xref: /linux/arch/powerpc/kvm/book3s_hv.c (revision 841b86f3289dbe858daeceec36423d4ea286fac2)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48 
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75 
76 #include "book3s.h"
77 
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80 
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84 
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
89 
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL	(~(u64)0)
92 
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94 
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101 
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105 
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108 	.set = param_set_int,
109 	.get = param_get_int,
110 };
111 
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
113 							S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115 
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
117 							S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
119 #endif
120 
121 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
122 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
123 static void kvmppc_setup_partition_table(struct kvm *kvm);
124 
125 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
126 		int *ip)
127 {
128 	int i = *ip;
129 	struct kvm_vcpu *vcpu;
130 
131 	while (++i < MAX_SMT_THREADS) {
132 		vcpu = READ_ONCE(vc->runnable_threads[i]);
133 		if (vcpu) {
134 			*ip = i;
135 			return vcpu;
136 		}
137 	}
138 	return NULL;
139 }
140 
141 /* Used to traverse the list of runnable threads for a given vcore */
142 #define for_each_runnable_thread(i, vcpu, vc) \
143 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
144 
145 static bool kvmppc_ipi_thread(int cpu)
146 {
147 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
148 
149 	/* On POWER9 we can use msgsnd to IPI any cpu */
150 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
151 		msg |= get_hard_smp_processor_id(cpu);
152 		smp_mb();
153 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154 		return true;
155 	}
156 
157 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
158 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
159 		preempt_disable();
160 		if (cpu_first_thread_sibling(cpu) ==
161 		    cpu_first_thread_sibling(smp_processor_id())) {
162 			msg |= cpu_thread_in_core(cpu);
163 			smp_mb();
164 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
165 			preempt_enable();
166 			return true;
167 		}
168 		preempt_enable();
169 	}
170 
171 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
172 	if (cpu >= 0 && cpu < nr_cpu_ids) {
173 		if (paca[cpu].kvm_hstate.xics_phys) {
174 			xics_wake_cpu(cpu);
175 			return true;
176 		}
177 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
178 		return true;
179 	}
180 #endif
181 
182 	return false;
183 }
184 
185 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
186 {
187 	int cpu;
188 	struct swait_queue_head *wqp;
189 
190 	wqp = kvm_arch_vcpu_wq(vcpu);
191 	if (swq_has_sleeper(wqp)) {
192 		swake_up(wqp);
193 		++vcpu->stat.halt_wakeup;
194 	}
195 
196 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
197 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
198 		return;
199 
200 	/* CPU points to the first thread of the core */
201 	cpu = vcpu->cpu;
202 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
203 		smp_send_reschedule(cpu);
204 }
205 
206 /*
207  * We use the vcpu_load/put functions to measure stolen time.
208  * Stolen time is counted as time when either the vcpu is able to
209  * run as part of a virtual core, but the task running the vcore
210  * is preempted or sleeping, or when the vcpu needs something done
211  * in the kernel by the task running the vcpu, but that task is
212  * preempted or sleeping.  Those two things have to be counted
213  * separately, since one of the vcpu tasks will take on the job
214  * of running the core, and the other vcpu tasks in the vcore will
215  * sleep waiting for it to do that, but that sleep shouldn't count
216  * as stolen time.
217  *
218  * Hence we accumulate stolen time when the vcpu can run as part of
219  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
220  * needs its task to do other things in the kernel (for example,
221  * service a page fault) in busy_stolen.  We don't accumulate
222  * stolen time for a vcore when it is inactive, or for a vcpu
223  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
224  * a misnomer; it means that the vcpu task is not executing in
225  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
226  * the kernel.  We don't have any way of dividing up that time
227  * between time that the vcpu is genuinely stopped, time that
228  * the task is actively working on behalf of the vcpu, and time
229  * that the task is preempted, so we don't count any of it as
230  * stolen.
231  *
232  * Updates to busy_stolen are protected by arch.tbacct_lock;
233  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
234  * lock.  The stolen times are measured in units of timebase ticks.
