1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/kernel.h> 23 #include <linux/err.h> 24 #include <linux/slab.h> 25 #include <linux/preempt.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/stat.h> 28 #include <linux/delay.h> 29 #include <linux/export.h> 30 #include <linux/fs.h> 31 #include <linux/anon_inodes.h> 32 #include <linux/cpu.h> 33 #include <linux/cpumask.h> 34 #include <linux/spinlock.h> 35 #include <linux/page-flags.h> 36 #include <linux/srcu.h> 37 #include <linux/miscdevice.h> 38 #include <linux/debugfs.h> 39 #include <linux/gfp.h> 40 #include <linux/vmalloc.h> 41 #include <linux/highmem.h> 42 #include <linux/hugetlb.h> 43 #include <linux/kvm_irqfd.h> 44 #include <linux/irqbypass.h> 45 #include <linux/module.h> 46 #include <linux/compiler.h> 47 #include <linux/of.h> 48 49 #include <asm/reg.h> 50 #include <asm/ppc-opcode.h> 51 #include <asm/asm-prototypes.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <asm/tlbflush.h> 56 #include <linux/uaccess.h> 57 #include <asm/io.h> 58 #include <asm/kvm_ppc.h> 59 #include <asm/kvm_book3s.h> 60 #include <asm/mmu_context.h> 61 #include <asm/lppaca.h> 62 #include <asm/processor.h> 63 #include <asm/cputhreads.h> 64 #include <asm/page.h> 65 #include <asm/hvcall.h> 66 #include <asm/switch_to.h> 67 #include <asm/smp.h> 68 #include <asm/dbell.h> 69 #include <asm/hmi.h> 70 #include <asm/pnv-pci.h> 71 #include <asm/mmu.h> 72 #include <asm/opal.h> 73 #include <asm/xics.h> 74 #include <asm/xive.h> 75 76 #include "book3s.h" 77 78 #define CREATE_TRACE_POINTS 79 #include "trace_hv.h" 80 81 /* #define EXIT_DEBUG */ 82 /* #define EXIT_DEBUG_SIMPLE */ 83 /* #define EXIT_DEBUG_INT */ 84 85 /* Used to indicate that a guest page fault needs to be handled */ 86 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 87 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 88 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 89 90 /* Used as a "null" value for timebase values */ 91 #define TB_NIL (~(u64)0) 92 93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 94 95 static int dynamic_mt_modes = 6; 96 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); 97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 98 static int target_smt_mode; 99 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); 100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 101 102 static bool indep_threads_mode = true; 103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 105 106 #ifdef CONFIG_KVM_XICS 107 static struct kernel_param_ops module_param_ops = { 108 .set = param_set_int, 109 .get = param_get_int, 110 }; 111 112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 113 S_IRUGO | S_IWUSR); 114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 115 116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 117 S_IRUGO | S_IWUSR); 118 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 119 #endif 120 121 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 122 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 123 static void kvmppc_setup_partition_table(struct kvm *kvm); 124 125 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 126 int *ip) 127 { 128 int i = *ip; 129 struct kvm_vcpu *vcpu; 130 131 while (++i < MAX_SMT_THREADS) { 132 vcpu = READ_ONCE(vc->runnable_threads[i]); 133 if (vcpu) { 134 *ip = i; 135 return vcpu; 136 } 137 } 138 return NULL; 139 } 140 141 /* Used to traverse the list of runnable threads for a given vcore */ 142 #define for_each_runnable_thread(i, vcpu, vc) \ 143 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 144 145 static bool kvmppc_ipi_thread(int cpu) 146 { 147 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 148 149 /* On POWER9 we can use msgsnd to IPI any cpu */ 150 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 151 msg |= get_hard_smp_processor_id(cpu); 152 smp_mb(); 153 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 154 return true; 155 } 156 157 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 158 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 159 preempt_disable(); 160 if (cpu_first_thread_sibling(cpu) == 161 cpu_first_thread_sibling(smp_processor_id())) { 162 msg |= cpu_thread_in_core(cpu); 163 smp_mb(); 164 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 165 preempt_enable(); 166 return true; 167 } 168 preempt_enable(); 169 } 170 171 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 172 if (cpu >= 0 && cpu < nr_cpu_ids) { 173 if (paca[cpu].kvm_hstate.xics_phys) { 174 xics_wake_cpu(cpu); 175 return true; 176 } 177 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 178 return true; 179 } 180 #endif 181 182 return false; 183 } 184 185 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 186 { 187 int cpu; 188 struct swait_queue_head *wqp; 189 190 wqp = kvm_arch_vcpu_wq(vcpu); 191 if (swq_has_sleeper(wqp)) { 192 swake_up(wqp); 193 ++vcpu->stat.halt_wakeup; 194 } 195 196 cpu = READ_ONCE(vcpu->arch.thread_cpu); 197 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 198 return; 199 200 /* CPU points to the first thread of the core */ 201 cpu = vcpu->cpu; 202 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 203 smp_send_reschedule(cpu); 204 } 205 206 /* 207 * We use the vcpu_load/put functions to measure stolen time. 208 * Stolen time is counted as time when either the vcpu is able to 209 * run as part of a virtual core, but the task running the vcore 210 * is preempted or sleeping, or when the vcpu needs something done 211 * in the kernel by the task running the vcpu, but that task is 212 * preempted or sleeping. Those two things have to be counted 213 * separately, since one of the vcpu tasks will take on the job 214 * of running the core, and the other vcpu tasks in the vcore will 215 * sleep waiting for it to do that, but that sleep shouldn't count 216 * as stolen time. 217 * 218 * Hence we accumulate stolen time when the vcpu can run as part of 219 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 220 * needs its task to do other things in the kernel (for example, 221 * service a page fault) in busy_stolen. We don't accumulate 222 * stolen time for a vcore when it is inactive, or for a vcpu 223 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 224 * a misnomer; it means that the vcpu task is not executing in 225 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 226 * the kernel. We don't have any way of dividing up that time 227 * between time that the vcpu is genuinely stopped, time that 228 * the task is actively working on behalf of the vcpu, and time 229 * that the task is preempted, so we don't count any of it as 230 * stolen. 231 * 232 * Updates to busy_stolen are protected by arch.tbacct_lock; 233 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 234 * lock. The stolen times are measured in units of timebase ticks. 235 * (Note that the != TB_NIL checks below are purely defensive; 236 * they should never fail.) 237 */ 238 239 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 240 { 241 unsigned long flags; 242 243 spin_lock_irqsave(&vc->stoltb_lock, flags); 244 vc->preempt_tb = mftb(); 245 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 246 } 247 248 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 249 { 250 unsigned long flags; 251 252 spin_lock_irqsave(&vc->stoltb_lock, flags); 253 if (vc->preempt_tb != TB_NIL) { 254 vc->stolen_tb += mftb() - vc->preempt_tb; 255 vc->preempt_tb = TB_NIL; 256 } 257 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 258 } 259 260 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 261 { 262 struct kvmppc_vcore *vc = vcpu->arch.vcore; 263 unsigned long flags; 264 265 /* 266 * We can test vc->runner without taking the vcore lock, 267 * because only this task ever sets vc->runner to this 268 * vcpu, and once it is set to this vcpu, only this task 269 * ever sets it to NULL. 270 */ 271 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 272 kvmppc_core_end_stolen(vc); 273 274 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 275 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 276 vcpu->arch.busy_preempt != TB_NIL) { 277 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 278 vcpu->arch.busy_preempt = TB_NIL; 279 } 280 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 281 } 282 283 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 284 { 285 struct kvmppc_vcore *vc = vcpu->arch.vcore; 286 unsigned long flags; 287 288 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 289 kvmppc_core_start_stolen(vc); 290 291 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 292 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 293 vcpu->arch.busy_preempt = mftb(); 294 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 295 } 296 297 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 298 { 299 /* 300 * Check for illegal transactional state bit combination 301 * and if we find it, force the TS field to a safe state. 302 */ 303 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 304 msr &= ~MSR_TS_MASK; 305 vcpu->arch.shregs.msr = msr; 306 kvmppc_end_cede(vcpu); 307 } 308 309 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 310 { 311 vcpu->arch.pvr = pvr; 312 } 313 314 /* Dummy value used in computing PCR value below */ 315 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 316 317 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 318 { 319 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 320 struct kvmppc_vcore *vc = vcpu->arch.vcore; 321 322 /* We can (emulate) our own architecture version and anything older */ 323 if (cpu_has_feature(CPU_FTR_ARCH_300)) 324 host_pcr_bit = PCR_ARCH_300; 325 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 326 host_pcr_bit = PCR_ARCH_207; 327 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 328 host_pcr_bit = PCR_ARCH_206; 329 else 330 host_pcr_bit = PCR_ARCH_205; 331 332 /* Determine lowest PCR bit needed to run guest in given PVR level */ 333 guest_pcr_bit = host_pcr_bit; 334 if (arch_compat) { 335 switch (arch_compat) { 336 case PVR_ARCH_205: 337 guest_pcr_bit = PCR_ARCH_205; 338 break; 339 case PVR_ARCH_206: 340 case PVR_ARCH_206p: 341 guest_pcr_bit = PCR_ARCH_206; 342 break; 343 case PVR_ARCH_207: 344 guest_pcr_bit = PCR_ARCH_207; 345 break; 346 case PVR_ARCH_300: 347 guest_pcr_bit = PCR_ARCH_300; 348 break; 349 default: 350 return -EINVAL; 351 } 352 } 353 354 /* Check requested PCR bits don't exceed our capabilities */ 355 if (guest_pcr_bit > host_pcr_bit) 356 return -EINVAL; 357 358 spin_lock(&vc->lock); 359 vc->arch_compat = arch_compat; 360 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 361 vc->pcr = host_pcr_bit - guest_pcr_bit; 362 spin_unlock(&vc->lock); 363 364 return 0; 365 } 366 367 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 368 { 369 int r; 370 371 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 372 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 373 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 374 for (r = 0; r < 16; ++r) 375 pr_err("r%2d = %.16lx r%d = %.16lx\n", 376 r, kvmppc_get_gpr(vcpu, r), 377 r+16, kvmppc_get_gpr(vcpu, r+16)); 378 pr_err("ctr = %.16lx lr = %.16lx\n", 379 vcpu->arch.ctr, vcpu->arch.lr); 380 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 381 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 382 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 383 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 384 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 385 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 386 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 387 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 388 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 389 pr_err("fault dar = %.16lx dsisr = %.8x\n", 390 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 391 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 392 for (r = 0; r < vcpu->arch.slb_max; ++r) 393 pr_err(" ESID = %.16llx VSID = %.16llx\n", 394 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 395 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 396 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 397 vcpu->arch.last_inst); 398 } 399 400 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 401 { 402 struct kvm_vcpu *ret; 403 404 mutex_lock(&kvm->lock); 405 ret = kvm_get_vcpu_by_id(kvm, id); 406 mutex_unlock(&kvm->lock); 407 return ret; 408 } 409 410 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 411 { 412 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 413 vpa->yield_count = cpu_to_be32(1); 414 } 415 416 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 417 unsigned long addr, unsigned long len) 418 { 419 /* check address is cacheline aligned */ 420 if (addr & (L1_CACHE_BYTES - 1)) 421 return -EINVAL; 422 spin_lock(&vcpu->arch.vpa_update_lock); 423 if (v->next_gpa != addr || v->len != len) { 424 v->next_gpa = addr; 425 v->len = addr ? len : 0; 426 v->update_pending = 1; 427 } 428 spin_unlock(&vcpu->arch.vpa_update_lock); 429 return 0; 430 } 431 432 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 433 struct reg_vpa { 434 u32 dummy; 435 union { 436 __be16 hword; 437 __be32 word; 438 } length; 439 }; 440 441 static int vpa_is_registered(struct kvmppc_vpa *vpap) 442 { 443 if (vpap->update_pending) 444 return vpap->next_gpa != 0; 445 return vpap->pinned_addr != NULL; 446 } 447 448 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 449 unsigned long flags, 450 unsigned long vcpuid, unsigned long vpa) 451 { 452 struct kvm *kvm = vcpu->kvm; 453 unsigned long len, nb; 454 void *va; 455 struct kvm_vcpu *tvcpu; 456 int err; 457 int subfunc; 458 struct kvmppc_vpa *vpap; 459 460 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 461 if (!tvcpu) 462 return H_PARAMETER; 463 464 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 465 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 466 subfunc == H_VPA_REG_SLB) { 467 /* Registering new area - address must be cache-line aligned */ 468 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 469 return H_PARAMETER; 470 471 /* convert logical addr to kernel addr and read length */ 472 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 473 if (va == NULL) 474 return H_PARAMETER; 475 if (subfunc == H_VPA_REG_VPA) 476 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 477 else 478 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 479 kvmppc_unpin_guest_page(kvm, va, vpa, false); 480 481 /* Check length */ 482 if (len > nb || len < sizeof(struct reg_vpa)) 483 return H_PARAMETER; 484 } else { 485 vpa = 0; 486 len = 0; 487 } 488 489 err = H_PARAMETER; 490 vpap = NULL; 491 spin_lock(&tvcpu->arch.vpa_update_lock); 492 493 switch (subfunc) { 494 case H_VPA_REG_VPA: /* register VPA */ 495 /* 496 * The size of our lppaca is 1kB because of the way we align 497 * it for the guest to avoid crossing a 4kB boundary. We only 498 * use 640 bytes of the structure though, so we should accept 499 * clients that set a size of 640. 500 */ 501 if (len < 640) 502 break; 503 vpap = &tvcpu->arch.vpa; 504 err = 0; 505 break; 506 507 case H_VPA_REG_DTL: /* register DTL */ 508 if (len < sizeof(struct dtl_entry)) 509 break; 510 len -= len % sizeof(struct dtl_entry); 511 512 /* Check that they have previously registered a VPA */ 513 err = H_RESOURCE; 514 if (!vpa_is_registered(&tvcpu->arch.vpa)) 515 break; 516 517 vpap = &tvcpu->arch.dtl; 518 err = 0; 519 break; 520 521 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 522 /* Check that they have previously registered a VPA */ 523 err = H_RESOURCE; 524 if (!vpa_is_registered(&tvcpu->arch.vpa)) 525 break; 526 527 vpap = &tvcpu->arch.slb_shadow; 528 err = 0; 529 break; 530 531 case H_VPA_DEREG_VPA: /* deregister VPA */ 532 /* Check they don't still have a DTL or SLB buf registered */ 533 err = H_RESOURCE; 534 if (vpa_is_registered(&tvcpu->arch.dtl) || 535 vpa_is_registered(&tvcpu->arch.slb_shadow)) 536 break; 537 538 vpap = &tvcpu->arch.vpa; 539 err = 0; 540 break; 541 542 case H_VPA_DEREG_DTL: /* deregister DTL */ 543 vpap = &tvcpu->arch.dtl; 544 err = 0; 545 break; 546 547 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 548 vpap = &tvcpu->arch.slb_shadow; 549 err = 0; 550 break; 551 } 552 553 if (vpap) { 554 vpap->next_gpa = vpa; 555 vpap->len = len; 556 vpap->update_pending = 1; 557 } 558 559 spin_unlock(&tvcpu->arch.vpa_update_lock); 560 561 return err; 562 } 563 564 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 565 { 566 struct kvm *kvm = vcpu->kvm; 567 void *va; 568 unsigned long nb; 569 unsigned long gpa; 570 571 /* 572 * We need to pin the page pointed to by vpap->next_gpa, 573 * but we can't call kvmppc_pin_guest_page under the lock 574 * as it does get_user_pages() and down_read(). So we 575 * have to drop the lock, pin the page, then get the lock 576 * again and check that a new area didn't get registered 577 * in the meantime. 