xref: /linux/arch/powerpc/kvm/book3s_hv.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <asm/hvcall.h>
48 #include <linux/gfp.h>
49 #include <linux/sched.h>
50 #include <linux/vmalloc.h>
51 #include <linux/highmem.h>
52 
53 /*
54  * For now, limit memory to 64GB and require it to be large pages.
55  * This value is chosen because it makes the ram_pginfo array be
56  * 64kB in size, which is about as large as we want to be trying
57  * to allocate with kmalloc.
58  */
59 #define MAX_MEM_ORDER		36
60 
61 #define LARGE_PAGE_ORDER	24	/* 16MB pages */
62 
63 /* #define EXIT_DEBUG */
64 /* #define EXIT_DEBUG_SIMPLE */
65 /* #define EXIT_DEBUG_INT */
66 
67 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
68 
69 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
70 {
71 	local_paca->kvm_hstate.kvm_vcpu = vcpu;
72 	local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
73 }
74 
75 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
76 {
77 }
78 
79 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
80 {
81 	vcpu->arch.shregs.msr = msr;
82 	kvmppc_end_cede(vcpu);
83 }
84 
85 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
86 {
87 	vcpu->arch.pvr = pvr;
88 }
89 
90 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
91 {
92 	int r;
93 
94 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
95 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
96 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
97 	for (r = 0; r < 16; ++r)
98 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
99 		       r, kvmppc_get_gpr(vcpu, r),
100 		       r+16, kvmppc_get_gpr(vcpu, r+16));
101 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
102 	       vcpu->arch.ctr, vcpu->arch.lr);
103 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
104 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
105 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
106 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
107 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
108 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
109 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
110 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
111 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
112 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
113 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
114 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
115 	for (r = 0; r < vcpu->arch.slb_max; ++r)
116 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
117 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
118 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
119 	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
120 	       vcpu->arch.last_inst);
121 }
122 
123 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
124 {
125 	int r;
126 	struct kvm_vcpu *v, *ret = NULL;
127 
128 	mutex_lock(&kvm->lock);
129 	kvm_for_each_vcpu(r, v, kvm) {
130 		if (v->vcpu_id == id) {
131 			ret = v;
132 			break;
133 		}
134 	}
135 	mutex_unlock(&kvm->lock);
136 	return ret;
137 }
138 
139 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
140 {
141 	vpa->shared_proc = 1;
142 	vpa->yield_count = 1;
143 }
144 
145 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
146 				       unsigned long flags,
147 				       unsigned long vcpuid, unsigned long vpa)
148 {
149 	struct kvm *kvm = vcpu->kvm;
150 	unsigned long pg_index, ra, len;
151 	unsigned long pg_offset;
152 	void *va;
153 	struct kvm_vcpu *tvcpu;
154 
155 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
156 	if (!tvcpu)
157 		return H_PARAMETER;
158 
159 	flags >>= 63 - 18;
160 	flags &= 7;
161 	if (flags == 0 || flags == 4)
162 		return H_PARAMETER;
163 	if (flags < 4) {
164 		if (vpa & 0x7f)
165 			return H_PARAMETER;
166 		/* registering new area; convert logical addr to real */
167 		pg_index = vpa >> kvm->arch.ram_porder;
168 		pg_offset = vpa & (kvm->arch.ram_psize - 1);
169 		if (pg_index >= kvm->arch.ram_npages)
170 			return H_PARAMETER;
171 		if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
172 			return H_PARAMETER;
173 		ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
174 		ra |= pg_offset;
175 		va = __va(ra);
176 		if (flags <= 1)
177 			len = *(unsigned short *)(va + 4);
178 		else
179 			len = *(unsigned int *)(va + 4);
180 		if (pg_offset + len > kvm->arch.ram_psize)
181 			return H_PARAMETER;
182 		switch (flags) {
183 		case 1:		/* register VPA */
184 			if (len < 640)
185 				return H_PARAMETER;
186 			tvcpu->arch.vpa = va;
187 			init_vpa(vcpu, va);
188 			break;
