa, false); 705 } 706 707 vpap->update_pending = 0; 708 if (va && nb < vpap->len) { 709 /* 710 * If it's now too short, it must be that userspace 711 * has changed the mappings underlying guest memory, 712 * so unregister the region. 713 */ 714 kvmppc_unpin_guest_page(kvm, va, gpa, false); 715 va = NULL; 716 } 717 *old_vpap = *vpap; 718 719 vpap->gpa = gpa; 720 vpap->pinned_addr = va; 721 vpap->dirty = false; 722 if (va) 723 vpap->pinned_end = va + vpap->len; 724 } 725 726 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 727 { 728 struct kvm *kvm = vcpu->kvm; 729 struct kvmppc_vpa old_vpa = { 0 }; 730 731 if (!(vcpu->arch.vpa.update_pending || 732 vcpu->arch.slb_shadow.update_pending || 733 vcpu->arch.dtl.update_pending)) 734 return; 735 736 spin_lock(&vcpu->arch.vpa_update_lock); 737 if (vcpu->arch.vpa.update_pending) { 738 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa, &old_vpa); 739 if (old_vpa.pinned_addr) { 740 if (kvmhv_is_nestedv2()) 741 kvmhv_nestedv2_set_vpa(vcpu, ~0ull); 742 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 743 old_vpa.dirty); 744 } 745 if (vcpu->arch.vpa.pinned_addr) { 746 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 747 if (kvmhv_is_nestedv2()) 748 kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr)); 749 } 750 } 751 if (vcpu->arch.dtl.update_pending) { 752 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl, &old_vpa); 753 if (old_vpa.pinned_addr) 754 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 755 old_vpa.dirty); 756 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 757 vcpu->arch.dtl_index = 0; 758 } 759 if (vcpu->arch.slb_shadow.update_pending) { 760 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow, &old_vpa); 761 if (old_vpa.pinned_addr) 762 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 763 old_vpa.dirty); 764 } 765 766 spin_unlock(&vcpu->arch.vpa_update_lock); 767 } 768 769 /* 770 * Return the accumulated stolen time for the vcore up until `now'. 771 * The caller should hold the vcore lock. 772 */ 773 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 774 { 775 u64 p; 776 unsigned long flags; 777 778 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 779 780 spin_lock_irqsave(&vc->stoltb_lock, flags); 781 p = vc->stolen_tb; 782 if (vc->vcore_state != VCORE_INACTIVE && 783 vc->preempt_tb != TB_NIL) 784 p += now - vc->preempt_tb; 785 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 786 return p; 787 } 788 789 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 790 struct lppaca *vpa, 791 unsigned int pcpu, u64 now, 792 unsigned long stolen) 793 { 794 struct dtl_entry *dt; 795 796 dt = vcpu->arch.dtl_ptr; 797 798 if (!dt) 799 return; 800 801 dt->dispatch_reason = 7; 802 dt->preempt_reason = 0; 803 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid); 804 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 805 dt->ready_to_enqueue_time = 0; 806 dt->waiting_to_ready_time = 0; 807 dt->timebase = cpu_to_be64(now); 808 dt->fault_addr = 0; 809 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 810 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 811 812 ++dt; 813 if (dt == vcpu->arch.dtl.pinned_end) 814 dt = vcpu->arch.dtl.pinned_addr; 815 vcpu->arch.dtl_ptr = dt; 816 /* order writing *dt vs. writing vpa->dtl_idx */ 817 smp_wmb(); 818 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 819 820 /* vcpu->arch.dtl.dirty is set by the caller */ 821 } 822 823 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu, 824 struct kvmppc_vcore *vc) 825 { 826 struct lppaca *vpa; 827 unsigned long stolen; 828 unsigned long core_stolen; 829 u64 now; 830 unsigned long flags; 831 832 vpa = vcpu->arch.vpa.pinned_addr; 833 if (!vpa) 834 return; 835 836 now = mftb(); 837 838 core_stolen = vcore_stolen_time(vc, now); 839 stolen = core_stolen - vcpu->arch.stolen_logged; 840 vcpu->arch.stolen_logged = core_stolen; 841 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 842 stolen += vcpu->arch.busy_stolen; 843 vcpu->arch.busy_stolen = 0; 844 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 845 846 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen); 847 848 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen); 849 850 vcpu->arch.vpa.dirty = true; 851 } 852 853 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu, 854 struct kvmppc_vcore *vc, 855 u64 now) 856 { 857 struct lppaca *vpa; 858 unsigned long stolen; 859 unsigned long stolen_delta; 860 861 vpa = vcpu->arch.vpa.pinned_addr; 862 if (!vpa) 863 return; 864 865 stolen = vc->stolen_tb; 866 stolen_delta = stolen - vcpu->arch.stolen_logged; 867 vcpu->arch.stolen_logged = stolen; 868 869 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen); 870 871 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta); 872 873 vcpu->arch.vpa.dirty = true; 874 } 875 876 /* See if there is a doorbell interrupt pending for a vcpu */ 877 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 878 { 879 int thr; 880 struct kvmppc_vcore *vc; 881 882 if (vcpu->arch.doorbell_request) 883 return true; 884 if (cpu_has_feature(CPU_FTR_ARCH_300)) 885 return false; 886 /* 887 * Ensure that the read of vcore->dpdes comes after the read 888 * of vcpu->doorbell_request. This barrier matches the 889 * smp_wmb() in kvmppc_guest_entry_inject(). 890 */ 891 smp_rmb(); 892 vc = vcpu->arch.vcore; 893 thr = vcpu->vcpu_id - vc->first_vcpuid; 894 return !!(vc->dpdes & (1 << thr)); 895 } 896 897 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 898 { 899 if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207) 900 return true; 901 if ((!kvmppc_get_arch_compat(vcpu)) && 902 cpu_has_feature(CPU_FTR_ARCH_207S)) 903 return true; 904 return false; 905 } 906 907 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 908 unsigned long resource, unsigned long value1, 909 unsigned long value2) 910 { 911 switch (resource) { 912 case H_SET_MODE_RESOURCE_SET_CIABR: 913 if (!kvmppc_power8_compatible(vcpu)) 914 return H_P2; 915 if (value2) 916 return H_P4; 917 if (mflags) 918 return H_UNSUPPORTED_FLAG_START; 919 /* Guests can't breakpoint the hypervisor */ 920 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 921 return H_P3; 922 kvmppc_set_ciabr_hv(vcpu, value1); 923 return H_SUCCESS; 924 case H_SET_MODE_RESOURCE_SET_DAWR0: 925 if (!kvmppc_power8_compatible(vcpu)) 926 return H_P2; 927 if (!ppc_breakpoint_available()) 928 return H_P2; 929 if (mflags) 930 return H_UNSUPPORTED_FLAG_START; 931 if (value2 & DABRX_HYP) 932 return H_P4; 933 kvmppc_set_dawr0_hv(vcpu, value1); 934 kvmppc_set_dawrx0_hv(vcpu, value2); 935 return H_SUCCESS; 936 case H_SET_MODE_RESOURCE_SET_DAWR1: 937 if (!kvmppc_power8_compatible(vcpu)) 938 return H_P2; 939 if (!ppc_breakpoint_available()) 940 return H_P2; 941 if (!cpu_has_feature(CPU_FTR_DAWR1)) 942 return H_P2; 943 if (!vcpu->kvm->arch.dawr1_enabled) 944 return H_FUNCTION; 945 if (mflags) 946 return H_UNSUPPORTED_FLAG_START; 947 if (value2 & DABRX_HYP) 948 return H_P4; 949 kvmppc_set_dawr1_hv(vcpu, value1); 950 kvmppc_set_dawrx1_hv(vcpu, value2); 951 return H_SUCCESS; 952 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 953 /* 954 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 955 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 956 */ 957 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 958 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 959 return H_UNSUPPORTED_FLAG_START; 960 return H_TOO_HARD; 961 default: 962 return H_TOO_HARD; 963 } 964 } 965 966 /* Copy guest memory in place - must reside within a single memslot */ 967 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 968 unsigned long len) 969 { 970 struct kvm_memory_slot *to_memslot = NULL; 971 struct kvm_memory_slot *from_memslot = NULL; 972 unsigned long to_addr, from_addr; 973 int r; 974 975 /* Get HPA for from address */ 976 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 977 if (!from_memslot) 978 return -EFAULT; 979 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 980 << PAGE_SHIFT)) 981 return -EINVAL; 982 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 983 if (kvm_is_error_hva(from_addr)) 984 return -EFAULT; 985 from_addr |= (from & (PAGE_SIZE - 1)); 986 987 /* Get HPA for to address */ 988 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 989 if (!to_memslot) 990 return -EFAULT; 991 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 992 << PAGE_SHIFT)) 993 return -EINVAL; 994 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 995 if (kvm_is_error_hva(to_addr)) 996 return -EFAULT; 997 to_addr |= (to & (PAGE_SIZE - 1)); 998 999 /* Perform copy */ 1000 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 1001 len); 1002 if (r) 1003 return -EFAULT; 1004 mark_page_dirty(kvm, to >> PAGE_SHIFT); 1005 return 0; 1006 } 1007 1008 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 1009 unsigned long dest, unsigned long src) 1010 { 1011 u64 pg_sz = SZ_4K; /* 4K page size */ 1012 u64 pg_mask = SZ_4K - 1; 1013 int ret; 1014 1015 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 1016 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 1017 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 1018 return H_PARAMETER; 1019 1020 /* dest (and src if copy_page flag set) must be page aligned */ 1021 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 1022 return H_PARAMETER; 1023 1024 /* zero and/or copy the page as determined by the flags */ 1025 if (flags & H_COPY_PAGE) { 1026 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 1027 if (ret < 0) 1028 return H_PARAMETER; 1029 } else if (flags & H_ZERO_PAGE) { 1030 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 1031 if (ret < 0) 1032 return H_PARAMETER; 1033 } 1034 1035 /* We can ignore the remaining flags */ 1036 1037 return H_SUCCESS; 1038 } 1039 1040 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 1041 { 1042 struct kvmppc_vcore *vcore = target->arch.vcore; 1043 1044 /* 1045 * We expect to have been called by the real mode handler 1046 * (kvmppc_rm_h_confer()) which would have directly returned 1047 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 1048 * have useful work to do and should not confer) so we don't 1049 * recheck that here. 1050 * 1051 * In the case of the P9 single vcpu per vcore case, the real 1052 * mode handler is not called but no other threads are in the 1053 * source vcore. 1054 */ 1055 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1056 spin_lock(&vcore->lock); 1057 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 1058 vcore->vcore_state != VCORE_INACTIVE && 1059 vcore->runner) 1060 target = vcore->runner; 1061 spin_unlock(&vcore->lock); 1062 } 1063 1064 return kvm_vcpu_yield_to(target); 1065 } 1066 1067 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 1068 { 1069 int yield_count = 0; 1070 struct lppaca *lppaca; 1071 1072 spin_lock(&vcpu->arch.vpa_update_lock); 1073 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 1074 if (lppaca) 1075 yield_count = be32_to_cpu(lppaca->yield_count); 1076 spin_unlock(&vcpu->arch.vpa_update_lock); 1077 return yield_count; 1078 } 1079 1080 /* 1081 * H_RPT_INVALIDATE hcall handler for nested guests. 1082 * 1083 * Handles only nested process-scoped invalidation requests in L0. 1084 */ 1085 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) 1086 { 1087 unsigned long type = kvmppc_get_gpr(vcpu, 6); 1088 unsigned long pid, pg_sizes, start, end; 1089 1090 /* 1091 * The partition-scoped invalidations aren't handled here in L0. 1092 */ 1093 if (type & H_RPTI_TYPE_NESTED) 1094 return RESUME_HOST; 1095 1096 pid = kvmppc_get_gpr(vcpu, 4); 1097 pg_sizes = kvmppc_get_gpr(vcpu, 7); 1098 start = kvmppc_get_gpr(vcpu, 8); 1099 end = kvmppc_get_gpr(vcpu, 9); 1100 1101 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, 1102 type, pg_sizes, start, end); 1103 1104 kvmppc_set_gpr(vcpu, 3, H_SUCCESS); 1105 return RESUME_GUEST; 1106 } 1107 1108 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, 1109 unsigned long id, unsigned long target, 1110 unsigned long type, unsigned long pg_sizes, 1111 unsigned long start, unsigned long end) 1112 { 1113 if (!kvm_is_radix(vcpu->kvm)) 1114 return H_UNSUPPORTED; 1115 1116 if (end < start) 1117 return H_P5; 1118 1119 /* 1120 * Partition-scoped invalidation for nested guests. 1121 */ 1122 if (type & H_RPTI_TYPE_NESTED) { 1123 if (!nesting_enabled(vcpu->kvm)) 1124 return H_FUNCTION; 1125 1126 /* Support only cores as target */ 1127 if (target != H_RPTI_TARGET_CMMU) 1128 return H_P2; 1129 1130 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, 1131 start, end); 1132 } 1133 1134 /* 1135 * Process-scoped invalidation for L1 guests. 1136 */ 1137 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, 1138 type, pg_sizes, start, end); 1139 return H_SUCCESS; 1140 } 1141 1142 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 1143 { 1144 struct kvm *kvm = vcpu->kvm; 1145 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1146 unsigned long target, ret = H_SUCCESS; 1147 int yield_count; 1148 struct kvm_vcpu *tvcpu; 1149 int idx, rc; 1150 1151 if (req <= MAX_HCALL_OPCODE && 1152 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 1153 return RESUME_HOST; 1154 1155 switch (req) { 1156 case H_REMOVE: 1157 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 1158 kvmppc_get_gpr(vcpu, 5), 1159 kvmppc_get_gpr(vcpu, 6)); 1160 if (ret == H_TOO_HARD) 1161 return RESUME_HOST; 1162 break; 1163 case H_ENTER: 1164 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 1165 kvmppc_get_gpr(vcpu, 5), 1166 kvmppc_get_gpr(vcpu, 6), 1167 kvmppc_get_gpr(vcpu, 7)); 1168 if (ret == H_TOO_HARD) 1169 return RESUME_HOST; 1170 break; 1171 case H_READ: 1172 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 1173 kvmppc_get_gpr(vcpu, 5)); 1174 if (ret == H_TOO_HARD) 1175 return RESUME_HOST; 1176 break; 1177 case H_CLEAR_MOD: 1178 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 1179 kvmppc_get_gpr(vcpu, 5)); 1180 if (ret == H_TOO_HARD) 1181 return RESUME_HOST; 1182 break; 1183 case H_CLEAR_REF: 1184 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 1185 kvmppc_get_gpr(vcpu, 5)); 1186 if (ret == H_TOO_HARD) 1187 return RESUME_HOST; 1188 break; 1189 case H_PROTECT: 1190 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 1191 kvmppc_get_gpr(vcpu, 5), 1192 kvmppc_get_gpr(vcpu, 6)); 1193 if (ret == H_TOO_HARD) 1194 return RESUME_HOST; 1195 break; 1196 case H_BULK_REMOVE: 1197 ret = kvmppc_h_bulk_remove(vcpu); 1198 if (ret == H_TOO_HARD) 1199 return RESUME_HOST; 1200 break; 1201 1202 case H_CEDE: 1203 break; 1204 case H_PROD: 1205 target = kvmppc_get_gpr(vcpu, 4); 1206 tvcpu = kvmppc_find_vcpu(kvm, target); 1207 if (!tvcpu) { 1208 ret = H_PARAMETER; 1209 break; 1210 } 1211 tvcpu->arch.prodded = 1; 1212 smp_mb(); /* This orders prodded store vs ceded load */ 1213 if (tvcpu->arch.ceded) 1214 kvmppc_fast_vcpu_kick_hv(tvcpu); 1215 break; 1216 case H_CONFER: 1217 target = kvmppc_get_gpr(vcpu, 4); 1218 if (target == -1) 1219 break; 1220 tvcpu = kvmppc_find_vcpu(kvm, target); 1221 if (!tvcpu) { 1222 ret = H_PARAMETER; 1223 break; 1224 } 1225 yield_count = kvmppc_get_gpr(vcpu, 5); 1226 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1227 break; 1228 kvm_arch_vcpu_yield_to(tvcpu); 1229 break; 1230 case H_REGISTER_VPA: 1231 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1232 kvmppc_get_gpr(vcpu, 5), 1233 kvmppc_get_gpr(vcpu, 6)); 1234 break; 1235 case H_RTAS: 1236 if (list_empty(&kvm->arch.rtas_tokens)) 1237 return RESUME_HOST; 1238 1239 idx = srcu_read_lock(&kvm->srcu); 1240 rc = kvmppc_rtas_hcall(vcpu); 1241 srcu_read_unlock(&kvm->srcu, idx); 1242 1243 if (rc == -ENOENT) 1244 return RESUME_HOST; 1245 else if (rc == 0) 1246 break; 1247 1248 /* Send the error out to userspace via KVM_RUN */ 1249 return rc; 1250 case H_LOGICAL_CI_LOAD: 1251 ret = kvmppc_h_logical_ci_load(vcpu); 1252 if (ret == H_TOO_HARD) 1253 return RESUME_HOST; 1254 break; 1255 case H_LOGICAL_CI_STORE: 1256 ret = kvmppc_h_logical_ci_store(vcpu); 1257 if (ret == H_TOO_HARD) 1258 return RESUME_HOST; 1259 break; 1260 case H_SET_MODE: 1261 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1262 kvmppc_get_gpr(vcpu, 5), 1263 kvmppc_get_gpr(vcpu, 6), 1264 kvmppc_get_gpr(vcpu, 7)); 1265 if (ret == H_TOO_HARD) 1266 return RESUME_HOST; 1267 break; 1268 case H_XIRR: 1269 case H_CPPR: 1270 case H_EOI: 1271 case H_IPI: 1272 case H_IPOLL: 1273 case H_XIRR_X: 1274 if (kvmppc_xics_enabled(vcpu)) { 1275 if (xics_on_xive()) { 1276 ret = H_NOT_AVAILABLE; 1277 return RESUME_GUEST; 1278 } 1279 ret = kvmppc_xics_hcall(vcpu, req); 1280 break; 1281 } 1282 return RESUME_HOST; 1283 case H_SET_DABR: 1284 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1285 break; 1286 case H_SET_XDABR: 1287 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1288 kvmppc_get_gpr(vcpu, 5)); 1289 break; 1290 #ifdef CONFIG_SPAPR_TCE_IOMMU 1291 case H_GET_TCE: 1292 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1293 kvmppc_get_gpr(vcpu, 5)); 1294 if (ret == H_TOO_HARD) 1295 return RESUME_HOST; 1296 break; 1297 case H_PUT_TCE: 1298 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1299 kvmppc_get_gpr(vcpu, 5), 1300 kvmppc_get_gpr(vcpu, 6)); 1301 if (ret == H_TOO_HARD) 1302 return RESUME_HOST; 1303 break; 1304 case H_PUT_TCE_INDIRECT: 1305 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1306 kvmppc_get_gpr(vcpu, 5), 1307 kvmppc_get_gpr(vcpu, 6), 1308 kvmppc_get_gpr(vcpu, 7)); 1309 if (ret == H_TOO_HARD) 1310 return RESUME_HOST; 1311 break; 1312 case H_STUFF_TCE: 1313 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1314 kvmppc_get_gpr(vcpu, 5), 1315 kvmppc_get_gpr(vcpu, 6), 1316 kvmppc_get_gpr(vcpu, 7)); 1317 if (ret == H_TOO_HARD) 1318 return RESUME_HOST; 1319 break; 1320 #endif 1321 case H_RANDOM: { 1322 unsigned long rand; 1323 1324 if (!arch_get_random_seed_longs(&rand, 1)) 1325 ret = H_HARDWARE; 1326 kvmppc_set_gpr(vcpu, 4, rand); 1327 break; 1328 } 1329 case H_RPT_INVALIDATE: 1330 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), 1331 kvmppc_get_gpr(vcpu, 5), 1332 kvmppc_get_gpr(vcpu, 6), 1333 kvmppc_get_gpr(vcpu, 7), 1334 kvmppc_get_gpr(vcpu, 8), 1335 kvmppc_get_gpr(vcpu, 9)); 1336 break; 1337 1338 case H_SET_PARTITION_TABLE: 1339 ret = H_FUNCTION; 1340 if (nesting_enabled(kvm)) 1341 ret = kvmhv_set_partition_table(vcpu); 1342 break; 1343 case H_ENTER_NESTED: 1344 ret = H_FUNCTION; 1345 if (!nesting_enabled(kvm)) 1346 break; 1347 ret = kvmhv_enter_nested_guest(vcpu); 1348 if (ret == H_INTERRUPT) { 1349 kvmppc_set_gpr(vcpu, 3, 0); 1350 vcpu->arch.hcall_needed = 0; 1351 return -EINTR; 1352 } else if (ret == H_TOO_HARD) { 1353 kvmppc_set_gpr(vcpu, 3, 0); 1354 vcpu->arch.hcall_needed = 0; 1355 return RESUME_HOST; 1356 } 1357 break; 1358 case H_TLB_INVALIDATE: 1359 ret = H_FUNCTION; 1360 if (nesting_enabled(kvm)) 1361 ret = kvmhv_do_nested_tlbie(vcpu); 1362 break; 1363 case H_COPY_TOFROM_GUEST: 1364 ret = H_FUNCTION; 1365 if (nesting_enabled(kvm)) 1366 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1367 break; 1368 case H_PAGE_INIT: 1369 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1370 kvmppc_get_gpr(vcpu, 5), 1371 kvmppc_get_gpr(vcpu, 6)); 1372 break; 1373 case H_SVM_PAGE_IN: 1374 ret = H_UNSUPPORTED; 1375 if (kvmppc_get_srr1(vcpu) & MSR_S) 1376 ret = kvmppc_h_svm_page_in(kvm, 1377 kvmppc_get_gpr(vcpu, 4), 1378 kvmppc_get_gpr(vcpu, 5), 1379 kvmppc_get_gpr(vcpu, 6)); 1380 break; 1381 case H_SVM_PAGE_OUT: 1382 ret = H_UNSUPPORTED; 1383 if (kvmppc_get_srr1(vcpu) & MSR_S) 1384 ret = kvmppc_h_svm_page_out(kvm, 1385 kvmppc_get_gpr(vcpu, 4), 1386 kvmppc_get_gpr(vcpu, 5), 1387 kvmppc_get_gpr(vcpu, 6)); 1388 break; 1389 case H_SVM_INIT_START: 1390 ret = H_UNSUPPORTED; 1391 if (kvmppc_get_srr1(vcpu) & MSR_S) 1392 ret = kvmppc_h_svm_init_start(kvm); 1393 break; 1394 case H_SVM_INIT_DONE: 1395 ret = H_UNSUPPORTED; 1396 if (kvmppc_get_srr1(vcpu) & MSR_S) 1397 ret = kvmppc_h_svm_init_done(kvm); 1398 break; 1399 case H_SVM_INIT_ABORT: 1400 /* 1401 * Even if that call is made by the Ultravisor, the SSR1 value 1402 * is the guest context one, with the secure bit clear as it has 1403 * not yet been secured. So we can't check it here. 1404 * Instead the kvm->arch.secure_guest flag is checked inside 1405 * kvmppc_h_svm_init_abort(). 1406 */ 1407 ret = kvmppc_h_svm_init_abort(kvm); 1408 break; 1409 1410 default: 1411 return RESUME_HOST; 1412 } 1413 WARN_ON_ONCE(ret == H_TOO_HARD); 1414 kvmppc_set_gpr(vcpu, 3, ret); 1415 vcpu->arch.hcall_needed = 0; 1416 return RESUME_GUEST; 1417 } 1418 1419 /* 1420 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1421 * handlers in book3s_hv_rmhandlers.S. 1422 * 1423 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1424 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1425 */ 1426 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1427 { 1428 __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE); 1429 vcpu->arch.ceded = 1; 1430 smp_mb(); 1431 if (vcpu->arch.prodded) { 1432 vcpu->arch.prodded = 0; 1433 smp_mb(); 1434 vcpu->arch.ceded = 0; 1435 } 1436 } 1437 1438 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1439 { 1440 switch (cmd) { 1441 case H_CEDE: 1442 case H_PROD: 1443 case H_CONFER: 1444 case H_REGISTER_VPA: 1445 case H_SET_MODE: 1446 #ifdef CONFIG_SPAPR_TCE_IOMMU 1447 case H_GET_TCE: 1448 case H_PUT_TCE: 1449 case H_PUT_TCE_INDIRECT: 1450 case H_STUFF_TCE: 1451 #endif 1452 case H_LOGICAL_CI_LOAD: 1453 case H_LOGICAL_CI_STORE: 1454 #ifdef CONFIG_KVM_XICS 1455 case H_XIRR: 1456 case H_CPPR: 1457 case H_EOI: 1458 case H_IPI: 1459 case H_IPOLL: 1460 case H_XIRR_X: 1461 #endif 1462 case H_PAGE_INIT: 1463 case H_RPT_INVALIDATE: 1464 return 1; 1465 } 1466 1467 /* See if it's in the real-mode table */ 1468 return kvmppc_hcall_impl_hv_realmode(cmd); 1469 } 1470 1471 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1472 { 1473 ppc_inst_t last_inst; 1474 1475 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1476 EMULATE_DONE) { 1477 /* 1478 * Fetch failed, so return to guest and 1479 * try executing it again. 