578 */ 579 for (;;) { 580 gpa = vpap->next_gpa; 581 spin_unlock(&vcpu->arch.vpa_update_lock); 582 va = NULL; 583 nb = 0; 584 if (gpa) 585 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 586 spin_lock(&vcpu->arch.vpa_update_lock); 587 if (gpa == vpap->next_gpa) 588 break; 589 /* sigh... unpin that one and try again */ 590 if (va) 591 kvmppc_unpin_guest_page(kvm, va, gpa, false); 592 } 593 594 vpap->update_pending = 0; 595 if (va && nb < vpap->len) { 596 /* 597 * If it's now too short, it must be that userspace 598 * has changed the mappings underlying guest memory, 599 * so unregister the region. 600 */ 601 kvmppc_unpin_guest_page(kvm, va, gpa, false); 602 va = NULL; 603 } 604 if (vpap->pinned_addr) 605 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 606 vpap->dirty); 607 vpap->gpa = gpa; 608 vpap->pinned_addr = va; 609 vpap->dirty = false; 610 if (va) 611 vpap->pinned_end = va + vpap->len; 612 } 613 614 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 615 { 616 if (!(vcpu->arch.vpa.update_pending || 617 vcpu->arch.slb_shadow.update_pending || 618 vcpu->arch.dtl.update_pending)) 619 return; 620 621 spin_lock(&vcpu->arch.vpa_update_lock); 622 if (vcpu->arch.vpa.update_pending) { 623 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 624 if (vcpu->arch.vpa.pinned_addr) 625 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 626 } 627 if (vcpu->arch.dtl.update_pending) { 628 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 629 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 630 vcpu->arch.dtl_index = 0; 631 } 632 if (vcpu->arch.slb_shadow.update_pending) 633 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 634 spin_unlock(&vcpu->arch.vpa_update_lock); 635 } 636 637 /* 638 * Return the accumulated stolen time for the vcore up until `now'. 639 * The caller should hold the vcore lock. 640 */ 641 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 642 { 643 u64 p; 644 unsigned long flags; 645 646 spin_lock_irqsave(&vc->stoltb_lock, flags); 647 p = vc->stolen_tb; 648 if (vc->vcore_state != VCORE_INACTIVE && 649 vc->preempt_tb != TB_NIL) 650 p += now - vc->preempt_tb; 651 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 652 return p; 653 } 654 655 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 656 struct kvmppc_vcore *vc) 657 { 658 struct dtl_entry *dt; 659 struct lppaca *vpa; 660 unsigned long stolen; 661 unsigned long core_stolen; 662 u64 now; 663 unsigned long flags; 664 665 dt = vcpu->arch.dtl_ptr; 666 vpa = vcpu->arch.vpa.pinned_addr; 667 now = mftb(); 668 core_stolen = vcore_stolen_time(vc, now); 669 stolen = core_stolen - vcpu->arch.stolen_logged; 670 vcpu->arch.stolen_logged = core_stolen; 671 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 672 stolen += vcpu->arch.busy_stolen; 673 vcpu->arch.busy_stolen = 0; 674 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 675 if (!dt || !vpa) 676 return; 677 memset(dt, 0, sizeof(struct dtl_entry)); 678 dt->dispatch_reason = 7; 679 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 680 dt->timebase = cpu_to_be64(now + vc->tb_offset); 681 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 682 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 683 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 684 ++dt; 685 if (dt == vcpu->arch.dtl.pinned_end) 686 dt = vcpu->arch.dtl.pinned_addr; 687 vcpu->arch.dtl_ptr = dt; 688 /* order writing *dt vs. writing vpa->dtl_idx */ 689 smp_wmb(); 690 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 691 vcpu->arch.dtl.dirty = true; 692 } 693 694 /* See if there is a doorbell interrupt pending for a vcpu */ 695 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 696 { 697 int thr; 698 struct kvmppc_vcore *vc; 699 700 if (vcpu->arch.doorbell_request) 701 return true; 702 /* 703 * Ensure that the read of vcore->dpdes comes after the read 704 * of vcpu->doorbell_request. This barrier matches the 705 * lwsync in book3s_hv_rmhandlers.S just before the 706 * fast_guest_return label. 707 */ 708 smp_rmb(); 709 vc = vcpu->arch.vcore; 710 thr = vcpu->vcpu_id - vc->first_vcpuid; 711 return !!(vc->dpdes & (1 << thr)); 712 } 713 714 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 715 { 716 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 717 return true; 718 if ((!vcpu->arch.vcore->arch_compat) && 719 cpu_has_feature(CPU_FTR_ARCH_207S)) 720 return true; 721 return false; 722 } 723 724 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 725 unsigned long resource, unsigned long value1, 726 unsigned long value2) 727 { 728 switch (resource) { 729 case H_SET_MODE_RESOURCE_SET_CIABR: 730 if (!kvmppc_power8_compatible(vcpu)) 731 return H_P2; 732 if (value2) 733 return H_P4; 734 if (mflags) 735 return H_UNSUPPORTED_FLAG_START; 736 /* Guests can't breakpoint the hypervisor */ 737 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 738 return H_P3; 739 vcpu->arch.ciabr = value1; 740 return H_SUCCESS; 741 case H_SET_MODE_RESOURCE_SET_DAWR: 742 if (!kvmppc_power8_compatible(vcpu)) 743 return H_P2; 744 if (mflags) 745 return H_UNSUPPORTED_FLAG_START; 746 if (value2 & DABRX_HYP) 747 return H_P4; 748 vcpu->arch.dawr = value1; 749 vcpu->arch.dawrx = value2; 750 return H_SUCCESS; 751 default: 752 return H_TOO_HARD; 753 } 754 } 755 756 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 757 { 758 struct kvmppc_vcore *vcore = target->arch.vcore; 759 760 /* 761 * We expect to have been called by the real mode handler 762 * (kvmppc_rm_h_confer()) which would have directly returned 763 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 764 * have useful work to do and should not confer) so we don't 765 * recheck that here. 766 */ 767 768 spin_lock(&vcore->lock); 769 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 770 vcore->vcore_state != VCORE_INACTIVE && 771 vcore->runner) 772 target = vcore->runner; 773 spin_unlock(&vcore->lock); 774 775 return kvm_vcpu_yield_to(target); 776 } 777 778 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 779 { 780 int yield_count = 0; 781 struct lppaca *lppaca; 782 783 spin_lock(&vcpu->arch.vpa_update_lock); 784 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 785 if (lppaca) 786 yield_count = be32_to_cpu(lppaca->yield_count); 787 spin_unlock(&vcpu->arch.vpa_update_lock); 788 return yield_count; 789 } 790 791 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 792 { 793 unsigned long req = kvmppc_get_gpr(vcpu, 3); 794 unsigned long target, ret = H_SUCCESS; 795 int yield_count; 796 struct kvm_vcpu *tvcpu; 797 int idx, rc; 798 799 if (req <= MAX_HCALL_OPCODE && 800 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 801 return RESUME_HOST; 802 803 switch (req) { 804 case H_CEDE: 805 break; 806 case H_PROD: 807 target = kvmppc_get_gpr(vcpu, 4); 808 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 809 if (!tvcpu) { 810 ret = H_PARAMETER; 811 break; 812 } 813 tvcpu->arch.prodded = 1; 814 smp_mb(); 815 if (tvcpu->arch.ceded) 816 kvmppc_fast_vcpu_kick_hv(tvcpu); 817 break; 818 case H_CONFER: 819 target = kvmppc_get_gpr(vcpu, 4); 820 if (target == -1) 821 break; 822 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 823 if (!tvcpu) { 824 ret = H_PARAMETER; 825 break; 826 } 827 yield_count = kvmppc_get_gpr(vcpu, 5); 828 if (kvmppc_get_yield_count(tvcpu) != yield_count) 829 break; 830 kvm_arch_vcpu_yield_to(tvcpu); 831 break; 832 case H_REGISTER_VPA: 833 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 834 kvmppc_get_gpr(vcpu, 5), 835 kvmppc_get_gpr(vcpu, 6)); 836 break; 837 case H_RTAS: 838 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 839 return RESUME_HOST; 840 841 idx = srcu_read_lock(&vcpu->kvm->srcu); 842 rc = kvmppc_rtas_hcall(vcpu); 843 srcu_read_unlock(&vcpu->kvm->srcu, idx); 844 845 if (rc == -ENOENT) 846 return RESUME_HOST; 847 else if (rc == 0) 848 break; 849 850 /* Send the error out to userspace via KVM_RUN */ 851 return rc; 852 case H_LOGICAL_CI_LOAD: 853 ret = kvmppc_h_logical_ci_load(vcpu); 854 if (ret == H_TOO_HARD) 855 return RESUME_HOST; 856 break; 857 case H_LOGICAL_CI_STORE: 858 ret = kvmppc_h_logical_ci_store(vcpu); 859 if (ret == H_TOO_HARD) 860 return RESUME_HOST; 861 break; 862 case H_SET_MODE: 863 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 864 kvmppc_get_gpr(vcpu, 5), 865 kvmppc_get_gpr(vcpu, 6), 866 kvmppc_get_gpr(vcpu, 7)); 867 if (ret == H_TOO_HARD) 868 return RESUME_HOST; 869 break; 870 case H_XIRR: 871 case H_CPPR: 872 case H_EOI: 873 case H_IPI: 874 case H_IPOLL: 875 case H_XIRR_X: 876 if (kvmppc_xics_enabled(vcpu)) { 877 if (xive_enabled()) { 878 ret = H_NOT_AVAILABLE; 879 return RESUME_GUEST; 880 } 881 ret = kvmppc_xics_hcall(vcpu, req); 882 break; 883 } 884 return RESUME_HOST; 885 case H_PUT_TCE: 886 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 887 kvmppc_get_gpr(vcpu, 5), 888 kvmppc_get_gpr(vcpu, 6)); 889 if (ret == H_TOO_HARD) 890 return RESUME_HOST; 891 break; 892 case H_PUT_TCE_INDIRECT: 893 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 894 kvmppc_get_gpr(vcpu, 5), 895 kvmppc_get_gpr(vcpu, 6), 896 kvmppc_get_gpr(vcpu, 7)); 897 if (ret == H_TOO_HARD) 898 return RESUME_HOST; 899 break; 900 case H_STUFF_TCE: 901 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 902 kvmppc_get_gpr(vcpu, 5), 903 kvmppc_get_gpr(vcpu, 6), 904 kvmppc_get_gpr(vcpu, 7)); 905 if (ret == H_TOO_HARD) 906 return RESUME_HOST; 907 break; 908 default: 909 return RESUME_HOST; 910 } 911 kvmppc_set_gpr(vcpu, 3, ret); 912 vcpu->arch.hcall_needed = 0; 913 return RESUME_GUEST; 914 } 915 916 static int kvmppc_hcall_impl_hv(unsigned long cmd) 917 { 918 switch (cmd) { 919 case H_CEDE: 920 case H_PROD: 921 case H_CONFER: 922 case H_REGISTER_VPA: 923 case H_SET_MODE: 924 case H_LOGICAL_CI_LOAD: 925 case H_LOGICAL_CI_STORE: 926 #ifdef CONFIG_KVM_XICS 927 case H_XIRR: 928 case H_CPPR: 929 case H_EOI: 930 case H_IPI: 931 case H_IPOLL: 932 case H_XIRR_X: 933 #endif 934 return 1; 935 } 936 937 /* See if it's in the real-mode table */ 938 return kvmppc_hcall_impl_hv_realmode(cmd); 939 } 940 941 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 942 struct kvm_vcpu *vcpu) 943 { 944 u32 last_inst; 945 946 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 947 EMULATE_DONE) { 948 /* 949 * Fetch failed, so return to guest and 950 * try executing it again. 951 */ 952 return RESUME_GUEST; 953 } 954 955 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 956 run->exit_reason = KVM_EXIT_DEBUG; 957 run->debug.arch.address = kvmppc_get_pc(vcpu); 958 return RESUME_HOST; 959 } else { 960 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 961 return RESUME_GUEST; 962 } 963 } 964 965 static void do_nothing(void *x) 966 { 967 } 968 969 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 970 { 971 int thr, cpu, pcpu, nthreads; 972 struct kvm_vcpu *v; 973 unsigned long dpdes; 974 975 nthreads = vcpu->kvm->arch.emul_smt_mode; 976 dpdes = 0; 977 cpu = vcpu->vcpu_id & ~(nthreads - 1); 978 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 979 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 980 if (!v) 981 continue; 982 /* 983 * If the vcpu is currently running on a physical cpu thread, 984 * interrupt it in order to pull it out of the guest briefly, 985 * which will update its vcore->dpdes value. 986 */ 987 pcpu = READ_ONCE(v->cpu); 988 if (pcpu >= 0) 989 smp_call_function_single(pcpu, do_nothing, NULL, 1); 990 if (kvmppc_doorbell_pending(v)) 991 dpdes |= 1 << thr; 992 } 993 return dpdes; 994 } 995 996 /* 997 * On POWER9, emulate doorbell-related instructions in order to 998 * give the guest the illusion of running on a multi-threaded core. 999 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1000 * and mfspr DPDES. 1001 */ 1002 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1003 { 1004 u32 inst, rb, thr; 1005 unsigned long arg; 1006 struct kvm *kvm = vcpu->kvm; 1007 struct kvm_vcpu *tvcpu; 1008 1009 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1010 return EMULATE_FAIL; 1011 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1012 return RESUME_GUEST; 1013 if (get_op(inst) != 31) 1014 return EMULATE_FAIL; 1015 rb = get_rb(inst); 1016 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1017 switch (get_xop(inst)) { 1018 case OP_31_XOP_MSGSNDP: 1019 arg = kvmppc_get_gpr(vcpu, rb); 1020 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1021 break; 1022 arg &= 0x3f; 1023 if (arg >= kvm->arch.emul_smt_mode) 1024 break; 1025 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1026 if (!tvcpu) 1027 break; 1028 if (!tvcpu->arch.doorbell_request) { 1029 tvcpu->arch.doorbell_request = 1; 1030 kvmppc_fast_vcpu_kick_hv(tvcpu); 1031 } 1032 break; 1033 case OP_31_XOP_MSGCLRP: 1034 arg = kvmppc_get_gpr(vcpu, rb); 1035 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1036 break; 1037 vcpu->arch.vcore->dpdes = 0; 1038 vcpu->arch.doorbell_request = 0; 1039 break; 1040 case OP_31_XOP_MFSPR: 1041 switch (get_sprn(inst)) { 1042 case SPRN_TIR: 1043 arg = thr; 1044 break; 1045 case SPRN_DPDES: 1046 arg = kvmppc_read_dpdes(vcpu); 1047 break; 1048 default: 1049 return EMULATE_FAIL; 1050 } 1051 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1052 break; 1053 default: 1054 return EMULATE_FAIL; 1055 } 1056 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1057 return RESUME_GUEST; 1058 } 1059 1060 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1061 struct task_struct *tsk) 1062 { 1063 int r = RESUME_HOST; 1064 1065 vcpu->stat.sum_exits++; 1066 1067 /* 1068 * This can happen if an interrupt occurs in the last stages 1069 * of guest entry or the first stages of guest exit (i.e. after 1070 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1071 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1072 * That can happen due to a bug, or due to a machine check 1073 * occurring at just the wrong time. 1074 */ 1075 if (vcpu->arch.shregs.msr & MSR_HV) { 1076 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1077 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1078 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1079 vcpu->arch.shregs.msr); 1080 kvmppc_dump_regs(vcpu); 1081 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1082 run->hw.hardware_exit_reason = vcpu->arch.trap; 1083 return RESUME_HOST; 1084 } 1085 run->exit_reason = KVM_EXIT_UNKNOWN; 1086 run->ready_for_interrupt_injection = 1; 1087 switch (vcpu->arch.trap) { 1088 /* We're good on these - the host merely wanted to get our attention */ 1089 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1090 vcpu->stat.dec_exits++; 1091 r = RESUME_GUEST; 1092 break; 1093 case BOOK3S_INTERRUPT_EXTERNAL: 1094 case BOOK3S_INTERRUPT_H_DOORBELL: 1095 case BOOK3S_INTERRUPT_H_VIRT: 1096 vcpu->stat.ext_intr_exits++; 1097 r = RESUME_GUEST; 1098 break; 1099 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1100 case BOOK3S_INTERRUPT_HMI: 1101 case BOOK3S_INTERRUPT_PERFMON: 1102 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1103 r = RESUME_GUEST; 1104 break; 1105 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1106 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1107 run->exit_reason = KVM_EXIT_NMI; 1108 run->hw.hardware_exit_reason = vcpu->arch.trap; 1109 /* Clear out the old NMI status from run->flags */ 1110 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1111 /* Now set the NMI status */ 1112 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1113 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1114 else 1115 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1116 1117 r = RESUME_HOST; 1118 /* Print the MCE event to host console. */ 1119 machine_check_print_event_info(&vcpu->arch.mce_evt, false); 1120 break; 1121 case BOOK3S_INTERRUPT_PROGRAM: 1122 { 1123 ulong flags; 1124 /* 1125 * Normally program interrupts are delivered directly 1126 * to the guest by the hardware, but we can get here 1127 * as a result of a hypervisor emulation interrupt 1128 * (e40) getting turned into a 700 by BML RTAS. 1129 */ 1130 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1131 kvmppc_core_queue_program(vcpu, flags); 1132 r = RESUME_GUEST; 1133 break; 1134 } 1135 case BOOK3S_INTERRUPT_SYSCALL: 1136 { 1137 /* hcall - punt to userspace */ 1138 int i; 1139 1140 /* hypercall with MSR_PR has already been handled in rmode, 1141 * and never reaches here. 1142 */ 1143 1144 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1145 for (i = 0; i < 9; ++i) 1146 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1147 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1148 vcpu->arch.hcall_needed = 1; 1149 r = RESUME_HOST; 1150 break; 1151 } 1152 /* 1153 * We get these next two if the guest accesses a page which it thinks 1154 * it has mapped but which is not actually present, either because 1155 * it is for an emulated I/O device or because the corresonding 1156 * host page has been paged out. Any other HDSI/HISI interrupts 1157 * have been handled already. 