235  * (Note that the != TB_NIL checks below are purely defensive;
236  * they should never fail.)
237  */
238 
239 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
240 {
241 	unsigned long flags;
242 
243 	spin_lock_irqsave(&vc->stoltb_lock, flags);
244 	vc->preempt_tb = mftb();
245 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246 }
247 
248 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
249 {
250 	unsigned long flags;
251 
252 	spin_lock_irqsave(&vc->stoltb_lock, flags);
253 	if (vc->preempt_tb != TB_NIL) {
254 		vc->stolen_tb += mftb() - vc->preempt_tb;
255 		vc->preempt_tb = TB_NIL;
256 	}
257 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
258 }
259 
260 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
261 {
262 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
263 	unsigned long flags;
264 
265 	/*
266 	 * We can test vc->runner without taking the vcore lock,
267 	 * because only this task ever sets vc->runner to this
268 	 * vcpu, and once it is set to this vcpu, only this task
269 	 * ever sets it to NULL.
270 	 */
271 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
272 		kvmppc_core_end_stolen(vc);
273 
274 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
275 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
276 	    vcpu->arch.busy_preempt != TB_NIL) {
277 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
278 		vcpu->arch.busy_preempt = TB_NIL;
279 	}
280 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
281 }
282 
283 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
284 {
285 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
286 	unsigned long flags;
287 
288 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
289 		kvmppc_core_start_stolen(vc);
290 
291 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
292 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
293 		vcpu->arch.busy_preempt = mftb();
294 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
295 }
296 
297 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
298 {
299 	/*
300 	 * Check for illegal transactional state bit combination
301 	 * and if we find it, force the TS field to a safe state.
302 	 */
303 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
304 		msr &= ~MSR_TS_MASK;
305 	vcpu->arch.shregs.msr = msr;
306 	kvmppc_end_cede(vcpu);
307 }
308 
309 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
310 {
311 	vcpu->arch.pvr = pvr;
312 }
313 
314 /* Dummy value used in computing PCR value below */
315 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
316 
317 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
318 {
319 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
320 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
321 
322 	/* We can (emulate) our own architecture version and anything older */
323 	if (cpu_has_feature(CPU_FTR_ARCH_300))
324 		host_pcr_bit = PCR_ARCH_300;
325 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
326 		host_pcr_bit = PCR_ARCH_207;
327 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
328 		host_pcr_bit = PCR_ARCH_206;
329 	else
330 		host_pcr_bit = PCR_ARCH_205;
331 
332 	/* Determine lowest PCR bit needed to run guest in given PVR level */
333 	guest_pcr_bit = host_pcr_bit;
334 	if (arch_compat) {
335 		switch (arch_compat) {
336 		case PVR_ARCH_205:
337 			guest_pcr_bit = PCR_ARCH_205;
338 			break;
339 		case PVR_ARCH_206:
340 		case PVR_ARCH_206p:
341 			guest_pcr_bit = PCR_ARCH_206;
342 			break;
343 		case PVR_ARCH_207:
344 			guest_pcr_bit = PCR_ARCH_207;
345 			break;
346 		case PVR_ARCH_300:
347 			guest_pcr_bit = PCR_ARCH_300;
348 			break;
349 		default:
350 			return -EINVAL;
351 		}
352 	}
353 
354 	/* Check requested PCR bits don't exceed our capabilities */
355 	if (guest_pcr_bit > host_pcr_bit)
356 		return -EINVAL;
357 
358 	spin_lock(&vc->lock);
359 	vc->arch_compat = arch_compat;
360 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
361 	vc->pcr = host_pcr_bit - guest_pcr_bit;
362 	spin_unlock(&vc->lock);
363 
364 	return 0;
365 }
366 
367 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
368 {
369 	int r;
370 
371 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
372 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
