1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/interrupt.h> 57 #include <asm/io.h> 58 #include <asm/kvm_ppc.h> 59 #include <asm/kvm_book3s.h> 60 #include <asm/mmu_context.h> 61 #include <asm/lppaca.h> 62 #include <asm/processor.h> 63 #include <asm/cputhreads.h> 64 #include <asm/page.h> 65 #include <asm/hvcall.h> 66 #include <asm/switch_to.h> 67 #include <asm/smp.h> 68 #include <asm/dbell.h> 69 #include <asm/hmi.h> 70 #include <asm/pnv-pci.h> 71 #include <asm/mmu.h> 72 #include <asm/opal.h> 73 #include <asm/xics.h> 74 #include <asm/xive.h> 75 #include <asm/hw_breakpoint.h> 76 #include <asm/kvm_book3s_uvmem.h> 77 #include <asm/ultravisor.h> 78 #include <asm/dtl.h> 79 80 #include "book3s.h" 81 82 #define CREATE_TRACE_POINTS 83 #include "trace_hv.h" 84 85 /* #define EXIT_DEBUG */ 86 /* #define EXIT_DEBUG_SIMPLE */ 87 /* #define EXIT_DEBUG_INT */ 88 89 /* Used to indicate that a guest page fault needs to be handled */ 90 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 91 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 92 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 93 94 /* Used as a "null" value for timebase values */ 95 #define TB_NIL (~(u64)0) 96 97 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 98 99 static int dynamic_mt_modes = 6; 100 module_param(dynamic_mt_modes, int, 0644); 101 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 102 static int target_smt_mode; 103 module_param(target_smt_mode, int, 0644); 104 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 105 106 static bool indep_threads_mode = true; 107 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 108 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 109 110 static bool one_vm_per_core; 111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 113 114 #ifdef CONFIG_KVM_XICS 115 static const struct kernel_param_ops module_param_ops = { 116 .set = param_set_int, 117 .get = param_get_int, 118 }; 119 120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 122 123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 125 #endif 126 127 /* If set, guests are allowed to create and control nested guests */ 128 static bool nested = true; 129 module_param(nested, bool, S_IRUGO | S_IWUSR); 130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 131 132 static inline bool nesting_enabled(struct kvm *kvm) 133 { 134 return kvm->arch.nested_enable && kvm_is_radix(kvm); 135 } 136 137 /* If set, the threads on each CPU core have to be in the same MMU mode */ 138 static bool no_mixing_hpt_and_radix __read_mostly; 139 140 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 141 142 /* 143 * RWMR values for POWER8. These control the rate at which PURR 144 * and SPURR count and should be set according to the number of 145 * online threads in the vcore being run. 146 */ 147 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 149 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 150 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 151 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 152 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 153 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 154 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 155 156 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 157 RWMR_RPA_P8_1THREAD, 158 RWMR_RPA_P8_1THREAD, 159 RWMR_RPA_P8_2THREAD, 160 RWMR_RPA_P8_3THREAD, 161 RWMR_RPA_P8_4THREAD, 162 RWMR_RPA_P8_5THREAD, 163 RWMR_RPA_P8_6THREAD, 164 RWMR_RPA_P8_7THREAD, 165 RWMR_RPA_P8_8THREAD, 166 }; 167 168 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 169 int *ip) 170 { 171 int i = *ip; 172 struct kvm_vcpu *vcpu; 173 174 while (++i < MAX_SMT_THREADS) { 175 vcpu = READ_ONCE(vc->runnable_threads[i]); 176 if (vcpu) { 177 *ip = i; 178 return vcpu; 179 } 180 } 181 return NULL; 182 } 183 184 /* Used to traverse the list of runnable threads for a given vcore */ 185 #define for_each_runnable_thread(i, vcpu, vc) \ 186 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 187 188 static bool kvmppc_ipi_thread(int cpu) 189 { 190 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 191 192 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 193 if (kvmhv_on_pseries()) 194 return false; 195 196 /* On POWER9 we can use msgsnd to IPI any cpu */ 197 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 198 msg |= get_hard_smp_processor_id(cpu); 199 smp_mb(); 200 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 201 return true; 202 } 203 204 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 205 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 206 preempt_disable(); 207 if (cpu_first_thread_sibling(cpu) == 208 cpu_first_thread_sibling(smp_processor_id())) { 209 msg |= cpu_thread_in_core(cpu); 210 smp_mb(); 211 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 212 preempt_enable(); 213 return true; 214 } 215 preempt_enable(); 216 } 217 218 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 219 if (cpu >= 0 && cpu < nr_cpu_ids) { 220 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 221 xics_wake_cpu(cpu); 222 return true; 223 } 224 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 225 return true; 226 } 227 #endif 228 229 return false; 230 } 231 232 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 233 { 234 int cpu; 235 struct rcuwait *waitp; 236 237 waitp = kvm_arch_vcpu_get_wait(vcpu); 238 if (rcuwait_wake_up(waitp)) 239 ++vcpu->stat.halt_wakeup; 240 241 cpu = READ_ONCE(vcpu->arch.thread_cpu); 242 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 243 return; 244 245 /* CPU points to the first thread of the core */ 246 cpu = vcpu->cpu; 247 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 248 smp_send_reschedule(cpu); 249 } 250 251 /* 252 * We use the vcpu_load/put functions to measure stolen time. 253 * Stolen time is counted as time when either the vcpu is able to 254 * run as part of a virtual core, but the task running the vcore 255 * is preempted or sleeping, or when the vcpu needs something done 256 * in the kernel by the task running the vcpu, but that task is 257 * preempted or sleeping. Those two things have to be counted 258 * separately, since one of the vcpu tasks will take on the job 259 * of running the core, and the other vcpu tasks in the vcore will 260 * sleep waiting for it to do that, but that sleep shouldn't count 261 * as stolen time. 262 * 263 * Hence we accumulate stolen time when the vcpu can run as part of 264 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 265 * needs its task to do other things in the kernel (for example, 266 * service a page fault) in busy_stolen. We don't accumulate 267 * stolen time for a vcore when it is inactive, or for a vcpu 268 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 269 * a misnomer; it means that the vcpu task is not executing in 270 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 271 * the kernel. We don't have any way of dividing up that time 272 * between time that the vcpu is genuinely stopped, time that 273 * the task is actively working on behalf of the vcpu, and time 274 * that the task is preempted, so we don't count any of it as 275 * stolen. 276 * 277 * Updates to busy_stolen are protected by arch.tbacct_lock; 278 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 279 * lock. The stolen times are measured in units of timebase ticks. 280 * (Note that the != TB_NIL checks below are purely defensive; 281 * they should never fail.) 282 */ 283 284 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 285 { 286 unsigned long flags; 287 288 spin_lock_irqsave(&vc->stoltb_lock, flags); 289 vc->preempt_tb = mftb(); 290 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 291 } 292 293 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 294 { 295 unsigned long flags; 296 297 spin_lock_irqsave(&vc->stoltb_lock, flags); 298 if (vc->preempt_tb != TB_NIL) { 299 vc->stolen_tb += mftb() - vc->preempt_tb; 300 vc->preempt_tb = TB_NIL; 301 } 302 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 303 } 304 305 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 306 { 307 struct kvmppc_vcore *vc = vcpu->arch.vcore; 308 unsigned long flags; 309 310 /* 311 * We can test vc->runner without taking the vcore lock, 312 * because only this task ever sets vc->runner to this 313 * vcpu, and once it is set to this vcpu, only this task 314 * ever sets it to NULL. 315 */ 316 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 317 kvmppc_core_end_stolen(vc); 318 319 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 320 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 321 vcpu->arch.busy_preempt != TB_NIL) { 322 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 323 vcpu->arch.busy_preempt = TB_NIL; 324 } 325 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 326 } 327 328 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 329 { 330 struct kvmppc_vcore *vc = vcpu->arch.vcore; 331 unsigned long flags; 332 333 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 334 kvmppc_core_start_stolen(vc); 335 336 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 337 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 338 vcpu->arch.busy_preempt = mftb(); 339 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 340 } 341 342 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 343 { 344 vcpu->arch.pvr = pvr; 345 } 346 347 /* Dummy value used in computing PCR value below */ 348 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 349 350 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 351 { 352 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 353 struct kvmppc_vcore *vc = vcpu->arch.vcore; 354 355 /* We can (emulate) our own architecture version and anything older */ 356 if (cpu_has_feature(CPU_FTR_ARCH_31)) 357 host_pcr_bit = PCR_ARCH_31; 358 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 359 host_pcr_bit = PCR_ARCH_300; 360 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 361 host_pcr_bit = PCR_ARCH_207; 362 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 363 host_pcr_bit = PCR_ARCH_206; 364 else 365 host_pcr_bit = PCR_ARCH_205; 366 367 /* Determine lowest PCR bit needed to run guest in given PVR level */ 368 guest_pcr_bit = host_pcr_bit; 369 if (arch_compat) { 370 switch (arch_compat) { 371 case PVR_ARCH_205: 372 guest_pcr_bit = PCR_ARCH_205; 373 break; 374 case PVR_ARCH_206: 375 case PVR_ARCH_206p: 376 guest_pcr_bit = PCR_ARCH_206; 377 break; 378 case PVR_ARCH_207: 379 guest_pcr_bit = PCR_ARCH_207; 380 break; 381 case PVR_ARCH_300: 382 guest_pcr_bit = PCR_ARCH_300; 383 break; 384 case PVR_ARCH_31: 385 guest_pcr_bit = PCR_ARCH_31; 386 break; 387 default: 388 return -EINVAL; 389 } 390 } 391 392 /* Check requested PCR bits don't exceed our capabilities */ 393 if (guest_pcr_bit > host_pcr_bit) 394 return -EINVAL; 395 396 spin_lock(&vc->lock); 397 vc->arch_compat = arch_compat; 398 /* 399 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 400 * Also set all reserved PCR bits 401 */ 402 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 403 spin_unlock(&vc->lock); 404 405 return 0; 406 } 407 408 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 409 { 410 int r; 411 412 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 413 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 414 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 415 for (r = 0; r < 16; ++r) 416 pr_err("r%2d = %.16lx r%d = %.16lx\n", 417 r, kvmppc_get_gpr(vcpu, r), 418 r+16, kvmppc_get_gpr(vcpu, r+16)); 419 pr_err("ctr = %.16lx lr = %.16lx\n", 420 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 421 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 422 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 423 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 424 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 425 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 426 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 427 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 428 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 429 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 430 pr_err("fault dar = %.16lx dsisr = %.8x\n", 431 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 432 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 433 for (r = 0; r < vcpu->arch.slb_max; ++r) 434 pr_err(" ESID = %.16llx VSID = %.16llx\n", 435 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 436 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 437 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 438 vcpu->arch.last_inst); 439 } 440 441 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 442 { 443 return kvm_get_vcpu_by_id(kvm, id); 444 } 445 446 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 447 { 448 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 449 vpa->yield_count = cpu_to_be32(1); 450 } 451 452 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 453 unsigned long addr, unsigned long len) 454 { 455 /* check address is cacheline aligned */ 456 if (addr & (L1_CACHE_BYTES - 1)) 457 return -EINVAL; 458 spin_lock(&vcpu->arch.vpa_update_lock); 459 if (v->next_gpa != addr || v->len != len) { 460 v->next_gpa = addr; 461 v->len = addr ? len : 0; 462 v->update_pending = 1; 463 } 464 spin_unlock(&vcpu->arch.vpa_update_lock); 465 return 0; 466 } 467 468 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 469 struct reg_vpa { 470 u32 dummy; 471 union { 472 __be16 hword; 473 __be32 word; 474 } length; 475 }; 476 477 static int vpa_is_registered(struct kvmppc_vpa *vpap) 478 { 479 if (vpap->update_pending) 480 return vpap->next_gpa != 0; 481 return vpap->pinned_addr != NULL; 482 } 483 484 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 485 unsigned long flags, 486 unsigned long vcpuid, unsigned long vpa) 487 { 488 struct kvm *kvm = vcpu->kvm; 489 unsigned long len, nb; 490 void *va; 491 struct kvm_vcpu *tvcpu; 492 int err; 493 int subfunc; 494 struct kvmppc_vpa *vpap; 495 496 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 497 if (!tvcpu) 498 return H_PARAMETER; 499 500 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 501 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 502 subfunc == H_VPA_REG_SLB) { 503 /* Registering new area - address must be cache-line aligned */ 504 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 505 return H_PARAMETER; 506 507 /* convert logical addr to kernel addr and read length */ 508 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 509 if (va == NULL) 510 return H_PARAMETER; 511 if (subfunc == H_VPA_REG_VPA) 512 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 513 else 514 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 515 kvmppc_unpin_guest_page(kvm, va, vpa, false); 516 517 /* Check length */ 518 if (len > nb || len < sizeof(struct reg_vpa)) 519 return H_PARAMETER; 520 } else { 521 vpa = 0; 522 len = 0; 523 } 524 525 err = H_PARAMETER; 526 vpap = NULL; 527 spin_lock(&tvcpu->arch.vpa_update_lock); 528 529 switch (subfunc) { 530 case H_VPA_REG_VPA: /* register VPA */ 531 /* 532 * The size of our lppaca is 1kB because of the way we align 533 * it for the guest to avoid crossing a 4kB boundary. We only 534 * use 640 bytes of the structure though, so we should accept 535 * clients that set a size of 640. 536 */ 537 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 538 if (len < sizeof(struct lppaca)) 539 break; 540 vpap = &tvcpu->arch.vpa; 541 err = 0; 542 break; 543 544 case H_VPA_REG_DTL: /* register DTL */ 545 if (len < sizeof(struct dtl_entry)) 546 break; 547 len -= len % sizeof(struct dtl_entry); 548 549 /* Check that they have previously registered a VPA */ 550 err = H_RESOURCE; 551 if (!vpa_is_registered(&tvcpu->arch.vpa)) 552 break; 553 554 vpap = &tvcpu->arch.dtl; 555 err = 0; 556 break; 557 558 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 559 /* Check that they have previously registered a VPA */ 560 err = H_RESOURCE; 561 if (!vpa_is_registered(&tvcpu->arch.vpa)) 562 break; 563 564 vpap = &tvcpu->arch.slb_shadow; 565 err = 0; 566 break; 567 568 case H_VPA_DEREG_VPA: /* deregister VPA */ 569 /* Check they don't still have a DTL or SLB buf registered */ 570 err = H_RESOURCE; 571 if (vpa_is_registered(&tvcpu->arch.dtl) || 572 vpa_is_registered(&tvcpu->arch.slb_shadow)) 573 break; 574 575 vpap = &tvcpu->arch.vpa; 576 err = 0; 577 break; 578 579 case H_VPA_DEREG_DTL: /* deregister DTL */ 580 vpap = &tvcpu->arch.dtl; 581 err = 0; 582 break; 583 584 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 585 vpap = &tvcpu->arch.slb_shadow; 586 err = 0; 587 break; 588 } 589 590 if (vpap) { 591 vpap->next_gpa = vpa; 592 vpap->len = len; 593 vpap->update_pending = 1; 594 } 595 596 spin_unlock(&tvcpu->arch.vpa_update_lock); 597 598 return err; 599 } 600 601 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 602 { 603 struct kvm *kvm = vcpu->kvm; 604 void *va; 605 unsigned long nb; 606 unsigned long gpa; 607 608 /* 609 * We need to pin the page pointed to by vpap->next_gpa, 610 * but we can't call kvmppc_pin_guest_page under the lock 611 * as it does get_user_pages() and down_read(). So we 612 * have to drop the lock, pin the page, then get the lock 613 * again and check that a new area didn't get registered 614 * in the meantime. 615 */ 616 for (;;) { 617 gpa = vpap->next_gpa; 618 spin_unlock(&vcpu->arch.vpa_update_lock); 619 va = NULL; 620 nb = 0; 621 if (gpa) 622 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 623 spin_lock(&vcpu->arch.vpa_update_lock); 624 if (gpa == vpap->next_gpa) 625 break; 626 /* sigh... unpin that one and try again */ 627 if (va) 628 kvmppc_unpin_guest_page(kvm, va, gpa, false); 629 } 630 631 vpap->update_pending = 0; 632 if (va && nb < vpap->len) { 633 /* 634 * If it's now too short, it must be that userspace 635 * has changed the mappings underlying guest memory, 636 * so unregister the region. 637 */ 638 kvmppc_unpin_guest_page(kvm, va, gpa, false); 639 va = NULL; 640 } 641 if (vpap->pinned_addr) 642 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 643 vpap->dirty); 644 vpap->gpa = gpa; 645 vpap->pinned_addr = va; 646 vpap->dirty = false; 647 if (va) 648 vpap->pinned_end = va + vpap->len; 649 } 650 651 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 652 { 653 if (!(vcpu->arch.vpa.update_pending || 654 vcpu->arch.slb_shadow.update_pending || 655 vcpu->arch.dtl.update_pending)) 656 return; 657 658 spin_lock(&vcpu->arch.vpa_update_lock); 659 if (vcpu->arch.vpa.update_pending) { 660 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 661 if (vcpu->arch.vpa.pinned_addr) 662 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 663 } 664 if (vcpu->arch.dtl.update_pending) { 665 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 666 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 667 vcpu->arch.dtl_index = 0; 668 } 669 if (vcpu->arch.slb_shadow.update_pending) 670 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 671 spin_unlock(&vcpu->arch.vpa_update_lock); 672 } 673 674 /* 675 * Return the accumulated stolen time for the vcore up until `now'. 676 * The caller should hold the vcore lock. 677 */ 678 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 679 { 680 u64 p; 681 unsigned long flags; 682 683 spin_lock_irqsave(&vc->stoltb_lock, flags); 684 p = vc->stolen_tb; 685 if (vc->vcore_state != VCORE_INACTIVE && 686 vc->preempt_tb != TB_NIL) 687 p += now - vc->preempt_tb; 688 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 689 return p; 690 } 691 692 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 693 struct kvmppc_vcore *vc) 694 { 695 struct dtl_entry *dt; 696 struct lppaca *vpa; 697 unsigned long stolen; 698 unsigned long core_stolen; 699 u64 now; 700 unsigned long flags; 701 702 dt = vcpu->arch.dtl_ptr; 703 vpa = vcpu->arch.vpa.pinned_addr; 704 now = mftb(); 705 core_stolen = vcore_stolen_time(vc, now); 706 stolen = core_stolen - vcpu->arch.stolen_logged; 707 vcpu->arch.stolen_logged = core_stolen; 708 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 709 stolen += vcpu->arch.busy_stolen; 710 vcpu->arch.busy_stolen = 0; 711 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 712 if (!dt || !vpa) 713 return; 714 memset(dt, 0, sizeof(struct dtl_entry)); 715 dt->dispatch_reason = 7; 716 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 717 dt->timebase = cpu_to_be64(now + vc->tb_offset); 718 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 719 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 720 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 721 ++dt; 722 if (dt == vcpu->arch.dtl.pinned_end) 723 dt = vcpu->arch.dtl.pinned_addr; 724 vcpu->arch.dtl_ptr = dt; 725 /* order writing *dt vs. writing vpa->dtl_idx */ 726 smp_wmb(); 727 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 728 vcpu->arch.dtl.dirty = true; 729 } 730 731 /* See if there is a doorbell interrupt pending for a vcpu */ 732 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 733 { 734 int thr; 735 struct kvmppc_vcore *vc; 736 737 if (vcpu->arch.doorbell_request) 738 return true; 739 /* 740 * Ensure that the read of vcore->dpdes comes after the read 741 * of vcpu->doorbell_request. This barrier matches the 742 * smp_wmb() in kvmppc_guest_entry_inject(). 743 */ 744 smp_rmb(); 745 vc = vcpu->arch.vcore; 746 thr = vcpu->vcpu_id - vc->first_vcpuid; 747 return !!