1480 */ 1481 return RESUME_GUEST; 1482 } 1483 1484 if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) { 1485 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1486 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1487 return RESUME_HOST; 1488 } else { 1489 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1490 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1491 return RESUME_GUEST; 1492 } 1493 } 1494 1495 static void do_nothing(void *x) 1496 { 1497 } 1498 1499 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1500 { 1501 int thr, cpu, pcpu, nthreads; 1502 struct kvm_vcpu *v; 1503 unsigned long dpdes; 1504 1505 nthreads = vcpu->kvm->arch.emul_smt_mode; 1506 dpdes = 0; 1507 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1508 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1509 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1510 if (!v) 1511 continue; 1512 /* 1513 * If the vcpu is currently running on a physical cpu thread, 1514 * interrupt it in order to pull it out of the guest briefly, 1515 * which will update its vcore->dpdes value. 1516 */ 1517 pcpu = READ_ONCE(v->cpu); 1518 if (pcpu >= 0) 1519 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1520 if (kvmppc_doorbell_pending(v)) 1521 dpdes |= 1 << thr; 1522 } 1523 return dpdes; 1524 } 1525 1526 /* 1527 * On POWER9, emulate doorbell-related instructions in order to 1528 * give the guest the illusion of running on a multi-threaded core. 1529 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1530 * and mfspr DPDES. 1531 */ 1532 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1533 { 1534 u32 inst, rb, thr; 1535 unsigned long arg; 1536 struct kvm *kvm = vcpu->kvm; 1537 struct kvm_vcpu *tvcpu; 1538 ppc_inst_t pinst; 1539 1540 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE) 1541 return RESUME_GUEST; 1542 inst = ppc_inst_val(pinst); 1543 if (get_op(inst) != 31) 1544 return EMULATE_FAIL; 1545 rb = get_rb(inst); 1546 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1547 switch (get_xop(inst)) { 1548 case OP_31_XOP_MSGSNDP: 1549 arg = kvmppc_get_gpr(vcpu, rb); 1550 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1551 break; 1552 arg &= 0x7f; 1553 if (arg >= kvm->arch.emul_smt_mode) 1554 break; 1555 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1556 if (!tvcpu) 1557 break; 1558 if (!tvcpu->arch.doorbell_request) { 1559 tvcpu->arch.doorbell_request = 1; 1560 kvmppc_fast_vcpu_kick_hv(tvcpu); 1561 } 1562 break; 1563 case OP_31_XOP_MSGCLRP: 1564 arg = kvmppc_get_gpr(vcpu, rb); 1565 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1566 break; 1567 vcpu->arch.vcore->dpdes = 0; 1568 vcpu->arch.doorbell_request = 0; 1569 break; 1570 case OP_31_XOP_MFSPR: 1571 switch (get_sprn(inst)) { 1572 case SPRN_TIR: 1573 arg = thr; 1574 break; 1575 case SPRN_DPDES: 1576 arg = kvmppc_read_dpdes(vcpu); 1577 break; 1578 default: 1579 return EMULATE_FAIL; 1580 } 1581 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1582 break; 1583 default: 1584 return EMULATE_FAIL; 1585 } 1586 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1587 return RESUME_GUEST; 1588 } 1589 1590 /* 1591 * If the lppaca had pmcregs_in_use clear when we exited the guest, then 1592 * HFSCR_PM is cleared for next entry. If the guest then tries to access 1593 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM 1594 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and 1595 * allow the guest access to continue. 1596 */ 1597 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu) 1598 { 1599 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM)) 1600 return EMULATE_FAIL; 1601 1602 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM); 1603 1604 return RESUME_GUEST; 1605 } 1606 1607 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu) 1608 { 1609 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB)) 1610 return EMULATE_FAIL; 1611 1612 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB); 1613 1614 return RESUME_GUEST; 1615 } 1616 1617 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu) 1618 { 1619 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM)) 1620 return EMULATE_FAIL; 1621 1622 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM); 1623 1624 return RESUME_GUEST; 1625 } 1626 1627 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1628 struct task_struct *tsk) 1629 { 1630 struct kvm_run *run = vcpu->run; 1631 int r = RESUME_HOST; 1632 1633 vcpu->stat.sum_exits++; 1634 1635 /* 1636 * This can happen if an interrupt occurs in the last stages 1637 * of guest entry or the first stages of guest exit (i.e. after 1638 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1639 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1640 * That can happen due to a bug, or due to a machine check 1641 * occurring at just the wrong time. 1642 */ 1643 if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) { 1644 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1645 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1646 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1647 vcpu->arch.shregs.msr); 1648 kvmppc_dump_regs(vcpu); 1649 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1650 run->hw.hardware_exit_reason = vcpu->arch.trap; 1651 return RESUME_HOST; 1652 } 1653 run->exit_reason = KVM_EXIT_UNKNOWN; 1654 run->ready_for_interrupt_injection = 1; 1655 switch (vcpu->arch.trap) { 1656 /* We're good on these - the host merely wanted to get our attention */ 1657 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1658 WARN_ON_ONCE(1); /* Should never happen */ 1659 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1660 fallthrough; 1661 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1662 vcpu->stat.dec_exits++; 1663 r = RESUME_GUEST; 1664 break; 1665 case BOOK3S_INTERRUPT_EXTERNAL: 1666 case BOOK3S_INTERRUPT_H_DOORBELL: 1667 case BOOK3S_INTERRUPT_H_VIRT: 1668 vcpu->stat.ext_intr_exits++; 1669 r = RESUME_GUEST; 1670 break; 1671 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1672 case BOOK3S_INTERRUPT_HMI: 1673 case BOOK3S_INTERRUPT_PERFMON: 1674 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1675 r = RESUME_GUEST; 1676 break; 1677 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1678 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1679 DEFAULT_RATELIMIT_BURST); 1680 /* 1681 * Print the MCE event to host console. Ratelimit so the guest 1682 * can't flood the host log. 1683 */ 1684 if (__ratelimit(&rs)) 1685 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1686 1687 /* 1688 * If the guest can do FWNMI, exit to userspace so it can 1689 * deliver a FWNMI to the guest. 1690 * Otherwise we synthesize a machine check for the guest 1691 * so that it knows that the machine check occurred. 1692 */ 1693 if (!vcpu->kvm->arch.fwnmi_enabled) { 1694 ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) | 1695 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1696 kvmppc_core_queue_machine_check(vcpu, flags); 1697 r = RESUME_GUEST; 1698 break; 1699 } 1700 1701 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1702 run->exit_reason = KVM_EXIT_NMI; 1703 run->hw.hardware_exit_reason = vcpu->arch.trap; 1704 /* Clear out the old NMI status from run->flags */ 1705 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1706 /* Now set the NMI status */ 1707 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1708 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1709 else 1710 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1711 1712 r = RESUME_HOST; 1713 break; 1714 } 1715 case BOOK3S_INTERRUPT_PROGRAM: 1716 { 1717 ulong flags; 1718 /* 1719 * Normally program interrupts are delivered directly 1720 * to the guest by the hardware, but we can get here 1721 * as a result of a hypervisor emulation interrupt 1722 * (e40) getting turned into a 700 by BML RTAS. 1723 */ 1724 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) | 1725 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1726 kvmppc_core_queue_program(vcpu, flags); 1727 r = RESUME_GUEST; 1728 break; 1729 } 1730 case BOOK3S_INTERRUPT_SYSCALL: 1731 { 1732 int i; 1733 1734 if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 1735 /* 1736 * Guest userspace executed sc 1. This can only be 1737 * reached by the P9 path because the old path 1738 * handles this case in realmode hcall handlers. 1739 */ 1740 if (!kvmhv_vcpu_is_radix(vcpu)) { 1741 /* 1742 * A guest could be running PR KVM, so this 1743 * may be a PR KVM hcall. It must be reflected 1744 * to the guest kernel as a sc interrupt. 1745 */ 1746 kvmppc_core_queue_syscall(vcpu); 1747 } else { 1748 /* 1749 * Radix guests can not run PR KVM or nested HV 1750 * hash guests which might run PR KVM, so this 1751 * is always a privilege fault. Send a program 1752 * check to guest kernel. 1753 */ 1754 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1755 } 1756 r = RESUME_GUEST; 1757 break; 1758 } 1759 1760 /* 1761 * hcall - gather args and set exit_reason. This will next be 1762 * handled by kvmppc_pseries_do_hcall which may be able to deal 1763 * with it and resume guest, or may punt to userspace. 1764 */ 1765 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1766 for (i = 0; i < 9; ++i) 1767 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1768 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1769 vcpu->arch.hcall_needed = 1; 1770 r = RESUME_HOST; 1771 break; 1772 } 1773 /* 1774 * We get these next two if the guest accesses a page which it thinks 1775 * it has mapped but which is not actually present, either because 1776 * it is for an emulated I/O device or because the corresonding 1777 * host page has been paged out. 1778 * 1779 * Any other HDSI/HISI interrupts have been handled already for P7/8 1780 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1781 * fault handling is done here. 1782 */ 1783 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1784 unsigned long vsid; 1785 long err; 1786 1787 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 1788 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) { 1789 r = RESUME_GUEST; /* Just retry if it's the canary */ 1790 break; 1791 } 1792 1793 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1794 /* 1795 * Radix doesn't require anything, and pre-ISAv3.0 hash 1796 * already attempted to handle this in rmhandlers. The 1797 * hash fault handling below is v3 only (it uses ASDR 1798 * via fault_gpa). 1799 */ 1800 r = RESUME_PAGE_FAULT; 1801 break; 1802 } 1803 1804 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1805 kvmppc_core_queue_data_storage(vcpu, 1806 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1807 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1808 r = RESUME_GUEST; 1809 break; 1810 } 1811 1812 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR)) 1813 vsid = vcpu->kvm->arch.vrma_slb_v; 1814 else 1815 vsid = vcpu->arch.fault_gpa; 1816 1817 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1818 vsid, vcpu->arch.fault_dsisr, true); 1819 if (err == 0) { 1820 r = RESUME_GUEST; 1821 } else if (err == -1 || err == -2) { 1822 r = RESUME_PAGE_FAULT; 1823 } else { 1824 kvmppc_core_queue_data_storage(vcpu, 1825 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1826 vcpu->arch.fault_dar, err); 1827 r = RESUME_GUEST; 1828 } 1829 break; 1830 } 1831 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1832 unsigned long vsid; 1833 long err; 1834 1835 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1836 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) & 1837 DSISR_SRR1_MATCH_64S; 1838 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1839 /* 1840 * Radix doesn't require anything, and pre-ISAv3.0 hash 1841 * already attempted to handle this in rmhandlers. The 1842 * hash fault handling below is v3 only (it uses ASDR 1843 * via fault_gpa). 1844 */ 1845 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE) 1846 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1847 r = RESUME_PAGE_FAULT; 1848 break; 1849 } 1850 1851 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1852 kvmppc_core_queue_inst_storage(vcpu, 1853 vcpu->arch.fault_dsisr | 1854 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1855 r = RESUME_GUEST; 1856 break; 1857 } 1858 1859 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR)) 1860 vsid = vcpu->kvm->arch.vrma_slb_v; 1861 else 1862 vsid = vcpu->arch.fault_gpa; 1863 1864 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1865 vsid, vcpu->arch.fault_dsisr, false); 1866 if (err == 0) { 1867 r = RESUME_GUEST; 1868 } else if (err == -1) { 1869 r = RESUME_PAGE_FAULT; 1870 } else { 1871 kvmppc_core_queue_inst_storage(vcpu, 1872 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1873 r = RESUME_GUEST; 1874 } 1875 break; 1876 } 1877 1878 /* 1879 * This occurs if the guest executes an illegal instruction. 1880 * If the guest debug is disabled, generate a program interrupt 1881 * to the guest. If guest debug is enabled, we need to check 1882 * whether the instruction is a software breakpoint instruction. 1883 * Accordingly return to Guest or Host. 1884 */ 1885 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1886 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1887 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1888 swab32(vcpu->arch.emul_inst) : 1889 vcpu->arch.emul_inst; 1890 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1891 r = kvmppc_emulate_debug_inst(vcpu); 1892 } else { 1893 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1894 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1895 r = RESUME_GUEST; 1896 } 1897 break; 1898 1899 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1900 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1901 /* 1902 * This occurs for various TM-related instructions that 1903 * we need to emulate on POWER9 DD2.2. We have already 1904 * handled the cases where the guest was in real-suspend 1905 * mode and was transitioning to transactional state. 1906 */ 1907 r = kvmhv_p9_tm_emulation(vcpu); 1908 if (r != -1) 1909 break; 1910 fallthrough; /* go to facility unavailable handler */ 1911 #endif 1912 1913 /* 1914 * This occurs if the guest (kernel or userspace), does something that 1915 * is prohibited by HFSCR. 1916 * On POWER9, this could be a doorbell instruction that we need 1917 * to emulate. 1918 * Otherwise, we just generate a program interrupt to the guest. 1919 */ 1920 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1921 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56; 1922 1923 r = EMULATE_FAIL; 1924 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1925 if (cause == FSCR_MSGP_LG) 1926 r = kvmppc_emulate_doorbell_instr(vcpu); 1927 if (cause == FSCR_PM_LG) 1928 r = kvmppc_pmu_unavailable(vcpu); 1929 if (cause == FSCR_EBB_LG) 1930 r = kvmppc_ebb_unavailable(vcpu); 1931 if (cause == FSCR_TM_LG) 1932 r = kvmppc_tm_unavailable(vcpu); 1933 } 1934 if (r == EMULATE_FAIL) { 1935 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1936 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1937 r = RESUME_GUEST; 1938 } 1939 break; 1940 } 1941 1942 case BOOK3S_INTERRUPT_HV_RM_HARD: 1943 r = RESUME_PASSTHROUGH; 1944 break; 1945 default: 1946 kvmppc_dump_regs(vcpu); 1947 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1948 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1949 __kvmppc_get_msr_hv(vcpu)); 1950 run->hw.hardware_exit_reason = vcpu->arch.trap; 1951 r = RESUME_HOST; 1952 break; 1953 } 1954 1955 return r; 1956 } 1957 1958 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1959 { 1960 int r; 1961 int srcu_idx; 1962 1963 vcpu->stat.sum_exits++; 1964 1965 /* 1966 * This can happen if an interrupt occurs in the last stages 1967 * of guest entry or the first stages of guest exit (i.e. after 1968 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1969 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1970 * That can happen due to a bug, or due to a machine check 1971 * occurring at just the wrong time. 1972 */ 1973 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) { 1974 pr_emerg("KVM trap in HV mode while nested!\n"); 1975 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1976 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1977 __kvmppc_get_msr_hv(vcpu)); 1978 kvmppc_dump_regs(vcpu); 1979 return RESUME_HOST; 1980 } 1981 switch (vcpu->arch.trap) { 1982 /* We're good on these - the host merely wanted to get our attention */ 1983 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1984 vcpu->stat.dec_exits++; 1985 r = RESUME_GUEST; 1986 break; 1987 case BOOK3S_INTERRUPT_EXTERNAL: 1988 vcpu->stat.ext_intr_exits++; 1989 r = RESUME_HOST; 1990 break; 1991 case BOOK3S_INTERRUPT_H_DOORBELL: 1992 case BOOK3S_INTERRUPT_H_VIRT: 1993 vcpu->stat.ext_intr_exits++; 1994 r = RESUME_GUEST; 1995 break; 1996 /* These need to go to the nested HV */ 1997 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1998 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1999 vcpu->stat.dec_exits++; 2000 r = RESUME_HOST; 2001 break; 2002 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 2003 case BOOK3S_INTERRUPT_HMI: 2004 case BOOK3S_INTERRUPT_PERFMON: 2005 case BOOK3S_INTERRUPT_SYSTEM_RESET: 2006 r = RESUME_GUEST; 2007 break; 2008 case BOOK3S_INTERRUPT_MACHINE_CHECK: 2009 { 2010 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 2011 DEFAULT_RATELIMIT_BURST); 2012 /* Pass the machine check to the L1 guest */ 2013 r = RESUME_HOST; 2014 /* Print the MCE event to host console. */ 2015 if (__ratelimit(&rs)) 2016 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 2017 break; 2018 } 2019 /* 2020 * We get these next two if the guest accesses a page which it thinks 2021 * it has mapped but which is not actually present, either because 2022 * it is for an emulated I/O device or because the corresonding 2023 * host page has been paged out. 2024 */ 2025 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 2026 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2027 r = kvmhv_nested_page_fault(vcpu); 2028 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2029 break; 2030 case BOOK3S_INTERRUPT_H_INST_STORAGE: 2031 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 2032 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 2033 DSISR_SRR1_MATCH_64S; 2034 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE) 2035 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 2036 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2037 r = kvmhv_nested_page_fault(vcpu); 2038 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2039 break; 2040 2041 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2042 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 2043 /* 2044 * This occurs for various TM-related instructions that 2045 * we need to emulate on POWER9 DD2.2. We have already 2046 * handled the cases where the guest was in real-suspend 2047 * mode and was transitioning to transactional state. 2048 */ 2049 r = kvmhv_p9_tm_emulation(vcpu); 2050 if (r != -1) 2051 break; 2052 fallthrough; /* go to facility unavailable handler */ 2053 #endif 2054 2055 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 2056 u64 cause = vcpu->arch.hfscr >> 56; 2057 2058 /* 2059 * Only pass HFU interrupts to the L1 if the facility is 2060 * permitted but disabled by the L1's HFSCR, otherwise 2061 * the interrupt does not make sense to the L1 so turn 2062 * it into a HEAI. 2063 */ 2064 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || 2065 (vcpu->arch.nested_hfscr & (1UL << cause))) { 2066 ppc_inst_t pinst; 2067 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; 2068 2069 /* 2070 * If the fetch failed, return to guest and 2071 * try executing it again. 2072 */ 2073 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst); 2074 vcpu->arch.emul_inst = ppc_inst_val(pinst); 2075 if (r != EMULATE_DONE) 2076 r = RESUME_GUEST; 2077 else 2078 r = RESUME_HOST; 2079 } else { 2080 r = RESUME_HOST; 2081 } 2082 2083 break; 2084 } 2085 2086 case BOOK3S_INTERRUPT_HV_RM_HARD: 2087 vcpu->arch.trap = 0; 2088 r = RESUME_GUEST; 2089 if (!xics_on_xive()) 2090 kvmppc_xics_rm_complete(vcpu, 0); 2091 break; 2092 case BOOK3S_INTERRUPT_SYSCALL: 2093 { 2094 unsigned long req = kvmppc_get_gpr(vcpu, 3); 2095 2096 /* 2097 * The H_RPT_INVALIDATE hcalls issued by nested 2098 * guests for process-scoped invalidations when 2099 * GTSE=0, are handled here in L0. 2100 */ 2101 if (req == H_RPT_INVALIDATE) { 2102 r = kvmppc_nested_h_rpt_invalidate(vcpu); 2103 break; 2104 } 2105 2106 r = RESUME_HOST; 2107 break; 2108 } 2109 default: 2110 r = RESUME_HOST; 2111 break; 2112 } 2113 2114 return r; 2115 } 2116 2117 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 2118 struct kvm_sregs *sregs) 2119 { 2120 int i; 2121 2122 memset(sregs, 0, sizeof(struct kvm_sregs)); 2123 sregs->pvr = vcpu->arch.pvr; 2124 for (i = 0; i < vcpu->arch.slb_max; i++) { 2125 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 2126 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 2127 } 2128 2129 return 0; 2130 } 2131 2132 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 2133 struct kvm_sregs *sregs) 2134 { 2135 int i, j; 2136 2137 /* Only accept the same PVR as the host's, since we can't spoof it */ 2138 if (sregs->pvr != vcpu->arch.pvr) 2139 return -EINVAL; 2140 2141 j = 0; 2142 for (i = 0; i < vcpu->arch.slb_nr; i++) { 2143 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 2144 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 2145 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 2146 ++j; 2147 } 2148 } 2149 vcpu->arch.slb_max = j; 2150 2151 return 0; 2152 } 2153 2154 /* 2155 * Enforce limits on guest LPCR values based on hardware availability, 2156 * guest configuration, and possibly hypervisor support and security 2157 * concerns. 