189 		case 2:		/* register DTL */
190 			if (len < 48)
191 				return H_PARAMETER;
192 			if (!tvcpu->arch.vpa)
193 				return H_RESOURCE;
194 			len -= len % 48;
195 			tvcpu->arch.dtl = va;
196 			tvcpu->arch.dtl_end = va + len;
197 			break;
198 		case 3:		/* register SLB shadow buffer */
199 			if (len < 8)
200 				return H_PARAMETER;
201 			if (!tvcpu->arch.vpa)
202 				return H_RESOURCE;
203 			tvcpu->arch.slb_shadow = va;
204 			len = (len - 16) / 16;
205 			tvcpu->arch.slb_shadow = va;
206 			break;
207 		}
208 	} else {
209 		switch (flags) {
210 		case 5:		/* unregister VPA */
211 			if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
212 				return H_RESOURCE;
213 			tvcpu->arch.vpa = NULL;
214 			break;
215 		case 6:		/* unregister DTL */
216 			tvcpu->arch.dtl = NULL;
217 			break;
218 		case 7:		/* unregister SLB shadow buffer */
219 			tvcpu->arch.slb_shadow = NULL;
220 			break;
221 		}
222 	}
223 	return H_SUCCESS;
224 }
225 
226 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
227 {
228 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
229 	unsigned long target, ret = H_SUCCESS;
230 	struct kvm_vcpu *tvcpu;
231 
232 	switch (req) {
233 	case H_CEDE:
234 		break;
235 	case H_PROD:
236 		target = kvmppc_get_gpr(vcpu, 4);
237 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
238 		if (!tvcpu) {
239 			ret = H_PARAMETER;
240 			break;
241 		}
242 		tvcpu->arch.prodded = 1;
243 		smp_mb();
244 		if (vcpu->arch.ceded) {
245 			if (waitqueue_active(&vcpu->wq)) {
246 				wake_up_interruptible(&vcpu->wq);
247 				vcpu->stat.halt_wakeup++;
248 			}
249 		}
250 		break;
251 	case H_CONFER:
252 		break;
253 	case H_REGISTER_VPA:
254 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
255 					kvmppc_get_gpr(vcpu, 5),
256 					kvmppc_get_gpr(vcpu, 6));
257 		break;
258 	default:
259 		return RESUME_HOST;
260 	}
261 	kvmppc_set_gpr(vcpu, 3, ret);
262 	vcpu->arch.hcall_needed = 0;
263 	return RESUME_GUEST;
264 }
265 
266 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
267 			      struct task_struct *tsk)
268 {
269 	int r = RESUME_HOST;
270 
271 	vcpu->stat.sum_exits++;
272 
273 	run->exit_reason = KVM_EXIT_UNKNOWN;
274 	run->ready_for_interrupt_injection = 1;
275 	switch (vcpu->arch.trap) {
276 	/* We're good on these - the host merely wanted to get our attention */
277 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
278 		vcpu->stat.dec_exits++;
279 		r = RESUME_GUEST;
280 		break;
281 	case BOOK3S_INTERRUPT_EXTERNAL:
282 		vcpu->stat.ext_intr_exits++;
283 		r = RESUME_GUEST;
284 		break;
285 	case BOOK3S_INTERRUPT_PERFMON:
286 		r = RESUME_GUEST;
287 		break;
288 	case BOOK3S_INTERRUPT_PROGRAM:
289 	{
290 		ulong flags;
291 		/*
292 		 * Normally program interrupts are delivered directly
293 		 * to the guest by the hardware, but we can get here
294 		 * as a result of a hypervisor emulation interrupt
295 		 * (e40) getting turned into a 700 by BML RTAS.
296 		 */
297 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
298 		kvmppc_core_queue_program(vcpu, flags);
299 		r = RESUME_GUEST;
300 		break;
301 	}
302 	case BOOK3S_INTERRUPT_SYSCALL:
303 	{
304 		/* hcall - punt to userspace */
305 		int i;
306 
307 		if (vcpu->arch.shregs.msr & MSR_PR) {
308 			/* sc 1 from userspace - reflect to guest syscall */
309 			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
310 			r = RESUME_GUEST;
311 			break;
312 		}
313 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
314 		for (i = 0; i < 9; ++i)
315 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
316 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
317 		vcpu->arch.hcall_needed = 1;
318 		r = RESUME_HOST;
319 		break;
320 	}
321 	/*
322 	 * We get these next two if the guest does a bad real-mode access,
323 	 * as we have enabled VRMA (virtualized real mode area) mode in the
324 	 * LPCR.  We just generate an appropriate DSI/ISI to the guest.
325 	 */
326 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
327 		vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
328 		vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
329 		kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
330 		r = RESUME_GUEST;
331 		break;
332 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
333 		kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
334 					0x08000000);
335 		r = RESUME_GUEST;
336 		break;
337 	/*
338 	 * This occurs if the guest executes an illegal instruction.
339 	 * We just generate a program interrupt to the guest, since
340 	 * we don't emulate any guest instructions at this stage.