373 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
374 	for (r = 0; r < 16; ++r)
375 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
376 		       r, kvmppc_get_gpr(vcpu, r),
377 		       r+16, kvmppc_get_gpr(vcpu, r+16));
378 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
379 	       vcpu->arch.ctr, vcpu->arch.lr);
380 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
381 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
382 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
383 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
384 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
385 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
386 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
387 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
388 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
389 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
390 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
391 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
392 	for (r = 0; r < vcpu->arch.slb_max; ++r)
393 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
394 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
395 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
396 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
397 	       vcpu->arch.last_inst);
398 }
399 
400 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
401 {
402 	struct kvm_vcpu *ret;
403 
404 	mutex_lock(&kvm->lock);
405 	ret = kvm_get_vcpu_by_id(kvm, id);
406 	mutex_unlock(&kvm->lock);
407 	return ret;
408 }
409 
410 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
411 {
412 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
413 	vpa->yield_count = cpu_to_be32(1);
414 }
415 
416 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
417 		   unsigned long addr, unsigned long len)
418 {
419 	/* check address is cacheline aligned */
420 	if (addr & (L1_CACHE_BYTES - 1))
421 		return -EINVAL;
422 	spin_lock(&vcpu->arch.vpa_update_lock);
423 	if (v->next_gpa != addr || v->len != len) {
424 		v->next_gpa = addr;
425 		v->len = addr ? len : 0;
426 		v->update_pending = 1;
427 	}
428 	spin_unlock(&vcpu->arch.vpa_update_lock);
429 	return 0;
430 }
431 
432 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
433 struct reg_vpa {
434 	u32 dummy;
435 	union {
436 		__be16 hword;
437 		__be32 word;
438 	} length;
439 };
440 
441 static int vpa_is_registered(struct kvmppc_vpa *vpap)
442 {
443 	if (vpap->update_pending)
444 		return vpap->next_gpa != 0;
445 	return vpap->pinned_addr != NULL;
446 }
447 
448 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
449 				       unsigned long flags,
450 				       unsigned long vcpuid, unsigned long vpa)
451 {
452 	struct kvm *kvm = vcpu->kvm;
453 	unsigned long len, nb;
454 	void *va;
455 	struct kvm_vcpu *tvcpu;
456 	int err;
457 	int subfunc;
458 	struct kvmppc_vpa *vpap;
459 
460 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
461 	if (!tvcpu)
462 		return H_PARAMETER;
463 
464 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
465 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
466 	    subfunc == H_VPA_REG_SLB) {
467 		/* Registering new area - address must be cache-line aligned */
468 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
469 			return H_PARAMETER;
470 
471 		/* convert logical addr to kernel addr and read length */
472 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
473 		if (va == NULL)
474 			return H_PARAMETER;
475 		if (subfunc == H_VPA_REG_VPA)
476 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
477 		else
478 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
479 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
480 
481 		/* Check length */
482 		if (len > nb || len < sizeof(struct reg_vpa))
483 			return H_PARAMETER;
484 	} else {
485 		vpa = 0;
486 		len = 0;
487 	}
488 
489 	err = H_PARAMETER;
490 	vpap = NULL;
491 	spin_lock(&tvcpu->arch.vpa_update_lock);
492 
493 	switch (subfunc) {
494 	case H_VPA_REG_VPA:		/* register VPA */
495 		/*
496 		 * The size of our lppaca is 1kB because of the way we align
497 		 * it for the guest to avoid crossing a 4kB boundary. We only
498 		 * use 640 bytes of the structure though, so we should accept
499 		 * clients that set a size of 640.