2158 */ 2159 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 2160 { 2161 /* LPCR_TC only applies to HPT guests */ 2162 if (kvm_is_radix(kvm)) 2163 lpcr &= ~LPCR_TC; 2164 2165 /* On POWER8 and above, userspace can modify AIL */ 2166 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2167 lpcr &= ~LPCR_AIL; 2168 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 2169 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 2170 /* 2171 * On some POWER9s we force AIL off for radix guests to prevent 2172 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 2173 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 2174 * be cached, which the host TLB management does not expect. 2175 */ 2176 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 2177 lpcr &= ~LPCR_AIL; 2178 2179 /* 2180 * On POWER9, allow userspace to enable large decrementer for the 2181 * guest, whether or not the host has it enabled. 2182 */ 2183 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2184 lpcr &= ~LPCR_LD; 2185 2186 return lpcr; 2187 } 2188 2189 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 2190 { 2191 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 2192 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 2193 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 2194 } 2195 } 2196 2197 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 2198 bool preserve_top32) 2199 { 2200 struct kvm *kvm = vcpu->kvm; 2201 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2202 u64 mask; 2203 2204 spin_lock(&vc->lock); 2205 2206 /* 2207 * Userspace can only modify 2208 * DPFD (default prefetch depth), ILE (interrupt little-endian), 2209 * TC (translation control), AIL (alternate interrupt location), 2210 * LD (large decrementer). 2211 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 2212 */ 2213 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 2214 2215 /* Broken 32-bit version of LPCR must not clear top bits */ 2216 if (preserve_top32) 2217 mask &= 0xFFFFFFFF; 2218 2219 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 2220 (vc->lpcr & ~mask) | (new_lpcr & mask)); 2221 2222 /* 2223 * If ILE (interrupt little-endian) has changed, update the 2224 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 2225 */ 2226 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 2227 struct kvm_vcpu *vcpu; 2228 unsigned long i; 2229 2230 kvm_for_each_vcpu(i, vcpu, kvm) { 2231 if (vcpu->arch.vcore != vc) 2232 continue; 2233 if (new_lpcr & LPCR_ILE) 2234 vcpu->arch.intr_msr |= MSR_LE; 2235 else 2236 vcpu->arch.intr_msr &= ~MSR_LE; 2237 } 2238 } 2239 2240 vc->lpcr = new_lpcr; 2241 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR); 2242 2243 spin_unlock(&vc->lock); 2244 } 2245 2246 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2247 union kvmppc_one_reg *val) 2248 { 2249 int r = 0; 2250 long int i; 2251 2252 switch (id) { 2253 case KVM_REG_PPC_DEBUG_INST: 2254 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 2255 break; 2256 case KVM_REG_PPC_HIOR: 2257 *val = get_reg_val(id, 0); 2258 break; 2259 case KVM_REG_PPC_DABR: 2260 *val = get_reg_val(id, vcpu->arch.dabr); 2261 break; 2262 case KVM_REG_PPC_DABRX: 2263 *val = get_reg_val(id, vcpu->arch.dabrx); 2264 break; 2265 case KVM_REG_PPC_DSCR: 2266 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu)); 2267 break; 2268 case KVM_REG_PPC_PURR: 2269 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu)); 2270 break; 2271 case KVM_REG_PPC_SPURR: 2272 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu)); 2273 break; 2274 case KVM_REG_PPC_AMR: 2275 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu)); 2276 break; 2277 case KVM_REG_PPC_UAMOR: 2278 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu)); 2279 break; 2280 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2281 i = id - KVM_REG_PPC_MMCR0; 2282 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i)); 2283 break; 2284 case KVM_REG_PPC_MMCR2: 2285 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2)); 2286 break; 2287 case KVM_REG_PPC_MMCRA: 2288 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu)); 2289 break; 2290 case KVM_REG_PPC_MMCRS: 2291 *val = get_reg_val(id, vcpu->arch.mmcrs); 2292 break; 2293 case KVM_REG_PPC_MMCR3: 2294 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3)); 2295 break; 2296 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2297 i = id - KVM_REG_PPC_PMC1; 2298 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i)); 2299 break; 2300 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2301 i = id - KVM_REG_PPC_SPMC1; 2302 *val = get_reg_val(id, vcpu->arch.spmc[i]); 2303 break; 2304 case KVM_REG_PPC_SIAR: 2305 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu)); 2306 break; 2307 case KVM_REG_PPC_SDAR: 2308 *val = get_reg_val(id, kvmppc_get_sdar_hv(vcpu)); 2309 break; 2310 case KVM_REG_PPC_SIER: 2311 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0)); 2312 break; 2313 case KVM_REG_PPC_SIER2: 2314 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1)); 2315 break; 2316 case KVM_REG_PPC_SIER3: 2317 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2)); 2318 break; 2319 case KVM_REG_PPC_IAMR: 2320 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu)); 2321 break; 2322 case KVM_REG_PPC_PSPB: 2323 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu)); 2324 break; 2325 case KVM_REG_PPC_DPDES: 2326 /* 2327 * On POWER9, where we are emulating msgsndp etc., 2328 * we return 1 bit for each vcpu, which can come from 2329 * either vcore->dpdes or doorbell_request. 2330 * On POWER8, doorbell_request is 0. 2331 */ 2332 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2333 *val = get_reg_val(id, vcpu->arch.doorbell_request); 2334 else 2335 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 2336 break; 2337 case KVM_REG_PPC_VTB: 2338 *val = get_reg_val(id, kvmppc_get_vtb(vcpu)); 2339 break; 2340 case KVM_REG_PPC_DAWR: 2341 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu)); 2342 break; 2343 case KVM_REG_PPC_DAWRX: 2344 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu)); 2345 break; 2346 case KVM_REG_PPC_DAWR1: 2347 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu)); 2348 break; 2349 case KVM_REG_PPC_DAWRX1: 2350 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu)); 2351 break; 2352 case KVM_REG_PPC_DEXCR: 2353 *val = get_reg_val(id, kvmppc_get_dexcr_hv(vcpu)); 2354 break; 2355 case KVM_REG_PPC_HASHKEYR: 2356 *val = get_reg_val(id, kvmppc_get_hashkeyr_hv(vcpu)); 2357 break; 2358 case KVM_REG_PPC_HASHPKEYR: 2359 *val = get_reg_val(id, kvmppc_get_hashpkeyr_hv(vcpu)); 2360 break; 2361 case KVM_REG_PPC_CIABR: 2362 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu)); 2363 break; 2364 case KVM_REG_PPC_CSIGR: 2365 *val = get_reg_val(id, vcpu->arch.csigr); 2366 break; 2367 case KVM_REG_PPC_TACR: 2368 *val = get_reg_val(id, vcpu->arch.tacr); 2369 break; 2370 case KVM_REG_PPC_TCSCR: 2371 *val = get_reg_val(id, vcpu->arch.tcscr); 2372 break; 2373 case KVM_REG_PPC_PID: 2374 *val = get_reg_val(id, kvmppc_get_pid(vcpu)); 2375 break; 2376 case KVM_REG_PPC_ACOP: 2377 *val = get_reg_val(id, vcpu->arch.acop); 2378 break; 2379 case KVM_REG_PPC_WORT: 2380 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu)); 2381 break; 2382 case KVM_REG_PPC_TIDR: 2383 *val = get_reg_val(id, vcpu->arch.tid); 2384 break; 2385 case KVM_REG_PPC_PSSCR: 2386 *val = get_reg_val(id, vcpu->arch.psscr); 2387 break; 2388 case KVM_REG_PPC_VPA_ADDR: 2389 spin_lock(&vcpu->arch.vpa_update_lock); 2390 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2391 spin_unlock(&vcpu->arch.vpa_update_lock); 2392 break; 2393 case KVM_REG_PPC_VPA_SLB: 2394 spin_lock(&vcpu->arch.vpa_update_lock); 2395 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2396 val->vpaval.length = vcpu->arch.slb_shadow.len; 2397 spin_unlock(&vcpu->arch.vpa_update_lock); 2398 break; 2399 case KVM_REG_PPC_VPA_DTL: 2400 spin_lock(&vcpu->arch.vpa_update_lock); 2401 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2402 val->vpaval.length = vcpu->arch.dtl.len; 2403 spin_unlock(&vcpu->arch.vpa_update_lock); 2404 break; 2405 case KVM_REG_PPC_TB_OFFSET: 2406 *val = get_reg_val(id, kvmppc_get_tb_offset(vcpu)); 2407 break; 2408 case KVM_REG_PPC_LPCR: 2409 case KVM_REG_PPC_LPCR_64: 2410 *val = get_reg_val(id, kvmppc_get_lpcr(vcpu)); 2411 break; 2412 case KVM_REG_PPC_PPR: 2413 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu)); 2414 break; 2415 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2416 case KVM_REG_PPC_TFHAR: 2417 *val = get_reg_val(id, vcpu->arch.tfhar); 2418 break; 2419 case KVM_REG_PPC_TFIAR: 2420 *val = get_reg_val(id, vcpu->arch.tfiar); 2421 break; 2422 case KVM_REG_PPC_TEXASR: 2423 *val = get_reg_val(id, vcpu->arch.texasr); 2424 break; 2425 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2426 i = id - KVM_REG_PPC_TM_GPR0; 2427 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2428 break; 2429 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2430 { 2431 int j; 2432 i = id - KVM_REG_PPC_TM_VSR0; 2433 if (i < 32) 2434 for (j = 0; j < TS_FPRWIDTH; j++) 2435 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2436 else { 2437 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2438 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2439 else 2440 r = -ENXIO; 2441 } 2442 break; 2443 } 2444 case KVM_REG_PPC_TM_CR: 2445 *val = get_reg_val(id, vcpu->arch.cr_tm); 2446 break; 2447 case KVM_REG_PPC_TM_XER: 2448 *val = get_reg_val(id, vcpu->arch.xer_tm); 2449 break; 2450 case KVM_REG_PPC_TM_LR: 2451 *val = get_reg_val(id, vcpu->arch.lr_tm); 2452 break; 2453 case KVM_REG_PPC_TM_CTR: 2454 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2455 break; 2456 case KVM_REG_PPC_TM_FPSCR: 2457 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2458 break; 2459 case KVM_REG_PPC_TM_AMR: 2460 *val = get_reg_val(id, vcpu->arch.amr_tm); 2461 break; 2462 case KVM_REG_PPC_TM_PPR: 2463 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2464 break; 2465 case KVM_REG_PPC_TM_VRSAVE: 2466 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2467 break; 2468 case KVM_REG_PPC_TM_VSCR: 2469 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2470 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2471 else 2472 r = -ENXIO; 2473 break; 2474 case KVM_REG_PPC_TM_DSCR: 2475 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2476 break; 2477 case KVM_REG_PPC_TM_TAR: 2478 *val = get_reg_val(id, vcpu->arch.tar_tm); 2479 break; 2480 #endif 2481 case KVM_REG_PPC_ARCH_COMPAT: 2482 *val = get_reg_val(id, kvmppc_get_arch_compat(vcpu)); 2483 break; 2484 case KVM_REG_PPC_DEC_EXPIRY: 2485 *val = get_reg_val(id, kvmppc_get_dec_expires(vcpu)); 2486 break; 2487 case KVM_REG_PPC_ONLINE: 2488 *val = get_reg_val(id, vcpu->arch.online); 2489 break; 2490 case KVM_REG_PPC_PTCR: 2491 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2492 break; 2493 case KVM_REG_PPC_FSCR: 2494 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu)); 2495 break; 2496 default: 2497 r = -EINVAL; 2498 break; 2499 } 2500 2501 return r; 2502 } 2503 2504 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2505 union kvmppc_one_reg *val) 2506 { 2507 int r = 0; 2508 long int i; 2509 unsigned long addr, len; 2510 2511 switch (id) { 2512 case KVM_REG_PPC_HIOR: 2513 /* Only allow this to be set to zero */ 2514 if (set_reg_val(id, *val)) 2515 r = -EINVAL; 2516 break; 2517 case KVM_REG_PPC_DABR: 2518 vcpu->arch.dabr = set_reg_val(id, *val); 2519 break; 2520 case KVM_REG_PPC_DABRX: 2521 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2522 break; 2523 case KVM_REG_PPC_DSCR: 2524 kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val)); 2525 break; 2526 case KVM_REG_PPC_PURR: 2527 kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val)); 2528 break; 2529 case KVM_REG_PPC_SPURR: 2530 kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val)); 2531 break; 2532 case KVM_REG_PPC_AMR: 2533 kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val)); 2534 break; 2535 case KVM_REG_PPC_UAMOR: 2536 kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val)); 2537 break; 2538 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2539 i = id - KVM_REG_PPC_MMCR0; 2540 kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val)); 2541 break; 2542 case KVM_REG_PPC_MMCR2: 2543 kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val)); 2544 break; 2545 case KVM_REG_PPC_MMCRA: 2546 kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val)); 2547 break; 2548 case KVM_REG_PPC_MMCRS: 2549 vcpu->arch.mmcrs = set_reg_val(id, *val); 2550 break; 2551 case KVM_REG_PPC_MMCR3: 2552 kvmppc_set_mmcr_hv(vcpu, 3, set_reg_val(id, *val)); 2553 break; 2554 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2555 i = id - KVM_REG_PPC_PMC1; 2556 kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val)); 2557 break; 2558 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2559 i = id - KVM_REG_PPC_SPMC1; 2560 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2561 break; 2562 case KVM_REG_PPC_SIAR: 2563 kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val)); 2564 break; 2565 case KVM_REG_PPC_SDAR: 2566 kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val)); 2567 break; 2568 case KVM_REG_PPC_SIER: 2569 kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val)); 2570 break; 2571 case KVM_REG_PPC_SIER2: 2572 kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val)); 2573 break; 2574 case KVM_REG_PPC_SIER3: 2575 kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val)); 2576 break; 2577 case KVM_REG_PPC_IAMR: 2578 kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val)); 2579 break; 2580 case KVM_REG_PPC_PSPB: 2581 kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val)); 2582 break; 2583 case KVM_REG_PPC_DPDES: 2584 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2585 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1; 2586 else 2587 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2588 break; 2589 case KVM_REG_PPC_VTB: 2590 kvmppc_set_vtb(vcpu, set_reg_val(id, *val)); 2591 break; 2592 case KVM_REG_PPC_DAWR: 2593 kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val)); 2594 break; 2595 case KVM_REG_PPC_DAWRX: 2596 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP); 2597 break; 2598 case KVM_REG_PPC_DAWR1: 2599 kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val)); 2600 break; 2601 case KVM_REG_PPC_DAWRX1: 2602 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP); 2603 break; 2604 case KVM_REG_PPC_DEXCR: 2605 kvmppc_set_dexcr_hv(vcpu, set_reg_val(id, *val)); 2606 break; 2607 case KVM_REG_PPC_HASHKEYR: 2608 kvmppc_set_hashkeyr_hv(vcpu, set_reg_val(id, *val)); 2609 break; 2610 case KVM_REG_PPC_HASHPKEYR: 2611 kvmppc_set_hashpkeyr_hv(vcpu, set_reg_val(id, *val)); 2612 break; 2613 case KVM_REG_PPC_CIABR: 2614 kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val)); 2615 /* Don't allow setting breakpoints in hypervisor code */ 2616 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER) 2617 kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV); 2618 break; 2619 case KVM_REG_PPC_CSIGR: 2620 vcpu->arch.csigr = set_reg_val(id, *val); 2621 break; 2622 case KVM_REG_PPC_TACR: 2623 vcpu->arch.tacr = set_reg_val(id, *val); 2624 break; 2625 case KVM_REG_PPC_TCSCR: 2626 vcpu->arch.tcscr = set_reg_val(id, *val); 2627 break; 2628 case KVM_REG_PPC_PID: 2629 kvmppc_set_pid(vcpu, set_reg_val(id, *val)); 2630 break; 2631 case KVM_REG_PPC_ACOP: 2632 vcpu->arch.acop = set_reg_val(id, *val); 2633 break; 2634 case KVM_REG_PPC_WORT: 2635 kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val)); 2636 break; 2637 case KVM_REG_PPC_TIDR: 2638 vcpu->arch.tid = set_reg_val(id, *val); 2639 break; 2640 case KVM_REG_PPC_PSSCR: 2641 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2642 break; 2643 case KVM_REG_PPC_VPA_ADDR: 2644 addr = set_reg_val(id, *val); 2645 r = -EINVAL; 2646 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2647 vcpu->arch.dtl.next_gpa)) 2648 break; 2649 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2650 break; 2651 case KVM_REG_PPC_VPA_SLB: 2652 addr = val->vpaval.addr; 2653 len = val->vpaval.length; 2654 r = -EINVAL; 2655 if (addr && !vcpu->arch.vpa.next_gpa) 2656 break; 2657 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2658 break; 2659 case KVM_REG_PPC_VPA_DTL: 2660 addr = val->vpaval.addr; 2661 len = val->vpaval.length; 2662 r = -EINVAL; 2663 if (addr && (len < sizeof(struct dtl_entry) || 2664 !vcpu->arch.vpa.next_gpa)) 2665 break; 2666 len -= len % sizeof(struct dtl_entry); 2667 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2668 break; 2669 case KVM_REG_PPC_TB_OFFSET: 2670 { 2671 /* round up to multiple of 2^24 */ 2672 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24); 2673 2674 /* 2675 * Now that we know the timebase offset, update the 2676 * decrementer expiry with a guest timebase value. If 2677 * the userspace does not set DEC_EXPIRY, this ensures 2678 * a migrated vcpu at least starts with an expired 2679 * decrementer, which is better than a large one that 2680 * causes a hang. 2681 */ 2682 kvmppc_set_tb_offset(vcpu, tb_offset); 2683 if (!kvmppc_get_dec_expires(vcpu) && tb_offset) 2684 kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset); 2685 2686 kvmppc_set_tb_offset(vcpu, tb_offset); 2687 break; 2688 } 2689 case KVM_REG_PPC_LPCR: 2690 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2691 break; 2692 case KVM_REG_PPC_LPCR_64: 2693 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2694 break; 2695 case KVM_REG_PPC_PPR: 2696 kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val)); 2697 break; 2698 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2699 case KVM_REG_PPC_TFHAR: 2700 vcpu->arch.tfhar = set_reg_val(id, *val); 2701 break; 2702 case KVM_REG_PPC_TFIAR: 2703 vcpu->arch.tfiar = set_reg_val(id, *val); 2704 break; 2705 case KVM_REG_PPC_TEXASR: 2706 vcpu->arch.texasr = set_reg_val(id, *val); 2707 break; 2708 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2709 i = id - KVM_REG_PPC_TM_GPR0; 2710 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2711 break; 2712 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2713 { 2714 int j; 2715 i = id - KVM_REG_PPC_TM_VSR0; 2716 if (i < 32) 2717 for (j = 0; j < TS_FPRWIDTH; j++) 2718 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2719 else 2720 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2721 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2722 else 2723 r = -ENXIO; 2724 break; 2725 } 2726 case KVM_REG_PPC_TM_CR: 2727 vcpu->arch.cr_tm = set_reg_val(id, *val); 2728 break; 2729 case KVM_REG_PPC_TM_XER: 2730 vcpu->arch.xer_tm = set_reg_val(id, *val); 2731 break; 2732 case KVM_REG_PPC_TM_LR: 2733 vcpu->arch.lr_tm = set_reg_val(id, *val); 2734 break; 2735 case KVM_REG_PPC_TM_CTR: 2736 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2737 break; 2738 case KVM_REG_PPC_TM_FPSCR: 2739 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2740 break; 2741 case KVM_REG_PPC_TM_AMR: 2742 vcpu->arch.amr_tm = set_reg_val(id, *val); 2743 break; 2744 case KVM_REG_PPC_TM_PPR: 2745 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2746 break; 2747 case KVM_REG_PPC_TM_VRSAVE: 2748 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2749 break; 2750 case KVM_REG_PPC_TM_VSCR: 2751 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2752 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2753 else 2754 r = - ENXIO; 2755 break; 2756 case KVM_REG_PPC_TM_DSCR: 2757 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2758 break; 2759 case KVM_REG_PPC_TM_TAR: 2760 vcpu->arch.tar_tm = set_reg_val(id, *val); 2761 break; 2762 #endif 2763 case KVM_REG_PPC_ARCH_COMPAT: 2764 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2765 break; 2766 case KVM_REG_PPC_DEC_EXPIRY: 2767 kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val)); 2768 break; 2769 case KVM_REG_PPC_ONLINE: 2770 i = set_reg_val(id, *val); 2771 if (i && !vcpu->arch.online) 2772 atomic_inc(&vcpu->arch.vcore->online_count); 2773 else if (!i && vcpu->arch.online) 2774 atomic_dec(&vcpu->arch.vcore->online_count); 2775 vcpu->arch.online = i; 2776 break; 2777 case KVM_REG_PPC_PTCR: 2778 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2779 break; 2780 case KVM_REG_PPC_FSCR: 2781 kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val)); 2782 break; 2783 default: 2784 r = -EINVAL; 2785 break; 2786 } 2787 2788 return r; 2789 } 2790 2791 /* 2792 * On POWER9, threads are independent and can be in different partitions. 2793 * Therefore we consider each thread to be a subcore. 