341 	 */
342 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
343 		kvmppc_core_queue_program(vcpu, 0x80000);
344 		r = RESUME_GUEST;
345 		break;
346 	default:
347 		kvmppc_dump_regs(vcpu);
348 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
349 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
350 			vcpu->arch.shregs.msr);
351 		r = RESUME_HOST;
352 		BUG();
353 		break;
354 	}
355 
356 	return r;
357 }
358 
359 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
360                                   struct kvm_sregs *sregs)
361 {
362 	int i;
363 
364 	sregs->pvr = vcpu->arch.pvr;
365 
366 	memset(sregs, 0, sizeof(struct kvm_sregs));
367 	for (i = 0; i < vcpu->arch.slb_max; i++) {
368 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
369 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
370 	}
371 
372 	return 0;
373 }
374 
375 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
376                                   struct kvm_sregs *sregs)
377 {
378 	int i, j;
379 
380 	kvmppc_set_pvr(vcpu, sregs->pvr);
381 
382 	j = 0;
383 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
384 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
385 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
386 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
387 			++j;
388 		}
389 	}
390 	vcpu->arch.slb_max = j;
391 
392 	return 0;
393 }
394 
395 int kvmppc_core_check_processor_compat(void)
396 {
397 	if (cpu_has_feature(CPU_FTR_HVMODE))
398 		return 0;
399 	return -EIO;
400 }
401 
402 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
403 {
404 	struct kvm_vcpu *vcpu;
405 	int err = -EINVAL;
406 	int core;
407 	struct kvmppc_vcore *vcore;
408 
409 	core = id / threads_per_core;
410 	if (core >= KVM_MAX_VCORES)
411 		goto out;
412 
413 	err = -ENOMEM;
414 	vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
415 	if (!vcpu)
416 		goto out;
417 
418 	err = kvm_vcpu_init(vcpu, kvm, id);
419 	if (err)
420 		goto free_vcpu;
421 
422 	vcpu->arch.shared = &vcpu->arch.shregs;
423 	vcpu->arch.last_cpu = -1;
424 	vcpu->arch.mmcr[0] = MMCR0_FC;
425 	vcpu->arch.ctrl = CTRL_RUNLATCH;
426 	/* default to host PVR, since we can't spoof it */
427 	vcpu->arch.pvr = mfspr(SPRN_PVR);
428 	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
429 
430 	kvmppc_mmu_book3s_hv_init(vcpu);
431 
432 	/*
433 	 * We consider the vcpu stopped until we see the first run ioctl for it.
434 	 */
435 	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
436 
437 	init_waitqueue_head(&vcpu->arch.cpu_run);
438 
439 	mutex_lock(&kvm->lock);
440 	vcore = kvm->arch.vcores[core];
441 	if (!vcore) {
442 		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
443 		if (vcore) {
444 			INIT_LIST_HEAD(&vcore->runnable_threads);
445 			spin_lock_init(&vcore->lock);
446 			init_waitqueue_head(&vcore->wq);
447 		}
448 		kvm->arch.vcores[core] = vcore;
449 	}
450 	mutex_unlock(&kvm->lock);
451 
452 	if (!vcore)
453 		goto free_vcpu;
454 
455 	spin_lock(&vcore->lock);
456 	++vcore->num_threads;
457 	spin_unlock(&vcore->lock);
458 	vcpu->arch.vcore = vcore;
459 
460 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
461 	kvmppc_sanity_check(vcpu);
462 
463 	return vcpu;
464 
465 free_vcpu:
466 	kfree(vcpu);
467 out:
468 	return ERR_PTR(err);
469 }
470 
471 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
472 {
473 	kvm_vcpu_uninit(vcpu);
474 	kfree(vcpu);
475 }
476 
477 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
478 {
479 	unsigned long dec_nsec, now;
480 
481 	now = get_tb();
482 	if (now > vcpu->arch.dec_expires) {
483 		/* decrementer has already gone negative */
484 		kvmppc_core_queue_dec(vcpu);
485 		kvmppc_core_deliver_interrupts(vcpu);
486 		return;
487 	}
488 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
489 		   / tb_ticks_per_sec;
490 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
491 		      HRTIMER_MODE_REL);
492 	vcpu->arch.timer_running = 1;
493 }
494 
495 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
496 {
497 	vcpu->arch.ceded = 0;
498 	if (vcpu->arch.timer_running) {
499 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
500 		vcpu->arch.timer_running = 0;
501 	}
502 }
503 
504 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
505 extern void xics_wake_cpu(int cpu);
506 
507 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
508 				   struct kvm_vcpu *vcpu)
509 {
510 	struct kvm_vcpu *v;
511 
512 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
513 		return;
514 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
515 	--vc->n_runnable;
516 	++vc->n_busy;
517 	/* decrement the physical thread id of each following vcpu */
518 	v = vcpu;
519 	list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
520 		--v->arch.ptid;
521 	list_del(&vcpu->arch.run_list);
522 }
523 
524 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
525 {
526 	int cpu;
527 	struct paca_struct *tpaca;
528 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
529 
530 	if (vcpu->arch.timer_running) {
531 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
532 		vcpu->arch.timer_running = 0;
533 	}
534 	cpu = vc->pcpu + vcpu->arch.ptid;
535 	tpaca = &paca[cpu];
536 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
537 	tpaca->kvm_hstate.kvm_vcore = vc;
538 	tpaca->kvm_hstate.napping = 0;
539 	vcpu->cpu = vc->pcpu;
540 	smp_wmb();
541 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
542 	if (vcpu->arch.ptid) {
543 		tpaca->cpu_start = 0x80;
544 		wmb();
545 		xics_wake_cpu(cpu);
546 		++vc->n_woken;
547 	}
548 #endif
549 }
550 
551 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
552 {
553 	int i;
554 
555 	HMT_low();
556 	i = 0;
557 	while (vc->nap_count < vc->n_woken) {
558 		if (++i >= 1000000) {
559 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
560 			       vc->nap_count, vc->n_woken);
561 			break;
562 		}
563 		cpu_relax();
564 	}
565 	HMT_medium();
566 }
567 
568 /*
569  * Check that we are on thread 0 and that any other threads in
570  * this core are off-line.
