1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 34 #include <asm/reg.h> 35 #include <asm/cputable.h> 36 #include <asm/cacheflush.h> 37 #include <asm/tlbflush.h> 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/kvm_ppc.h> 41 #include <asm/kvm_book3s.h> 42 #include <asm/mmu_context.h> 43 #include <asm/lppaca.h> 44 #include <asm/processor.h> 45 #include <asm/cputhreads.h> 46 #include <asm/page.h> 47 #include <asm/hvcall.h> 48 #include <linux/gfp.h> 49 #include <linux/sched.h> 50 #include <linux/vmalloc.h> 51 #include <linux/highmem.h> 52 53 /* 54 * For now, limit memory to 64GB and require it to be large pages. 55 * This value is chosen because it makes the ram_pginfo array be 56 * 64kB in size, which is about as large as we want to be trying 57 * to allocate with kmalloc. 58 */ 59 #define MAX_MEM_ORDER 36 60 61 #define LARGE_PAGE_ORDER 24 /* 16MB pages */ 62 63 /* #define EXIT_DEBUG */ 64 /* #define EXIT_DEBUG_SIMPLE */ 65 /* #define EXIT_DEBUG_INT */ 66 67 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 68 69 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 70 { 71 local_paca->kvm_hstate.kvm_vcpu = vcpu; 72 local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore; 73 } 74 75 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) 76 { 77 } 78 79 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) 80 { 81 vcpu->arch.shregs.msr = msr; 82 kvmppc_end_cede(vcpu); 83 } 84 85 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) 86 { 87 vcpu->arch.pvr = pvr; 88 } 89 90 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 91 { 92 int r; 93 94 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 95 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 96 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 97 for (r = 0; r < 16; ++r) 98 pr_err("r%2d = %.16lx r%d = %.16lx\n", 99 r, kvmppc_get_gpr(vcpu, r), 100 r+16, kvmppc_get_gpr(vcpu, r+16)); 101 pr_err("ctr = %.16lx lr = %.16lx\n", 102 vcpu->arch.ctr, vcpu->arch.lr); 103 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 104 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 105 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 106 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 107 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 108 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 109 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 110 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 111 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 112 pr_err("fault dar = %.16lx dsisr = %.8x\n", 113 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 114 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 115 for (r = 0; r < vcpu->arch.slb_max; ++r) 116 pr_err(" ESID = %.16llx VSID = %.16llx\n", 117 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 118 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 119 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, 120 vcpu->arch.last_inst); 121 } 122 123 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 124 { 125 int r; 126 struct kvm_vcpu *v, *ret = NULL; 127 128 mutex_lock(&kvm->lock); 129 kvm_for_each_vcpu(r, v, kvm) { 130 if (v->vcpu_id == id) { 131 ret = v; 132 break; 133 } 134 } 135 mutex_unlock(&kvm->lock); 136 return ret; 137 } 138 139 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 140 { 141 vpa->shared_proc = 1; 142 vpa->yield_count = 1; 143 } 144 145 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 146 unsigned long flags, 147 unsigned long vcpuid, unsigned long vpa) 148 { 149 struct kvm *kvm = vcpu->kvm; 150 unsigned long pg_index, ra, len; 151 unsigned long pg_offset; 152 void *va; 153 struct kvm_vcpu *tvcpu; 154 155 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 156 if (!tvcpu) 157 return H_PARAMETER; 158 159 flags >>= 63 - 18; 160 flags &= 7; 161 if (flags == 0 || flags == 4) 162 return H_PARAMETER; 163 if (flags < 4) { 164 if (vpa & 0x7f) 165 return H_PARAMETER; 166 /* registering new area; convert logical addr to real */ 167 pg_index = vpa >> kvm->arch.ram_porder; 168 pg_offset = vpa & (kvm->arch.ram_psize - 1); 169 if (pg_index >= kvm->arch.ram_npages) 170 return H_PARAMETER; 171 if (kvm->arch.ram_pginfo[pg_index].pfn == 0) 172 return H_PARAMETER; 173 ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT; 174 ra |= pg_offset; 175 va = __va(ra); 