(vc->dpdes & (1 << thr)); 748 } 749 750 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 751 { 752 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 753 return true; 754 if ((!vcpu->arch.vcore->arch_compat) && 755 cpu_has_feature(CPU_FTR_ARCH_207S)) 756 return true; 757 return false; 758 } 759 760 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 761 unsigned long resource, unsigned long value1, 762 unsigned long value2) 763 { 764 switch (resource) { 765 case H_SET_MODE_RESOURCE_SET_CIABR: 766 if (!kvmppc_power8_compatible(vcpu)) 767 return H_P2; 768 if (value2) 769 return H_P4; 770 if (mflags) 771 return H_UNSUPPORTED_FLAG_START; 772 /* Guests can't breakpoint the hypervisor */ 773 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 774 return H_P3; 775 vcpu->arch.ciabr = value1; 776 return H_SUCCESS; 777 case H_SET_MODE_RESOURCE_SET_DAWR0: 778 if (!kvmppc_power8_compatible(vcpu)) 779 return H_P2; 780 if (!ppc_breakpoint_available()) 781 return H_P2; 782 if (mflags) 783 return H_UNSUPPORTED_FLAG_START; 784 if (value2 & DABRX_HYP) 785 return H_P4; 786 vcpu->arch.dawr0 = value1; 787 vcpu->arch.dawrx0 = value2; 788 return H_SUCCESS; 789 case H_SET_MODE_RESOURCE_SET_DAWR1: 790 if (!kvmppc_power8_compatible(vcpu)) 791 return H_P2; 792 if (!ppc_breakpoint_available()) 793 return H_P2; 794 if (!cpu_has_feature(CPU_FTR_DAWR1)) 795 return H_P2; 796 if (!vcpu->kvm->arch.dawr1_enabled) 797 return H_FUNCTION; 798 if (mflags) 799 return H_UNSUPPORTED_FLAG_START; 800 if (value2 & DABRX_HYP) 801 return H_P4; 802 vcpu->arch.dawr1 = value1; 803 vcpu->arch.dawrx1 = value2; 804 return H_SUCCESS; 805 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 806 /* 807 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 808 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 809 */ 810 if (mflags != 0 && mflags != 3) 811 return H_UNSUPPORTED_FLAG_START; 812 return H_TOO_HARD; 813 default: 814 return H_TOO_HARD; 815 } 816 } 817 818 /* Copy guest memory in place - must reside within a single memslot */ 819 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 820 unsigned long len) 821 { 822 struct kvm_memory_slot *to_memslot = NULL; 823 struct kvm_memory_slot *from_memslot = NULL; 824 unsigned long to_addr, from_addr; 825 int r; 826 827 /* Get HPA for from address */ 828 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 829 if (!from_memslot) 830 return -EFAULT; 831 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 832 << PAGE_SHIFT)) 833 return -EINVAL; 834 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 835 if (kvm_is_error_hva(from_addr)) 836 return -EFAULT; 837 from_addr |= (from & (PAGE_SIZE - 1)); 838 839 /* Get HPA for to address */ 840 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 841 if (!to_memslot) 842 return -EFAULT; 843 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 844 << PAGE_SHIFT)) 845 return -EINVAL; 846 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 847 if (kvm_is_error_hva(to_addr)) 848 return -EFAULT; 849 to_addr |= (to & (PAGE_SIZE - 1)); 850 851 /* Perform copy */ 852 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 853 len); 854 if (r) 855 return -EFAULT; 856 mark_page_dirty(kvm, to >> PAGE_SHIFT); 857 return 0; 858 } 859 860 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 861 unsigned long dest, unsigned long src) 862 { 863 u64 pg_sz = SZ_4K; /* 4K page size */ 864 u64 pg_mask = SZ_4K - 1; 865 int ret; 866 867 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 868 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 869 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 870 return H_PARAMETER; 871 872 /* dest (and src if copy_page flag set) must be page aligned */ 873 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 874 return H_PARAMETER; 875 876 /* zero and/or copy the page as determined by the flags */ 877 if (flags & H_COPY_PAGE) { 878 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 879 if (ret < 0) 880 return H_PARAMETER; 881 } else if (flags & H_ZERO_PAGE) { 882 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 883 if (ret < 0) 884 return H_PARAMETER; 885 } 886 887 /* We can ignore the remaining flags */ 888 889 return H_SUCCESS; 890 } 891 892 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 893 { 894 struct kvmppc_vcore *vcore = target->arch.vcore; 895 896 /* 897 * We expect to have been called by the real mode handler 898 * (kvmppc_rm_h_confer()) which would have directly returned 899 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 900 * have useful work to do and should not confer) so we don't 901 * recheck that here. 902 */ 903 904 spin_lock(&vcore->lock); 905 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 906 vcore->vcore_state != VCORE_INACTIVE && 907 vcore->runner) 908 target = vcore->runner; 909 spin_unlock(&vcore->lock); 910 911 return kvm_vcpu_yield_to(target); 912 } 913 914 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 915 { 916 int yield_count = 0; 917 struct lppaca *lppaca; 918 919 spin_lock(&vcpu->arch.vpa_update_lock); 920 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 921 if (lppaca) 922 yield_count = be32_to_cpu(lppaca->yield_count); 923 spin_unlock(&vcpu->arch.vpa_update_lock); 924 return yield_count; 925 } 926 927 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 928 { 929 unsigned long req = kvmppc_get_gpr(vcpu, 3); 930 unsigned long target, ret = H_SUCCESS; 931 int yield_count; 932 struct kvm_vcpu *tvcpu; 933 int idx, rc; 934 935 if (req <= MAX_HCALL_OPCODE && 936 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 937 return RESUME_HOST; 938 939 switch (req) { 940 case H_CEDE: 941 break; 942 case H_PROD: 943 target = kvmppc_get_gpr(vcpu, 4); 944 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 945 if (!tvcpu) { 946 ret = H_PARAMETER; 947 break; 948 } 949 tvcpu->arch.prodded = 1; 950 smp_mb(); 951 if (tvcpu->arch.ceded) 952 kvmppc_fast_vcpu_kick_hv(tvcpu); 953 break; 954 case H_CONFER: 955 target = kvmppc_get_gpr(vcpu, 4); 956 if (target == -1) 957 break; 958 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 959 if (!tvcpu) { 960 ret = H_PARAMETER; 961 break; 962 } 963 yield_count = kvmppc_get_gpr(vcpu, 5); 964 if (kvmppc_get_yield_count(tvcpu) != yield_count) 965 break; 966 kvm_arch_vcpu_yield_to(tvcpu); 967 break; 968 case H_REGISTER_VPA: 969 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 970 kvmppc_get_gpr(vcpu, 5), 971 kvmppc_get_gpr(vcpu, 6)); 972 break; 973 case H_RTAS: 974 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 975 return RESUME_HOST; 976 977 idx = srcu_read_lock(&vcpu->kvm->srcu); 978 rc = kvmppc_rtas_hcall(vcpu); 979 srcu_read_unlock(&vcpu->kvm->srcu, idx); 980 981 if (rc == -ENOENT) 982 return RESUME_HOST; 983 else if (rc == 0) 984 break; 985 986 /* Send the error out to userspace via KVM_RUN */ 987 return rc; 988 case H_LOGICAL_CI_LOAD: 989 ret = kvmppc_h_logical_ci_load(vcpu); 990 if (ret == H_TOO_HARD) 991 return RESUME_HOST; 992 break; 993 case H_LOGICAL_CI_STORE: 994 ret = kvmppc_h_logical_ci_store(vcpu); 995 if (ret == H_TOO_HARD) 996 return RESUME_HOST; 997 break; 998 case H_SET_MODE: 999 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1000 kvmppc_get_gpr(vcpu, 5), 1001 kvmppc_get_gpr(vcpu, 6), 1002 kvmppc_get_gpr(vcpu, 7)); 1003 if (ret == H_TOO_HARD) 1004 return RESUME_HOST; 1005 break; 1006 case H_XIRR: 1007 case H_CPPR: 1008 case H_EOI: 1009 case H_IPI: 1010 case H_IPOLL: 1011 case H_XIRR_X: 1012 if (kvmppc_xics_enabled(vcpu)) { 1013 if (xics_on_xive()) { 1014 ret = H_NOT_AVAILABLE; 1015 return RESUME_GUEST; 1016 } 1017 ret = kvmppc_xics_hcall(vcpu, req); 1018 break; 1019 } 1020 return RESUME_HOST; 1021 case H_SET_DABR: 1022 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1023 break; 1024 case H_SET_XDABR: 1025 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1026 kvmppc_get_gpr(vcpu, 5)); 1027 break; 1028 #ifdef CONFIG_SPAPR_TCE_IOMMU 1029 case H_GET_TCE: 1030 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1031 kvmppc_get_gpr(vcpu, 5)); 1032 if (ret == H_TOO_HARD) 1033 return RESUME_HOST; 1034 break; 1035 case H_PUT_TCE: 1036 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1037 kvmppc_get_gpr(vcpu, 5), 1038 kvmppc_get_gpr(vcpu, 6)); 1039 if (ret == H_TOO_HARD) 1040 return RESUME_HOST; 1041 break; 1042 case H_PUT_TCE_INDIRECT: 1043 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1044 kvmppc_get_gpr(vcpu, 5), 1045 kvmppc_get_gpr(vcpu, 6), 1046 kvmppc_get_gpr(vcpu, 7)); 1047 if (ret == H_TOO_HARD) 1048 return RESUME_HOST; 1049 break; 1050 case H_STUFF_TCE: 1051 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1052 kvmppc_get_gpr(vcpu, 5), 1053 kvmppc_get_gpr(vcpu, 6), 1054 kvmppc_get_gpr(vcpu, 7)); 1055 if (ret == H_TOO_HARD) 1056 return RESUME_HOST; 1057 break; 1058 #endif 1059 case H_RANDOM: 1060 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1061 ret = H_HARDWARE; 1062 break; 1063 1064 case H_SET_PARTITION_TABLE: 1065 ret = H_FUNCTION; 1066 if (nesting_enabled(vcpu->kvm)) 1067 ret = kvmhv_set_partition_table(vcpu); 1068 break; 1069 case H_ENTER_NESTED: 1070 ret = H_FUNCTION; 1071 if (!nesting_enabled(vcpu->kvm)) 1072 break; 1073 ret = kvmhv_enter_nested_guest(vcpu); 1074 if (ret == H_INTERRUPT) { 1075 kvmppc_set_gpr(vcpu, 3, 0); 1076 vcpu->arch.hcall_needed = 0; 1077 return -EINTR; 1078 } else if (ret == H_TOO_HARD) { 1079 kvmppc_set_gpr(vcpu, 3, 0); 1080 vcpu->arch.hcall_needed = 0; 1081 return RESUME_HOST; 1082 } 1083 break; 1084 case H_TLB_INVALIDATE: 1085 ret = H_FUNCTION; 1086 if (nesting_enabled(vcpu->kvm)) 1087 ret = kvmhv_do_nested_tlbie(vcpu); 1088 break; 1089 case H_COPY_TOFROM_GUEST: 1090 ret = H_FUNCTION; 1091 if (nesting_enabled(vcpu->kvm)) 1092 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1093 break; 1094 case H_PAGE_INIT: 1095 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1096 kvmppc_get_gpr(vcpu, 5), 1097 kvmppc_get_gpr(vcpu, 6)); 1098 break; 1099 case H_SVM_PAGE_IN: 1100 ret = H_UNSUPPORTED; 1101 if (kvmppc_get_srr1(vcpu) & MSR_S) 1102 ret = kvmppc_h_svm_page_in(vcpu->kvm, 1103 kvmppc_get_gpr(vcpu, 4), 1104 kvmppc_get_gpr(vcpu, 5), 1105 kvmppc_get_gpr(vcpu, 6)); 1106 break; 1107 case H_SVM_PAGE_OUT: 1108 ret = H_UNSUPPORTED; 1109 if (kvmppc_get_srr1(vcpu) & MSR_S) 1110 ret = kvmppc_h_svm_page_out(vcpu->kvm, 1111 kvmppc_get_gpr(vcpu, 4), 1112 kvmppc_get_gpr(vcpu, 5), 1113 kvmppc_get_gpr(vcpu, 6)); 1114 break; 1115 case H_SVM_INIT_START: 1116 ret = H_UNSUPPORTED; 1117 if (kvmppc_get_srr1(vcpu) & MSR_S) 1118 ret = kvmppc_h_svm_init_start(vcpu->kvm); 1119 break; 1120 case H_SVM_INIT_DONE: 1121 ret = H_UNSUPPORTED; 1122 if (kvmppc_get_srr1(vcpu) & MSR_S) 1123 ret = kvmppc_h_svm_init_done(vcpu->kvm); 1124 break; 1125 case H_SVM_INIT_ABORT: 1126 /* 1127 * Even if that call is made by the Ultravisor, the SSR1 value 1128 * is the guest context one, with the secure bit clear as it has 1129 * not yet been secured. So we can't check it here. 1130 * Instead the kvm->arch.secure_guest flag is checked inside 1131 * kvmppc_h_svm_init_abort(). 1132 */ 1133 ret = kvmppc_h_svm_init_abort(vcpu->kvm); 1134 break; 1135 1136 default: 1137 return RESUME_HOST; 1138 } 1139 kvmppc_set_gpr(vcpu, 3, ret); 1140 vcpu->arch.hcall_needed = 0; 1141 return RESUME_GUEST; 1142 } 1143 1144 /* 1145 * Handle H_CEDE in the nested virtualization case where we haven't 1146 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1147 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1148 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1149 */ 1150 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1151 { 1152 vcpu->arch.shregs.msr |= MSR_EE; 1153 vcpu->arch.ceded = 1; 1154 smp_mb(); 1155 if (vcpu->arch.prodded) { 1156 vcpu->arch.prodded = 0; 1157 smp_mb(); 1158 vcpu->arch.ceded = 0; 1159 } 1160 } 1161 1162 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1163 { 1164 switch (cmd) { 1165 case H_CEDE: 1166 case H_PROD: 1167 case H_CONFER: 1168 case H_REGISTER_VPA: 1169 case H_SET_MODE: 1170 case H_LOGICAL_CI_LOAD: 1171 case H_LOGICAL_CI_STORE: 1172 #ifdef CONFIG_KVM_XICS 1173 case H_XIRR: 1174 case H_CPPR: 1175 case H_EOI: 1176 case H_IPI: 1177 case H_IPOLL: 1178 case H_XIRR_X: 1179 #endif 1180 case H_PAGE_INIT: 1181 return 1; 1182 } 1183 1184 /* See if it's in the real-mode table */ 1185 return kvmppc_hcall_impl_hv_realmode(cmd); 1186 } 1187 1188 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1189 { 1190 u32 last_inst; 1191 1192 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1193 EMULATE_DONE) { 1194 /* 1195 * Fetch failed, so return to guest and 1196 * try executing it again. 1197 */ 1198 return RESUME_GUEST; 1199 } 1200 1201 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1202 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1203 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1204 return RESUME_HOST; 1205 } else { 1206 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1207 return RESUME_GUEST; 1208 } 1209 } 1210 1211 static void do_nothing(void *x) 1212 { 1213 } 1214 1215 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1216 { 1217 int thr, cpu, pcpu, nthreads; 1218 struct kvm_vcpu *v; 1219 unsigned long dpdes; 1220 1221 nthreads = vcpu->kvm->arch.emul_smt_mode; 1222 dpdes = 0; 1223 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1224 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1225 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1226 if (!v) 1227 continue; 1228 /* 1229 * If the vcpu is currently running on a physical cpu thread, 1230 * interrupt it in order to pull it out of the guest briefly, 1231 * which will update its vcore->dpdes value. 1232 */ 1233 pcpu = READ_ONCE(v->cpu); 1234 if (pcpu >= 0) 1235 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1236 if (kvmppc_doorbell_pending(v)) 1237 dpdes |= 1 << thr; 1238 } 1239 return dpdes; 1240 } 1241 1242 /* 1243 * On POWER9, emulate doorbell-related instructions in order to 1244 * give the guest the illusion of running on a multi-threaded core. 1245 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1246 * and mfspr DPDES. 1247 */ 1248 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1249 { 1250 u32 inst, rb, thr; 1251 unsigned long arg; 1252 struct kvm *kvm = vcpu->kvm; 1253 struct kvm_vcpu *tvcpu; 1254 1255 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1256 return RESUME_GUEST; 1257 if (get_op(inst) != 31) 1258 return EMULATE_FAIL; 1259 rb = get_rb(inst); 1260 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1261 switch (get_xop(inst)) { 1262 case OP_31_XOP_MSGSNDP: 1263 arg = kvmppc_get_gpr(vcpu, rb); 1264 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1265 break; 1266 arg &= 0x7f; 1267 if (arg >= kvm->arch.emul_smt_mode) 1268 break; 1269 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1270 if (!tvcpu) 1271 break; 1272 if (!tvcpu->arch.doorbell_request) { 1273 tvcpu->arch.doorbell_request = 1; 1274 kvmppc_fast_vcpu_kick_hv(tvcpu); 1275 } 1276 break; 1277 case OP_31_XOP_MSGCLRP: 1278 arg = kvmppc_get_gpr(vcpu, rb); 1279 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1280 break; 1281 vcpu->arch.vcore->dpdes = 0; 1282 vcpu->arch.doorbell_request = 0; 1283 break; 1284 case OP_31_XOP_MFSPR: 1285 switch (get_sprn(inst)) { 1286 case SPRN_TIR: 1287 arg = thr; 1288 break; 1289 case SPRN_DPDES: 1290 arg = kvmppc_read_dpdes(vcpu); 1291 break; 1292 default: 1293 return EMULATE_FAIL; 1294 } 1295 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1296 break; 1297 default: 1298 return EMULATE_FAIL; 1299 } 1300 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1301 return RESUME_GUEST; 1302 } 1303 1304 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1305 struct task_struct *tsk) 1306 { 1307 struct kvm_run *run = vcpu->run; 1308 int r = RESUME_HOST; 1309 1310 vcpu->stat.sum_exits++; 1311 1312 /* 1313 * This can happen if an interrupt occurs in the last stages 1314 * of guest entry or the first stages of guest exit (i.e. after 1315 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1316 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1317 * That can happen due to a bug, or due to a machine check 1318 * occurring at just the wrong time. 1319 */ 1320 if (vcpu->arch.shregs.msr & MSR_HV) { 1321 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1322 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1323 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1324 vcpu->arch.shregs.msr); 1325 kvmppc_dump_regs(vcpu); 1326 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1327 run->hw.hardware_exit_reason = vcpu->arch.trap; 1328 return RESUME_HOST; 1329 } 1330 run->exit_reason = KVM_EXIT_UNKNOWN; 1331 run->ready_for_interrupt_injection = 1; 1332 switch (vcpu->arch.trap) { 1333 /* We're good on these - the host merely wanted to get our attention */ 1334 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1335 vcpu->stat.dec_exits++; 1336 r = RESUME_GUEST; 1337 break; 1338 case BOOK3S_INTERRUPT_EXTERNAL: 1339 case BOOK3S_INTERRUPT_H_DOORBELL: 1340 case BOOK3S_INTERRUPT_H_VIRT: 1341 vcpu->stat.ext_intr_exits++; 1342 r = RESUME_GUEST; 1343 break; 1344 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1345 case BOOK3S_INTERRUPT_HMI: 1346 case BOOK3S_INTERRUPT_PERFMON: 1347 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1348 r = RESUME_GUEST; 1349 break; 1350 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1351 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1352 DEFAULT_RATELIMIT_BURST); 1353 /* 1354 * Print the MCE event to host console. Ratelimit so the guest 1355 * can't flood the host log. 1356 */ 1357 if (__ratelimit(&rs)) 1358 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1359 1360 /* 1361 * If the guest can do FWNMI, exit to userspace so it can 1362 * deliver a FWNMI to the guest. 1363 * Otherwise we synthesize a machine check for the guest 1364 * so that it knows that the machine check occurred. 1365 */ 1366 if (!vcpu->kvm->arch.fwnmi_enabled) { 1367 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1368 kvmppc_core_queue_machine_check(vcpu, flags); 1369 r = RESUME_GUEST; 1370 break; 1371 } 1372 1373 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1374 run->exit_reason = KVM_EXIT_NMI; 1375 run->hw.hardware_exit_reason = vcpu->arch.trap; 1376 /* Clear out the old NMI status from run->flags */ 1377 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1378 /* Now set the NMI status */ 1379 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1380 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1381 else 1382 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1383 1384 r = RESUME_HOST; 1385 break; 1386 } 1387 case BOOK3S_INTERRUPT_PROGRAM: 1388 { 1389 ulong flags; 1390 /* 1391 * Normally program interrupts are delivered directly 1392 * to the guest by the hardware, but we can get here 1393 * as a result of a hypervisor emulation interrupt 1394 * (e40) getting turned into a 700 by BML RTAS. 1395 */ 1396 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1397 kvmppc_core_queue_program(vcpu, flags); 1398 r = RESUME_GUEST; 1399 break; 1400 } 1401 case BOOK3S_INTERRUPT_SYSCALL: 1402 { 1403 /* hcall - punt to userspace */ 1404 int i; 1405 1406 /* hypercall with MSR_PR has already been handled in rmode, 1407 * and never reaches here. 1408 */ 1409 1410 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1411 for (i = 0; i < 9; ++i) 1412 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1413 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1414 vcpu->arch.hcall_needed = 1; 1415 r = RESUME_HOST; 1416 break; 1417 } 1418 /* 1419 * We get these next two if the guest accesses a page which it thinks 1420 * it has mapped but which is not actually present, either because 1421 * it is for an emulated I/O device or because the corresonding 1422 * host page has been paged out. Any other HDSI/HISI interrupts 1423 * have been handled already. 1424 */ 1425 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1426 r = RESUME_PAGE_FAULT; 1427 break; 1428 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1429 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1430 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1431 DSISR_SRR1_MATCH_64S; 1432 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1433 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1434 r = RESUME_PAGE_FAULT; 1435 break; 1436 /* 1437 * This occurs if the guest executes an illegal instruction. 1438 * If the guest debug is disabled, generate a program interrupt 1439 * to the guest. If guest debug is enabled, we need to check 1440 * whether the instruction is a software breakpoint instruction. 1441 * Accordingly return to Guest or Host. 1442 */ 1443 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1444 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1445 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1446 swab32(vcpu->arch.emul_inst) : 1447 vcpu->arch.emul_inst; 1448 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1449 r = kvmppc_emulate_debug_inst(vcpu); 1450 } else { 1451 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1452 r = RESUME_GUEST; 1453 } 1454 break; 1455 /* 1456 * This occurs if the guest (kernel or userspace), does something that 1457 * is prohibited by HFSCR. 1458 * On POWER9, this could be a doorbell instruction that we need 1459 * to emulate. 1460 * Otherwise, we just generate a program interrupt to the guest. 1461 */ 1462 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1463 r = EMULATE_FAIL; 1464 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1465 cpu_has_feature(CPU_FTR_ARCH_300)) 1466 r = kvmppc_emulate_doorbell_instr(vcpu); 1467 if (r == EMULATE_FAIL) { 1468 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1469 r = RESUME_GUEST; 1470 } 1471 break; 1472 1473 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1474 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1475 /* 1476 * This occurs for various TM-related instructions that 1477 * we need to emulate on POWER9 DD2.2. We have already 1478 * handled the cases where the guest was in real-suspend 1479 * mode and was transitioning to transactional state. 