571  */
572 static int on_primary_thread(void)
573 {
574 	int cpu = smp_processor_id();
575 	int thr = cpu_thread_in_core(cpu);
576 
577 	if (thr)
578 		return 0;
579 	while (++thr < threads_per_core)
580 		if (cpu_online(cpu + thr))
581 			return 0;
582 	return 1;
583 }
584 
585 /*
586  * Run a set of guest threads on a physical core.
587  * Called with vc->lock held.
588  */
589 static int kvmppc_run_core(struct kvmppc_vcore *vc)
590 {
591 	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
592 	long ret;
593 	u64 now;
594 	int ptid;
595 
596 	/* don't start if any threads have a signal pending */
597 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
598 		if (signal_pending(vcpu->arch.run_task))
599 			return 0;
600 
601 	/*
602 	 * Make sure we are running on thread 0, and that
603 	 * secondary threads are offline.
604 	 * XXX we should also block attempts to bring any
605 	 * secondary threads online.
606 	 */
607 	if (threads_per_core > 1 && !on_primary_thread()) {
608 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
609 			vcpu->arch.ret = -EBUSY;
610 		goto out;
611 	}
612 
613 	/*
614 	 * Assign physical thread IDs, first to non-ceded vcpus
615 	 * and then to ceded ones.
616 	 */
617 	ptid = 0;
618 	vcpu0 = NULL;
619 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
620 		if (!vcpu->arch.ceded) {
621 			if (!ptid)
622 				vcpu0 = vcpu;
623 			vcpu->arch.ptid = ptid++;
624 		}
625 	}
626 	if (!vcpu0)
627 		return 0;		/* nothing to run */
628 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
629 		if (vcpu->arch.ceded)
630 			vcpu->arch.ptid = ptid++;
631 
632 	vc->n_woken = 0;
633 	vc->nap_count = 0;
634 	vc->entry_exit_count = 0;
635 	vc->vcore_state = VCORE_RUNNING;
636 	vc->in_guest = 0;
637 	vc->pcpu = smp_processor_id();
638 	vc->napping_threads = 0;
639 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
640 		kvmppc_start_thread(vcpu);
641 
642 	preempt_disable();
643 	spin_unlock(&vc->lock);
644 
645 	kvm_guest_enter();
646 	__kvmppc_vcore_entry(NULL, vcpu0);
647 
648 	spin_lock(&vc->lock);
649 	/* disable sending of IPIs on virtual external irqs */
650 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
651 		vcpu->cpu = -1;
652 	/* wait for secondary threads to finish writing their state to memory */
653 	if (vc->nap_count < vc->n_woken)
654 		kvmppc_wait_for_nap(vc);
655 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
656 	vc->vcore_state = VCORE_EXITING;
657 	spin_unlock(&vc->lock);
658 
659 	/* make sure updates to secondary vcpu structs are visible now */
660 	smp_mb();
661 	kvm_guest_exit();
662 
663 	preempt_enable();
664 	kvm_resched(vcpu);
665 
666 	now = get_tb();
667 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
668 		/* cancel pending dec exception if dec is positive */
669 		if (now < vcpu->arch.dec_expires &&
670 		    kvmppc_core_pending_dec(vcpu))
671 			kvmppc_core_dequeue_dec(vcpu);
672 
673 		ret = RESUME_GUEST;
674 		if (vcpu->arch.trap)
675 			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
676 						 vcpu->arch.run_task);
677 
678 		vcpu->arch.ret = ret;
679 		vcpu->arch.trap = 0;
680 
681 		if (vcpu->arch.ceded) {
682 			if (ret != RESUME_GUEST)
683 				kvmppc_end_cede(vcpu);
684 			else
685 				kvmppc_set_timer(vcpu);
686 		}
687 	}
688 
689 	spin_lock(&vc->lock);
690  out:
691 	vc->vcore_state = VCORE_INACTIVE;
692 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
693 				 arch.run_list) {
694 		if (vcpu->arch.ret != RESUME_GUEST) {
695 			kvmppc_remove_runnable(vc, vcpu);
696 			wake_up(&vcpu->arch.cpu_run);
697 		}
698 	}
699 
700 	return 1;
701 }
702 
703 /*
704  * Wait for some other vcpu thread to execute us, and
705  * wake us up when we need to handle something in the host.