176 if (flags <= 1) 177 len = *(unsigned short *)(va + 4); 178 else 179 len = *(unsigned int *)(va + 4); 180 if (pg_offset + len > kvm->arch.ram_psize) 181 return H_PARAMETER; 182 switch (flags) { 183 case 1: /* register VPA */ 184 if (len < 640) 185 return H_PARAMETER; 186 tvcpu->arch.vpa = va; 187 init_vpa(vcpu, va); 188 break; 189 case 2: /* register DTL */ 190 if (len < 48) 191 return H_PARAMETER; 192 if (!tvcpu->arch.vpa) 193 return H_RESOURCE; 194 len -= len % 48; 195 tvcpu->arch.dtl = va; 196 tvcpu->arch.dtl_end = va + len; 197 break; 198 case 3: /* register SLB shadow buffer */ 199 if (len < 8) 200 return H_PARAMETER; 201 if (!tvcpu->arch.vpa) 202 return H_RESOURCE; 203 tvcpu->arch.slb_shadow = va; 204 len = (len - 16) / 16; 205 tvcpu->arch.slb_shadow = va; 206 break; 207 } 208 } else { 209 switch (flags) { 210 case 5: /* unregister VPA */ 211 if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl) 212 return H_RESOURCE; 213 tvcpu->arch.vpa = NULL; 214 break; 215 case 6: /* unregister DTL */ 216 tvcpu->arch.dtl = NULL; 217 break; 218 case 7: /* unregister SLB shadow buffer */ 219 tvcpu->arch.slb_shadow = NULL; 220 break; 221 } 222 } 223 return H_SUCCESS; 224 } 225 226 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 227 { 228 unsigned long req = kvmppc_get_gpr(vcpu, 3); 229 unsigned long target, ret = H_SUCCESS; 230 struct kvm_vcpu *tvcpu; 231 232 switch (req) { 233 case H_CEDE: 234 break; 235 case H_PROD: 236 target = kvmppc_get_gpr(vcpu, 4); 237 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 238 if (!tvcpu) { 239 ret = H_PARAMETER; 240 break; 241 } 242 tvcpu->arch.prodded = 1; 243 smp_mb(); 244 if (vcpu->arch.ceded) { 245 if (waitqueue_active(&vcpu->wq)) { 246 wake_up_interruptible(&vcpu->wq); 247 vcpu->stat.halt_wakeup++; 248 } 249 } 250 break; 251 case H_CONFER: 252 break; 253 case H_REGISTER_VPA: 254 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 255 kvmppc_get_gpr(vcpu, 5), 256 kvmppc_get_gpr(vcpu, 6)); 257 break; 258 default: 259 return RESUME_HOST; 260 } 261 kvmppc_set_gpr(vcpu, 3, ret); 262 vcpu->arch.hcall_needed = 0; 263 return RESUME_GUEST; 264 } 265 266 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, 267 struct task_struct *tsk) 268 { 269 int r = RESUME_HOST; 270 271 vcpu->stat.sum_exits++; 272 273 run->exit_reason = KVM_EXIT_UNKNOWN; 274 run->ready_for_interrupt_injection = 1; 275 switch (vcpu->arch.trap) { 276 /* We're good on these - the host merely wanted to get our attention */ 277 case BOOK3S_INTERRUPT_HV_DECREMENTER: 278 vcpu->stat.dec_exits++; 279 r = RESUME_GUEST; 280 break; 281 case BOOK3S_INTERRUPT_EXTERNAL: 282 vcpu->stat.ext_intr_exits++; 283 r = RESUME_GUEST; 284 break; 285 case BOOK3S_INTERRUPT_PERFMON: 286 r = RESUME_GUEST; 287 break; 288 case BOOK3S_INTERRUPT_PROGRAM: 289 { 290 ulong flags; 291 /* 292 * Normally program interrupts are delivered directly 293 * to the guest by the hardware, but we can get here 294 * as a result of a hypervisor emulation interrupt 295 * (e40) getting turned into a 700 by BML RTAS. 296 */ 297 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 298 kvmppc_core_queue_program(vcpu, flags); 299 r = RESUME_GUEST; 300 break; 301 } 302 case BOOK3S_INTERRUPT_SYSCALL: 303 { 304 /* hcall - punt to userspace */ 305 int i; 306 307 if (vcpu->arch.shregs.msr & MSR_PR) { 308 /* sc 1 from userspace - reflect to guest syscall */ 309 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); 310 r = RESUME_GUEST; 311 break; 312 } 313 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 314 for (i = 0; i < 9; ++i) 315 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 316 run->exit_reason = KVM_EXIT_PAPR_HCALL; 317 vcpu->arch.hcall_needed = 1; 318 r = RESUME_HOST; 319 break; 320 } 321 /* 322 * We get these next two if the guest does a bad real-mode access, 323 * as we have enabled VRMA (virtualized real mode area) mode in the 324 * LPCR. We just generate an appropriate DSI/ISI to the guest. 325 */ 326 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 327 vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr; 328 vcpu->arch.shregs.dar = vcpu->arch.fault_dar; 329 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0); 330 r = RESUME_GUEST; 331 break; 332 case BOOK3S_INTERRUPT_H_INST_STORAGE: 333 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE, 334 0x08000000); 335 r = RESUME_GUEST; 336 break; 337 /* 338 * This occurs if the guest executes an illegal instruction. 