1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 37 #include <asm/reg.h> 38 #include <asm/cputable.h> 39 #include <asm/cacheflush.h> 40 #include <asm/tlbflush.h> 41 #include <asm/uaccess.h> 42 #include <asm/io.h> 43 #include <asm/kvm_ppc.h> 44 #include <asm/kvm_book3s.h> 45 #include <asm/mmu_context.h> 46 #include <asm/lppaca.h> 47 #include <asm/processor.h> 48 #include <asm/cputhreads.h> 49 #include <asm/page.h> 50 #include <asm/hvcall.h> 51 #include <asm/switch_to.h> 52 #include <asm/smp.h> 53 #include <asm/dbell.h> 54 #include <linux/gfp.h> 55 #include <linux/vmalloc.h> 56 #include <linux/highmem.h> 57 #include <linux/hugetlb.h> 58 #include <linux/module.h> 59 60 #include "book3s.h" 61 62 #define CREATE_TRACE_POINTS 63 #include "trace_hv.h" 64 65 /* #define EXIT_DEBUG */ 66 /* #define EXIT_DEBUG_SIMPLE */ 67 /* #define EXIT_DEBUG_INT */ 68 69 /* Used to indicate that a guest page fault needs to be handled */ 70 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 71 72 /* Used as a "null" value for timebase values */ 73 #define TB_NIL (~(u64)0) 74 75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 76 77 static int dynamic_mt_modes = 6; 78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); 79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 80 static int target_smt_mode; 81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); 82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 83 84 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 85 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 86 87 static bool kvmppc_ipi_thread(int cpu) 88 { 89 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 90 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 91 preempt_disable(); 92 if (cpu_first_thread_sibling(cpu) == 93 cpu_first_thread_sibling(smp_processor_id())) { 94 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 95 msg |= cpu_thread_in_core(cpu); 96 smp_mb(); 97 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 98 preempt_enable(); 99 return true; 100 } 101 preempt_enable(); 102 } 103 104 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 105 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) { 106 xics_wake_cpu(cpu); 107 return true; 108 } 109 #endif 110 111 return false; 112 } 113 114 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 115 { 116 int cpu; 117 wait_queue_head_t *wqp; 118 119 wqp = kvm_arch_vcpu_wq(vcpu); 120 if (waitqueue_active(wqp)) { 121 wake_up_interruptible(wqp); 122 ++vcpu->stat.halt_wakeup; 123 } 124 125 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu)) 126 return; 127 128 /* CPU points to the first thread of the core */ 129 cpu = vcpu->cpu; 130 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 131 smp_send_reschedule(cpu); 132 } 133 134 /* 135 * We use the vcpu_load/put functions to measure stolen time. 136 * Stolen time is counted as time when either the vcpu is able to 137 * run as part of a virtual core, but the task running the vcore 138 * is preempted or sleeping, or when the vcpu needs something done 139 * in the kernel by the task running the vcpu, but that task is 140 * preempted or sleeping. Those two things have to be counted 141 * separately, since one of the vcpu tasks will take on the job 142 * of running the core, and the other vcpu tasks in the vcore will 143 * sleep waiting for it to do that, but that sleep shouldn't count 144 * as stolen time. 145 * 146 * Hence we accumulate stolen time when the vcpu can run as part of 147 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 148 * needs its task to do other things in the kernel (for example, 149 * service a page fault) in busy_stolen. We don't accumulate 150 * stolen time for a vcore when it is inactive, or for a vcpu 151 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 152 * a misnomer; it means that the vcpu task is not executing in 153 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 154 * the kernel. We don't have any way of dividing up that time 155 * between time that the vcpu is genuinely stopped, time that 156 * the task is actively working on behalf of the vcpu, and time 157 * that the task is preempted, so we don't count any of it as 158 * stolen. 159 * 160 * Updates to busy_stolen are protected by arch.tbacct_lock; 161 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 162 * lock. The stolen times are measured in units of timebase ticks. 163 * (Note that the != TB_NIL checks below are purely defensive; 164 * they should never fail.) 165 */ 166 167 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 168 { 169 unsigned long flags; 170 171 spin_lock_irqsave(&vc->stoltb_lock, flags); 172 vc->preempt_tb = mftb(); 173 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 174 } 175 176 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 177 { 178 unsigned long flags; 179 180 spin_lock_irqsave(&vc->stoltb_lock, flags); 181 if (vc->preempt_tb != TB_NIL) { 182 vc->stolen_tb += mftb() - vc->preempt_tb; 183 vc->preempt_tb = TB_NIL; 184 } 185 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 186 } 187 188 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 189 { 190 struct kvmppc_vcore *vc = vcpu->arch.vcore; 191 unsigned long flags; 192 193 /* 194 * We can test vc->runner without taking the vcore lock, 195 * because only this task ever sets vc->runner to this 196 * vcpu, and once it is set to this vcpu, only this task 197 * ever sets it to NULL. 198 */ 199 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 200 kvmppc_core_end_stolen(vc); 201 202 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 203 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 204 vcpu->arch.busy_preempt != TB_NIL) { 205 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 206 vcpu->arch.busy_preempt = TB_NIL; 207 } 208 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 209 } 210 211 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 212 { 213 struct kvmppc_vcore *vc = vcpu->arch.vcore; 214 unsigned long flags; 215 216 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 217 kvmppc_core_start_stolen(vc); 218 219 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 220 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 221 vcpu->arch.busy_preempt = mftb(); 222 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 223 } 224 225 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 226 { 227 /* 228 * Check for illegal transactional state bit combination 229 * and if we find it, force the TS field to a safe state. 230 */ 231 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 232 msr &= ~MSR_TS_MASK; 233 vcpu->arch.shregs.msr = msr; 234 kvmppc_end_cede(vcpu); 235 } 236 237 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 238 { 239 vcpu->arch.pvr = pvr; 240 } 241 242 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 243 { 244 unsigned long pcr = 0; 245 struct kvmppc_vcore *vc = vcpu->arch.vcore; 246 247 if (arch_compat) { 248 switch (arch_compat) { 249 case PVR_ARCH_205: 250 /* 251 * If an arch bit is set in PCR, all the defined 252 * higher-order arch bits also have to be set. 253 */ 254 pcr = PCR_ARCH_206 | PCR_ARCH_205; 255 break; 256 case PVR_ARCH_206: 257 case PVR_ARCH_206p: 258 pcr = PCR_ARCH_206; 259 break; 260 case PVR_ARCH_207: 261 break; 262 default: 263 return -EINVAL; 264 } 265 266 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) { 267 /* POWER7 can't emulate POWER8 */ 268 if (!(pcr & PCR_ARCH_206)) 269 return -EINVAL; 270 pcr &= ~PCR_ARCH_206; 271 } 272 } 273 274 spin_lock(&vc->lock); 275 vc->arch_compat = arch_compat; 276 vc->pcr = pcr; 277 spin_unlock(&vc->lock); 278 279 return 0; 280 } 281 282 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 283 { 284 int r; 285 286 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 287 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 288 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 289 for (r = 0; r < 16; ++r) 290 pr_err("r%2d = %.16lx r%d = %.16lx\n", 291 r, kvmppc_get_gpr(vcpu, r), 292 r+16, kvmppc_get_gpr(vcpu, r+16)); 293 pr_err("ctr = %.16lx lr = %.16lx\n", 294 vcpu->arch.ctr, vcpu->arch.lr); 295 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 296 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 297 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 298 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 299 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 300 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 301 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 302 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 303 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 304 pr_err("fault dar = %.16lx dsisr = %.8x\n", 305 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 306 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 307 for (r = 0; r < vcpu->arch.slb_max; ++r) 308 pr_err(" ESID = %.16llx VSID = %.16llx\n", 309 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 310 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 311 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 312 vcpu->arch.last_inst); 313 } 314 315 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 316 { 317 struct kvm_vcpu *ret; 318 319 mutex_lock(&kvm->lock); 320 ret = kvm_get_vcpu_by_id(kvm, id); 321 mutex_unlock(&kvm->lock); 322 return ret; 323 } 324 325 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 326 { 327 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 328 vpa->yield_count = cpu_to_be32(1); 329 } 330 331 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 332 unsigned long addr, unsigned long len) 333 { 334 /* check address is cacheline aligned */ 335 if (addr & (L1_CACHE_BYTES - 1)) 336 return -EINVAL; 337 spin_lock(&vcpu->arch.vpa_update_lock); 338 if (v->next_gpa != addr || v->len != len) { 339 v->next_gpa = addr; 340 v->len = addr ? len : 0; 341 v->update_pending = 1; 342 } 343 spin_unlock(&vcpu->arch.vpa_update_lock); 344 return 0; 345 } 346 347 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 348 struct reg_vpa { 349 u32 dummy; 350 union { 351 __be16 hword; 352 __be32 word; 353 } length; 354 }; 355 356 static int vpa_is_registered(struct kvmppc_vpa *vpap) 357 { 358 if (vpap->update_pending) 359 return vpap->next_gpa != 0; 360 return vpap->pinned_addr != NULL; 361 } 362 363 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 364 unsigned long flags, 365 unsigned long vcpuid, unsigned long vpa) 366 { 367 struct kvm *kvm = vcpu->kvm; 368 unsigned long len, nb; 369 void *va; 370 struct kvm_vcpu *tvcpu; 371 int err; 372 int subfunc; 373 struct kvmppc_vpa *vpap; 374 375 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 376 if (!tvcpu) 377 return H_PARAMETER; 378 379 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 380 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 381 subfunc == H_VPA_REG_SLB) { 382 /* Registering new area - address must be cache-line aligned */ 383 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 384 return H_PARAMETER; 385 386 /* convert logical addr to kernel addr and read length */ 387 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 388 if (va == NULL) 389 return H_PARAMETER; 390 if (subfunc == H_VPA_REG_VPA) 391 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 392 else 393 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 394 kvmppc_unpin_guest_page(kvm, va, vpa, false); 395 396 /* Check length */ 397 if (len > nb || len < sizeof(struct reg_vpa)) 398 return H_PARAMETER; 399 } else { 400 vpa = 0; 401 len = 0; 402 } 403 404 err = H_PARAMETER; 405 vpap = NULL; 406 spin_lock(&tvcpu->arch.vpa_update_lock); 407 408 switch (subfunc) { 409 case H_VPA_REG_VPA: /* register VPA */ 410 if (len < sizeof(struct lppaca)) 411 break; 412 vpap = &tvcpu->arch.vpa; 413 err = 0; 414 break; 415 416 case H_VPA_REG_DTL: /* register DTL */ 417 if (len < sizeof(struct dtl_entry)) 418 break; 419 len -= len % sizeof(struct dtl_entry); 420 421 /* Check that they have previously registered a VPA */ 422 err = H_RESOURCE; 423 if (!vpa_is_registered(&tvcpu->arch.vpa)) 424 break; 425 426 vpap = &tvcpu->arch.dtl; 427 err = 0; 428 break; 429 430 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 431 /* Check that they have previously registered a VPA */ 432 err = H_RESOURCE; 433 if (!vpa_is_registered(&tvcpu->arch.vpa)) 434 break; 435 436 vpap = &tvcpu->arch.slb_shadow; 437 err = 0; 438 break; 439 440 case H_VPA_DEREG_VPA: /* deregister VPA */ 441 /* Check they don't still have a DTL or SLB buf registered */ 442 err = H_RESOURCE; 443 if (vpa_is_registered(&tvcpu->arch.dtl) || 444 vpa_is_registered(&tvcpu->arch.slb_shadow)) 445 break; 446 447 vpap = &tvcpu->arch.vpa; 448 err = 0; 449 break; 450 451 case H_VPA_DEREG_DTL: /* deregister DTL */ 452 vpap = &tvcpu->arch.dtl; 453 err = 0; 454 break; 455 456 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 457 vpap = &tvcpu->arch.slb_shadow; 458 err = 0; 459 break; 460 } 461 462 if (vpap) { 463 vpap->next_gpa = vpa; 464 vpap->len = len; 465 vpap->update_pending = 1; 466 } 467 468 spin_unlock(&tvcpu->arch.vpa_update_lock); 469 470 return err; 471 } 472 473 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 474 { 475 struct kvm *kvm = vcpu->kvm; 476 void *va; 477 unsigned long nb; 478 unsigned long gpa; 479 480 /* 481 * We need to pin the page pointed to by vpap->next_gpa, 482 * but we can't call kvmppc_pin_guest_page under the lock 483 * as it does get_user_pages() and down_read(). So we 484 * have to drop the lock, pin the page, then get the lock 485 * again and check that a new area didn't get registered 486 * in the meantime. 487 */ 488 for (;;) { 489 gpa = vpap->next_gpa; 490 spin_unlock(&vcpu->arch.vpa_update_lock); 491 va = NULL; 492 nb = 0; 493 if (gpa) 494 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 495 spin_lock(&vcpu->arch.vpa_update_lock); 496 if (gpa == vpap->next_gpa) 497 break; 498 /* sigh... unpin that one and try again */ 499 if (va) 500 kvmppc_unpin_guest_page(kvm, va, gpa, false); 501 } 502 503 vpap->update_pending = 0; 504 if (va && nb < vpap->len) { 505 /* 506 * If it's now too short, it must be that userspace 507 * has changed the mappings underlying guest memory, 508 * so unregister the region. 509 */ 510 kvmppc_unpin_guest_page(kvm, va, gpa, false); 511 va = NULL; 512 } 513 if (vpap->pinned_addr) 514 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 515 vpap->dirty); 516 vpap->gpa = gpa; 517 vpap->pinned_addr = va; 518 vpap->dirty = false; 519 if (va) 520 vpap->pinned_end = va + vpap->len; 521 } 522 523 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 524 { 525 if (!(vcpu->arch.vpa.update_pending || 526 vcpu->arch.slb_shadow.update_pending || 527 vcpu->arch.dtl.update_pending)) 528 return; 529 530 spin_lock(&vcpu->arch.vpa_update_lock); 531 if (vcpu->arch.vpa.update_pending) { 532 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 533 if (vcpu->arch.vpa.pinned_addr) 534 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 535 } 536 if (vcpu->arch.dtl.update_pending) { 537 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 538 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 539 vcpu->arch.dtl_index = 0; 540 } 541 if (vcpu->arch.slb_shadow.update_pending) 542 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 543 spin_unlock(&vcpu->arch.vpa_update_lock); 544 } 545 546 /* 547 * Return the accumulated stolen time for the vcore up until `now'. 548 * The caller should hold the vcore lock. 549 */ 550 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 551 { 552 u64 p; 553 unsigned long flags; 554 555 spin_lock_irqsave(&vc->stoltb_lock, flags); 556 p = vc->stolen_tb; 557 if (vc->vcore_state != VCORE_INACTIVE && 558 vc->preempt_tb != TB_NIL) 559 p += now - vc->preempt_tb; 560 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 561 return p; 562 } 563 564 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 565 struct kvmppc_vcore *vc) 566 { 567 struct dtl_entry *dt; 568 struct lppaca *vpa; 569 unsigned long stolen; 570 unsigned long core_stolen; 571 u64 now; 572 573 dt = vcpu->arch.dtl_ptr; 574 vpa = vcpu->arch.vpa.pinned_addr; 575 now = mftb(); 576 core_stolen = vcore_stolen_time(vc, now); 577 stolen = core_stolen - vcpu->arch.stolen_logged; 578 vcpu->arch.stolen_logged = core_stolen; 579 spin_lock_irq(&vcpu->arch.tbacct_lock); 580 stolen += vcpu->arch.busy_stolen; 581 vcpu->arch.busy_stolen = 0; 582 spin_unlock_irq(&vcpu->arch.tbacct_lock); 583 if (!dt || !vpa) 584 return; 585 memset(dt, 0, sizeof(struct dtl_entry)); 586 dt->dispatch_reason = 7; 587 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 588 dt->timebase = cpu_to_be64(now + vc->tb_offset); 589 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 590 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 591 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 592 ++dt; 593 if (dt == vcpu->arch.dtl.pinned_end) 594 dt = vcpu->arch.dtl.pinned_addr; 595 vcpu->arch.dtl_ptr = dt; 596 /* order writing *dt vs. writing vpa->dtl_idx */ 597 smp_wmb(); 598 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 599 vcpu->arch.dtl.dirty = true; 600 } 601 602 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 603 { 604 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 605 return true; 606 if ((!vcpu->arch.vcore->arch_compat) && 607 cpu_has_feature(CPU_FTR_ARCH_207S)) 608 return true; 609 return false; 610 } 611 612 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 613 unsigned long resource, unsigned long value1, 614 unsigned long value2) 615 { 616 switch (resource) { 617 case H_SET_MODE_RESOURCE_SET_CIABR: 618 if (!kvmppc_power8_compatible(vcpu)) 619 return H_P2; 620 if (value2) 621 return H_P4; 622 if (mflags) 623 return H_UNSUPPORTED_FLAG_START; 624 /* Guests can't breakpoint the hypervisor */ 625 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 626 return H_P3; 627 vcpu->arch.ciabr = value1; 628 return H_SUCCESS; 629 case H_SET_MODE_RESOURCE_SET_DAWR: 630 if (!kvmppc_power8_compatible(vcpu)) 631 return H_P2; 632 if (mflags) 633 return H_UNSUPPORTED_FLAG_START; 634 if (value2 & DABRX_HYP) 635 return H_P4; 636 vcpu->arch.dawr = value1; 637 vcpu->arch.dawrx = value2; 638 return H_SUCCESS; 639 default: 640 return H_TOO_HARD; 641 } 642 } 643 644 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 645 { 646 struct kvmppc_vcore *vcore = target->arch.vcore; 647 648 /* 649 * We expect to have been called by the real mode handler 650 * (kvmppc_rm_h_confer()) which would have directly returned 651 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 652 * have useful work to do and should not confer) so we don't 653 * recheck that here. 654 */ 655 656 spin_lock(&vcore->lock); 657 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 658 vcore->vcore_state != VCORE_INACTIVE && 659 vcore->runner) 660 target = vcore->runner; 661 spin_unlock(&vcore->lock); 662 663 return kvm_vcpu_yield_to(target); 664 } 665 666 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 667 { 668 int yield_count = 0; 669 struct lppaca *lppaca; 670 671 spin_lock(&vcpu->arch.vpa_update_lock); 672 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 673 if (lppaca) 674 yield_count = be32_to_cpu(lppaca->yield_count); 675 spin_unlock(&vcpu->arch.vpa_update_lock); 676 return yield_count; 677 } 678 679 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 680 { 681 unsigned long req = kvmppc_get_gpr(vcpu, 3); 682 unsigned long target, ret = H_SUCCESS; 683 int yield_count; 684 struct kvm_vcpu *tvcpu; 685 int idx, rc; 686 687 if (req <= MAX_HCALL_OPCODE && 688 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 689 return RESUME_HOST; 690 691 switch (req) { 692 case H_CEDE: 693 break; 694 case H_PROD: 695 target = kvmppc_get_gpr(vcpu, 4); 696 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 697 if (!tvcpu) { 698 ret = H_PARAMETER; 699 break; 700 } 701 tvcpu->arch.prodded = 1; 702 smp_mb(); 703 if (vcpu->arch.ceded) { 704 if (waitqueue_active(&vcpu->wq)) { 705 wake_up_interruptible(&vcpu->wq); 706 vcpu->stat.halt_wakeup++; 707 } 708 } 709 break; 710 case H_CONFER: 711 target = kvmppc_get_gpr(vcpu, 4); 712 if (target == -1) 713 break; 714 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 715 if (!tvcpu) { 716 ret = H_PARAMETER; 717 break; 718 } 719 yield_count = kvmppc_get_gpr(vcpu, 5); 720 if (kvmppc_get_yield_count(tvcpu) != yield_count) 721 break; 722 kvm_arch_vcpu_yield_to(tvcpu); 723 break; 724 case H_REGISTER_VPA: 725 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 726 kvmppc_get_gpr(vcpu, 5), 727 kvmppc_get_gpr(vcpu, 6)); 728 break; 729 case H_RTAS: 730 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 731 return RESUME_HOST; 732 733 idx = srcu_read_lock(&vcpu->kvm->srcu); 734 rc = kvmppc_rtas_hcall(vcpu); 735 srcu_read_unlock(&vcpu->kvm->srcu, idx); 736 737 if (rc == -ENOENT) 738 return RESUME_HOST; 739 else if (rc == 0) 740 break; 741 742 /* Send the error out to userspace via KVM_RUN */ 743 return rc; 744 case H_LOGICAL_CI_LOAD: 745 ret = kvmppc_h_logical_ci_load(vcpu); 746 if (ret == H_TOO_HARD) 747 return RESUME_HOST; 748 break; 749 case H_LOGICAL_CI_STORE: 750 ret = kvmppc_h_logical_ci_store(vcpu); 751 if (ret == H_TOO_HARD) 752 return RESUME_HOST; 753 break; 754 case H_SET_MODE: 755 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 756 kvmppc_get_gpr(vcpu, 5), 757 kvmppc_get_gpr(vcpu, 6), 758 kvmppc_get_gpr(vcpu, 7)); 759 if (ret == H_TOO_HARD) 760 return RESUME_HOST; 761 break; 762 case H_XIRR: 763 case H_CPPR: 764 case H_EOI: 765 case H_IPI: 766 case H_IPOLL: 767 case H_XIRR_X: 768 if (kvmppc_xics_enabled(vcpu)) { 769 ret = kvmppc_xics_hcall(vcpu, req); 770 break; 771 } /* fallthrough */ 772 default: 773 return RESUME_HOST; 774 } 775 kvmppc_set_gpr(vcpu, 3, ret); 776 vcpu->arch.hcall_needed = 0; 777 return RESUME_GUEST; 778 } 779 780 static int kvmppc_hcall_impl_hv(unsigned long cmd) 781 { 782 switch (cmd) { 783 case H_CEDE: 784 case H_PROD: 785 case H_CONFER: 786 case H_REGISTER_VPA: 787 case H_SET_MODE: 788 case H_LOGICAL_CI_LOAD: 789 case H_LOGICAL_CI_STORE: 790 #ifdef CONFIG_KVM_XICS 791 case H_XIRR: 792 case H_CPPR: 793 case H_EOI: 794 case H_IPI: 795 case H_IPOLL: 796 case H_XIRR_X: 797 #endif 798 return 1; 799 } 800 801 /* See if it's in the real-mode table */ 802 return kvmppc_hcall_impl_hv_realmode(cmd); 803 } 804 805 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 806 struct kvm_vcpu *vcpu) 807 { 808 u32 last_inst; 809 810 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 811 EMULATE_DONE) { 812 /* 813 * Fetch failed, so return to guest and 814 * try executing it again. 815 */ 816 return RESUME_GUEST; 817 } 818 819 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 820 run->exit_reason = KVM_EXIT_DEBUG; 821 run->debug.arch.address = kvmppc_get_pc(vcpu); 822 return RESUME_HOST; 823 } else { 824 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 825 return RESUME_GUEST; 826 } 827 } 828 829 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 830 struct task_struct *tsk) 831 { 832 int r = RESUME_HOST; 833 834 vcpu->stat.sum_exits++; 835 836 /* 837 * This can happen if an interrupt occurs in the last stages 838 * of guest entry or the first stages of guest exit (i.e. after 839 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 840 * and before setting it to KVM_GUEST_MODE_HOST_HV). 