706  */
707 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
708 {
709 	DEFINE_WAIT(wait);
710 
711 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
712 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
713 		schedule();
714 	finish_wait(&vcpu->arch.cpu_run, &wait);
715 }
716 
717 /*
718  * All the vcpus in this vcore are idle, so wait for a decrementer
719  * or external interrupt to one of the vcpus.  vc->lock is held.
720  */
721 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
722 {
723 	DEFINE_WAIT(wait);
724 	struct kvm_vcpu *v;
725 	int all_idle = 1;
726 
727 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
728 	vc->vcore_state = VCORE_SLEEPING;
729 	spin_unlock(&vc->lock);
730 	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
731 		if (!v->arch.ceded || v->arch.pending_exceptions) {
732 			all_idle = 0;
733 			break;
734 		}
735 	}
736 	if (all_idle)
737 		schedule();
738 	finish_wait(&vc->wq, &wait);
739 	spin_lock(&vc->lock);
740 	vc->vcore_state = VCORE_INACTIVE;
741 }
742 
743 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
744 {
745 	int n_ceded;
746 	int prev_state;
747 	struct kvmppc_vcore *vc;
748 	struct kvm_vcpu *v, *vn;
749 
750 	kvm_run->exit_reason = 0;
751 	vcpu->arch.ret = RESUME_GUEST;
752 	vcpu->arch.trap = 0;
753 
754 	/*
755 	 * Synchronize with other threads in this virtual core
756 	 */
757 	vc = vcpu->arch.vcore;
758 	spin_lock(&vc->lock);
759 	vcpu->arch.ceded = 0;
760 	vcpu->arch.run_task = current;
761 	vcpu->arch.kvm_run = kvm_run;
762 	prev_state = vcpu->arch.state;
763 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
764 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
765 	++vc->n_runnable;
766 
767 	/*
768 	 * This happens the first time this is called for a vcpu.
769 	 * If the vcore is already running, we may be able to start
770 	 * this thread straight away and have it join in.
771 	 */
772 	if (prev_state == KVMPPC_VCPU_STOPPED) {
773 		if (vc->vcore_state == VCORE_RUNNING &&
774 		    VCORE_EXIT_COUNT(vc) == 0) {
775 			vcpu->arch.ptid = vc->n_runnable - 1;
776 			kvmppc_start_thread(vcpu);
777 		}
778 
779 	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
780 		--vc->n_busy;
781 
782 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
783 	       !signal_pending(current)) {
784 		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
785 			spin_unlock(&vc->lock);
786 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
787 			spin_lock(&vc->lock);
788 			continue;
789 		}
790 		n_ceded = 0;
791 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
792 			n_ceded += v->arch.ceded;
793 		if (n_ceded == vc->n_runnable)
794 			kvmppc_vcore_blocked(vc);
795 		else
796 			kvmppc_run_core(vc);
797 
798 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
799 					 arch.run_list) {
800 			kvmppc_core_deliver_interrupts(v);
801 			if (signal_pending(v->arch.run_task)) {
802 				kvmppc_remove_runnable(vc, v);
803 				v->stat.signal_exits++;
804 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
805 				v->arch.ret = -EINTR;
806 				wake_up(&v->arch.cpu_run);
807 			}
808 		}
809 	}
810 
811 	if (signal_pending(current)) {
812 		if (vc->vcore_state == VCORE_RUNNING ||
813 		    vc->vcore_state == VCORE_EXITING) {
814 			spin_unlock(&vc->lock);
815 			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
816 			spin_lock(&vc->lock);
817 		}
818 		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
819 			kvmppc_remove_runnable(vc, vcpu);
820 			vcpu->stat.signal_exits++;
821 			kvm_run->exit_reason = KVM_EXIT_INTR;
822 			vcpu->arch.ret = -EINTR;
823 		}
824 	}
825 
826 	spin_unlock(&vc->lock);
827 	return vcpu->arch.ret;
828 }
829 
830 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
831 {
832 	int r;
833 
834 	if (!vcpu->arch.sane) {
835 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
836 		return -EINVAL;
837 	}
838 
839 	/* No need to go into the guest when all we'll do is come back out */
840 	if (signal_pending(current)) {
841 		run->exit_reason = KVM_EXIT_INTR;
842 		return -EINTR;
843 	}
844 
845 	/* On PPC970, check that we have an RMA region */
846 	if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
847 		return -EPERM;
848 
849 	flush_fp_to_thread(current);
850 	flush_altivec_to_thread(current);
851 	flush_vsx_to_thread(current);