339 * We just generate a program interrupt to the guest, since 340 * we don't emulate any guest instructions at this stage. 341 */ 342 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 343 kvmppc_core_queue_program(vcpu, 0x80000); 344 r = RESUME_GUEST; 345 break; 346 default: 347 kvmppc_dump_regs(vcpu); 348 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 349 vcpu->arch.trap, kvmppc_get_pc(vcpu), 350 vcpu->arch.shregs.msr); 351 r = RESUME_HOST; 352 BUG(); 353 break; 354 } 355 356 return r; 357 } 358 359 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 360 struct kvm_sregs *sregs) 361 { 362 int i; 363 364 sregs->pvr = vcpu->arch.pvr; 365 366 memset(sregs, 0, sizeof(struct kvm_sregs)); 367 for (i = 0; i < vcpu->arch.slb_max; i++) { 368 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 369 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 370 } 371 372 return 0; 373 } 374 375 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 376 struct kvm_sregs *sregs) 377 { 378 int i, j; 379 380 kvmppc_set_pvr(vcpu, sregs->pvr); 381 382 j = 0; 383 for (i = 0; i < vcpu->arch.slb_nr; i++) { 384 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 385 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 386 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 387 ++j; 388 } 389 } 390 vcpu->arch.slb_max = j; 391 392 return 0; 393 } 394 395 int kvmppc_core_check_processor_compat(void) 396 { 397 if (cpu_has_feature(CPU_FTR_HVMODE)) 398 return 0; 399 return -EIO; 400 } 401 402 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) 403 { 404 struct kvm_vcpu *vcpu; 405 int err = -EINVAL; 406 int core; 407 struct kvmppc_vcore *vcore; 408 409 core = id / threads_per_core; 410 if (core >= KVM_MAX_VCORES) 411 goto out; 412 413 err = -ENOMEM; 414 vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL); 415 if (!vcpu) 416 goto out; 417 418 err = kvm_vcpu_init(vcpu, kvm, id); 419 if (err) 420 goto free_vcpu; 421 422 vcpu->arch.shared = &vcpu->arch.shregs; 423 vcpu->arch.last_cpu = -1; 424 vcpu->arch.mmcr[0] = MMCR0_FC; 425 vcpu->arch.ctrl = CTRL_RUNLATCH; 426 /* default to host PVR, since we can't spoof it */ 427 vcpu->arch.pvr = mfspr(SPRN_PVR); 428 kvmppc_set_pvr(vcpu, vcpu->arch.pvr); 429 430 kvmppc_mmu_book3s_hv_init(vcpu); 431 432 /* 433 * We consider the vcpu stopped until we see the first run ioctl for it. 434 */ 435 vcpu->arch.state = KVMPPC_VCPU_STOPPED; 436 437 init_waitqueue_head(&vcpu->arch.cpu_run); 438 439 mutex_lock(&kvm->lock); 440 vcore = kvm->arch.vcores[core]; 441 if (!vcore) { 442 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 443 if (vcore) { 444 INIT_LIST_HEAD(&vcore->runnable_threads); 445 spin_lock_init(&vcore->lock); 446 init_waitqueue_head(&vcore->wq); 447 } 448 kvm->arch.vcores[core] = vcore; 449 } 450 mutex_unlock(&kvm->lock); 451 452 if (!vcore) 453 goto free_vcpu; 454 455 spin_lock(&vcore->lock); 456 ++vcore->num_threads; 457 spin_unlock(&vcore->lock); 458 vcpu->arch.vcore = vcore; 459 460 vcpu->arch.cpu_type = KVM_CPU_3S_64; 461 kvmppc_sanity_check(vcpu); 462 463 return vcpu; 464 465 free_vcpu: 466 kfree(vcpu); 467 out: 468 return ERR_PTR(err); 469 } 470 471 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) 472 { 473 kvm_vcpu_uninit(vcpu); 474 kfree(vcpu); 475 } 476 477 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 478 { 479 unsigned long dec_nsec, now; 480 481 now = get_tb(); 482 if (now > vcpu->arch.dec_expires) { 483 /* decrementer has already gone negative */ 484 kvmppc_core_queue_dec(vcpu); 485 kvmppc_core_deliver_interrupts(vcpu); 486 return; 487 } 488 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 489 / tb_ticks_per_sec; 490 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 491 HRTIMER_MODE_REL); 492 vcpu->arch.timer_running = 1; 493 } 494 495 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 496 { 497 vcpu->arch.ceded = 0; 498 if (vcpu->arch.timer_running) { 499 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 500 vcpu->arch.timer_running = 0; 501 } 502 } 503 504 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); 505 extern void xics_wake_cpu(int cpu); 506 507 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 508 struct kvm_vcpu *vcpu) 509 { 510 