1480 */ 1481 r = kvmhv_p9_tm_emulation(vcpu); 1482 break; 1483 #endif 1484 1485 case BOOK3S_INTERRUPT_HV_RM_HARD: 1486 r = RESUME_PASSTHROUGH; 1487 break; 1488 default: 1489 kvmppc_dump_regs(vcpu); 1490 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1491 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1492 vcpu->arch.shregs.msr); 1493 run->hw.hardware_exit_reason = vcpu->arch.trap; 1494 r = RESUME_HOST; 1495 break; 1496 } 1497 1498 return r; 1499 } 1500 1501 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1502 { 1503 int r; 1504 int srcu_idx; 1505 1506 vcpu->stat.sum_exits++; 1507 1508 /* 1509 * This can happen if an interrupt occurs in the last stages 1510 * of guest entry or the first stages of guest exit (i.e. after 1511 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1512 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1513 * That can happen due to a bug, or due to a machine check 1514 * occurring at just the wrong time. 1515 */ 1516 if (vcpu->arch.shregs.msr & MSR_HV) { 1517 pr_emerg("KVM trap in HV mode while nested!\n"); 1518 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1519 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1520 vcpu->arch.shregs.msr); 1521 kvmppc_dump_regs(vcpu); 1522 return RESUME_HOST; 1523 } 1524 switch (vcpu->arch.trap) { 1525 /* We're good on these - the host merely wanted to get our attention */ 1526 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1527 vcpu->stat.dec_exits++; 1528 r = RESUME_GUEST; 1529 break; 1530 case BOOK3S_INTERRUPT_EXTERNAL: 1531 vcpu->stat.ext_intr_exits++; 1532 r = RESUME_HOST; 1533 break; 1534 case BOOK3S_INTERRUPT_H_DOORBELL: 1535 case BOOK3S_INTERRUPT_H_VIRT: 1536 vcpu->stat.ext_intr_exits++; 1537 r = RESUME_GUEST; 1538 break; 1539 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1540 case BOOK3S_INTERRUPT_HMI: 1541 case BOOK3S_INTERRUPT_PERFMON: 1542 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1543 r = RESUME_GUEST; 1544 break; 1545 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1546 { 1547 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1548 DEFAULT_RATELIMIT_BURST); 1549 /* Pass the machine check to the L1 guest */ 1550 r = RESUME_HOST; 1551 /* Print the MCE event to host console. */ 1552 if (__ratelimit(&rs)) 1553 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1554 break; 1555 } 1556 /* 1557 * We get these next two if the guest accesses a page which it thinks 1558 * it has mapped but which is not actually present, either because 1559 * it is for an emulated I/O device or because the corresonding 1560 * host page has been paged out. 1561 */ 1562 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1563 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1564 r = kvmhv_nested_page_fault(vcpu); 1565 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1566 break; 1567 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1568 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1569 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1570 DSISR_SRR1_MATCH_64S; 1571 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1572 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1573 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1574 r = kvmhv_nested_page_fault(vcpu); 1575 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1576 break; 1577 1578 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1579 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1580 /* 1581 * This occurs for various TM-related instructions that 1582 * we need to emulate on POWER9 DD2.2. We have already 1583 * handled the cases where the guest was in real-suspend 1584 * mode and was transitioning to transactional state. 1585 */ 1586 r = kvmhv_p9_tm_emulation(vcpu); 1587 break; 1588 #endif 1589 1590 case BOOK3S_INTERRUPT_HV_RM_HARD: 1591 vcpu->arch.trap = 0; 1592 r = RESUME_GUEST; 1593 if (!xics_on_xive()) 1594 kvmppc_xics_rm_complete(vcpu, 0); 1595 break; 1596 default: 1597 r = RESUME_HOST; 1598 break; 1599 } 1600 1601 return r; 1602 } 1603 1604 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1605 struct kvm_sregs *sregs) 1606 { 1607 int i; 1608 1609 memset(sregs, 0, sizeof(struct kvm_sregs)); 1610 sregs->pvr = vcpu->arch.pvr; 1611 for (i = 0; i < vcpu->arch.slb_max; i++) { 1612 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1613 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1614 } 1615 1616 return 0; 1617 } 1618 1619 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1620 struct kvm_sregs *sregs) 1621 { 1622 int i, j; 1623 1624 /* Only accept the same PVR as the host's, since we can't spoof it */ 1625 if (sregs->pvr != vcpu->arch.pvr) 1626 return -EINVAL; 1627 1628 j = 0; 1629 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1630 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1631 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1632 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1633 ++j; 1634 } 1635 } 1636 vcpu->arch.slb_max = j; 1637 1638 return 0; 1639 } 1640 1641 /* 1642 * Enforce limits on guest LPCR values based on hardware availability, 1643 * guest configuration, and possibly hypervisor support and security 1644 * concerns. 1645 */ 1646 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 1647 { 1648 /* LPCR_TC only applies to HPT guests */ 1649 if (kvm_is_radix(kvm)) 1650 lpcr &= ~LPCR_TC; 1651 1652 /* On POWER8 and above, userspace can modify AIL */ 1653 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 1654 lpcr &= ~LPCR_AIL; 1655 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 1656 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 1657 1658 /* 1659 * On POWER9, allow userspace to enable large decrementer for the 1660 * guest, whether or not the host has it enabled. 1661 */ 1662 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1663 lpcr &= ~LPCR_LD; 1664 1665 return lpcr; 1666 } 1667 1668 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 1669 { 1670 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 1671 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 1672 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 1673 } 1674 } 1675 1676 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1677 bool preserve_top32) 1678 { 1679 struct kvm *kvm = vcpu->kvm; 1680 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1681 u64 mask; 1682 1683 spin_lock(&vc->lock); 1684 1685 /* 1686 * Userspace can only modify 1687 * DPFD (default prefetch depth), ILE (interrupt little-endian), 1688 * TC (translation control), AIL (alternate interrupt location), 1689 * LD (large decrementer). 1690 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 1691 */ 1692 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 1693 1694 /* Broken 32-bit version of LPCR must not clear top bits */ 1695 if (preserve_top32) 1696 mask &= 0xFFFFFFFF; 1697 1698 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 1699 (vc->lpcr & ~mask) | (new_lpcr & mask)); 1700 1701 /* 1702 * If ILE (interrupt little-endian) has changed, update the 1703 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1704 */ 1705 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1706 struct kvm_vcpu *vcpu; 1707 int i; 1708 1709 kvm_for_each_vcpu(i, vcpu, kvm) { 1710 if (vcpu->arch.vcore != vc) 1711 continue; 1712 if (new_lpcr & LPCR_ILE) 1713 vcpu->arch.intr_msr |= MSR_LE; 1714 else 1715 vcpu->arch.intr_msr &= ~MSR_LE; 1716 } 1717 } 1718 1719 vc->lpcr = new_lpcr; 1720 1721 spin_unlock(&vc->lock); 1722 } 1723 1724 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1725 union kvmppc_one_reg *val) 1726 { 1727 int r = 0; 1728 long int i; 1729 1730 switch (id) { 1731 case KVM_REG_PPC_DEBUG_INST: 1732 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1733 break; 1734 case KVM_REG_PPC_HIOR: 1735 *val = get_reg_val(id, 0); 1736 break; 1737 case KVM_REG_PPC_DABR: 1738 *val = get_reg_val(id, vcpu->arch.dabr); 1739 break; 1740 case KVM_REG_PPC_DABRX: 1741 *val = get_reg_val(id, vcpu->arch.dabrx); 1742 break; 1743 case KVM_REG_PPC_DSCR: 1744 *val = get_reg_val(id, vcpu->arch.dscr); 1745 break; 1746 case KVM_REG_PPC_PURR: 1747 *val = get_reg_val(id, vcpu->arch.purr); 1748 break; 1749 case KVM_REG_PPC_SPURR: 1750 *val = get_reg_val(id, vcpu->arch.spurr); 1751 break; 1752 case KVM_REG_PPC_AMR: 1753 *val = get_reg_val(id, vcpu->arch.amr); 1754 break; 1755 case KVM_REG_PPC_UAMOR: 1756 *val = get_reg_val(id, vcpu->arch.uamor); 1757 break; 1758 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 1759 i = id - KVM_REG_PPC_MMCR0; 1760 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1761 break; 1762 case KVM_REG_PPC_MMCR2: 1763 *val = get_reg_val(id, vcpu->arch.mmcr[2]); 1764 break; 1765 case KVM_REG_PPC_MMCRA: 1766 *val = get_reg_val(id, vcpu->arch.mmcra); 1767 break; 1768 case KVM_REG_PPC_MMCRS: 1769 *val = get_reg_val(id, vcpu->arch.mmcrs); 1770 break; 1771 case KVM_REG_PPC_MMCR3: 1772 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 1773 break; 1774 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1775 i = id - KVM_REG_PPC_PMC1; 1776 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1777 break; 1778 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1779 i = id - KVM_REG_PPC_SPMC1; 1780 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1781 break; 1782 case KVM_REG_PPC_SIAR: 1783 *val = get_reg_val(id, vcpu->arch.siar); 1784 break; 1785 case KVM_REG_PPC_SDAR: 1786 *val = get_reg_val(id, vcpu->arch.sdar); 1787 break; 1788 case KVM_REG_PPC_SIER: 1789 *val = get_reg_val(id, vcpu->arch.sier[0]); 1790 break; 1791 case KVM_REG_PPC_SIER2: 1792 *val = get_reg_val(id, vcpu->arch.sier[1]); 1793 break; 1794 case KVM_REG_PPC_SIER3: 1795 *val = get_reg_val(id, vcpu->arch.sier[2]); 1796 break; 1797 case KVM_REG_PPC_IAMR: 1798 *val = get_reg_val(id, vcpu->arch.iamr); 1799 break; 1800 case KVM_REG_PPC_PSPB: 1801 *val = get_reg_val(id, vcpu->arch.pspb); 1802 break; 1803 case KVM_REG_PPC_DPDES: 1804 /* 1805 * On POWER9, where we are emulating msgsndp etc., 1806 * we return 1 bit for each vcpu, which can come from 1807 * either vcore->dpdes or doorbell_request. 1808 * On POWER8, doorbell_request is 0. 1809 */ 1810 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1811 vcpu->arch.doorbell_request); 1812 break; 1813 case KVM_REG_PPC_VTB: 1814 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1815 break; 1816 case KVM_REG_PPC_DAWR: 1817 *val = get_reg_val(id, vcpu->arch.dawr0); 1818 break; 1819 case KVM_REG_PPC_DAWRX: 1820 *val = get_reg_val(id, vcpu->arch.dawrx0); 1821 break; 1822 case KVM_REG_PPC_DAWR1: 1823 *val = get_reg_val(id, vcpu->arch.dawr1); 1824 break; 1825 case KVM_REG_PPC_DAWRX1: 1826 *val = get_reg_val(id, vcpu->arch.dawrx1); 1827 break; 1828 case KVM_REG_PPC_CIABR: 1829 *val = get_reg_val(id, vcpu->arch.ciabr); 1830 break; 1831 case KVM_REG_PPC_CSIGR: 1832 *val = get_reg_val(id, vcpu->arch.csigr); 1833 break; 1834 case KVM_REG_PPC_TACR: 1835 *val = get_reg_val(id, vcpu->arch.tacr); 1836 break; 1837 case KVM_REG_PPC_TCSCR: 1838 *val = get_reg_val(id, vcpu->arch.tcscr); 1839 break; 1840 case KVM_REG_PPC_PID: 1841 *val = get_reg_val(id, vcpu->arch.pid); 1842 break; 1843 case KVM_REG_PPC_ACOP: 1844 *val = get_reg_val(id, vcpu->arch.acop); 1845 break; 1846 case KVM_REG_PPC_WORT: 1847 *val = get_reg_val(id, vcpu->arch.wort); 1848 break; 1849 case KVM_REG_PPC_TIDR: 1850 *val = get_reg_val(id, vcpu->arch.tid); 1851 break; 1852 case KVM_REG_PPC_PSSCR: 1853 *val = get_reg_val(id, vcpu->arch.psscr); 1854 break; 1855 case KVM_REG_PPC_VPA_ADDR: 1856 spin_lock(&vcpu->arch.vpa_update_lock); 1857 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1858 spin_unlock(&vcpu->arch.vpa_update_lock); 1859 break; 1860 case KVM_REG_PPC_VPA_SLB: 1861 spin_lock(&vcpu->arch.vpa_update_lock); 1862 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1863 val->vpaval.length = vcpu->arch.slb_shadow.len; 1864 spin_unlock(&vcpu->arch.vpa_update_lock); 1865 break; 1866 case KVM_REG_PPC_VPA_DTL: 1867 spin_lock(&vcpu->arch.vpa_update_lock); 1868 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1869 val->vpaval.length = vcpu->arch.dtl.len; 1870 spin_unlock(&vcpu->arch.vpa_update_lock); 1871 break; 1872 case KVM_REG_PPC_TB_OFFSET: 1873 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1874 break; 1875 case KVM_REG_PPC_LPCR: 1876 case KVM_REG_PPC_LPCR_64: 1877 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1878 break; 1879 case KVM_REG_PPC_PPR: 1880 *val = get_reg_val(id, vcpu->arch.ppr); 1881 break; 1882 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1883 case KVM_REG_PPC_TFHAR: 1884 *val = get_reg_val(id, vcpu->arch.tfhar); 1885 break; 1886 case KVM_REG_PPC_TFIAR: 1887 *val = get_reg_val(id, vcpu->arch.tfiar); 1888 break; 1889 case KVM_REG_PPC_TEXASR: 1890 *val = get_reg_val(id, vcpu->arch.texasr); 1891 break; 1892 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1893 i = id - KVM_REG_PPC_TM_GPR0; 1894 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1895 break; 1896 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1897 { 1898 int j; 1899 i = id - KVM_REG_PPC_TM_VSR0; 1900 if (i < 32) 1901 for (j = 0; j < TS_FPRWIDTH; j++) 1902 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1903 else { 1904 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1905 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1906 else 1907 r = -ENXIO; 1908 } 1909 break; 1910 } 1911 case KVM_REG_PPC_TM_CR: 1912 *val = get_reg_val(id, vcpu->arch.cr_tm); 1913 break; 1914 case KVM_REG_PPC_TM_XER: 1915 *val = get_reg_val(id, vcpu->arch.xer_tm); 1916 break; 1917 case KVM_REG_PPC_TM_LR: 1918 *val = get_reg_val(id, vcpu->arch.lr_tm); 1919 break; 1920 case KVM_REG_PPC_TM_CTR: 1921 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1922 break; 1923 case KVM_REG_PPC_TM_FPSCR: 1924 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1925 break; 1926 case KVM_REG_PPC_TM_AMR: 1927 *val = get_reg_val(id, vcpu->arch.amr_tm); 1928 break; 1929 case KVM_REG_PPC_TM_PPR: 1930 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1931 break; 1932 case KVM_REG_PPC_TM_VRSAVE: 1933 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1934 break; 1935 case KVM_REG_PPC_TM_VSCR: 1936 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1937 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1938 else 1939 r = -ENXIO; 1940 break; 1941 case KVM_REG_PPC_TM_DSCR: 1942 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1943 break; 1944 case KVM_REG_PPC_TM_TAR: 1945 *val = get_reg_val(id, vcpu->arch.tar_tm); 1946 break; 1947 #endif 1948 case KVM_REG_PPC_ARCH_COMPAT: 1949 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1950 break; 1951 case KVM_REG_PPC_DEC_EXPIRY: 1952 *val = get_reg_val(id, vcpu->arch.dec_expires + 1953 vcpu->arch.vcore->tb_offset); 1954 break; 1955 case KVM_REG_PPC_ONLINE: 1956 *val = get_reg_val(id, vcpu->arch.online); 1957 break; 1958 case KVM_REG_PPC_PTCR: 1959 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1960 break; 1961 default: 1962 r = -EINVAL; 1963 break; 1964 } 1965 1966 return r; 1967 } 1968 1969 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1970 union kvmppc_one_reg *val) 1971 { 1972 int r = 0; 1973 long int i; 1974 unsigned long addr, len; 1975 1976 switch (id) { 1977 case KVM_REG_PPC_HIOR: 1978 /* Only allow this to be set to zero */ 1979 if (set_reg_val(id, *val)) 1980 r = -EINVAL; 1981 break; 1982 case KVM_REG_PPC_DABR: 1983 vcpu->arch.dabr = set_reg_val(id, *val); 1984 break; 1985 case KVM_REG_PPC_DABRX: 1986 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1987 break; 1988 case KVM_REG_PPC_DSCR: 1989 vcpu->arch.dscr = set_reg_val(id, *val); 1990 break; 1991 case KVM_REG_PPC_PURR: 1992 vcpu->arch.purr = set_reg_val(id, *val); 1993 break; 1994 case KVM_REG_PPC_SPURR: 1995 vcpu->arch.spurr = set_reg_val(id, *val); 1996 break; 1997 case KVM_REG_PPC_AMR: 1998 vcpu->arch.amr = set_reg_val(id, *val); 1999 break; 2000 case KVM_REG_PPC_UAMOR: 2001 vcpu->arch.uamor = set_reg_val(id, *val); 2002 break; 2003 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2004 i = id - KVM_REG_PPC_MMCR0; 2005 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 2006 break; 2007 case KVM_REG_PPC_MMCR2: 2008 vcpu->arch.mmcr[2] = set_reg_val(id, *val); 2009 break; 2010 case KVM_REG_PPC_MMCRA: 2011 vcpu->arch.mmcra = set_reg_val(id, *val); 2012 break; 2013 case KVM_REG_PPC_MMCRS: 2014 vcpu->arch.mmcrs = set_reg_val(id, *val); 2015 break; 2016 case KVM_REG_PPC_MMCR3: 2017 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2018 break; 2019 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2020 i = id - KVM_REG_PPC_PMC1; 2021 vcpu->arch.pmc[i] = set_reg_val(id, *val); 2022 break; 2023 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2024 i = id - KVM_REG_PPC_SPMC1; 2025 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2026 break; 2027 case KVM_REG_PPC_SIAR: 2028 vcpu->arch.siar = set_reg_val(id, *val); 2029 break; 2030 case KVM_REG_PPC_SDAR: 2031 vcpu->arch.sdar = set_reg_val(id, *val); 2032 break; 2033 case KVM_REG_PPC_SIER: 2034 vcpu->arch.sier[0] = set_reg_val(id, *val); 2035 break; 2036 case KVM_REG_PPC_SIER2: 2037 vcpu->arch.sier[1] = set_reg_val(id, *val); 2038 break; 2039 case KVM_REG_PPC_SIER3: 2040 vcpu->arch.sier[2] = set_reg_val(id, *val); 2041 break; 2042 case KVM_REG_PPC_IAMR: 2043 vcpu->arch.iamr = set_reg_val(id, *val); 2044 break; 2045 case KVM_REG_PPC_PSPB: 2046 vcpu->arch.pspb = set_reg_val(id, *val); 2047 break; 2048 case KVM_REG_PPC_DPDES: 2049 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2050 break; 2051 case KVM_REG_PPC_VTB: 2052 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 2053 break; 2054 case KVM_REG_PPC_DAWR: 2055 vcpu->arch.dawr0 = set_reg_val(id, *val); 2056 break; 2057 case KVM_REG_PPC_DAWRX: 2058 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; 2059 break; 2060 case KVM_REG_PPC_DAWR1: 2061 vcpu->arch.dawr1 = set_reg_val(id, *val); 2062 break; 2063 case KVM_REG_PPC_DAWRX1: 2064 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; 2065 break; 2066 case KVM_REG_PPC_CIABR: 2067 vcpu->arch.ciabr = set_reg_val(id, *val); 2068 /* Don't allow setting breakpoints in hypervisor code */ 2069 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 2070 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 2071 break; 2072 case KVM_REG_PPC_CSIGR: 2073 vcpu->arch.csigr = set_reg_val(id, *val); 2074 break; 2075 case KVM_REG_PPC_TACR: 2076 vcpu->arch.tacr = set_reg_val(id, *val); 2077 break; 2078 case KVM_REG_PPC_TCSCR: 2079 vcpu->arch.tcscr = set_reg_val(id, *val); 2080 break; 2081 case KVM_REG_PPC_PID: 2082 vcpu->arch.pid = set_reg_val(id, *val); 2083 break; 2084 case KVM_REG_PPC_ACOP: 2085 vcpu->arch.acop = set_reg_val(id, *val); 2086 break; 2087 case KVM_REG_PPC_WORT: 2088 vcpu->arch.wort = set_reg_val(id, *val); 2089 break; 2090 case KVM_REG_PPC_TIDR: 2091 vcpu->arch.tid = set_reg_val(id, *val); 2092 break; 2093 case KVM_REG_PPC_PSSCR: 2094 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2095 break; 2096 case KVM_REG_PPC_VPA_ADDR: 2097 addr = set_reg_val(id, *val); 2098 r = -EINVAL; 2099 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2100 vcpu->arch.dtl.next_gpa)) 2101 break; 2102 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2103 break; 2104 case KVM_REG_PPC_VPA_SLB: 2105 addr = val->vpaval.addr; 2106 len = val->vpaval.length; 2107 r = -EINVAL; 2108 if (addr && !vcpu->arch.vpa.next_gpa) 2109 break; 2110 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2111 break; 2112 case KVM_REG_PPC_VPA_DTL: 2113 addr = val->vpaval.addr; 2114 len = val->vpaval.length; 2115 r = -EINVAL; 2116 if (addr && (len < sizeof(struct dtl_entry) || 2117 !vcpu->arch.vpa.next_gpa)) 2118 break; 2119 len -= len % sizeof(struct dtl_entry); 2120 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2121 break; 2122 case KVM_REG_PPC_TB_OFFSET: 2123 /* round up to multiple of 2^24 */ 2124 vcpu->arch.vcore->tb_offset = 2125 ALIGN(set_reg_val(id, *val), 1UL << 24); 2126 break; 2127 case KVM_REG_PPC_LPCR: 2128 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2129 break; 2130 case KVM_REG_PPC_LPCR_64: 2131 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2132 break; 2133 case KVM_REG_PPC_PPR: 2134 vcpu->arch.ppr = set_reg_val(id, *val); 2135 break; 2136 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2137 case KVM_REG_PPC_TFHAR: 2138 vcpu->arch.tfhar = set_reg_val(id, *val); 2139 break; 2140 case KVM_REG_PPC_TFIAR: 2141 vcpu->arch.tfiar = set_reg_val(id, *val); 2142 break; 2143 case KVM_REG_PPC_TEXASR: 2144 vcpu->arch.texasr = set_reg_val(id, *val); 2145 break; 2146 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2147 i = id - KVM_REG_PPC_TM_GPR0; 2148 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2149 break; 2150 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2151 { 2152 int j; 2153 i = id - KVM_REG_PPC_TM_VSR0; 2154 if (i < 32) 2155 for (j = 0; j < TS_FPRWIDTH; j++) 2156 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2157 else 2158 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2159 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2160 else 2161 r = -ENXIO; 2162 break; 2163 } 2164 case KVM_REG_PPC_TM_CR: 2165 vcpu->arch.cr_tm = set_reg_val(id, *val); 2166 break; 2167 case KVM_REG_PPC_TM_XER: 2168 vcpu->arch.xer_tm = set_reg_val(id, *val); 2169 break; 2170 case KVM_REG_PPC_TM_LR: 2171 vcpu->arch.lr_tm = set_reg_val(id, *val); 2172 break; 2173 case KVM_REG_PPC_TM_CTR: 2174 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2175 break; 2176 case KVM_REG_PPC_TM_FPSCR: 2177 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2178 break; 2179 case KVM_REG_PPC_TM_AMR: 2180 vcpu->arch.amr_tm = set_reg_val(id, *val); 2181 break; 2182 case KVM_REG_PPC_TM_PPR: 2183 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2184 break; 2185 case KVM_REG_PPC_TM_VRSAVE: 2186 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2187 break; 2188 case KVM_REG_PPC_TM_VSCR: 2189 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2190 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2191 else 2192 r = - ENXIO; 2193 break; 2194 case KVM_REG_PPC_TM_DSCR: 2195 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2196 break; 2197 case KVM_REG_PPC_TM_TAR: 2198 vcpu->arch.tar_tm = set_reg_val(id, *val); 2199 break; 2200 #endif 2201 case KVM_REG_PPC_ARCH_COMPAT: 2202 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2203 break; 2204 case KVM_REG_PPC_DEC_EXPIRY: 2205 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2206 vcpu->arch.vcore->tb_offset; 2207 break; 2208 case KVM_REG_PPC_ONLINE: 2209 i = set_reg_val(id, *val); 2210 if (i && !vcpu->arch.online) 2211 atomic_inc(&vcpu->arch.vcore->online_count); 2212 else if (!i && vcpu->arch.online) 2213 atomic_dec(&vcpu->arch.vcore->online_count); 2214 vcpu->arch.online = i; 2215 break; 2216 case KVM_REG_PPC_PTCR: 2217 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2218 break; 2219 default: 2220 r = -EINVAL; 2221 break; 2222 } 2223 2224 return r; 2225 } 2226 2227 /* 2228 * On POWER9, threads are independent and can be in different partitions. 