1158 */ 1159 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1160 r = RESUME_PAGE_FAULT; 1161 break; 1162 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1163 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1164 vcpu->arch.fault_dsisr = 0; 1165 r = RESUME_PAGE_FAULT; 1166 break; 1167 /* 1168 * This occurs if the guest executes an illegal instruction. 1169 * If the guest debug is disabled, generate a program interrupt 1170 * to the guest. If guest debug is enabled, we need to check 1171 * whether the instruction is a software breakpoint instruction. 1172 * Accordingly return to Guest or Host. 1173 */ 1174 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1175 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1176 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1177 swab32(vcpu->arch.emul_inst) : 1178 vcpu->arch.emul_inst; 1179 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1180 r = kvmppc_emulate_debug_inst(run, vcpu); 1181 } else { 1182 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1183 r = RESUME_GUEST; 1184 } 1185 break; 1186 /* 1187 * This occurs if the guest (kernel or userspace), does something that 1188 * is prohibited by HFSCR. 1189 * On POWER9, this could be a doorbell instruction that we need 1190 * to emulate. 1191 * Otherwise, we just generate a program interrupt to the guest. 1192 */ 1193 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1194 r = EMULATE_FAIL; 1195 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) 1196 r = kvmppc_emulate_doorbell_instr(vcpu); 1197 if (r == EMULATE_FAIL) { 1198 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1199 r = RESUME_GUEST; 1200 } 1201 break; 1202 case BOOK3S_INTERRUPT_HV_RM_HARD: 1203 r = RESUME_PASSTHROUGH; 1204 break; 1205 default: 1206 kvmppc_dump_regs(vcpu); 1207 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1208 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1209 vcpu->arch.shregs.msr); 1210 run->hw.hardware_exit_reason = vcpu->arch.trap; 1211 r = RESUME_HOST; 1212 break; 1213 } 1214 1215 return r; 1216 } 1217 1218 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1219 struct kvm_sregs *sregs) 1220 { 1221 int i; 1222 1223 memset(sregs, 0, sizeof(struct kvm_sregs)); 1224 sregs->pvr = vcpu->arch.pvr; 1225 for (i = 0; i < vcpu->arch.slb_max; i++) { 1226 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1227 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1228 } 1229 1230 return 0; 1231 } 1232 1233 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1234 struct kvm_sregs *sregs) 1235 { 1236 int i, j; 1237 1238 /* Only accept the same PVR as the host's, since we can't spoof it */ 1239 if (sregs->pvr != vcpu->arch.pvr) 1240 return -EINVAL; 1241 1242 j = 0; 1243 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1244 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1245 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1246 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1247 ++j; 1248 } 1249 } 1250 vcpu->arch.slb_max = j; 1251 1252 return 0; 1253 } 1254 1255 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1256 bool preserve_top32) 1257 { 1258 struct kvm *kvm = vcpu->kvm; 1259 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1260 u64 mask; 1261 1262 mutex_lock(&kvm->lock); 1263 spin_lock(&vc->lock); 1264 /* 1265 * If ILE (interrupt little-endian) has changed, update the 1266 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1267 */ 1268 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1269 struct kvm_vcpu *vcpu; 1270 int i; 1271 1272 kvm_for_each_vcpu(i, vcpu, kvm) { 1273 if (vcpu->arch.vcore != vc) 1274 continue; 1275 if (new_lpcr & LPCR_ILE) 1276 vcpu->arch.intr_msr |= MSR_LE; 1277 else 1278 vcpu->arch.intr_msr &= ~MSR_LE; 1279 } 1280 } 1281 1282 /* 1283 * Userspace can only modify DPFD (default prefetch depth), 1284 * ILE (interrupt little-endian) and TC (translation control). 1285 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1286 */ 1287 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1288 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1289 mask |= LPCR_AIL; 1290 /* 1291 * On POWER9, allow userspace to enable large decrementer for the 1292 * guest, whether or not the host has it enabled. 1293 */ 1294 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1295 mask |= LPCR_LD; 1296 1297 /* Broken 32-bit version of LPCR must not clear top bits */ 1298 if (preserve_top32) 1299 mask &= 0xFFFFFFFF; 1300 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1301 spin_unlock(&vc->lock); 1302 mutex_unlock(&kvm->lock); 1303 } 1304 1305 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1306 union kvmppc_one_reg *val) 1307 { 1308 int r = 0; 1309 long int i; 1310 1311 switch (id) { 1312 case KVM_REG_PPC_DEBUG_INST: 1313 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1314 break; 1315 case KVM_REG_PPC_HIOR: 1316 *val = get_reg_val(id, 0); 1317 break; 1318 case KVM_REG_PPC_DABR: 1319 *val = get_reg_val(id, vcpu->arch.dabr); 1320 break; 1321 case KVM_REG_PPC_DABRX: 1322 *val = get_reg_val(id, vcpu->arch.dabrx); 1323 break; 1324 case KVM_REG_PPC_DSCR: 1325 *val = get_reg_val(id, vcpu->arch.dscr); 1326 break; 1327 case KVM_REG_PPC_PURR: 1328 *val = get_reg_val(id, vcpu->arch.purr); 1329 break; 1330 case KVM_REG_PPC_SPURR: 1331 *val = get_reg_val(id, vcpu->arch.spurr); 1332 break; 1333 case KVM_REG_PPC_AMR: 1334 *val = get_reg_val(id, vcpu->arch.amr); 1335 break; 1336 case KVM_REG_PPC_UAMOR: 1337 *val = get_reg_val(id, vcpu->arch.uamor); 1338 break; 1339 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1340 i = id - KVM_REG_PPC_MMCR0; 1341 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1342 break; 1343 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1344 i = id - KVM_REG_PPC_PMC1; 1345 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1346 break; 1347 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1348 i = id - KVM_REG_PPC_SPMC1; 1349 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1350 break; 1351 case KVM_REG_PPC_SIAR: 1352 *val = get_reg_val(id, vcpu->arch.siar); 1353 break; 1354 case KVM_REG_PPC_SDAR: 1355 *val = get_reg_val(id, vcpu->arch.sdar); 1356 break; 1357 case KVM_REG_PPC_SIER: 1358 *val = get_reg_val(id, vcpu->arch.sier); 1359 break; 1360 case KVM_REG_PPC_IAMR: 1361 *val = get_reg_val(id, vcpu->arch.iamr); 1362 break; 1363 case KVM_REG_PPC_PSPB: 1364 *val = get_reg_val(id, vcpu->arch.pspb); 1365 break; 1366 case KVM_REG_PPC_DPDES: 1367 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1368 break; 1369 case KVM_REG_PPC_VTB: 1370 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1371 break; 1372 case KVM_REG_PPC_DAWR: 1373 *val = get_reg_val(id, vcpu->arch.dawr); 1374 break; 1375 case KVM_REG_PPC_DAWRX: 1376 *val = get_reg_val(id, vcpu->arch.dawrx); 1377 break; 1378 case KVM_REG_PPC_CIABR: 1379 *val = get_reg_val(id, vcpu->arch.ciabr); 1380 break; 1381 case KVM_REG_PPC_CSIGR: 1382 *val = get_reg_val(id, vcpu->arch.csigr); 1383 break; 1384 case KVM_REG_PPC_TACR: 1385 *val = get_reg_val(id, vcpu->arch.tacr); 1386 break; 1387 case KVM_REG_PPC_TCSCR: 1388 *val = get_reg_val(id, vcpu->arch.tcscr); 1389 break; 1390 case KVM_REG_PPC_PID: 1391 *val = get_reg_val(id, vcpu->arch.pid); 1392 break; 1393 case KVM_REG_PPC_ACOP: 1394 *val = get_reg_val(id, vcpu->arch.acop); 1395 break; 1396 case KVM_REG_PPC_WORT: 1397 *val = get_reg_val(id, vcpu->arch.wort); 1398 break; 1399 case KVM_REG_PPC_TIDR: 1400 *val = get_reg_val(id, vcpu->arch.tid); 1401 break; 1402 case KVM_REG_PPC_PSSCR: 1403 *val = get_reg_val(id, vcpu->arch.psscr); 1404 break; 1405 case KVM_REG_PPC_VPA_ADDR: 1406 spin_lock(&vcpu->arch.vpa_update_lock); 1407 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1408 spin_unlock(&vcpu->arch.vpa_update_lock); 1409 break; 1410 case KVM_REG_PPC_VPA_SLB: 1411 spin_lock(&vcpu->arch.vpa_update_lock); 1412 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1413 val->vpaval.length = vcpu->arch.slb_shadow.len; 1414 spin_unlock(&vcpu->arch.vpa_update_lock); 1415 break; 1416 case KVM_REG_PPC_VPA_DTL: 1417 spin_lock(&vcpu->arch.vpa_update_lock); 1418 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1419 val->vpaval.length = vcpu->arch.dtl.len; 1420 spin_unlock(&vcpu->arch.vpa_update_lock); 1421 break; 1422 case KVM_REG_PPC_TB_OFFSET: 1423 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1424 break; 1425 case KVM_REG_PPC_LPCR: 1426 case KVM_REG_PPC_LPCR_64: 1427 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1428 break; 1429 case KVM_REG_PPC_PPR: 1430 *val = get_reg_val(id, vcpu->arch.ppr); 1431 break; 1432 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1433 case KVM_REG_PPC_TFHAR: 1434 *val = get_reg_val(id, vcpu->arch.tfhar); 1435 break; 1436 case KVM_REG_PPC_TFIAR: 1437 *val = get_reg_val(id, vcpu->arch.tfiar); 1438 break; 1439 case KVM_REG_PPC_TEXASR: 1440 *val = get_reg_val(id, vcpu->arch.texasr); 1441 break; 1442 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1443 i = id - KVM_REG_PPC_TM_GPR0; 1444 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1445 break; 1446 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1447 { 1448 int j; 1449 i = id - KVM_REG_PPC_TM_VSR0; 1450 if (i < 32) 1451 for (j = 0; j < TS_FPRWIDTH; j++) 1452 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1453 else { 1454 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1455 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1456 else 1457 r = -ENXIO; 1458 } 1459 break; 1460 } 1461 case KVM_REG_PPC_TM_CR: 1462 *val = get_reg_val(id, vcpu->arch.cr_tm); 1463 break; 1464 case KVM_REG_PPC_TM_XER: 1465 *val = get_reg_val(id, vcpu->arch.xer_tm); 1466 break; 1467 case KVM_REG_PPC_TM_LR: 1468 *val = get_reg_val(id, vcpu->arch.lr_tm); 1469 break; 1470 case KVM_REG_PPC_TM_CTR: 1471 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1472 break; 1473 case KVM_REG_PPC_TM_FPSCR: 1474 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1475 break; 1476 case KVM_REG_PPC_TM_AMR: 1477 *val = get_reg_val(id, vcpu->arch.amr_tm); 1478 break; 1479 case KVM_REG_PPC_TM_PPR: 1480 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1481 break; 1482 case KVM_REG_PPC_TM_VRSAVE: 1483 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1484 break; 1485 case KVM_REG_PPC_TM_VSCR: 1486 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1487 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1488 else 1489 r = -ENXIO; 1490 break; 1491 case KVM_REG_PPC_TM_DSCR: 1492 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1493 break; 1494 case KVM_REG_PPC_TM_TAR: 1495 *val = get_reg_val(id, vcpu->arch.tar_tm); 1496 break; 1497 #endif 1498 case KVM_REG_PPC_ARCH_COMPAT: 1499 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1500 break; 1501 default: 1502 r = -EINVAL; 1503 break; 1504 } 1505 1506 return r; 1507 } 1508 1509 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1510 union kvmppc_one_reg *val) 1511 { 1512 int r = 0; 1513 long int i; 1514 unsigned long addr, len; 1515 1516 switch (id) { 1517 case KVM_REG_PPC_HIOR: 1518 /* Only allow this to be set to zero */ 1519 if (set_reg_val(id, *val)) 1520 r = -EINVAL; 1521 break; 1522 case KVM_REG_PPC_DABR: 1523 vcpu->arch.dabr = set_reg_val(id, *val); 1524 break; 1525 case KVM_REG_PPC_DABRX: 1526 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1527 break; 1528 case KVM_REG_PPC_DSCR: 1529 vcpu->arch.dscr = set_reg_val(id, *val); 1530 break; 1531 case KVM_REG_PPC_PURR: 1532 vcpu->arch.purr = set_reg_val(id, *val); 1533 break; 1534 case KVM_REG_PPC_SPURR: 1535 vcpu->arch.spurr = set_reg_val(id, *val); 1536 break; 1537 case KVM_REG_PPC_AMR: 1538 vcpu->arch.amr = set_reg_val(id, *val); 1539 break; 1540 case KVM_REG_PPC_UAMOR: 1541 vcpu->arch.uamor = set_reg_val(id, *val); 1542 break; 1543 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1544 i = id - KVM_REG_PPC_MMCR0; 1545 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1546 break; 1547 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1548 i = id - KVM_REG_PPC_PMC1; 1549 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1550 break; 1551 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1552 i = id - KVM_REG_PPC_SPMC1; 1553 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1554 break; 1555 case KVM_REG_PPC_SIAR: 1556 vcpu->arch.siar = set_reg_val(id, *val); 1557 break; 1558 case KVM_REG_PPC_SDAR: 1559 vcpu->arch.sdar = set_reg_val(id, *val); 1560 break; 1561 case KVM_REG_PPC_SIER: 1562 vcpu->arch.sier = set_reg_val(id, *val); 1563 break; 1564 case KVM_REG_PPC_IAMR: 1565 vcpu->arch.iamr = set_reg_val(id, *val); 1566 break; 1567 case KVM_REG_PPC_PSPB: 1568 vcpu->arch.pspb = set_reg_val(id, *val); 1569 break; 1570 case KVM_REG_PPC_DPDES: 1571 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1572 break; 1573 case KVM_REG_PPC_VTB: 1574 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1575 break; 1576 case KVM_REG_PPC_DAWR: 1577 vcpu->arch.dawr = set_reg_val(id, *val); 1578 break; 1579 case KVM_REG_PPC_DAWRX: 1580 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1581 break; 1582 case KVM_REG_PPC_CIABR: 1583 vcpu->arch.ciabr = set_reg_val(id, *val); 1584 /* Don't allow setting breakpoints in hypervisor code */ 1585 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1586 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1587 break; 1588 case KVM_REG_PPC_CSIGR: 1589 vcpu->arch.csigr = set_reg_val(id, *val); 1590 break; 1591 case KVM_REG_PPC_TACR: 1592 vcpu->arch.tacr = set_reg_val(id, *val); 1593 break; 1594 case KVM_REG_PPC_TCSCR: 1595 vcpu->arch.tcscr = set_reg_val(id, *val); 1596 break; 1597 case KVM_REG_PPC_PID: 1598 vcpu->arch.pid = set_reg_val(id, *val); 1599 break; 1600 case KVM_REG_PPC_ACOP: 1601 vcpu->arch.acop = set_reg_val(id, *val); 1602 break; 1603 case KVM_REG_PPC_WORT: 1604 vcpu->arch.wort = set_reg_val(id, *val); 1605 break; 1606 case KVM_REG_PPC_TIDR: 1607 vcpu->arch.tid = set_reg_val(id, *val); 1608 break; 1609 case KVM_REG_PPC_PSSCR: 1610 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1611 break; 1612 case KVM_REG_PPC_VPA_ADDR: 1613 addr = set_reg_val(id, *val); 1614 r = -EINVAL; 1615 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1616 vcpu->arch.dtl.next_gpa)) 1617 break; 1618 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1619 break; 1620 case KVM_REG_PPC_VPA_SLB: 1621 addr = val->vpaval.addr; 1622 len = val->vpaval.length; 1623 r = -EINVAL; 1624 if (addr && !vcpu->arch.vpa.next_gpa) 1625 break; 1626 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1627 break; 1628 case KVM_REG_PPC_VPA_DTL: 1629 addr = val->vpaval.addr; 1630 len = val->vpaval.length; 1631 r = -EINVAL; 1632 if (addr && (len < sizeof(struct dtl_entry) || 1633 !vcpu->arch.vpa.next_gpa)) 1634 break; 1635 len -= len % sizeof(struct dtl_entry); 1636 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1637 break; 1638 case KVM_REG_PPC_TB_OFFSET: 1639 /* 1640 * POWER9 DD1 has an erratum where writing TBU40 causes 1641 * the timebase to lose ticks. So we don't let the 1642 * timebase offset be changed on P9 DD1. (It is 1643 * initialized to zero.) 1644 */ 1645 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) 1646 