struct kvm_vcpu *v; 511 512 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 513 return; 514 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 515 --vc->n_runnable; 516 ++vc->n_busy; 517 /* decrement the physical thread id of each following vcpu */ 518 v = vcpu; 519 list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list) 520 --v->arch.ptid; 521 list_del(&vcpu->arch.run_list); 522 } 523 524 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 525 { 526 int cpu; 527 struct paca_struct *tpaca; 528 struct kvmppc_vcore *vc = vcpu->arch.vcore; 529 530 if (vcpu->arch.timer_running) { 531 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 532 vcpu->arch.timer_running = 0; 533 } 534 cpu = vc->pcpu + vcpu->arch.ptid; 535 tpaca = &paca[cpu]; 536 tpaca->kvm_hstate.kvm_vcpu = vcpu; 537 tpaca->kvm_hstate.kvm_vcore = vc; 538 tpaca->kvm_hstate.napping = 0; 539 vcpu->cpu = vc->pcpu; 540 smp_wmb(); 541 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 542 if (vcpu->arch.ptid) { 543 tpaca->cpu_start = 0x80; 544 wmb(); 545 xics_wake_cpu(cpu); 546 ++vc->n_woken; 547 } 548 #endif 549 } 550 551 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 552 { 553 int i; 554 555 HMT_low(); 556 i = 0; 557 while (vc->nap_count < vc->n_woken) { 558 if (++i >= 1000000) { 559 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 560 vc->nap_count, vc->n_woken); 561 break; 562 } 563 cpu_relax(); 564 } 565 HMT_medium(); 566 } 567 568 /* 569 * Check that we are on thread 0 and that any other threads in 570 * this core are off-line. 571 */ 572 static int on_primary_thread(void) 573 { 574 int cpu = smp_processor_id(); 575 int thr = cpu_thread_in_core(cpu); 576 577 if (thr) 578 return 0; 579 while (++thr < threads_per_core) 580 if (cpu_online(cpu + thr)) 581 return 0; 582 return 1; 583 } 584 585 /* 586 * Run a set of guest threads on a physical core. 587 * Called with vc->lock held. 588 */ 589 static int kvmppc_run_core(struct kvmppc_vcore *vc) 590 { 591 struct kvm_vcpu *vcpu, *vcpu0, *vnext; 592 long ret; 593 u64 now; 594 int ptid; 595 596 /* don't start if any threads have a signal pending */ 597 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 598 if (signal_pending(vcpu->arch.run_task)) 599 return 0; 600 601 /* 602 * Make sure we are running on thread 0, and that 603 * secondary threads are offline. 604 * XXX we should also block attempts to bring any 605 * secondary threads online. 606 */ 607 if (threads_per_core > 1 && !on_primary_thread()) { 608 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 609 vcpu->arch.ret = -EBUSY; 610 goto out; 611 } 612 613 /* 614 * Assign physical thread IDs, first to non-ceded vcpus 615 * and then to ceded ones. 616 */ 617 ptid = 0; 618 vcpu0 = NULL; 619 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 620 if (!vcpu->arch.ceded) { 621 if (!ptid) 622 vcpu0 = vcpu; 623 vcpu->arch.ptid = ptid++; 624 } 625 } 626 if (!vcpu0) 627 return 0; /* nothing to run */ 628 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 629 if (vcpu->arch.ceded) 630 vcpu->arch.ptid = ptid++; 631 632 vc->n_woken = 0; 633 vc->nap_count = 0; 634 vc->entry_exit_count = 0; 635 vc->vcore_state = VCORE_RUNNING; 636 vc->in_guest = 0; 637 vc->pcpu = smp_processor_id(); 638 vc->napping_threads = 0; 639 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 640 kvmppc_start_thread(vcpu); 641 642 preempt_disable(); 643 spin_unlock(&vc->lock); 644 645 kvm_guest_enter(); 646 __kvmppc_vcore_entry(NULL, vcpu0); 647 648 spin_lock(&vc->lock); 649 /* disable sending of IPIs on virtual external irqs */ 650 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 651 vcpu->cpu = -1; 652 /* wait for secondary threads to finish writing their state to memory */ 653 if (vc->nap_count < vc->n_woken) 654 kvmppc_wait_for_nap(vc); 655 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 656 vc->vcore_state = VCORE_EXITING; 657 spin_unlock(&vc->lock); 658 659 /* make sure updates to secondary vcpu structs are visible now */ 660 smp_mb(); 661 kvm_guest_exit(); 662 663 preempt_enable(); 664 kvm_resched(vcpu); 665 666 now = get_tb(); 667 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 668 /* cancel pending dec exception if dec is positive */ 669 if (now < vcpu->arch.dec_expires && 670 kvmppc_core_pending_dec(vcpu)) 671 kvmppc_core_dequeue_dec(vcpu); 672 673 ret = RESUME_GUEST; 674 if (vcpu->arch.trap) 675 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, 676 vcpu->arch.run_task); 677 678 vcpu->arch.ret = ret; 679 vcpu->arch.trap = 0; 680 681 if (vcpu->arch.ceded) { 682 if (ret != RESUME_GUEST) 683 kvmppc_end_cede(vcpu); 684 else 685 kvmppc_set_timer(vcpu); 686 } 687 } 688 689 spin_lock(&vc->lock); 690 out: 691 vc->vcore_state = VCORE_INACTIVE; 692 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 693 arch.run_list) { 694 if (vcpu->arch.ret != RESUME_GUEST) { 695 kvmppc_remove_runnable(vc, vcpu); 696 wake_up(&vcpu->arch.cpu_run); 697 } 698 } 699 700 return 1; 701 } 702 703 /* 704 * Wait for some other vcpu thread to execute us, and 705 * wake us up when we need to handle something in the host. 706 */ 707 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 708 { 709 DEFINE_WAIT(wait); 710 711 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 712 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 713 schedule(); 714 finish_wait(&vcpu->arch.cpu_run, &wait); 715 } 716 717 /* 718 * All the vcpus in this vcore are idle, so wait for a decrementer 719 * or external interrupt to one of the vcpus. vc->lock is held. 720 */ 721 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 722 { 723 DEFINE_WAIT(wait); 724 struct kvm_vcpu *v; 725 int all_idle = 1; 726 727 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 728 vc->vcore_state = VCORE_SLEEPING; 729 spin_unlock(&vc->lock); 730 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 731 if (!v->arch.ceded || v->arch.pending_exceptions) { 732 all_idle = 0; 733 break; 734 } 735 } 736 if (all_idle) 737 schedule(); 738 finish_wait(&vc->wq, &wait); 739 spin_lock(&vc->lock); 740 vc->vcore_state = VCORE_INACTIVE; 741 } 742 743 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 744 { 745 int n_ceded; 746 int prev_state; 747 struct kvmppc_vcore *vc; 748 struct kvm_vcpu *v, *vn; 749 750 kvm_run->exit_reason = 0; 751 vcpu->arch.ret = RESUME_GUEST; 752 vcpu->arch.trap = 0; 753 754 /* 755 * Synchronize with other threads in this virtual core 756 */ 757 vc = vcpu->arch.vcore; 758 spin_lock(&vc->lock); 759 vcpu->arch.ceded = 0; 760 vcpu->arch.run_task = current; 761 vcpu->arch.kvm_run = kvm_run; 762 prev_state = vcpu->arch.state; 763 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 764 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 765 ++vc->n_runnable; 766 767 /* 768 * This happens the first time this is called for a vcpu. 769 * If the vcore is already running, we may be able to start 770 * this thread straight away and have it join in. 771 */ 772 if (prev_state == KVMPPC_VCPU_STOPPED) { 773 if (vc->vcore_state == VCORE_RUNNING && 774 VCORE_EXIT_COUNT(vc) == 0) { 775 vcpu->arch.ptid = vc->n_runnable - 1; 776 kvmppc_start_thread(vcpu); 777 } 778 779 } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST) 780 --vc->n_busy; 781 782 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 783 !signal_pending(current)) { 784 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) { 785 spin_unlock(&vc->lock); 786 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 787 spin_lock(&vc->lock); 788 continue; 789 } 790 n_ceded = 0; 791 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) 792 n_ceded += v->arch.ceded; 793 if (n_ceded == vc->n_runnable) 794 kvmppc_vcore_blocked(vc); 795 else 796 kvmppc_run_core(vc); 797 798 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 799 arch.run_list) { 800 kvmppc_core_deliver_interrupts(v); 801 if (signal_pending(v->arch.run_task)) { 802 kvmppc_remove_runnable(vc, v); 803 v->stat.signal_exits++; 804 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 805 v->arch.ret = -EINTR; 806 wake_up(&v->arch.cpu_run); 807 } 808 } 809 } 810 811 if (signal_pending(current)) { 812 if (vc->vcore_state == VCORE_RUNNING || 813 vc->vcore_state == VCORE_EXITING) { 814 spin_unlock(&vc->lock); 815 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 816 spin_lock(&vc->lock); 817 } 818 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 819 kvmppc_remove_runnable(vc, vcpu); 820 vcpu->stat.signal_exits++; 821 kvm_run->exit_reason = KVM_EXIT_INTR; 822 vcpu->arch.ret = -EINTR; 823 } 824 } 825 826 spin_unlock(&vc->lock); 827 return vcpu->arch.ret; 828 } 829 830 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) 831 { 832 int