2794 * There is a restriction that all threads have to be in the same 2795 * MMU mode (radix or HPT), unfortunately, but since we only support 2796 * HPT guests on a HPT host so far, that isn't an impediment yet. 2797 */ 2798 static int threads_per_vcore(struct kvm *kvm) 2799 { 2800 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2801 return 1; 2802 return threads_per_subcore; 2803 } 2804 2805 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2806 { 2807 struct kvmppc_vcore *vcore; 2808 2809 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2810 2811 if (vcore == NULL) 2812 return NULL; 2813 2814 spin_lock_init(&vcore->lock); 2815 spin_lock_init(&vcore->stoltb_lock); 2816 rcuwait_init(&vcore->wait); 2817 vcore->preempt_tb = TB_NIL; 2818 vcore->lpcr = kvm->arch.lpcr; 2819 vcore->first_vcpuid = id; 2820 vcore->kvm = kvm; 2821 INIT_LIST_HEAD(&vcore->preempt_list); 2822 2823 return vcore; 2824 } 2825 2826 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2827 static struct debugfs_timings_element { 2828 const char *name; 2829 size_t offset; 2830 } timings[] = { 2831 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING 2832 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)}, 2833 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)}, 2834 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)}, 2835 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)}, 2836 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)}, 2837 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)}, 2838 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)}, 2839 #else 2840 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2841 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2842 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2843 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2844 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2845 #endif 2846 }; 2847 2848 #define N_TIMINGS (ARRAY_SIZE(timings)) 2849 2850 struct debugfs_timings_state { 2851 struct kvm_vcpu *vcpu; 2852 unsigned int buflen; 2853 char buf[N_TIMINGS * 100]; 2854 }; 2855 2856 static int debugfs_timings_open(struct inode *inode, struct file *file) 2857 { 2858 struct kvm_vcpu *vcpu = inode->i_private; 2859 struct debugfs_timings_state *p; 2860 2861 p = kzalloc(sizeof(*p), GFP_KERNEL); 2862 if (!p) 2863 return -ENOMEM; 2864 2865 kvm_get_kvm(vcpu->kvm); 2866 p->vcpu = vcpu; 2867 file->private_data = p; 2868 2869 return nonseekable_open(inode, file); 2870 } 2871 2872 static int debugfs_timings_release(struct inode *inode, struct file *file) 2873 { 2874 struct debugfs_timings_state *p = file->private_data; 2875 2876 kvm_put_kvm(p->vcpu->kvm); 2877 kfree(p); 2878 return 0; 2879 } 2880 2881 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2882 size_t len, loff_t *ppos) 2883 { 2884 struct debugfs_timings_state *p = file->private_data; 2885 struct kvm_vcpu *vcpu = p->vcpu; 2886 char *s, *buf_end; 2887 struct kvmhv_tb_accumulator tb; 2888 u64 count; 2889 loff_t pos; 2890 ssize_t n; 2891 int i, loops; 2892 bool ok; 2893 2894 if (!p->buflen) { 2895 s = p->buf; 2896 buf_end = s + sizeof(p->buf); 2897 for (i = 0; i < N_TIMINGS; ++i) { 2898 struct kvmhv_tb_accumulator *acc; 2899 2900 acc = (struct kvmhv_tb_accumulator *) 2901 ((unsigned long)vcpu + timings[i].offset); 2902 ok = false; 2903 for (loops = 0; loops < 1000; ++loops) { 2904 count = acc->seqcount; 2905 if (!(count & 1)) { 2906 smp_rmb(); 2907 tb = *acc; 2908 smp_rmb(); 2909 if (count == acc->seqcount) { 2910 ok = true; 2911 break; 2912 } 2913 } 2914 udelay(1); 2915 } 2916 if (!ok) 2917 snprintf(s, buf_end - s, "%s: stuck\n", 2918 timings[i].name); 2919 else 2920 snprintf(s, buf_end - s, 2921 "%s: %llu %llu %llu %llu\n", 2922 timings[i].name, count / 2, 2923 tb_to_ns(tb.tb_total), 2924 tb_to_ns(tb.tb_min), 2925 tb_to_ns(tb.tb_max)); 2926 s += strlen(s); 2927 } 2928 p->buflen = s - p->buf; 2929 } 2930 2931 pos = *ppos; 2932 if (pos >= p->buflen) 2933 return 0; 2934 if (len > p->buflen - pos) 2935 len = p->buflen - pos; 2936 n = copy_to_user(buf, p->buf + pos, len); 2937 if (n) { 2938 if (n == len) 2939 return -EFAULT; 2940 len -= n; 2941 } 2942 *ppos = pos + len; 2943 return len; 2944 } 2945 2946 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2947 size_t len, loff_t *ppos) 2948 { 2949 return -EACCES; 2950 } 2951 2952 static const struct file_operations debugfs_timings_ops = { 2953 .owner = THIS_MODULE, 2954 .open = debugfs_timings_open, 2955 .release = debugfs_timings_release, 2956 .read = debugfs_timings_read, 2957 .write = debugfs_timings_write, 2958 .llseek = generic_file_llseek, 2959 }; 2960 2961 /* Create a debugfs directory for the vcpu */ 2962 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2963 { 2964 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING)) 2965 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu, 2966 &debugfs_timings_ops); 2967 return 0; 2968 } 2969 2970 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2971 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2972 { 2973 return 0; 2974 } 2975 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2976 2977 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2978 { 2979 int err; 2980 int core; 2981 struct kvmppc_vcore *vcore; 2982 struct kvm *kvm; 2983 unsigned int id; 2984 2985 kvm = vcpu->kvm; 2986 id = vcpu->vcpu_id; 2987 2988 vcpu->arch.shared = &vcpu->arch.shregs; 2989 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2990 /* 2991 * The shared struct is never shared on HV, 2992 * so we can always use host endianness 2993 */ 2994 #ifdef __BIG_ENDIAN__ 2995 vcpu->arch.shared_big_endian = true; 2996 #else 2997 vcpu->arch.shared_big_endian = false; 2998 #endif 2999 #endif 3000 3001 if (kvmhv_is_nestedv2()) { 3002 err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io); 3003 if (err < 0) 3004 return err; 3005 } 3006 3007 kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC); 3008 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 3009 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT); 3010 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE); 3011 } 3012 3013 kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH); 3014 /* default to host PVR, since we can't spoof it */ 3015 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 3016 spin_lock_init(&vcpu->arch.vpa_update_lock); 3017 spin_lock_init(&vcpu->arch.tbacct_lock); 3018 vcpu->arch.busy_preempt = TB_NIL; 3019 __kvmppc_set_msr_hv(vcpu, MSR_ME); 3020 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 3021 3022 /* 3023 * Set the default HFSCR for the guest from the host value. 3024 * This value is only used on POWER9 and later. 3025 * On >= POWER9, we want to virtualize the doorbell facility, so we 3026 * don't set the HFSCR_MSGP bit, and that causes those instructions 3027 * to trap and then we emulate them. 3028 */ 3029 kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 3030 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP); 3031 3032 /* On POWER10 and later, allow prefixed instructions */ 3033 if (cpu_has_feature(CPU_FTR_ARCH_31)) 3034 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX); 3035 3036 if (cpu_has_feature(CPU_FTR_HVMODE)) { 3037 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR)); 3038 3039 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 3040 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3041 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM); 3042 #endif 3043 } 3044 if (cpu_has_feature(CPU_FTR_TM_COMP)) 3045 vcpu->arch.hfscr |= HFSCR_TM; 3046 3047 vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu); 3048 3049 /* 3050 * PM, EBB, TM are demand-faulted so start with it clear. 3051 */ 3052 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM)); 3053 3054 kvmppc_mmu_book3s_hv_init(vcpu); 3055 3056 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3057 3058 init_waitqueue_head(&vcpu->arch.cpu_run); 3059 3060 mutex_lock(&kvm->lock); 3061 vcore = NULL; 3062 err = -EINVAL; 3063 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3064 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 3065 pr_devel("KVM: VCPU ID too high\n"); 3066 core = KVM_MAX_VCORES; 3067 } else { 3068 BUG_ON(kvm->arch.smt_mode != 1); 3069 core = kvmppc_pack_vcpu_id(kvm, id); 3070 } 3071 } else { 3072 core = id / kvm->arch.smt_mode; 3073 } 3074 if (core < KVM_MAX_VCORES) { 3075 vcore = kvm->arch.vcores[core]; 3076 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 3077 pr_devel("KVM: collision on id %u", id); 3078 vcore = NULL; 3079 } else if (!vcore) { 3080 /* 3081 * Take mmu_setup_lock for mutual exclusion 3082 * with kvmppc_update_lpcr(). 3083 */ 3084 err = -ENOMEM; 3085 vcore = kvmppc_vcore_create(kvm, 3086 id & ~(kvm->arch.smt_mode - 1)); 3087 mutex_lock(&kvm->arch.mmu_setup_lock); 3088 kvm->arch.vcores[core] = vcore; 3089 kvm->arch.online_vcores++; 3090 mutex_unlock(&kvm->arch.mmu_setup_lock); 3091 } 3092 } 3093 mutex_unlock(&kvm->lock); 3094 3095 if (!vcore) 3096 return err; 3097 3098 spin_lock(&vcore->lock); 3099 ++vcore->num_threads; 3100 spin_unlock(&vcore->lock); 3101 vcpu->arch.vcore = vcore; 3102 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 3103 vcpu->arch.thread_cpu = -1; 3104 vcpu->arch.prev_cpu = -1; 3105 3106 vcpu->arch.cpu_type = KVM_CPU_3S_64; 3107 kvmppc_sanity_check(vcpu); 3108 3109 return 0; 3110 } 3111 3112 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 3113 unsigned long flags) 3114 { 3115 int err; 3116 int esmt = 0; 3117 3118 if (flags) 3119 return -EINVAL; 3120 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 3121 return -EINVAL; 3122 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3123 /* 3124 * On POWER8 (or POWER7), the threading mode is "strict", 3125 * so we pack smt_mode vcpus per vcore. 3126 */ 3127 if (smt_mode > threads_per_subcore) 3128 return -EINVAL; 3129 } else { 3130 /* 3131 * On POWER9, the threading mode is "loose", 3132 * so each vcpu gets its own vcore. 3133 */ 3134 esmt = smt_mode; 3135 smt_mode = 1; 3136 } 3137 mutex_lock(&kvm->lock); 3138 err = -EBUSY; 3139 if (!kvm->arch.online_vcores) { 3140 kvm->arch.smt_mode = smt_mode; 3141 kvm->arch.emul_smt_mode = esmt; 3142 err = 0; 3143 } 3144 mutex_unlock(&kvm->lock); 3145 3146 return err; 3147 } 3148 3149 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 3150 { 3151 if (vpa->pinned_addr) 3152 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 3153 vpa->dirty); 3154 } 3155 3156 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 3157 { 3158 spin_lock(&vcpu->arch.vpa_update_lock); 3159 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 3160 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 3161 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 3162 spin_unlock(&vcpu->arch.vpa_update_lock); 3163 if (kvmhv_is_nestedv2()) 3164 kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io); 3165 } 3166 3167 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 3168 { 3169 /* Indicate we want to get back into the guest */ 3170 return 1; 3171 } 3172 3173 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 3174 { 3175 unsigned long dec_nsec, now; 3176 3177 now = get_tb(); 3178 if (now > kvmppc_dec_expires_host_tb(vcpu)) { 3179 /* decrementer has already gone negative */ 3180 kvmppc_core_queue_dec(vcpu); 3181 kvmppc_core_prepare_to_enter(vcpu); 3182 return; 3183 } 3184 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now); 3185 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 3186 vcpu->arch.timer_running = 1; 3187 } 3188 3189 extern int __kvmppc_vcore_entry(void); 3190 3191 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 3192 struct kvm_vcpu *vcpu, u64 tb) 3193 { 3194 u64 now; 3195 3196 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3197 return; 3198 spin_lock_irq(&vcpu->arch.tbacct_lock); 3199 now = tb; 3200 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 3201 vcpu->arch.stolen_logged; 3202 vcpu->arch.busy_preempt = now; 3203 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3204 spin_unlock_irq(&vcpu->arch.tbacct_lock); 3205 --vc->n_runnable; 3206 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 3207 } 3208 3209 static int kvmppc_grab_hwthread(int cpu) 3210 { 3211 struct paca_struct *tpaca; 3212 long timeout = 10000; 3213 3214 tpaca = paca_ptrs[cpu]; 3215 3216 /* Ensure the thread won't go into the kernel if it wakes */ 3217 tpaca->kvm_hstate.kvm_vcpu = NULL; 3218 tpaca->kvm_hstate.kvm_vcore = NULL; 3219 tpaca->kvm_hstate.napping = 0; 3220 smp_wmb(); 3221 tpaca->kvm_hstate.hwthread_req = 1; 3222 3223 /* 3224 * If the thread is already executing in the kernel (e.g. handling 3225 * a stray interrupt), wait for it to get back to nap mode. 3226 * The smp_mb() is to ensure that our setting of hwthread_req 3227 * is visible before we look at hwthread_state, so if this 3228 * races with the code at system_reset_pSeries and the thread 3229 * misses our setting of hwthread_req, we are sure to see its 3230 * setting of hwthread_state, and vice versa. 3231 */ 3232 smp_mb(); 3233 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 3234 if (--timeout <= 0) { 3235 pr_err("KVM: couldn't grab cpu %d\n", cpu); 3236 return -EBUSY; 3237 } 3238 udelay(1); 3239 } 3240 return 0; 3241 } 3242 3243 static void kvmppc_release_hwthread(int cpu) 3244 { 3245 struct paca_struct *tpaca; 3246 3247 tpaca = paca_ptrs[cpu]; 3248 tpaca->kvm_hstate.hwthread_req = 0; 3249 tpaca->kvm_hstate.kvm_vcpu = NULL; 3250 tpaca->kvm_hstate.kvm_vcore = NULL; 3251 tpaca->kvm_hstate.kvm_split_mode = NULL; 3252 } 3253 3254 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest); 3255 3256 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 3257 { 3258 struct kvm_nested_guest *nested = vcpu->arch.nested; 3259 cpumask_t *need_tlb_flush; 3260 int i; 3261 3262 if (nested) 3263 need_tlb_flush = &nested->need_tlb_flush; 3264 else 3265 need_tlb_flush = &kvm->arch.need_tlb_flush; 3266 3267 cpu = cpu_first_tlb_thread_sibling(cpu); 3268 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3269 i += cpu_tlb_thread_sibling_step()) 3270 cpumask_set_cpu(i, need_tlb_flush); 3271 3272 /* 3273 * Make sure setting of bit in need_tlb_flush precedes testing of 3274 * cpu_in_guest. The matching barrier on the other side is hwsync 3275 * when switching to guest MMU mode, which happens between 3276 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit 3277 * being tested. 3278 */ 3279 smp_mb(); 3280 3281 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3282 i += cpu_tlb_thread_sibling_step()) { 3283 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i); 3284 3285 if (running == kvm) 3286 smp_call_function_single(i, do_nothing, NULL, 1); 3287 } 3288 } 3289 3290 static void do_migrate_away_vcpu(void *arg) 3291 { 3292 struct kvm_vcpu *vcpu = arg; 3293 struct kvm *kvm = vcpu->kvm; 3294 3295 /* 3296 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync; 3297 * ptesync sequence on the old CPU before migrating to a new one, in 3298 * case we interrupted the guest between a tlbie ; eieio ; 3299 * tlbsync; ptesync sequence. 3300 * 3301 * Otherwise, ptesync is sufficient for ordering tlbiel sequences. 3302 */ 3303 if (kvm->arch.lpcr & LPCR_GTSE) 3304 asm volatile("eieio; tlbsync; ptesync"); 3305 else 3306 asm volatile("ptesync"); 3307 } 3308 3309 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 3310 { 3311 struct kvm_nested_guest *nested = vcpu->arch.nested; 3312 struct kvm *kvm = vcpu->kvm; 3313 int prev_cpu; 3314 3315 if (!cpu_has_feature(CPU_FTR_HVMODE)) 3316 return; 3317 3318 if (nested) 3319 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 3320 else 3321 prev_cpu = vcpu->arch.prev_cpu; 3322 3323 /* 3324 * With radix, the guest can do TLB invalidations itself, 3325 * and it could choose to use the local form (tlbiel) if 3326 * it is invalidating a translation that has only ever been 3327 * used on one vcpu. However, that doesn't mean it has 3328 * only ever been used on one physical cpu, since vcpus 3329 * can move around between pcpus. To cope with this, when 3330 * a vcpu moves from one pcpu to another, we need to tell 3331 * any vcpus running on the same core as this vcpu previously 3332 * ran to flush the TLB. 3333 */ 3334 if (prev_cpu != pcpu) { 3335 if (prev_cpu >= 0) { 3336 if (cpu_first_tlb_thread_sibling(prev_cpu) != 3337 cpu_first_tlb_thread_sibling(pcpu)) 3338 radix_flush_cpu(kvm, prev_cpu, vcpu); 3339 3340 smp_call_function_single(prev_cpu, 3341 do_migrate_away_vcpu, vcpu, 1); 3342 } 3343 if (nested) 3344 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 3345 else 3346 vcpu->arch.prev_cpu = pcpu; 3347 } 3348 } 3349 3350 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 3351 { 3352 int cpu; 3353 struct paca_struct *tpaca; 3354 3355 cpu = vc->pcpu; 3356 if (vcpu) { 3357 if (vcpu->arch.timer_running) { 3358 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 3359 vcpu->arch.timer_running = 0; 3360 } 3361 cpu += vcpu->arch.ptid; 3362 vcpu->cpu = vc->pcpu; 3363 vcpu->arch.thread_cpu = cpu; 3364 } 3365 tpaca = paca_ptrs[cpu]; 3366 tpaca->kvm_hstate.kvm_vcpu = vcpu; 3367 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 3368 tpaca->kvm_hstate.fake_suspend = 0; 3369 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 3370 smp_wmb(); 3371 tpaca->kvm_hstate.kvm_vcore = vc; 3372 if (cpu != smp_processor_id()) 3373 kvmppc_ipi_thread(cpu); 3374 } 3375 3376 static void kvmppc_wait_for_nap(int n_threads) 3377 { 3378 int cpu = smp_processor_id(); 3379 int i, loops; 3380 3381 if (n_threads <= 1) 3382 return; 3383 for (loops = 0; loops < 1000000; ++loops) { 3384 /* 3385 * Check if all threads are finished. 3386 * We set the vcore pointer when starting a thread 3387 * and the thread clears it when finished, so we look 3388 * for any threads that still have a non-NULL vcore ptr. 3389 */ 3390 for (i = 1; i < n_threads; ++i) 3391 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3392 break; 3393 if (i == n_threads) { 3394 HMT_medium(); 3395 return; 3396 } 3397 HMT_low(); 3398 } 3399 HMT_medium(); 3400 for (i = 1; i < n_threads; ++i) 3401 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3402 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 3403 } 3404 3405 /* 3406 * Check that we are on thread 0 and that any other threads in 3407 * this core are off-line. Then grab the threads so they can't 3408 * enter the kernel. 3409 */ 3410 static int on_primary_thread(void) 3411 { 3412 int cpu = smp_processor_id(); 3413 int thr; 3414 3415 /* Are we on a primary subcore? */ 3416 if (cpu_thread_in_subcore(cpu)) 3417 return 0; 3418 3419 thr = 0; 3420 while (++thr < threads_per_subcore) 3421 if (cpu_online(cpu + thr)) 3422 return 0; 3423 3424 /* Grab all hw threads so they can't go into the kernel */ 3425 for (thr = 1; thr < threads_per_subcore; ++thr) { 3426 if (kvmppc_grab_hwthread(cpu + thr)) { 3427 /* Couldn't grab one; let the others go */ 3428 do { 3429 kvmppc_release_hwthread(cpu + thr); 3430 } while (--thr > 0); 3431 return 0; 3432 } 3433 } 3434 return 1; 3435 } 3436 3437 /* 3438 * A list of virtual cores for each physical CPU. 3439 * These are vcores that could run but their runner VCPU tasks are 3440 * (or may be) preempted. 3441 */ 3442 struct preempted_vcore_list { 3443 struct list_head list; 3444 spinlock_t lock; 3445 }; 3446 3447 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 3448 3449 static void init_vcore_lists(void) 3450 { 3451 int cpu; 3452 3453 for_each_possible_cpu(cpu) { 3454 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 3455 spin_lock_init(&lp->lock); 3456 INIT_LIST_HEAD(&lp->list); 3457 } 3458 } 3459 3460 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 3461 { 3462 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3463 3464 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3465 3466 vc->vcore_state = VCORE_PREEMPT; 3467 vc->pcpu = smp_processor_id(); 3468 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 3469 spin_lock(&lp->lock); 3470 list_add_tail(&vc->preempt_list, &lp->list); 3471 spin_unlock(&lp->lock); 3472 } 3473 3474 /* Start accumulating stolen time */ 3475 kvmppc_core_start_stolen(vc, mftb()); 3476 } 3477 3478 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3479 { 3480 struct preempted_vcore_list *lp; 3481 3482 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3483 3484 kvmppc_core_end_stolen(vc, mftb()); 3485 if (!list_empty(&vc->preempt_list)) { 3486 lp = &per_cpu(preempted_vcores, vc->pcpu); 3487 spin_lock(&lp->lock); 3488 list_del_init(&vc->preempt_list); 3489 spin_unlock(&lp->lock); 3490 } 3491 vc->vcore_state = VCORE_INACTIVE; 3492 } 3493 3494 /* 3495 * This stores information about the virtual cores currently 3496 * assigned to a physical core. 3497 */ 3498 struct core_info { 3499 int n_subcores; 3500 int max_subcore_threads; 3501 int total_threads; 3502 int subcore_threads[MAX_SUBCORES]; 3503 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3504 }; 3505 3506 /* 3507 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3508 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3509 */ 3510 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3511 3512 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3513 { 3514 memset(cip, 0, sizeof(*cip)); 3515 cip->n_subcores = 1; 3516 cip->max_subcore_threads = vc->num_threads; 3517 cip->total_threads = vc->num_threads; 3518 cip->subcore_threads[0] = vc->num_threads; 3519 cip->vc[0] = vc; 3520 } 3521 3522 static bool subcore_config_ok(int n_subcores, int n_threads) 3523 { 3524 /* 3525 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3526 * split-core mode, with one thread per subcore. 3527 */ 3528 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3529 return n_subcores <= 4 && n_threads == 1; 3530 3531 /* On POWER8, can only dynamically split if unsplit to begin with */ 3532 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3533 return false; 3534 if (n_subcores > MAX_SUBCORES) 3535 return false; 3536 if (n_subcores > 1) { 3537 if (!