841 * That can happen due to a bug, or due to a machine check 842 * occurring at just the wrong time. 843 */ 844 if (vcpu->arch.shregs.msr & MSR_HV) { 845 printk(KERN_EMERG "KVM trap in HV mode!\n"); 846 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 847 vcpu->arch.trap, kvmppc_get_pc(vcpu), 848 vcpu->arch.shregs.msr); 849 kvmppc_dump_regs(vcpu); 850 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 851 run->hw.hardware_exit_reason = vcpu->arch.trap; 852 return RESUME_HOST; 853 } 854 run->exit_reason = KVM_EXIT_UNKNOWN; 855 run->ready_for_interrupt_injection = 1; 856 switch (vcpu->arch.trap) { 857 /* We're good on these - the host merely wanted to get our attention */ 858 case BOOK3S_INTERRUPT_HV_DECREMENTER: 859 vcpu->stat.dec_exits++; 860 r = RESUME_GUEST; 861 break; 862 case BOOK3S_INTERRUPT_EXTERNAL: 863 case BOOK3S_INTERRUPT_H_DOORBELL: 864 vcpu->stat.ext_intr_exits++; 865 r = RESUME_GUEST; 866 break; 867 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 868 case BOOK3S_INTERRUPT_HMI: 869 case BOOK3S_INTERRUPT_PERFMON: 870 r = RESUME_GUEST; 871 break; 872 case BOOK3S_INTERRUPT_MACHINE_CHECK: 873 /* 874 * Deliver a machine check interrupt to the guest. 875 * We have to do this, even if the host has handled the 876 * machine check, because machine checks use SRR0/1 and 877 * the interrupt might have trashed guest state in them. 878 */ 879 kvmppc_book3s_queue_irqprio(vcpu, 880 BOOK3S_INTERRUPT_MACHINE_CHECK); 881 r = RESUME_GUEST; 882 break; 883 case BOOK3S_INTERRUPT_PROGRAM: 884 { 885 ulong flags; 886 /* 887 * Normally program interrupts are delivered directly 888 * to the guest by the hardware, but we can get here 889 * as a result of a hypervisor emulation interrupt 890 * (e40) getting turned into a 700 by BML RTAS. 891 */ 892 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 893 kvmppc_core_queue_program(vcpu, flags); 894 r = RESUME_GUEST; 895 break; 896 } 897 case BOOK3S_INTERRUPT_SYSCALL: 898 { 899 /* hcall - punt to userspace */ 900 int i; 901 902 /* hypercall with MSR_PR has already been handled in rmode, 903 * and never reaches here. 904 */ 905 906 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 907 for (i = 0; i < 9; ++i) 908 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 909 run->exit_reason = KVM_EXIT_PAPR_HCALL; 910 vcpu->arch.hcall_needed = 1; 911 r = RESUME_HOST; 912 break; 913 } 914 /* 915 * We get these next two if the guest accesses a page which it thinks 916 * it has mapped but which is not actually present, either because 917 * it is for an emulated I/O device or because the corresonding 918 * host page has been paged out. Any other HDSI/HISI interrupts 919 * have been handled already. 920 */ 921 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 922 r = RESUME_PAGE_FAULT; 923 break; 924 case BOOK3S_INTERRUPT_H_INST_STORAGE: 925 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 926 vcpu->arch.fault_dsisr = 0; 927 r = RESUME_PAGE_FAULT; 928 break; 929 /* 930 * This occurs if the guest executes an illegal instruction. 931 * If the guest debug is disabled, generate a program interrupt 932 * to the guest. If guest debug is enabled, we need to check 933 * whether the instruction is a software breakpoint instruction. 934 * Accordingly return to Guest or Host. 935 */ 936 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 937 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 938 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 939 swab32(vcpu->arch.emul_inst) : 940 vcpu->arch.emul_inst; 941 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 942 r = kvmppc_emulate_debug_inst(run, vcpu); 943 } else { 944 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 945 r = RESUME_GUEST; 946 } 947 break; 948 /* 949 * This occurs if the guest (kernel or userspace), does something that 950 * is prohibited by HFSCR. We just generate a program interrupt to 951 * the guest. 952 */ 953 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 954 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 955 r = RESUME_GUEST; 956 break; 957 default: 958 kvmppc_dump_regs(vcpu); 959 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 960 vcpu->arch.trap, kvmppc_get_pc(vcpu), 961 vcpu->arch.shregs.msr); 962 run->hw.hardware_exit_reason = vcpu->arch.trap; 963 r = RESUME_HOST; 964 break; 965 } 966 967 return r; 968 } 969 970 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 971 struct kvm_sregs *sregs) 972 { 973 int i; 974 975 memset(sregs, 0, sizeof(struct kvm_sregs)); 976 sregs->pvr = vcpu->arch.pvr; 977 for (i = 0; i < vcpu->arch.slb_max; i++) { 978 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 979 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 980 } 981 982 return 0; 983 } 984 985 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 986 struct kvm_sregs *sregs) 987 { 988 int i, j; 989 990 /* Only accept the same PVR as the host's, since we can't spoof it */ 991 if (sregs->pvr != vcpu->arch.pvr) 992 return -EINVAL; 993 994 j = 0; 995 for (i = 0; i < vcpu->arch.slb_nr; i++) { 996 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 997 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 998 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 999 ++j; 1000 } 1001 } 1002 vcpu->arch.slb_max = j; 1003 1004 return 0; 1005 } 1006 1007 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1008 bool preserve_top32) 1009 { 1010 struct kvm *kvm = vcpu->kvm; 1011 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1012 u64 mask; 1013 1014 mutex_lock(&kvm->lock); 1015 spin_lock(&vc->lock); 1016 /* 1017 * If ILE (interrupt little-endian) has changed, update the 1018 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1019 */ 1020 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1021 struct kvm_vcpu *vcpu; 1022 int i; 1023 1024 kvm_for_each_vcpu(i, vcpu, kvm) { 1025 if (vcpu->arch.vcore != vc) 1026 continue; 1027 if (new_lpcr & LPCR_ILE) 1028 vcpu->arch.intr_msr |= MSR_LE; 1029 else 1030 vcpu->arch.intr_msr &= ~MSR_LE; 1031 } 1032 } 1033 1034 /* 1035 * Userspace can only modify DPFD (default prefetch depth), 1036 * ILE (interrupt little-endian) and TC (translation control). 1037 * On POWER8 userspace can also modify AIL (alt. interrupt loc.) 1038 */ 1039 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1040 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1041 mask |= LPCR_AIL; 1042 1043 /* Broken 32-bit version of LPCR must not clear top bits */ 1044 if (preserve_top32) 1045 mask &= 0xFFFFFFFF; 1046 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1047 spin_unlock(&vc->lock); 1048 mutex_unlock(&kvm->lock); 1049 } 1050 1051 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1052 union kvmppc_one_reg *val) 1053 { 1054 int r = 0; 1055 long int i; 1056 1057 switch (id) { 1058 case KVM_REG_PPC_DEBUG_INST: 1059 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1060 break; 1061 case KVM_REG_PPC_HIOR: 1062 *val = get_reg_val(id, 0); 1063 break; 1064 case KVM_REG_PPC_DABR: 1065 *val = get_reg_val(id, vcpu->arch.dabr); 1066 break; 1067 case KVM_REG_PPC_DABRX: 1068 *val = get_reg_val(id, vcpu->arch.dabrx); 1069 break; 1070 case KVM_REG_PPC_DSCR: 1071 *val = get_reg_val(id, vcpu->arch.dscr); 1072 break; 1073 case KVM_REG_PPC_PURR: 1074 *val = get_reg_val(id, vcpu->arch.purr); 1075 break; 1076 case KVM_REG_PPC_SPURR: 1077 *val = get_reg_val(id, vcpu->arch.spurr); 1078 break; 1079 case KVM_REG_PPC_AMR: 1080 *val = get_reg_val(id, vcpu->arch.amr); 1081 break; 1082 case KVM_REG_PPC_UAMOR: 1083 *val = get_reg_val(id, vcpu->arch.uamor); 1084 break; 1085 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1086 i = id - KVM_REG_PPC_MMCR0; 1087 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1088 break; 1089 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1090 i = id - KVM_REG_PPC_PMC1; 1091 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1092 break; 1093 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1094 i = id - KVM_REG_PPC_SPMC1; 1095 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1096 break; 1097 case KVM_REG_PPC_SIAR: 1098 *val = get_reg_val(id, vcpu->arch.siar); 1099 break; 1100 case KVM_REG_PPC_SDAR: 1101 *val = get_reg_val(id, vcpu->arch.sdar); 1102 break; 1103 case KVM_REG_PPC_SIER: 1104 *val = get_reg_val(id, vcpu->arch.sier); 1105 break; 1106 case KVM_REG_PPC_IAMR: 1107 *val = get_reg_val(id, vcpu->arch.iamr); 1108 break; 1109 case KVM_REG_PPC_PSPB: 1110 *val = get_reg_val(id, vcpu->arch.pspb); 1111 break; 1112 case KVM_REG_PPC_DPDES: 1113 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1114 break; 1115 case KVM_REG_PPC_DAWR: 1116 *val = get_reg_val(id, vcpu->arch.dawr); 1117 break; 1118 case KVM_REG_PPC_DAWRX: 1119 *val = get_reg_val(id, vcpu->arch.dawrx); 1120 break; 1121 case KVM_REG_PPC_CIABR: 1122 *val = get_reg_val(id, vcpu->arch.ciabr); 1123 break; 1124 case KVM_REG_PPC_CSIGR: 1125 *val = get_reg_val(id, vcpu->arch.csigr); 1126 break; 1127 case KVM_REG_PPC_TACR: 1128 *val = get_reg_val(id, vcpu->arch.tacr); 1129 break; 1130 case KVM_REG_PPC_TCSCR: 1131 *val = get_reg_val(id, vcpu->arch.tcscr); 1132 break; 1133 case KVM_REG_PPC_PID: 1134 *val = get_reg_val(id, vcpu->arch.pid); 1135 break; 1136 case KVM_REG_PPC_ACOP: 1137 *val = get_reg_val(id, vcpu->arch.acop); 1138 break; 1139 case KVM_REG_PPC_WORT: 1140 *val = get_reg_val(id, vcpu->arch.wort); 1141 break; 1142 case KVM_REG_PPC_VPA_ADDR: 1143 spin_lock(&vcpu->arch.vpa_update_lock); 1144 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1145 spin_unlock(&vcpu->arch.vpa_update_lock); 1146 break; 1147 case KVM_REG_PPC_VPA_SLB: 1148 spin_lock(&vcpu->arch.vpa_update_lock); 1149 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1150 val->vpaval.length = vcpu->arch.slb_shadow.len; 1151 spin_unlock(&vcpu->arch.vpa_update_lock); 1152 break; 1153 case KVM_REG_PPC_VPA_DTL: 1154 spin_lock(&vcpu->arch.vpa_update_lock); 1155 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1156 val->vpaval.length = vcpu->arch.dtl.len; 1157 spin_unlock(&vcpu->arch.vpa_update_lock); 1158 break; 1159 case KVM_REG_PPC_TB_OFFSET: 1160 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1161 break; 1162 case KVM_REG_PPC_LPCR: 1163 case KVM_REG_PPC_LPCR_64: 1164 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1165 break; 1166 case KVM_REG_PPC_PPR: 1167 *val = get_reg_val(id, vcpu->arch.ppr); 1168 break; 1169 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1170 case KVM_REG_PPC_TFHAR: 1171 *val = get_reg_val(id, vcpu->arch.tfhar); 1172 break; 1173 case KVM_REG_PPC_TFIAR: 1174 *val = get_reg_val(id, vcpu->arch.tfiar); 1175 break; 1176 case KVM_REG_PPC_TEXASR: 1177 *val = get_reg_val(id, vcpu->arch.texasr); 1178 break; 1179 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1180 i = id - KVM_REG_PPC_TM_GPR0; 1181 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1182 break; 1183 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1184 { 1185 int j; 1186 i = id - KVM_REG_PPC_TM_VSR0; 1187 if (i < 32) 1188 for (j = 0; j < TS_FPRWIDTH; j++) 1189 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1190 else { 1191 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1192 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1193 else 1194 r = -ENXIO; 1195 } 1196 break; 1197 } 1198 case KVM_REG_PPC_TM_CR: 1199 *val = get_reg_val(id, vcpu->arch.cr_tm); 1200 break; 1201 case KVM_REG_PPC_TM_LR: 1202 *val = get_reg_val(id, vcpu->arch.lr_tm); 1203 break; 1204 case KVM_REG_PPC_TM_CTR: 1205 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1206 break; 1207 case KVM_REG_PPC_TM_FPSCR: 1208 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1209 break; 1210 case KVM_REG_PPC_TM_AMR: 1211 *val = get_reg_val(id, vcpu->arch.amr_tm); 1212 break; 1213 case KVM_REG_PPC_TM_PPR: 1214 