852 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
853 
854 	do {
855 		r = kvmppc_run_vcpu(run, vcpu);
856 
857 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
858 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
859 			r = kvmppc_pseries_do_hcall(vcpu);
860 			kvmppc_core_deliver_interrupts(vcpu);
861 		}
862 	} while (r == RESUME_GUEST);
863 	return r;
864 }
865 
866 static long kvmppc_stt_npages(unsigned long window_size)
867 {
868 	return ALIGN((window_size >> SPAPR_TCE_SHIFT)
869 		     * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
870 }
871 
872 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
873 {
874 	struct kvm *kvm = stt->kvm;
875 	int i;
876 
877 	mutex_lock(&kvm->lock);
878 	list_del(&stt->list);
879 	for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
880 		__free_page(stt->pages[i]);
881 	kfree(stt);
882 	mutex_unlock(&kvm->lock);
883 
884 	kvm_put_kvm(kvm);
885 }
886 
887 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
888 {
889 	struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
890 	struct page *page;
891 
892 	if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
893 		return VM_FAULT_SIGBUS;
894 
895 	page = stt->pages[vmf->pgoff];
896 	get_page(page);
897 	vmf->page = page;
898 	return 0;
899 }
900 
901 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
902 	.fault = kvm_spapr_tce_fault,
903 };
904 
905 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
906 {
907 	vma->vm_ops = &kvm_spapr_tce_vm_ops;
908 	return 0;
909 }
910 
911 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
912 {
913 	struct kvmppc_spapr_tce_table *stt = filp->private_data;
914 
915 	release_spapr_tce_table(stt);
916 	return 0;
917 }
918 
919 static struct file_operations kvm_spapr_tce_fops = {
920 	.mmap           = kvm_spapr_tce_mmap,
921 	.release	= kvm_spapr_tce_release,
922 };
923 
924 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
925 				   struct kvm_create_spapr_tce *args)
926 {
927 	struct kvmppc_spapr_tce_table *stt = NULL;
928 	long npages;
929 	int ret = -ENOMEM;
930 	int i;
931 
932 	/* Check this LIOBN hasn't been previously allocated */
933 	list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
934 		if (stt->liobn == args->liobn)
935 			return -EBUSY;
936 	}
937 
938 	npages = kvmppc_stt_npages(args->window_size);
939 
940 	stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
941 		      GFP_KERNEL);
942 	if (!stt)
943 		goto fail;
944 
945 	stt->liobn = args->liobn;
946 	stt->window_size = args->window_size;
947 	stt->kvm = kvm;
948 
949 	for (i = 0; i < npages; i++) {
950 		stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
951 		if (!stt->pages[i])
952 			goto fail;
953 	}
954 
955 	kvm_get_kvm(kvm);
956 
957 	mutex_lock(&kvm->lock);
958 	list_add(&stt->list, &kvm->arch.spapr_tce_tables);
959 
960 	mutex_unlock(&kvm->lock);
961 
962 	return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
963 				stt, O_RDWR);
964 
965 fail:
966 	if (stt) {
967 		for (i = 0; i < npages; i++)
968 			if (stt->pages[i])
969 				__free_page(stt->pages[i]);
970 
971 		kfree(stt);
972 	}
973 	return ret;
974 }
975 
976 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
977    Assumes POWER7 or PPC970. */
978 static inline int lpcr_rmls(unsigned long rma_size)
979 {
980 	switch (rma_size) {
981 	case 32ul << 20:	/* 32 MB */
982 		if (cpu_has_feature(CPU_FTR_ARCH_206))
983 			return 8;	/* only supported on POWER7 */
984 		return -1;
985 	case 64ul << 20:	/* 64 MB */
986 		return 3;
987 	case 128ul << 20:	/* 128 MB */
988 		return 7;
989 	case 256ul << 20:	/* 256 MB */
990 		return 4;
991 	case 1ul << 30:		/* 1 GB */
992 		return 2;
993 	case 16ul << 30:	/* 16 GB */
994 		return 1;
995 	case 256ul << 30:	/* 256 GB */
996 		return 0;
997 	default:
998 		return -1;
999 	}
1000 }
1001 
1002 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1003 {
1004 	struct kvmppc_rma_info *ri = vma->vm_file->private_data;
1005 	struct page *page;
1006 
1007 	if (vmf->pgoff >= ri->npages)
1008 		return VM_FAULT_SIGBUS;
1009 
1010 	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1011 	get_page(page);
1012 	vmf->page = page;
1013 	return 0;
1014 }
1015 
1016 static const struct vm_operations_struct kvm_rma_vm_ops = {
1017 	.fault = kvm_rma_fault,
1018 };
1019 
1020 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1021 {