break; 1647 /* round up to multiple of 2^24 */ 1648 vcpu->arch.vcore->tb_offset = 1649 ALIGN(set_reg_val(id, *val), 1UL << 24); 1650 break; 1651 case KVM_REG_PPC_LPCR: 1652 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1653 break; 1654 case KVM_REG_PPC_LPCR_64: 1655 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1656 break; 1657 case KVM_REG_PPC_PPR: 1658 vcpu->arch.ppr = set_reg_val(id, *val); 1659 break; 1660 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1661 case KVM_REG_PPC_TFHAR: 1662 vcpu->arch.tfhar = set_reg_val(id, *val); 1663 break; 1664 case KVM_REG_PPC_TFIAR: 1665 vcpu->arch.tfiar = set_reg_val(id, *val); 1666 break; 1667 case KVM_REG_PPC_TEXASR: 1668 vcpu->arch.texasr = set_reg_val(id, *val); 1669 break; 1670 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1671 i = id - KVM_REG_PPC_TM_GPR0; 1672 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1673 break; 1674 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1675 { 1676 int j; 1677 i = id - KVM_REG_PPC_TM_VSR0; 1678 if (i < 32) 1679 for (j = 0; j < TS_FPRWIDTH; j++) 1680 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1681 else 1682 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1683 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1684 else 1685 r = -ENXIO; 1686 break; 1687 } 1688 case KVM_REG_PPC_TM_CR: 1689 vcpu->arch.cr_tm = set_reg_val(id, *val); 1690 break; 1691 case KVM_REG_PPC_TM_XER: 1692 vcpu->arch.xer_tm = set_reg_val(id, *val); 1693 break; 1694 case KVM_REG_PPC_TM_LR: 1695 vcpu->arch.lr_tm = set_reg_val(id, *val); 1696 break; 1697 case KVM_REG_PPC_TM_CTR: 1698 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1699 break; 1700 case KVM_REG_PPC_TM_FPSCR: 1701 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1702 break; 1703 case KVM_REG_PPC_TM_AMR: 1704 vcpu->arch.amr_tm = set_reg_val(id, *val); 1705 break; 1706 case KVM_REG_PPC_TM_PPR: 1707 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1708 break; 1709 case KVM_REG_PPC_TM_VRSAVE: 1710 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1711 break; 1712 case KVM_REG_PPC_TM_VSCR: 1713 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1714 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1715 else 1716 r = - ENXIO; 1717 break; 1718 case KVM_REG_PPC_TM_DSCR: 1719 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1720 break; 1721 case KVM_REG_PPC_TM_TAR: 1722 vcpu->arch.tar_tm = set_reg_val(id, *val); 1723 break; 1724 #endif 1725 case KVM_REG_PPC_ARCH_COMPAT: 1726 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1727 break; 1728 default: 1729 r = -EINVAL; 1730 break; 1731 } 1732 1733 return r; 1734 } 1735 1736 /* 1737 * On POWER9, threads are independent and can be in different partitions. 1738 * Therefore we consider each thread to be a subcore. 1739 * There is a restriction that all threads have to be in the same 1740 * MMU mode (radix or HPT), unfortunately, but since we only support 1741 * HPT guests on a HPT host so far, that isn't an impediment yet. 1742 */ 1743 static int threads_per_vcore(struct kvm *kvm) 1744 { 1745 if (kvm->arch.threads_indep) 1746 return 1; 1747 return threads_per_subcore; 1748 } 1749 1750 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1751 { 1752 struct kvmppc_vcore *vcore; 1753 1754 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1755 1756 if (vcore == NULL) 1757 return NULL; 1758 1759 spin_lock_init(&vcore->lock); 1760 spin_lock_init(&vcore->stoltb_lock); 1761 init_swait_queue_head(&vcore->wq); 1762 vcore->preempt_tb = TB_NIL; 1763 vcore->lpcr = kvm->arch.lpcr; 1764 vcore->first_vcpuid = core * kvm->arch.smt_mode; 1765 vcore->kvm = kvm; 1766 INIT_LIST_HEAD(&vcore->preempt_list); 1767 1768 return vcore; 1769 } 1770 1771 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1772 static struct debugfs_timings_element { 1773 const char *name; 1774 size_t offset; 1775 } timings[] = { 1776 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1777 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1778 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1779 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1780 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1781 }; 1782 1783 #define N_TIMINGS (ARRAY_SIZE(timings)) 1784 1785 struct debugfs_timings_state { 1786 struct kvm_vcpu *vcpu; 1787 unsigned int buflen; 1788 char buf[N_TIMINGS * 100]; 1789 }; 1790 1791 static int debugfs_timings_open(struct inode *inode, struct file *file) 1792 { 1793 struct kvm_vcpu *vcpu = inode->i_private; 1794 struct debugfs_timings_state *p; 1795 1796 p = kzalloc(sizeof(*p), GFP_KERNEL); 1797 if (!p) 1798 return -ENOMEM; 1799 1800 kvm_get_kvm(vcpu->kvm); 1801 p->vcpu = vcpu; 1802 file->private_data = p; 1803 1804 return nonseekable_open(inode, file); 1805 } 1806 1807 static int debugfs_timings_release(struct inode *inode, struct file *file) 1808 { 1809 struct debugfs_timings_state *p = file->private_data; 1810 1811 kvm_put_kvm(p->vcpu->kvm); 1812 kfree(p); 1813 return 0; 1814 } 1815 1816 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1817 size_t len, loff_t *ppos) 1818 { 1819 struct debugfs_timings_state *p = file->private_data; 1820 struct kvm_vcpu *vcpu = p->vcpu; 1821 char *s, *buf_end; 1822 struct kvmhv_tb_accumulator tb; 1823 u64 count; 1824 loff_t pos; 1825 ssize_t n; 1826 int i, loops; 1827 bool ok; 1828 1829 if (!p->buflen) { 1830 s = p->buf; 1831 buf_end = s + sizeof(p->buf); 1832 for (i = 0; i < N_TIMINGS; ++i) { 1833 struct kvmhv_tb_accumulator *acc; 1834 1835 acc = (struct kvmhv_tb_accumulator *) 1836 ((unsigned long)vcpu + timings[i].offset); 1837 ok = false; 1838 for (loops = 0; loops < 1000; ++loops) { 1839 count = acc->seqcount; 1840 if (!(count & 1)) { 1841 smp_rmb(); 1842 tb = *acc; 1843 smp_rmb(); 1844 if (count == acc->seqcount) { 1845 ok = true; 1846 break; 1847 } 1848 } 1849 udelay(1); 1850 } 1851 if (!ok) 1852 snprintf(s, buf_end - s, "%s: stuck\n", 1853 timings[i].name); 1854 else 1855 snprintf(s, buf_end - s, 1856 "%s: %llu %llu %llu %llu\n", 1857 timings[i].name, count / 2, 1858 tb_to_ns(tb.tb_total), 1859 tb_to_ns(tb.tb_min), 1860 tb_to_ns(tb.tb_max)); 1861 s += strlen(s); 1862 } 1863 p->buflen = s - p->buf; 1864 } 1865 1866 pos = *ppos; 1867 if (pos >= p->buflen) 1868 return 0; 1869 if (len > p->buflen - pos) 1870 len = p->buflen - pos; 1871 n = copy_to_user(buf, p->buf + pos, len); 1872 if (n) { 1873 if (n == len) 1874 return -EFAULT; 1875 len -= n; 1876 } 1877 *ppos = pos + len; 1878 return len; 1879 } 1880 1881 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1882 size_t len, loff_t *ppos) 1883 { 1884 return -EACCES; 1885 } 1886 1887 static const struct file_operations debugfs_timings_ops = { 1888 .owner = THIS_MODULE, 1889 .open = debugfs_timings_open, 1890 .release = debugfs_timings_release, 1891 .read = debugfs_timings_read, 1892 .write = debugfs_timings_write, 1893 .llseek = generic_file_llseek, 1894 }; 1895 1896 /* Create a debugfs directory for the vcpu */ 1897 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1898 { 1899 char buf[16]; 1900 struct kvm *kvm = vcpu->kvm; 1901 1902 snprintf(buf, sizeof(buf), "vcpu%u", id); 1903 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1904 return; 1905 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1906 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1907 return; 1908 vcpu->arch.debugfs_timings = 1909 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1910 vcpu, &debugfs_timings_ops); 1911 } 1912 1913 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1914 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1915 { 1916 } 1917 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1918 1919 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1920 unsigned int id) 1921 { 1922 struct kvm_vcpu *vcpu; 1923 int err; 1924 int core; 1925 struct kvmppc_vcore *vcore; 1926 1927 err = -ENOMEM; 1928 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1929 if (!vcpu) 1930 goto out; 1931 1932 err = kvm_vcpu_init(vcpu, kvm, id); 1933 if (err) 1934 goto free_vcpu; 1935 1936 vcpu->arch.shared = &vcpu->arch.shregs; 1937 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1938 /* 1939 * The shared struct is never shared on HV, 1940 * so we can always use host endianness 1941 */ 1942 #ifdef __BIG_ENDIAN__ 1943 vcpu->arch.shared_big_endian = true; 1944 #else 1945 vcpu->arch.shared_big_endian = false; 1946 #endif 1947 #endif 1948 vcpu->arch.mmcr[0] = MMCR0_FC; 1949 vcpu->arch.ctrl = CTRL_RUNLATCH; 1950 /* default to host PVR, since we can't spoof it */ 1951 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1952 spin_lock_init(&vcpu->arch.vpa_update_lock); 1953 spin_lock_init(&vcpu->arch.tbacct_lock); 1954 vcpu->arch.busy_preempt = TB_NIL; 1955 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1956 1957 /* 1958 * Set the default HFSCR for the guest from the host value. 1959 * This value is only used on POWER9. 1960 * On POWER9 DD1, TM doesn't work, so we make sure to 1961 * prevent the guest from using it. 1962 * On POWER9, we want to virtualize the doorbell facility, so we 1963 * turn off the HFSCR bit, which causes those instructions to trap. 1964 */ 1965 vcpu->arch.hfscr = mfspr(SPRN_HFSCR); 1966 if (!cpu_has_feature(CPU_FTR_TM)) 1967 vcpu->arch.hfscr &= ~HFSCR_TM; 1968 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1969 vcpu->arch.hfscr &= ~HFSCR_MSGP; 1970 1971 kvmppc_mmu_book3s_hv_init(vcpu); 1972 1973 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1974 1975 init_waitqueue_head(&vcpu->arch.cpu_run); 1976 1977 mutex_lock(&kvm->lock); 1978 vcore = NULL; 1979 err = -EINVAL; 1980 core = id / kvm->arch.smt_mode; 1981 if (core < KVM_MAX_VCORES) { 1982 vcore = kvm->arch.vcores[core]; 1983 if (!vcore) { 1984 err = -ENOMEM; 1985 vcore = kvmppc_vcore_create(kvm, core); 1986 kvm->arch.vcores[core] = vcore; 1987 kvm->arch.online_vcores++; 1988 } 1989 } 1990 mutex_unlock(&kvm->lock); 1991 1992 if (!vcore) 1993 goto free_vcpu; 1994 1995 spin_lock(&vcore->lock); 1996 ++vcore->num_threads; 1997 spin_unlock(&vcore->lock); 1998 vcpu->arch.vcore = vcore; 1999 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2000 vcpu->arch.thread_cpu = -1; 2001 vcpu->arch.prev_cpu = -1; 2002 2003 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2004 kvmppc_sanity_check(vcpu); 2005 2006 debugfs_vcpu_init(vcpu, id); 2007 2008 return vcpu; 2009 2010 free_vcpu: 2011 kmem_cache_free(kvm_vcpu_cache, vcpu); 2012 out: 2013 return ERR_PTR(err); 2014 } 2015 2016 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2017 unsigned long flags) 2018 { 2019 int err; 2020 int esmt = 0; 2021 2022 if (flags) 2023 return -EINVAL; 2024 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2025 return -EINVAL; 2026 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2027 /* 2028 * On POWER8 (or POWER7), the threading mode is "strict", 2029 * so we pack smt_mode vcpus per vcore. 2030 */ 2031 if (smt_mode > threads_per_subcore) 2032 return -EINVAL; 2033 } else { 2034 /* 2035 * On POWER9, the threading mode is "loose", 2036 * so each vcpu gets its own vcore. 2037 */ 2038 esmt = smt_mode; 2039 smt_mode = 1; 2040 } 2041 mutex_lock(&kvm->lock); 2042 err = -EBUSY; 2043 if (!kvm->arch.online_vcores) { 2044 kvm->arch.smt_mode = smt_mode; 2045 kvm->arch.emul_smt_mode = esmt; 2046 err = 0; 2047 } 2048 mutex_unlock(&kvm->lock); 2049 2050 return err; 2051 } 2052 2053 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2054 { 2055 if (vpa->pinned_addr) 2056 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2057 vpa->dirty); 2058 } 2059 2060 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2061 { 2062 spin_lock(&vcpu->arch.vpa_update_lock); 2063 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2064 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2065 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2066 spin_unlock(&vcpu->arch.vpa_update_lock); 2067 kvm_vcpu_uninit(vcpu); 2068 kmem_cache_free(kvm_vcpu_cache, vcpu); 2069 } 2070 2071 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2072 { 2073 /* Indicate we want to get back into the guest */ 2074 return 1; 2075 } 2076 2077 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2078 { 2079 unsigned long dec_nsec, now; 2080 2081 now = get_tb(); 2082 if (now > vcpu->arch.dec_expires) { 2083 /* decrementer has already gone negative */ 2084 kvmppc_core_queue_dec(vcpu); 2085 kvmppc_core_prepare_to_enter(vcpu); 2086 return; 2087 } 2088 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 2089 / tb_ticks_per_sec; 2090 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2091 vcpu->arch.timer_running = 1; 2092 } 2093 2094 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 2095 { 2096 vcpu->arch.ceded = 0; 2097 if (vcpu->arch.timer_running) { 2098 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2099 vcpu->arch.timer_running = 0; 2100 } 2101 } 2102 2103 extern int __kvmppc_vcore_entry(void); 2104 2105 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2106 struct kvm_vcpu *vcpu) 2107 { 2108 u64 now; 2109 2110 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2111 return; 2112 spin_lock_irq(&vcpu->arch.tbacct_lock); 2113 now = mftb(); 2114 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2115 vcpu->arch.stolen_logged; 2116 vcpu->arch.busy_preempt = now; 2117 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2118 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2119 --vc->n_runnable; 2120 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2121 } 2122 2123 static int kvmppc_grab_hwthread(int cpu) 2124 { 2125 struct paca_struct *tpaca; 2126 long timeout = 10000; 2127 2128 tpaca = &paca[cpu]; 2129 2130 /* Ensure the thread won't go into the kernel if it wakes */ 2131 tpaca->kvm_hstate.kvm_vcpu = NULL; 2132 tpaca->kvm_hstate.kvm_vcore = NULL; 2133 tpaca->kvm_hstate.napping = 0; 2134 smp_wmb(); 2135 tpaca->kvm_hstate.hwthread_req = 1; 2136 2137 /* 2138 * If the thread is already executing in the kernel (e.g. handling 2139 * a stray interrupt), wait for it to get back to nap mode. 2140 * The smp_mb() is to ensure that our setting of hwthread_req 2141 * is visible before we look at hwthread_state, so if this 2142 * races with the code at system_reset_pSeries and the thread 2143 * misses our setting of hwthread_req, we are sure to see its 2144 * setting of hwthread_state, and vice versa. 2145 */ 2146 smp_mb(); 2147 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2148 if (--timeout <= 0) { 2149 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2150 return -EBUSY; 2151 } 2152 udelay(1); 2153 } 2154 return 0; 2155 } 2156 2157 static void kvmppc_release_hwthread(int cpu) 2158 { 2159 struct paca_struct *tpaca; 2160 2161 tpaca = &paca[cpu]; 2162 tpaca->kvm_hstate.hwthread_req = 0; 2163 tpaca->kvm_hstate.kvm_vcpu = NULL; 2164 tpaca->kvm_hstate.kvm_vcore = NULL; 2165 tpaca->kvm_hstate.kvm_split_mode = NULL; 2166 } 2167 2168 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2169 { 2170 int i; 2171 2172 cpu = cpu_first_thread_sibling(cpu); 2173 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2174 /* 2175 * Make sure setting of bit in need_tlb_flush precedes 2176 * testing of cpu_in_guest bits. The matching barrier on 2177 * the other side is the first smp_mb() in kvmppc_run_core(). 2178 */ 2179 smp_mb(); 2180 for (i = 0; i < threads_per_core; ++i) 2181 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) 2182 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2183 } 2184 2185 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2186 { 2187 struct kvm *kvm = vcpu->kvm; 2188 2189 /* 2190 * With radix, the guest can do TLB invalidations itself, 2191 * and it could choose to use the local form (tlbiel) if 2192 * it is invalidating a translation that has only ever been 2193 * used on one vcpu. However, that doesn't mean it has 2194 * only ever been used on one physical cpu, since vcpus 2195 * can move around between pcpus. To cope with this, when 2196 * a vcpu moves from one pcpu to another, we need to tell 2197 * any vcpus running on the same core as this vcpu previously 2198 * ran to flush the TLB. The TLB is shared between threads, 2199 * so we use a single bit in .need_tlb_flush for all 4 threads. 