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1215 break; 1216 case KVM_REG_PPC_TM_VRSAVE: 1217 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1218 break; 1219 case KVM_REG_PPC_TM_VSCR: 1220 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1221 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1222 else 1223 r = -ENXIO; 1224 break; 1225 case KVM_REG_PPC_TM_DSCR: 1226 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1227 break; 1228 case KVM_REG_PPC_TM_TAR: 1229 *val = get_reg_val(id, vcpu->arch.tar_tm); 1230 break; 1231 #endif 1232 case KVM_REG_PPC_ARCH_COMPAT: 1233 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1234 break; 1235 default: 1236 r = -EINVAL; 1237 break; 1238 } 1239 1240 return r; 1241 } 1242 1243 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1244 union kvmppc_one_reg *val) 1245 { 1246 int r = 0; 1247 long int i; 1248 unsigned long addr, len; 1249 1250 switch (id) { 1251 case KVM_REG_PPC_HIOR: 1252 /* Only allow this to be set to zero */ 1253 if (set_reg_val(id, *val)) 1254 r = -EINVAL; 1255 break; 1256 case KVM_REG_PPC_DABR: 1257 vcpu->arch.dabr = set_reg_val(id, *val); 1258 break; 1259 case KVM_REG_PPC_DABRX: 1260 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1261 break; 1262 case KVM_REG_PPC_DSCR: 1263 vcpu->arch.dscr = set_reg_val(id, *val); 1264 break; 1265 case KVM_REG_PPC_PURR: 1266 vcpu->arch.purr = set_reg_val(id, *val); 1267 break; 1268 case KVM_REG_PPC_SPURR: 1269 vcpu->arch.spurr = set_reg_val(id, *val); 1270 break; 1271 case KVM_REG_PPC_AMR: 1272 vcpu->arch.amr = set_reg_val(id, *val); 1273 break; 1274 case KVM_REG_PPC_UAMOR: 1275 vcpu->arch.uamor = set_reg_val(id, *val); 1276 break; 1277 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1278 i = id - KVM_REG_PPC_MMCR0; 1279 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1280 break; 1281 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1282 i = id - KVM_REG_PPC_PMC1; 1283 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1284 break; 1285 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1286 i = id - KVM_REG_PPC_SPMC1; 1287 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1288 break; 1289 case KVM_REG_PPC_SIAR: 1290 vcpu->arch.siar = set_reg_val(id, *val); 1291 break; 1292 case KVM_REG_PPC_SDAR: 1293 vcpu->arch.sdar = set_reg_val(id, *val); 1294 break; 1295 case KVM_REG_PPC_SIER: 1296 vcpu->arch.sier = set_reg_val(id, *val); 1297 break; 1298 case KVM_REG_PPC_IAMR: 1299 vcpu->arch.iamr = set_reg_val(id, *val); 1300 break; 1301 case KVM_REG_PPC_PSPB: 1302 vcpu->arch.pspb = set_reg_val(id, *val); 1303 break; 1304 case KVM_REG_PPC_DPDES: 1305 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1306 break; 1307 case KVM_REG_PPC_DAWR: 1308 vcpu->arch.dawr = set_reg_val(id, *val); 1309 break; 1310 case KVM_REG_PPC_DAWRX: 1311 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1312 break; 1313 case KVM_REG_PPC_CIABR: 1314 vcpu->arch.ciabr = set_reg_val(id, *val); 1315 /* Don't allow setting breakpoints in hypervisor code */ 1316 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1317 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1318 break; 1319 case KVM_REG_PPC_CSIGR: 1320 vcpu->arch.csigr = set_reg_val(id, *val); 1321 break; 1322 case KVM_REG_PPC_TACR: 1323 vcpu->arch.tacr = set_reg_val(id, *val); 1324 break; 1325 case KVM_REG_PPC_TCSCR: 1326 vcpu->arch.tcscr = set_reg_val(id, *val); 1327 break; 1328 case KVM_REG_PPC_PID: 1329 vcpu->arch.pid = set_reg_val(id, *val); 1330 break; 1331 case KVM_REG_PPC_ACOP: 1332 vcpu->arch.acop = set_reg_val(id, *val); 1333 break; 1334 case KVM_REG_PPC_WORT: 1335 vcpu->arch.wort = set_reg_val(id, *val); 1336 break; 1337 case KVM_REG_PPC_VPA_ADDR: 1338 addr = set_reg_val(id, *val); 1339 r = -EINVAL; 1340 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1341 vcpu->arch.dtl.next_gpa)) 1342 break; 1343 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1344 break; 1345 case KVM_REG_PPC_VPA_SLB: 1346 addr = val->vpaval.addr; 1347 len = val->vpaval.length; 1348 r = -EINVAL; 1349 if (addr && !vcpu->arch.vpa.next_gpa) 1350 break; 1351 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1352 break; 1353 case KVM_REG_PPC_VPA_DTL: 1354 addr = val->vpaval.addr; 1355 len = val->vpaval.length; 1356 r = -EINVAL; 1357 if (addr && (len < sizeof(struct dtl_entry) || 1358 !vcpu->arch.vpa.next_gpa)) 1359 break; 1360 len -= len % sizeof(struct dtl_entry); 1361 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1362 break; 1363 case KVM_REG_PPC_TB_OFFSET: 1364 /* round up to multiple of 2^24 */ 1365 vcpu->arch.vcore->tb_offset = 1366 ALIGN(set_reg_val(id, *val), 1UL << 24); 1367 break; 1368 case KVM_REG_PPC_LPCR: 1369 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1370 break; 1371 case KVM_REG_PPC_LPCR_64: 1372 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1373 break; 1374 case KVM_REG_PPC_PPR: 1375 vcpu->arch.ppr = set_reg_val(id, *val); 1376 break; 1377 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1378 case KVM_REG_PPC_TFHAR: 1379 vcpu->arch.tfhar = set_reg_val(id, *val); 1380 break; 1381 case KVM_REG_PPC_TFIAR: 1382 vcpu->arch.tfiar = set_reg_val(id, *val); 1383 break; 1384 case KVM_REG_PPC_TEXASR: 1385 vcpu->arch.texasr = set_reg_val(id, *val); 1386 break; 1387 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1388 i = id - KVM_REG_PPC_TM_GPR0; 1389 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1390 break; 1391 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1392 { 1393 int j; 1394 i = id - KVM_REG_PPC_TM_VSR0; 1395 if (i < 32) 1396 for (j = 0; j < TS_FPRWIDTH; j++) 1397 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1398 else 1399 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1400 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1401 else 1402 r = -ENXIO; 1403 break; 1404 } 1405 case KVM_REG_PPC_TM_CR: 1406 vcpu->arch.cr_tm = set_reg_val(id, *val); 1407 break; 1408 case KVM_REG_PPC_TM_LR: 1409 vcpu->arch.lr_tm = set_reg_val(id, *val); 1410 break; 1411 case KVM_REG_PPC_TM_CTR: 1412 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1413 break; 1414 case KVM_REG_PPC_TM_FPSCR: 1415 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1416 break; 1417 case KVM_REG_PPC_TM_AMR: 1418 vcpu->arch.amr_tm = set_reg_val(id, *val); 1419 break; 1420 case KVM_REG_PPC_TM_PPR: 1421 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1422 break; 1423 case KVM_REG_PPC_TM_VRSAVE: 1424 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1425 break; 1426 case KVM_REG_PPC_TM_VSCR: 1427 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1428 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1429 else 1430 r = - ENXIO; 1431 break; 1432 case KVM_REG_PPC_TM_DSCR: 1433 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1434 break; 1435 case KVM_REG_PPC_TM_TAR: 1436 vcpu->arch.tar_tm = set_reg_val(id, *val); 1437 break; 1438 #endif 1439 case KVM_REG_PPC_ARCH_COMPAT: 1440 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1441 break; 1442 default: 1443 r = -EINVAL; 1444 break; 1445 } 1446 1447 return r; 1448 } 1449 1450 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1451 { 1452 struct kvmppc_vcore *vcore; 1453 1454 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1455 1456 if (vcore == NULL) 1457 return NULL; 1458 1459 INIT_LIST_HEAD(&vcore->runnable_threads); 1460 spin_lock_init(&vcore->lock); 1461 spin_lock_init(&vcore->stoltb_lock); 1462 init_waitqueue_head(&vcore->wq); 1463 vcore->preempt_tb = TB_NIL; 1464 vcore->lpcr = kvm->arch.lpcr; 1465 vcore->first_vcpuid = core * threads_per_subcore; 1466 vcore->kvm = kvm; 1467 INIT_LIST_HEAD(&vcore->preempt_list); 1468 1469 return vcore; 1470 } 1471 1472 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1473 static struct debugfs_timings_element { 1474 const char *name; 1475 size_t offset; 1476 } timings[] = { 1477 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1478 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1479 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1480 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1481 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1482 }; 1483 1484 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1485 1486 struct debugfs_timings_state { 1487 struct kvm_vcpu *vcpu; 1488 unsigned int buflen; 1489 char buf[N_TIMINGS * 100]; 1490 }; 1491 1492 static int debugfs_timings_open(struct inode *inode, struct file *file) 1493 { 1494 struct kvm_vcpu *vcpu = inode->i_private; 1495 struct debugfs_timings_state *p; 1496 1497 p = kzalloc(sizeof(*p), GFP_KERNEL); 1498 if (!p) 1499 return -ENOMEM; 1500 1501 kvm_get_kvm(vcpu->kvm); 1502 p->vcpu = vcpu; 1503 file->private_data = p; 1504 1505 return nonseekable_open(inode, file); 1506 } 1507 1508 static int debugfs_timings_release(struct inode *inode, struct file *file) 1509 { 1510 struct debugfs_timings_state *p = file->private_data; 1511 1512 kvm_put_kvm(p->vcpu->kvm); 1513 kfree(p); 1514 return 0; 1515 } 1516 1517 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1518 size_t len, loff_t *ppos) 1519 { 1520 struct debugfs_timings_state *p = file->private_data; 1521 struct kvm_vcpu *vcpu = p->vcpu; 1522 char *s, *buf_end; 1523 struct kvmhv_tb_accumulator tb; 1524 u64 count; 1525 loff_t pos; 1526 ssize_t n; 1527 int i, loops; 1528 bool ok; 1529 1530 if (!p->buflen) { 1531 s = p->buf; 1532 buf_end = s + sizeof(p->buf); 1533 for (i = 0; i < N_TIMINGS; ++i) { 1534 struct kvmhv_tb_accumulator *acc; 1535 1536 acc = (struct kvmhv_tb_accumulator *) 1537 ((unsigned long)vcpu + timings[i].offset); 1538 ok = false; 1539 for (loops = 0; loops < 1000; ++loops) { 1540 count = acc->seqcount; 1541 if (!(count & 1)) { 1542 smp_rmb(); 1543 tb = *acc; 1544 smp_rmb(); 1545 if (count == acc->seqcount) { 1546 ok = true; 1547 break; 1548 } 1549 } 1550 udelay(1); 1551 } 1552 if (!ok) 1553 snprintf(s, buf_end - s, "%s: stuck\n", 1554 timings[i].name); 1555 else 1556 snprintf(s, buf_end - s, 1557 "%s: %llu %llu %llu %llu\n", 1558 timings[i].name, count / 2, 1559 tb_to_ns(tb.tb_total), 1560 tb_to_ns(tb.tb_min), 1561 tb_to_ns(tb.tb_max)); 1562 s += strlen(s); 1563 } 1564 p->buflen = s - p->buf; 1565 } 1566 1567 pos = *ppos; 1568 if (pos >= p->buflen) 1569 return 0; 1570 if (len > p->buflen - pos) 1571 len = p->buflen - pos; 1572 n = copy_to_user(buf, p->buf + pos, len); 1573 if (n) { 1574 if (n == len) 1575 return -EFAULT; 1576 len -= n; 1577 } 1578 *ppos = pos + len; 1579 return len; 1580 } 1581 1582 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1583 size_t len, loff_t *ppos) 1584 { 1585 return -EACCES; 1586 } 1587 1588 static const struct file_operations debugfs_timings_ops = { 1589 .owner = THIS_MODULE, 1590 .open = debugfs_timings_open, 1591 .release = debugfs_timings_release, 1592 .read = debugfs_timings_read, 1593 .write = debugfs_timings_write, 1594 .llseek = generic_file_llseek, 1595 }; 1596 1597 /* Create a debugfs directory for the vcpu */ 1598 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1599 { 1600 char buf[16]; 1601 struct kvm *kvm = vcpu->kvm; 1602 1603 snprintf(buf, sizeof(buf), "vcpu%u", id); 1604 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1605 return; 1606 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1607 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1608 return; 1609 vcpu->arch.debugfs_timings = 1610 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1611 vcpu, &debugfs_timings_ops); 1612 } 1613 1614 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1615 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1616 { 1617 } 1618 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1619 1620 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1621 unsigned int id) 