500 		 */
501 		if (len < 640)
502 			break;
503 		vpap = &tvcpu->arch.vpa;
504 		err = 0;
505 		break;
506 
507 	case H_VPA_REG_DTL:		/* register DTL */
508 		if (len < sizeof(struct dtl_entry))
509 			break;
510 		len -= len % sizeof(struct dtl_entry);
511 
512 		/* Check that they have previously registered a VPA */
513 		err = H_RESOURCE;
514 		if (!vpa_is_registered(&tvcpu->arch.vpa))
515 			break;
516 
517 		vpap = &tvcpu->arch.dtl;
518 		err = 0;
519 		break;
520 
521 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
522 		/* Check that they have previously registered a VPA */
523 		err = H_RESOURCE;
524 		if (!vpa_is_registered(&tvcpu->arch.vpa))
525 			break;
526 
527 		vpap = &tvcpu->arch.slb_shadow;
528 		err = 0;
529 		break;
530 
531 	case H_VPA_DEREG_VPA:		/* deregister VPA */
532 		/* Check they don't still have a DTL or SLB buf registered */
533 		err = H_RESOURCE;
534 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
535 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
536 			break;
537 
538 		vpap = &tvcpu->arch.vpa;
539 		err = 0;
540 		break;
541 
542 	case H_VPA_DEREG_DTL:		/* deregister DTL */
543 		vpap = &tvcpu->arch.dtl;
544 		err = 0;
545 		break;
546 
547 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
548 		vpap = &tvcpu->arch.slb_shadow;
549 		err = 0;
550 		break;
551 	}
552 
553 	if (vpap) {
554 		vpap->next_gpa = vpa;
555 		vpap->len = len;
556 		vpap->update_pending = 1;
557 	}
558 
559 	spin_unlock(&tvcpu->arch.vpa_update_lock);
560 
561 	return err;
562 }
563 
564 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
565 {
566 	struct kvm *kvm = vcpu->kvm;
567 	void *va;
568 	unsigned long nb;
569 	unsigned long gpa;
570 
571 	/*
572 	 * We need to pin the page pointed to by vpap->next_gpa,
573 	 * but we can't call kvmppc_pin_guest_page under the lock
574 	 * as it does get_user_pages() and down_read().  So we
575 	 * have to drop the lock, pin the page, then get the lock
576 	 * again and check that a new area didn't get registered
577 	 * in the meantime.
578 	 */
579 	for (;;) {
580 		gpa = vpap->next_gpa;
581 		spin_unlock(&vcpu->arch.vpa_update_lock);
582 		va = NULL;
583 		nb = 0;
584 		if (gpa)
585 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
586 		spin_lock(&vcpu->arch.vpa_update_lock);
587 		if (gpa == vpap->next_gpa)
588 			break;
589 		/* sigh... unpin that one and try again */
590 		if (va)
591 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
592 	}
593 
594 	vpap->update_pending = 0;
595 	if (va && nb < vpap->len) {
596 		/*
597 		 * If it's now too short, it must be that userspace
598 		 * has changed the mappings underlying guest memory,
599 		 * so unregister the region.
600 		 */
601 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
602 		va = NULL;
603 	}
604 	if (vpap->pinned_addr)
605 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
606 					vpap->dirty);
607 	vpap->gpa = gpa;
608 	vpap->pinned_addr = va;
609 	vpap->dirty = false;
610 	if (va)
611 		vpap->pinned_end = va + vpap->len;
612 }
613 
614 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
615 {
616 	if (!(vcpu->arch.vpa.update_pending ||
617 	      vcpu->arch.slb_shadow.update_pending ||
618 	      vcpu->arch.dtl.update_pending))
619 		return;
620 
621 	spin_lock(&vcpu->arch.vpa_update_lock);
622 	if (vcpu->arch.vpa.update_pending) {
623 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
624 		if (vcpu->arch.vpa.pinned_addr)
625 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
626 	}
627 	if (vcpu->arch.dtl.update_pending) {
628 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
629 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
630 		vcpu->arch.dtl_index = 0;
631 	}
632 	if (vcpu->arch.slb_shadow.update_pending)
633 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
634 	spin_unlock(&vcpu->arch.vpa_update_lock);
635 }
636 
637 /*
638  * Return the accumulated stolen time for the vcore up until `now'.
639  * The caller should hold the vcore lock.