2229 * Therefore we consider each thread to be a subcore. 2230 * There is a restriction that all threads have to be in the same 2231 * MMU mode (radix or HPT), unfortunately, but since we only support 2232 * HPT guests on a HPT host so far, that isn't an impediment yet. 2233 */ 2234 static int threads_per_vcore(struct kvm *kvm) 2235 { 2236 if (kvm->arch.threads_indep) 2237 return 1; 2238 return threads_per_subcore; 2239 } 2240 2241 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2242 { 2243 struct kvmppc_vcore *vcore; 2244 2245 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2246 2247 if (vcore == NULL) 2248 return NULL; 2249 2250 spin_lock_init(&vcore->lock); 2251 spin_lock_init(&vcore->stoltb_lock); 2252 rcuwait_init(&vcore->wait); 2253 vcore->preempt_tb = TB_NIL; 2254 vcore->lpcr = kvm->arch.lpcr; 2255 vcore->first_vcpuid = id; 2256 vcore->kvm = kvm; 2257 INIT_LIST_HEAD(&vcore->preempt_list); 2258 2259 return vcore; 2260 } 2261 2262 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2263 static struct debugfs_timings_element { 2264 const char *name; 2265 size_t offset; 2266 } timings[] = { 2267 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2268 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2269 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2270 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2271 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2272 }; 2273 2274 #define N_TIMINGS (ARRAY_SIZE(timings)) 2275 2276 struct debugfs_timings_state { 2277 struct kvm_vcpu *vcpu; 2278 unsigned int buflen; 2279 char buf[N_TIMINGS * 100]; 2280 }; 2281 2282 static int debugfs_timings_open(struct inode *inode, struct file *file) 2283 { 2284 struct kvm_vcpu *vcpu = inode->i_private; 2285 struct debugfs_timings_state *p; 2286 2287 p = kzalloc(sizeof(*p), GFP_KERNEL); 2288 if (!p) 2289 return -ENOMEM; 2290 2291 kvm_get_kvm(vcpu->kvm); 2292 p->vcpu = vcpu; 2293 file->private_data = p; 2294 2295 return nonseekable_open(inode, file); 2296 } 2297 2298 static int debugfs_timings_release(struct inode *inode, struct file *file) 2299 { 2300 struct debugfs_timings_state *p = file->private_data; 2301 2302 kvm_put_kvm(p->vcpu->kvm); 2303 kfree(p); 2304 return 0; 2305 } 2306 2307 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2308 size_t len, loff_t *ppos) 2309 { 2310 struct debugfs_timings_state *p = file->private_data; 2311 struct kvm_vcpu *vcpu = p->vcpu; 2312 char *s, *buf_end; 2313 struct kvmhv_tb_accumulator tb; 2314 u64 count; 2315 loff_t pos; 2316 ssize_t n; 2317 int i, loops; 2318 bool ok; 2319 2320 if (!p->buflen) { 2321 s = p->buf; 2322 buf_end = s + sizeof(p->buf); 2323 for (i = 0; i < N_TIMINGS; ++i) { 2324 struct kvmhv_tb_accumulator *acc; 2325 2326 acc = (struct kvmhv_tb_accumulator *) 2327 ((unsigned long)vcpu + timings[i].offset); 2328 ok = false; 2329 for (loops = 0; loops < 1000; ++loops) { 2330 count = acc->seqcount; 2331 if (!(count & 1)) { 2332 smp_rmb(); 2333 tb = *acc; 2334 smp_rmb(); 2335 if (count == acc->seqcount) { 2336 ok = true; 2337 break; 2338 } 2339 } 2340 udelay(1); 2341 } 2342 if (!ok) 2343 snprintf(s, buf_end - s, "%s: stuck\n", 2344 timings[i].name); 2345 else 2346 snprintf(s, buf_end - s, 2347 "%s: %llu %llu %llu %llu\n", 2348 timings[i].name, count / 2, 2349 tb_to_ns(tb.tb_total), 2350 tb_to_ns(tb.tb_min), 2351 tb_to_ns(tb.tb_max)); 2352 s += strlen(s); 2353 } 2354 p->buflen = s - p->buf; 2355 } 2356 2357 pos = *ppos; 2358 if (pos >= p->buflen) 2359 return 0; 2360 if (len > p->buflen - pos) 2361 len = p->buflen - pos; 2362 n = copy_to_user(buf, p->buf + pos, len); 2363 if (n) { 2364 if (n == len) 2365 return -EFAULT; 2366 len -= n; 2367 } 2368 *ppos = pos + len; 2369 return len; 2370 } 2371 2372 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2373 size_t len, loff_t *ppos) 2374 { 2375 return -EACCES; 2376 } 2377 2378 static const struct file_operations debugfs_timings_ops = { 2379 .owner = THIS_MODULE, 2380 .open = debugfs_timings_open, 2381 .release = debugfs_timings_release, 2382 .read = debugfs_timings_read, 2383 .write = debugfs_timings_write, 2384 .llseek = generic_file_llseek, 2385 }; 2386 2387 /* Create a debugfs directory for the vcpu */ 2388 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2389 { 2390 char buf[16]; 2391 struct kvm *kvm = vcpu->kvm; 2392 2393 snprintf(buf, sizeof(buf), "vcpu%u", id); 2394 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2395 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu, 2396 &debugfs_timings_ops); 2397 } 2398 2399 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2400 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2401 { 2402 } 2403 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2404 2405 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2406 { 2407 int err; 2408 int core; 2409 struct kvmppc_vcore *vcore; 2410 struct kvm *kvm; 2411 unsigned int id; 2412 2413 kvm = vcpu->kvm; 2414 id = vcpu->vcpu_id; 2415 2416 vcpu->arch.shared = &vcpu->arch.shregs; 2417 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2418 /* 2419 * The shared struct is never shared on HV, 2420 * so we can always use host endianness 2421 */ 2422 #ifdef __BIG_ENDIAN__ 2423 vcpu->arch.shared_big_endian = true; 2424 #else 2425 vcpu->arch.shared_big_endian = false; 2426 #endif 2427 #endif 2428 vcpu->arch.mmcr[0] = MMCR0_FC; 2429 vcpu->arch.ctrl = CTRL_RUNLATCH; 2430 /* default to host PVR, since we can't spoof it */ 2431 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2432 spin_lock_init(&vcpu->arch.vpa_update_lock); 2433 spin_lock_init(&vcpu->arch.tbacct_lock); 2434 vcpu->arch.busy_preempt = TB_NIL; 2435 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2436 2437 /* 2438 * Set the default HFSCR for the guest from the host value. 2439 * This value is only used on POWER9. 2440 * On POWER9, we want to virtualize the doorbell facility, so we 2441 * don't set the HFSCR_MSGP bit, and that causes those instructions 2442 * to trap and then we emulate them. 2443 */ 2444 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2445 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX; 2446 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2447 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2448 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2449 vcpu->arch.hfscr |= HFSCR_TM; 2450 } 2451 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2452 vcpu->arch.hfscr |= HFSCR_TM; 2453 2454 kvmppc_mmu_book3s_hv_init(vcpu); 2455 2456 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2457 2458 init_waitqueue_head(&vcpu->arch.cpu_run); 2459 2460 mutex_lock(&kvm->lock); 2461 vcore = NULL; 2462 err = -EINVAL; 2463 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2464 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2465 pr_devel("KVM: VCPU ID too high\n"); 2466 core = KVM_MAX_VCORES; 2467 } else { 2468 BUG_ON(kvm->arch.smt_mode != 1); 2469 core = kvmppc_pack_vcpu_id(kvm, id); 2470 } 2471 } else { 2472 core = id / kvm->arch.smt_mode; 2473 } 2474 if (core < KVM_MAX_VCORES) { 2475 vcore = kvm->arch.vcores[core]; 2476 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2477 pr_devel("KVM: collision on id %u", id); 2478 vcore = NULL; 2479 } else if (!vcore) { 2480 /* 2481 * Take mmu_setup_lock for mutual exclusion 2482 * with kvmppc_update_lpcr(). 2483 */ 2484 err = -ENOMEM; 2485 vcore = kvmppc_vcore_create(kvm, 2486 id & ~(kvm->arch.smt_mode - 1)); 2487 mutex_lock(&kvm->arch.mmu_setup_lock); 2488 kvm->arch.vcores[core] = vcore; 2489 kvm->arch.online_vcores++; 2490 mutex_unlock(&kvm->arch.mmu_setup_lock); 2491 } 2492 } 2493 mutex_unlock(&kvm->lock); 2494 2495 if (!vcore) 2496 return err; 2497 2498 spin_lock(&vcore->lock); 2499 ++vcore->num_threads; 2500 spin_unlock(&vcore->lock); 2501 vcpu->arch.vcore = vcore; 2502 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2503 vcpu->arch.thread_cpu = -1; 2504 vcpu->arch.prev_cpu = -1; 2505 2506 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2507 kvmppc_sanity_check(vcpu); 2508 2509 debugfs_vcpu_init(vcpu, id); 2510 2511 return 0; 2512 } 2513 2514 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2515 unsigned long flags) 2516 { 2517 int err; 2518 int esmt = 0; 2519 2520 if (flags) 2521 return -EINVAL; 2522 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2523 return -EINVAL; 2524 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2525 /* 2526 * On POWER8 (or POWER7), the threading mode is "strict", 2527 * so we pack smt_mode vcpus per vcore. 2528 */ 2529 if (smt_mode > threads_per_subcore) 2530 return -EINVAL; 2531 } else { 2532 /* 2533 * On POWER9, the threading mode is "loose", 2534 * so each vcpu gets its own vcore. 2535 */ 2536 esmt = smt_mode; 2537 smt_mode = 1; 2538 } 2539 mutex_lock(&kvm->lock); 2540 err = -EBUSY; 2541 if (!kvm->arch.online_vcores) { 2542 kvm->arch.smt_mode = smt_mode; 2543 kvm->arch.emul_smt_mode = esmt; 2544 err = 0; 2545 } 2546 mutex_unlock(&kvm->lock); 2547 2548 return err; 2549 } 2550 2551 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2552 { 2553 if (vpa->pinned_addr) 2554 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2555 vpa->dirty); 2556 } 2557 2558 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2559 { 2560 spin_lock(&vcpu->arch.vpa_update_lock); 2561 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2562 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2563 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2564 spin_unlock(&vcpu->arch.vpa_update_lock); 2565 } 2566 2567 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2568 { 2569 /* Indicate we want to get back into the guest */ 2570 return 1; 2571 } 2572 2573 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2574 { 2575 unsigned long dec_nsec, now; 2576 2577 now = get_tb(); 2578 if (now > vcpu->arch.dec_expires) { 2579 /* decrementer has already gone negative */ 2580 kvmppc_core_queue_dec(vcpu); 2581 kvmppc_core_prepare_to_enter(vcpu); 2582 return; 2583 } 2584 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2585 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2586 vcpu->arch.timer_running = 1; 2587 } 2588 2589 extern int __kvmppc_vcore_entry(void); 2590 2591 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2592 struct kvm_vcpu *vcpu) 2593 { 2594 u64 now; 2595 2596 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2597 return; 2598 spin_lock_irq(&vcpu->arch.tbacct_lock); 2599 now = mftb(); 2600 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2601 vcpu->arch.stolen_logged; 2602 vcpu->arch.busy_preempt = now; 2603 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2604 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2605 --vc->n_runnable; 2606 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2607 } 2608 2609 static int kvmppc_grab_hwthread(int cpu) 2610 { 2611 struct paca_struct *tpaca; 2612 long timeout = 10000; 2613 2614 tpaca = paca_ptrs[cpu]; 2615 2616 /* Ensure the thread won't go into the kernel if it wakes */ 2617 tpaca->kvm_hstate.kvm_vcpu = NULL; 2618 tpaca->kvm_hstate.kvm_vcore = NULL; 2619 tpaca->kvm_hstate.napping = 0; 2620 smp_wmb(); 2621 tpaca->kvm_hstate.hwthread_req = 1; 2622 2623 /* 2624 * If the thread is already executing in the kernel (e.g. handling 2625 * a stray interrupt), wait for it to get back to nap mode. 2626 * The smp_mb() is to ensure that our setting of hwthread_req 2627 * is visible before we look at hwthread_state, so if this 2628 * races with the code at system_reset_pSeries and the thread 2629 * misses our setting of hwthread_req, we are sure to see its 2630 * setting of hwthread_state, and vice versa. 2631 */ 2632 smp_mb(); 2633 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2634 if (--timeout <= 0) { 2635 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2636 return -EBUSY; 2637 } 2638 udelay(1); 2639 } 2640 return 0; 2641 } 2642 2643 static void kvmppc_release_hwthread(int cpu) 2644 { 2645 struct paca_struct *tpaca; 2646 2647 tpaca = paca_ptrs[cpu]; 2648 tpaca->kvm_hstate.hwthread_req = 0; 2649 tpaca->kvm_hstate.kvm_vcpu = NULL; 2650 tpaca->kvm_hstate.kvm_vcore = NULL; 2651 tpaca->kvm_hstate.kvm_split_mode = NULL; 2652 } 2653 2654 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2655 { 2656 struct kvm_nested_guest *nested = vcpu->arch.nested; 2657 cpumask_t *cpu_in_guest; 2658 int i; 2659 2660 cpu = cpu_first_thread_sibling(cpu); 2661 if (nested) { 2662 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2663 cpu_in_guest = &nested->cpu_in_guest; 2664 } else { 2665 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2666 cpu_in_guest = &kvm->arch.cpu_in_guest; 2667 } 2668 /* 2669 * Make sure setting of bit in need_tlb_flush precedes 2670 * testing of cpu_in_guest bits. The matching barrier on 2671 * the other side is the first smp_mb() in kvmppc_run_core(). 2672 */ 2673 smp_mb(); 2674 for (i = 0; i < threads_per_core; ++i) 2675 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2676 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2677 } 2678 2679 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2680 { 2681 struct kvm_nested_guest *nested = vcpu->arch.nested; 2682 struct kvm *kvm = vcpu->kvm; 2683 int prev_cpu; 2684 2685 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2686 return; 2687 2688 if (nested) 2689 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2690 else 2691 prev_cpu = vcpu->arch.prev_cpu; 2692 2693 /* 2694 * With radix, the guest can do TLB invalidations itself, 2695 * and it could choose to use the local form (tlbiel) if 2696 * it is invalidating a translation that has only ever been 2697 * used on one vcpu. However, that doesn't mean it has 2698 * only ever been used on one physical cpu, since vcpus 2699 * can move around between pcpus. To cope with this, when 2700 * a vcpu moves from one pcpu to another, we need to tell 2701 * any vcpus running on the same core as this vcpu previously 2702 * ran to flush the TLB. The TLB is shared between threads, 2703 * so we use a single bit in .need_tlb_flush for all 4 threads. 2704 */ 2705 if (prev_cpu != pcpu) { 2706 if (prev_cpu >= 0 && 2707 cpu_first_thread_sibling(prev_cpu) != 2708 cpu_first_thread_sibling(pcpu)) 2709 radix_flush_cpu(kvm, prev_cpu, vcpu); 2710 if (nested) 2711 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2712 else 2713 vcpu->arch.prev_cpu = pcpu; 2714 } 2715 } 2716 2717 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2718 { 2719 int cpu; 2720 struct paca_struct *tpaca; 2721 struct kvm *kvm = vc->kvm; 2722 2723 cpu = vc->pcpu; 2724 if (vcpu) { 2725 if (vcpu->arch.timer_running) { 2726 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2727 vcpu->arch.timer_running = 0; 2728 } 2729 cpu += vcpu->arch.ptid; 2730 vcpu->cpu = vc->pcpu; 2731 vcpu->arch.thread_cpu = cpu; 2732 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2733 } 2734 tpaca = paca_ptrs[cpu]; 2735 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2736 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2737 tpaca->kvm_hstate.fake_suspend = 0; 2738 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2739 smp_wmb(); 2740 tpaca->kvm_hstate.kvm_vcore = vc; 2741 if (cpu != smp_processor_id()) 2742 kvmppc_ipi_thread(cpu); 2743 } 2744 2745 static void kvmppc_wait_for_nap(int n_threads) 2746 { 2747 int cpu = smp_processor_id(); 2748 int i, loops; 2749 2750 if (n_threads <= 1) 2751 return; 2752 for (loops = 0; loops < 1000000; ++loops) { 2753 /* 2754 * Check if all threads are finished. 2755 * We set the vcore pointer when starting a thread 2756 * and the thread clears it when finished, so we look 2757 * for any threads that still have a non-NULL vcore ptr. 2758 */ 2759 for (i = 1; i < n_threads; ++i) 2760 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2761 break; 2762 if (i == n_threads) { 2763 HMT_medium(); 2764 return; 2765 } 2766 HMT_low(); 2767 } 2768 HMT_medium(); 2769 for (i = 1; i < n_threads; ++i) 2770 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2771 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2772 } 2773 2774 /* 2775 * Check that we are on thread 0 and that any other threads in 2776 * this core are off-line. Then grab the threads so they can't 2777 * enter the kernel. 2778 */ 2779 static int on_primary_thread(void) 2780 { 2781 int cpu = smp_processor_id(); 2782 int thr; 2783 2784 /* Are we on a primary subcore? */ 2785 if (cpu_thread_in_subcore(cpu)) 2786 return 0; 2787 2788 thr = 0; 2789 while (++thr < threads_per_subcore) 2790 if (cpu_online(cpu + thr)) 2791 return 0; 2792 2793 /* Grab all hw threads so they can't go into the kernel */ 2794 for (thr = 1; thr < threads_per_subcore; ++thr) { 2795 if (kvmppc_grab_hwthread(cpu + thr)) { 2796 /* Couldn't grab one; let the others go */ 2797 do { 2798 kvmppc_release_hwthread(cpu + thr); 2799 } while (--thr > 0); 2800 return 0; 2801 } 2802 } 2803 return 1; 2804 } 2805 2806 /* 2807 * A list of virtual cores for each physical CPU. 2808 * These are vcores that could run but their runner VCPU tasks are 2809 * (or may be) preempted. 2810 */ 2811 struct preempted_vcore_list { 2812 struct list_head list; 2813 spinlock_t lock; 2814 }; 2815 2816 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2817 2818 static void init_vcore_lists(void) 2819 { 2820 int cpu; 2821 2822 for_each_possible_cpu(cpu) { 2823 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2824 spin_lock_init(&lp->lock); 2825 INIT_LIST_HEAD(&lp->list); 2826 } 2827 } 2828 2829 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2830 { 2831 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2832 2833 vc->vcore_state = VCORE_PREEMPT; 2834 vc->pcpu = smp_processor_id(); 2835 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2836 spin_lock(&lp->lock); 2837 list_add_tail(&vc->preempt_list, &lp->list); 2838 spin_unlock(&lp->lock); 2839 } 2840 2841 /* Start accumulating stolen time */ 2842 kvmppc_core_start_stolen(vc); 2843 } 2844 2845 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2846 { 2847 struct preempted_vcore_list *lp; 2848 2849 kvmppc_core_end_stolen(vc); 2850 if (!list_empty(&vc->preempt_list)) { 2851 lp = &per_cpu(preempted_vcores, vc->pcpu); 2852 spin_lock(&lp->lock); 2853 list_del_init(&vc->preempt_list); 2854 spin_unlock(&lp->lock); 2855 } 2856 vc->vcore_state = VCORE_INACTIVE; 2857 } 2858 2859 /* 2860 * This stores information about the virtual cores currently 2861 * assigned to a physical core. 2862 */ 2863 struct core_info { 2864 int n_subcores; 2865 int max_subcore_threads; 2866 int total_threads; 2867 int subcore_threads[MAX_SUBCORES]; 2868 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2869 }; 2870 2871 /* 2872 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2873 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2874 */ 2875 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2876 2877 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2878 { 2879 memset(cip, 0, sizeof(*cip)); 2880 cip->n_subcores = 1; 2881 cip->max_subcore_threads = vc->num_threads; 2882 cip->total_threads = vc->num_threads; 2883 cip->subcore_threads[0] = vc->num_threads; 2884 cip->vc[0] = vc; 2885 } 2886 2887 static bool subcore_config_ok(int n_subcores, int n_threads) 2888 { 2889 /* 2890 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2891 * split-core mode, with one thread per subcore. 2892 */ 2893 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2894 return n_subcores <= 4 && n_threads == 1; 2895 2896 /* On POWER8, can only dynamically split if unsplit to begin with */ 2897 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2898 return false; 2899 if (n_subcores > MAX_SUBCORES) 2900 return false; 2901 if (n_subcores > 1) { 2902 if (!