(dynamic_mt_modes & 2)) 3538 n_subcores = 4; 3539 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3540 return false; 3541 } 3542 3543 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3544 } 3545 3546 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3547 { 3548 vc->entry_exit_map = 0; 3549 vc->in_guest = 0; 3550 vc->napping_threads = 0; 3551 vc->conferring_threads = 0; 3552 vc->tb_offset_applied = 0; 3553 } 3554 3555 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3556 { 3557 int n_threads = vc->num_threads; 3558 int sub; 3559 3560 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3561 return false; 3562 3563 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3564 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3565 return false; 3566 3567 if (n_threads < cip->max_subcore_threads) 3568 n_threads = cip->max_subcore_threads; 3569 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3570 return false; 3571 cip->max_subcore_threads = n_threads; 3572 3573 sub = cip->n_subcores; 3574 ++cip->n_subcores; 3575 cip->total_threads += vc->num_threads; 3576 cip->subcore_threads[sub] = vc->num_threads; 3577 cip->vc[sub] = vc; 3578 init_vcore_to_run(vc); 3579 list_del_init(&vc->preempt_list); 3580 3581 return true; 3582 } 3583 3584 /* 3585 * Work out whether it is possible to piggyback the execution of 3586 * vcore *pvc onto the execution of the other vcores described in *cip. 3587 */ 3588 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3589 int target_threads) 3590 { 3591 if (cip->total_threads + pvc->num_threads > target_threads) 3592 return false; 3593 3594 return can_dynamic_split(pvc, cip); 3595 } 3596 3597 static void prepare_threads(struct kvmppc_vcore *vc) 3598 { 3599 int i; 3600 struct kvm_vcpu *vcpu; 3601 3602 for_each_runnable_thread(i, vcpu, vc) { 3603 if (signal_pending(vcpu->arch.run_task)) 3604 vcpu->arch.ret = -EINTR; 3605 else if (vcpu->arch.vpa.update_pending || 3606 vcpu->arch.slb_shadow.update_pending || 3607 vcpu->arch.dtl.update_pending) 3608 vcpu->arch.ret = RESUME_GUEST; 3609 else 3610 continue; 3611 kvmppc_remove_runnable(vc, vcpu, mftb()); 3612 wake_up(&vcpu->arch.cpu_run); 3613 } 3614 } 3615 3616 static void collect_piggybacks(struct core_info *cip, int target_threads) 3617 { 3618 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3619 struct kvmppc_vcore *pvc, *vcnext; 3620 3621 spin_lock(&lp->lock); 3622 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3623 if (!spin_trylock(&pvc->lock)) 3624 continue; 3625 prepare_threads(pvc); 3626 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3627 list_del_init(&pvc->preempt_list); 3628 if (pvc->runner == NULL) { 3629 pvc->vcore_state = VCORE_INACTIVE; 3630 kvmppc_core_end_stolen(pvc, mftb()); 3631 } 3632 spin_unlock(&pvc->lock); 3633 continue; 3634 } 3635 if (!can_piggyback(pvc, cip, target_threads)) { 3636 spin_unlock(&pvc->lock); 3637 continue; 3638 } 3639 kvmppc_core_end_stolen(pvc, mftb()); 3640 pvc->vcore_state = VCORE_PIGGYBACK; 3641 if (cip->total_threads >= target_threads) 3642 break; 3643 } 3644 spin_unlock(&lp->lock); 3645 } 3646 3647 static bool recheck_signals_and_mmu(struct core_info *cip) 3648 { 3649 int sub, i; 3650 struct kvm_vcpu *vcpu; 3651 struct kvmppc_vcore *vc; 3652 3653 for (sub = 0; sub < cip->n_subcores; ++sub) { 3654 vc = cip->vc[sub]; 3655 if (!vc->kvm->arch.mmu_ready) 3656 return true; 3657 for_each_runnable_thread(i, vcpu, vc) 3658 if (signal_pending(vcpu->arch.run_task)) 3659 return true; 3660 } 3661 return false; 3662 } 3663 3664 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3665 { 3666 int still_running = 0, i; 3667 u64 now; 3668 long ret; 3669 struct kvm_vcpu *vcpu; 3670 3671 spin_lock(&vc->lock); 3672 now = get_tb(); 3673 for_each_runnable_thread(i, vcpu, vc) { 3674 /* 3675 * It's safe to unlock the vcore in the loop here, because 3676 * for_each_runnable_thread() is safe against removal of 3677 * the vcpu, and the vcore state is VCORE_EXITING here, 3678 * so any vcpus becoming runnable will have their arch.trap 3679 * set to zero and can't actually run in the guest. 3680 */ 3681 spin_unlock(&vc->lock); 3682 /* cancel pending dec exception if dec is positive */ 3683 if (now < kvmppc_dec_expires_host_tb(vcpu) && 3684 kvmppc_core_pending_dec(vcpu)) 3685 kvmppc_core_dequeue_dec(vcpu); 3686 3687 trace_kvm_guest_exit(vcpu); 3688 3689 ret = RESUME_GUEST; 3690 if (vcpu->arch.trap) 3691 ret = kvmppc_handle_exit_hv(vcpu, 3692 vcpu->arch.run_task); 3693 3694 vcpu->arch.ret = ret; 3695 vcpu->arch.trap = 0; 3696 3697 spin_lock(&vc->lock); 3698 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3699 if (vcpu->arch.pending_exceptions) 3700 kvmppc_core_prepare_to_enter(vcpu); 3701 if (vcpu->arch.ceded) 3702 kvmppc_set_timer(vcpu); 3703 else 3704 ++still_running; 3705 } else { 3706 kvmppc_remove_runnable(vc, vcpu, mftb()); 3707 wake_up(&vcpu->arch.cpu_run); 3708 } 3709 } 3710 if (!is_master) { 3711 if (still_running > 0) { 3712 kvmppc_vcore_preempt(vc); 3713 } else if (vc->runner) { 3714 vc->vcore_state = VCORE_PREEMPT; 3715 kvmppc_core_start_stolen(vc, mftb()); 3716 } else { 3717 vc->vcore_state = VCORE_INACTIVE; 3718 } 3719 if (vc->n_runnable > 0 && vc->runner == NULL) { 3720 /* make sure there's a candidate runner awake */ 3721 i = -1; 3722 vcpu = next_runnable_thread(vc, &i); 3723 wake_up(&vcpu->arch.cpu_run); 3724 } 3725 } 3726 spin_unlock(&vc->lock); 3727 } 3728 3729 /* 3730 * Clear core from the list of active host cores as we are about to 3731 * enter the guest. Only do this if it is the primary thread of the 3732 * core (not if a subcore) that is entering the guest. 3733 */ 3734 static inline int kvmppc_clear_host_core(unsigned int cpu) 3735 { 3736 int core; 3737 3738 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3739 return 0; 3740 /* 3741 * Memory barrier can be omitted here as we will do a smp_wmb() 3742 * later in kvmppc_start_thread and we need ensure that state is 3743 * visible to other CPUs only after we enter guest. 3744 */ 3745 core = cpu >> threads_shift; 3746 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3747 return 0; 3748 } 3749 3750 /* 3751 * Advertise this core as an active host core since we exited the guest 3752 * Only need to do this if it is the primary thread of the core that is 3753 * exiting. 3754 */ 3755 static inline int kvmppc_set_host_core(unsigned int cpu) 3756 { 3757 int core; 3758 3759 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3760 return 0; 3761 3762 /* 3763 * Memory barrier can be omitted here because we do a spin_unlock 3764 * immediately after this which provides the memory barrier. 3765 */ 3766 core = cpu >> threads_shift; 3767 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3768 return 0; 3769 } 3770 3771 static void set_irq_happened(int trap) 3772 { 3773 switch (trap) { 3774 case BOOK3S_INTERRUPT_EXTERNAL: 3775 local_paca->irq_happened |= PACA_IRQ_EE; 3776 break; 3777 case BOOK3S_INTERRUPT_H_DOORBELL: 3778 local_paca->irq_happened |= PACA_IRQ_DBELL; 3779 break; 3780 case BOOK3S_INTERRUPT_HMI: 3781 local_paca->irq_happened |= PACA_IRQ_HMI; 3782 break; 3783 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3784 replay_system_reset(); 3785 break; 3786 } 3787 } 3788 3789 /* 3790 * Run a set of guest threads on a physical core. 3791 * Called with vc->lock held. 3792 */ 3793 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3794 { 3795 struct kvm_vcpu *vcpu; 3796 int i; 3797 int srcu_idx; 3798 struct core_info core_info; 3799 struct kvmppc_vcore *pvc; 3800 struct kvm_split_mode split_info, *sip; 3801 int split, subcore_size, active; 3802 int sub; 3803 bool thr0_done; 3804 unsigned long cmd_bit, stat_bit; 3805 int pcpu, thr; 3806 int target_threads; 3807 int controlled_threads; 3808 int trap; 3809 bool is_power8; 3810 3811 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3812 return; 3813 3814 /* 3815 * Remove from the list any threads that have a signal pending 3816 * or need a VPA update done 3817 */ 3818 prepare_threads(vc); 3819 3820 /* if the runner is no longer runnable, let the caller pick a new one */ 3821 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3822 return; 3823 3824 /* 3825 * Initialize *vc. 3826 */ 3827 init_vcore_to_run(vc); 3828 vc->preempt_tb = TB_NIL; 3829 3830 /* 3831 * Number of threads that we will be controlling: the same as 3832 * the number of threads per subcore, except on POWER9, 3833 * where it's 1 because the threads are (mostly) independent. 3834 */ 3835 controlled_threads = threads_per_vcore(vc->kvm); 3836 3837 /* 3838 * Make sure we are running on primary threads, and that secondary 3839 * threads are offline. Also check if the number of threads in this 3840 * guest are greater than the current system threads per guest. 3841 */ 3842 if ((controlled_threads > 1) && 3843 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3844 for_each_runnable_thread(i, vcpu, vc) { 3845 vcpu->arch.ret = -EBUSY; 3846 kvmppc_remove_runnable(vc, vcpu, mftb()); 3847 wake_up(&vcpu->arch.cpu_run); 3848 } 3849 goto out; 3850 } 3851 3852 /* 3853 * See if we could run any other vcores on the physical core 3854 * along with this one. 3855 */ 3856 init_core_info(&core_info, vc); 3857 pcpu = smp_processor_id(); 3858 target_threads = controlled_threads; 3859 if (target_smt_mode && target_smt_mode < target_threads) 3860 target_threads = target_smt_mode; 3861 if (vc->num_threads < target_threads) 3862 collect_piggybacks(&core_info, target_threads); 3863 3864 /* 3865 * Hard-disable interrupts, and check resched flag and signals. 3866 * If we need to reschedule or deliver a signal, clean up 3867 * and return without going into the guest(s). 3868 * If the mmu_ready flag has been cleared, don't go into the 3869 * guest because that means a HPT resize operation is in progress. 3870 */ 3871 local_irq_disable(); 3872 hard_irq_disable(); 3873 if (lazy_irq_pending() || need_resched() || 3874 recheck_signals_and_mmu(&core_info)) { 3875 local_irq_enable(); 3876 vc->vcore_state = VCORE_INACTIVE; 3877 /* Unlock all except the primary vcore */ 3878 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3879 pvc = core_info.vc[sub]; 3880 /* Put back on to the preempted vcores list */ 3881 kvmppc_vcore_preempt(pvc); 3882 spin_unlock(&pvc->lock); 3883 } 3884 for (i = 0; i < controlled_threads; ++i) 3885 kvmppc_release_hwthread(pcpu + i); 3886 return; 3887 } 3888 3889 kvmppc_clear_host_core(pcpu); 3890 3891 /* Decide on micro-threading (split-core) mode */ 3892 subcore_size = threads_per_subcore; 3893 cmd_bit = stat_bit = 0; 3894 split = core_info.n_subcores; 3895 sip = NULL; 3896 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3897 3898 if (split > 1) { 3899 sip = &split_info; 3900 memset(&split_info, 0, sizeof(split_info)); 3901 for (sub = 0; sub < core_info.n_subcores; ++sub) 3902 split_info.vc[sub] = core_info.vc[sub]; 3903 3904 if (is_power8) { 3905 if (split == 2 && (dynamic_mt_modes & 2)) { 3906 cmd_bit = HID0_POWER8_1TO2LPAR; 3907 stat_bit = HID0_POWER8_2LPARMODE; 3908 } else { 3909 split = 4; 3910 cmd_bit = HID0_POWER8_1TO4LPAR; 3911 stat_bit = HID0_POWER8_4LPARMODE; 3912 } 3913 subcore_size = MAX_SMT_THREADS / split; 3914 split_info.rpr = mfspr(SPRN_RPR); 3915 split_info.pmmar = mfspr(SPRN_PMMAR); 3916 split_info.ldbar = mfspr(SPRN_LDBAR); 3917 split_info.subcore_size = subcore_size; 3918 } else { 3919 split_info.subcore_size = 1; 3920 } 3921 3922 /* order writes to split_info before kvm_split_mode pointer */ 3923 smp_wmb(); 3924 } 3925 3926 for (thr = 0; thr < controlled_threads; ++thr) { 3927 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3928 3929 paca->kvm_hstate.napping = 0; 3930 paca->kvm_hstate.kvm_split_mode = sip; 3931 } 3932 3933 /* Initiate micro-threading (split-core) on POWER8 if required */ 3934 if (cmd_bit) { 3935 unsigned long hid0 = mfspr(SPRN_HID0); 3936 3937 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3938 mb(); 3939 mtspr(SPRN_HID0, hid0); 3940 isync(); 3941 for (;;) { 3942 hid0 = mfspr(SPRN_HID0); 3943 if (hid0 & stat_bit) 3944 break; 3945 cpu_relax(); 3946 } 3947 } 3948 3949 /* 3950 * On POWER8, set RWMR register. 3951 * Since it only affects PURR and SPURR, it doesn't affect 3952 * the host, so we don't save/restore the host value. 3953 */ 3954 if (is_power8) { 3955 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3956 int n_online = atomic_read(&vc->online_count); 3957 3958 /* 3959 * Use the 8-thread value if we're doing split-core 3960 * or if the vcore's online count looks bogus. 3961 */ 3962 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3963 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3964 rwmr_val = p8_rwmr_values[n_online]; 3965 mtspr(SPRN_RWMR, rwmr_val); 3966 } 3967 3968 /* Start all the threads */ 3969 active = 0; 3970 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3971 thr = is_power8 ? subcore_thread_map[sub] : sub; 3972 thr0_done = false; 3973 active |= 1 << thr; 3974 pvc = core_info.vc[sub]; 3975 pvc->pcpu = pcpu + thr; 3976 for_each_runnable_thread(i, vcpu, pvc) { 3977 /* 3978 * XXX: is kvmppc_start_thread called too late here? 3979 * It updates vcpu->cpu and vcpu->arch.thread_cpu 3980 * which are used by kvmppc_fast_vcpu_kick_hv(), but 3981 * kick is called after new exceptions become available 3982 * and exceptions are checked earlier than here, by 3983 * kvmppc_core_prepare_to_enter. 3984 */ 3985 kvmppc_start_thread(vcpu, pvc); 3986 kvmppc_update_vpa_dispatch(vcpu, pvc); 3987 trace_kvm_guest_enter(vcpu); 3988 if (!vcpu->arch.ptid) 3989 thr0_done = true; 3990 active |= 1 << (thr + vcpu->arch.ptid); 3991 } 3992 /* 3993 * We need to start the first thread of each subcore 3994 * even if it doesn't have a vcpu. 3995 */ 3996 if (!thr0_done) 3997 kvmppc_start_thread(NULL, pvc); 3998 } 3999 4000 /* 4001 * Ensure that split_info.do_nap is set after setting 4002 * the vcore pointer in the PACA of the secondaries. 4003 */ 4004 smp_mb(); 4005 4006 /* 4007 * When doing micro-threading, poke the inactive threads as well. 4008 * This gets them to the nap instruction after kvm_do_nap, 4009 * which reduces the time taken to unsplit later. 4010 */ 4011 if (cmd_bit) { 4012 split_info.do_nap = 1; /* ask secondaries to nap when done */ 4013 for (thr = 1; thr < threads_per_subcore; ++thr) 4014 if (!(active & (1 << thr))) 4015 kvmppc_ipi_thread(pcpu + thr); 4016 } 4017 4018 vc->vcore_state = VCORE_RUNNING; 4019 preempt_disable(); 4020 4021 trace_kvmppc_run_core(vc, 0); 4022 4023 for (sub = 0; sub < core_info.n_subcores; ++sub) 4024 spin_unlock(&core_info.vc[sub]->lock); 4025 4026 guest_timing_enter_irqoff(); 4027 4028 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 4029 4030 guest_state_enter_irqoff(); 4031 this_cpu_disable_ftrace(); 4032 4033 trap = __kvmppc_vcore_entry(); 4034 4035 this_cpu_enable_ftrace(); 4036 guest_state_exit_irqoff(); 4037 4038 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 4039 4040 set_irq_happened(trap); 4041 4042 spin_lock(&vc->lock); 4043 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 4044 vc->vcore_state = VCORE_EXITING; 4045 4046 /* wait for secondary threads to finish writing their state to memory */ 4047 kvmppc_wait_for_nap(controlled_threads); 4048 4049 /* Return to whole-core mode if we split the core earlier */ 4050 if (cmd_bit) { 4051 unsigned long hid0 = mfspr(SPRN_HID0); 4052 unsigned long loops = 0; 4053 4054 hid0 &= ~HID0_POWER8_DYNLPARDIS; 4055 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 4056 mb(); 4057 mtspr(SPRN_HID0, hid0); 4058 isync(); 4059 for (;;) { 4060 hid0 = mfspr(SPRN_HID0); 4061 if (!(hid0 & stat_bit)) 4062 break; 4063 cpu_relax(); 4064 ++loops; 4065 } 4066 split_info.do_nap = 0; 4067 } 4068 4069 kvmppc_set_host_core(pcpu); 4070 4071 if (!vtime_accounting_enabled_this_cpu()) { 4072 local_irq_enable(); 4073 /* 4074 * Service IRQs here before guest_timing_exit_irqoff() so any 4075 * ticks that occurred while running the guest are accounted to 4076 * the guest. If vtime accounting is enabled, accounting uses 4077 * TB rather than ticks, so it can be done without enabling 4078 * interrupts here, which has the problem that it accounts 4079 * interrupt processing overhead to the host. 4080 */ 4081 local_irq_disable(); 4082 } 4083 guest_timing_exit_irqoff(); 4084 4085 local_irq_enable(); 4086 4087 /* Let secondaries go back to the offline loop */ 4088 for (i = 0; i < controlled_threads; ++i) { 4089 kvmppc_release_hwthread(pcpu + i); 4090 if (sip && sip->napped[i]) 4091 kvmppc_ipi_thread(pcpu + i); 4092 } 4093 4094 spin_unlock(&vc->lock); 4095 4096 /* make sure updates to secondary vcpu structs are visible now */ 4097 smp_mb(); 4098 4099 preempt_enable(); 4100 4101 for (sub = 0; sub < core_info.n_subcores; ++sub) { 4102 pvc = core_info.vc[sub]; 4103 post_guest_process(pvc, pvc == vc); 4104 } 4105 4106 spin_lock(&vc->lock); 4107 4108 out: 4109 vc->vcore_state = VCORE_INACTIVE; 4110 trace_kvmppc_run_core(vc, 1); 4111 } 4112 4113 static inline bool hcall_is_xics(unsigned long req) 4114 { 4115 return req == H_EOI || req == H_CPPR || req == H_IPI || 4116 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 4117 } 4118 4119 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu) 4120 { 4121 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 4122 if (lp) { 4123 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 4124 lp->yield_count = cpu_to_be32(yield_count); 4125 vcpu->arch.vpa.dirty = 1; 4126 } 4127 } 4128 4129 /* Helper functions for reading L2's stats from L1's VPA */ 4130 #ifdef CONFIG_PPC_PSERIES 4131 static DEFINE_PER_CPU(u64, l1_to_l2_cs); 4132 static DEFINE_PER_CPU(u64, l2_to_l1_cs); 4133 static DEFINE_PER_CPU(u64, l2_runtime_agg); 4134 4135 int kvmhv_get_l2_counters_status(void) 4136 { 4137 return firmware_has_feature(FW_FEATURE_LPAR) && 4138 get_lppaca()->l2_counters_enable; 4139 } 4140 4141 void kvmhv_set_l2_counters_status(int cpu, bool status) 4142 { 4143 if (!firmware_has_feature(FW_FEATURE_LPAR)) 4144 return; 4145 if (status) 4146 lppaca_of(cpu).l2_counters_enable = 1; 4147 else 4148 lppaca_of(cpu).l2_counters_enable = 0; 4149 } 4150 4151 int kmvhv_counters_tracepoint_regfunc(void) 4152 { 4153 int cpu; 4154 4155 for_each_present_cpu(cpu) { 4156 kvmhv_set_l2_counters_status(cpu, true); 4157 } 4158 return 0; 4159 } 4160 4161 void kmvhv_counters_tracepoint_unregfunc(void) 4162 { 4163 int cpu; 4164 4165 for_each_present_cpu(cpu) { 4166 kvmhv_set_l2_counters_status(cpu, false); 4167 } 4168 } 4169 4170 static void do_trace_nested_cs_time(struct kvm_vcpu *vcpu) 4171 { 4172 struct lppaca *lp = get_lppaca(); 4173 u64 l1_to_l2_ns, l2_to_l1_ns, l2_runtime_ns; 4174 u64 *l1_to_l2_cs_ptr = this_cpu_ptr(&l1_to_l2_cs); 4175 u64 *l2_to_l1_cs_ptr = this_cpu_ptr(&l2_to_l1_cs); 4176 u64 *l2_runtime_agg_ptr = this_cpu_ptr(&l2_runtime_agg); 4177 4178 l1_to_l2_ns = tb_to_ns(be64_to_cpu(lp->l1_to_l2_cs_tb)); 4179 l2_to_l1_ns = tb_to_ns(be64_to_cpu(lp->l2_to_l1_cs_tb)); 4180 l2_runtime_ns = tb_to_ns(be64_to_cpu(lp->l2_runtime_tb)); 4181 trace_kvmppc_vcpu_stats(vcpu, l1_to_l2_ns - *l1_to_l2_cs_ptr, 4182 l2_to_l1_ns - *l2_to_l1_cs_ptr, 4183 l2_runtime_ns - *l2_runtime_agg_ptr); 4184 *l1_to_l2_cs_ptr = l1_to_l2_ns; 4185 *l2_to_l1_cs_ptr = l2_to_l1_ns; 4186 *l2_runtime_agg_ptr = l2_runtime_ns; 4187 } 4188 4189 #else 4190 int kvmhv_get_l2_counters_status(void) 4191 { 4192 return 0; 4193 } 4194 4195 static void do_trace_nested_cs_time(struct kvm_vcpu *vcpu) 4196 { 4197 } 4198 #endif 4199 4200 static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit, 4201 unsigned long lpcr, u64 *tb) 4202 { 4203 struct kvmhv_nestedv2_io *io; 4204 unsigned long msr, i; 4205 int trap; 4206 long rc; 4207 4208 if (vcpu->arch.doorbell_request) { 4209 vcpu->arch.doorbell_request = 0; 4210 kvmppc_set_dpdes(vcpu, 1); 4211 } 4212 4213 io = &vcpu->arch.nestedv2_io; 4214 4215 msr = mfmsr(); 4216 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4217 if (lazy_irq_pending()) 4218 return 0; 4219 4220 rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit); 4221 if (rc < 0) 4222 return -EINVAL; 4223 4224 kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr); 4225 4226 accumulate_time(vcpu, &vcpu->arch.in_guest); 4227 rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id, 4228 &trap, &i); 4229 4230 if (rc != H_SUCCESS) { 4231 pr_err("KVM Guest Run VCPU hcall failed\n"); 4232 if (rc == H_INVALID_ELEMENT_ID) 4233 pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i); 4234 else if (rc == H_INVALID_ELEMENT_SIZE) 4235 pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i); 4236 else if (rc == H_INVALID_ELEMENT_VALUE) 4237 pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i); 4238 return -EINVAL; 4239 } 4240 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4241 4242 *tb = mftb(); 4243 kvmppc_gsm_reset(io->vcpu_message); 4244 kvmppc_gsm_reset(io->vcore_message); 4245 kvmppc_gsbm_zero(&io->valids); 4246 4247 rc = kvmhv_nestedv2_parse_output(vcpu); 4248 if (rc < 0) 4249 return -EINVAL; 4250 4251 timer_rearm_host_dec(*tb); 4252 4253 /* Record context switch and guest_run_time data */ 4254 if (kvmhv_get_l2_counters_status()) 4255 do_trace_nested_cs_time(vcpu); 4256 4257 return trap; 4258 } 4259 4260 /* call our hypervisor to load up HV regs and go */ 4261 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) 4262 { 4263 unsigned long host_psscr; 4264 unsigned long msr; 4265 struct hv_guest_state hvregs; 4266 struct p9_host_os_sprs host_os_sprs; 4267 s64 dec; 4268 int trap; 4269 4270 msr = mfmsr(); 4271 4272 save_p9_host_os_sprs(&host_os_sprs); 4273 4274 /* 4275 * We need to save and restore the guest visible part of the 4276 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 4277 * doesn't do this for us. Note only required if pseries since 4278 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 4279 */ 4280 host_psscr = mfspr(SPRN_PSSCR_PR); 4281 4282 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4283 if (lazy_irq_pending()) 4284 return 0; 4285 4286 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) 4287 msr = mfmsr(); /* TM restore can update msr */ 4288 4289 if (vcpu->arch.psscr != host_psscr) 4290 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 4291 4292 kvmhv_save_hv_regs(vcpu, &hvregs); 4293 hvregs.lpcr = lpcr; 4294 hvregs.amor = ~0; 4295 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 4296 hvregs.version = HV_GUEST_STATE_VERSION; 4297 if (vcpu->arch.nested) { 4298 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 4299 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 4300 } else { 4301 hvregs.lpid = vcpu->kvm->arch.lpid; 4302 hvregs.vcpu_token = vcpu->vcpu_id; 4303 } 4304 hvregs.hdec_expiry = time_limit; 4305 4306 /* 4307 * When setting DEC, we must always deal with irq_work_raise 4308 * via NMI vs setting DEC. The problem occurs right as we 4309 * switch into guest mode if a NMI hits and sets pending work 4310 * and sets DEC, then that will apply to the guest and not 4311 * bring us back to the host. 4312 * 4313 * irq_work_raise could check a flag (or possibly LPCR[HDICE] 4314 * for example) and set HDEC to 1? That wouldn't solve the 4315 * nested hv case which needs to abort the hcall or zero the 4316 * time limit. 