640  */
641 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
642 {
643 	u64 p;
644 	unsigned long flags;
645 
646 	spin_lock_irqsave(&vc->stoltb_lock, flags);
647 	p = vc->stolen_tb;
648 	if (vc->vcore_state != VCORE_INACTIVE &&
649 	    vc->preempt_tb != TB_NIL)
650 		p += now - vc->preempt_tb;
651 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
652 	return p;
653 }
654 
655 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
656 				    struct kvmppc_vcore *vc)
657 {
658 	struct dtl_entry *dt;
659 	struct lppaca *vpa;
660 	unsigned long stolen;
661 	unsigned long core_stolen;
662 	u64 now;
663 	unsigned long flags;
664 
665 	dt = vcpu->arch.dtl_ptr;
666 	vpa = vcpu->arch.vpa.pinned_addr;
667 	now = mftb();
668 	core_stolen = vcore_stolen_time(vc, now);
669 	stolen = core_stolen - vcpu->arch.stolen_logged;
670 	vcpu->arch.stolen_logged = core_stolen;
671 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
672 	stolen += vcpu->arch.busy_stolen;
673 	vcpu->arch.busy_stolen = 0;
674 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
675 	if (!dt || !vpa)
676 		return;
677 	memset(dt, 0, sizeof(struct dtl_entry));
678 	dt->dispatch_reason = 7;
679 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
680 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
681 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
682 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
683 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
684 	++dt;
685 	if (dt == vcpu->arch.dtl.pinned_end)
686 		dt = vcpu->arch.dtl.pinned_addr;
687 	vcpu->arch.dtl_ptr = dt;
688 	/* order writing *dt vs. writing vpa->dtl_idx */
689 	smp_wmb();
690 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
691 	vcpu->arch.dtl.dirty = true;
692 }
693 
694 /* See if there is a doorbell interrupt pending for a vcpu */
695 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
696 {
697 	int thr;
698 	struct kvmppc_vcore *vc;
699 
700 	if (vcpu->arch.doorbell_request)
701 		return true;
702 	/*
703 	 * Ensure that the read of vcore->dpdes comes after the read
704 	 * of vcpu->doorbell_request.  This barrier matches the
705 	 * lwsync in book3s_hv_rmhandlers.S just before the
706 	 * fast_guest_return label.
707 	 */
708 	smp_rmb();
709 	vc = vcpu->arch.vcore;
710 	thr = vcpu->vcpu_id - vc->first_vcpuid;
711 	return !!(vc->dpdes & (1 << thr));
712 }
713 
714 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
715 {
716 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
717 		return true;
718 	if ((!vcpu->arch.vcore->arch_compat) &&
719 	    cpu_has_feature(CPU_FTR_ARCH_207S))
720 		return true;
721 	return false;
722 }
723 
724 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
725 			     unsigned long resource, unsigned long value1,
726 			     unsigned long value2)
727 {
728 	switch (resource) {
729 	case H_SET_MODE_RESOURCE_SET_CIABR:
730 		if (!kvmppc_power8_compatible(vcpu))
731 			return H_P2;
732 		if (value2)
733 			return H_P4;
734 		if (mflags)
735 			return H_UNSUPPORTED_FLAG_START;
736 		/* Guests can't breakpoint the hypervisor */
737 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
738 			return H_P3;
739 		vcpu->arch.ciabr  = value1;
740 		return H_SUCCESS;
741 	case H_SET_MODE_RESOURCE_SET_DAWR:
742 		if (!kvmppc_power8_compatible(vcpu))
743 			return H_P2;
744 		if (mflags)
745 			return H_UNSUPPORTED_FLAG_START;
746 		if (value2 & DABRX_HYP)
747 			return H_P4;
748 		vcpu->arch.dawr  = value1;
749 		vcpu->arch.dawrx = value2;
750 		return H_SUCCESS;
751 	default:
752 		return H_TOO_HARD;
753 	}
754 }
755 
756 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
757 {
758 	struct kvmppc_vcore *vcore = target->arch.vcore;
759 
760 	/*
761 	 * We expect to have been called by the real mode handler
762 	 * (kvmppc_rm_h_confer()) which would have directly returned
763 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
764 	 * have useful work to do and should not confer) so we don't
765 	 * recheck that here.