1622 { 1623 struct kvm_vcpu *vcpu; 1624 int err = -EINVAL; 1625 int core; 1626 struct kvmppc_vcore *vcore; 1627 1628 core = id / threads_per_subcore; 1629 if (core >= KVM_MAX_VCORES) 1630 goto out; 1631 1632 err = -ENOMEM; 1633 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1634 if (!vcpu) 1635 goto out; 1636 1637 err = kvm_vcpu_init(vcpu, kvm, id); 1638 if (err) 1639 goto free_vcpu; 1640 1641 vcpu->arch.shared = &vcpu->arch.shregs; 1642 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1643 /* 1644 * The shared struct is never shared on HV, 1645 * so we can always use host endianness 1646 */ 1647 #ifdef __BIG_ENDIAN__ 1648 vcpu->arch.shared_big_endian = true; 1649 #else 1650 vcpu->arch.shared_big_endian = false; 1651 #endif 1652 #endif 1653 vcpu->arch.mmcr[0] = MMCR0_FC; 1654 vcpu->arch.ctrl = CTRL_RUNLATCH; 1655 /* default to host PVR, since we can't spoof it */ 1656 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1657 spin_lock_init(&vcpu->arch.vpa_update_lock); 1658 spin_lock_init(&vcpu->arch.tbacct_lock); 1659 vcpu->arch.busy_preempt = TB_NIL; 1660 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1661 1662 kvmppc_mmu_book3s_hv_init(vcpu); 1663 1664 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1665 1666 init_waitqueue_head(&vcpu->arch.cpu_run); 1667 1668 mutex_lock(&kvm->lock); 1669 vcore = kvm->arch.vcores[core]; 1670 if (!vcore) { 1671 vcore = kvmppc_vcore_create(kvm, core); 1672 kvm->arch.vcores[core] = vcore; 1673 kvm->arch.online_vcores++; 1674 } 1675 mutex_unlock(&kvm->lock); 1676 1677 if (!vcore) 1678 goto free_vcpu; 1679 1680 spin_lock(&vcore->lock); 1681 ++vcore->num_threads; 1682 spin_unlock(&vcore->lock); 1683 vcpu->arch.vcore = vcore; 1684 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1685 vcpu->arch.thread_cpu = -1; 1686 1687 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1688 kvmppc_sanity_check(vcpu); 1689 1690 debugfs_vcpu_init(vcpu, id); 1691 1692 return vcpu; 1693 1694 free_vcpu: 1695 kmem_cache_free(kvm_vcpu_cache, vcpu); 1696 out: 1697 return ERR_PTR(err); 1698 } 1699 1700 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1701 { 1702 if (vpa->pinned_addr) 1703 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1704 vpa->dirty); 1705 } 1706 1707 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1708 { 1709 spin_lock(&vcpu->arch.vpa_update_lock); 1710 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1711 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1712 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1713 spin_unlock(&vcpu->arch.vpa_update_lock); 1714 kvm_vcpu_uninit(vcpu); 1715 kmem_cache_free(kvm_vcpu_cache, vcpu); 1716 } 1717 1718 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1719 { 1720 /* Indicate we want to get back into the guest */ 1721 return 1; 1722 } 1723 1724 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1725 { 1726 unsigned long dec_nsec, now; 1727 1728 now = get_tb(); 1729 if (now > vcpu->arch.dec_expires) { 1730 /* decrementer has already gone negative */ 1731 kvmppc_core_queue_dec(vcpu); 1732 kvmppc_core_prepare_to_enter(vcpu); 1733 return; 1734 } 1735 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1736 / tb_ticks_per_sec; 1737 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1738 HRTIMER_MODE_REL); 1739 vcpu->arch.timer_running = 1; 1740 } 1741 1742 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1743 { 1744 vcpu->arch.ceded = 0; 1745 if (vcpu->arch.timer_running) { 1746 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1747 vcpu->arch.timer_running = 0; 1748 } 1749 } 1750 1751 extern void __kvmppc_vcore_entry(void); 1752 1753 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1754 struct kvm_vcpu *vcpu) 1755 { 1756 u64 now; 1757 1758 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1759 return; 1760 spin_lock_irq(&vcpu->arch.tbacct_lock); 1761 now = mftb(); 1762 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1763 vcpu->arch.stolen_logged; 1764 vcpu->arch.busy_preempt = now; 1765 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1766 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1767 --vc->n_runnable; 1768 list_del(&vcpu->arch.run_list); 1769 } 1770 1771 static int kvmppc_grab_hwthread(int cpu) 1772 { 1773 struct paca_struct *tpaca; 1774 long timeout = 10000; 1775 1776 tpaca = &paca[cpu]; 1777 1778 /* Ensure the thread won't go into the kernel if it wakes */ 1779 tpaca->kvm_hstate.kvm_vcpu = NULL; 1780 tpaca->kvm_hstate.kvm_vcore = NULL; 1781 tpaca->kvm_hstate.napping = 0; 1782 smp_wmb(); 1783 tpaca->kvm_hstate.hwthread_req = 1; 1784 1785 /* 1786 * If the thread is already executing in the kernel (e.g. handling 1787 * a stray interrupt), wait for it to get back to nap mode. 1788 * The smp_mb() is to ensure that our setting of hwthread_req 1789 * is visible before we look at hwthread_state, so if this 1790 * races with the code at system_reset_pSeries and the thread 1791 * misses our setting of hwthread_req, we are sure to see its 1792 * setting of hwthread_state, and vice versa. 1793 */ 1794 smp_mb(); 1795 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1796 if (--timeout <= 0) { 1797 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1798 return -EBUSY; 1799 } 1800 udelay(1); 1801 } 1802 return 0; 1803 } 1804 1805 static void kvmppc_release_hwthread(int cpu) 1806 { 1807 struct paca_struct *tpaca; 1808 1809 tpaca = &paca[cpu]; 1810 tpaca->kvm_hstate.hwthread_req = 0; 1811 tpaca->kvm_hstate.kvm_vcpu = NULL; 1812 tpaca->kvm_hstate.kvm_vcore = NULL; 1813 tpaca->kvm_hstate.kvm_split_mode = NULL; 1814 } 1815 1816 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 1817 { 1818 int cpu; 1819 struct paca_struct *tpaca; 1820 struct kvmppc_vcore *mvc = vc->master_vcore; 1821 1822 cpu = vc->pcpu; 1823 if (vcpu) { 1824 if (vcpu->arch.timer_running) { 1825 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1826 vcpu->arch.timer_running = 0; 1827 } 1828 cpu += vcpu->arch.ptid; 1829 vcpu->cpu = mvc->pcpu; 1830 vcpu->arch.thread_cpu = cpu; 1831 } 1832 tpaca = &paca[cpu]; 1833 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1834 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu; 1835 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 1836 smp_wmb(); 1837 tpaca->kvm_hstate.kvm_vcore = mvc; 1838 if (cpu != smp_processor_id()) 1839 kvmppc_ipi_thread(cpu); 1840 } 1841 1842 static void kvmppc_wait_for_nap(void) 1843 { 1844 int cpu = smp_processor_id(); 1845 int i, loops; 1846 1847 for (loops = 0; loops < 1000000; ++loops) { 1848 /* 1849 * Check if all threads are finished. 1850 * We set the vcore pointer when starting a thread 1851 * and the thread clears it when finished, so we look 1852 * for any threads that still have a non-NULL vcore ptr. 1853 */ 1854 for (i = 1; i < threads_per_subcore; ++i) 1855 if (paca[cpu + i].kvm_hstate.kvm_vcore) 1856 break; 1857 if (i == threads_per_subcore) { 1858 HMT_medium(); 1859 return; 1860 } 1861 HMT_low(); 1862 } 1863 HMT_medium(); 1864 for (i = 1; i < threads_per_subcore; ++i) 1865 if (paca[cpu + i].kvm_hstate.kvm_vcore) 1866 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 1867 } 1868 1869 /* 1870 * Check that we are on thread 0 and that any other threads in 1871 * this core are off-line. Then grab the threads so they can't 1872 * enter the kernel. 1873 */ 1874 static int on_primary_thread(void) 1875 { 1876 int cpu = smp_processor_id(); 1877 int thr; 1878 1879 /* Are we on a primary subcore? */ 1880 if (cpu_thread_in_subcore(cpu)) 1881 return 0; 1882 1883 thr = 0; 1884 while (++thr < threads_per_subcore) 1885 if (cpu_online(cpu + thr)) 1886 return 0; 1887 1888 /* Grab all hw threads so they can't go into the kernel */ 1889 for (thr = 1; thr < threads_per_subcore; ++thr) { 1890 if (kvmppc_grab_hwthread(cpu + thr)) { 1891 /* Couldn't grab one; let the others go */ 1892 do { 1893 kvmppc_release_hwthread(cpu + thr); 1894 } while (--thr > 0); 1895 return 0; 1896 } 1897 } 1898 return 1; 1899 } 1900 1901 /* 1902 * A list of virtual cores for each physical CPU. 1903 * These are vcores that could run but their runner VCPU tasks are 1904 * (or may be) preempted. 1905 */ 1906 struct preempted_vcore_list { 1907 struct list_head list; 1908 spinlock_t lock; 1909 }; 1910 1911 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 1912 1913 static void init_vcore_lists(void) 1914 { 1915 int cpu; 1916 1917 for_each_possible_cpu(cpu) { 1918 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 1919 spin_lock_init(&lp->lock); 1920 INIT_LIST_HEAD(&lp->list); 1921 } 1922 } 1923 1924 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 1925 { 1926 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 1927 1928 vc->vcore_state = VCORE_PREEMPT; 1929 vc->pcpu = smp_processor_id(); 1930 if (vc->num_threads < threads_per_subcore) { 1931 spin_lock(&lp->lock); 1932 list_add_tail(&vc->preempt_list, &lp->list); 1933 spin_unlock(&lp->lock); 1934 } 1935 1936 /* Start accumulating stolen time */ 1937 kvmppc_core_start_stolen(vc); 1938 } 1939 1940 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 1941 { 1942 struct preempted_vcore_list *lp; 1943 1944 kvmppc_core_end_stolen(vc); 1945 if (!list_empty(&vc->preempt_list)) { 1946 lp = &per_cpu(preempted_vcores, vc->pcpu); 1947 spin_lock(&lp->lock); 1948 list_del_init(&vc->preempt_list); 1949 spin_unlock(&lp->lock); 1950 } 1951 vc->vcore_state = VCORE_INACTIVE; 1952 } 1953 1954 /* 1955 * This stores information about the virtual cores currently 1956 * assigned to a physical core. 1957 */ 1958 struct core_info { 1959 int n_subcores; 1960 int max_subcore_threads; 1961 int total_threads; 1962 int subcore_threads[MAX_SUBCORES]; 1963 struct kvm *subcore_vm[MAX_SUBCORES]; 1964 struct list_head vcs[MAX_SUBCORES]; 1965 }; 1966 1967 /* 1968 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 1969 * respectively in 2-way micro-threading (split-core) mode. 1970 */ 1971 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 1972 1973 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 1974 { 1975 int sub; 1976 1977 memset(cip, 0, sizeof(*cip)); 1978 cip->n_subcores = 1; 1979 cip->max_subcore_threads = vc->num_threads; 1980 cip->total_threads = vc->num_threads; 1981 cip->subcore_threads[0] = vc->num_threads; 1982 cip->subcore_vm[0] = vc->kvm; 1983 for (sub = 0; sub < MAX_SUBCORES; ++sub) 1984 INIT_LIST_HEAD(&cip->vcs[sub]); 1985 list_add_tail(&vc->preempt_list, &cip->vcs[0]); 1986 } 1987 1988 static bool subcore_config_ok(int n_subcores, int n_threads) 1989 { 1990 /* Can only dynamically split if unsplit to begin with */ 1991 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 1992 return false; 1993 if (n_subcores > MAX_SUBCORES) 1994 return false; 1995 if (n_subcores > 1) { 1996 if (!(dynamic_mt_modes & 2)) 1997 n_subcores = 4; 1998 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 1999 return false; 2000 } 2001 2002 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2003 } 2004 2005 static void init_master_vcore(struct kvmppc_vcore *vc) 2006 { 2007 vc->master_vcore = vc; 2008 vc->entry_exit_map = 0; 2009 vc->in_guest = 0; 2010 vc->napping_threads = 0; 2011 vc->conferring_threads = 0; 2012 } 2013 2014 /* 2015 * See if the existing subcores can be split into 3 (or fewer) subcores 2016 * of at most two threads each, so we can fit in another vcore. This 2017 * assumes there are at most two subcores and at most 6 threads in total. 