2200 */ 2201 if (vcpu->arch.prev_cpu != pcpu) { 2202 if (vcpu->arch.prev_cpu >= 0 && 2203 cpu_first_thread_sibling(vcpu->arch.prev_cpu) != 2204 cpu_first_thread_sibling(pcpu)) 2205 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); 2206 vcpu->arch.prev_cpu = pcpu; 2207 } 2208 } 2209 2210 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2211 { 2212 int cpu; 2213 struct paca_struct *tpaca; 2214 struct kvm *kvm = vc->kvm; 2215 2216 cpu = vc->pcpu; 2217 if (vcpu) { 2218 if (vcpu->arch.timer_running) { 2219 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2220 vcpu->arch.timer_running = 0; 2221 } 2222 cpu += vcpu->arch.ptid; 2223 vcpu->cpu = vc->pcpu; 2224 vcpu->arch.thread_cpu = cpu; 2225 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2226 } 2227 tpaca = &paca[cpu]; 2228 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2229 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2230 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2231 smp_wmb(); 2232 tpaca->kvm_hstate.kvm_vcore = vc; 2233 if (cpu != smp_processor_id()) 2234 kvmppc_ipi_thread(cpu); 2235 } 2236 2237 static void kvmppc_wait_for_nap(int n_threads) 2238 { 2239 int cpu = smp_processor_id(); 2240 int i, loops; 2241 2242 if (n_threads <= 1) 2243 return; 2244 for (loops = 0; loops < 1000000; ++loops) { 2245 /* 2246 * Check if all threads are finished. 2247 * We set the vcore pointer when starting a thread 2248 * and the thread clears it when finished, so we look 2249 * for any threads that still have a non-NULL vcore ptr. 2250 */ 2251 for (i = 1; i < n_threads; ++i) 2252 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2253 break; 2254 if (i == n_threads) { 2255 HMT_medium(); 2256 return; 2257 } 2258 HMT_low(); 2259 } 2260 HMT_medium(); 2261 for (i = 1; i < n_threads; ++i) 2262 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2263 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2264 } 2265 2266 /* 2267 * Check that we are on thread 0 and that any other threads in 2268 * this core are off-line. Then grab the threads so they can't 2269 * enter the kernel. 2270 */ 2271 static int on_primary_thread(void) 2272 { 2273 int cpu = smp_processor_id(); 2274 int thr; 2275 2276 /* Are we on a primary subcore? */ 2277 if (cpu_thread_in_subcore(cpu)) 2278 return 0; 2279 2280 thr = 0; 2281 while (++thr < threads_per_subcore) 2282 if (cpu_online(cpu + thr)) 2283 return 0; 2284 2285 /* Grab all hw threads so they can't go into the kernel */ 2286 for (thr = 1; thr < threads_per_subcore; ++thr) { 2287 if (kvmppc_grab_hwthread(cpu + thr)) { 2288 /* Couldn't grab one; let the others go */ 2289 do { 2290 kvmppc_release_hwthread(cpu + thr); 2291 } while (--thr > 0); 2292 return 0; 2293 } 2294 } 2295 return 1; 2296 } 2297 2298 /* 2299 * A list of virtual cores for each physical CPU. 2300 * These are vcores that could run but their runner VCPU tasks are 2301 * (or may be) preempted. 2302 */ 2303 struct preempted_vcore_list { 2304 struct list_head list; 2305 spinlock_t lock; 2306 }; 2307 2308 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2309 2310 static void init_vcore_lists(void) 2311 { 2312 int cpu; 2313 2314 for_each_possible_cpu(cpu) { 2315 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2316 spin_lock_init(&lp->lock); 2317 INIT_LIST_HEAD(&lp->list); 2318 } 2319 } 2320 2321 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2322 { 2323 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2324 2325 vc->vcore_state = VCORE_PREEMPT; 2326 vc->pcpu = smp_processor_id(); 2327 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2328 spin_lock(&lp->lock); 2329 list_add_tail(&vc->preempt_list, &lp->list); 2330 spin_unlock(&lp->lock); 2331 } 2332 2333 /* Start accumulating stolen time */ 2334 kvmppc_core_start_stolen(vc); 2335 } 2336 2337 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2338 { 2339 struct preempted_vcore_list *lp; 2340 2341 kvmppc_core_end_stolen(vc); 2342 if (!list_empty(&vc->preempt_list)) { 2343 lp = &per_cpu(preempted_vcores, vc->pcpu); 2344 spin_lock(&lp->lock); 2345 list_del_init(&vc->preempt_list); 2346 spin_unlock(&lp->lock); 2347 } 2348 vc->vcore_state = VCORE_INACTIVE; 2349 } 2350 2351 /* 2352 * This stores information about the virtual cores currently 2353 * assigned to a physical core. 2354 */ 2355 struct core_info { 2356 int n_subcores; 2357 int max_subcore_threads; 2358 int total_threads; 2359 int subcore_threads[MAX_SUBCORES]; 2360 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2361 }; 2362 2363 /* 2364 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2365 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2366 */ 2367 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2368 2369 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2370 { 2371 memset(cip, 0, sizeof(*cip)); 2372 cip->n_subcores = 1; 2373 cip->max_subcore_threads = vc->num_threads; 2374 cip->total_threads = vc->num_threads; 2375 cip->subcore_threads[0] = vc->num_threads; 2376 cip->vc[0] = vc; 2377 } 2378 2379 static bool subcore_config_ok(int n_subcores, int n_threads) 2380 { 2381 /* 2382 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way split-core 2383 * mode, with one thread per subcore. 2384 */ 2385 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2386 return n_subcores <= 4 && n_threads == 1; 2387 2388 /* On POWER8, can only dynamically split if unsplit to begin with */ 2389 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2390 return false; 2391 if (n_subcores > MAX_SUBCORES) 2392 return false; 2393 if (n_subcores > 1) { 2394 if (!(dynamic_mt_modes & 2)) 2395 n_subcores = 4; 2396 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2397 return false; 2398 } 2399 2400 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2401 } 2402 2403 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2404 { 2405 vc->entry_exit_map = 0; 2406 vc->in_guest = 0; 2407 vc->napping_threads = 0; 2408 vc->conferring_threads = 0; 2409 } 2410 2411 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2412 { 2413 int n_threads = vc->num_threads; 2414 int sub; 2415 2416 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2417 return false; 2418 2419 /* POWER9 currently requires all threads to be in the same MMU mode */ 2420 if (cpu_has_feature(CPU_FTR_ARCH_300) && 2421 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2422 return false; 2423 2424 if (n_threads < cip->max_subcore_threads) 2425 n_threads = cip->max_subcore_threads; 2426 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2427 return false; 2428 cip->max_subcore_threads = n_threads; 2429 2430 sub = cip->n_subcores; 2431 ++cip->n_subcores; 2432 cip->total_threads += vc->num_threads; 2433 cip->subcore_threads[sub] = vc->num_threads; 2434 cip->vc[sub] = vc; 2435 init_vcore_to_run(vc); 2436 list_del_init(&vc->preempt_list); 2437 2438 return true; 2439 } 2440 2441 /* 2442 * Work out whether it is possible to piggyback the execution of 2443 * vcore *pvc onto the execution of the other vcores described in *cip. 2444 */ 2445 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2446 int target_threads) 2447 { 2448 if (cip->total_threads + pvc->num_threads > target_threads) 2449 return false; 2450 2451 return can_dynamic_split(pvc, cip); 2452 } 2453 2454 static void prepare_threads(struct kvmppc_vcore *vc) 2455 { 2456 int i; 2457 struct kvm_vcpu *vcpu; 2458 2459 for_each_runnable_thread(i, vcpu, vc) { 2460 if (signal_pending(vcpu->arch.run_task)) 2461 vcpu->arch.ret = -EINTR; 2462 else if (vcpu->arch.vpa.update_pending || 2463 vcpu->arch.slb_shadow.update_pending || 2464 vcpu->arch.dtl.update_pending) 2465 vcpu->arch.ret = RESUME_GUEST; 2466 else 2467 continue; 2468 kvmppc_remove_runnable(vc, vcpu); 2469 wake_up(&vcpu->arch.cpu_run); 2470 } 2471 } 2472 2473 static void collect_piggybacks(struct core_info *cip, int target_threads) 2474 { 2475 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2476 struct kvmppc_vcore *pvc, *vcnext; 2477 2478 spin_lock(&lp->lock); 2479 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2480 if (!spin_trylock(&pvc->lock)) 2481 continue; 2482 prepare_threads(pvc); 2483 if (!pvc->n_runnable) { 2484 list_del_init(&pvc->preempt_list); 2485 if (pvc->runner == NULL) { 2486 pvc->vcore_state = VCORE_INACTIVE; 2487 kvmppc_core_end_stolen(pvc); 2488 } 2489 spin_unlock(&pvc->lock); 2490 continue; 2491 } 2492 if (!can_piggyback(pvc, cip, target_threads)) { 2493 spin_unlock(&pvc->lock); 2494 continue; 2495 } 2496 kvmppc_core_end_stolen(pvc); 2497 pvc->vcore_state = VCORE_PIGGYBACK; 2498 if (cip->total_threads >= target_threads) 2499 break; 2500 } 2501 spin_unlock(&lp->lock); 2502 } 2503 2504 static bool recheck_signals(struct core_info *cip) 2505 { 2506 int sub, i; 2507 struct kvm_vcpu *vcpu; 2508 2509 for (sub = 0; sub < cip->n_subcores; ++sub) 2510 for_each_runnable_thread(i, vcpu, cip->vc[sub]) 2511 if (signal_pending(vcpu->arch.run_task)) 2512 return true; 2513 return false; 2514 } 2515 2516 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2517 { 2518 int still_running = 0, i; 2519 u64 now; 2520 long ret; 2521 struct kvm_vcpu *vcpu; 2522 2523 spin_lock(&vc->lock); 2524 now = get_tb(); 2525 for_each_runnable_thread(i, vcpu, vc) { 2526 /* cancel pending dec exception if dec is positive */ 2527 if (now < vcpu->arch.dec_expires && 2528 kvmppc_core_pending_dec(vcpu)) 2529 kvmppc_core_dequeue_dec(vcpu); 2530 2531 trace_kvm_guest_exit(vcpu); 2532 2533 ret = RESUME_GUEST; 2534 if (vcpu->arch.trap) 2535 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2536 vcpu->arch.run_task); 2537 2538 vcpu->arch.ret = ret; 2539 vcpu->arch.trap = 0; 2540 2541 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2542 if (vcpu->arch.pending_exceptions) 2543 kvmppc_core_prepare_to_enter(vcpu); 2544 if (vcpu->arch.ceded) 2545 kvmppc_set_timer(vcpu); 2546 else 2547 ++still_running; 2548 } else { 2549 kvmppc_remove_runnable(vc, vcpu); 2550 wake_up(&vcpu->arch.cpu_run); 2551 } 2552 } 2553 if (!is_master) { 2554 if (still_running > 0) { 2555 kvmppc_vcore_preempt(vc); 2556 } else if (vc->runner) { 2557 vc->vcore_state = VCORE_PREEMPT; 2558 kvmppc_core_start_stolen(vc); 2559 } else { 2560 vc->vcore_state = VCORE_INACTIVE; 2561 } 2562 if (vc->n_runnable > 0 && vc->runner == NULL) { 2563 /* make sure there's a candidate runner awake */ 2564 i = -1; 2565 vcpu = next_runnable_thread(vc, &i); 2566 wake_up(&vcpu->arch.cpu_run); 2567 } 2568 } 2569 spin_unlock(&vc->lock); 2570 } 2571 2572 /* 2573 * Clear core from the list of active host cores as we are about to 2574 * enter the guest. Only do this if it is the primary thread of the 2575 * core (not if a subcore) that is entering the guest. 2576 */ 2577 static inline int kvmppc_clear_host_core(unsigned int cpu) 2578 { 2579 int core; 2580 2581 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2582 return 0; 2583 /* 2584 * Memory barrier can be omitted here as we will do a smp_wmb() 2585 * later in kvmppc_start_thread and we need ensure that state is 2586 * visible to other CPUs only after we enter guest. 2587 */ 2588 core = cpu >> threads_shift; 2589 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2590 return 0; 2591 } 2592 2593 /* 2594 * Advertise this core as an active host core since we exited the guest 2595 * Only need to do this if it is the primary thread of the core that is 2596 * exiting. 2597 */ 2598 static inline int kvmppc_set_host_core(unsigned int cpu) 2599 { 2600 int core; 2601 2602 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2603 return 0; 2604 2605 /* 2606 * Memory barrier can be omitted here because we do a spin_unlock 2607 * immediately after this which provides the memory barrier. 2608 */ 2609 core = cpu >> threads_shift; 2610 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2611 return 0; 2612 } 2613 2614 static void set_irq_happened(int trap) 2615 { 2616 switch (trap) { 2617 case BOOK3S_INTERRUPT_EXTERNAL: 2618 local_paca->irq_happened |= PACA_IRQ_EE; 2619 break; 2620 case BOOK3S_INTERRUPT_H_DOORBELL: 2621 local_paca->irq_happened |= PACA_IRQ_DBELL; 2622 break; 2623 case BOOK3S_INTERRUPT_HMI: 2624 local_paca->irq_happened |= PACA_IRQ_HMI; 2625 break; 2626 case BOOK3S_INTERRUPT_SYSTEM_RESET: 2627 replay_system_reset(); 2628 break; 2629 } 2630 } 2631 2632 /* 2633 * Run a set of guest threads on a physical core. 2634 * Called with vc->lock held. 2635 */ 2636 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2637 { 2638 struct kvm_vcpu *vcpu; 2639 int i; 2640 int srcu_idx; 2641 struct core_info core_info; 2642 struct kvmppc_vcore *pvc; 2643 struct kvm_split_mode split_info, *sip; 2644 int split, subcore_size, active; 2645 int sub; 2646 bool thr0_done; 2647 unsigned long cmd_bit, stat_bit; 2648 int pcpu, thr; 2649 int target_threads; 2650 int controlled_threads; 2651 int trap; 2652 bool is_power8; 2653 bool hpt_on_radix; 2654 2655 /* 2656 * Remove from the list any threads that have a signal pending 2657 * or need a VPA update done 2658 */ 2659 prepare_threads(vc); 2660 2661 /* if the runner is no longer runnable, let the caller pick a new one */ 2662 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2663 return; 2664 2665 /* 2666 * Initialize *vc. 2667 */ 2668 init_vcore_to_run(vc); 2669 vc->preempt_tb = TB_NIL; 2670 2671 /* 2672 * Number of threads that we will be controlling: the same as 2673 * the number of threads per subcore, except on POWER9, 2674 * where it's 1 because the threads are (mostly) independent. 2675 */ 2676 controlled_threads = threads_per_vcore(vc->kvm); 2677 2678 /* 2679 * Make sure we are running on primary threads, and that secondary 2680 * threads are offline. Also check if the number of threads in this 2681 * guest are greater than the current system threads per guest. 2682 * On POWER9, we need to be not in independent-threads mode if 2683 * this is a HPT guest on a radix host. 2684 */ 2685 hpt_on_radix = radix_enabled() && !kvm_is_radix(vc->kvm); 2686 if (((controlled_threads > 1) && 2687 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 2688 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 2689 for_each_runnable_thread(i, vcpu, vc) { 2690 vcpu->arch.ret = -EBUSY; 2691 kvmppc_remove_runnable(vc, vcpu); 2692 wake_up(&vcpu->arch.cpu_run); 2693 } 2694 goto out; 2695 } 2696 2697 /* 2698 * See if we could run any other vcores on the physical core 2699 * along with this one. 2700 */ 2701 init_core_info(&core_info, vc); 2702 pcpu = smp_processor_id(); 2703 target_threads = controlled_threads; 2704 if (target_smt_mode && target_smt_mode < target_threads) 2705 target_threads = target_smt_mode; 2706 if (vc->num_threads < target_threads) 2707 collect_piggybacks(&core_info, target_threads); 2708 2709 /* 2710 * On radix, arrange for TLB flushing if necessary. 2711 * This has to be done before disabling interrupts since 2712 * it uses smp_call_function(). 2713 */ 2714 pcpu = smp_processor_id(); 2715 if (kvm_is_radix(vc->kvm)) { 2716 for (sub = 0; sub < core_info.n_subcores; ++sub) 2717 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 2718 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 2719 } 2720 2721 /* 2722 * Hard-disable interrupts, and check resched flag and signals. 2723 * If we need to reschedule or deliver a signal, clean up 2724 * and return without going into the guest(s). 2725 * If the mmu_ready flag has been cleared, don't go into the 2726 * guest because that means a HPT resize operation is in progress. 