4317 * 4318 * XXX: Another day's problem. 4319 */ 4320 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb); 4321 4322 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 4323 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 4324 switch_pmu_to_guest(vcpu, &host_os_sprs); 4325 accumulate_time(vcpu, &vcpu->arch.in_guest); 4326 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 4327 __pa(&vcpu->arch.regs)); 4328 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4329 kvmhv_restore_hv_return_state(vcpu, &hvregs); 4330 switch_pmu_to_host(vcpu, &host_os_sprs); 4331 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 4332 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 4333 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 4334 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 4335 4336 store_vcpu_state(vcpu); 4337 4338 dec = mfspr(SPRN_DEC); 4339 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 4340 dec = (s32) dec; 4341 *tb = mftb(); 4342 vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu)); 4343 4344 timer_rearm_host_dec(*tb); 4345 4346 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 4347 if (vcpu->arch.psscr != host_psscr) 4348 mtspr(SPRN_PSSCR_PR, host_psscr); 4349 4350 return trap; 4351 } 4352 4353 /* 4354 * Guest entry for POWER9 and later CPUs. 4355 */ 4356 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 4357 unsigned long lpcr, u64 *tb) 4358 { 4359 struct kvm *kvm = vcpu->kvm; 4360 struct kvm_nested_guest *nested = vcpu->arch.nested; 4361 u64 next_timer; 4362 int trap; 4363 4364 next_timer = timer_get_next_tb(); 4365 if (*tb >= next_timer) 4366 return BOOK3S_INTERRUPT_HV_DECREMENTER; 4367 if (next_timer < time_limit) 4368 time_limit = next_timer; 4369 else if (*tb >= time_limit) /* nested time limit */ 4370 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER; 4371 4372 vcpu->arch.ceded = 0; 4373 4374 vcpu_vpa_increment_dispatch(vcpu); 4375 4376 if (kvmhv_on_pseries()) { 4377 if (kvmhv_is_nestedv1()) 4378 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb); 4379 else 4380 trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb); 4381 4382 /* H_CEDE has to be handled now, not later */ 4383 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested && 4384 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 4385 kvmppc_cede(vcpu); 4386 kvmppc_set_gpr(vcpu, 3, 0); 4387 trap = 0; 4388 } 4389 4390 } else if (nested) { 4391 __this_cpu_write(cpu_in_guest, kvm); 4392 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4393 __this_cpu_write(cpu_in_guest, NULL); 4394 4395 } else { 4396 kvmppc_xive_push_vcpu(vcpu); 4397 4398 __this_cpu_write(cpu_in_guest, kvm); 4399 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4400 __this_cpu_write(cpu_in_guest, NULL); 4401 4402 if (trap == BOOK3S_INTERRUPT_SYSCALL && 4403 !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 4404 unsigned long req = kvmppc_get_gpr(vcpu, 3); 4405 4406 /* 4407 * XIVE rearm and XICS hcalls must be handled 4408 * before xive context is pulled (is this 4409 * true?) 4410 */ 4411 if (req == H_CEDE) { 4412 /* H_CEDE has to be handled now */ 4413 kvmppc_cede(vcpu); 4414 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4415 /* 4416 * Pending escalation so abort 4417 * the cede. 4418 */ 4419 vcpu->arch.ceded = 0; 4420 } 4421 kvmppc_set_gpr(vcpu, 3, 0); 4422 trap = 0; 4423 4424 } else if (req == H_ENTER_NESTED) { 4425 /* 4426 * L2 should not run with the L1 4427 * context so rearm and pull it. 4428 */ 4429 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4430 /* 4431 * Pending escalation so abort 4432 * H_ENTER_NESTED. 4433 */ 4434 kvmppc_set_gpr(vcpu, 3, 0); 4435 trap = 0; 4436 } 4437 4438 } else if (hcall_is_xics(req)) { 4439 int ret; 4440 4441 ret = kvmppc_xive_xics_hcall(vcpu, req); 4442 if (ret != H_TOO_HARD) { 4443 kvmppc_set_gpr(vcpu, 3, ret); 4444 trap = 0; 4445 } 4446 } 4447 } 4448 kvmppc_xive_pull_vcpu(vcpu); 4449 4450 if (kvm_is_radix(kvm)) 4451 vcpu->arch.slb_max = 0; 4452 } 4453 4454 vcpu_vpa_increment_dispatch(vcpu); 4455 4456 return trap; 4457 } 4458 4459 /* 4460 * Wait for some other vcpu thread to execute us, and 4461 * wake us up when we need to handle something in the host. 4462 */ 4463 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 4464 struct kvm_vcpu *vcpu, int wait_state) 4465 { 4466 DEFINE_WAIT(wait); 4467 4468 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 4469 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4470 spin_unlock(&vc->lock); 4471 schedule(); 4472 spin_lock(&vc->lock); 4473 } 4474 finish_wait(&vcpu->arch.cpu_run, &wait); 4475 } 4476 4477 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 4478 { 4479 if (!halt_poll_ns_grow) 4480 return; 4481 4482 vc->halt_poll_ns *= halt_poll_ns_grow; 4483 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 4484 vc->halt_poll_ns = halt_poll_ns_grow_start; 4485 } 4486 4487 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 4488 { 4489 if (halt_poll_ns_shrink == 0) 4490 vc->halt_poll_ns = 0; 4491 else 4492 vc->halt_poll_ns /= halt_poll_ns_shrink; 4493 } 4494 4495 #ifdef CONFIG_KVM_XICS 4496 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4497 { 4498 if (!xics_on_xive()) 4499 return false; 4500 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 4501 vcpu->arch.xive_saved_state.cppr; 4502 } 4503 #else 4504 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4505 { 4506 return false; 4507 } 4508 #endif /* CONFIG_KVM_XICS */ 4509 4510 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 4511 { 4512 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 4513 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 4514 return true; 4515 4516 return false; 4517 } 4518 4519 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu) 4520 { 4521 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 4522 return true; 4523 return false; 4524 } 4525 4526 /* 4527 * Check to see if any of the runnable vcpus on the vcore have pending 4528 * exceptions or are no longer ceded 4529 */ 4530 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 4531 { 4532 struct kvm_vcpu *vcpu; 4533 int i; 4534 4535 for_each_runnable_thread(i, vcpu, vc) { 4536 if (kvmppc_vcpu_check_block(vcpu)) 4537 return 1; 4538 } 4539 4540 return 0; 4541 } 4542 4543 /* 4544 * All the vcpus in this vcore are idle, so wait for a decrementer 4545 * or external interrupt to one of the vcpus. vc->lock is held. 4546 */ 4547 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 4548 { 4549 ktime_t cur, start_poll, start_wait; 4550 int do_sleep = 1; 4551 u64 block_ns; 4552 4553 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 4554 4555 /* Poll for pending exceptions and ceded state */ 4556 cur = start_poll = ktime_get(); 4557 if (vc->halt_poll_ns) { 4558 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4559 ++vc->runner->stat.generic.halt_attempted_poll; 4560 4561 vc->vcore_state = VCORE_POLLING; 4562 spin_unlock(&vc->lock); 4563 4564 do { 4565 if (kvmppc_vcore_check_block(vc)) { 4566 do_sleep = 0; 4567 break; 4568 } 4569 cur = ktime_get(); 4570 } while (kvm_vcpu_can_poll(cur, stop)); 4571 4572 spin_lock(&vc->lock); 4573 vc->vcore_state = VCORE_INACTIVE; 4574 4575 if (!do_sleep) { 4576 ++vc->runner->stat.generic.halt_successful_poll; 4577 goto out; 4578 } 4579 } 4580 4581 prepare_to_rcuwait(&vc->wait); 4582 set_current_state(TASK_INTERRUPTIBLE); 4583 if (kvmppc_vcore_check_block(vc)) { 4584 finish_rcuwait(&vc->wait); 4585 do_sleep = 0; 4586 /* If we polled, count this as a successful poll */ 4587 if (vc->halt_poll_ns) 4588 ++vc->runner->stat.generic.halt_successful_poll; 4589 goto out; 4590 } 4591 4592 start_wait = ktime_get(); 4593 4594 vc->vcore_state = VCORE_SLEEPING; 4595 trace_kvmppc_vcore_blocked(vc->runner, 0); 4596 spin_unlock(&vc->lock); 4597 schedule(); 4598 finish_rcuwait(&vc->wait); 4599 spin_lock(&vc->lock); 4600 vc->vcore_state = VCORE_INACTIVE; 4601 trace_kvmppc_vcore_blocked(vc->runner, 1); 4602 ++vc->runner->stat.halt_successful_wait; 4603 4604 cur = ktime_get(); 4605 4606 out: 4607 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4608 4609 /* Attribute wait time */ 4610 if (do_sleep) { 4611 vc->runner->stat.generic.halt_wait_ns += 4612 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4613 KVM_STATS_LOG_HIST_UPDATE( 4614 vc->runner->stat.generic.halt_wait_hist, 4615 ktime_to_ns(cur) - ktime_to_ns(start_wait)); 4616 /* Attribute failed poll time */ 4617 if (vc->halt_poll_ns) { 4618 vc->runner->stat.generic.halt_poll_fail_ns += 4619 ktime_to_ns(start_wait) - 4620 ktime_to_ns(start_poll); 4621 KVM_STATS_LOG_HIST_UPDATE( 4622 vc->runner->stat.generic.halt_poll_fail_hist, 4623 ktime_to_ns(start_wait) - 4624 ktime_to_ns(start_poll)); 4625 } 4626 } else { 4627 /* Attribute successful poll time */ 4628 if (vc->halt_poll_ns) { 4629 vc->runner->stat.generic.halt_poll_success_ns += 4630 ktime_to_ns(cur) - 4631 ktime_to_ns(start_poll); 4632 KVM_STATS_LOG_HIST_UPDATE( 4633 vc->runner->stat.generic.halt_poll_success_hist, 4634 ktime_to_ns(cur) - ktime_to_ns(start_poll)); 4635 } 4636 } 4637 4638 /* Adjust poll time */ 4639 if (halt_poll_ns) { 4640 if (block_ns <= vc->halt_poll_ns) 4641 ; 4642 /* We slept and blocked for longer than the max halt time */ 4643 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4644 shrink_halt_poll_ns(vc); 4645 /* We slept and our poll time is too small */ 4646 else if (vc->halt_poll_ns < halt_poll_ns && 4647 block_ns < halt_poll_ns) 4648 grow_halt_poll_ns(vc); 4649 if (vc->halt_poll_ns > halt_poll_ns) 4650 vc->halt_poll_ns = halt_poll_ns; 4651 } else 4652 vc->halt_poll_ns = 0; 4653 4654 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4655 } 4656 4657 /* 4658 * This never fails for a radix guest, as none of the operations it does 4659 * for a radix guest can fail or have a way to report failure. 4660 */ 4661 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4662 { 4663 int r = 0; 4664 struct kvm *kvm = vcpu->kvm; 4665 4666 mutex_lock(&kvm->arch.mmu_setup_lock); 4667 if (!kvm->arch.mmu_ready) { 4668 if (!kvm_is_radix(kvm)) 4669 r = kvmppc_hv_setup_htab_rma(vcpu); 4670 if (!r) { 4671 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4672 kvmppc_setup_partition_table(kvm); 4673 kvm->arch.mmu_ready = 1; 4674 } 4675 } 4676 mutex_unlock(&kvm->arch.mmu_setup_lock); 4677 return r; 4678 } 4679 4680 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4681 { 4682 struct kvm_run *run = vcpu->run; 4683 int n_ceded, i, r; 4684 struct kvmppc_vcore *vc; 4685 struct kvm_vcpu *v; 4686 4687 trace_kvmppc_run_vcpu_enter(vcpu); 4688 4689 run->exit_reason = 0; 4690 vcpu->arch.ret = RESUME_GUEST; 4691 vcpu->arch.trap = 0; 4692 kvmppc_update_vpas(vcpu); 4693 4694 /* 4695 * Synchronize with other threads in this virtual core 4696 */ 4697 vc = vcpu->arch.vcore; 4698 spin_lock(&vc->lock); 4699 vcpu->arch.ceded = 0; 4700 vcpu->arch.run_task = current; 4701 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4702 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4703 vcpu->arch.busy_preempt = TB_NIL; 4704 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4705 ++vc->n_runnable; 4706 4707 /* 4708 * This happens the first time this is called for a vcpu. 4709 * If the vcore is already running, we may be able to start 4710 * this thread straight away and have it join in. 4711 */ 4712 if (!signal_pending(current)) { 4713 if ((vc->vcore_state == VCORE_PIGGYBACK || 4714 vc->vcore_state == VCORE_RUNNING) && 4715 !VCORE_IS_EXITING(vc)) { 4716 kvmppc_update_vpa_dispatch(vcpu, vc); 4717 kvmppc_start_thread(vcpu, vc); 4718 trace_kvm_guest_enter(vcpu); 4719 } else if (vc->vcore_state == VCORE_SLEEPING) { 4720 rcuwait_wake_up(&vc->wait); 4721 } 4722 4723 } 4724 4725 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4726 !signal_pending(current)) { 4727 /* See if the MMU is ready to go */ 4728 if (!vcpu->kvm->arch.mmu_ready) { 4729 spin_unlock(&vc->lock); 4730 r = kvmhv_setup_mmu(vcpu); 4731 spin_lock(&vc->lock); 4732 if (r) { 4733 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4734 run->fail_entry. 4735 hardware_entry_failure_reason = 0; 4736 vcpu->arch.ret = r; 4737 break; 4738 } 4739 } 4740 4741 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4742 kvmppc_vcore_end_preempt(vc); 4743 4744 if (vc->vcore_state != VCORE_INACTIVE) { 4745 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4746 continue; 4747 } 4748 for_each_runnable_thread(i, v, vc) { 4749 kvmppc_core_prepare_to_enter(v); 4750 if (signal_pending(v->arch.run_task)) { 4751 kvmppc_remove_runnable(vc, v, mftb()); 4752 v->stat.signal_exits++; 4753 v->run->exit_reason = KVM_EXIT_INTR; 4754 v->arch.ret = -EINTR; 4755 wake_up(&v->arch.cpu_run); 4756 } 4757 } 4758 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4759 break; 4760 n_ceded = 0; 4761 for_each_runnable_thread(i, v, vc) { 4762 if (!kvmppc_vcpu_woken(v)) 4763 n_ceded += v->arch.ceded; 4764 else 4765 v->arch.ceded = 0; 4766 } 4767 vc->runner = vcpu; 4768 if (n_ceded == vc->n_runnable) { 4769 kvmppc_vcore_blocked(vc); 4770 } else if (need_resched()) { 4771 kvmppc_vcore_preempt(vc); 4772 /* Let something else run */ 4773 cond_resched_lock(&vc->lock); 4774 if (vc->vcore_state == VCORE_PREEMPT) 4775 kvmppc_vcore_end_preempt(vc); 4776 } else { 4777 kvmppc_run_core(vc); 4778 } 4779 vc->runner = NULL; 4780 } 4781 4782 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4783 (vc->vcore_state == VCORE_RUNNING || 4784 vc->vcore_state == VCORE_EXITING || 4785 vc->vcore_state == VCORE_PIGGYBACK)) 4786 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4787 4788 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4789 kvmppc_vcore_end_preempt(vc); 4790 4791 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4792 kvmppc_remove_runnable(vc, vcpu, mftb()); 4793 vcpu->stat.signal_exits++; 4794 run->exit_reason = KVM_EXIT_INTR; 4795 vcpu->arch.ret = -EINTR; 4796 } 4797 4798 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4799 /* Wake up some vcpu to run the core */ 4800 i = -1; 4801 v = next_runnable_thread(vc, &i); 4802 wake_up(&v->arch.cpu_run); 4803 } 4804 4805 trace_kvmppc_run_vcpu_exit(vcpu); 4806 spin_unlock(&vc->lock); 4807 return vcpu->arch.ret; 4808 } 4809 4810 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4811 unsigned long lpcr) 4812 { 4813 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 4814 struct kvm_run *run = vcpu->run; 4815 int trap, r, pcpu; 4816 int srcu_idx; 4817 struct kvmppc_vcore *vc; 4818 struct kvm *kvm = vcpu->kvm; 4819 struct kvm_nested_guest *nested = vcpu->arch.nested; 4820 unsigned long flags; 4821 u64 tb; 4822 4823 trace_kvmppc_run_vcpu_enter(vcpu); 4824 4825 run->exit_reason = 0; 4826 vcpu->arch.ret = RESUME_GUEST; 4827 vcpu->arch.trap = 0; 4828 4829 vc = vcpu->arch.vcore; 4830 vcpu->arch.ceded = 0; 4831 vcpu->arch.run_task = current; 4832 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4833 4834 /* See if the MMU is ready to go */ 4835 if (unlikely(!kvm->arch.mmu_ready)) { 4836 r = kvmhv_setup_mmu(vcpu); 4837 if (r) { 4838 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4839 run->fail_entry.hardware_entry_failure_reason = 0; 4840 vcpu->arch.ret = r; 4841 return r; 4842 } 4843 } 4844 4845 if (need_resched()) 4846 cond_resched(); 4847 4848 kvmppc_update_vpas(vcpu); 4849 4850 preempt_disable(); 4851 pcpu = smp_processor_id(); 4852 if (kvm_is_radix(kvm)) 4853 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4854 4855 /* flags save not required, but irq_pmu has no disable/enable API */ 4856 powerpc_local_irq_pmu_save(flags); 4857 4858 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4859 4860 if (signal_pending(current)) 4861 goto sigpend; 4862 if (need_resched() || !kvm->arch.mmu_ready) 4863 goto out; 4864 4865 vcpu->cpu = pcpu; 4866 vcpu->arch.thread_cpu = pcpu; 4867 vc->pcpu = pcpu; 4868 local_paca->kvm_hstate.kvm_vcpu = vcpu; 4869 local_paca->kvm_hstate.ptid = 0; 4870 local_paca->kvm_hstate.fake_suspend = 0; 4871 4872 /* 4873 * Orders set cpu/thread_cpu vs testing for pending interrupts and 4874 * doorbells below. The other side is when these fields are set vs 4875 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to 4876 * kick a vCPU to notice the pending interrupt. 4877 */ 4878 smp_mb(); 4879 4880 if (!nested) { 4881 kvmppc_core_prepare_to_enter(vcpu); 4882 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4883 &vcpu->arch.pending_exceptions) || 4884 xive_interrupt_pending(vcpu)) { 4885 /* 4886 * For nested HV, don't synthesize but always pass MER, 4887 * the L0 will be able to optimise that more 4888 * effectively than manipulating registers directly. 4889 */ 4890 if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE)) 4891 kvmppc_inject_interrupt_hv(vcpu, 4892 BOOK3S_INTERRUPT_EXTERNAL, 0); 4893 else 4894 lpcr |= LPCR_MER; 4895 } 4896 } else if (vcpu->arch.pending_exceptions || 4897 vcpu->arch.doorbell_request || 4898 xive_interrupt_pending(vcpu)) { 4899 vcpu->arch.ret = RESUME_HOST; 4900 goto out; 4901 } 4902 4903 if (vcpu->arch.timer_running) { 4904 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 4905 vcpu->arch.timer_running = 0; 4906 } 4907 4908 tb = mftb(); 4909 4910 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu)); 4911 4912 trace_kvm_guest_enter(vcpu); 4913 4914 guest_timing_enter_irqoff(); 4915 4916 srcu_idx = srcu_read_lock(&kvm->srcu); 4917 4918 guest_state_enter_irqoff(); 4919 this_cpu_disable_ftrace(); 4920 4921 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb); 4922 vcpu->arch.trap = trap; 4923 4924 this_cpu_enable_ftrace(); 4925 guest_state_exit_irqoff(); 4926 4927 srcu_read_unlock(&kvm->srcu, srcu_idx); 4928 4929 set_irq_happened(trap); 4930 4931 vcpu->cpu = -1; 4932 vcpu->arch.thread_cpu = -1; 4933 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4934 4935 if (!vtime_accounting_enabled_this_cpu()) { 4936 powerpc_local_irq_pmu_restore(flags); 4937 /* 4938 * Service IRQs here before guest_timing_exit_irqoff() so any 4939 * ticks that occurred while running the guest are accounted to 4940 * the guest. If vtime accounting is enabled, accounting uses 4941 * TB rather than ticks, so it can be done without enabling 4942 * interrupts here, which has the problem that it accounts 4943 * interrupt processing overhead to the host. 4944 */ 4945 powerpc_local_irq_pmu_save(flags); 4946 } 4947 guest_timing_exit_irqoff(); 4948 4949 powerpc_local_irq_pmu_restore(flags); 4950 4951 preempt_enable(); 4952 4953 /* 4954 * cancel pending decrementer exception if DEC is now positive, or if 4955 * entering a nested guest in which case the decrementer is now owned 4956 * by L2 and the L1 decrementer is provided in hdec_expires 4957 */ 4958 if (kvmppc_core_pending_dec(vcpu) && 4959 ((tb < kvmppc_dec_expires_host_tb(vcpu)) || 4960 (trap == BOOK3S_INTERRUPT_SYSCALL && 4961 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4962 kvmppc_core_dequeue_dec(vcpu); 4963 4964 trace_kvm_guest_exit(vcpu); 4965 r = RESUME_GUEST; 4966 if (trap) { 4967 if (!nested) 4968 r = kvmppc_handle_exit_hv(vcpu, current); 4969 else 4970 r = kvmppc_handle_nested_exit(vcpu); 4971 } 4972 vcpu->arch.ret = r; 4973 4974 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) { 4975 kvmppc_set_timer(vcpu); 4976 4977 prepare_to_rcuwait(wait); 4978 for (;;) { 4979 set_current_state(TASK_INTERRUPTIBLE); 4980 if (signal_pending(current)) { 4981 vcpu->stat.signal_exits++; 4982 run->exit_reason = KVM_EXIT_INTR; 4983 vcpu->arch.ret = -EINTR; 4984 break; 4985 } 4986 4987 if (kvmppc_vcpu_check_block(vcpu)) 4988 break; 4989 4990 trace_kvmppc_vcore_blocked(vcpu, 0); 4991 schedule(); 4992 trace_kvmppc_vcore_blocked(vcpu, 1); 4993 } 4994 finish_rcuwait(wait); 4995 } 4996 vcpu->arch.ceded = 0; 4997 4998 done: 4999 trace_kvmppc_run_vcpu_exit(vcpu); 5000 5001 return vcpu->arch.ret; 5002 5003 sigpend: 5004 vcpu->stat.signal_exits++; 5005 run->exit_reason = KVM_EXIT_INTR; 5006 vcpu->arch.ret = -EINTR; 5007 out: 5008 vcpu->cpu = -1; 5009 vcpu->arch.thread_cpu = -1; 5010 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 5011 powerpc_local_irq_pmu_restore(flags); 5012 preempt_enable(); 5013 goto done; 5014 } 5015 5016 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 5017 { 5018 struct kvm_run *run = vcpu->run; 5019 int r; 5020 int srcu_idx; 5021 struct kvm *kvm; 5022 unsigned long msr; 5023 5024 start_timing(vcpu, &vcpu->arch.vcpu_entry); 5025 5026 if (!vcpu->arch.sane) { 5027 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5028 return -EINVAL; 5029 } 5030 5031 /* No need to go into the guest when all we'll do is come back out */ 5032 if (signal_pending(current)) { 5033 run->exit_reason = KVM_EXIT_INTR; 5034 return -EINTR; 5035 } 5036 5037 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 5038 /* 5039 * Don't allow entry with a suspended transaction, because 5040 * the guest entry/exit code will lose it. 5041 */ 5042 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 5043 (current->thread.regs->msr & MSR_TM)) { 5044 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 5045 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5046 run->fail_entry.hardware_entry_failure_reason = 0; 5047 return -EINVAL; 5048 } 5049 } 5050 #endif 5051 5052 /* 5053 * Force online to 1 for the sake of old userspace which doesn't 5054 * set it. 5055 */ 5056 if (!vcpu->arch.online) { 5057 atomic_inc(&vcpu->arch.vcore->online_count); 5058 vcpu->arch.online = 1; 5059 } 5060 5061 kvmppc_core_prepare_to_enter(vcpu); 5062 5063 kvm = vcpu->kvm; 5064 atomic_inc(&kvm->arch.vcpus_running); 5065 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 5066 smp_mb(); 5067 5068 msr = 0; 5069 if (IS_ENABLED(CONFIG_PPC_FPU)) 5070 msr |= MSR_FP; 5071 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 5072 msr |= MSR_VEC; 5073 if (cpu_has_feature(CPU_FTR_VSX)) 5074 msr |= MSR_VSX; 5075 if ((cpu_has_feature(CPU_FTR_TM) || 5076 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && 5077 (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM)) 5078 msr |= MSR_TM; 5079 msr = msr_check_and_set(msr); 5080 5081 kvmppc_save_user_regs(); 5082 5083 kvmppc_save_current_sprs(); 5084 5085 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5086 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 5087 vcpu->arch.pgdir = kvm->mm->pgd; 5088 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 5089 5090 do { 5091 accumulate_time(vcpu, &vcpu->arch.guest_entry); 5092 if (cpu_has_feature(CPU_FTR_ARCH_300)) 5093 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 5094 vcpu->arch.vcore->lpcr); 5095 else 5096 r = kvmppc_run_vcpu(vcpu); 5097 5098 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 5099 accumulate_time(vcpu, &vcpu->arch.hcall); 5100 5101 if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 5102 /* 5103 * These should have been caught reflected 5104 * into the guest by now. Final sanity check: 5105 * don't allow userspace to execute hcalls in 5106 * the hypervisor. 