2018 */ 2019 static bool can_split_piggybacked_subcores(struct core_info *cip) 2020 { 2021 int sub, new_sub; 2022 int large_sub = -1; 2023 int thr; 2024 int n_subcores = cip->n_subcores; 2025 struct kvmppc_vcore *vc, *vcnext; 2026 struct kvmppc_vcore *master_vc = NULL; 2027 2028 for (sub = 0; sub < cip->n_subcores; ++sub) { 2029 if (cip->subcore_threads[sub] <= 2) 2030 continue; 2031 if (large_sub >= 0) 2032 return false; 2033 large_sub = sub; 2034 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore, 2035 preempt_list); 2036 if (vc->num_threads > 2) 2037 return false; 2038 n_subcores += (cip->subcore_threads[sub] - 1) >> 1; 2039 } 2040 if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2)) 2041 return false; 2042 2043 /* 2044 * Seems feasible, so go through and move vcores to new subcores. 2045 * Note that when we have two or more vcores in one subcore, 2046 * all those vcores must have only one thread each. 2047 */ 2048 new_sub = cip->n_subcores; 2049 thr = 0; 2050 sub = large_sub; 2051 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) { 2052 if (thr >= 2) { 2053 list_del(&vc->preempt_list); 2054 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]); 2055 /* vc->num_threads must be 1 */ 2056 if (++cip->subcore_threads[new_sub] == 1) { 2057 cip->subcore_vm[new_sub] = vc->kvm; 2058 init_master_vcore(vc); 2059 master_vc = vc; 2060 ++cip->n_subcores; 2061 } else { 2062 vc->master_vcore = master_vc; 2063 ++new_sub; 2064 } 2065 } 2066 thr += vc->num_threads; 2067 } 2068 cip->subcore_threads[large_sub] = 2; 2069 cip->max_subcore_threads = 2; 2070 2071 return true; 2072 } 2073 2074 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2075 { 2076 int n_threads = vc->num_threads; 2077 int sub; 2078 2079 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2080 return false; 2081 2082 if (n_threads < cip->max_subcore_threads) 2083 n_threads = cip->max_subcore_threads; 2084 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) { 2085 cip->max_subcore_threads = n_threads; 2086 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 && 2087 vc->num_threads <= 2) { 2088 /* 2089 * We may be able to fit another subcore in by 2090 * splitting an existing subcore with 3 or 4 2091 * threads into two 2-thread subcores, or one 2092 * with 5 or 6 threads into three subcores. 2093 * We can only do this if those subcores have 2094 * piggybacked virtual cores. 2095 */ 2096 if (!can_split_piggybacked_subcores(cip)) 2097 return false; 2098 } else { 2099 return false; 2100 } 2101 2102 sub = cip->n_subcores; 2103 ++cip->n_subcores; 2104 cip->total_threads += vc->num_threads; 2105 cip->subcore_threads[sub] = vc->num_threads; 2106 cip->subcore_vm[sub] = vc->kvm; 2107 init_master_vcore(vc); 2108 list_del(&vc->preempt_list); 2109 list_add_tail(&vc->preempt_list, &cip->vcs[sub]); 2110 2111 return true; 2112 } 2113 2114 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc, 2115 struct core_info *cip, int sub) 2116 { 2117 struct kvmppc_vcore *vc; 2118 int n_thr; 2119 2120 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore, 2121 preempt_list); 2122 2123 /* require same VM and same per-core reg values */ 2124 if (pvc->kvm != vc->kvm || 2125 pvc->tb_offset != vc->tb_offset || 2126 pvc->pcr != vc->pcr || 2127 pvc->lpcr != vc->lpcr) 2128 return false; 2129 2130 /* P8 guest with > 1 thread per core would see wrong TIR value */ 2131 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 2132 (vc->num_threads > 1 || pvc->num_threads > 1)) 2133 return false; 2134 2135 n_thr = cip->subcore_threads[sub] + pvc->num_threads; 2136 if (n_thr > cip->max_subcore_threads) { 2137 if (!subcore_config_ok(cip->n_subcores, n_thr)) 2138 return false; 2139 cip->max_subcore_threads = n_thr; 2140 } 2141 2142 cip->total_threads += pvc->num_threads; 2143 cip->subcore_threads[sub] = n_thr; 2144 pvc->master_vcore = vc; 2145 list_del(&pvc->preempt_list); 2146 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]); 2147 2148 return true; 2149 } 2150 2151 /* 2152 * Work out whether it is possible to piggyback the execution of 2153 * vcore *pvc onto the execution of the other vcores described in *cip. 2154 */ 2155 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2156 int target_threads) 2157 { 2158 int sub; 2159 2160 if (cip->total_threads + pvc->num_threads > target_threads) 2161 return false; 2162 for (sub = 0; sub < cip->n_subcores; ++sub) 2163 if (cip->subcore_threads[sub] && 2164 can_piggyback_subcore(pvc, cip, sub)) 2165 return true; 2166 2167 if (can_dynamic_split(pvc, cip)) 2168 return true; 2169 2170 return false; 2171 } 2172 2173 static void prepare_threads(struct kvmppc_vcore *vc) 2174 { 2175 struct kvm_vcpu *vcpu, *vnext; 2176 2177 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2178 arch.run_list) { 2179 if (signal_pending(vcpu->arch.run_task)) 2180 vcpu->arch.ret = -EINTR; 2181 else if (vcpu->arch.vpa.update_pending || 2182 vcpu->arch.slb_shadow.update_pending || 2183 vcpu->arch.dtl.update_pending) 2184 vcpu->arch.ret = RESUME_GUEST; 2185 else 2186 continue; 2187 kvmppc_remove_runnable(vc, vcpu); 2188 wake_up(&vcpu->arch.cpu_run); 2189 } 2190 } 2191 2192 static void collect_piggybacks(struct core_info *cip, int target_threads) 2193 { 2194 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2195 struct kvmppc_vcore *pvc, *vcnext; 2196 2197 spin_lock(&lp->lock); 2198 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2199 if (!spin_trylock(&pvc->lock)) 2200 continue; 2201 prepare_threads(pvc); 2202 if (!pvc->n_runnable) { 2203 list_del_init(&pvc->preempt_list); 2204 if (pvc->runner == NULL) { 2205 pvc->vcore_state = VCORE_INACTIVE; 2206 kvmppc_core_end_stolen(pvc); 2207 } 2208 spin_unlock(&pvc->lock); 2209 continue; 2210 } 2211 if (!can_piggyback(pvc, cip, target_threads)) { 2212 spin_unlock(&pvc->lock); 2213 continue; 2214 } 2215 kvmppc_core_end_stolen(pvc); 2216 pvc->vcore_state = VCORE_PIGGYBACK; 2217 if (cip->total_threads >= target_threads) 2218 break; 2219 } 2220 spin_unlock(&lp->lock); 2221 } 2222 2223 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2224 { 2225 int still_running = 0; 2226 u64 now; 2227 long ret; 2228 struct kvm_vcpu *vcpu, *vnext; 2229 2230 spin_lock(&vc->lock); 2231 now = get_tb(); 2232 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2233 arch.run_list) { 2234 /* cancel pending dec exception if dec is positive */ 2235 if (now < vcpu->arch.dec_expires && 2236 kvmppc_core_pending_dec(vcpu)) 2237 kvmppc_core_dequeue_dec(vcpu); 2238 2239 trace_kvm_guest_exit(vcpu); 2240 2241 ret = RESUME_GUEST; 2242 if (vcpu->arch.trap) 2243 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2244 vcpu->arch.run_task); 2245 2246 vcpu->arch.ret = ret; 2247 vcpu->arch.trap = 0; 2248 2249 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2250 if (vcpu->arch.pending_exceptions) 2251 kvmppc_core_prepare_to_enter(vcpu); 2252 if (vcpu->arch.ceded) 2253 kvmppc_set_timer(vcpu); 2254 else 2255 ++still_running; 2256 } else { 2257 kvmppc_remove_runnable(vc, vcpu); 2258 wake_up(&vcpu->arch.cpu_run); 2259 } 2260 } 2261 list_del_init(&vc->preempt_list); 2262 if (!is_master) { 2263 if (still_running > 0) { 2264 kvmppc_vcore_preempt(vc); 2265 } else if (vc->runner) { 2266 vc->vcore_state = VCORE_PREEMPT; 2267 kvmppc_core_start_stolen(vc); 2268 } else { 2269 vc->vcore_state = VCORE_INACTIVE; 2270 } 2271 if (vc->n_runnable > 0 && vc->runner == NULL) { 2272 /* make sure there's a candidate runner awake */ 2273 vcpu = list_first_entry(&vc->runnable_threads, 2274 struct kvm_vcpu, arch.run_list); 2275 wake_up(&vcpu->arch.cpu_run); 2276 } 2277 } 2278 spin_unlock(&vc->lock); 2279 } 2280 2281 /* 2282 * Run a set of guest threads on a physical core. 2283 * Called with vc->lock held. 2284 */ 2285 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2286 { 2287 struct kvm_vcpu *vcpu, *vnext; 2288 int i; 2289 int srcu_idx; 2290 struct core_info core_info; 2291 struct kvmppc_vcore *pvc, *vcnext; 2292 struct kvm_split_mode split_info, *sip; 2293 int split, subcore_size, active; 2294 int sub; 2295 bool thr0_done; 2296 unsigned long cmd_bit, stat_bit; 2297 int pcpu, thr; 2298 int target_threads; 2299 2300 /* 2301 * Remove from the list any threads that have a signal pending 2302 * or need a VPA update done 2303 */ 2304 prepare_threads(vc); 2305 2306 /* if the runner is no longer runnable, let the caller pick a new one */ 2307 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2308 return; 2309 2310 /* 2311 * Initialize *vc. 2312 */ 2313 init_master_vcore(vc); 2314 vc->preempt_tb = TB_NIL; 2315 2316 /* 2317 * Make sure we are running on primary threads, and that secondary 2318 * threads are offline. Also check if the number of threads in this 2319 * guest are greater than the current system threads per guest. 2320 */ 2321 if ((threads_per_core > 1) && 2322 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 2323 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2324 arch.run_list) { 2325 vcpu->arch.ret = -EBUSY; 2326 kvmppc_remove_runnable(vc, vcpu); 2327 wake_up(&vcpu->arch.cpu_run); 2328 } 2329 goto out; 2330 } 2331 2332 /* 2333 * See if we could run any other vcores on the physical core 2334 * along with this one. 2335 */ 2336 init_core_info(&core_info, vc); 2337 pcpu = smp_processor_id(); 2338 target_threads = threads_per_subcore; 2339 if (target_smt_mode && target_smt_mode < target_threads) 2340 target_threads = target_smt_mode; 2341 if (vc->num_threads < target_threads) 2342 collect_piggybacks(&core_info, target_threads); 2343 2344 /* Decide on micro-threading (split-core) mode */ 2345 subcore_size = threads_per_subcore; 2346 cmd_bit = stat_bit = 0; 2347 split = core_info.n_subcores; 2348 sip = NULL; 2349 if (split > 1) { 2350 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */ 2351 if (split == 2 && (dynamic_mt_modes & 2)) { 2352 cmd_bit = HID0_POWER8_1TO2LPAR; 2353 stat_bit = HID0_POWER8_2LPARMODE; 2354 } else { 2355 split = 4; 2356 cmd_bit = HID0_POWER8_1TO4LPAR; 2357 stat_bit = HID0_POWER8_4LPARMODE; 2358 } 2359 subcore_size = MAX_SMT_THREADS / split; 2360 sip = &split_info; 2361 memset(&split_info, 0, sizeof(split_info)); 2362 split_info.rpr = mfspr(SPRN_RPR); 2363 split_info.pmmar = mfspr(SPRN_PMMAR); 2364 split_info.ldbar = mfspr(SPRN_LDBAR); 2365 split_info.subcore_size = subcore_size; 2366 for (sub = 0; sub < core_info.n_subcores; ++sub) 2367 split_info.master_vcs[sub] = 2368 list_first_entry(&core_info.vcs[sub], 2369 struct kvmppc_vcore, preempt_list); 2370 /* order writes to split_info before kvm_split_mode pointer */ 2371 smp_wmb(); 2372 } 2373 pcpu = smp_processor_id(); 2374 for (thr = 0; thr < threads_per_subcore; ++thr) 2375 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2376 2377 /* Initiate micro-threading (split-core) if required */ 2378 if (cmd_bit) { 2379 unsigned long hid0 = mfspr(SPRN_HID0); 2380 2381 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2382 mb(); 2383 mtspr(SPRN_HID0, hid0); 2384 isync(); 2385 for (;;) { 2386 hid0 = mfspr(SPRN_HID0); 2387 if (hid0 & stat_bit) 2388 break; 2389 cpu_relax(); 2390 } 2391 } 2392 2393 /* Start all the threads */ 2394 active = 0; 2395 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2396 thr = subcore_thread_map[sub]; 2397 thr0_done = false; 2398 active |= 1 << thr; 2399 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) { 2400 pvc->pcpu = pcpu + thr; 2401 list_for_each_entry(vcpu, &pvc->runnable_threads, 2402 arch.run_list) { 2403 kvmppc_start_thread(vcpu, pvc); 2404 kvmppc_create_dtl_entry(vcpu, pvc); 2405 trace_kvm_guest_enter(vcpu); 2406 if (!vcpu->arch.ptid) 2407 thr0_done = true; 2408 active |= 1 << (thr + vcpu->arch.ptid); 2409 } 2410 /* 2411 * We need to start the first thread of each subcore 2412 * even if it doesn't have a vcpu. 2413 */ 2414 if (pvc->master_vcore == pvc && !thr0_done) 2415 kvmppc_start_thread(NULL, pvc); 2416 thr += pvc->num_threads; 2417 } 2418 } 2419 2420 /* 2421 * Ensure that split_info.do_nap is set after setting 2422 * the vcore pointer in the PACA of the secondaries. 