2727 */ 2728 local_irq_disable(); 2729 hard_irq_disable(); 2730 if (lazy_irq_pending() || need_resched() || 2731 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) { 2732 local_irq_enable(); 2733 vc->vcore_state = VCORE_INACTIVE; 2734 /* Unlock all except the primary vcore */ 2735 for (sub = 1; sub < core_info.n_subcores; ++sub) { 2736 pvc = core_info.vc[sub]; 2737 /* Put back on to the preempted vcores list */ 2738 kvmppc_vcore_preempt(pvc); 2739 spin_unlock(&pvc->lock); 2740 } 2741 for (i = 0; i < controlled_threads; ++i) 2742 kvmppc_release_hwthread(pcpu + i); 2743 return; 2744 } 2745 2746 kvmppc_clear_host_core(pcpu); 2747 2748 /* Decide on micro-threading (split-core) mode */ 2749 subcore_size = threads_per_subcore; 2750 cmd_bit = stat_bit = 0; 2751 split = core_info.n_subcores; 2752 sip = NULL; 2753 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 2754 && !cpu_has_feature(CPU_FTR_ARCH_300); 2755 2756 if (split > 1 || hpt_on_radix) { 2757 sip = &split_info; 2758 memset(&split_info, 0, sizeof(split_info)); 2759 for (sub = 0; sub < core_info.n_subcores; ++sub) 2760 split_info.vc[sub] = core_info.vc[sub]; 2761 2762 if (is_power8) { 2763 if (split == 2 && (dynamic_mt_modes & 2)) { 2764 cmd_bit = HID0_POWER8_1TO2LPAR; 2765 stat_bit = HID0_POWER8_2LPARMODE; 2766 } else { 2767 split = 4; 2768 cmd_bit = HID0_POWER8_1TO4LPAR; 2769 stat_bit = HID0_POWER8_4LPARMODE; 2770 } 2771 subcore_size = MAX_SMT_THREADS / split; 2772 split_info.rpr = mfspr(SPRN_RPR); 2773 split_info.pmmar = mfspr(SPRN_PMMAR); 2774 split_info.ldbar = mfspr(SPRN_LDBAR); 2775 split_info.subcore_size = subcore_size; 2776 } else { 2777 split_info.subcore_size = 1; 2778 if (hpt_on_radix) { 2779 /* Use the split_info for LPCR/LPIDR changes */ 2780 split_info.lpcr_req = vc->lpcr; 2781 split_info.lpidr_req = vc->kvm->arch.lpid; 2782 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 2783 split_info.do_set = 1; 2784 } 2785 } 2786 2787 /* order writes to split_info before kvm_split_mode pointer */ 2788 smp_wmb(); 2789 } 2790 2791 for (thr = 0; thr < controlled_threads; ++thr) { 2792 paca[pcpu + thr].kvm_hstate.tid = thr; 2793 paca[pcpu + thr].kvm_hstate.napping = 0; 2794 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2795 } 2796 2797 /* Initiate micro-threading (split-core) on POWER8 if required */ 2798 if (cmd_bit) { 2799 unsigned long hid0 = mfspr(SPRN_HID0); 2800 2801 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2802 mb(); 2803 mtspr(SPRN_HID0, hid0); 2804 isync(); 2805 for (;;) { 2806 hid0 = mfspr(SPRN_HID0); 2807 if (hid0 & stat_bit) 2808 break; 2809 cpu_relax(); 2810 } 2811 } 2812 2813 /* Start all the threads */ 2814 active = 0; 2815 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2816 thr = is_power8 ? subcore_thread_map[sub] : sub; 2817 thr0_done = false; 2818 active |= 1 << thr; 2819 pvc = core_info.vc[sub]; 2820 pvc->pcpu = pcpu + thr; 2821 for_each_runnable_thread(i, vcpu, pvc) { 2822 kvmppc_start_thread(vcpu, pvc); 2823 kvmppc_create_dtl_entry(vcpu, pvc); 2824 trace_kvm_guest_enter(vcpu); 2825 if (!vcpu->arch.ptid) 2826 thr0_done = true; 2827 active |= 1 << (thr + vcpu->arch.ptid); 2828 } 2829 /* 2830 * We need to start the first thread of each subcore 2831 * even if it doesn't have a vcpu. 2832 */ 2833 if (!thr0_done) 2834 kvmppc_start_thread(NULL, pvc); 2835 thr += pvc->num_threads; 2836 } 2837 2838 /* 2839 * Ensure that split_info.do_nap is set after setting 2840 * the vcore pointer in the PACA of the secondaries. 2841 */ 2842 smp_mb(); 2843 2844 /* 2845 * When doing micro-threading, poke the inactive threads as well. 2846 * This gets them to the nap instruction after kvm_do_nap, 2847 * which reduces the time taken to unsplit later. 2848 * For POWER9 HPT guest on radix host, we need all the secondary 2849 * threads woken up so they can do the LPCR/LPIDR change. 2850 */ 2851 if (cmd_bit || hpt_on_radix) { 2852 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2853 for (thr = 1; thr < threads_per_subcore; ++thr) 2854 if (!(active & (1 << thr))) 2855 kvmppc_ipi_thread(pcpu + thr); 2856 } 2857 2858 vc->vcore_state = VCORE_RUNNING; 2859 preempt_disable(); 2860 2861 trace_kvmppc_run_core(vc, 0); 2862 2863 for (sub = 0; sub < core_info.n_subcores; ++sub) 2864 spin_unlock(&core_info.vc[sub]->lock); 2865 2866 /* 2867 * Interrupts will be enabled once we get into the guest, 2868 * so tell lockdep that we're about to enable interrupts. 2869 */ 2870 trace_hardirqs_on(); 2871 2872 guest_enter(); 2873 2874 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2875 2876 trap = __kvmppc_vcore_entry(); 2877 2878 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2879 2880 guest_exit(); 2881 2882 trace_hardirqs_off(); 2883 set_irq_happened(trap); 2884 2885 spin_lock(&vc->lock); 2886 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2887 vc->vcore_state = VCORE_EXITING; 2888 2889 /* wait for secondary threads to finish writing their state to memory */ 2890 kvmppc_wait_for_nap(controlled_threads); 2891 2892 /* Return to whole-core mode if we split the core earlier */ 2893 if (cmd_bit) { 2894 unsigned long hid0 = mfspr(SPRN_HID0); 2895 unsigned long loops = 0; 2896 2897 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2898 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2899 mb(); 2900 mtspr(SPRN_HID0, hid0); 2901 isync(); 2902 for (;;) { 2903 hid0 = mfspr(SPRN_HID0); 2904 if (!(hid0 & stat_bit)) 2905 break; 2906 cpu_relax(); 2907 ++loops; 2908 } 2909 } else if (hpt_on_radix) { 2910 /* Wait for all threads to have seen final sync */ 2911 for (thr = 1; thr < controlled_threads; ++thr) { 2912 while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) { 2913 HMT_low(); 2914 barrier(); 2915 } 2916 HMT_medium(); 2917 } 2918 } 2919 split_info.do_nap = 0; 2920 2921 kvmppc_set_host_core(pcpu); 2922 2923 local_irq_enable(); 2924 2925 /* Let secondaries go back to the offline loop */ 2926 for (i = 0; i < controlled_threads; ++i) { 2927 kvmppc_release_hwthread(pcpu + i); 2928 if (sip && sip->napped[i]) 2929 kvmppc_ipi_thread(pcpu + i); 2930 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 2931 } 2932 2933 spin_unlock(&vc->lock); 2934 2935 /* make sure updates to secondary vcpu structs are visible now */ 2936 smp_mb(); 2937 2938 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2939 pvc = core_info.vc[sub]; 2940 post_guest_process(pvc, pvc == vc); 2941 } 2942 2943 spin_lock(&vc->lock); 2944 preempt_enable(); 2945 2946 out: 2947 vc->vcore_state = VCORE_INACTIVE; 2948 trace_kvmppc_run_core(vc, 1); 2949 } 2950 2951 /* 2952 * Wait for some other vcpu thread to execute us, and 2953 * wake us up when we need to handle something in the host. 2954 */ 2955 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2956 struct kvm_vcpu *vcpu, int wait_state) 2957 { 2958 DEFINE_WAIT(wait); 2959 2960 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2961 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2962 spin_unlock(&vc->lock); 2963 schedule(); 2964 spin_lock(&vc->lock); 2965 } 2966 finish_wait(&vcpu->arch.cpu_run, &wait); 2967 } 2968 2969 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 2970 { 2971 /* 10us base */ 2972 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) 2973 vc->halt_poll_ns = 10000; 2974 else 2975 vc->halt_poll_ns *= halt_poll_ns_grow; 2976 } 2977 2978 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 2979 { 2980 if (halt_poll_ns_shrink == 0) 2981 vc->halt_poll_ns = 0; 2982 else 2983 vc->halt_poll_ns /= halt_poll_ns_shrink; 2984 } 2985 2986 #ifdef CONFIG_KVM_XICS 2987 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 2988 { 2989 if (!xive_enabled()) 2990 return false; 2991 return vcpu->arch.xive_saved_state.pipr < 2992 vcpu->arch.xive_saved_state.cppr; 2993 } 2994 #else 2995 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 2996 { 2997 return false; 2998 } 2999 #endif /* CONFIG_KVM_XICS */ 3000 3001 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3002 { 3003 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3004 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3005 return true; 3006 3007 return false; 3008 } 3009 3010 /* 3011 * Check to see if any of the runnable vcpus on the vcore have pending 3012 * exceptions or are no longer ceded 3013 */ 3014 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3015 { 3016 struct kvm_vcpu *vcpu; 3017 int i; 3018 3019 for_each_runnable_thread(i, vcpu, vc) { 3020 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3021 return 1; 3022 } 3023 3024 return 0; 3025 } 3026 3027 /* 3028 * All the vcpus in this vcore are idle, so wait for a decrementer 3029 * or external interrupt to one of the vcpus. vc->lock is held. 3030 */ 3031 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3032 { 3033 ktime_t cur, start_poll, start_wait; 3034 int do_sleep = 1; 3035 u64 block_ns; 3036 DECLARE_SWAITQUEUE(wait); 3037 3038 /* Poll for pending exceptions and ceded state */ 3039 cur = start_poll = ktime_get(); 3040 if (vc->halt_poll_ns) { 3041 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3042 ++vc->runner->stat.halt_attempted_poll; 3043 3044 vc->vcore_state = VCORE_POLLING; 3045 spin_unlock(&vc->lock); 3046 3047 do { 3048 if (kvmppc_vcore_check_block(vc)) { 3049 do_sleep = 0; 3050 break; 3051 } 3052 cur = ktime_get(); 3053 } while (single_task_running() && ktime_before(cur, stop)); 3054 3055 spin_lock(&vc->lock); 3056 vc->vcore_state = VCORE_INACTIVE; 3057 3058 if (!do_sleep) { 3059 ++vc->runner->stat.halt_successful_poll; 3060 goto out; 3061 } 3062 } 3063 3064 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3065 3066 if (kvmppc_vcore_check_block(vc)) { 3067 finish_swait(&vc->wq, &wait); 3068 do_sleep = 0; 3069 /* If we polled, count this as a successful poll */ 3070 if (vc->halt_poll_ns) 3071 ++vc->runner->stat.halt_successful_poll; 3072 goto out; 3073 } 3074 3075 start_wait = ktime_get(); 3076 3077 vc->vcore_state = VCORE_SLEEPING; 3078 trace_kvmppc_vcore_blocked(vc, 0); 3079 spin_unlock(&vc->lock); 3080 schedule(); 3081 finish_swait(&vc->wq, &wait); 3082 spin_lock(&vc->lock); 3083 vc->vcore_state = VCORE_INACTIVE; 3084 trace_kvmppc_vcore_blocked(vc, 1); 3085 ++vc->runner->stat.halt_successful_wait; 3086 3087 cur = ktime_get(); 3088 3089 out: 3090 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3091 3092 /* Attribute wait time */ 3093 if (do_sleep) { 3094 vc->runner->stat.halt_wait_ns += 3095 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3096 /* Attribute failed poll time */ 3097 if (vc->halt_poll_ns) 3098 vc->runner->stat.halt_poll_fail_ns += 3099 ktime_to_ns(start_wait) - 3100 ktime_to_ns(start_poll); 3101 } else { 3102 /* Attribute successful poll time */ 3103 if (vc->halt_poll_ns) 3104 vc->runner->stat.halt_poll_success_ns += 3105 ktime_to_ns(cur) - 3106 ktime_to_ns(start_poll); 3107 } 3108 3109 /* Adjust poll time */ 3110 if (halt_poll_ns) { 3111 if (block_ns <= vc->halt_poll_ns) 3112 ; 3113 /* We slept and blocked for longer than the max halt time */ 3114 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3115 shrink_halt_poll_ns(vc); 3116 /* We slept and our poll time is too small */ 3117 else if (vc->halt_poll_ns < halt_poll_ns && 3118 block_ns < halt_poll_ns) 3119 grow_halt_poll_ns(vc); 3120 if (vc->halt_poll_ns > halt_poll_ns) 3121 vc->halt_poll_ns = halt_poll_ns; 3122 } else 3123 vc->halt_poll_ns = 0; 3124 3125 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3126 } 3127 3128 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3129 { 3130 int r = 0; 3131 struct kvm *kvm = vcpu->kvm; 3132 3133 mutex_lock(&kvm->lock); 3134 if (!kvm->arch.mmu_ready) { 3135 if (!kvm_is_radix(kvm)) 3136 r = kvmppc_hv_setup_htab_rma(vcpu); 3137 if (!r) { 3138 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3139 kvmppc_setup_partition_table(kvm); 3140 kvm->arch.mmu_ready = 1; 3141 } 3142 } 3143 mutex_unlock(&kvm->lock); 3144 return r; 3145 } 3146 3147 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3148 { 3149 int n_ceded, i, r; 3150 struct kvmppc_vcore *vc; 3151 struct kvm_vcpu *v; 3152 3153 trace_kvmppc_run_vcpu_enter(vcpu); 3154 3155 kvm_run->exit_reason = 0; 3156 vcpu->arch.ret = RESUME_GUEST; 3157 vcpu->arch.trap = 0; 3158 kvmppc_update_vpas(vcpu); 3159 3160 /* 3161 * Synchronize with other threads in this virtual core 3162 */ 3163 vc = vcpu->arch.vcore; 3164 spin_lock(&vc->lock); 3165 vcpu->arch.ceded = 0; 3166 vcpu->arch.run_task = current; 3167 vcpu->arch.kvm_run = kvm_run; 3168 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3169 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3170 vcpu->arch.busy_preempt = TB_NIL; 3171 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3172 ++vc->n_runnable; 3173 3174 /* 3175 * This happens the first time this is called for a vcpu. 3176 * If the vcore is already running, we may be able to start 3177 * this thread straight away and have it join in. 3178 */ 3179 if (!signal_pending(current)) { 3180 if (vc->vcore_state == VCORE_PIGGYBACK) { 3181 if (spin_trylock(&vc->lock)) { 3182 if (vc->vcore_state == VCORE_RUNNING && 3183 !VCORE_IS_EXITING(vc)) { 3184 kvmppc_create_dtl_entry(vcpu, vc); 3185 kvmppc_start_thread(vcpu, vc); 3186 trace_kvm_guest_enter(vcpu); 3187 } 3188 spin_unlock(&vc->lock); 3189 } 3190 } else if (vc->vcore_state == VCORE_RUNNING && 3191 !VCORE_IS_EXITING(vc)) { 3192 kvmppc_create_dtl_entry(vcpu, vc); 3193 kvmppc_start_thread(vcpu, vc); 3194 trace_kvm_guest_enter(vcpu); 3195 } else if (vc->vcore_state == VCORE_SLEEPING) { 3196 swake_up(&vc->wq); 3197 } 3198 3199 } 3200 3201 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3202 !signal_pending(current)) { 3203 /* See if the MMU is ready to go */ 3204 if (!vcpu->kvm->arch.mmu_ready) { 3205 spin_unlock(&vc->lock); 3206 r = kvmhv_setup_mmu(vcpu); 3207 spin_lock(&vc->lock); 3208 if (r) { 3209 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3210 kvm_run->fail_entry. 3211 hardware_entry_failure_reason = 0; 3212 vcpu->arch.ret = r; 3213 break; 3214 } 3215 } 3216 3217 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3218 kvmppc_vcore_end_preempt(vc); 3219 3220 if (vc->vcore_state != VCORE_INACTIVE) { 3221 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3222 continue; 3223 } 3224 for_each_runnable_thread(i, v, vc) { 3225 kvmppc_core_prepare_to_enter(v); 3226 if (signal_pending(v->arch.run_task)) { 3227 kvmppc_remove_runnable(vc, v); 3228 v->stat.signal_exits++; 3229 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3230 v->arch.ret = -EINTR; 3231 wake_up(&v->arch.cpu_run); 3232 } 3233 } 3234 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3235 break; 3236 n_ceded = 0; 3237 for_each_runnable_thread(i, v, vc) { 3238 if (!kvmppc_vcpu_woken(v)) 3239 n_ceded += v->arch.ceded; 3240 else 3241 v->arch.ceded = 0; 3242 } 3243 vc->runner = vcpu; 3244 if (n_ceded == vc->n_runnable) { 3245 kvmppc_vcore_blocked(vc); 3246 } else if (need_resched()) { 3247 kvmppc_vcore_preempt(vc); 3248 /* Let something else run */ 3249 cond_resched_lock(&vc->lock); 3250 if (vc->vcore_state == VCORE_PREEMPT) 3251 kvmppc_vcore_end_preempt(vc); 3252 } else { 3253 kvmppc_run_core(vc); 3254 } 3255 vc->runner = NULL; 3256 } 3257 3258 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3259 (vc->vcore_state == VCORE_RUNNING || 3260 vc->vcore_state == VCORE_EXITING || 3261 vc->vcore_state == VCORE_PIGGYBACK)) 3262 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 3263 3264 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3265 kvmppc_vcore_end_preempt(vc); 3266 3267 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3268 kvmppc_remove_runnable(vc, vcpu); 3269 vcpu->stat.signal_exits++; 3270 kvm_run->exit_reason = KVM_EXIT_INTR; 3271 vcpu->arch.ret = -EINTR; 3272 } 3273 3274 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 3275 /* Wake up some vcpu to run the core */ 3276 i = -1; 3277 v = next_runnable_thread(vc, &i); 3278 wake_up(&v->arch.cpu_run); 3279 } 3280 3281 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 3282 spin_unlock(&vc->lock); 3283 return vcpu->arch.ret; 3284 } 3285 3286 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 3287 { 3288 int r; 3289 int srcu_idx; 3290 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 3291 unsigned long user_tar = 0; 3292 unsigned int user_vrsave; 3293 struct kvm *kvm; 3294 3295 if (!vcpu->arch.sane) { 3296 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3297 return -EINVAL; 3298 } 3299 3300 /* 3301 * Don't allow entry with a suspended transaction, because 3302 * the guest entry/exit code will lose it. 3303 * If the guest has TM enabled, save away their TM-related SPRs 3304 * (they will get restored by the TM unavailable interrupt). 