5107 */ 5108 r = RESUME_GUEST; 5109 continue; 5110 } 5111 trace_kvm_hcall_enter(vcpu); 5112 r = kvmppc_pseries_do_hcall(vcpu); 5113 trace_kvm_hcall_exit(vcpu, r); 5114 kvmppc_core_prepare_to_enter(vcpu); 5115 } else if (r == RESUME_PAGE_FAULT) { 5116 accumulate_time(vcpu, &vcpu->arch.pg_fault); 5117 srcu_idx = srcu_read_lock(&kvm->srcu); 5118 r = kvmppc_book3s_hv_page_fault(vcpu, 5119 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 5120 srcu_read_unlock(&kvm->srcu, srcu_idx); 5121 } else if (r == RESUME_PASSTHROUGH) { 5122 if (WARN_ON(xics_on_xive())) 5123 r = H_SUCCESS; 5124 else 5125 r = kvmppc_xics_rm_complete(vcpu, 0); 5126 } 5127 } while (is_kvmppc_resume_guest(r)); 5128 accumulate_time(vcpu, &vcpu->arch.vcpu_exit); 5129 5130 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 5131 atomic_dec(&kvm->arch.vcpus_running); 5132 5133 srr_regs_clobbered(); 5134 5135 end_timing(vcpu); 5136 5137 return r; 5138 } 5139 5140 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 5141 int shift, int sllp) 5142 { 5143 (*sps)->page_shift = shift; 5144 (*sps)->slb_enc = sllp; 5145 (*sps)->enc[0].page_shift = shift; 5146 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 5147 /* 5148 * Add 16MB MPSS support (may get filtered out by userspace) 5149 */ 5150 if (shift != 24) { 5151 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 5152 if (penc != -1) { 5153 (*sps)->enc[1].page_shift = 24; 5154 (*sps)->enc[1].pte_enc = penc; 5155 } 5156 } 5157 (*sps)++; 5158 } 5159 5160 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 5161 struct kvm_ppc_smmu_info *info) 5162 { 5163 struct kvm_ppc_one_seg_page_size *sps; 5164 5165 /* 5166 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 5167 * POWER7 doesn't support keys for instruction accesses, 5168 * POWER8 and POWER9 do. 5169 */ 5170 info->data_keys = 32; 5171 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 5172 5173 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 5174 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 5175 info->slb_size = 32; 5176 5177 /* We only support these sizes for now, and no muti-size segments */ 5178 sps = &info->sps[0]; 5179 kvmppc_add_seg_page_size(&sps, 12, 0); 5180 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 5181 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 5182 5183 /* If running as a nested hypervisor, we don't support HPT guests */ 5184 if (kvmhv_on_pseries()) 5185 info->flags |= KVM_PPC_NO_HASH; 5186 5187 return 0; 5188 } 5189 5190 /* 5191 * Get (and clear) the dirty memory log for a memory slot. 5192 */ 5193 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 5194 struct kvm_dirty_log *log) 5195 { 5196 struct kvm_memslots *slots; 5197 struct kvm_memory_slot *memslot; 5198 int r; 5199 unsigned long n, i; 5200 unsigned long *buf, *p; 5201 struct kvm_vcpu *vcpu; 5202 5203 mutex_lock(&kvm->slots_lock); 5204 5205 r = -EINVAL; 5206 if (log->slot >= KVM_USER_MEM_SLOTS) 5207 goto out; 5208 5209 slots = kvm_memslots(kvm); 5210 memslot = id_to_memslot(slots, log->slot); 5211 r = -ENOENT; 5212 if (!memslot || !memslot->dirty_bitmap) 5213 goto out; 5214 5215 /* 5216 * Use second half of bitmap area because both HPT and radix 5217 * accumulate bits in the first half. 5218 */ 5219 n = kvm_dirty_bitmap_bytes(memslot); 5220 buf = memslot->dirty_bitmap + n / sizeof(long); 5221 memset(buf, 0, n); 5222 5223 if (kvm_is_radix(kvm)) 5224 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 5225 else 5226 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 5227 if (r) 5228 goto out; 5229 5230 /* 5231 * We accumulate dirty bits in the first half of the 5232 * memslot's dirty_bitmap area, for when pages are paged 5233 * out or modified by the host directly. Pick up these 5234 * bits and add them to the map. 5235 */ 5236 p = memslot->dirty_bitmap; 5237 for (i = 0; i < n / sizeof(long); ++i) 5238 buf[i] |= xchg(&p[i], 0); 5239 5240 /* Harvest dirty bits from VPA and DTL updates */ 5241 /* Note: we never modify the SLB shadow buffer areas */ 5242 kvm_for_each_vcpu(i, vcpu, kvm) { 5243 spin_lock(&vcpu->arch.vpa_update_lock); 5244 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 5245 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 5246 spin_unlock(&vcpu->arch.vpa_update_lock); 5247 } 5248 5249 r = -EFAULT; 5250 if (copy_to_user(log->dirty_bitmap, buf, n)) 5251 goto out; 5252 5253 r = 0; 5254 out: 5255 mutex_unlock(&kvm->slots_lock); 5256 return r; 5257 } 5258 5259 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 5260 { 5261 vfree(slot->arch.rmap); 5262 slot->arch.rmap = NULL; 5263 } 5264 5265 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 5266 const struct kvm_memory_slot *old, 5267 struct kvm_memory_slot *new, 5268 enum kvm_mr_change change) 5269 { 5270 if (change == KVM_MR_CREATE) { 5271 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap)); 5272 5273 if ((size >> PAGE_SHIFT) > totalram_pages()) 5274 return -ENOMEM; 5275 5276 new->arch.rmap = vzalloc(size); 5277 if (!new->arch.rmap) 5278 return -ENOMEM; 5279 } else if (change != KVM_MR_DELETE) { 5280 new->arch.rmap = old->arch.rmap; 5281 } 5282 5283 return 0; 5284 } 5285 5286 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 5287 struct kvm_memory_slot *old, 5288 const struct kvm_memory_slot *new, 5289 enum kvm_mr_change change) 5290 { 5291 /* 5292 * If we are creating or modifying a memslot, it might make 5293 * some address that was previously cached as emulated 5294 * MMIO be no longer emulated MMIO, so invalidate 5295 * all the caches of emulated MMIO translations. 5296 */ 5297 if (change != KVM_MR_DELETE) 5298 atomic64_inc(&kvm->arch.mmio_update); 5299 5300 /* 5301 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 5302 * have already called kvm_arch_flush_shadow_memslot() to 5303 * flush shadow mappings. For KVM_MR_CREATE we have no 5304 * previous mappings. So the only case to handle is 5305 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 5306 * has been changed. 5307 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 5308 * to get rid of any THP PTEs in the partition-scoped page tables 5309 * so we can track dirtiness at the page level; we flush when 5310 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 5311 * using THP PTEs. 5312 */ 5313 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 5314 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 5315 kvmppc_radix_flush_memslot(kvm, old); 5316 /* 5317 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 5318 */ 5319 if (!kvm->arch.secure_guest) 5320 return; 5321 5322 switch (change) { 5323 case KVM_MR_CREATE: 5324 /* 5325 * @TODO kvmppc_uvmem_memslot_create() can fail and 5326 * return error. Fix this. 5327 */ 5328 kvmppc_uvmem_memslot_create(kvm, new); 5329 break; 5330 case KVM_MR_DELETE: 5331 kvmppc_uvmem_memslot_delete(kvm, old); 5332 break; 5333 default: 5334 /* TODO: Handle KVM_MR_MOVE */ 5335 break; 5336 } 5337 } 5338 5339 /* 5340 * Update LPCR values in kvm->arch and in vcores. 5341 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 5342 * of kvm->arch.lpcr update). 5343 */ 5344 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 5345 { 5346 long int i; 5347 u32 cores_done = 0; 5348 5349 if ((kvm->arch.lpcr & mask) == lpcr) 5350 return; 5351 5352 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 5353 5354 for (i = 0; i < KVM_MAX_VCORES; ++i) { 5355 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 5356 if (!vc) 5357 continue; 5358 5359 spin_lock(&vc->lock); 5360 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 5361 verify_lpcr(kvm, vc->lpcr); 5362 spin_unlock(&vc->lock); 5363 if (++cores_done >= kvm->arch.online_vcores) 5364 break; 5365 } 5366 5367 if (kvmhv_is_nestedv2()) { 5368 struct kvm_vcpu *vcpu; 5369 5370 kvm_for_each_vcpu(i, vcpu, kvm) { 5371 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR); 5372 } 5373 } 5374 } 5375 5376 void kvmppc_setup_partition_table(struct kvm *kvm) 5377 { 5378 unsigned long dw0, dw1; 5379 5380 if (!kvm_is_radix(kvm)) { 5381 /* PS field - page size for VRMA */ 5382 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 5383 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 5384 /* HTABSIZE and HTABORG fields */ 5385 dw0 |= kvm->arch.sdr1; 5386 5387 /* Second dword as set by userspace */ 5388 dw1 = kvm->arch.process_table; 5389 } else { 5390 dw0 = PATB_HR | radix__get_tree_size() | 5391 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 5392 dw1 = PATB_GR | kvm->arch.process_table; 5393 } 5394 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 5395 } 5396 5397 /* 5398 * Set up HPT (hashed page table) and RMA (real-mode area). 5399 * Must be called with kvm->arch.mmu_setup_lock held. 5400 */ 5401 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 5402 { 5403 int err = 0; 5404 struct kvm *kvm = vcpu->kvm; 5405 unsigned long hva; 5406 struct kvm_memory_slot *memslot; 5407 struct vm_area_struct *vma; 5408 unsigned long lpcr = 0, senc; 5409 unsigned long psize, porder; 5410 int srcu_idx; 5411 5412 /* Allocate hashed page table (if not done already) and reset it */ 5413 if (!kvm->arch.hpt.virt) { 5414 int order = KVM_DEFAULT_HPT_ORDER; 5415 struct kvm_hpt_info info; 5416 5417 err = kvmppc_allocate_hpt(&info, order); 5418 /* If we get here, it means userspace didn't specify a 5419 * size explicitly. So, try successively smaller 5420 * sizes if the default failed. */ 5421 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 5422 err = kvmppc_allocate_hpt(&info, order); 5423 5424 if (err < 0) { 5425 pr_err("KVM: Couldn't alloc HPT\n"); 5426 goto out; 5427 } 5428 5429 kvmppc_set_hpt(kvm, &info); 5430 } 5431 5432 /* Look up the memslot for guest physical address 0 */ 5433 srcu_idx = srcu_read_lock(&kvm->srcu); 5434 memslot = gfn_to_memslot(kvm, 0); 5435 5436 /* We must have some memory at 0 by now */ 5437 err = -EINVAL; 5438 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 5439 goto out_srcu; 5440 5441 /* Look up the VMA for the start of this memory slot */ 5442 hva = memslot->userspace_addr; 5443 mmap_read_lock(kvm->mm); 5444 vma = vma_lookup(kvm->mm, hva); 5445 if (!vma || (vma->vm_flags & VM_IO)) 5446 goto up_out; 5447 5448 psize = vma_kernel_pagesize(vma); 5449 5450 mmap_read_unlock(kvm->mm); 5451 5452 /* We can handle 4k, 64k or 16M pages in the VRMA */ 5453 if (psize >= 0x1000000) 5454 psize = 0x1000000; 5455 else if (psize >= 0x10000) 5456 psize = 0x10000; 5457 else 5458 psize = 0x1000; 5459 porder = __ilog2(psize); 5460 5461 senc = slb_pgsize_encoding(psize); 5462 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 5463 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5464 /* Create HPTEs in the hash page table for the VRMA */ 5465 kvmppc_map_vrma(vcpu, memslot, porder); 5466 5467 /* Update VRMASD field in the LPCR */ 5468 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 5469 /* the -4 is to account for senc values starting at 0x10 */ 5470 lpcr = senc << (LPCR_VRMASD_SH - 4); 5471 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 5472 } 5473 5474 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 5475 smp_wmb(); 5476 err = 0; 5477 out_srcu: 5478 srcu_read_unlock(&kvm->srcu, srcu_idx); 5479 out: 5480 return err; 5481 5482 up_out: 5483 mmap_read_unlock(kvm->mm); 5484 goto out_srcu; 5485 } 5486 5487 /* 5488 * Must be called with kvm->arch.mmu_setup_lock held and 5489 * mmu_ready = 0 and no vcpus running. 5490 */ 5491 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 5492 { 5493 unsigned long lpcr, lpcr_mask; 5494 5495 if (nesting_enabled(kvm)) 5496 kvmhv_release_all_nested(kvm); 5497 kvmppc_rmap_reset(kvm); 5498 kvm->arch.process_table = 0; 5499 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5500 spin_lock(&kvm->mmu_lock); 5501 kvm->arch.radix = 0; 5502 spin_unlock(&kvm->mmu_lock); 5503 kvmppc_free_radix(kvm); 5504 5505 lpcr = LPCR_VPM1; 5506 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5507 if (cpu_has_feature(CPU_FTR_ARCH_31)) 5508 lpcr_mask |= LPCR_HAIL; 5509 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5510 5511 return 0; 5512 } 5513 5514 /* 5515 * Must be called with kvm->arch.mmu_setup_lock held and 5516 * mmu_ready = 0 and no vcpus running. 5517 */ 5518 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 5519 { 5520 unsigned long lpcr, lpcr_mask; 5521 int err; 5522 5523 err = kvmppc_init_vm_radix(kvm); 5524 if (err) 5525 return err; 5526 kvmppc_rmap_reset(kvm); 5527 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5528 spin_lock(&kvm->mmu_lock); 5529 kvm->arch.radix = 1; 5530 spin_unlock(&kvm->mmu_lock); 5531 kvmppc_free_hpt(&kvm->arch.hpt); 5532 5533 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5534 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5535 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5536 lpcr_mask |= LPCR_HAIL; 5537 if (cpu_has_feature(CPU_FTR_HVMODE) && 5538 (kvm->arch.host_lpcr & LPCR_HAIL)) 5539 lpcr |= LPCR_HAIL; 5540 } 5541 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5542 5543 return 0; 5544 } 5545 5546 #ifdef CONFIG_KVM_XICS 5547 /* 5548 * Allocate a per-core structure for managing state about which cores are 5549 * running in the host versus the guest and for exchanging data between 5550 * real mode KVM and CPU running in the host. 5551 * This is only done for the first VM. 5552 * The allocated structure stays even if all VMs have stopped. 5553 * It is only freed when the kvm-hv module is unloaded. 5554 * It's OK for this routine to fail, we just don't support host 5555 * core operations like redirecting H_IPI wakeups. 5556 */ 5557 void kvmppc_alloc_host_rm_ops(void) 5558 { 5559 struct kvmppc_host_rm_ops *ops; 5560 unsigned long l_ops; 5561 int cpu, core; 5562 int size; 5563 5564 if (cpu_has_feature(CPU_FTR_ARCH_300)) 5565 return; 5566 5567 /* Not the first time here ? */ 5568 if (kvmppc_host_rm_ops_hv != NULL) 5569 return; 5570 5571 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 5572 if (!ops) 5573 return; 5574 5575 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 5576 ops->rm_core = kzalloc(size, GFP_KERNEL); 5577 5578 if (!ops->rm_core) { 5579 kfree(ops); 5580 return; 5581 } 5582 5583 cpus_read_lock(); 5584 5585 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 5586 if (!cpu_online(cpu)) 5587 continue; 5588 5589 core = cpu >> threads_shift; 5590 ops->rm_core[core].rm_state.in_host = 1; 5591 } 5592 5593 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 5594 5595 /* 5596 * Make the contents of the kvmppc_host_rm_ops structure visible 5597 * to other CPUs before we assign it to the global variable. 5598 * Do an atomic assignment (no locks used here), but if someone 5599 * beats us to it, just free our copy and return. 5600 */ 5601 smp_wmb(); 5602 l_ops = (unsigned long) ops; 5603 5604 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 5605 cpus_read_unlock(); 5606 kfree(ops->rm_core); 5607 kfree(ops); 5608 return; 5609 } 5610 5611 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 5612 "ppc/kvm_book3s:prepare", 5613 kvmppc_set_host_core, 5614 kvmppc_clear_host_core); 5615 cpus_read_unlock(); 5616 } 5617 5618 void kvmppc_free_host_rm_ops(void) 5619 { 5620 if (kvmppc_host_rm_ops_hv) { 5621 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 5622 kfree(kvmppc_host_rm_ops_hv->rm_core); 5623 kfree(kvmppc_host_rm_ops_hv); 5624 kvmppc_host_rm_ops_hv = NULL; 5625 } 5626 } 5627 #endif 5628 5629 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5630 { 5631 unsigned long lpcr, lpid; 5632 int ret; 5633 5634 mutex_init(&kvm->arch.uvmem_lock); 5635 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5636 mutex_init(&kvm->arch.mmu_setup_lock); 5637 5638 /* Allocate the guest's logical partition ID */ 5639 5640 if (!kvmhv_is_nestedv2()) { 5641 lpid = kvmppc_alloc_lpid(); 5642 if ((long)lpid < 0) 5643 return -ENOMEM; 5644 kvm->arch.lpid = lpid; 5645 } 5646 5647 kvmppc_alloc_host_rm_ops(); 5648 5649 kvmhv_vm_nested_init(kvm); 5650 5651 if (kvmhv_is_nestedv2()) { 5652 long rc; 5653 unsigned long guest_id; 5654 5655 rc = plpar_guest_create(0, &guest_id); 5656 5657 if (rc != H_SUCCESS) 5658 pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc); 5659 5660 switch (rc) { 5661 case H_PARAMETER: 5662 case H_FUNCTION: 5663 case H_STATE: 5664 return -EINVAL; 5665 case H_NOT_ENOUGH_RESOURCES: 5666 case H_ABORTED: 5667 return -ENOMEM; 5668 case H_AUTHORITY: 5669 return -EPERM; 5670 case H_NOT_AVAILABLE: 5671 return -EBUSY; 5672 } 5673 kvm->arch.lpid = guest_id; 5674 } 5675 5676 5677 /* 5678 * Since we don't flush the TLB when tearing down a VM, 5679 * and this lpid might have previously been used, 5680 * make sure we flush on each core before running the new VM. 5681 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5682 * does this flush for us. 5683 */ 5684 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5685 cpumask_setall(&kvm->arch.need_tlb_flush); 5686 5687 /* Start out with the default set of hcalls enabled */ 5688 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5689 sizeof(kvm->arch.enabled_hcalls)); 5690 5691 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5692 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5693 5694 /* Init LPCR for virtual RMA mode */ 5695 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5696 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5697 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5698 lpcr &= LPCR_PECE | LPCR_LPES; 5699 } else { 5700 /* 5701 * The L2 LPES mode will be set by the L0 according to whether 5702 * or not it needs to take external interrupts in HV mode. 5703 */ 5704 lpcr = 0; 5705 } 5706 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5707 LPCR_VPM0 | LPCR_VPM1; 5708 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5709 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5710 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5711 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5712 lpcr |= LPCR_ONL; 5713 /* 5714 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5715 * Set HVICE bit to enable hypervisor virtualization interrupts. 5716 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5717 * be unnecessary but better safe than sorry in case we re-enable 5718 * EE in HV mode with this LPCR still set) 5719 */ 5720 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5721 lpcr &= ~LPCR_VPM0; 5722 lpcr |= LPCR_HVICE | LPCR_HEIC; 5723 5724 /* 5725 * If xive is enabled, we route 0x500 interrupts directly 5726 * to the guest. 5727 */ 5728 if (xics_on_xive()) 5729 lpcr |= LPCR_LPES; 5730 } 5731 5732 /* 5733 * If the host uses radix, the guest starts out as radix. 5734 */ 5735 if (radix_enabled()) { 5736 kvm->arch.radix = 1; 5737 kvm->arch.mmu_ready = 1; 5738 lpcr &= ~LPCR_VPM1; 5739 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5740 if (cpu_has_feature(CPU_FTR_HVMODE) && 5741 cpu_has_feature(CPU_FTR_ARCH_31) && 5742 (kvm->arch.host_lpcr & LPCR_HAIL)) 5743 lpcr |= LPCR_HAIL; 5744 ret = kvmppc_init_vm_radix(kvm); 5745 if (ret) { 5746 if (kvmhv_is_nestedv2()) 5747 plpar_guest_delete(0, kvm->arch.lpid); 5748 else 5749 kvmppc_free_lpid(kvm->arch.lpid); 5750 return ret; 5751 } 5752 kvmppc_setup_partition_table(kvm); 5753 } 5754 5755 verify_lpcr(kvm, lpcr); 5756 kvm->arch.lpcr = lpcr; 5757 5758 /* Initialization for future HPT resizes */ 5759 kvm->arch.resize_hpt = NULL; 5760 5761 /* 5762 * Work out how many sets the TLB has, for the use of 5763 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5764 */ 5765 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5766 /* 5767 * P10 will flush all the congruence class with a single tlbiel 5768 */ 5769 kvm->arch.tlb_sets = 1; 5770 } else if (radix_enabled()) 5771 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5772 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5773 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5774 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5775 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5776 else 5777 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5778 5779 /* 5780 * Track that we now have a HV mode VM active. This blocks secondary 5781 * CPU threads from coming online. 5782 */ 5783 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5784 kvm_hv_vm_activated(); 5785 5786 /* 5787 * Initialize smt_mode depending on processor. 5788 * POWER8 and earlier have to use "strict" threading, where 5789 * all vCPUs in a vcore have to run on the same (sub)core, 5790 * whereas on POWER9 the threads can each run a different 5791 * guest. 