2423 */ 2424 smp_mb(); 2425 if (cmd_bit) 2426 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2427 2428 /* 2429 * When doing micro-threading, poke the inactive threads as well. 2430 * This gets them to the nap instruction after kvm_do_nap, 2431 * which reduces the time taken to unsplit later. 2432 */ 2433 if (split > 1) 2434 for (thr = 1; thr < threads_per_subcore; ++thr) 2435 if (!(active & (1 << thr))) 2436 kvmppc_ipi_thread(pcpu + thr); 2437 2438 vc->vcore_state = VCORE_RUNNING; 2439 preempt_disable(); 2440 2441 trace_kvmppc_run_core(vc, 0); 2442 2443 for (sub = 0; sub < core_info.n_subcores; ++sub) 2444 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) 2445 spin_unlock(&pvc->lock); 2446 2447 kvm_guest_enter(); 2448 2449 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2450 2451 __kvmppc_vcore_entry(); 2452 2453 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2454 2455 spin_lock(&vc->lock); 2456 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2457 vc->vcore_state = VCORE_EXITING; 2458 2459 /* wait for secondary threads to finish writing their state to memory */ 2460 kvmppc_wait_for_nap(); 2461 2462 /* Return to whole-core mode if we split the core earlier */ 2463 if (split > 1) { 2464 unsigned long hid0 = mfspr(SPRN_HID0); 2465 unsigned long loops = 0; 2466 2467 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2468 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2469 mb(); 2470 mtspr(SPRN_HID0, hid0); 2471 isync(); 2472 for (;;) { 2473 hid0 = mfspr(SPRN_HID0); 2474 if (!(hid0 & stat_bit)) 2475 break; 2476 cpu_relax(); 2477 ++loops; 2478 } 2479 split_info.do_nap = 0; 2480 } 2481 2482 /* Let secondaries go back to the offline loop */ 2483 for (i = 0; i < threads_per_subcore; ++i) { 2484 kvmppc_release_hwthread(pcpu + i); 2485 if (sip && sip->napped[i]) 2486 kvmppc_ipi_thread(pcpu + i); 2487 } 2488 2489 spin_unlock(&vc->lock); 2490 2491 /* make sure updates to secondary vcpu structs are visible now */ 2492 smp_mb(); 2493 kvm_guest_exit(); 2494 2495 for (sub = 0; sub < core_info.n_subcores; ++sub) 2496 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub], 2497 preempt_list) 2498 post_guest_process(pvc, pvc == vc); 2499 2500 spin_lock(&vc->lock); 2501 preempt_enable(); 2502 2503 out: 2504 vc->vcore_state = VCORE_INACTIVE; 2505 trace_kvmppc_run_core(vc, 1); 2506 } 2507 2508 /* 2509 * Wait for some other vcpu thread to execute us, and 2510 * wake us up when we need to handle something in the host. 2511 */ 2512 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2513 struct kvm_vcpu *vcpu, int wait_state) 2514 { 2515 DEFINE_WAIT(wait); 2516 2517 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2518 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2519 spin_unlock(&vc->lock); 2520 schedule(); 2521 spin_lock(&vc->lock); 2522 } 2523 finish_wait(&vcpu->arch.cpu_run, &wait); 2524 } 2525 2526 /* 2527 * All the vcpus in this vcore are idle, so wait for a decrementer 2528 * or external interrupt to one of the vcpus. vc->lock is held. 2529 */ 2530 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2531 { 2532 struct kvm_vcpu *vcpu; 2533 int do_sleep = 1; 2534 2535 DEFINE_WAIT(wait); 2536 2537 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 2538 2539 /* 2540 * Check one last time for pending exceptions and ceded state after 2541 * we put ourselves on the wait queue 2542 */ 2543 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 2544 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) { 2545 do_sleep = 0; 2546 break; 2547 } 2548 } 2549 2550 if (!do_sleep) { 2551 finish_wait(&vc->wq, &wait); 2552 return; 2553 } 2554 2555 vc->vcore_state = VCORE_SLEEPING; 2556 trace_kvmppc_vcore_blocked(vc, 0); 2557 spin_unlock(&vc->lock); 2558 schedule(); 2559 finish_wait(&vc->wq, &wait); 2560 spin_lock(&vc->lock); 2561 vc->vcore_state = VCORE_INACTIVE; 2562 trace_kvmppc_vcore_blocked(vc, 1); 2563 } 2564 2565 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 2566 { 2567 int n_ceded; 2568 struct kvmppc_vcore *vc; 2569 struct kvm_vcpu *v, *vn; 2570 2571 trace_kvmppc_run_vcpu_enter(vcpu); 2572 2573 kvm_run->exit_reason = 0; 2574 vcpu->arch.ret = RESUME_GUEST; 2575 vcpu->arch.trap = 0; 2576 kvmppc_update_vpas(vcpu); 2577 2578 /* 2579 * Synchronize with other threads in this virtual core 2580 */ 2581 vc = vcpu->arch.vcore; 2582 spin_lock(&vc->lock); 2583 vcpu->arch.ceded = 0; 2584 vcpu->arch.run_task = current; 2585 vcpu->arch.kvm_run = kvm_run; 2586 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 2587 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 2588 vcpu->arch.busy_preempt = TB_NIL; 2589 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 2590 ++vc->n_runnable; 2591 2592 /* 2593 * This happens the first time this is called for a vcpu. 2594 * If the vcore is already running, we may be able to start 2595 * this thread straight away and have it join in. 2596 */ 2597 if (!signal_pending(current)) { 2598 if (vc->vcore_state == VCORE_PIGGYBACK) { 2599 struct kvmppc_vcore *mvc = vc->master_vcore; 2600 if (spin_trylock(&mvc->lock)) { 2601 if (mvc->vcore_state == VCORE_RUNNING && 2602 !VCORE_IS_EXITING(mvc)) { 2603 kvmppc_create_dtl_entry(vcpu, vc); 2604 kvmppc_start_thread(vcpu, vc); 2605 trace_kvm_guest_enter(vcpu); 2606 } 2607 spin_unlock(&mvc->lock); 2608 } 2609 } else if (vc->vcore_state == VCORE_RUNNING && 2610 !VCORE_IS_EXITING(vc)) { 2611 kvmppc_create_dtl_entry(vcpu, vc); 2612 kvmppc_start_thread(vcpu, vc); 2613 trace_kvm_guest_enter(vcpu); 2614 } else if (vc->vcore_state == VCORE_SLEEPING) { 2615 wake_up(&vc->wq); 2616 } 2617 2618 } 2619 2620 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2621 !signal_pending(current)) { 2622 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2623 kvmppc_vcore_end_preempt(vc); 2624 2625 if (vc->vcore_state != VCORE_INACTIVE) { 2626 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 2627 continue; 2628 } 2629 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 2630 arch.run_list) { 2631 kvmppc_core_prepare_to_enter(v); 2632 if (signal_pending(v->arch.run_task)) { 2633 kvmppc_remove_runnable(vc, v); 2634 v->stat.signal_exits++; 2635 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 2636 v->arch.ret = -EINTR; 2637 wake_up(&v->arch.cpu_run); 2638 } 2639 } 2640 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2641 break; 2642 n_ceded = 0; 2643 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 2644 if (!v->arch.pending_exceptions) 2645 n_ceded += v->arch.ceded; 2646 else 2647 v->arch.ceded = 0; 2648 } 2649 vc->runner = vcpu; 2650 if (n_ceded == vc->n_runnable) { 2651 kvmppc_vcore_blocked(vc); 2652 } else if (need_resched()) { 2653 kvmppc_vcore_preempt(vc); 2654 /* Let something else run */ 2655 cond_resched_lock(&vc->lock); 2656 if (vc->vcore_state == VCORE_PREEMPT) 2657 kvmppc_vcore_end_preempt(vc); 2658 } else { 2659 kvmppc_run_core(vc); 2660 } 2661 vc->runner = NULL; 2662 } 2663 2664 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2665 (vc->vcore_state == VCORE_RUNNING || 2666 vc->vcore_state == VCORE_EXITING || 2667 vc->vcore_state == VCORE_PIGGYBACK)) 2668 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 2669 2670 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2671 kvmppc_vcore_end_preempt(vc); 2672 2673 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2674 kvmppc_remove_runnable(vc, vcpu); 2675 vcpu->stat.signal_exits++; 2676 kvm_run->exit_reason = KVM_EXIT_INTR; 2677 vcpu->arch.ret = -EINTR; 2678 } 2679 2680 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 2681 /* Wake up some vcpu to run the core */ 2682 v = list_first_entry(&vc->runnable_threads, 2683 struct kvm_vcpu, arch.run_list); 2684 wake_up(&v->arch.cpu_run); 2685 } 2686 2687 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 2688 spin_unlock(&vc->lock); 2689 return vcpu->arch.ret; 2690 } 2691 2692 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 2693 { 2694 int r; 2695 int srcu_idx; 2696 2697 if (!vcpu->arch.sane) { 2698 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2699 return -EINVAL; 2700 } 2701 2702 kvmppc_core_prepare_to_enter(vcpu); 2703 2704 /* No need to go into the guest when all we'll do is come back out */ 2705 if (signal_pending(current)) { 2706 run->exit_reason = KVM_EXIT_INTR; 2707 return -EINTR; 2708 } 2709 2710 atomic_inc(&vcpu->kvm->arch.vcpus_running); 2711 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 2712 smp_mb(); 2713 2714 /* On the first time here, set up HTAB and VRMA */ 2715 if (!vcpu->kvm->arch.hpte_setup_done) { 2716 r = kvmppc_hv_setup_htab_rma(vcpu); 2717 if (r) 2718 goto out; 2719 } 2720 2721 flush_all_to_thread(current); 2722 2723 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 2724 vcpu->arch.pgdir = current->mm->pgd; 2725 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2726 2727 do { 2728 r = kvmppc_run_vcpu(run, vcpu); 2729 2730 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 2731 !(vcpu->arch.shregs.msr & MSR_PR)) { 2732 trace_kvm_hcall_enter(vcpu); 2733 r = kvmppc_pseries_do_hcall(vcpu); 2734 trace_kvm_hcall_exit(vcpu, r); 2735 kvmppc_core_prepare_to_enter(vcpu); 2736 } else if (r == RESUME_PAGE_FAULT) { 2737 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2738 r = kvmppc_book3s_hv_page_fault(run, vcpu, 2739 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 2740 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2741 } 2742 } while (is_kvmppc_resume_guest(r)); 2743 2744 out: 2745 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2746 atomic_dec(&vcpu->kvm->arch.vcpus_running); 2747 return r; 2748 } 2749 2750 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 2751 int linux_psize) 2752 { 2753 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 2754 2755 if (!def->shift) 2756 return; 2757 (*sps)->page_shift = def->shift; 2758 (*sps)->slb_enc = def->sllp; 2759 (*sps)->enc[0].page_shift = def->shift; 2760 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 2761 /* 2762 * Add 16MB MPSS support if host supports it 2763 */ 2764 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 2765 (*sps)->enc[1].page_shift = 24; 2766 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 2767 } 2768 (*sps)++; 2769 } 2770 2771 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 2772 struct kvm_ppc_smmu_info *info) 2773 { 2774 struct kvm_ppc_one_seg_page_size *sps; 2775 2776 info->flags = KVM_PPC_PAGE_SIZES_REAL; 2777 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 2778 info->flags |= KVM_PPC_1T_SEGMENTS; 2779 info->slb_size = mmu_slb_size; 2780 2781 /* We only support these sizes for now, and no muti-size segments */ 2782 sps = &info->sps[0]; 2783 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 2784 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 2785 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 2786 2787 return 0; 2788 } 2789 2790 /* 2791 * Get (and clear) the dirty memory log for a memory slot. 2792 */ 2793 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 2794 struct kvm_dirty_log *log) 2795 { 2796 struct kvm_memslots *slots; 2797 struct kvm_memory_slot *memslot; 2798 int r; 2799 unsigned long n; 2800 2801 mutex_lock(&kvm->slots_lock); 2802 2803 r = -EINVAL; 2804 if (log->slot >= KVM_USER_MEM_SLOTS) 2805 goto out; 2806 2807 slots = kvm_memslots(kvm); 2808 memslot = id_to_memslot(slots, log->slot); 2809 r = -ENOENT; 2810 if (!memslot->dirty_bitmap) 2811 goto out; 2812 2813 n = kvm_dirty_bitmap_bytes(memslot); 2814 memset(memslot->dirty_bitmap, 0, n); 2815 2816 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 2817 if (r) 2818 goto out; 2819 2820 r = -EFAULT; 2821 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 2822 goto out; 2823 2824 r = 0; 2825 out: 2826 mutex_unlock(&kvm->slots_lock); 2827 return r; 2828 } 2829 2830 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 2831 struct kvm_memory_slot *dont) 2832 { 2833 if (!dont || free->arch.rmap != dont->arch.rmap) { 2834 vfree(free->arch.rmap); 2835 free->arch.rmap = NULL; 2836 } 2837 } 2838 2839 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 2840 unsigned long npages) 2841 { 2842 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 2843 if (!slot->arch.rmap) 2844 return -ENOMEM; 2845 2846 return 0; 2847 } 2848 2849 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 2850 struct kvm_memory_slot *memslot, 2851 const struct kvm_userspace_memory_region *mem) 2852 { 2853 return 0; 2854 } 2855 2856 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 2857 const struct kvm_userspace_memory_region *mem, 2858 const struct kvm_memory_slot *old, 2859 const struct kvm_memory_slot *new) 2860 { 2861 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 2862 struct kvm_memslots *slots; 2863 struct kvm_memory_slot *memslot; 2864 2865 if (npages && old->npages) { 2866 /* 2867 * If modifying a memslot, reset all the rmap dirty bits. 2868 * If this is a new memslot, we don't need to do anything 2869 * since the rmap array starts out as all zeroes, 2870 * i.e. no pages are dirty. 