r; 833 834 if (!vcpu->arch.sane) { 835 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 836 return -EINVAL; 837 } 838 839 /* No need to go into the guest when all we'll do is come back out */ 840 if (signal_pending(current)) { 841 run->exit_reason = KVM_EXIT_INTR; 842 return -EINTR; 843 } 844 845 /* On PPC970, check that we have an RMA region */ 846 if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201)) 847 return -EPERM; 848 849 flush_fp_to_thread(current); 850 flush_altivec_to_thread(current); 851 flush_vsx_to_thread(current); 852 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 853 854 do { 855 r = kvmppc_run_vcpu(run, vcpu); 856 857 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 858 !(vcpu->arch.shregs.msr & MSR_PR)) { 859 r = kvmppc_pseries_do_hcall(vcpu); 860 kvmppc_core_deliver_interrupts(vcpu); 861 } 862 } while (r == RESUME_GUEST); 863 return r; 864 } 865 866 static long kvmppc_stt_npages(unsigned long window_size) 867 { 868 return ALIGN((window_size >> SPAPR_TCE_SHIFT) 869 * sizeof(u64), PAGE_SIZE) / PAGE_SIZE; 870 } 871 872 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt) 873 { 874 struct kvm *kvm = stt->kvm; 875 int i; 876 877 mutex_lock(&kvm->lock); 878 list_del(&stt->list); 879 for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++) 880 __free_page(stt->pages[i]); 881 kfree(stt); 882 mutex_unlock(&kvm->lock); 883 884 kvm_put_kvm(kvm); 885 } 886 887 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 888 { 889 struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data; 890 struct page *page; 891 892 if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size)) 893 return VM_FAULT_SIGBUS; 894 895 page = stt->pages[vmf->pgoff]; 896 get_page(page); 897 vmf->page = page; 898 return 0; 899 } 900 901 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = { 902 .fault = kvm_spapr_tce_fault, 903 }; 904 905 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma) 906 { 907 vma->vm_ops = &kvm_spapr_tce_vm_ops; 908 return 0; 909 } 910 911 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp) 912 { 913 struct kvmppc_spapr_tce_table *stt = filp->private_data; 914 915 release_spapr_tce_table(stt); 916 return 0; 917 } 918 919 static struct file_operations kvm_spapr_tce_fops = { 920 .mmap = kvm_spapr_tce_mmap, 921 .release = kvm_spapr_tce_release, 922 }; 923 924 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm, 925 struct kvm_create_spapr_tce *args) 926 { 927 struct kvmppc_spapr_tce_table *stt = NULL; 928 long npages; 929 int ret = -ENOMEM; 930 int i; 931 932 /* Check this LIOBN hasn't been previously allocated */ 933 list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) { 934 if (stt->liobn == args->liobn) 935 return -EBUSY; 936 } 937 938 npages = kvmppc_stt_npages(args->window_size); 939 940 stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *), 941 GFP_KERNEL); 942 if (!stt) 943 goto fail; 944 945 stt->liobn = args->liobn; 946 stt->window_size = args->window_size; 947 stt->kvm = kvm; 948 949 for (i = 0; i < npages; i++) { 950 stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO); 951 if (!stt->pages[i]) 952 goto fail; 953 } 954 955 kvm_get_kvm(kvm); 956 957 mutex_lock(&kvm->lock); 958 list_add(&stt->list, &kvm->arch.spapr_tce_tables); 959 960 mutex_unlock(&kvm->lock); 961 962 return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops, 963 stt, O_RDWR); 964 965 fail: 966 if (stt) { 967 for (i = 0; i < npages; i++) 968 if (stt->pages[i]) 969 __free_page(stt->pages[i]); 970 971 kfree(stt); 972 } 973 return ret; 974 } 975 976 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 977 Assumes POWER7 or PPC970. */ 978 static inline int lpcr_rmls(unsigned long rma_size) 979 { 980 switch (rma_size) { 981 case 32ul << 20: /* 32 MB */ 982 if (cpu_has_feature(CPU_FTR_ARCH_206)) 983 return 8; /* only supported on POWER7 */ 984 return -1; 985 case 64ul << 20: /* 64 MB */ 986 return 3; 987 case 128ul << 20: /* 128 MB */ 988 return 7; 989 case 256ul << 20: /* 256 MB */ 990 return 4; 991 case 1ul << 30: /* 1 GB */ 992 return 2; 993 case 16ul << 30: /* 16 GB */ 994 return 1; 995 case 256ul << 30: /* 256 GB */ 996 return 0; 997 default: 998 return -1; 999 } 1000 } 1001 1002 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1003 { 1004 struct kvmppc_rma_info *ri = vma->vm_file->private_data; 1005 