1022 	vma->vm_flags |= VM_RESERVED;
1023 	vma->vm_ops = &kvm_rma_vm_ops;
1024 	return 0;
1025 }
1026 
1027 static int kvm_rma_release(struct inode *inode, struct file *filp)
1028 {
1029 	struct kvmppc_rma_info *ri = filp->private_data;
1030 
1031 	kvm_release_rma(ri);
1032 	return 0;
1033 }
1034 
1035 static struct file_operations kvm_rma_fops = {
1036 	.mmap           = kvm_rma_mmap,
1037 	.release	= kvm_rma_release,
1038 };
1039 
1040 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1041 {
1042 	struct kvmppc_rma_info *ri;
1043 	long fd;
1044 
1045 	ri = kvm_alloc_rma();
1046 	if (!ri)
1047 		return -ENOMEM;
1048 
1049 	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1050 	if (fd < 0)
1051 		kvm_release_rma(ri);
1052 
1053 	ret->rma_size = ri->npages << PAGE_SHIFT;
1054 	return fd;
1055 }
1056 
1057 static struct page *hva_to_page(unsigned long addr)
1058 {
1059 	struct page *page[1];
1060 	int npages;
1061 
1062 	might_sleep();
1063 
1064 	npages = get_user_pages_fast(addr, 1, 1, page);
1065 
1066 	if (unlikely(npages != 1))
1067 		return 0;
1068 
1069 	return page[0];
1070 }
1071 
1072 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1073 				struct kvm_userspace_memory_region *mem)
1074 {
1075 	unsigned long psize, porder;
1076 	unsigned long i, npages, totalpages;
1077 	unsigned long pg_ix;
1078 	struct kvmppc_pginfo *pginfo;
1079 	unsigned long hva;
1080 	struct kvmppc_rma_info *ri = NULL;
1081 	struct page *page;
1082 
1083 	/* For now, only allow 16MB pages */
1084 	porder = LARGE_PAGE_ORDER;
1085 	psize = 1ul << porder;
1086 	if ((mem->memory_size & (psize - 1)) ||
1087 	    (mem->guest_phys_addr & (psize - 1))) {
1088 		pr_err("bad memory_size=%llx @ %llx\n",
1089 		       mem->memory_size, mem->guest_phys_addr);
1090 		return -EINVAL;
1091 	}
1092 
1093 	npages = mem->memory_size >> porder;
1094 	totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;
1095 
1096 	/* More memory than we have space to track? */
1097 	if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
1098 		return -EINVAL;
1099 
1100 	/* Do we already have an RMA registered? */
1101 	if (mem->guest_phys_addr == 0 && kvm->arch.rma)
1102 		return -EINVAL;
1103 
1104 	if (totalpages > kvm->arch.ram_npages)
1105 		kvm->arch.ram_npages = totalpages;
1106 
1107 	/* Is this one of our preallocated RMAs? */
1108 	if (mem->guest_phys_addr == 0) {
1109 		struct vm_area_struct *vma;
1110 
1111 		down_read(&current->mm->mmap_sem);
1112 		vma = find_vma(current->mm, mem->userspace_addr);
1113 		if (vma && vma->vm_file &&
1114 		    vma->vm_file->f_op == &kvm_rma_fops &&
1115 		    mem->userspace_addr == vma->vm_start)
1116 			ri = vma->vm_file->private_data;
1117 		up_read(&current->mm->mmap_sem);
1118 		if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
1119 			pr_err("CPU requires an RMO\n");
1120 			return -EINVAL;
1121 		}
1122 	}
1123 
1124 	if (ri) {
1125 		unsigned long rma_size;
1126 		unsigned long lpcr;
1127 		long rmls;
1128 
1129 		rma_size = ri->npages << PAGE_SHIFT;
1130 		if (rma_size > mem->memory_size)
1131 			rma_size = mem->memory_size;
1132 		rmls = lpcr_rmls(rma_size);
1133 		if (rmls < 0) {
1134 			pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
1135 			return -EINVAL;
1136 		}
1137 		atomic_inc(&ri->use_count);
1138 		kvm->arch.rma = ri;
1139 		kvm->arch.n_rma_pages = rma_size >> porder;
1140 
1141 		/* Update LPCR and RMOR */
1142 		lpcr = kvm->arch.lpcr;
1143 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1144 			/* PPC970; insert RMLS value (split field) in HID4 */
1145 			lpcr &= ~((1ul << HID4_RMLS0_SH) |
1146 				  (3ul << HID4_RMLS2_SH));
1147 			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1148 				((rmls & 3) << HID4_RMLS2_SH);
1149 			/* RMOR is also in HID4 */
1150 			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1151 				<< HID4_RMOR_SH;
1152 		} else {
1153 			/* POWER7 */
1154 			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1155 			lpcr |= rmls << LPCR_RMLS_SH;
1156 			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1157 		}
1158 		kvm->arch.lpcr = lpcr;
1159 		pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
1160 			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1161 	}
1162 
1163 	pg_ix = mem->guest_phys_addr >> porder;
1164 	pginfo = kvm->arch.ram_pginfo + pg_ix;