2871 */ 2872 slots = kvm_memslots(kvm); 2873 memslot = id_to_memslot(slots, mem->slot); 2874 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 2875 } 2876 } 2877 2878 /* 2879 * Update LPCR values in kvm->arch and in vcores. 2880 * Caller must hold kvm->lock. 2881 */ 2882 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 2883 { 2884 long int i; 2885 u32 cores_done = 0; 2886 2887 if ((kvm->arch.lpcr & mask) == lpcr) 2888 return; 2889 2890 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 2891 2892 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2893 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2894 if (!vc) 2895 continue; 2896 spin_lock(&vc->lock); 2897 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 2898 spin_unlock(&vc->lock); 2899 if (++cores_done >= kvm->arch.online_vcores) 2900 break; 2901 } 2902 } 2903 2904 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 2905 { 2906 return; 2907 } 2908 2909 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 2910 { 2911 int err = 0; 2912 struct kvm *kvm = vcpu->kvm; 2913 unsigned long hva; 2914 struct kvm_memory_slot *memslot; 2915 struct vm_area_struct *vma; 2916 unsigned long lpcr = 0, senc; 2917 unsigned long psize, porder; 2918 int srcu_idx; 2919 2920 mutex_lock(&kvm->lock); 2921 if (kvm->arch.hpte_setup_done) 2922 goto out; /* another vcpu beat us to it */ 2923 2924 /* Allocate hashed page table (if not done already) and reset it */ 2925 if (!kvm->arch.hpt_virt) { 2926 err = kvmppc_alloc_hpt(kvm, NULL); 2927 if (err) { 2928 pr_err("KVM: Couldn't alloc HPT\n"); 2929 goto out; 2930 } 2931 } 2932 2933 /* Look up the memslot for guest physical address 0 */ 2934 srcu_idx = srcu_read_lock(&kvm->srcu); 2935 memslot = gfn_to_memslot(kvm, 0); 2936 2937 /* We must have some memory at 0 by now */ 2938 err = -EINVAL; 2939 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 2940 goto out_srcu; 2941 2942 /* Look up the VMA for the start of this memory slot */ 2943 hva = memslot->userspace_addr; 2944 down_read(¤t->mm->mmap_sem); 2945 vma = find_vma(current->mm, hva); 2946 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 2947 goto up_out; 2948 2949 psize = vma_kernel_pagesize(vma); 2950 porder = __ilog2(psize); 2951 2952 up_read(¤t->mm->mmap_sem); 2953 2954 /* We can handle 4k, 64k or 16M pages in the VRMA */ 2955 err = -EINVAL; 2956 if (!(psize == 0x1000 || psize == 0x10000 || 2957 psize == 0x1000000)) 2958 goto out_srcu; 2959 2960 /* Update VRMASD field in the LPCR */ 2961 senc = slb_pgsize_encoding(psize); 2962 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 2963 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2964 /* the -4 is to account for senc values starting at 0x10 */ 2965 lpcr = senc << (LPCR_VRMASD_SH - 4); 2966 2967 /* Create HPTEs in the hash page table for the VRMA */ 2968 kvmppc_map_vrma(vcpu, memslot, porder); 2969 2970 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 2971 2972 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 2973 smp_wmb(); 2974 kvm->arch.hpte_setup_done = 1; 2975 err = 0; 2976 out_srcu: 2977 srcu_read_unlock(&kvm->srcu, srcu_idx); 2978 out: 2979 mutex_unlock(&kvm->lock); 2980 return err; 2981 2982 up_out: 2983 up_read(¤t->mm->mmap_sem); 2984 goto out_srcu; 2985 } 2986 2987 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 2988 { 2989 unsigned long lpcr, lpid; 2990 char buf[32]; 2991 2992 /* Allocate the guest's logical partition ID */ 2993 2994 lpid = kvmppc_alloc_lpid(); 2995 if ((long)lpid < 0) 2996 return -ENOMEM; 2997 kvm->arch.lpid = lpid; 2998 2999 /* 3000 * Since we don't flush the TLB when tearing down a VM, 3001 * and this lpid might have previously been used, 3002 * make sure we flush on each core before running the new VM. 3003 */ 3004 cpumask_setall(&kvm->arch.need_tlb_flush); 3005 3006 /* Start out with the default set of hcalls enabled */ 3007 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3008 sizeof(kvm->arch.enabled_hcalls)); 3009 3010 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3011 3012 /* Init LPCR for virtual RMA mode */ 3013 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3014 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3015 lpcr &= LPCR_PECE | LPCR_LPES; 3016 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3017 LPCR_VPM0 | LPCR_VPM1; 3018 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3019 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3020 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3021 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3022 lpcr |= LPCR_ONL; 3023 kvm->arch.lpcr = lpcr; 3024 3025 /* 3026 * Track that we now have a HV mode VM active. This blocks secondary 3027 * CPU threads from coming online. 3028 */ 3029 kvm_hv_vm_activated(); 3030 3031 /* 3032 * Create a debugfs directory for the VM 3033 */ 3034 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3035 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3036 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3037 kvmppc_mmu_debugfs_init(kvm); 3038 3039 return 0; 3040 } 3041 3042 static void kvmppc_free_vcores(struct kvm *kvm) 3043 { 3044 long int i; 3045 3046 for (i = 0; i < KVM_MAX_VCORES; ++i) 3047 kfree(kvm->arch.vcores[i]); 3048 kvm->arch.online_vcores = 0; 3049 } 3050 3051 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3052 { 3053 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3054 3055 kvm_hv_vm_deactivated(); 3056 3057 kvmppc_free_vcores(kvm); 3058 3059 kvmppc_free_hpt(kvm); 3060 } 3061 3062 /* We don't need to emulate any privileged instructions or dcbz */ 3063 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3064 unsigned int inst, int *advance) 3065 { 3066 return EMULATE_FAIL; 3067 } 3068 3069 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3070 ulong spr_val) 3071 { 3072 return EMULATE_FAIL; 3073 } 3074 3075 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3076 ulong *spr_val) 3077 { 3078 return EMULATE_FAIL; 3079 } 3080 3081 static int kvmppc_core_check_processor_compat_hv(void) 3082 { 3083 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3084 !cpu_has_feature(CPU_FTR_ARCH_206)) 3085 return -EIO; 3086 return 0; 3087 } 3088 3089 static long kvm_arch_vm_ioctl_hv(struct file *filp, 3090 unsigned int ioctl, unsigned long arg) 3091 { 3092 struct kvm *kvm __maybe_unused = filp->private_data; 3093 void __user *argp = (void __user *)arg; 3094 long r; 3095 3096 switch (ioctl) { 3097 3098 case KVM_PPC_ALLOCATE_HTAB: { 3099 u32 htab_order; 3100 3101 r = -EFAULT; 3102 if (get_user(htab_order, (u32 __user *)argp)) 3103 break; 3104 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 3105 if (r) 3106 break; 3107 r = -EFAULT; 3108 if (put_user(htab_order, (u32 __user *)argp)) 3109 break; 3110 r = 0; 3111 break; 3112 } 3113 3114 case KVM_PPC_GET_HTAB_FD: { 3115 struct kvm_get_htab_fd ghf; 3116 3117 r = -EFAULT; 3118 if (copy_from_user(&ghf, argp, sizeof(ghf))) 3119 break; 3120 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 3121 break; 3122 } 3123 3124 default: 3125 r = -ENOTTY; 3126 } 3127 3128 return r; 3129 } 3130 3131 /* 3132 * List of hcall numbers to enable by default. 3133 * For compatibility with old userspace, we enable by default 3134 * all hcalls that were implemented before the hcall-enabling 3135 * facility was added. Note this list should not include H_RTAS. 3136 */ 3137 static unsigned int default_hcall_list[] = { 3138 H_REMOVE, 3139 H_ENTER, 3140 H_READ, 3141 H_PROTECT, 3142 H_BULK_REMOVE, 3143 H_GET_TCE, 3144 H_PUT_TCE, 3145 H_SET_DABR, 3146 H_SET_XDABR, 3147 H_CEDE, 3148 H_PROD, 3149 H_CONFER, 3150 H_REGISTER_VPA, 3151 #ifdef CONFIG_KVM_XICS 3152 H_EOI, 3153 H_CPPR, 3154 H_IPI, 3155 H_IPOLL, 3156 H_XIRR, 3157 H_XIRR_X, 3158 #endif 3159 0 3160 }; 3161 3162 static void init_default_hcalls(void) 3163 { 3164 int i; 3165 unsigned int hcall; 3166 3167 for (i = 0; default_hcall_list[i]; ++i) { 3168 hcall = default_hcall_list[i]; 3169 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 3170 __set_bit(hcall / 4, default_enabled_hcalls); 3171 } 3172 } 3173 3174 static struct kvmppc_ops kvm_ops_hv = { 3175 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 3176 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 3177 .get_one_reg = kvmppc_get_one_reg_hv, 3178 .set_one_reg = kvmppc_set_one_reg_hv, 3179 .vcpu_load = kvmppc_core_vcpu_load_hv, 3180 .vcpu_put = kvmppc_core_vcpu_put_hv, 3181 .set_msr = kvmppc_set_msr_hv, 3182 .vcpu_run = kvmppc_vcpu_run_hv, 3183 .vcpu_create = kvmppc_core_vcpu_create_hv, 3184 .vcpu_free = kvmppc_core_vcpu_free_hv, 3185 .check_requests = kvmppc_core_check_requests_hv, 3186 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 3187 .flush_memslot = kvmppc_core_flush_memslot_hv, 3188 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 3189 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 3190 .unmap_hva = kvm_unmap_hva_hv, 3191 .unmap_hva_range = kvm_unmap_hva_range_hv, 3192 .age_hva = kvm_age_hva_hv, 3193 .test_age_hva = kvm_test_age_hva_hv, 3194 .set_spte_hva = kvm_set_spte_hva_hv, 3195 .mmu_destroy = kvmppc_mmu_destroy_hv, 3196 .free_memslot = kvmppc_core_free_memslot_hv, 3197 .create_memslot = kvmppc_core_create_memslot_hv, 3198 .init_vm = kvmppc_core_init_vm_hv, 3199 .destroy_vm = kvmppc_core_destroy_vm_hv, 3200 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 3201 .emulate_op = kvmppc_core_emulate_op_hv, 3202 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 3203 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 3204 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 3205 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 3206 .hcall_implemented = kvmppc_hcall_impl_hv, 3207 }; 3208 3209 static int kvmppc_book3s_init_hv(void) 3210 { 3211 int r; 3212 /* 3213 * FIXME!! Do we need to check on all cpus ? 3214 */ 3215 r = kvmppc_core_check_processor_compat_hv(); 3216 if (r < 0) 3217 return -ENODEV; 3218 3219 kvm_ops_hv.owner = THIS_MODULE; 3220 kvmppc_hv_ops = &kvm_ops_hv; 3221 3222 init_default_hcalls(); 3223 3224 init_vcore_lists(); 3225 3226 r = kvmppc_mmu_hv_init(); 3227 return r; 3228 } 3229 3230 static void kvmppc_book3s_exit_hv(void) 3231 { 3232 kvmppc_hv_ops = NULL; 3233 } 3234 3235 module_init(kvmppc_book3s_init_hv); 3236 module_exit(kvmppc_book3s_exit_hv); 3237 MODULE_LICENSE("GPL"); 3238 MODULE_ALIAS_MISCDEV(KVM_MINOR); 3239 MODULE_ALIAS("devname:kvm"); 3240