struct page *page; 1006 1007 if (vmf->pgoff >= ri->npages) 1008 return VM_FAULT_SIGBUS; 1009 1010 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 1011 get_page(page); 1012 vmf->page = page; 1013 return 0; 1014 } 1015 1016 static const struct vm_operations_struct kvm_rma_vm_ops = { 1017 .fault = kvm_rma_fault, 1018 }; 1019 1020 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 1021 { 1022 vma->vm_flags |= VM_RESERVED; 1023 vma->vm_ops = &kvm_rma_vm_ops; 1024 return 0; 1025 } 1026 1027 static int kvm_rma_release(struct inode *inode, struct file *filp) 1028 { 1029 struct kvmppc_rma_info *ri = filp->private_data; 1030 1031 kvm_release_rma(ri); 1032 return 0; 1033 } 1034 1035 static struct file_operations kvm_rma_fops = { 1036 .mmap = kvm_rma_mmap, 1037 .release = kvm_rma_release, 1038 }; 1039 1040 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) 1041 { 1042 struct kvmppc_rma_info *ri; 1043 long fd; 1044 1045 ri = kvm_alloc_rma(); 1046 if (!ri) 1047 return -ENOMEM; 1048 1049 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); 1050 if (fd < 0) 1051 kvm_release_rma(ri); 1052 1053 ret->rma_size = ri->npages << PAGE_SHIFT; 1054 return fd; 1055 } 1056 1057 static struct page *hva_to_page(unsigned long addr) 1058 { 1059 struct page *page[1]; 1060 int npages; 1061 1062 might_sleep(); 1063 1064 npages = get_user_pages_fast(addr, 1, 1, page); 1065 1066 if (unlikely(npages != 1)) 1067 return 0; 1068 1069 return page[0]; 1070 } 1071 1072 int kvmppc_core_prepare_memory_region(struct kvm *kvm, 1073 struct kvm_userspace_memory_region *mem) 1074 { 1075 unsigned long psize, porder; 1076 unsigned long i, npages, totalpages; 1077 unsigned long pg_ix; 1078 struct kvmppc_pginfo *pginfo; 1079 unsigned long hva; 1080 struct kvmppc_rma_info *ri = NULL; 1081 struct page *page; 1082 1083 /* For now, only allow 16MB pages */ 1084 porder = LARGE_PAGE_ORDER; 1085 psize = 1ul << porder; 1086 if ((mem->memory_size & (psize - 1)) || 1087 (mem->guest_phys_addr & (psize - 1))) { 1088 pr_err("bad memory_size=%llx @ %llx\n", 1089 mem->memory_size, mem->guest_phys_addr); 1090 return -EINVAL; 1091 } 1092 1093 npages = mem->memory_size >> porder; 1094 totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder; 1095 1096 /* More memory than we have space to track? */ 1097 if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER))) 1098 return -EINVAL; 1099 1100 /* Do we already have an RMA registered? */ 1101 if (mem->guest_phys_addr == 0 && kvm->arch.rma) 1102 return -EINVAL; 1103 1104 if (totalpages > kvm->arch.ram_npages) 1105 kvm->arch.ram_npages = totalpages; 1106 1107 /* Is this one of our preallocated RMAs? */ 1108 if (mem->guest_phys_addr == 0) { 1109 struct vm_area_struct *vma; 1110 1111 down_read(¤t->mm->mmap_sem); 1112 vma = find_vma(current->mm, mem->userspace_addr); 1113 if (vma && vma->vm_file && 1114 vma->vm_file->f_op == &kvm_rma_fops && 1115 mem->userspace_addr == vma->vm_start) 1116 ri = vma->vm_file->private_data; 1117 up_read(¤t->mm->mmap_sem); 1118 if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) { 1119 pr_err("CPU requires an RMO\n"); 1120 return -EINVAL; 1121 } 1122 } 1123 1124 if (ri) { 1125 unsigned long rma_size; 1126 unsigned long lpcr; 1127 long rmls; 1128 1129 rma_size = ri->npages << PAGE_SHIFT; 1130 if (rma_size > mem->memory_size) 1131 rma_size = mem->memory_size; 1132 rmls = lpcr_rmls(rma_size); 1133 if (rmls < 0) { 1134 pr_err("Can't use RMA of 0x%lx bytes\n", rma_size); 1135 return -EINVAL; 1136 } 1137 atomic_inc(&ri->use_count); 1138 kvm->arch.rma = ri; 1139 kvm->arch.n_rma_pages = rma_size >> porder; 1140 1141 /* Update LPCR and RMOR */ 1142 lpcr = kvm->arch.lpcr; 1143 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1144 /* PPC970; insert RMLS value (split field) in HID4 */ 1145 lpcr &= ~((1ul << HID4_RMLS0_SH) | 1146 (3ul << HID4_RMLS2_SH)); 1147 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | 1148 ((rmls & 3) << HID4_RMLS2_SH); 1149 /* RMOR is also in HID4 */ 1150 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 1151 << HID4_RMOR_SH; 1152 } else { 1153 /* POWER7 */ 1154 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); 1155 lpcr |= rmls << LPCR_RMLS_SH; 1156 kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; 1157 } 1158 kvm->arch.lpcr = lpcr; 1159 pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n", 