1165 	for (i = 0; i < npages; ++i, ++pg_ix) {
1166 		if (ri && pg_ix < kvm->arch.n_rma_pages) {
1167 			pginfo[i].pfn = ri->base_pfn +
1168 				(pg_ix << (porder - PAGE_SHIFT));
1169 			continue;
1170 		}
1171 		hva = mem->userspace_addr + (i << porder);
1172 		page = hva_to_page(hva);
1173 		if (!page) {
1174 			pr_err("oops, no pfn for hva %lx\n", hva);
1175 			goto err;
1176 		}
1177 		/* Check it's a 16MB page */
1178 		if (!PageHead(page) ||
1179 		    compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
1180 			pr_err("page at %lx isn't 16MB (o=%d)\n",
1181 			       hva, compound_order(page));
1182 			goto err;
1183 		}
1184 		pginfo[i].pfn = page_to_pfn(page);
1185 	}
1186 
1187 	return 0;
1188 
1189  err:
1190 	return -EINVAL;
1191 }
1192 
1193 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1194 				struct kvm_userspace_memory_region *mem)
1195 {
1196 	if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
1197 	    !kvm->arch.rma)
1198 		kvmppc_map_vrma(kvm, mem);
1199 }
1200 
1201 int kvmppc_core_init_vm(struct kvm *kvm)
1202 {
1203 	long r;
1204 	unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
1205 	long err = -ENOMEM;
1206 	unsigned long lpcr;
1207 
1208 	/* Allocate hashed page table */
1209 	r = kvmppc_alloc_hpt(kvm);
1210 	if (r)
1211 		return r;
1212 
1213 	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1214 
1215 	kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
1216 				       GFP_KERNEL);
1217 	if (!kvm->arch.ram_pginfo) {
1218 		pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
1219 		       npages * sizeof(struct kvmppc_pginfo));
1220 		goto out_free;
1221 	}
1222 
1223 	kvm->arch.ram_npages = 0;
1224 	kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
1225 	kvm->arch.ram_porder = LARGE_PAGE_ORDER;
1226 	kvm->arch.rma = NULL;
1227 	kvm->arch.n_rma_pages = 0;
1228 
1229 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1230 
1231 	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1232 		/* PPC970; HID4 is effectively the LPCR */
1233 		unsigned long lpid = kvm->arch.lpid;
1234 		kvm->arch.host_lpid = 0;
1235 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1236 		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1237 		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1238 			((lpid & 0xf) << HID4_LPID5_SH);
1239 	} else {
1240 		/* POWER7; init LPCR for virtual RMA mode */
1241 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
1242 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1243 		lpcr &= LPCR_PECE | LPCR_LPES;
1244 		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1245 			LPCR_VPM0 | LPCR_VRMA_L;
1246 	}
1247 	kvm->arch.lpcr = lpcr;
1248 
1249 	return 0;
1250 
1251  out_free:
1252 	kvmppc_free_hpt(kvm);
1253 	return err;
1254 }
1255 
1256 void kvmppc_core_destroy_vm(struct kvm *kvm)
1257 {
1258 	struct kvmppc_pginfo *pginfo;
1259 	unsigned long i;
1260 
1261 	if (kvm->arch.ram_pginfo) {
1262 		pginfo = kvm->arch.ram_pginfo;
1263 		kvm->arch.ram_pginfo = NULL;
1264 		for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
1265 			if (pginfo[i].pfn)
1266 				put_page(pfn_to_page(pginfo[i].pfn));
1267 		kfree(pginfo);
1268 	}
1269 	if (kvm->arch.rma) {
1270 		kvm_release_rma(kvm->arch.rma);
1271 		kvm->arch.rma = NULL;
1272 	}
1273 
1274 	kvmppc_free_hpt(kvm);
1275 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1276 }
1277 
1278 /* These are stubs for now */
1279 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1280 {
1281 }
1282 
1283 /* We don't need to emulate any privileged instructions or dcbz */
1284 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1285                            unsigned int inst, int *advance)
1286 {
1287 	return EMULATE_FAIL;
1288 }
1289 
1290 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
1291 {
1292 	return EMULATE_FAIL;
1293 }
1294 
1295 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
1296 {
1297 	return EMULATE_FAIL;
1298 }
1299 
1300 static int kvmppc_book3s_hv_init(void)
1301 {
1302 	int r;
1303 
1304 	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1305 
1306 	if (r)
1307 		return r;
1308 
1309 	r = kvmppc_mmu_hv_init();
1310 
1311 	return r;
1312 }
1313 
1314 static void kvmppc_book3s_hv_exit(void)
1315 {
1316 	kvm_exit();
1317 }
1318 
1319 module_init(kvmppc_book3s_hv_init);
1320 module_exit(kvmppc_book3s_hv_exit);
1321