(dynamic_mt_modes & 2)) 2903 n_subcores = 4; 2904 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2905 return false; 2906 } 2907 2908 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2909 } 2910 2911 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2912 { 2913 vc->entry_exit_map = 0; 2914 vc->in_guest = 0; 2915 vc->napping_threads = 0; 2916 vc->conferring_threads = 0; 2917 vc->tb_offset_applied = 0; 2918 } 2919 2920 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2921 { 2922 int n_threads = vc->num_threads; 2923 int sub; 2924 2925 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2926 return false; 2927 2928 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2929 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2930 return false; 2931 2932 if (n_threads < cip->max_subcore_threads) 2933 n_threads = cip->max_subcore_threads; 2934 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2935 return false; 2936 cip->max_subcore_threads = n_threads; 2937 2938 sub = cip->n_subcores; 2939 ++cip->n_subcores; 2940 cip->total_threads += vc->num_threads; 2941 cip->subcore_threads[sub] = vc->num_threads; 2942 cip->vc[sub] = vc; 2943 init_vcore_to_run(vc); 2944 list_del_init(&vc->preempt_list); 2945 2946 return true; 2947 } 2948 2949 /* 2950 * Work out whether it is possible to piggyback the execution of 2951 * vcore *pvc onto the execution of the other vcores described in *cip. 2952 */ 2953 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2954 int target_threads) 2955 { 2956 if (cip->total_threads + pvc->num_threads > target_threads) 2957 return false; 2958 2959 return can_dynamic_split(pvc, cip); 2960 } 2961 2962 static void prepare_threads(struct kvmppc_vcore *vc) 2963 { 2964 int i; 2965 struct kvm_vcpu *vcpu; 2966 2967 for_each_runnable_thread(i, vcpu, vc) { 2968 if (signal_pending(vcpu->arch.run_task)) 2969 vcpu->arch.ret = -EINTR; 2970 else if (no_mixing_hpt_and_radix && 2971 kvm_is_radix(vc->kvm) != radix_enabled()) 2972 vcpu->arch.ret = -EINVAL; 2973 else if (vcpu->arch.vpa.update_pending || 2974 vcpu->arch.slb_shadow.update_pending || 2975 vcpu->arch.dtl.update_pending) 2976 vcpu->arch.ret = RESUME_GUEST; 2977 else 2978 continue; 2979 kvmppc_remove_runnable(vc, vcpu); 2980 wake_up(&vcpu->arch.cpu_run); 2981 } 2982 } 2983 2984 static void collect_piggybacks(struct core_info *cip, int target_threads) 2985 { 2986 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2987 struct kvmppc_vcore *pvc, *vcnext; 2988 2989 spin_lock(&lp->lock); 2990 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2991 if (!spin_trylock(&pvc->lock)) 2992 continue; 2993 prepare_threads(pvc); 2994 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 2995 list_del_init(&pvc->preempt_list); 2996 if (pvc->runner == NULL) { 2997 pvc->vcore_state = VCORE_INACTIVE; 2998 kvmppc_core_end_stolen(pvc); 2999 } 3000 spin_unlock(&pvc->lock); 3001 continue; 3002 } 3003 if (!can_piggyback(pvc, cip, target_threads)) { 3004 spin_unlock(&pvc->lock); 3005 continue; 3006 } 3007 kvmppc_core_end_stolen(pvc); 3008 pvc->vcore_state = VCORE_PIGGYBACK; 3009 if (cip->total_threads >= target_threads) 3010 break; 3011 } 3012 spin_unlock(&lp->lock); 3013 } 3014 3015 static bool recheck_signals_and_mmu(struct core_info *cip) 3016 { 3017 int sub, i; 3018 struct kvm_vcpu *vcpu; 3019 struct kvmppc_vcore *vc; 3020 3021 for (sub = 0; sub < cip->n_subcores; ++sub) { 3022 vc = cip->vc[sub]; 3023 if (!vc->kvm->arch.mmu_ready) 3024 return true; 3025 for_each_runnable_thread(i, vcpu, vc) 3026 if (signal_pending(vcpu->arch.run_task)) 3027 return true; 3028 } 3029 return false; 3030 } 3031 3032 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3033 { 3034 int still_running = 0, i; 3035 u64 now; 3036 long ret; 3037 struct kvm_vcpu *vcpu; 3038 3039 spin_lock(&vc->lock); 3040 now = get_tb(); 3041 for_each_runnable_thread(i, vcpu, vc) { 3042 /* 3043 * It's safe to unlock the vcore in the loop here, because 3044 * for_each_runnable_thread() is safe against removal of 3045 * the vcpu, and the vcore state is VCORE_EXITING here, 3046 * so any vcpus becoming runnable will have their arch.trap 3047 * set to zero and can't actually run in the guest. 3048 */ 3049 spin_unlock(&vc->lock); 3050 /* cancel pending dec exception if dec is positive */ 3051 if (now < vcpu->arch.dec_expires && 3052 kvmppc_core_pending_dec(vcpu)) 3053 kvmppc_core_dequeue_dec(vcpu); 3054 3055 trace_kvm_guest_exit(vcpu); 3056 3057 ret = RESUME_GUEST; 3058 if (vcpu->arch.trap) 3059 ret = kvmppc_handle_exit_hv(vcpu, 3060 vcpu->arch.run_task); 3061 3062 vcpu->arch.ret = ret; 3063 vcpu->arch.trap = 0; 3064 3065 spin_lock(&vc->lock); 3066 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3067 if (vcpu->arch.pending_exceptions) 3068 kvmppc_core_prepare_to_enter(vcpu); 3069 if (vcpu->arch.ceded) 3070 kvmppc_set_timer(vcpu); 3071 else 3072 ++still_running; 3073 } else { 3074 kvmppc_remove_runnable(vc, vcpu); 3075 wake_up(&vcpu->arch.cpu_run); 3076 } 3077 } 3078 if (!is_master) { 3079 if (still_running > 0) { 3080 kvmppc_vcore_preempt(vc); 3081 } else if (vc->runner) { 3082 vc->vcore_state = VCORE_PREEMPT; 3083 kvmppc_core_start_stolen(vc); 3084 } else { 3085 vc->vcore_state = VCORE_INACTIVE; 3086 } 3087 if (vc->n_runnable > 0 && vc->runner == NULL) { 3088 /* make sure there's a candidate runner awake */ 3089 i = -1; 3090 vcpu = next_runnable_thread(vc, &i); 3091 wake_up(&vcpu->arch.cpu_run); 3092 } 3093 } 3094 spin_unlock(&vc->lock); 3095 } 3096 3097 /* 3098 * Clear core from the list of active host cores as we are about to 3099 * enter the guest. Only do this if it is the primary thread of the 3100 * core (not if a subcore) that is entering the guest. 3101 */ 3102 static inline int kvmppc_clear_host_core(unsigned int cpu) 3103 { 3104 int core; 3105 3106 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3107 return 0; 3108 /* 3109 * Memory barrier can be omitted here as we will do a smp_wmb() 3110 * later in kvmppc_start_thread and we need ensure that state is 3111 * visible to other CPUs only after we enter guest. 3112 */ 3113 core = cpu >> threads_shift; 3114 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3115 return 0; 3116 } 3117 3118 /* 3119 * Advertise this core as an active host core since we exited the guest 3120 * Only need to do this if it is the primary thread of the core that is 3121 * exiting. 3122 */ 3123 static inline int kvmppc_set_host_core(unsigned int cpu) 3124 { 3125 int core; 3126 3127 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3128 return 0; 3129 3130 /* 3131 * Memory barrier can be omitted here because we do a spin_unlock 3132 * immediately after this which provides the memory barrier. 3133 */ 3134 core = cpu >> threads_shift; 3135 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3136 return 0; 3137 } 3138 3139 static void set_irq_happened(int trap) 3140 { 3141 switch (trap) { 3142 case BOOK3S_INTERRUPT_EXTERNAL: 3143 local_paca->irq_happened |= PACA_IRQ_EE; 3144 break; 3145 case BOOK3S_INTERRUPT_H_DOORBELL: 3146 local_paca->irq_happened |= PACA_IRQ_DBELL; 3147 break; 3148 case BOOK3S_INTERRUPT_HMI: 3149 local_paca->irq_happened |= PACA_IRQ_HMI; 3150 break; 3151 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3152 replay_system_reset(); 3153 break; 3154 } 3155 } 3156 3157 /* 3158 * Run a set of guest threads on a physical core. 3159 * Called with vc->lock held. 3160 */ 3161 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3162 { 3163 struct kvm_vcpu *vcpu; 3164 int i; 3165 int srcu_idx; 3166 struct core_info core_info; 3167 struct kvmppc_vcore *pvc; 3168 struct kvm_split_mode split_info, *sip; 3169 int split, subcore_size, active; 3170 int sub; 3171 bool thr0_done; 3172 unsigned long cmd_bit, stat_bit; 3173 int pcpu, thr; 3174 int target_threads; 3175 int controlled_threads; 3176 int trap; 3177 bool is_power8; 3178 3179 /* 3180 * Remove from the list any threads that have a signal pending 3181 * or need a VPA update done 3182 */ 3183 prepare_threads(vc); 3184 3185 /* if the runner is no longer runnable, let the caller pick a new one */ 3186 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3187 return; 3188 3189 /* 3190 * Initialize *vc. 3191 */ 3192 init_vcore_to_run(vc); 3193 vc->preempt_tb = TB_NIL; 3194 3195 /* 3196 * Number of threads that we will be controlling: the same as 3197 * the number of threads per subcore, except on POWER9, 3198 * where it's 1 because the threads are (mostly) independent. 3199 */ 3200 controlled_threads = threads_per_vcore(vc->kvm); 3201 3202 /* 3203 * Make sure we are running on primary threads, and that secondary 3204 * threads are offline. Also check if the number of threads in this 3205 * guest are greater than the current system threads per guest. 3206 * On POWER9, we need to be not in independent-threads mode if 3207 * this is a HPT guest on a radix host machine where the 3208 * CPU threads may not be in different MMU modes. 3209 */ 3210 if ((controlled_threads > 1) && 3211 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3212 for_each_runnable_thread(i, vcpu, vc) { 3213 vcpu->arch.ret = -EBUSY; 3214 kvmppc_remove_runnable(vc, vcpu); 3215 wake_up(&vcpu->arch.cpu_run); 3216 } 3217 goto out; 3218 } 3219 3220 /* 3221 * See if we could run any other vcores on the physical core 3222 * along with this one. 3223 */ 3224 init_core_info(&core_info, vc); 3225 pcpu = smp_processor_id(); 3226 target_threads = controlled_threads; 3227 if (target_smt_mode && target_smt_mode < target_threads) 3228 target_threads = target_smt_mode; 3229 if (vc->num_threads < target_threads) 3230 collect_piggybacks(&core_info, target_threads); 3231 3232 /* 3233 * On radix, arrange for TLB flushing if necessary. 3234 * This has to be done before disabling interrupts since 3235 * it uses smp_call_function(). 3236 */ 3237 pcpu = smp_processor_id(); 3238 if (kvm_is_radix(vc->kvm)) { 3239 for (sub = 0; sub < core_info.n_subcores; ++sub) 3240 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3241 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3242 } 3243 3244 /* 3245 * Hard-disable interrupts, and check resched flag and signals. 3246 * If we need to reschedule or deliver a signal, clean up 3247 * and return without going into the guest(s). 3248 * If the mmu_ready flag has been cleared, don't go into the 3249 * guest because that means a HPT resize operation is in progress. 3250 */ 3251 local_irq_disable(); 3252 hard_irq_disable(); 3253 if (lazy_irq_pending() || need_resched() || 3254 recheck_signals_and_mmu(&core_info)) { 3255 local_irq_enable(); 3256 vc->vcore_state = VCORE_INACTIVE; 3257 /* Unlock all except the primary vcore */ 3258 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3259 pvc = core_info.vc[sub]; 3260 /* Put back on to the preempted vcores list */ 3261 kvmppc_vcore_preempt(pvc); 3262 spin_unlock(&pvc->lock); 3263 } 3264 for (i = 0; i < controlled_threads; ++i) 3265 kvmppc_release_hwthread(pcpu + i); 3266 return; 3267 } 3268 3269 kvmppc_clear_host_core(pcpu); 3270 3271 /* Decide on micro-threading (split-core) mode */ 3272 subcore_size = threads_per_subcore; 3273 cmd_bit = stat_bit = 0; 3274 split = core_info.n_subcores; 3275 sip = NULL; 3276 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3277 && !cpu_has_feature(CPU_FTR_ARCH_300); 3278 3279 if (split > 1) { 3280 sip = &split_info; 3281 memset(&split_info, 0, sizeof(split_info)); 3282 for (sub = 0; sub < core_info.n_subcores; ++sub) 3283 split_info.vc[sub] = core_info.vc[sub]; 3284 3285 if (is_power8) { 3286 if (split == 2 && (dynamic_mt_modes & 2)) { 3287 cmd_bit = HID0_POWER8_1TO2LPAR; 3288 stat_bit = HID0_POWER8_2LPARMODE; 3289 } else { 3290 split = 4; 3291 cmd_bit = HID0_POWER8_1TO4LPAR; 3292 stat_bit = HID0_POWER8_4LPARMODE; 3293 } 3294 subcore_size = MAX_SMT_THREADS / split; 3295 split_info.rpr = mfspr(SPRN_RPR); 3296 split_info.pmmar = mfspr(SPRN_PMMAR); 3297 split_info.ldbar = mfspr(SPRN_LDBAR); 3298 split_info.subcore_size = subcore_size; 3299 } else { 3300 split_info.subcore_size = 1; 3301 } 3302 3303 /* order writes to split_info before kvm_split_mode pointer */ 3304 smp_wmb(); 3305 } 3306 3307 for (thr = 0; thr < controlled_threads; ++thr) { 3308 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3309 3310 paca->kvm_hstate.napping = 0; 3311 paca->kvm_hstate.kvm_split_mode = sip; 3312 } 3313 3314 /* Initiate micro-threading (split-core) on POWER8 if required */ 3315 if (cmd_bit) { 3316 unsigned long hid0 = mfspr(SPRN_HID0); 3317 3318 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3319 mb(); 3320 mtspr(SPRN_HID0, hid0); 3321 isync(); 3322 for (;;) { 3323 hid0 = mfspr(SPRN_HID0); 3324 if (hid0 & stat_bit) 3325 break; 3326 cpu_relax(); 3327 } 3328 } 3329 3330 /* 3331 * On POWER8, set RWMR register. 3332 * Since it only affects PURR and SPURR, it doesn't affect 3333 * the host, so we don't save/restore the host value. 3334 */ 3335 if (is_power8) { 3336 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3337 int n_online = atomic_read(&vc->online_count); 3338 3339 /* 3340 * Use the 8-thread value if we're doing split-core 3341 * or if the vcore's online count looks bogus. 3342 */ 3343 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3344 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3345 rwmr_val = p8_rwmr_values[n_online]; 3346 mtspr(SPRN_RWMR, rwmr_val); 3347 } 3348 3349 /* Start all the threads */ 3350 active = 0; 3351 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3352 thr = is_power8 ? subcore_thread_map[sub] : sub; 3353 thr0_done = false; 3354 active |= 1 << thr; 3355 pvc = core_info.vc[sub]; 3356 pvc->pcpu = pcpu + thr; 3357 for_each_runnable_thread(i, vcpu, pvc) { 3358 kvmppc_start_thread(vcpu, pvc); 3359 kvmppc_create_dtl_entry(vcpu, pvc); 3360 trace_kvm_guest_enter(vcpu); 3361 if (!vcpu->arch.ptid) 3362 thr0_done = true; 3363 active |= 1 << (thr + vcpu->arch.ptid); 3364 } 3365 /* 3366 * We need to start the first thread of each subcore 3367 * even if it doesn't have a vcpu. 3368 */ 3369 if (!thr0_done) 3370 kvmppc_start_thread(NULL, pvc); 3371 } 3372 3373 /* 3374 * Ensure that split_info.do_nap is set after setting 3375 * the vcore pointer in the PACA of the secondaries. 3376 */ 3377 smp_mb(); 3378 3379 /* 3380 * When doing micro-threading, poke the inactive threads as well. 3381 * This gets them to the nap instruction after kvm_do_nap, 3382 * which reduces the time taken to unsplit later. 3383 */ 3384 if (cmd_bit) { 3385 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3386 for (thr = 1; thr < threads_per_subcore; ++thr) 3387 if (!(active & (1 << thr))) 3388 kvmppc_ipi_thread(pcpu + thr); 3389 } 3390 3391 vc->vcore_state = VCORE_RUNNING; 3392 preempt_disable(); 3393 3394 trace_kvmppc_run_core(vc, 0); 3395 3396 for (sub = 0; sub < core_info.n_subcores; ++sub) 3397 spin_unlock(&core_info.vc[sub]->lock); 3398 3399 guest_enter_irqoff(); 3400 3401 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3402 3403 this_cpu_disable_ftrace(); 3404 3405 /* 3406 * Interrupts will be enabled once we get into the guest, 3407 * so tell lockdep that we're about to enable interrupts. 3408 */ 3409 trace_hardirqs_on(); 3410 3411 trap = __kvmppc_vcore_entry(); 3412 3413 trace_hardirqs_off(); 3414 3415 this_cpu_enable_ftrace(); 3416 3417 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3418 3419 set_irq_happened(trap); 3420 3421 spin_lock(&vc->lock); 3422 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3423 vc->vcore_state = VCORE_EXITING; 3424 3425 /* wait for secondary threads to finish writing their state to memory */ 3426 kvmppc_wait_for_nap(controlled_threads); 3427 3428 /* Return to whole-core mode if we split the core earlier */ 3429 if (cmd_bit) { 3430 unsigned long hid0 = mfspr(SPRN_HID0); 3431 unsigned long loops = 0; 3432 3433 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3434 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3435 mb(); 3436 mtspr(SPRN_HID0, hid0); 3437 isync(); 3438 for (;;) { 3439 hid0 = mfspr(SPRN_HID0); 3440 if (!(hid0 & stat_bit)) 3441 break; 3442 cpu_relax(); 3443 ++loops; 3444 } 3445 split_info.do_nap = 0; 3446 } 3447 3448 kvmppc_set_host_core(pcpu); 3449 3450 guest_exit_irqoff(); 3451 3452 local_irq_enable(); 3453 3454 /* Let secondaries go back to the offline loop */ 3455 for (i = 0; i < controlled_threads; ++i) { 3456 kvmppc_release_hwthread(pcpu + i); 3457 if (sip && sip->napped[i]) 3458 kvmppc_ipi_thread(pcpu + i); 3459 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3460 } 3461 3462 spin_unlock(&vc->lock); 3463 3464 /* make sure updates to secondary vcpu structs are visible now */ 3465 smp_mb(); 3466 3467 preempt_enable(); 3468 3469 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3470 pvc = core_info.vc[sub]; 3471 post_guest_process(pvc, pvc == vc); 3472 } 3473 3474 spin_lock(&vc->lock); 3475 3476 out: 3477 vc->vcore_state = VCORE_INACTIVE; 3478 trace_kvmppc_run_core(vc, 1); 3479 } 3480 3481 /* 3482 * Load up hypervisor-mode registers on P9. 3483 */ 3484 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3485 unsigned long lpcr) 3486 { 3487 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3488 s64 hdec; 3489 u64 tb, purr, spurr; 3490 int trap; 3491 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3492 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3493 unsigned long host_dawr0 = mfspr(SPRN_DAWR0); 3494 unsigned long host_dawrx0 = mfspr(SPRN_DAWRX0); 3495 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3496 unsigned long host_pidr = mfspr(SPRN_PID); 3497 unsigned long host_dawr1 = 0; 3498 unsigned long host_dawrx1 = 0; 3499 3500 if (cpu_has_feature(CPU_FTR_DAWR1)) { 3501 host_dawr1 = mfspr(SPRN_DAWR1); 3502 host_dawrx1 = mfspr(SPRN_DAWRX1); 3503 } 3504 3505 /* 3506 * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0, 3507 * so set HDICE before writing HDEC. 3508 */ 3509 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE); 3510 isync(); 3511 3512 hdec = time_limit - mftb(); 3513 if (hdec < 0) { 3514 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3515 isync(); 3516 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3517 } 3518 mtspr(SPRN_HDEC, hdec); 3519 3520 if (vc->tb_offset) { 3521 u64 new_tb = mftb() + vc->tb_offset; 3522 mtspr(SPRN_TBU40, new_tb); 3523 tb = mftb(); 3524 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3525 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3526 vc->tb_offset_applied = vc->tb_offset; 3527 } 3528 3529 if (vc->pcr) 3530 mtspr(SPRN_PCR, vc->pcr | PCR_MASK); 3531 mtspr(SPRN_DPDES, vc->dpdes); 3532 mtspr(SPRN_VTB, vc->vtb); 3533 3534 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3535 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3536 mtspr(SPRN_PURR, vcpu->arch.purr); 3537 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3538 3539 if (dawr_enabled()) { 3540 mtspr(SPRN_DAWR0, vcpu->arch.dawr0); 3541 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0); 3542 if (cpu_has_feature(CPU_FTR_DAWR1)) { 3543 mtspr(SPRN_DAWR1, vcpu->arch.dawr1); 3544 mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1); 3545 } 3546 } 3547 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3548 mtspr(SPRN_IC, vcpu->arch.ic); 3549 mtspr(SPRN_PID, vcpu->arch.pid); 3550 3551 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3552 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3553 3554 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3555 3556 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3557 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3558 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3559 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3560 3561 mtspr(SPRN_AMOR, ~0UL); 3562 3563 mtspr(SPRN_LPCR, lpcr); 3564 isync(); 3565 3566 kvmppc_xive_push_vcpu(vcpu); 3567 3568 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3569 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3570 3571 trap = __kvmhv_vcpu_entry_p9(vcpu); 3572 3573 /* Advance host PURR/SPURR by the amount used by guest */ 3574 purr = mfspr(SPRN_PURR); 3575 spurr = mfspr(SPRN_SPURR); 3576 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3577 purr - vcpu->arch.purr); 3578 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3579 spurr - vcpu->arch.spurr); 3580 vcpu->arch.purr = purr; 3581 vcpu->arch.spurr = spurr; 3582 3583 vcpu->arch.ic = mfspr(SPRN_IC); 3584 vcpu->arch.pid = mfspr(SPRN_PID); 3585 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3586 3587 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3588 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3589 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3590 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3591 3592 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3593 mtspr(SPRN_PSSCR, host_psscr | 3594 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3595 mtspr(SPRN_HFSCR, host_hfscr); 3596 mtspr(SPRN_CIABR, host_ciabr); 3597 mtspr(SPRN_DAWR0, host_dawr0); 3598 mtspr(SPRN_DAWRX0, host_dawrx0); 3599 if (cpu_has_feature(CPU_FTR_DAWR1)) { 3600 mtspr(SPRN_DAWR1, host_dawr1); 3601 mtspr(SPRN_DAWRX1, host_dawrx1); 3602 } 3603 mtspr(SPRN_PID, host_pidr); 3604 3605 /* 3606 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3607 * case we interrupted the guest between a tlbie and a ptesync. 3608 */ 3609 asm volatile("eieio; tlbsync; ptesync"); 3610 3611 /* 3612 * cp_abort is required if the processor supports local copy-paste 3613 * to clear the copy buffer that was under control of the guest. 