5792 */ 5793 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5794 kvm->arch.smt_mode = threads_per_subcore; 5795 else 5796 kvm->arch.smt_mode = 1; 5797 kvm->arch.emul_smt_mode = 1; 5798 5799 return 0; 5800 } 5801 5802 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm) 5803 { 5804 kvmppc_mmu_debugfs_init(kvm); 5805 if (radix_enabled()) 5806 kvmhv_radix_debugfs_init(kvm); 5807 return 0; 5808 } 5809 5810 static void kvmppc_free_vcores(struct kvm *kvm) 5811 { 5812 long int i; 5813 5814 for (i = 0; i < KVM_MAX_VCORES; ++i) 5815 kfree(kvm->arch.vcores[i]); 5816 kvm->arch.online_vcores = 0; 5817 } 5818 5819 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5820 { 5821 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5822 kvm_hv_vm_deactivated(); 5823 5824 kvmppc_free_vcores(kvm); 5825 5826 5827 if (kvm_is_radix(kvm)) 5828 kvmppc_free_radix(kvm); 5829 else 5830 kvmppc_free_hpt(&kvm->arch.hpt); 5831 5832 /* Perform global invalidation and return lpid to the pool */ 5833 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5834 if (nesting_enabled(kvm)) 5835 kvmhv_release_all_nested(kvm); 5836 kvm->arch.process_table = 0; 5837 if (kvm->arch.secure_guest) 5838 uv_svm_terminate(kvm->arch.lpid); 5839 if (!kvmhv_is_nestedv2()) 5840 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5841 } 5842 5843 if (kvmhv_is_nestedv2()) { 5844 kvmhv_flush_lpid(kvm->arch.lpid); 5845 plpar_guest_delete(0, kvm->arch.lpid); 5846 } else { 5847 kvmppc_free_lpid(kvm->arch.lpid); 5848 } 5849 5850 kvmppc_free_pimap(kvm); 5851 } 5852 5853 /* We don't need to emulate any privileged instructions or dcbz */ 5854 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5855 unsigned int inst, int *advance) 5856 { 5857 return EMULATE_FAIL; 5858 } 5859 5860 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5861 ulong spr_val) 5862 { 5863 return EMULATE_FAIL; 5864 } 5865 5866 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5867 ulong *spr_val) 5868 { 5869 return EMULATE_FAIL; 5870 } 5871 5872 static int kvmppc_core_check_processor_compat_hv(void) 5873 { 5874 if (cpu_has_feature(CPU_FTR_HVMODE) && 5875 cpu_has_feature(CPU_FTR_ARCH_206)) 5876 return 0; 5877 5878 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5879 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5880 return 0; 5881 5882 return -EIO; 5883 } 5884 5885 #ifdef CONFIG_KVM_XICS 5886 5887 void kvmppc_free_pimap(struct kvm *kvm) 5888 { 5889 kfree(kvm->arch.pimap); 5890 } 5891 5892 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5893 { 5894 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5895 } 5896 5897 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5898 { 5899 struct irq_desc *desc; 5900 struct kvmppc_irq_map *irq_map; 5901 struct kvmppc_passthru_irqmap *pimap; 5902 struct irq_chip *chip; 5903 int i, rc = 0; 5904 struct irq_data *host_data; 5905 5906 if (!kvm_irq_bypass) 5907 return 1; 5908 5909 desc = irq_to_desc(host_irq); 5910 if (!desc) 5911 return -EIO; 5912 5913 mutex_lock(&kvm->lock); 5914 5915 pimap = kvm->arch.pimap; 5916 if (pimap == NULL) { 5917 /* First call, allocate structure to hold IRQ map */ 5918 pimap = kvmppc_alloc_pimap(); 5919 if (pimap == NULL) { 5920 mutex_unlock(&kvm->lock); 5921 return -ENOMEM; 5922 } 5923 kvm->arch.pimap = pimap; 5924 } 5925 5926 /* 5927 * For now, we only support interrupts for which the EOI operation 5928 * is an OPAL call followed by a write to XIRR, since that's 5929 * what our real-mode EOI code does, or a XIVE interrupt 5930 */ 5931 chip = irq_data_get_irq_chip(&desc->irq_data); 5932 if (!chip || !is_pnv_opal_msi(chip)) { 5933 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5934 host_irq, guest_gsi); 5935 mutex_unlock(&kvm->lock); 5936 return -ENOENT; 5937 } 5938 5939 /* 5940 * See if we already have an entry for this guest IRQ number. 5941 * If it's mapped to a hardware IRQ number, that's an error, 5942 * otherwise re-use this entry. 5943 */ 5944 for (i = 0; i < pimap->n_mapped; i++) { 5945 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5946 if (pimap->mapped[i].r_hwirq) { 5947 mutex_unlock(&kvm->lock); 5948 return -EINVAL; 5949 } 5950 break; 5951 } 5952 } 5953 5954 if (i == KVMPPC_PIRQ_MAPPED) { 5955 mutex_unlock(&kvm->lock); 5956 return -EAGAIN; /* table is full */ 5957 } 5958 5959 irq_map = &pimap->mapped[i]; 5960 5961 irq_map->v_hwirq = guest_gsi; 5962 irq_map->desc = desc; 5963 5964 /* 5965 * Order the above two stores before the next to serialize with 5966 * the KVM real mode handler. 5967 */ 5968 smp_wmb(); 5969 5970 /* 5971 * The 'host_irq' number is mapped in the PCI-MSI domain but 5972 * the underlying calls, which will EOI the interrupt in real 5973 * mode, need an HW IRQ number mapped in the XICS IRQ domain. 5974 */ 5975 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); 5976 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); 5977 5978 if (i == pimap->n_mapped) 5979 pimap->n_mapped++; 5980 5981 if (xics_on_xive()) 5982 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); 5983 else 5984 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); 5985 if (rc) 5986 irq_map->r_hwirq = 0; 5987 5988 mutex_unlock(&kvm->lock); 5989 5990 return 0; 5991 } 5992 5993 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5994 { 5995 struct irq_desc *desc; 5996 struct kvmppc_passthru_irqmap *pimap; 5997 int i, rc = 0; 5998 5999 if (!kvm_irq_bypass) 6000 return 0; 6001 6002 desc = irq_to_desc(host_irq); 6003 if (!desc) 6004 return -EIO; 6005 6006 mutex_lock(&kvm->lock); 6007 if (!kvm->arch.pimap) 6008 goto unlock; 6009 6010 pimap = kvm->arch.pimap; 6011 6012 for (i = 0; i < pimap->n_mapped; i++) { 6013 if (guest_gsi == pimap->mapped[i].v_hwirq) 6014 break; 6015 } 6016 6017 if (i == pimap->n_mapped) { 6018 mutex_unlock(&kvm->lock); 6019 return -ENODEV; 6020 } 6021 6022 if (xics_on_xive()) 6023 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); 6024 else 6025 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 6026 6027 /* invalidate the entry (what to do on error from the above ?) */ 6028 pimap->mapped[i].r_hwirq = 0; 6029 6030 /* 6031 * We don't free this structure even when the count goes to 6032 * zero. The structure is freed when we destroy the VM. 6033 */ 6034 unlock: 6035 mutex_unlock(&kvm->lock); 6036 return rc; 6037 } 6038 6039 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 6040 struct irq_bypass_producer *prod) 6041 { 6042 int ret = 0; 6043 struct kvm_kernel_irqfd *irqfd = 6044 container_of(cons, struct kvm_kernel_irqfd, consumer); 6045 6046 irqfd->producer = prod; 6047 6048 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 6049 if (ret) 6050 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 6051 prod->irq, irqfd->gsi, ret); 6052 6053 return ret; 6054 } 6055 6056 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 6057 struct irq_bypass_producer *prod) 6058 { 6059 int ret; 6060 struct kvm_kernel_irqfd *irqfd = 6061 container_of(cons, struct kvm_kernel_irqfd, consumer); 6062 6063 irqfd->producer = NULL; 6064 6065 /* 6066 * When producer of consumer is unregistered, we change back to 6067 * default external interrupt handling mode - KVM real mode 6068 * will switch back to host. 6069 */ 6070 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 6071 if (ret) 6072 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 6073 prod->irq, irqfd->gsi, ret); 6074 } 6075 #endif 6076 6077 static int kvm_arch_vm_ioctl_hv(struct file *filp, 6078 unsigned int ioctl, unsigned long arg) 6079 { 6080 struct kvm *kvm __maybe_unused = filp->private_data; 6081 void __user *argp = (void __user *)arg; 6082 int r; 6083 6084 switch (ioctl) { 6085 6086 case KVM_PPC_ALLOCATE_HTAB: { 6087 u32 htab_order; 6088 6089 /* If we're a nested hypervisor, we currently only support radix */ 6090 if (kvmhv_on_pseries()) { 6091 r = -EOPNOTSUPP; 6092 break; 6093 } 6094 6095 r = -EFAULT; 6096 if (get_user(htab_order, (u32 __user *)argp)) 6097 break; 6098 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 6099 if (r) 6100 break; 6101 r = 0; 6102 break; 6103 } 6104 6105 case KVM_PPC_GET_HTAB_FD: { 6106 struct kvm_get_htab_fd ghf; 6107 6108 r = -EFAULT; 6109 if (copy_from_user(&ghf, argp, sizeof(ghf))) 6110 break; 6111 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 6112 break; 6113 } 6114 6115 case KVM_PPC_RESIZE_HPT_PREPARE: { 6116 struct kvm_ppc_resize_hpt rhpt; 6117 6118 r = -EFAULT; 6119 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 6120 break; 6121 6122 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 6123 break; 6124 } 6125 6126 case KVM_PPC_RESIZE_HPT_COMMIT: { 6127 struct kvm_ppc_resize_hpt rhpt; 6128 6129 r = -EFAULT; 6130 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 6131 break; 6132 6133 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 6134 break; 6135 } 6136 6137 default: 6138 r = -ENOTTY; 6139 } 6140 6141 return r; 6142 } 6143 6144 /* 6145 * List of hcall numbers to enable by default. 6146 * For compatibility with old userspace, we enable by default 6147 * all hcalls that were implemented before the hcall-enabling 6148 * facility was added. Note this list should not include H_RTAS. 6149 */ 6150 static unsigned int default_hcall_list[] = { 6151 H_REMOVE, 6152 H_ENTER, 6153 H_READ, 6154 H_PROTECT, 6155 H_BULK_REMOVE, 6156 #ifdef CONFIG_SPAPR_TCE_IOMMU 6157 H_GET_TCE, 6158 H_PUT_TCE, 6159 #endif 6160 H_SET_DABR, 6161 H_SET_XDABR, 6162 H_CEDE, 6163 H_PROD, 6164 H_CONFER, 6165 H_REGISTER_VPA, 6166 #ifdef CONFIG_KVM_XICS 6167 H_EOI, 6168 H_CPPR, 6169 H_IPI, 6170 H_IPOLL, 6171 H_XIRR, 6172 H_XIRR_X, 6173 #endif 6174 0 6175 }; 6176 6177 static void init_default_hcalls(void) 6178 { 6179 int i; 6180 unsigned int hcall; 6181 6182 for (i = 0; default_hcall_list[i]; ++i) { 6183 hcall = default_hcall_list[i]; 6184 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 6185 __set_bit(hcall / 4, default_enabled_hcalls); 6186 } 6187 } 6188 6189 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 6190 { 6191 unsigned long lpcr; 6192 int radix; 6193 int err; 6194 6195 /* If not on a POWER9, reject it */ 6196 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6197 return -ENODEV; 6198 6199 /* If any unknown flags set, reject it */ 6200 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 6201 return -EINVAL; 6202 6203 /* GR (guest radix) bit in process_table field must match */ 6204 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 6205 if (!!(cfg->process_table & PATB_GR) != radix) 6206 return -EINVAL; 6207 6208 /* Process table size field must be reasonable, i.e. <= 24 */ 6209 if ((cfg->process_table & PRTS_MASK) > 24) 6210 return -EINVAL; 6211 6212 /* We can change a guest to/from radix now, if the host is radix */ 6213 if (radix && !radix_enabled()) 6214 return -EINVAL; 6215 6216 /* If we're a nested hypervisor, we currently only support radix */ 6217 if (kvmhv_on_pseries() && !radix) 6218 return -EINVAL; 6219 6220 mutex_lock(&kvm->arch.mmu_setup_lock); 6221 if (radix != kvm_is_radix(kvm)) { 6222 if (kvm->arch.mmu_ready) { 6223 kvm->arch.mmu_ready = 0; 6224 /* order mmu_ready vs. vcpus_running */ 6225 smp_mb(); 6226 if (atomic_read(&kvm->arch.vcpus_running)) { 6227 kvm->arch.mmu_ready = 1; 6228 err = -EBUSY; 6229 goto out_unlock; 6230 } 6231 } 6232 if (radix) 6233 err = kvmppc_switch_mmu_to_radix(kvm); 6234 else 6235 err = kvmppc_switch_mmu_to_hpt(kvm); 6236 if (err) 6237 goto out_unlock; 6238 } 6239 6240 kvm->arch.process_table = cfg->process_table; 6241 kvmppc_setup_partition_table(kvm); 6242 6243 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 6244 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 6245 err = 0; 6246 6247 out_unlock: 6248 mutex_unlock(&kvm->arch.mmu_setup_lock); 6249 return err; 6250 } 6251 6252 static int kvmhv_enable_nested(struct kvm *kvm) 6253 { 6254 if (!nested) 6255 return -EPERM; 6256 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6257 return -ENODEV; 6258 if (!radix_enabled()) 6259 return -ENODEV; 6260 if (kvmhv_is_nestedv2()) 6261 return -ENODEV; 6262 6263 /* kvm == NULL means the caller is testing if the capability exists */ 6264 if (kvm) 6265 kvm->arch.nested_enable = true; 6266 return 0; 6267 } 6268 6269 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 6270 int size) 6271 { 6272 int rc = -EINVAL; 6273 6274 if (kvmhv_vcpu_is_radix(vcpu)) { 6275 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 6276 6277 if (rc > 0) 6278 rc = -EINVAL; 6279 } 6280 6281 /* For now quadrants are the only way to access nested guest memory */ 6282 if (rc && vcpu->arch.nested) 6283 rc = -EAGAIN; 6284 6285 return rc; 6286 } 6287 6288 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 6289 int size) 6290 { 6291 int rc = -EINVAL; 6292 6293 if (kvmhv_vcpu_is_radix(vcpu)) { 6294 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 6295 6296 if (rc > 0) 6297 rc = -EINVAL; 6298 } 6299 6300 /* For now quadrants are the only way to access nested guest memory */ 6301 if (rc && vcpu->arch.nested) 6302 rc = -EAGAIN; 6303 6304 return rc; 6305 } 6306 6307 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 6308 { 6309 unpin_vpa(kvm, vpa); 6310 vpa->gpa = 0; 6311 vpa->pinned_addr = NULL; 6312 vpa->dirty = false; 6313 vpa->update_pending = 0; 6314 } 6315 6316 /* 6317 * Enable a guest to become a secure VM, or test whether 6318 * that could be enabled. 6319 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 6320 * tested (kvm == NULL) or enabled (kvm != NULL). 6321 */ 6322 static int kvmhv_enable_svm(struct kvm *kvm) 6323 { 6324 if (!kvmppc_uvmem_available()) 6325 return -EINVAL; 6326 if (kvm) 6327 kvm->arch.svm_enabled = 1; 6328 return 0; 6329 } 6330 6331 /* 6332 * IOCTL handler to turn off secure mode of guest 6333 * 6334 * - Release all device pages 6335 * - Issue ucall to terminate the guest on the UV side 6336 * - Unpin the VPA pages. 6337 * - Reinit the partition scoped page tables 6338 */ 6339 static int kvmhv_svm_off(struct kvm *kvm) 6340 { 6341 struct kvm_vcpu *vcpu; 6342 int mmu_was_ready; 6343 int srcu_idx; 6344 int ret = 0; 6345 unsigned long i; 6346 6347 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 6348 return ret; 6349 6350 mutex_lock(&kvm->arch.mmu_setup_lock); 6351 mmu_was_ready = kvm->arch.mmu_ready; 6352 if (kvm->arch.mmu_ready) { 6353 kvm->arch.mmu_ready = 0; 6354 /* order mmu_ready vs. vcpus_running */ 6355 smp_mb(); 6356 if (atomic_read(&kvm->arch.vcpus_running)) { 6357 kvm->arch.mmu_ready = 1; 6358 ret = -EBUSY; 6359 goto out; 6360 } 6361 } 6362 6363 srcu_idx = srcu_read_lock(&kvm->srcu); 6364 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6365 struct kvm_memory_slot *memslot; 6366 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 6367 int bkt; 6368 6369 if (!slots) 6370 continue; 6371 6372 kvm_for_each_memslot(memslot, bkt, slots) { 6373 kvmppc_uvmem_drop_pages(memslot, kvm, true); 6374 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 6375 } 6376 } 6377 srcu_read_unlock(&kvm->srcu, srcu_idx); 6378 6379 ret = uv_svm_terminate(kvm->arch.lpid); 6380 if (ret != U_SUCCESS) { 6381 ret = -EINVAL; 6382 goto out; 6383 } 6384 6385 /* 6386 * When secure guest is reset, all the guest pages are sent 6387 * to UV via UV_PAGE_IN before the non-boot vcpus get a 6388 * chance to run and unpin their VPA pages. Unpinning of all 6389 * VPA pages is done here explicitly so that VPA pages 6390 * can be migrated to the secure side. 6391 * 6392 * This is required to for the secure SMP guest to reboot 6393 * correctly. 6394 */ 6395 kvm_for_each_vcpu(i, vcpu, kvm) { 6396 spin_lock(&vcpu->arch.vpa_update_lock); 6397 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 6398 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 6399 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 6400 spin_unlock(&vcpu->arch.vpa_update_lock); 6401 } 6402 6403 kvmppc_setup_partition_table(kvm); 6404 kvm->arch.secure_guest = 0; 6405 kvm->arch.mmu_ready = mmu_was_ready; 6406 out: 6407 mutex_unlock(&kvm->arch.mmu_setup_lock); 6408 return ret; 6409 } 6410 6411 static int kvmhv_enable_dawr1(struct kvm *kvm) 6412 { 6413 if (!cpu_has_feature(CPU_FTR_DAWR1)) 6414 return -ENODEV; 6415 6416 /* kvm == NULL means the caller is testing if the capability exists */ 6417 if (kvm) 6418 kvm->arch.dawr1_enabled = true; 6419 return 0; 6420 } 6421 6422 static bool kvmppc_hash_v3_possible(void) 6423 { 6424 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6425 return false; 6426 6427 if (!cpu_has_feature(CPU_FTR_HVMODE)) 6428 return false; 6429 6430 /* 6431 * POWER9 chips before version 2.02 can't have some threads in 6432 * HPT mode and some in radix mode on the same core. 6433 */ 6434 if (radix_enabled()) { 6435 unsigned int pvr = mfspr(SPRN_PVR); 6436 if ((pvr >> 16) == PVR_POWER9 && 6437 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 6438 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 6439 return false; 6440 } 6441 6442 return true; 6443 } 6444 6445 static struct kvmppc_ops kvm_ops_hv = { 6446 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 6447 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 6448 .get_one_reg = kvmppc_get_one_reg_hv, 6449 .set_one_reg = kvmppc_set_one_reg_hv, 6450 .vcpu_load = kvmppc_core_vcpu_load_hv, 6451 .vcpu_put = kvmppc_core_vcpu_put_hv, 6452 .inject_interrupt = kvmppc_inject_interrupt_hv, 6453 .set_msr = kvmppc_set_msr_hv, 6454 .vcpu_run = kvmppc_vcpu_run_hv, 6455 .vcpu_create = kvmppc_core_vcpu_create_hv, 6456 .vcpu_free = kvmppc_core_vcpu_free_hv, 6457 .check_requests = kvmppc_core_check_requests_hv, 6458 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 6459 .flush_memslot = kvmppc_core_flush_memslot_hv, 6460 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 6461 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 6462 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 6463 .age_gfn = kvm_age_gfn_hv, 6464 .test_age_gfn = kvm_test_age_gfn_hv, 6465 .free_memslot = kvmppc_core_free_memslot_hv, 6466 .init_vm = kvmppc_core_init_vm_hv, 6467 .destroy_vm = kvmppc_core_destroy_vm_hv, 6468 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 6469 .emulate_op = kvmppc_core_emulate_op_hv, 6470 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 6471 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 6472 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 6473 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 6474 .hcall_implemented = kvmppc_hcall_impl_hv, 6475 #ifdef CONFIG_KVM_XICS 6476 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 6477 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 6478 #endif 6479 .configure_mmu = kvmhv_configure_mmu, 6480 .get_rmmu_info = kvmhv_get_rmmu_info, 6481 .set_smt_mode = kvmhv_set_smt_mode, 6482 .enable_nested = kvmhv_enable_nested, 6483 .load_from_eaddr = kvmhv_load_from_eaddr, 6484 .store_to_eaddr = kvmhv_store_to_eaddr, 6485 .enable_svm = kvmhv_enable_svm, 6486 .svm_off = kvmhv_svm_off, 6487 .enable_dawr1 = kvmhv_enable_dawr1, 6488 .hash_v3_possible = kvmppc_hash_v3_possible, 6489 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv, 6490 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv, 6491 }; 6492 6493 static int kvm_init_subcore_bitmap(void) 6494 { 6495 int i, j; 6496 int nr_cores = cpu_nr_cores(); 6497 struct sibling_subcore_state *sibling_subcore_state; 6498 6499 for (i = 0; i < nr_cores; i++) { 6500 int first_cpu = i * threads_per_core; 6501 int node = cpu_to_node(first_cpu); 6502 6503 /* Ignore if it is already allocated. */ 6504 if (paca_ptrs[first_cpu]->sibling_subcore_state) 6505 continue; 6506 6507 sibling_subcore_state = 6508 kzalloc_node(sizeof(struct sibling_subcore_state), 6509 GFP_KERNEL, node); 6510 if (!sibling_subcore_state) 6511 return -ENOMEM; 6512 6513 6514 for (j = 0; j < threads_per_core; j++) { 6515 int cpu = first_cpu + j; 6516 6517 paca_ptrs[cpu]->sibling_subcore_state = 6518 sibling_subcore_state; 6519 } 6520 } 6521 return 0; 6522 } 6523 6524 static int kvmppc_radix_possible(void) 6525 { 6526 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 6527 } 6528 6529 static int kvmppc_book3s_init_hv(void) 6530 { 6531 int r; 6532 6533 if (!tlbie_capable) { 6534 pr_err("KVM-HV: Host does not support TLBIE\n"); 6535 return -ENODEV; 6536 } 6537 6538 /* 6539 * FIXME!! Do we need to check on all cpus ? 6540 */ 6541 r = kvmppc_core_check_processor_compat_hv(); 6542 if (r < 0) 6543 return -ENODEV; 6544 6545 r = kvmhv_nested_init(); 6546 if (r) 6547 return r; 6548 6549 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 6550 r = kvm_init_subcore_bitmap(); 6551 if (r) 6552 goto err; 6553 } 6554 6555 /* 6556 * We need a way of accessing the XICS interrupt controller, 6557 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 6558 * indirectly, via OPAL. 6559 */ 6560 #ifdef CONFIG_SMP 6561 if (!xics_on_xive() && !kvmhv_on_pseries() && 6562 !local_paca->kvm_hstate.xics_phys) { 6563 struct device_node *np; 6564 6565 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 6566 if (!np) { 6567 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 6568 r = -ENODEV; 6569 goto err; 6570 } 6571 /* presence of intc confirmed - node can be dropped again */ 6572 of_node_put(np); 6573 } 6574 #endif 6575 6576 init_default_hcalls(); 6577 6578 init_vcore_lists(); 6579 6580 r = kvmppc_mmu_hv_init(); 6581 if (r) 6582 goto err; 6583 6584 if (kvmppc_radix_possible()) { 6585 r = kvmppc_radix_init(); 6586 if (r) 6587 goto err; 6588 } 6589 6590 r = kvmppc_uvmem_init(); 6591 if (r < 0) { 6592 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 6593 return r; 6594 } 6595 6596 kvm_ops_hv.owner = THIS_MODULE; 6597 kvmppc_hv_ops = &kvm_ops_hv; 6598 6599 return 0; 6600 6601 err: 6602 kvmhv_nested_exit(); 6603 kvmppc_radix_exit(); 6604 6605 return r; 6606 } 6607 6608 static void kvmppc_book3s_exit_hv(void) 6609 { 6610 kvmppc_uvmem_free(); 6611 kvmppc_free_host_rm_ops(); 6612 if (kvmppc_radix_possible()) 6613 kvmppc_radix_exit(); 6614 kvmppc_hv_ops = NULL; 6615 kvmhv_nested_exit(); 6616 } 6617 6618 module_init(kvmppc_book3s_init_hv); 6619 module_exit(kvmppc_book3s_exit_hv); 6620 MODULE_DESCRIPTION("KVM on Book3S (POWER8 and later) in hypervisor mode"); 6621 MODULE_LICENSE("GPL"); 6622 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6623 MODULE_ALIAS("devname:kvm"); 6624