766 	 */
767 
768 	spin_lock(&vcore->lock);
769 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
770 	    vcore->vcore_state != VCORE_INACTIVE &&
771 	    vcore->runner)
772 		target = vcore->runner;
773 	spin_unlock(&vcore->lock);
774 
775 	return kvm_vcpu_yield_to(target);
776 }
777 
778 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
779 {
780 	int yield_count = 0;
781 	struct lppaca *lppaca;
782 
783 	spin_lock(&vcpu->arch.vpa_update_lock);
784 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
785 	if (lppaca)
786 		yield_count = be32_to_cpu(lppaca->yield_count);
787 	spin_unlock(&vcpu->arch.vpa_update_lock);
788 	return yield_count;
789 }
790 
791 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
792 {
793 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
794 	unsigned long target, ret = H_SUCCESS;
795 	int yield_count;
796 	struct kvm_vcpu *tvcpu;
797 	int idx, rc;
798 
799 	if (req <= MAX_HCALL_OPCODE &&
800 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
801 		return RESUME_HOST;
802 
803 	switch (req) {
804 	case H_CEDE:
805 		break;
806 	case H_PROD:
807 		target = kvmppc_get_gpr(vcpu, 4);
808 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
809 		if (!tvcpu) {
810 			ret = H_PARAMETER;
811 			break;
812 		}
813 		tvcpu->arch.prodded = 1;
814 		smp_mb();
815 		if (tvcpu->arch.ceded)
816 			kvmppc_fast_vcpu_kick_hv(tvcpu);
817 		break;
818 	case H_CONFER:
819 		target = kvmppc_get_gpr(vcpu, 4);
820 		if (target == -1)
821 			break;
822 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
823 		if (!tvcpu) {
824 			ret = H_PARAMETER;
825 			break;
826 		}
827 		yield_count = kvmppc_get_gpr(vcpu, 5);
828 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
829 			break;
830 		kvm_arch_vcpu_yield_to(tvcpu);
831 		break;
832 	case H_REGISTER_VPA:
833 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
834 					kvmppc_get_gpr(vcpu, 5),
835 					kvmppc_get_gpr(vcpu, 6));
836 		break;
837 	case H_RTAS:
838 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
839 			return RESUME_HOST;
840 
841 		idx = srcu_read_lock(&vcpu->kvm->srcu);
842 		rc = kvmppc_rtas_hcall(vcpu);
843 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
844 
845 		if (rc == -ENOENT)
846 			return RESUME_HOST;
847 		else if (rc == 0)
848 			break;
849 
850 		/* Send the error out to userspace via KVM_RUN */
851 		return rc;
852 	case H_LOGICAL_CI_LOAD:
853 		ret = kvmppc_h_logical_ci_load(vcpu);
854 		if (ret == H_TOO_HARD)
855 			return RESUME_HOST;
856 		break;
857 	case H_LOGICAL_CI_STORE:
858 		ret = kvmppc_h_logical_ci_store(vcpu);
859 		if (ret == H_TOO_HARD)
860 			return RESUME_HOST;
861 		break;
862 	case H_SET_MODE:
863 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
864 					kvmppc_get_gpr(vcpu, 5),
865 					kvmppc_get_gpr(vcpu, 6),
866 					kvmppc_get_gpr(vcpu, 7));
867 		if (ret == H_TOO_HARD)
868 			return RESUME_HOST;
869 		break;
870 	case H_XIRR:
871 	case H_CPPR:
872 	case H_EOI:
873 	case H_IPI:
874 	case H_IPOLL:
875 	case H_XIRR_X:
876 		if (kvmppc_xics_enabled(vcpu)) {
877 			if (xive_enabled()) {
878 				ret = H_NOT_AVAILABLE;
879 				return RESUME_GUEST;
880 			}
881 			ret = kvmppc_xics_hcall(vcpu, req);
882 			break;
883 		}
884 		return RESUME_HOST;
885 	case H_PUT_TCE:
886 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