3305 */ 3306 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 3307 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 3308 (current->thread.regs->msr & MSR_TM)) { 3309 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 3310 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3311 run->fail_entry.hardware_entry_failure_reason = 0; 3312 return -EINVAL; 3313 } 3314 /* Enable TM so we can read the TM SPRs */ 3315 mtmsr(mfmsr() | MSR_TM); 3316 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 3317 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 3318 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 3319 current->thread.regs->msr &= ~MSR_TM; 3320 } 3321 #endif 3322 3323 kvmppc_core_prepare_to_enter(vcpu); 3324 3325 /* No need to go into the guest when all we'll do is come back out */ 3326 if (signal_pending(current)) { 3327 run->exit_reason = KVM_EXIT_INTR; 3328 return -EINTR; 3329 } 3330 3331 kvm = vcpu->kvm; 3332 atomic_inc(&kvm->arch.vcpus_running); 3333 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 3334 smp_mb(); 3335 3336 flush_all_to_thread(current); 3337 3338 /* Save userspace EBB and other register values */ 3339 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3340 ebb_regs[0] = mfspr(SPRN_EBBHR); 3341 ebb_regs[1] = mfspr(SPRN_EBBRR); 3342 ebb_regs[2] = mfspr(SPRN_BESCR); 3343 user_tar = mfspr(SPRN_TAR); 3344 } 3345 user_vrsave = mfspr(SPRN_VRSAVE); 3346 3347 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 3348 vcpu->arch.pgdir = current->mm->pgd; 3349 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3350 3351 do { 3352 r = kvmppc_run_vcpu(run, vcpu); 3353 3354 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 3355 !(vcpu->arch.shregs.msr & MSR_PR)) { 3356 trace_kvm_hcall_enter(vcpu); 3357 r = kvmppc_pseries_do_hcall(vcpu); 3358 trace_kvm_hcall_exit(vcpu, r); 3359 kvmppc_core_prepare_to_enter(vcpu); 3360 } else if (r == RESUME_PAGE_FAULT) { 3361 srcu_idx = srcu_read_lock(&kvm->srcu); 3362 r = kvmppc_book3s_hv_page_fault(run, vcpu, 3363 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 3364 srcu_read_unlock(&kvm->srcu, srcu_idx); 3365 } else if (r == RESUME_PASSTHROUGH) { 3366 if (WARN_ON(xive_enabled())) 3367 r = H_SUCCESS; 3368 else 3369 r = kvmppc_xics_rm_complete(vcpu, 0); 3370 } 3371 } while (is_kvmppc_resume_guest(r)); 3372 3373 /* Restore userspace EBB and other register values */ 3374 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3375 mtspr(SPRN_EBBHR, ebb_regs[0]); 3376 mtspr(SPRN_EBBRR, ebb_regs[1]); 3377 mtspr(SPRN_BESCR, ebb_regs[2]); 3378 mtspr(SPRN_TAR, user_tar); 3379 mtspr(SPRN_FSCR, current->thread.fscr); 3380 } 3381 mtspr(SPRN_VRSAVE, user_vrsave); 3382 3383 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3384 atomic_dec(&kvm->arch.vcpus_running); 3385 return r; 3386 } 3387 3388 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 3389 int shift, int sllp) 3390 { 3391 (*sps)->page_shift = shift; 3392 (*sps)->slb_enc = sllp; 3393 (*sps)->enc[0].page_shift = shift; 3394 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 3395 /* 3396 * Add 16MB MPSS support (may get filtered out by userspace) 3397 */ 3398 if (shift != 24) { 3399 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 3400 if (penc != -1) { 3401 (*sps)->enc[1].page_shift = 24; 3402 (*sps)->enc[1].pte_enc = penc; 3403 } 3404 } 3405 (*sps)++; 3406 } 3407 3408 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 3409 struct kvm_ppc_smmu_info *info) 3410 { 3411 struct kvm_ppc_one_seg_page_size *sps; 3412 3413 /* 3414 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 3415 * POWER7 doesn't support keys for instruction accesses, 3416 * POWER8 and POWER9 do. 3417 */ 3418 info->data_keys = 32; 3419 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 3420 3421 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 3422 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 3423 info->slb_size = 32; 3424 3425 /* We only support these sizes for now, and no muti-size segments */ 3426 sps = &info->sps[0]; 3427 kvmppc_add_seg_page_size(&sps, 12, 0); 3428 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 3429 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 3430 3431 return 0; 3432 } 3433 3434 /* 3435 * Get (and clear) the dirty memory log for a memory slot. 3436 */ 3437 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 3438 struct kvm_dirty_log *log) 3439 { 3440 struct kvm_memslots *slots; 3441 struct kvm_memory_slot *memslot; 3442 int i, r; 3443 unsigned long n; 3444 unsigned long *buf, *p; 3445 struct kvm_vcpu *vcpu; 3446 3447 mutex_lock(&kvm->slots_lock); 3448 3449 r = -EINVAL; 3450 if (log->slot >= KVM_USER_MEM_SLOTS) 3451 goto out; 3452 3453 slots = kvm_memslots(kvm); 3454 memslot = id_to_memslot(slots, log->slot); 3455 r = -ENOENT; 3456 if (!memslot->dirty_bitmap) 3457 goto out; 3458 3459 /* 3460 * Use second half of bitmap area because both HPT and radix 3461 * accumulate bits in the first half. 3462 */ 3463 n = kvm_dirty_bitmap_bytes(memslot); 3464 buf = memslot->dirty_bitmap + n / sizeof(long); 3465 memset(buf, 0, n); 3466 3467 if (kvm_is_radix(kvm)) 3468 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 3469 else 3470 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 3471 if (r) 3472 goto out; 3473 3474 /* 3475 * We accumulate dirty bits in the first half of the 3476 * memslot's dirty_bitmap area, for when pages are paged 3477 * out or modified by the host directly. Pick up these 3478 * bits and add them to the map. 3479 */ 3480 p = memslot->dirty_bitmap; 3481 for (i = 0; i < n / sizeof(long); ++i) 3482 buf[i] |= xchg(&p[i], 0); 3483 3484 /* Harvest dirty bits from VPA and DTL updates */ 3485 /* Note: we never modify the SLB shadow buffer areas */ 3486 kvm_for_each_vcpu(i, vcpu, kvm) { 3487 spin_lock(&vcpu->arch.vpa_update_lock); 3488 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 3489 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 3490 spin_unlock(&vcpu->arch.vpa_update_lock); 3491 } 3492 3493 r = -EFAULT; 3494 if (copy_to_user(log->dirty_bitmap, buf, n)) 3495 goto out; 3496 3497 r = 0; 3498 out: 3499 mutex_unlock(&kvm->slots_lock); 3500 return r; 3501 } 3502 3503 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 3504 struct kvm_memory_slot *dont) 3505 { 3506 if (!dont || free->arch.rmap != dont->arch.rmap) { 3507 vfree(free->arch.rmap); 3508 free->arch.rmap = NULL; 3509 } 3510 } 3511 3512 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 3513 unsigned long npages) 3514 { 3515 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 3516 if (!slot->arch.rmap) 3517 return -ENOMEM; 3518 3519 return 0; 3520 } 3521 3522 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 3523 struct kvm_memory_slot *memslot, 3524 const struct kvm_userspace_memory_region *mem) 3525 { 3526 return 0; 3527 } 3528 3529 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 3530 const struct kvm_userspace_memory_region *mem, 3531 const struct kvm_memory_slot *old, 3532 const struct kvm_memory_slot *new) 3533 { 3534 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 3535 3536 /* 3537 * If we are making a new memslot, it might make 3538 * some address that was previously cached as emulated 3539 * MMIO be no longer emulated MMIO, so invalidate 3540 * all the caches of emulated MMIO translations. 3541 */ 3542 if (npages) 3543 atomic64_inc(&kvm->arch.mmio_update); 3544 } 3545 3546 /* 3547 * Update LPCR values in kvm->arch and in vcores. 3548 * Caller must hold kvm->lock. 3549 */ 3550 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 3551 { 3552 long int i; 3553 u32 cores_done = 0; 3554 3555 if ((kvm->arch.lpcr & mask) == lpcr) 3556 return; 3557 3558 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 3559 3560 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3561 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3562 if (!vc) 3563 continue; 3564 spin_lock(&vc->lock); 3565 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 3566 spin_unlock(&vc->lock); 3567 if (++cores_done >= kvm->arch.online_vcores) 3568 break; 3569 } 3570 } 3571 3572 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 3573 { 3574 return; 3575 } 3576 3577 static void kvmppc_setup_partition_table(struct kvm *kvm) 3578 { 3579 unsigned long dw0, dw1; 3580 3581 if (!kvm_is_radix(kvm)) { 3582 /* PS field - page size for VRMA */ 3583 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 3584 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 3585 /* HTABSIZE and HTABORG fields */ 3586 dw0 |= kvm->arch.sdr1; 3587 3588 /* Second dword as set by userspace */ 3589 dw1 = kvm->arch.process_table; 3590 } else { 3591 dw0 = PATB_HR | radix__get_tree_size() | 3592 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 3593 dw1 = PATB_GR | kvm->arch.process_table; 3594 } 3595 3596 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); 3597 } 3598 3599 /* 3600 * Set up HPT (hashed page table) and RMA (real-mode area). 3601 * Must be called with kvm->lock held. 3602 */ 3603 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 3604 { 3605 int err = 0; 3606 struct kvm *kvm = vcpu->kvm; 3607 unsigned long hva; 3608 struct kvm_memory_slot *memslot; 3609 struct vm_area_struct *vma; 3610 unsigned long lpcr = 0, senc; 3611 unsigned long psize, porder; 3612 int srcu_idx; 3613 3614 /* Allocate hashed page table (if not done already) and reset it */ 3615 if (!kvm->arch.hpt.virt) { 3616 int order = KVM_DEFAULT_HPT_ORDER; 3617 struct kvm_hpt_info info; 3618 3619 err = kvmppc_allocate_hpt(&info, order); 3620 /* If we get here, it means userspace didn't specify a 3621 * size explicitly. So, try successively smaller 3622 * sizes if the default failed. */ 3623 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 3624 err = kvmppc_allocate_hpt(&info, order); 3625 3626 if (err < 0) { 3627 pr_err("KVM: Couldn't alloc HPT\n"); 3628 goto out; 3629 } 3630 3631 kvmppc_set_hpt(kvm, &info); 3632 } 3633 3634 /* Look up the memslot for guest physical address 0 */ 3635 srcu_idx = srcu_read_lock(&kvm->srcu); 3636 memslot = gfn_to_memslot(kvm, 0); 3637 3638 /* We must have some memory at 0 by now */ 3639 err = -EINVAL; 3640 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3641 goto out_srcu; 3642 3643 /* Look up the VMA for the start of this memory slot */ 3644 hva = memslot->userspace_addr; 3645 down_read(¤t->mm->mmap_sem); 3646 vma = find_vma(current->mm, hva); 3647 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3648 goto up_out; 3649 3650 psize = vma_kernel_pagesize(vma); 3651 porder = __ilog2(psize); 3652 3653 up_read(¤t->mm->mmap_sem); 3654 3655 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3656 err = -EINVAL; 3657 if (!(psize == 0x1000 || psize == 0x10000 || 3658 psize == 0x1000000)) 3659 goto out_srcu; 3660 3661 senc = slb_pgsize_encoding(psize); 3662 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3663 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3664 /* Create HPTEs in the hash page table for the VRMA */ 3665 kvmppc_map_vrma(vcpu, memslot, porder); 3666 3667 /* Update VRMASD field in the LPCR */ 3668 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3669 /* the -4 is to account for senc values starting at 0x10 */ 3670 lpcr = senc << (LPCR_VRMASD_SH - 4); 3671 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3672 } 3673 3674 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 3675 smp_wmb(); 3676 err = 0; 3677 out_srcu: 3678 srcu_read_unlock(&kvm->srcu, srcu_idx); 3679 out: 3680 return err; 3681 3682 up_out: 3683 up_read(¤t->mm->mmap_sem); 3684 goto out_srcu; 3685 } 3686 3687 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3688 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 3689 { 3690 kvmppc_free_radix(kvm); 3691 kvmppc_update_lpcr(kvm, LPCR_VPM1, 3692 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3693 kvmppc_rmap_reset(kvm); 3694 kvm->arch.radix = 0; 3695 kvm->arch.process_table = 0; 3696 return 0; 3697 } 3698 3699 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3700 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 3701 { 3702 int err; 3703 3704 err = kvmppc_init_vm_radix(kvm); 3705 if (err) 3706 return err; 3707 3708 kvmppc_free_hpt(&kvm->arch.hpt); 3709 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 3710 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3711 kvm->arch.radix = 1; 3712 return 0; 3713 } 3714 3715 #ifdef CONFIG_KVM_XICS 3716 /* 3717 * Allocate a per-core structure for managing state about which cores are 3718 * running in the host versus the guest and for exchanging data between 3719 * real mode KVM and CPU running in the host. 3720 * This is only done for the first VM. 3721 * The allocated structure stays even if all VMs have stopped. 3722 * It is only freed when the kvm-hv module is unloaded. 3723 * It's OK for this routine to fail, we just don't support host 3724 * core operations like redirecting H_IPI wakeups. 3725 */ 3726 void kvmppc_alloc_host_rm_ops(void) 3727 { 3728 struct kvmppc_host_rm_ops *ops; 3729 unsigned long l_ops; 3730 int cpu, core; 3731 int size; 3732 3733 /* Not the first time here ? */ 3734 if (kvmppc_host_rm_ops_hv != NULL) 3735 return; 3736 3737 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3738 if (!ops) 3739 return; 3740 3741 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3742 ops->rm_core = kzalloc(size, GFP_KERNEL); 3743 3744 if (!ops->rm_core) { 3745 kfree(ops); 3746 return; 3747 } 3748 3749 cpus_read_lock(); 3750 3751 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3752 if (!cpu_online(cpu)) 3753 continue; 3754 3755 core = cpu >> threads_shift; 3756 ops->rm_core[core].rm_state.in_host = 1; 3757 } 3758 3759 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3760 3761 /* 3762 * Make the contents of the kvmppc_host_rm_ops structure visible 3763 * to other CPUs before we assign it to the global variable. 3764 * Do an atomic assignment (no locks used here), but if someone 3765 * beats us to it, just free our copy and return. 3766 */ 3767 smp_wmb(); 3768 l_ops = (unsigned long) ops; 3769 3770 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3771 cpus_read_unlock(); 3772 kfree(ops->rm_core); 3773 kfree(ops); 3774 return; 3775 } 3776 3777 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 3778 "ppc/kvm_book3s:prepare", 3779 kvmppc_set_host_core, 3780 kvmppc_clear_host_core); 3781 cpus_read_unlock(); 3782 } 3783 3784 void kvmppc_free_host_rm_ops(void) 3785 { 3786 if (kvmppc_host_rm_ops_hv) { 3787 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 3788 kfree(kvmppc_host_rm_ops_hv->rm_core); 3789 kfree(kvmppc_host_rm_ops_hv); 3790 kvmppc_host_rm_ops_hv = NULL; 3791 } 3792 } 3793 #endif 3794 3795 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3796 { 3797 unsigned long lpcr, lpid; 3798 char buf[32]; 3799 int ret; 3800 3801 /* Allocate the guest's logical partition ID */ 3802 3803 lpid = kvmppc_alloc_lpid(); 3804 if ((long)lpid < 0) 3805 return -ENOMEM; 3806 kvm->arch.lpid = lpid; 3807 3808 kvmppc_alloc_host_rm_ops(); 3809 3810 /* 3811 * Since we don't flush the TLB when tearing down a VM, 3812 * and this lpid might have previously been used, 3813 * make sure we flush on each core before running the new VM. 3814 * On POWER9, the tlbie in mmu_partition_table_set_entry() 3815 * does this flush for us. 3816 */ 3817 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3818 cpumask_setall(&kvm->arch.need_tlb_flush); 3819 3820 /* Start out with the default set of hcalls enabled */ 3821 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3822 sizeof(kvm->arch.enabled_hcalls)); 3823 3824 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3825 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3826 3827 /* Init LPCR for virtual RMA mode */ 3828 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3829 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3830 lpcr &= LPCR_PECE | LPCR_LPES; 3831 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3832 LPCR_VPM0 | LPCR_VPM1; 3833 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3834 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3835 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3836 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3837 lpcr |= LPCR_ONL; 3838 /* 3839 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 3840 * Set HVICE bit to enable hypervisor virtualization interrupts. 3841 * Set HEIC to prevent OS interrupts to go to hypervisor (should 3842 * be unnecessary but better safe than sorry in case we re-enable 3843 * EE in HV mode with this LPCR still set) 3844 */ 3845 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3846 lpcr &= ~LPCR_VPM0; 3847 lpcr |= LPCR_HVICE | LPCR_HEIC; 3848 3849 /* 3850 * If xive is enabled, we route 0x500 interrupts directly 3851 * to the guest. 3852 */ 3853 if (xive_enabled()) 3854 lpcr |= LPCR_LPES; 3855 } 3856 3857 /* 3858 * If the host uses radix, the guest starts out as radix. 