3614 */ 3615 if (cpu_has_feature(CPU_FTR_ARCH_31)) 3616 asm volatile(PPC_CP_ABORT); 3617 3618 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3619 isync(); 3620 3621 vc->dpdes = mfspr(SPRN_DPDES); 3622 vc->vtb = mfspr(SPRN_VTB); 3623 mtspr(SPRN_DPDES, 0); 3624 if (vc->pcr) 3625 mtspr(SPRN_PCR, PCR_MASK); 3626 3627 if (vc->tb_offset_applied) { 3628 u64 new_tb = mftb() - vc->tb_offset_applied; 3629 mtspr(SPRN_TBU40, new_tb); 3630 tb = mftb(); 3631 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3632 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3633 vc->tb_offset_applied = 0; 3634 } 3635 3636 mtspr(SPRN_HDEC, 0x7fffffff); 3637 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3638 3639 return trap; 3640 } 3641 3642 /* 3643 * Virtual-mode guest entry for POWER9 and later when the host and 3644 * guest are both using the radix MMU. The LPIDR has already been set. 3645 */ 3646 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3647 unsigned long lpcr) 3648 { 3649 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3650 unsigned long host_dscr = mfspr(SPRN_DSCR); 3651 unsigned long host_tidr = mfspr(SPRN_TIDR); 3652 unsigned long host_iamr = mfspr(SPRN_IAMR); 3653 unsigned long host_amr = mfspr(SPRN_AMR); 3654 unsigned long host_fscr = mfspr(SPRN_FSCR); 3655 s64 dec; 3656 u64 tb; 3657 int trap, save_pmu; 3658 3659 dec = mfspr(SPRN_DEC); 3660 tb = mftb(); 3661 if (dec < 0) 3662 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3663 local_paca->kvm_hstate.dec_expires = dec + tb; 3664 if (local_paca->kvm_hstate.dec_expires < time_limit) 3665 time_limit = local_paca->kvm_hstate.dec_expires; 3666 3667 vcpu->arch.ceded = 0; 3668 3669 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3670 3671 kvmppc_subcore_enter_guest(); 3672 3673 vc->entry_exit_map = 1; 3674 vc->in_guest = 1; 3675 3676 if (vcpu->arch.vpa.pinned_addr) { 3677 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3678 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3679 lp->yield_count = cpu_to_be32(yield_count); 3680 vcpu->arch.vpa.dirty = 1; 3681 } 3682 3683 if (cpu_has_feature(CPU_FTR_TM) || 3684 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3685 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3686 3687 kvmhv_load_guest_pmu(vcpu); 3688 3689 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3690 load_fp_state(&vcpu->arch.fp); 3691 #ifdef CONFIG_ALTIVEC 3692 load_vr_state(&vcpu->arch.vr); 3693 #endif 3694 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3695 3696 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3697 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3698 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3699 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3700 mtspr(SPRN_TAR, vcpu->arch.tar); 3701 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3702 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3703 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3704 mtspr(SPRN_WORT, vcpu->arch.wort); 3705 mtspr(SPRN_TIDR, vcpu->arch.tid); 3706 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3707 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3708 mtspr(SPRN_AMR, vcpu->arch.amr); 3709 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3710 3711 if (!(vcpu->arch.ctrl & 1)) 3712 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3713 3714 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3715 3716 if (kvmhv_on_pseries()) { 3717 /* 3718 * We need to save and restore the guest visible part of the 3719 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3720 * doesn't do this for us. Note only required if pseries since 3721 * this is done in kvmhv_load_hv_regs_and_go() below otherwise. 3722 */ 3723 unsigned long host_psscr; 3724 /* call our hypervisor to load up HV regs and go */ 3725 struct hv_guest_state hvregs; 3726 3727 host_psscr = mfspr(SPRN_PSSCR_PR); 3728 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3729 kvmhv_save_hv_regs(vcpu, &hvregs); 3730 hvregs.lpcr = lpcr; 3731 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3732 hvregs.version = HV_GUEST_STATE_VERSION; 3733 if (vcpu->arch.nested) { 3734 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3735 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3736 } else { 3737 hvregs.lpid = vcpu->kvm->arch.lpid; 3738 hvregs.vcpu_token = vcpu->vcpu_id; 3739 } 3740 hvregs.hdec_expiry = time_limit; 3741 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3742 __pa(&vcpu->arch.regs)); 3743 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3744 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3745 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3746 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3747 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3748 mtspr(SPRN_PSSCR_PR, host_psscr); 3749 3750 /* H_CEDE has to be handled now, not later */ 3751 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3752 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3753 kvmppc_nested_cede(vcpu); 3754 kvmppc_set_gpr(vcpu, 3, 0); 3755 trap = 0; 3756 } 3757 } else { 3758 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3759 } 3760 3761 vcpu->arch.slb_max = 0; 3762 dec = mfspr(SPRN_DEC); 3763 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3764 dec = (s32) dec; 3765 tb = mftb(); 3766 vcpu->arch.dec_expires = dec + tb; 3767 vcpu->cpu = -1; 3768 vcpu->arch.thread_cpu = -1; 3769 /* Save guest CTRL register, set runlatch to 1 */ 3770 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3771 if (!(vcpu->arch.ctrl & 1)) 3772 mtspr(SPRN_CTRLT, vcpu->arch.ctrl | 1); 3773 3774 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3775 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3776 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3777 vcpu->arch.tar = mfspr(SPRN_TAR); 3778 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3779 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3780 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3781 vcpu->arch.wort = mfspr(SPRN_WORT); 3782 vcpu->arch.tid = mfspr(SPRN_TIDR); 3783 vcpu->arch.amr = mfspr(SPRN_AMR); 3784 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3785 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3786 3787 mtspr(SPRN_PSPB, 0); 3788 mtspr(SPRN_WORT, 0); 3789 mtspr(SPRN_UAMOR, 0); 3790 mtspr(SPRN_DSCR, host_dscr); 3791 mtspr(SPRN_TIDR, host_tidr); 3792 mtspr(SPRN_IAMR, host_iamr); 3793 3794 if (host_amr != vcpu->arch.amr) 3795 mtspr(SPRN_AMR, host_amr); 3796 3797 if (host_fscr != vcpu->arch.fscr) 3798 mtspr(SPRN_FSCR, host_fscr); 3799 3800 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3801 store_fp_state(&vcpu->arch.fp); 3802 #ifdef CONFIG_ALTIVEC 3803 store_vr_state(&vcpu->arch.vr); 3804 #endif 3805 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3806 3807 if (cpu_has_feature(CPU_FTR_TM) || 3808 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3809 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3810 3811 save_pmu = 1; 3812 if (vcpu->arch.vpa.pinned_addr) { 3813 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3814 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3815 lp->yield_count = cpu_to_be32(yield_count); 3816 vcpu->arch.vpa.dirty = 1; 3817 save_pmu = lp->pmcregs_in_use; 3818 } 3819 /* Must save pmu if this guest is capable of running nested guests */ 3820 save_pmu |= nesting_enabled(vcpu->kvm); 3821 3822 kvmhv_save_guest_pmu(vcpu, save_pmu); 3823 3824 vc->entry_exit_map = 0x101; 3825 vc->in_guest = 0; 3826 3827 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3828 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3829 3830 kvmhv_load_host_pmu(); 3831 3832 kvmppc_subcore_exit_guest(); 3833 3834 return trap; 3835 } 3836 3837 /* 3838 * Wait for some other vcpu thread to execute us, and 3839 * wake us up when we need to handle something in the host. 3840 */ 3841 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3842 struct kvm_vcpu *vcpu, int wait_state) 3843 { 3844 DEFINE_WAIT(wait); 3845 3846 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3847 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3848 spin_unlock(&vc->lock); 3849 schedule(); 3850 spin_lock(&vc->lock); 3851 } 3852 finish_wait(&vcpu->arch.cpu_run, &wait); 3853 } 3854 3855 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3856 { 3857 if (!halt_poll_ns_grow) 3858 return; 3859 3860 vc->halt_poll_ns *= halt_poll_ns_grow; 3861 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3862 vc->halt_poll_ns = halt_poll_ns_grow_start; 3863 } 3864 3865 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3866 { 3867 if (halt_poll_ns_shrink == 0) 3868 vc->halt_poll_ns = 0; 3869 else 3870 vc->halt_poll_ns /= halt_poll_ns_shrink; 3871 } 3872 3873 #ifdef CONFIG_KVM_XICS 3874 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3875 { 3876 if (!xics_on_xive()) 3877 return false; 3878 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3879 vcpu->arch.xive_saved_state.cppr; 3880 } 3881 #else 3882 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3883 { 3884 return false; 3885 } 3886 #endif /* CONFIG_KVM_XICS */ 3887 3888 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3889 { 3890 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3891 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3892 return true; 3893 3894 return false; 3895 } 3896 3897 /* 3898 * Check to see if any of the runnable vcpus on the vcore have pending 3899 * exceptions or are no longer ceded 3900 */ 3901 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3902 { 3903 struct kvm_vcpu *vcpu; 3904 int i; 3905 3906 for_each_runnable_thread(i, vcpu, vc) { 3907 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3908 return 1; 3909 } 3910 3911 return 0; 3912 } 3913 3914 /* 3915 * All the vcpus in this vcore are idle, so wait for a decrementer 3916 * or external interrupt to one of the vcpus. vc->lock is held. 3917 */ 3918 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3919 { 3920 ktime_t cur, start_poll, start_wait; 3921 int do_sleep = 1; 3922 u64 block_ns; 3923 3924 /* Poll for pending exceptions and ceded state */ 3925 cur = start_poll = ktime_get(); 3926 if (vc->halt_poll_ns) { 3927 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3928 ++vc->runner->stat.halt_attempted_poll; 3929 3930 vc->vcore_state = VCORE_POLLING; 3931 spin_unlock(&vc->lock); 3932 3933 do { 3934 if (kvmppc_vcore_check_block(vc)) { 3935 do_sleep = 0; 3936 break; 3937 } 3938 cur = ktime_get(); 3939 } while (single_task_running() && ktime_before(cur, stop)); 3940 3941 spin_lock(&vc->lock); 3942 vc->vcore_state = VCORE_INACTIVE; 3943 3944 if (!do_sleep) { 3945 ++vc->runner->stat.halt_successful_poll; 3946 goto out; 3947 } 3948 } 3949 3950 prepare_to_rcuwait(&vc->wait); 3951 set_current_state(TASK_INTERRUPTIBLE); 3952 if (kvmppc_vcore_check_block(vc)) { 3953 finish_rcuwait(&vc->wait); 3954 do_sleep = 0; 3955 /* If we polled, count this as a successful poll */ 3956 if (vc->halt_poll_ns) 3957 ++vc->runner->stat.halt_successful_poll; 3958 goto out; 3959 } 3960 3961 start_wait = ktime_get(); 3962 3963 vc->vcore_state = VCORE_SLEEPING; 3964 trace_kvmppc_vcore_blocked(vc, 0); 3965 spin_unlock(&vc->lock); 3966 schedule(); 3967 finish_rcuwait(&vc->wait); 3968 spin_lock(&vc->lock); 3969 vc->vcore_state = VCORE_INACTIVE; 3970 trace_kvmppc_vcore_blocked(vc, 1); 3971 ++vc->runner->stat.halt_successful_wait; 3972 3973 cur = ktime_get(); 3974 3975 out: 3976 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3977 3978 /* Attribute wait time */ 3979 if (do_sleep) { 3980 vc->runner->stat.halt_wait_ns += 3981 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3982 /* Attribute failed poll time */ 3983 if (vc->halt_poll_ns) 3984 vc->runner->stat.halt_poll_fail_ns += 3985 ktime_to_ns(start_wait) - 3986 ktime_to_ns(start_poll); 3987 } else { 3988 /* Attribute successful poll time */ 3989 if (vc->halt_poll_ns) 3990 vc->runner->stat.halt_poll_success_ns += 3991 ktime_to_ns(cur) - 3992 ktime_to_ns(start_poll); 3993 } 3994 3995 /* Adjust poll time */ 3996 if (halt_poll_ns) { 3997 if (block_ns <= vc->halt_poll_ns) 3998 ; 3999 /* We slept and blocked for longer than the max halt time */ 4000 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4001 shrink_halt_poll_ns(vc); 4002 /* We slept and our poll time is too small */ 4003 else if (vc->halt_poll_ns < halt_poll_ns && 4004 block_ns < halt_poll_ns) 4005 grow_halt_poll_ns(vc); 4006 if (vc->halt_poll_ns > halt_poll_ns) 4007 vc->halt_poll_ns = halt_poll_ns; 4008 } else 4009 vc->halt_poll_ns = 0; 4010 4011 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4012 } 4013 4014 /* 4015 * This never fails for a radix guest, as none of the operations it does 4016 * for a radix guest can fail or have a way to report failure. 4017 * kvmhv_run_single_vcpu() relies on this fact. 4018 */ 4019 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4020 { 4021 int r = 0; 4022 struct kvm *kvm = vcpu->kvm; 4023 4024 mutex_lock(&kvm->arch.mmu_setup_lock); 4025 if (!kvm->arch.mmu_ready) { 4026 if (!kvm_is_radix(kvm)) 4027 r = kvmppc_hv_setup_htab_rma(vcpu); 4028 if (!r) { 4029 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4030 kvmppc_setup_partition_table(kvm); 4031 kvm->arch.mmu_ready = 1; 4032 } 4033 } 4034 mutex_unlock(&kvm->arch.mmu_setup_lock); 4035 return r; 4036 } 4037 4038 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4039 { 4040 struct kvm_run *run = vcpu->run; 4041 int n_ceded, i, r; 4042 struct kvmppc_vcore *vc; 4043 struct kvm_vcpu *v; 4044 4045 trace_kvmppc_run_vcpu_enter(vcpu); 4046 4047 run->exit_reason = 0; 4048 vcpu->arch.ret = RESUME_GUEST; 4049 vcpu->arch.trap = 0; 4050 kvmppc_update_vpas(vcpu); 4051 4052 /* 4053 * Synchronize with other threads in this virtual core 4054 */ 4055 vc = vcpu->arch.vcore; 4056 spin_lock(&vc->lock); 4057 vcpu->arch.ceded = 0; 4058 vcpu->arch.run_task = current; 4059 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4060 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4061 vcpu->arch.busy_preempt = TB_NIL; 4062 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4063 ++vc->n_runnable; 4064 4065 /* 4066 * This happens the first time this is called for a vcpu. 4067 * If the vcore is already running, we may be able to start 4068 * this thread straight away and have it join in. 4069 */ 4070 if (!signal_pending(current)) { 4071 if ((vc->vcore_state == VCORE_PIGGYBACK || 4072 vc->vcore_state == VCORE_RUNNING) && 4073 !VCORE_IS_EXITING(vc)) { 4074 kvmppc_create_dtl_entry(vcpu, vc); 4075 kvmppc_start_thread(vcpu, vc); 4076 trace_kvm_guest_enter(vcpu); 4077 } else if (vc->vcore_state == VCORE_SLEEPING) { 4078 rcuwait_wake_up(&vc->wait); 4079 } 4080 4081 } 4082 4083 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4084 !signal_pending(current)) { 4085 /* See if the MMU is ready to go */ 4086 if (!vcpu->kvm->arch.mmu_ready) { 4087 spin_unlock(&vc->lock); 4088 r = kvmhv_setup_mmu(vcpu); 4089 spin_lock(&vc->lock); 4090 if (r) { 4091 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4092 run->fail_entry. 4093 hardware_entry_failure_reason = 0; 4094 vcpu->arch.ret = r; 4095 break; 4096 } 4097 } 4098 4099 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4100 kvmppc_vcore_end_preempt(vc); 4101 4102 if (vc->vcore_state != VCORE_INACTIVE) { 4103 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4104 continue; 4105 } 4106 for_each_runnable_thread(i, v, vc) { 4107 kvmppc_core_prepare_to_enter(v); 4108 if (signal_pending(v->arch.run_task)) { 4109 kvmppc_remove_runnable(vc, v); 4110 v->stat.signal_exits++; 4111 v->run->exit_reason = KVM_EXIT_INTR; 4112 v->arch.ret = -EINTR; 4113 wake_up(&v->arch.cpu_run); 4114 } 4115 } 4116 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4117 break; 4118 n_ceded = 0; 4119 for_each_runnable_thread(i, v, vc) { 4120 if (!kvmppc_vcpu_woken(v)) 4121 n_ceded += v->arch.ceded; 4122 else 4123 v->arch.ceded = 0; 4124 } 4125 vc->runner = vcpu; 4126 if (n_ceded == vc->n_runnable) { 4127 kvmppc_vcore_blocked(vc); 4128 } else if (need_resched()) { 4129 kvmppc_vcore_preempt(vc); 4130 /* Let something else run */ 4131 cond_resched_lock(&vc->lock); 4132 if (vc->vcore_state == VCORE_PREEMPT) 4133 kvmppc_vcore_end_preempt(vc); 4134 } else { 4135 kvmppc_run_core(vc); 4136 } 4137 vc->runner = NULL; 4138 } 4139 4140 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4141 (vc->vcore_state == VCORE_RUNNING || 4142 vc->vcore_state == VCORE_EXITING || 4143 vc->vcore_state == VCORE_PIGGYBACK)) 4144 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4145 4146 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4147 kvmppc_vcore_end_preempt(vc); 4148 4149 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4150 kvmppc_remove_runnable(vc, vcpu); 4151 vcpu->stat.signal_exits++; 4152 run->exit_reason = KVM_EXIT_INTR; 4153 vcpu->arch.ret = -EINTR; 4154 } 4155 4156 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4157 /* Wake up some vcpu to run the core */ 4158 i = -1; 4159 v = next_runnable_thread(vc, &i); 4160 wake_up(&v->arch.cpu_run); 4161 } 4162 4163 trace_kvmppc_run_vcpu_exit(vcpu); 4164 spin_unlock(&vc->lock); 4165 return vcpu->arch.ret; 4166 } 4167 4168 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4169 unsigned long lpcr) 4170 { 4171 struct kvm_run *run = vcpu->run; 4172 int trap, r, pcpu; 4173 int srcu_idx, lpid; 4174 struct kvmppc_vcore *vc; 4175 struct kvm *kvm = vcpu->kvm; 4176 struct kvm_nested_guest *nested = vcpu->arch.nested; 4177 4178 trace_kvmppc_run_vcpu_enter(vcpu); 4179 4180 run->exit_reason = 0; 4181 vcpu->arch.ret = RESUME_GUEST; 4182 vcpu->arch.trap = 0; 4183 4184 vc = vcpu->arch.vcore; 4185 vcpu->arch.ceded = 0; 4186 vcpu->arch.run_task = current; 4187 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4188 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4189 vcpu->arch.busy_preempt = TB_NIL; 4190 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4191 vc->runnable_threads[0] = vcpu; 4192 vc->n_runnable = 1; 4193 vc->runner = vcpu; 4194 4195 /* See if the MMU is ready to go */ 4196 if (!kvm->arch.mmu_ready) 4197 kvmhv_setup_mmu(vcpu); 4198 4199 if (need_resched()) 4200 cond_resched(); 4201 4202 kvmppc_update_vpas(vcpu); 4203 4204 init_vcore_to_run(vc); 4205 vc->preempt_tb = TB_NIL; 4206 4207 preempt_disable(); 4208 pcpu = smp_processor_id(); 4209 vc->pcpu = pcpu; 4210 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4211 4212 local_irq_disable(); 4213 hard_irq_disable(); 4214 if (signal_pending(current)) 4215 goto sigpend; 4216 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4217 goto out; 4218 4219 if (!nested) { 4220 kvmppc_core_prepare_to_enter(vcpu); 4221 if (vcpu->arch.doorbell_request) { 4222 vc->dpdes = 1; 4223 smp_wmb(); 4224 vcpu->arch.doorbell_request = 0; 4225 } 4226 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4227 &vcpu->arch.pending_exceptions)) 4228 lpcr |= LPCR_MER; 4229 } else if (vcpu->arch.pending_exceptions || 4230 vcpu->arch.doorbell_request || 4231 xive_interrupt_pending(vcpu)) { 4232 vcpu->arch.ret = RESUME_HOST; 4233 goto out; 4234 } 4235 4236 kvmppc_clear_host_core(pcpu); 4237 4238 local_paca->kvm_hstate.napping = 0; 4239 local_paca->kvm_hstate.kvm_split_mode = NULL; 4240 kvmppc_start_thread(vcpu, vc); 4241 kvmppc_create_dtl_entry(vcpu, vc); 4242 trace_kvm_guest_enter(vcpu); 4243 4244 vc->vcore_state = VCORE_RUNNING; 4245 trace_kvmppc_run_core(vc, 0); 4246 4247 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4248 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4249 mtspr(SPRN_LPID, lpid); 4250 isync(); 4251 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4252 } 4253 4254 guest_enter_irqoff(); 4255 4256 srcu_idx = srcu_read_lock(&kvm->srcu); 4257 4258 this_cpu_disable_ftrace(); 4259 4260 /* Tell lockdep that we're about to enable interrupts */ 4261 trace_hardirqs_on(); 4262 4263 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4264 vcpu->arch.trap = trap; 4265 4266 trace_hardirqs_off(); 4267 4268 this_cpu_enable_ftrace(); 4269 4270 srcu_read_unlock(&kvm->srcu, srcu_idx); 4271 4272 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4273 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4274 isync(); 4275 } 4276 4277 set_irq_happened(trap); 4278 4279 kvmppc_set_host_core(pcpu); 4280 4281 guest_exit_irqoff(); 4282 4283 local_irq_enable(); 4284 4285 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4286 4287 preempt_enable(); 4288 4289 /* 4290 * cancel pending decrementer exception if DEC is now positive, or if 4291 * entering a nested guest in which case the decrementer is now owned 4292 * by L2 and the L1 decrementer is provided in hdec_expires 4293 */ 4294 if (kvmppc_core_pending_dec(vcpu) && 4295 ((get_tb() < vcpu->arch.dec_expires) || 4296 (trap == BOOK3S_INTERRUPT_SYSCALL && 4297 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4298 kvmppc_core_dequeue_dec(vcpu); 4299 4300 trace_kvm_guest_exit(vcpu); 4301 r = RESUME_GUEST; 4302 if (trap) { 4303 if (!nested) 4304 r = kvmppc_handle_exit_hv(vcpu, current); 4305 else 4306 r = kvmppc_handle_nested_exit(vcpu); 4307 } 4308 vcpu->arch.ret = r; 4309 4310 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4311 !kvmppc_vcpu_woken(vcpu)) { 4312 kvmppc_set_timer(vcpu); 4313 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4314 if (signal_pending(current)) { 4315 vcpu->stat.signal_exits++; 4316 run->exit_reason = KVM_EXIT_INTR; 4317 vcpu->arch.ret = -EINTR; 4318 break; 4319 } 4320 spin_lock(&vc->lock); 4321 kvmppc_vcore_blocked(vc); 4322 spin_unlock(&vc->lock); 4323 } 4324 } 4325 vcpu->arch.ceded = 0; 4326 4327 vc->vcore_state = VCORE_INACTIVE; 4328 trace_kvmppc_run_core(vc, 1); 4329 4330 done: 4331 kvmppc_remove_runnable(vc, vcpu); 4332 trace_kvmppc_run_vcpu_exit(vcpu); 4333 4334 return vcpu->arch.ret; 4335 4336 sigpend: 4337 vcpu->stat.signal_exits++; 4338 run->exit_reason = KVM_EXIT_INTR; 4339 vcpu->arch.ret = -EINTR; 4340 out: 4341 local_irq_enable(); 4342 preempt_enable(); 4343 goto done; 4344 } 4345 4346 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4347 { 4348 struct kvm_run *run = vcpu->run; 4349 int r; 4350 int srcu_idx; 4351 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4352 unsigned long user_tar = 0; 4353 unsigned int user_vrsave; 4354 struct kvm *kvm; 4355 4356 if (!vcpu->arch.sane) { 4357 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4358 return -EINVAL; 4359 } 4360 4361 /* 4362 * Don't allow entry with a suspended transaction, because 4363 * the guest entry/exit code will lose it. 4364 * If the guest has TM enabled, save away their TM-related SPRs 4365 * (they will get restored by the TM unavailable interrupt). 