1160 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 1161 } 1162 1163 pg_ix = mem->guest_phys_addr >> porder; 1164 pginfo = kvm->arch.ram_pginfo + pg_ix; 1165 for (i = 0; i < npages; ++i, ++pg_ix) { 1166 if (ri && pg_ix < kvm->arch.n_rma_pages) { 1167 pginfo[i].pfn = ri->base_pfn + 1168 (pg_ix << (porder - PAGE_SHIFT)); 1169 continue; 1170 } 1171 hva = mem->userspace_addr + (i << porder); 1172 page = hva_to_page(hva); 1173 if (!page) { 1174 pr_err("oops, no pfn for hva %lx\n", hva); 1175 goto err; 1176 } 1177 /* Check it's a 16MB page */ 1178 if (!PageHead(page) || 1179 compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) { 1180 pr_err("page at %lx isn't 16MB (o=%d)\n", 1181 hva, compound_order(page)); 1182 goto err; 1183 } 1184 pginfo[i].pfn = page_to_pfn(page); 1185 } 1186 1187 return 0; 1188 1189 err: 1190 return -EINVAL; 1191 } 1192 1193 void kvmppc_core_commit_memory_region(struct kvm *kvm, 1194 struct kvm_userspace_memory_region *mem) 1195 { 1196 if (mem->guest_phys_addr == 0 && mem->memory_size != 0 && 1197 !kvm->arch.rma) 1198 kvmppc_map_vrma(kvm, mem); 1199 } 1200 1201 int kvmppc_core_init_vm(struct kvm *kvm) 1202 { 1203 long r; 1204 unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER); 1205 long err = -ENOMEM; 1206 unsigned long lpcr; 1207 1208 /* Allocate hashed page table */ 1209 r = kvmppc_alloc_hpt(kvm); 1210 if (r) 1211 return r; 1212 1213 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); 1214 1215 kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo), 1216 GFP_KERNEL); 1217 if (!kvm->arch.ram_pginfo) { 1218 pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n", 1219 npages * sizeof(struct kvmppc_pginfo)); 1220 goto out_free; 1221 } 1222 1223 kvm->arch.ram_npages = 0; 1224 kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER; 1225 kvm->arch.ram_porder = LARGE_PAGE_ORDER; 1226 kvm->arch.rma = NULL; 1227 kvm->arch.n_rma_pages = 0; 1228 1229 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 1230 1231 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1232 /* PPC970; HID4 is effectively the LPCR */ 1233 unsigned long lpid = kvm->arch.lpid; 1234 kvm->arch.host_lpid = 0; 1235 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 1236 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 1237 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 1238 ((lpid & 0xf) << HID4_LPID5_SH); 1239 } else { 1240 /* POWER7; init LPCR for virtual RMA mode */ 1241 kvm->arch.host_lpid = mfspr(SPRN_LPID); 1242 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 1243 lpcr &= LPCR_PECE | LPCR_LPES; 1244 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 1245 LPCR_VPM0 | LPCR_VRMA_L; 1246 } 1247 kvm->arch.lpcr = lpcr; 1248 1249 return 0; 1250 1251 out_free: 1252 kvmppc_free_hpt(kvm); 1253 return err; 1254 } 1255 1256 void kvmppc_core_destroy_vm(struct kvm *kvm) 1257 { 1258 struct kvmppc_pginfo *pginfo; 1259 unsigned long i; 1260 1261 if (kvm->arch.ram_pginfo) { 1262 pginfo = kvm->arch.ram_pginfo; 1263 kvm->arch.ram_pginfo = NULL; 1264 for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i) 1265 if (pginfo[i].pfn) 1266 put_page(pfn_to_page(pginfo[i].pfn)); 1267 kfree(pginfo); 1268 } 1269 if (kvm->arch.rma) { 1270 kvm_release_rma(kvm->arch.rma); 1271 kvm->arch.rma = NULL; 1272 } 1273 1274 kvmppc_free_hpt(kvm); 1275 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 1276 } 1277 1278 /* These are stubs for now */ 1279 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) 1280 { 1281 } 1282 1283 /* We don't need to emulate any privileged instructions or dcbz */ 1284 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, 1285 unsigned int inst, int *advance) 1286 { 1287 return EMULATE_FAIL; 1288 } 1289 1290 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) 1291 { 1292 return EMULATE_FAIL; 1293 } 1294 1295 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt) 1296 { 1297 return EMULATE_FAIL; 1298 } 1299 1300 static int kvmppc_book3s_hv_init(void) 1301 { 1302 int r; 1303 1304 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1305 1306 if (r) 1307 return r; 1308 1309 r = kvmppc_mmu_hv_init(); 1310 1311 return r; 1312 } 1313 1314 static void kvmppc_book3s_hv_exit(void) 1315 { 1316 kvm_exit(); 1317 } 1318 1319 module_init(kvmppc_book3s_hv_init); 1320 module_exit(kvmppc_book3s_hv_exit); 1321