3859 */ 3860 if (radix_enabled()) { 3861 kvm->arch.radix = 1; 3862 kvm->arch.mmu_ready = 1; 3863 lpcr &= ~LPCR_VPM1; 3864 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 3865 ret = kvmppc_init_vm_radix(kvm); 3866 if (ret) { 3867 kvmppc_free_lpid(kvm->arch.lpid); 3868 return ret; 3869 } 3870 kvmppc_setup_partition_table(kvm); 3871 } 3872 3873 kvm->arch.lpcr = lpcr; 3874 3875 /* Initialization for future HPT resizes */ 3876 kvm->arch.resize_hpt = NULL; 3877 3878 /* 3879 * Work out how many sets the TLB has, for the use of 3880 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 3881 */ 3882 if (radix_enabled()) 3883 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 3884 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 3885 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 3886 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3887 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 3888 else 3889 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 3890 3891 /* 3892 * Track that we now have a HV mode VM active. This blocks secondary 3893 * CPU threads from coming online. 3894 * On POWER9, we only need to do this if the "indep_threads_mode" 3895 * module parameter has been set to N. 3896 */ 3897 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3898 kvm->arch.threads_indep = indep_threads_mode; 3899 if (!kvm->arch.threads_indep) 3900 kvm_hv_vm_activated(); 3901 3902 /* 3903 * Initialize smt_mode depending on processor. 3904 * POWER8 and earlier have to use "strict" threading, where 3905 * all vCPUs in a vcore have to run on the same (sub)core, 3906 * whereas on POWER9 the threads can each run a different 3907 * guest. 3908 */ 3909 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3910 kvm->arch.smt_mode = threads_per_subcore; 3911 else 3912 kvm->arch.smt_mode = 1; 3913 kvm->arch.emul_smt_mode = 1; 3914 3915 /* 3916 * Create a debugfs directory for the VM 3917 */ 3918 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3919 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3920 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3921 kvmppc_mmu_debugfs_init(kvm); 3922 3923 return 0; 3924 } 3925 3926 static void kvmppc_free_vcores(struct kvm *kvm) 3927 { 3928 long int i; 3929 3930 for (i = 0; i < KVM_MAX_VCORES; ++i) 3931 kfree(kvm->arch.vcores[i]); 3932 kvm->arch.online_vcores = 0; 3933 } 3934 3935 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3936 { 3937 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3938 3939 if (!kvm->arch.threads_indep) 3940 kvm_hv_vm_deactivated(); 3941 3942 kvmppc_free_vcores(kvm); 3943 3944 kvmppc_free_lpid(kvm->arch.lpid); 3945 3946 if (kvm_is_radix(kvm)) 3947 kvmppc_free_radix(kvm); 3948 else 3949 kvmppc_free_hpt(&kvm->arch.hpt); 3950 3951 kvmppc_free_pimap(kvm); 3952 } 3953 3954 /* We don't need to emulate any privileged instructions or dcbz */ 3955 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3956 unsigned int inst, int *advance) 3957 { 3958 return EMULATE_FAIL; 3959 } 3960 3961 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3962 ulong spr_val) 3963 { 3964 return EMULATE_FAIL; 3965 } 3966 3967 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3968 ulong *spr_val) 3969 { 3970 return EMULATE_FAIL; 3971 } 3972 3973 static int kvmppc_core_check_processor_compat_hv(void) 3974 { 3975 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3976 !cpu_has_feature(CPU_FTR_ARCH_206)) 3977 return -EIO; 3978 3979 return 0; 3980 } 3981 3982 #ifdef CONFIG_KVM_XICS 3983 3984 void kvmppc_free_pimap(struct kvm *kvm) 3985 { 3986 kfree(kvm->arch.pimap); 3987 } 3988 3989 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 3990 { 3991 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 3992 } 3993 3994 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 3995 { 3996 struct irq_desc *desc; 3997 struct kvmppc_irq_map *irq_map; 3998 struct kvmppc_passthru_irqmap *pimap; 3999 struct irq_chip *chip; 4000 int i, rc = 0; 4001 4002 if (!kvm_irq_bypass) 4003 return 1; 4004 4005 desc = irq_to_desc(host_irq); 4006 if (!desc) 4007 return -EIO; 4008 4009 mutex_lock(&kvm->lock); 4010 4011 pimap = kvm->arch.pimap; 4012 if (pimap == NULL) { 4013 /* First call, allocate structure to hold IRQ map */ 4014 pimap = kvmppc_alloc_pimap(); 4015 if (pimap == NULL) { 4016 mutex_unlock(&kvm->lock); 4017 return -ENOMEM; 4018 } 4019 kvm->arch.pimap = pimap; 4020 } 4021 4022 /* 4023 * For now, we only support interrupts for which the EOI operation 4024 * is an OPAL call followed by a write to XIRR, since that's 4025 * what our real-mode EOI code does, or a XIVE interrupt 4026 */ 4027 chip = irq_data_get_irq_chip(&desc->irq_data); 4028 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 4029 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 4030 host_irq, guest_gsi); 4031 mutex_unlock(&kvm->lock); 4032 return -ENOENT; 4033 } 4034 4035 /* 4036 * See if we already have an entry for this guest IRQ number. 4037 * If it's mapped to a hardware IRQ number, that's an error, 4038 * otherwise re-use this entry. 4039 */ 4040 for (i = 0; i < pimap->n_mapped; i++) { 4041 if (guest_gsi == pimap->mapped[i].v_hwirq) { 4042 if (pimap->mapped[i].r_hwirq) { 4043 mutex_unlock(&kvm->lock); 4044 return -EINVAL; 4045 } 4046 break; 4047 } 4048 } 4049 4050 if (i == KVMPPC_PIRQ_MAPPED) { 4051 mutex_unlock(&kvm->lock); 4052 return -EAGAIN; /* table is full */ 4053 } 4054 4055 irq_map = &pimap->mapped[i]; 4056 4057 irq_map->v_hwirq = guest_gsi; 4058 irq_map->desc = desc; 4059 4060 /* 4061 * Order the above two stores before the next to serialize with 4062 * the KVM real mode handler. 4063 */ 4064 smp_wmb(); 4065 irq_map->r_hwirq = desc->irq_data.hwirq; 4066 4067 if (i == pimap->n_mapped) 4068 pimap->n_mapped++; 4069 4070 if (xive_enabled()) 4071 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 4072 else 4073 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 4074 if (rc) 4075 irq_map->r_hwirq = 0; 4076 4077 mutex_unlock(&kvm->lock); 4078 4079 return 0; 4080 } 4081 4082 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4083 { 4084 struct irq_desc *desc; 4085 struct kvmppc_passthru_irqmap *pimap; 4086 int i, rc = 0; 4087 4088 if (!kvm_irq_bypass) 4089 return 0; 4090 4091 desc = irq_to_desc(host_irq); 4092 if (!desc) 4093 return -EIO; 4094 4095 mutex_lock(&kvm->lock); 4096 if (!kvm->arch.pimap) 4097 goto unlock; 4098 4099 pimap = kvm->arch.pimap; 4100 4101 for (i = 0; i < pimap->n_mapped; i++) { 4102 if (guest_gsi == pimap->mapped[i].v_hwirq) 4103 break; 4104 } 4105 4106 if (i == pimap->n_mapped) { 4107 mutex_unlock(&kvm->lock); 4108 return -ENODEV; 4109 } 4110 4111 if (xive_enabled()) 4112 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 4113 else 4114 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 4115 4116 /* invalidate the entry (what do do on error from the above ?) */ 4117 pimap->mapped[i].r_hwirq = 0; 4118 4119 /* 4120 * We don't free this structure even when the count goes to 4121 * zero. The structure is freed when we destroy the VM. 4122 */ 4123 unlock: 4124 mutex_unlock(&kvm->lock); 4125 return rc; 4126 } 4127 4128 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 4129 struct irq_bypass_producer *prod) 4130 { 4131 int ret = 0; 4132 struct kvm_kernel_irqfd *irqfd = 4133 container_of(cons, struct kvm_kernel_irqfd, consumer); 4134 4135 irqfd->producer = prod; 4136 4137 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4138 if (ret) 4139 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 4140 prod->irq, irqfd->gsi, ret); 4141 4142 return ret; 4143 } 4144 4145 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 4146 struct irq_bypass_producer *prod) 4147 { 4148 int ret; 4149 struct kvm_kernel_irqfd *irqfd = 4150 container_of(cons, struct kvm_kernel_irqfd, consumer); 4151 4152 irqfd->producer = NULL; 4153 4154 /* 4155 * When producer of consumer is unregistered, we change back to 4156 * default external interrupt handling mode - KVM real mode 4157 * will switch back to host. 4158 */ 4159 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4160 if (ret) 4161 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 4162 prod->irq, irqfd->gsi, ret); 4163 } 4164 #endif 4165 4166 static long kvm_arch_vm_ioctl_hv(struct file *filp, 4167 unsigned int ioctl, unsigned long arg) 4168 { 4169 struct kvm *kvm __maybe_unused = filp->private_data; 4170 void __user *argp = (void __user *)arg; 4171 long r; 4172 4173 switch (ioctl) { 4174 4175 case KVM_PPC_ALLOCATE_HTAB: { 4176 u32 htab_order; 4177 4178 r = -EFAULT; 4179 if (get_user(htab_order, (u32 __user *)argp)) 4180 break; 4181 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 4182 if (r) 4183 break; 4184 r = 0; 4185 break; 4186 } 4187 4188 case KVM_PPC_GET_HTAB_FD: { 4189 struct kvm_get_htab_fd ghf; 4190 4191 r = -EFAULT; 4192 if (copy_from_user(&ghf, argp, sizeof(ghf))) 4193 break; 4194 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 4195 break; 4196 } 4197 4198 case KVM_PPC_RESIZE_HPT_PREPARE: { 4199 struct kvm_ppc_resize_hpt rhpt; 4200 4201 r = -EFAULT; 4202 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4203 break; 4204 4205 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 4206 break; 4207 } 4208 4209 case KVM_PPC_RESIZE_HPT_COMMIT: { 4210 struct kvm_ppc_resize_hpt rhpt; 4211 4212 r = -EFAULT; 4213 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4214 break; 4215 4216 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 4217 break; 4218 } 4219 4220 default: 4221 r = -ENOTTY; 4222 } 4223 4224 return r; 4225 } 4226 4227 /* 4228 * List of hcall numbers to enable by default. 4229 * For compatibility with old userspace, we enable by default 4230 * all hcalls that were implemented before the hcall-enabling 4231 * facility was added. Note this list should not include H_RTAS. 4232 */ 4233 static unsigned int default_hcall_list[] = { 4234 H_REMOVE, 4235 H_ENTER, 4236 H_READ, 4237 H_PROTECT, 4238 H_BULK_REMOVE, 4239 H_GET_TCE, 4240 H_PUT_TCE, 4241 H_SET_DABR, 4242 H_SET_XDABR, 4243 H_CEDE, 4244 H_PROD, 4245 H_CONFER, 4246 H_REGISTER_VPA, 4247 #ifdef CONFIG_KVM_XICS 4248 H_EOI, 4249 H_CPPR, 4250 H_IPI, 4251 H_IPOLL, 4252 H_XIRR, 4253 H_XIRR_X, 4254 #endif 4255 0 4256 }; 4257 4258 static void init_default_hcalls(void) 4259 { 4260 int i; 4261 unsigned int hcall; 4262 4263 for (i = 0; default_hcall_list[i]; ++i) { 4264 hcall = default_hcall_list[i]; 4265 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 4266 __set_bit(hcall / 4, default_enabled_hcalls); 4267 } 4268 } 4269 4270 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 4271 { 4272 unsigned long lpcr; 4273 int radix; 4274 int err; 4275 4276 /* If not on a POWER9, reject it */ 4277 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4278 return -ENODEV; 4279 4280 /* If any unknown flags set, reject it */ 4281 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 4282 return -EINVAL; 4283 4284 /* GR (guest radix) bit in process_table field must match */ 4285 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 4286 if (!!(cfg->process_table & PATB_GR) != radix) 4287 return -EINVAL; 4288 4289 /* Process table size field must be reasonable, i.e. <= 24 */ 4290 if ((cfg->process_table & PRTS_MASK) > 24) 4291 return -EINVAL; 4292 4293 /* We can change a guest to/from radix now, if the host is radix */ 4294 if (radix && !radix_enabled()) 4295 return -EINVAL; 4296 4297 mutex_lock(&kvm->lock); 4298 if (radix != kvm_is_radix(kvm)) { 4299 if (kvm->arch.mmu_ready) { 4300 kvm->arch.mmu_ready = 0; 4301 /* order mmu_ready vs. vcpus_running */ 4302 smp_mb(); 4303 if (atomic_read(&kvm->arch.vcpus_running)) { 4304 kvm->arch.mmu_ready = 1; 4305 err = -EBUSY; 4306 goto out_unlock; 4307 } 4308 } 4309 if (radix) 4310 err = kvmppc_switch_mmu_to_radix(kvm); 4311 else 4312 err = kvmppc_switch_mmu_to_hpt(kvm); 4313 if (err) 4314 goto out_unlock; 4315 } 4316 4317 kvm->arch.process_table = cfg->process_table; 4318 kvmppc_setup_partition_table(kvm); 4319 4320 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 4321 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 4322 err = 0; 4323 4324 out_unlock: 4325 mutex_unlock(&kvm->lock); 4326 return err; 4327 } 4328 4329 static struct kvmppc_ops kvm_ops_hv = { 4330 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 4331 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 4332 .get_one_reg = kvmppc_get_one_reg_hv, 4333 .set_one_reg = kvmppc_set_one_reg_hv, 4334 .vcpu_load = kvmppc_core_vcpu_load_hv, 4335 .vcpu_put = kvmppc_core_vcpu_put_hv, 4336 .set_msr = kvmppc_set_msr_hv, 4337 .vcpu_run = kvmppc_vcpu_run_hv, 4338 .vcpu_create = kvmppc_core_vcpu_create_hv, 4339 .vcpu_free = kvmppc_core_vcpu_free_hv, 4340 .check_requests = kvmppc_core_check_requests_hv, 4341 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 4342 .flush_memslot = kvmppc_core_flush_memslot_hv, 4343 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 4344 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 4345 .unmap_hva = kvm_unmap_hva_hv, 4346 .unmap_hva_range = kvm_unmap_hva_range_hv, 4347 .age_hva = kvm_age_hva_hv, 4348 .test_age_hva = kvm_test_age_hva_hv, 4349 .set_spte_hva = kvm_set_spte_hva_hv, 4350 .mmu_destroy = kvmppc_mmu_destroy_hv, 4351 .free_memslot = kvmppc_core_free_memslot_hv, 4352 .create_memslot = kvmppc_core_create_memslot_hv, 4353 .init_vm = kvmppc_core_init_vm_hv, 4354 .destroy_vm = kvmppc_core_destroy_vm_hv, 4355 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 4356 .emulate_op = kvmppc_core_emulate_op_hv, 4357 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 4358 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 4359 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 4360 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 4361 .hcall_implemented = kvmppc_hcall_impl_hv, 4362 #ifdef CONFIG_KVM_XICS 4363 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 4364 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 4365 #endif 4366 .configure_mmu = kvmhv_configure_mmu, 4367 .get_rmmu_info = kvmhv_get_rmmu_info, 4368 .set_smt_mode = kvmhv_set_smt_mode, 4369 }; 4370 4371 static int kvm_init_subcore_bitmap(void) 4372 { 4373 int i, j; 4374 int nr_cores = cpu_nr_cores(); 4375 struct sibling_subcore_state *sibling_subcore_state; 4376 4377 for (i = 0; i < nr_cores; i++) { 4378 int first_cpu = i * threads_per_core; 4379 int node = cpu_to_node(first_cpu); 4380 4381 /* Ignore if it is already allocated. */ 4382 if (paca[first_cpu].sibling_subcore_state) 4383 continue; 4384 4385 sibling_subcore_state = 4386 kmalloc_node(sizeof(struct sibling_subcore_state), 4387 GFP_KERNEL, node); 4388 if (!sibling_subcore_state) 4389 return -ENOMEM; 4390 4391 memset(sibling_subcore_state, 0, 4392 sizeof(struct sibling_subcore_state)); 4393 4394 for (j = 0; j < threads_per_core; j++) { 4395 int cpu = first_cpu + j; 4396 4397 paca[cpu].sibling_subcore_state = sibling_subcore_state; 4398 } 4399 } 4400 return 0; 4401 } 4402 4403 static int kvmppc_radix_possible(void) 4404 { 4405 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 4406 } 4407 4408 static int kvmppc_book3s_init_hv(void) 4409 { 4410 int r; 4411 /* 4412 * FIXME!! Do we need to check on all cpus ? 4413 */ 4414 r = kvmppc_core_check_processor_compat_hv(); 4415 if (r < 0) 4416 return -ENODEV; 4417 4418 r = kvm_init_subcore_bitmap(); 4419 if (r) 4420 return r; 4421 4422 /* 4423 * We need a way of accessing the XICS interrupt controller, 4424 * either directly, via paca[cpu].kvm_hstate.xics_phys, or 4425 * indirectly, via OPAL. 4426 */ 4427 #ifdef CONFIG_SMP 4428 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { 4429 struct device_node *np; 4430 4431 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 4432 if (!np) { 4433 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 4434 return -ENODEV; 4435 } 4436 } 4437 #endif 4438 4439 kvm_ops_hv.owner = THIS_MODULE; 4440 kvmppc_hv_ops = &kvm_ops_hv; 4441 4442 init_default_hcalls(); 4443 4444 init_vcore_lists(); 4445 4446 r = kvmppc_mmu_hv_init(); 4447 if (r) 4448 return r; 4449 4450 if (kvmppc_radix_possible()) 4451 r = kvmppc_radix_init(); 4452 return r; 4453 } 4454 4455 static void kvmppc_book3s_exit_hv(void) 4456 { 4457 kvmppc_free_host_rm_ops(); 4458 if (kvmppc_radix_possible()) 4459 kvmppc_radix_exit(); 4460 kvmppc_hv_ops = NULL; 4461 } 4462 4463 module_init(kvmppc_book3s_init_hv); 4464 module_exit(kvmppc_book3s_exit_hv); 4465 MODULE_LICENSE("GPL"); 4466 MODULE_ALIAS_MISCDEV(KVM_MINOR); 4467 MODULE_ALIAS("devname:kvm"); 4468