4366 */ 4367 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4368 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4369 (current->thread.regs->msr & MSR_TM)) { 4370 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4371 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4372 run->fail_entry.hardware_entry_failure_reason = 0; 4373 return -EINVAL; 4374 } 4375 /* Enable TM so we can read the TM SPRs */ 4376 mtmsr(mfmsr() | MSR_TM); 4377 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4378 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4379 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4380 current->thread.regs->msr &= ~MSR_TM; 4381 } 4382 #endif 4383 4384 /* 4385 * Force online to 1 for the sake of old userspace which doesn't 4386 * set it. 4387 */ 4388 if (!vcpu->arch.online) { 4389 atomic_inc(&vcpu->arch.vcore->online_count); 4390 vcpu->arch.online = 1; 4391 } 4392 4393 kvmppc_core_prepare_to_enter(vcpu); 4394 4395 /* No need to go into the guest when all we'll do is come back out */ 4396 if (signal_pending(current)) { 4397 run->exit_reason = KVM_EXIT_INTR; 4398 return -EINTR; 4399 } 4400 4401 kvm = vcpu->kvm; 4402 atomic_inc(&kvm->arch.vcpus_running); 4403 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4404 smp_mb(); 4405 4406 flush_all_to_thread(current); 4407 4408 /* Save userspace EBB and other register values */ 4409 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4410 ebb_regs[0] = mfspr(SPRN_EBBHR); 4411 ebb_regs[1] = mfspr(SPRN_EBBRR); 4412 ebb_regs[2] = mfspr(SPRN_BESCR); 4413 user_tar = mfspr(SPRN_TAR); 4414 } 4415 user_vrsave = mfspr(SPRN_VRSAVE); 4416 4417 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4418 vcpu->arch.pgdir = kvm->mm->pgd; 4419 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4420 4421 do { 4422 /* 4423 * The TLB prefetch bug fixup is only in the kvmppc_run_vcpu 4424 * path, which also handles hash and dependent threads mode. 4425 */ 4426 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4427 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 4428 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4429 vcpu->arch.vcore->lpcr); 4430 else 4431 r = kvmppc_run_vcpu(vcpu); 4432 4433 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4434 !(vcpu->arch.shregs.msr & MSR_PR)) { 4435 trace_kvm_hcall_enter(vcpu); 4436 r = kvmppc_pseries_do_hcall(vcpu); 4437 trace_kvm_hcall_exit(vcpu, r); 4438 kvmppc_core_prepare_to_enter(vcpu); 4439 } else if (r == RESUME_PAGE_FAULT) { 4440 srcu_idx = srcu_read_lock(&kvm->srcu); 4441 r = kvmppc_book3s_hv_page_fault(vcpu, 4442 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4443 srcu_read_unlock(&kvm->srcu, srcu_idx); 4444 } else if (r == RESUME_PASSTHROUGH) { 4445 if (WARN_ON(xics_on_xive())) 4446 r = H_SUCCESS; 4447 else 4448 r = kvmppc_xics_rm_complete(vcpu, 0); 4449 } 4450 } while (is_kvmppc_resume_guest(r)); 4451 4452 /* Restore userspace EBB and other register values */ 4453 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4454 mtspr(SPRN_EBBHR, ebb_regs[0]); 4455 mtspr(SPRN_EBBRR, ebb_regs[1]); 4456 mtspr(SPRN_BESCR, ebb_regs[2]); 4457 mtspr(SPRN_TAR, user_tar); 4458 mtspr(SPRN_FSCR, current->thread.fscr); 4459 } 4460 mtspr(SPRN_VRSAVE, user_vrsave); 4461 4462 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4463 atomic_dec(&kvm->arch.vcpus_running); 4464 return r; 4465 } 4466 4467 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4468 int shift, int sllp) 4469 { 4470 (*sps)->page_shift = shift; 4471 (*sps)->slb_enc = sllp; 4472 (*sps)->enc[0].page_shift = shift; 4473 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4474 /* 4475 * Add 16MB MPSS support (may get filtered out by userspace) 4476 */ 4477 if (shift != 24) { 4478 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4479 if (penc != -1) { 4480 (*sps)->enc[1].page_shift = 24; 4481 (*sps)->enc[1].pte_enc = penc; 4482 } 4483 } 4484 (*sps)++; 4485 } 4486 4487 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4488 struct kvm_ppc_smmu_info *info) 4489 { 4490 struct kvm_ppc_one_seg_page_size *sps; 4491 4492 /* 4493 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4494 * POWER7 doesn't support keys for instruction accesses, 4495 * POWER8 and POWER9 do. 4496 */ 4497 info->data_keys = 32; 4498 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4499 4500 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4501 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4502 info->slb_size = 32; 4503 4504 /* We only support these sizes for now, and no muti-size segments */ 4505 sps = &info->sps[0]; 4506 kvmppc_add_seg_page_size(&sps, 12, 0); 4507 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4508 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4509 4510 /* If running as a nested hypervisor, we don't support HPT guests */ 4511 if (kvmhv_on_pseries()) 4512 info->flags |= KVM_PPC_NO_HASH; 4513 4514 return 0; 4515 } 4516 4517 /* 4518 * Get (and clear) the dirty memory log for a memory slot. 4519 */ 4520 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4521 struct kvm_dirty_log *log) 4522 { 4523 struct kvm_memslots *slots; 4524 struct kvm_memory_slot *memslot; 4525 int i, r; 4526 unsigned long n; 4527 unsigned long *buf, *p; 4528 struct kvm_vcpu *vcpu; 4529 4530 mutex_lock(&kvm->slots_lock); 4531 4532 r = -EINVAL; 4533 if (log->slot >= KVM_USER_MEM_SLOTS) 4534 goto out; 4535 4536 slots = kvm_memslots(kvm); 4537 memslot = id_to_memslot(slots, log->slot); 4538 r = -ENOENT; 4539 if (!memslot || !memslot->dirty_bitmap) 4540 goto out; 4541 4542 /* 4543 * Use second half of bitmap area because both HPT and radix 4544 * accumulate bits in the first half. 4545 */ 4546 n = kvm_dirty_bitmap_bytes(memslot); 4547 buf = memslot->dirty_bitmap + n / sizeof(long); 4548 memset(buf, 0, n); 4549 4550 if (kvm_is_radix(kvm)) 4551 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4552 else 4553 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4554 if (r) 4555 goto out; 4556 4557 /* 4558 * We accumulate dirty bits in the first half of the 4559 * memslot's dirty_bitmap area, for when pages are paged 4560 * out or modified by the host directly. Pick up these 4561 * bits and add them to the map. 4562 */ 4563 p = memslot->dirty_bitmap; 4564 for (i = 0; i < n / sizeof(long); ++i) 4565 buf[i] |= xchg(&p[i], 0); 4566 4567 /* Harvest dirty bits from VPA and DTL updates */ 4568 /* Note: we never modify the SLB shadow buffer areas */ 4569 kvm_for_each_vcpu(i, vcpu, kvm) { 4570 spin_lock(&vcpu->arch.vpa_update_lock); 4571 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4572 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4573 spin_unlock(&vcpu->arch.vpa_update_lock); 4574 } 4575 4576 r = -EFAULT; 4577 if (copy_to_user(log->dirty_bitmap, buf, n)) 4578 goto out; 4579 4580 r = 0; 4581 out: 4582 mutex_unlock(&kvm->slots_lock); 4583 return r; 4584 } 4585 4586 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 4587 { 4588 vfree(slot->arch.rmap); 4589 slot->arch.rmap = NULL; 4590 } 4591 4592 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4593 struct kvm_memory_slot *slot, 4594 const struct kvm_userspace_memory_region *mem, 4595 enum kvm_mr_change change) 4596 { 4597 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4598 4599 if (change == KVM_MR_CREATE) { 4600 slot->arch.rmap = vzalloc(array_size(npages, 4601 sizeof(*slot->arch.rmap))); 4602 if (!slot->arch.rmap) 4603 return -ENOMEM; 4604 } 4605 4606 return 0; 4607 } 4608 4609 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4610 const struct kvm_userspace_memory_region *mem, 4611 const struct kvm_memory_slot *old, 4612 const struct kvm_memory_slot *new, 4613 enum kvm_mr_change change) 4614 { 4615 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4616 4617 /* 4618 * If we are making a new memslot, it might make 4619 * some address that was previously cached as emulated 4620 * MMIO be no longer emulated MMIO, so invalidate 4621 * all the caches of emulated MMIO translations. 4622 */ 4623 if (npages) 4624 atomic64_inc(&kvm->arch.mmio_update); 4625 4626 /* 4627 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4628 * have already called kvm_arch_flush_shadow_memslot() to 4629 * flush shadow mappings. For KVM_MR_CREATE we have no 4630 * previous mappings. So the only case to handle is 4631 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4632 * has been changed. 4633 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4634 * to get rid of any THP PTEs in the partition-scoped page tables 4635 * so we can track dirtiness at the page level; we flush when 4636 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4637 * using THP PTEs. 4638 */ 4639 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4640 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4641 kvmppc_radix_flush_memslot(kvm, old); 4642 /* 4643 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4644 */ 4645 if (!kvm->arch.secure_guest) 4646 return; 4647 4648 switch (change) { 4649 case KVM_MR_CREATE: 4650 /* 4651 * @TODO kvmppc_uvmem_memslot_create() can fail and 4652 * return error. Fix this. 4653 */ 4654 kvmppc_uvmem_memslot_create(kvm, new); 4655 break; 4656 case KVM_MR_DELETE: 4657 kvmppc_uvmem_memslot_delete(kvm, old); 4658 break; 4659 default: 4660 /* TODO: Handle KVM_MR_MOVE */ 4661 break; 4662 } 4663 } 4664 4665 /* 4666 * Update LPCR values in kvm->arch and in vcores. 4667 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4668 * of kvm->arch.lpcr update). 4669 */ 4670 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4671 { 4672 long int i; 4673 u32 cores_done = 0; 4674 4675 if ((kvm->arch.lpcr & mask) == lpcr) 4676 return; 4677 4678 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4679 4680 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4681 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4682 if (!vc) 4683 continue; 4684 4685 spin_lock(&vc->lock); 4686 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4687 verify_lpcr(kvm, vc->lpcr); 4688 spin_unlock(&vc->lock); 4689 if (++cores_done >= kvm->arch.online_vcores) 4690 break; 4691 } 4692 } 4693 4694 void kvmppc_setup_partition_table(struct kvm *kvm) 4695 { 4696 unsigned long dw0, dw1; 4697 4698 if (!kvm_is_radix(kvm)) { 4699 /* PS field - page size for VRMA */ 4700 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4701 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4702 /* HTABSIZE and HTABORG fields */ 4703 dw0 |= kvm->arch.sdr1; 4704 4705 /* Second dword as set by userspace */ 4706 dw1 = kvm->arch.process_table; 4707 } else { 4708 dw0 = PATB_HR | radix__get_tree_size() | 4709 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4710 dw1 = PATB_GR | kvm->arch.process_table; 4711 } 4712 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4713 } 4714 4715 /* 4716 * Set up HPT (hashed page table) and RMA (real-mode area). 4717 * Must be called with kvm->arch.mmu_setup_lock held. 4718 */ 4719 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4720 { 4721 int err = 0; 4722 struct kvm *kvm = vcpu->kvm; 4723 unsigned long hva; 4724 struct kvm_memory_slot *memslot; 4725 struct vm_area_struct *vma; 4726 unsigned long lpcr = 0, senc; 4727 unsigned long psize, porder; 4728 int srcu_idx; 4729 4730 /* Allocate hashed page table (if not done already) and reset it */ 4731 if (!kvm->arch.hpt.virt) { 4732 int order = KVM_DEFAULT_HPT_ORDER; 4733 struct kvm_hpt_info info; 4734 4735 err = kvmppc_allocate_hpt(&info, order); 4736 /* If we get here, it means userspace didn't specify a 4737 * size explicitly. So, try successively smaller 4738 * sizes if the default failed. */ 4739 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4740 err = kvmppc_allocate_hpt(&info, order); 4741 4742 if (err < 0) { 4743 pr_err("KVM: Couldn't alloc HPT\n"); 4744 goto out; 4745 } 4746 4747 kvmppc_set_hpt(kvm, &info); 4748 } 4749 4750 /* Look up the memslot for guest physical address 0 */ 4751 srcu_idx = srcu_read_lock(&kvm->srcu); 4752 memslot = gfn_to_memslot(kvm, 0); 4753 4754 /* We must have some memory at 0 by now */ 4755 err = -EINVAL; 4756 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4757 goto out_srcu; 4758 4759 /* Look up the VMA for the start of this memory slot */ 4760 hva = memslot->userspace_addr; 4761 mmap_read_lock(kvm->mm); 4762 vma = find_vma(kvm->mm, hva); 4763 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4764 goto up_out; 4765 4766 psize = vma_kernel_pagesize(vma); 4767 4768 mmap_read_unlock(kvm->mm); 4769 4770 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4771 if (psize >= 0x1000000) 4772 psize = 0x1000000; 4773 else if (psize >= 0x10000) 4774 psize = 0x10000; 4775 else 4776 psize = 0x1000; 4777 porder = __ilog2(psize); 4778 4779 senc = slb_pgsize_encoding(psize); 4780 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4781 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4782 /* Create HPTEs in the hash page table for the VRMA */ 4783 kvmppc_map_vrma(vcpu, memslot, porder); 4784 4785 /* Update VRMASD field in the LPCR */ 4786 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4787 /* the -4 is to account for senc values starting at 0x10 */ 4788 lpcr = senc << (LPCR_VRMASD_SH - 4); 4789 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4790 } 4791 4792 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4793 smp_wmb(); 4794 err = 0; 4795 out_srcu: 4796 srcu_read_unlock(&kvm->srcu, srcu_idx); 4797 out: 4798 return err; 4799 4800 up_out: 4801 mmap_read_unlock(kvm->mm); 4802 goto out_srcu; 4803 } 4804 4805 /* 4806 * Must be called with kvm->arch.mmu_setup_lock held and 4807 * mmu_ready = 0 and no vcpus running. 4808 */ 4809 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4810 { 4811 if (nesting_enabled(kvm)) 4812 kvmhv_release_all_nested(kvm); 4813 kvmppc_rmap_reset(kvm); 4814 kvm->arch.process_table = 0; 4815 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 4816 spin_lock(&kvm->mmu_lock); 4817 kvm->arch.radix = 0; 4818 spin_unlock(&kvm->mmu_lock); 4819 kvmppc_free_radix(kvm); 4820 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4821 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4822 return 0; 4823 } 4824 4825 /* 4826 * Must be called with kvm->arch.mmu_setup_lock held and 4827 * mmu_ready = 0 and no vcpus running. 4828 */ 4829 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4830 { 4831 int err; 4832 4833 err = kvmppc_init_vm_radix(kvm); 4834 if (err) 4835 return err; 4836 kvmppc_rmap_reset(kvm); 4837 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 4838 spin_lock(&kvm->mmu_lock); 4839 kvm->arch.radix = 1; 4840 spin_unlock(&kvm->mmu_lock); 4841 kvmppc_free_hpt(&kvm->arch.hpt); 4842 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4843 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4844 return 0; 4845 } 4846 4847 #ifdef CONFIG_KVM_XICS 4848 /* 4849 * Allocate a per-core structure for managing state about which cores are 4850 * running in the host versus the guest and for exchanging data between 4851 * real mode KVM and CPU running in the host. 4852 * This is only done for the first VM. 4853 * The allocated structure stays even if all VMs have stopped. 4854 * It is only freed when the kvm-hv module is unloaded. 4855 * It's OK for this routine to fail, we just don't support host 4856 * core operations like redirecting H_IPI wakeups. 4857 */ 4858 void kvmppc_alloc_host_rm_ops(void) 4859 { 4860 struct kvmppc_host_rm_ops *ops; 4861 unsigned long l_ops; 4862 int cpu, core; 4863 int size; 4864 4865 /* Not the first time here ? */ 4866 if (kvmppc_host_rm_ops_hv != NULL) 4867 return; 4868 4869 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4870 if (!ops) 4871 return; 4872 4873 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4874 ops->rm_core = kzalloc(size, GFP_KERNEL); 4875 4876 if (!ops->rm_core) { 4877 kfree(ops); 4878 return; 4879 } 4880 4881 cpus_read_lock(); 4882 4883 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4884 if (!cpu_online(cpu)) 4885 continue; 4886 4887 core = cpu >> threads_shift; 4888 ops->rm_core[core].rm_state.in_host = 1; 4889 } 4890 4891 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4892 4893 /* 4894 * Make the contents of the kvmppc_host_rm_ops structure visible 4895 * to other CPUs before we assign it to the global variable. 4896 * Do an atomic assignment (no locks used here), but if someone 4897 * beats us to it, just free our copy and return. 4898 */ 4899 smp_wmb(); 4900 l_ops = (unsigned long) ops; 4901 4902 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4903 cpus_read_unlock(); 4904 kfree(ops->rm_core); 4905 kfree(ops); 4906 return; 4907 } 4908 4909 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4910 "ppc/kvm_book3s:prepare", 4911 kvmppc_set_host_core, 4912 kvmppc_clear_host_core); 4913 cpus_read_unlock(); 4914 } 4915 4916 void kvmppc_free_host_rm_ops(void) 4917 { 4918 if (kvmppc_host_rm_ops_hv) { 4919 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4920 kfree(kvmppc_host_rm_ops_hv->rm_core); 4921 kfree(kvmppc_host_rm_ops_hv); 4922 kvmppc_host_rm_ops_hv = NULL; 4923 } 4924 } 4925 #endif 4926 4927 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4928 { 4929 unsigned long lpcr, lpid; 4930 char buf[32]; 4931 int ret; 4932 4933 mutex_init(&kvm->arch.uvmem_lock); 4934 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 4935 mutex_init(&kvm->arch.mmu_setup_lock); 4936 4937 /* Allocate the guest's logical partition ID */ 4938 4939 lpid = kvmppc_alloc_lpid(); 4940 if ((long)lpid < 0) 4941 return -ENOMEM; 4942 kvm->arch.lpid = lpid; 4943 4944 kvmppc_alloc_host_rm_ops(); 4945 4946 kvmhv_vm_nested_init(kvm); 4947 4948 /* 4949 * Since we don't flush the TLB when tearing down a VM, 4950 * and this lpid might have previously been used, 4951 * make sure we flush on each core before running the new VM. 4952 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4953 * does this flush for us. 4954 */ 4955 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4956 cpumask_setall(&kvm->arch.need_tlb_flush); 4957 4958 /* Start out with the default set of hcalls enabled */ 4959 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4960 sizeof(kvm->arch.enabled_hcalls)); 4961 4962 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4963 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4964 4965 /* Init LPCR for virtual RMA mode */ 4966 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4967 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4968 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4969 lpcr &= LPCR_PECE | LPCR_LPES; 4970 } else { 4971 lpcr = 0; 4972 } 4973 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4974 LPCR_VPM0 | LPCR_VPM1; 4975 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4976 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4977 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4978 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4979 lpcr |= LPCR_ONL; 4980 /* 4981 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4982 * Set HVICE bit to enable hypervisor virtualization interrupts. 4983 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4984 * be unnecessary but better safe than sorry in case we re-enable 4985 * EE in HV mode with this LPCR still set) 4986 */ 4987 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4988 lpcr &= ~LPCR_VPM0; 4989 lpcr |= LPCR_HVICE | LPCR_HEIC; 4990 4991 /* 4992 * If xive is enabled, we route 0x500 interrupts directly 4993 * to the guest. 4994 */ 4995 if (xics_on_xive()) 4996 lpcr |= LPCR_LPES; 4997 } 4998 4999 /* 5000 * If the host uses radix, the guest starts out as radix. 5001 */ 5002 if (radix_enabled()) { 5003 kvm->arch.radix = 1; 5004 kvm->arch.mmu_ready = 1; 5005 lpcr &= ~LPCR_VPM1; 5006 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5007 ret = kvmppc_init_vm_radix(kvm); 5008 if (ret) { 5009 kvmppc_free_lpid(kvm->arch.lpid); 5010 return ret; 5011 } 5012 kvmppc_setup_partition_table(kvm); 5013 } 5014 5015 verify_lpcr(kvm, lpcr); 5016 kvm->arch.lpcr = lpcr; 5017 5018 /* Initialization for future HPT resizes */ 5019 kvm->arch.resize_hpt = NULL; 5020 5021 /* 5022 * Work out how many sets the TLB has, for the use of 5023 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5024 */ 5025 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5026 /* 5027 * P10 will flush all the congruence class with a single tlbiel 5028 */ 5029 kvm->arch.tlb_sets = 1; 5030 } else if (radix_enabled()) 5031 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5032 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5033 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5034 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5035 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5036 else 5037 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5038 5039 /* 5040 * Track that we now have a HV mode VM active. This blocks secondary 5041 * CPU threads from coming online. 5042 * On POWER9, we only need to do this if the "indep_threads_mode" 5043 * module parameter has been set to N. 5044 */ 5045 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5046 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 5047 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 5048 kvm->arch.threads_indep = true; 5049 } else { 5050 kvm->arch.threads_indep = indep_threads_mode; 5051 } 5052 } 5053 if (!kvm->arch.threads_indep) 5054 kvm_hv_vm_activated(); 5055 5056 /* 5057 * Initialize smt_mode depending on processor. 5058 * POWER8 and earlier have to use "strict" threading, where 5059 * all vCPUs in a vcore have to run on the same (sub)core, 5060 * whereas on POWER9 the threads can each run a different 5061 * guest. 5062 */ 5063 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5064 kvm->arch.smt_mode = threads_per_subcore; 5065 else 5066 kvm->arch.smt_mode = 1; 5067 kvm->arch.emul_smt_mode = 1; 5068 5069 /* 5070 * Create a debugfs directory for the VM 5071 */ 5072 snprintf(buf, sizeof(buf), "vm%d", current->pid); 5073 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 5074 kvmppc_mmu_debugfs_init(kvm); 5075 if (radix_enabled()) 5076 kvmhv_radix_debugfs_init(kvm); 5077 5078 return 0; 5079 } 5080 5081 static void kvmppc_free_vcores(struct kvm *kvm) 5082 { 5083 long int i; 5084 5085 for (i = 0; i < KVM_MAX_VCORES; ++i) 5086 kfree(kvm->arch.vcores[i]); 5087 kvm->arch.online_vcores = 0; 5088 } 5089 5090 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5091 { 5092 debugfs_remove_recursive(kvm->arch.debugfs_dir); 5093 5094 if (!kvm->arch.threads_indep) 5095 kvm_hv_vm_deactivated(); 5096 5097 kvmppc_free_vcores(kvm); 5098 5099 5100 if (kvm_is_radix(kvm)) 5101 kvmppc_free_radix(kvm); 5102 else 5103 kvmppc_free_hpt(&kvm->arch.hpt); 5104 5105 /* Perform global invalidation and return lpid to the pool */ 5106 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5107 if (nesting_enabled(kvm)) 5108 kvmhv_release_all_nested(kvm); 5109 kvm->arch.process_table = 0; 5110 if (kvm->arch.secure_guest) 5111 uv_svm_terminate(kvm->arch.lpid); 5112 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5113 } 5114 5115 kvmppc_free_lpid(kvm->arch.lpid); 5116 5117 kvmppc_free_pimap(kvm); 5118 } 5119 5120 /* We don't need to emulate any privileged instructions or dcbz */ 5121 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5122 unsigned int inst, int *advance) 5123 { 5124 return EMULATE_FAIL; 5125 } 5126 5127 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5128 ulong spr_val) 5129 { 5130 return EMULATE_FAIL; 5131 } 5132 5133 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5134 ulong *spr_val) 5135 { 5136 return EMULATE_FAIL; 5137 } 5138 5139 static int kvmppc_core_check_processor_compat_hv(void) 5140 { 5141 if (cpu_has_feature(CPU_FTR_HVMODE) && 5142 cpu_has_feature(CPU_FTR_ARCH_206)) 5143 return 0; 5144 5145 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5146 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5147 return 0; 5148 5149 return -EIO; 5150 } 5151 5152 #ifdef CONFIG_KVM_XICS 5153 5154 void kvmppc_free_pimap(struct kvm *kvm) 5155 { 5156 kfree(kvm->arch.pimap); 5157 } 5158 5159 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5160 { 5161 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5162 } 5163 5164 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5165 { 5166 struct irq_desc *desc; 5167 struct kvmppc_irq_map *irq_map; 5168 struct kvmppc_passthru_irqmap *pimap; 5169 struct irq_chip *chip; 5170 int i, rc = 0; 5171 5172 if (!kvm_irq_bypass) 5173 return 1; 5174 5175 desc = irq_to_desc(host_irq); 5176 if (!desc) 5177 return -EIO; 5178 5179 mutex_lock(&kvm->lock); 5180 5181 pimap = kvm->arch.pimap; 5182 if (pimap == NULL) { 5183 /* First call, allocate structure to hold IRQ map */ 5184 pimap = kvmppc_alloc_pimap(); 5185 if (pimap == NULL) { 5186 mutex_unlock(&kvm->lock); 5187 return -ENOMEM; 5188 } 5189 kvm->arch.pimap = pimap; 5190 } 5191 5192 /* 5193 * For now, we only support interrupts for which the EOI operation 5194 * is an OPAL call followed by a write to XIRR, since that's 5195 * what our real-mode EOI code does, or a XIVE interrupt 5196 */ 5197 chip = irq_data_get_irq_chip(&desc->irq_data); 5198 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5199 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5200 host_irq, guest_gsi); 5201 mutex_unlock(&kvm->lock); 5202 return -ENOENT; 5203 } 5204 5205 /* 5206 * See if we already have an entry for this guest IRQ number. 5207 * If it's mapped to a hardware IRQ number, that's an error, 5208 * otherwise re-use this entry. 5209 */ 5210 for (i = 0; i < pimap->n_mapped; i++) { 5211 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5212 if (pimap->mapped[i].r_hwirq) { 5213 mutex_unlock(&kvm->lock); 5214 return -EINVAL; 5215 } 5216 break; 5217 } 5218 } 5219 5220 if (i == KVMPPC_PIRQ_MAPPED) { 5221 mutex_unlock(&kvm->lock); 5222 return -EAGAIN; /* table is full */ 5223 } 5224 5225 irq_map = &pimap->mapped[i]; 5226 5227 irq_map->v_hwirq = guest_gsi; 5228 irq_map->desc = desc; 5229 5230 /* 5231 * Order the above two stores before the next to serialize with 5232 * the KVM real mode handler. 5233 */ 5234 smp_wmb(); 5235 irq_map->r_hwirq = desc->irq_data.hwirq; 5236 5237 if (i == pimap->n_mapped) 5238 pimap->n_mapped++; 5239 5240 if (xics_on_xive()) 5241 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5242 else 5243 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5244 if (rc) 5245 irq_map->r_hwirq = 0; 5246 5247 mutex_unlock(&kvm->lock); 5248 5249 return 0; 5250 } 5251 5252 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5253 { 5254 struct irq_desc *desc; 5255 struct kvmppc_passthru_irqmap *pimap; 5256 int i, rc = 0; 5257 5258 if (!kvm_irq_bypass) 5259 return 0; 5260 5261 desc = irq_to_desc(host_irq); 5262 if (!desc) 5263 return -EIO; 5264 5265 mutex_lock(&kvm->lock); 5266 if (!kvm->arch.pimap) 5267 goto unlock; 5268 5269 pimap = kvm->arch.pimap; 5270 5271 for (i = 0; i < pimap->n_mapped; i++) { 5272 if (guest_gsi == pimap->mapped[i].v_hwirq) 5273 break; 5274 } 5275 5276 if (i == pimap->n_mapped) { 5277 mutex_unlock(&kvm->lock); 5278 return -ENODEV; 5279 } 5280 5281 if (xics_on_xive()) 5282 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5283 else 5284 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5285 5286 /* invalidate the entry (what do do on error from the above ?) */ 5287 pimap->mapped[i].r_hwirq = 0; 5288 5289 /* 5290 * We don't free this structure even when the count goes to 5291 * zero. The structure is freed when we destroy the VM. 5292 */ 5293 unlock: 5294 mutex_unlock(&kvm->lock); 5295 return rc; 5296 } 5297 5298 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5299 struct irq_bypass_producer *prod) 5300 { 5301 int ret = 0; 5302 struct kvm_kernel_irqfd *irqfd = 5303 container_of(cons, struct kvm_kernel_irqfd, consumer); 5304 5305 irqfd->producer = prod; 5306 5307 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5308 if (ret) 5309 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5310 prod->irq, irqfd->gsi, ret); 5311 5312 return ret; 5313 } 5314 5315 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5316 struct irq_bypass_producer *prod) 5317 { 5318 int ret; 5319 struct kvm_kernel_irqfd *irqfd = 5320 container_of(cons, struct kvm_kernel_irqfd, consumer); 5321 5322 irqfd->producer = NULL; 5323 5324 /* 5325 * When producer of consumer is unregistered, we change back to 5326 * default external interrupt handling mode - KVM real mode 5327 * will switch back to host. 5328 */ 5329 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5330 if (ret) 5331 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5332 prod->irq, irqfd->gsi, ret); 5333 } 5334 #endif 5335 5336 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5337 unsigned int ioctl, unsigned long arg) 5338 { 5339 struct kvm *kvm __maybe_unused = filp->private_data; 5340 void __user *argp = (void __user *)arg; 5341 long r; 5342 5343 switch (ioctl) { 5344 5345 case KVM_PPC_ALLOCATE_HTAB: { 5346 u32 htab_order; 5347 5348 /* If we're a nested hypervisor, we currently only support radix */ 5349 if (kvmhv_on_pseries()) { 5350 r = -EOPNOTSUPP; 5351 break; 5352 } 5353 5354 r = -EFAULT; 5355 if (get_user(htab_order, (u32 __user *)argp)) 5356 break; 5357 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5358 if (r) 5359 break; 5360 r = 0; 5361 break; 5362 } 5363 5364 case KVM_PPC_GET_HTAB_FD: { 5365 struct kvm_get_htab_fd ghf; 5366 5367 r = -EFAULT; 5368 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5369 break; 5370 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5371 break; 5372 } 5373 5374 case KVM_PPC_RESIZE_HPT_PREPARE: { 5375 struct kvm_ppc_resize_hpt rhpt; 5376 5377 r = -EFAULT; 5378 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5379 break; 5380 5381 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5382 break; 5383 } 5384 5385 case KVM_PPC_RESIZE_HPT_COMMIT: { 5386 struct kvm_ppc_resize_hpt rhpt; 5387 5388 r = -EFAULT; 5389 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5390 break; 5391 5392 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5393 break; 5394 } 5395 5396 default: 5397 r = -ENOTTY; 5398 } 5399 5400 return r; 5401 } 5402 5403 /* 5404 * List of hcall numbers to enable by default. 5405 * For compatibility with old userspace, we enable by default 5406 * all hcalls that were implemented before the hcall-enabling 5407 * facility was added. Note this list should not include H_RTAS. 5408 */ 5409 static unsigned int default_hcall_list[] = { 5410 H_REMOVE, 5411 H_ENTER, 5412 H_READ, 5413 H_PROTECT, 5414 H_BULK_REMOVE, 5415 #ifdef CONFIG_SPAPR_TCE_IOMMU 5416 H_GET_TCE, 5417 H_PUT_TCE, 5418 #endif 5419 H_SET_DABR, 5420 H_SET_XDABR, 5421 H_CEDE, 5422 H_PROD, 5423 H_CONFER, 5424 H_REGISTER_VPA, 5425 #ifdef CONFIG_KVM_XICS 5426 H_EOI, 5427 H_CPPR, 5428 H_IPI, 5429 H_IPOLL, 5430 H_XIRR, 5431 H_XIRR_X, 5432 #endif 5433 0 5434 }; 5435 5436 static void init_default_hcalls(void) 5437 { 5438 int i; 5439 unsigned int hcall; 5440 5441 for (i = 0; default_hcall_list[i]; ++i) { 5442 hcall = default_hcall_list[i]; 5443 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5444 __set_bit(hcall / 4, default_enabled_hcalls); 5445 } 5446 } 5447 5448 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5449 { 5450 unsigned long lpcr; 5451 int radix; 5452 int err; 5453 5454 /* If not on a POWER9, reject it */ 5455 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5456 return -ENODEV; 5457 5458 /* If any unknown flags set, reject it */ 5459 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5460 return -EINVAL; 5461 5462 /* GR (guest radix) bit in process_table field must match */ 5463 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5464 if (!!(cfg->process_table & PATB_GR) != radix) 5465 return -EINVAL; 5466 5467 /* Process table size field must be reasonable, i.e. <= 24 */ 5468 if ((cfg->process_table & PRTS_MASK) > 24) 5469 return -EINVAL; 5470 5471 /* We can change a guest to/from radix now, if the host is radix */ 5472 if (radix && !radix_enabled()) 5473 return -EINVAL; 5474 5475 /* If we're a nested hypervisor, we currently only support radix */ 5476 if (kvmhv_on_pseries() && !radix) 5477 return -EINVAL; 5478 5479 mutex_lock(&kvm->arch.mmu_setup_lock); 5480 if (radix != kvm_is_radix(kvm)) { 5481 if (kvm->arch.mmu_ready) { 5482 kvm->arch.mmu_ready = 0; 5483 /* order mmu_ready vs. vcpus_running */ 5484 smp_mb(); 5485 if (atomic_read(&kvm->arch.vcpus_running)) { 5486 kvm->arch.mmu_ready = 1; 5487 err = -EBUSY; 5488 goto out_unlock; 5489 } 5490 } 5491 if (radix) 5492 err = kvmppc_switch_mmu_to_radix(kvm); 5493 else 5494 err = kvmppc_switch_mmu_to_hpt(kvm); 5495 if (err) 5496 goto out_unlock; 5497 } 5498 5499 kvm->arch.process_table = cfg->process_table; 5500 kvmppc_setup_partition_table(kvm); 5501 5502 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5503 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5504 err = 0; 5505 5506 out_unlock: 5507 mutex_unlock(&kvm->arch.mmu_setup_lock); 5508 return err; 5509 } 5510 5511 static int kvmhv_enable_nested(struct kvm *kvm) 5512 { 5513 if (!nested) 5514 return -EPERM; 5515 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5516 return -ENODEV; 5517 5518 /* kvm == NULL means the caller is testing if the capability exists */ 5519 if (kvm) 5520 kvm->arch.nested_enable = true; 5521 return 0; 5522 } 5523 5524 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5525 int size) 5526 { 5527 int rc = -EINVAL; 5528 5529 if (kvmhv_vcpu_is_radix(vcpu)) { 5530 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5531 5532 if (rc > 0) 5533 rc = -EINVAL; 5534 } 5535 5536 /* For now quadrants are the only way to access nested guest memory */ 5537 if (rc && vcpu->arch.nested) 5538 rc = -EAGAIN; 5539 5540 return rc; 5541 } 5542 5543 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5544 int size) 5545 { 5546 int rc = -EINVAL; 5547 5548 if (kvmhv_vcpu_is_radix(vcpu)) { 5549 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5550 5551 if (rc > 0) 5552 rc = -EINVAL; 5553 } 5554 5555 /* For now quadrants are the only way to access nested guest memory */ 5556 if (rc && vcpu->arch.nested) 5557 rc = -EAGAIN; 5558 5559 return rc; 5560 } 5561 5562 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5563 { 5564 unpin_vpa(kvm, vpa); 5565 vpa->gpa = 0; 5566 vpa->pinned_addr = NULL; 5567 vpa->dirty = false; 5568 vpa->update_pending = 0; 5569 } 5570 5571 /* 5572 * Enable a guest to become a secure VM, or test whether 5573 * that could be enabled. 5574 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 5575 * tested (kvm == NULL) or enabled (kvm != NULL). 5576 */ 5577 static int kvmhv_enable_svm(struct kvm *kvm) 5578 { 5579 if (!kvmppc_uvmem_available()) 5580 return -EINVAL; 5581 if (kvm) 5582 kvm->arch.svm_enabled = 1; 5583 return 0; 5584 } 5585 5586 /* 5587 * IOCTL handler to turn off secure mode of guest 5588 * 5589 * - Release all device pages 5590 * - Issue ucall to terminate the guest on the UV side 5591 * - Unpin the VPA pages. 5592 * - Reinit the partition scoped page tables 5593 */ 5594 static int kvmhv_svm_off(struct kvm *kvm) 5595 { 5596 struct kvm_vcpu *vcpu; 5597 int mmu_was_ready; 5598 int srcu_idx; 5599 int ret = 0; 5600 int i; 5601 5602 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5603 return ret; 5604 5605 mutex_lock(&kvm->arch.mmu_setup_lock); 5606 mmu_was_ready = kvm->arch.mmu_ready; 5607 if (kvm->arch.mmu_ready) { 5608 kvm->arch.mmu_ready = 0; 5609 /* order mmu_ready vs. vcpus_running */ 5610 smp_mb(); 5611 if (atomic_read(&kvm->arch.vcpus_running)) { 5612 kvm->arch.mmu_ready = 1; 5613 ret = -EBUSY; 5614 goto out; 5615 } 5616 } 5617 5618 srcu_idx = srcu_read_lock(&kvm->srcu); 5619 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5620 struct kvm_memory_slot *memslot; 5621 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5622 5623 if (!slots) 5624 continue; 5625 5626 kvm_for_each_memslot(memslot, slots) { 5627 kvmppc_uvmem_drop_pages(memslot, kvm, true); 5628 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5629 } 5630 } 5631 srcu_read_unlock(&kvm->srcu, srcu_idx); 5632 5633 ret = uv_svm_terminate(kvm->arch.lpid); 5634 if (ret != U_SUCCESS) { 5635 ret = -EINVAL; 5636 goto out; 5637 } 5638 5639 /* 5640 * When secure guest is reset, all the guest pages are sent 5641 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5642 * chance to run and unpin their VPA pages. Unpinning of all 5643 * VPA pages is done here explicitly so that VPA pages 5644 * can be migrated to the secure side. 5645 * 5646 * This is required to for the secure SMP guest to reboot 5647 * correctly. 5648 */ 5649 kvm_for_each_vcpu(i, vcpu, kvm) { 5650 spin_lock(&vcpu->arch.vpa_update_lock); 5651 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5652 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5653 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5654 spin_unlock(&vcpu->arch.vpa_update_lock); 5655 } 5656 5657 kvmppc_setup_partition_table(kvm); 5658 kvm->arch.secure_guest = 0; 5659 kvm->arch.mmu_ready = mmu_was_ready; 5660 out: 5661 mutex_unlock(&kvm->arch.mmu_setup_lock); 5662 return ret; 5663 } 5664 5665 static int kvmhv_enable_dawr1(struct kvm *kvm) 5666 { 5667 if (!cpu_has_feature(CPU_FTR_DAWR1)) 5668 return -ENODEV; 5669 5670 /* kvm == NULL means the caller is testing if the capability exists */ 5671 if (kvm) 5672 kvm->arch.dawr1_enabled = true; 5673 return 0; 5674 } 5675 5676 static bool kvmppc_hash_v3_possible(void) 5677 { 5678 if (radix_enabled() && no_mixing_hpt_and_radix) 5679 return false; 5680 5681 return cpu_has_feature(CPU_FTR_ARCH_300) && 5682 cpu_has_feature(CPU_FTR_HVMODE); 5683 } 5684 5685 static struct kvmppc_ops kvm_ops_hv = { 5686 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5687 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5688 .get_one_reg = kvmppc_get_one_reg_hv, 5689 .set_one_reg = kvmppc_set_one_reg_hv, 5690 .vcpu_load = kvmppc_core_vcpu_load_hv, 5691 .vcpu_put = kvmppc_core_vcpu_put_hv, 5692 .inject_interrupt = kvmppc_inject_interrupt_hv, 5693 .set_msr = kvmppc_set_msr_hv, 5694 .vcpu_run = kvmppc_vcpu_run_hv, 5695 .vcpu_create = kvmppc_core_vcpu_create_hv, 5696 .vcpu_free = kvmppc_core_vcpu_free_hv, 5697 .check_requests = kvmppc_core_check_requests_hv, 5698 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5699 .flush_memslot = kvmppc_core_flush_memslot_hv, 5700 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5701 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5702 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 5703 .age_gfn = kvm_age_gfn_hv, 5704 .test_age_gfn = kvm_test_age_gfn_hv, 5705 .set_spte_gfn = kvm_set_spte_gfn_hv, 5706 .free_memslot = kvmppc_core_free_memslot_hv, 5707 .init_vm = kvmppc_core_init_vm_hv, 5708 .destroy_vm = kvmppc_core_destroy_vm_hv, 5709 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5710 .emulate_op = kvmppc_core_emulate_op_hv, 5711 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5712 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5713 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5714 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5715 .hcall_implemented = kvmppc_hcall_impl_hv, 5716 #ifdef CONFIG_KVM_XICS 5717 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5718 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5719 #endif 5720 .configure_mmu = kvmhv_configure_mmu, 5721 .get_rmmu_info = kvmhv_get_rmmu_info, 5722 .set_smt_mode = kvmhv_set_smt_mode, 5723 .enable_nested = kvmhv_enable_nested, 5724 .load_from_eaddr = kvmhv_load_from_eaddr, 5725 .store_to_eaddr = kvmhv_store_to_eaddr, 5726 .enable_svm = kvmhv_enable_svm, 5727 .svm_off = kvmhv_svm_off, 5728 .enable_dawr1 = kvmhv_enable_dawr1, 5729 .hash_v3_possible = kvmppc_hash_v3_possible, 5730 }; 5731 5732 static int kvm_init_subcore_bitmap(void) 5733 { 5734 int i, j; 5735 int nr_cores = cpu_nr_cores(); 5736 struct sibling_subcore_state *sibling_subcore_state; 5737 5738 for (i = 0; i < nr_cores; i++) { 5739 int first_cpu = i * threads_per_core; 5740 int node = cpu_to_node(first_cpu); 5741 5742 /* Ignore if it is already allocated. */ 5743 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5744 continue; 5745 5746 sibling_subcore_state = 5747 kzalloc_node(sizeof(struct sibling_subcore_state), 5748 GFP_KERNEL, node); 5749 if (!sibling_subcore_state) 5750 return -ENOMEM; 5751 5752 5753 for (j = 0; j < threads_per_core; j++) { 5754 int cpu = first_cpu + j; 5755 5756 paca_ptrs[cpu]->sibling_subcore_state = 5757 sibling_subcore_state; 5758 } 5759 } 5760 return 0; 5761 } 5762 5763 static int kvmppc_radix_possible(void) 5764 { 5765 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5766 } 5767 5768 static int kvmppc_book3s_init_hv(void) 5769 { 5770 int r; 5771 5772 if (!tlbie_capable) { 5773 pr_err("KVM-HV: Host does not support TLBIE\n"); 5774 return -ENODEV; 5775 } 5776 5777 /* 5778 * FIXME!! Do we need to check on all cpus ? 5779 */ 5780 r = kvmppc_core_check_processor_compat_hv(); 5781 if (r < 0) 5782 return -ENODEV; 5783 5784 r = kvmhv_nested_init(); 5785 if (r) 5786 return r; 5787 5788 r = kvm_init_subcore_bitmap(); 5789 if (r) 5790 return r; 5791 5792 /* 5793 * We need a way of accessing the XICS interrupt controller, 5794 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5795 * indirectly, via OPAL. 5796 */ 5797 #ifdef CONFIG_SMP 5798 if (!xics_on_xive() && !kvmhv_on_pseries() && 5799 !local_paca->kvm_hstate.xics_phys) { 5800 struct device_node *np; 5801 5802 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5803 if (!np) { 5804 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5805 return -ENODEV; 5806 } 5807 /* presence of intc confirmed - node can be dropped again */ 5808 of_node_put(np); 5809 } 5810 #endif 5811 5812 kvm_ops_hv.owner = THIS_MODULE; 5813 kvmppc_hv_ops = &kvm_ops_hv; 5814 5815 init_default_hcalls(); 5816 5817 init_vcore_lists(); 5818 5819 r = kvmppc_mmu_hv_init(); 5820 if (r) 5821 return r; 5822 5823 if (kvmppc_radix_possible()) 5824 r = kvmppc_radix_init(); 5825 5826 /* 5827 * POWER9 chips before version 2.02 can't have some threads in 5828 * HPT mode and some in radix mode on the same core. 5829 */ 5830 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5831 unsigned int pvr = mfspr(SPRN_PVR); 5832 if ((pvr >> 16) == PVR_POWER9 && 5833 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5834 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5835 no_mixing_hpt_and_radix = true; 5836 } 5837 5838 r = kvmppc_uvmem_init(); 5839 if (r < 0) 5840 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 5841 5842 return r; 5843 } 5844 5845 static void kvmppc_book3s_exit_hv(void) 5846 { 5847 kvmppc_uvmem_free(); 5848 kvmppc_free_host_rm_ops(); 5849 if (kvmppc_radix_possible()) 5850 kvmppc_radix_exit(); 5851 kvmppc_hv_ops = NULL; 5852 kvmhv_nested_exit(); 5853 } 5854 5855 module_init(kvmppc_book3s_init_hv); 5856 module_exit(kvmppc_book3s_exit_hv); 5857 MODULE_LICENSE("GPL"); 5858 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5859 MODULE_ALIAS("devname:kvm"); 5860