887 						kvmppc_get_gpr(vcpu, 5),
888 						kvmppc_get_gpr(vcpu, 6));
889 		if (ret == H_TOO_HARD)
890 			return RESUME_HOST;
891 		break;
892 	case H_PUT_TCE_INDIRECT:
893 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
894 						kvmppc_get_gpr(vcpu, 5),
895 						kvmppc_get_gpr(vcpu, 6),
896 						kvmppc_get_gpr(vcpu, 7));
897 		if (ret == H_TOO_HARD)
898 			return RESUME_HOST;
899 		break;
900 	case H_STUFF_TCE:
901 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
902 						kvmppc_get_gpr(vcpu, 5),
903 						kvmppc_get_gpr(vcpu, 6),
904 						kvmppc_get_gpr(vcpu, 7));
905 		if (ret == H_TOO_HARD)
906 			return RESUME_HOST;
907 		break;
908 	default:
909 		return RESUME_HOST;
910 	}
911 	kvmppc_set_gpr(vcpu, 3, ret);
912 	vcpu->arch.hcall_needed = 0;
913 	return RESUME_GUEST;
914 }
915 
916 static int kvmppc_hcall_impl_hv(unsigned long cmd)
917 {
918 	switch (cmd) {
919 	case H_CEDE:
920 	case H_PROD:
921 	case H_CONFER:
922 	case H_REGISTER_VPA:
923 	case H_SET_MODE:
924 	case H_LOGICAL_CI_LOAD:
925 	case H_LOGICAL_CI_STORE:
926 #ifdef CONFIG_KVM_XICS
927 	case H_XIRR:
928 	case H_CPPR:
929 	case H_EOI:
930 	case H_IPI:
931 	case H_IPOLL:
932 	case H_XIRR_X:
933 #endif
934 		return 1;
935 	}
936 
937 	/* See if it's in the real-mode table */
938 	return kvmppc_hcall_impl_hv_realmode(cmd);
939 }
940 
941 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
942 					struct kvm_vcpu *vcpu)
943 {
944 	u32 last_inst;
945 
946 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
947 					EMULATE_DONE) {
948 		/*
949 		 * Fetch failed, so return to guest and
950 		 * try executing it again.
951 		 */
952 		return RESUME_GUEST;
953 	}
954 
955 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
956 		run->exit_reason = KVM_EXIT_DEBUG;
957 		run->debug.arch.address = kvmppc_get_pc(vcpu);
958 		return RESUME_HOST;
959 	} else {
960 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
961 		return RESUME_GUEST;
962 	}
963 }
964 
965 static void do_nothing(void *x)
966 {
967 }
968 
969 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
970 {
971 	int thr, cpu, pcpu, nthreads;
972 	struct kvm_vcpu *v;
973 	unsigned long dpdes;
974 
975 	nthreads = vcpu->kvm->arch.emul_smt_mode;
976 	dpdes = 0;
977 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
978 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
979 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
980 		if (!v)
981 			continue;
982 		/*
983 		 * If the vcpu is currently running on a physical cpu thread,
984 		 * interrupt it in order to pull it out of the guest briefly,
985 		 * which will update its vcore->dpdes value.
986 		 */
987 		pcpu = READ_ONCE(v->cpu);
988 		if (pcpu >= 0)
989 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
990 		if (kvmppc_doorbell_pending(v))
991 			dpdes |= 1 << thr;
992 	}
993 	return dpdes;
994 }
995 
996 /*
997  * On POWER9, emulate doorbell-related instructions in order to
998  * give the guest the illusion of running on a multi-threaded core.
999  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1000  * and mfspr DPDES.
1001  */
1002 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1003 {
1004 	u32 inst, rb, thr;
1005 	unsigned long arg;
1006 	struct kvm *kvm = vcpu->kvm;
1007 	struct kvm_vcpu *tvcpu;
1008 
1009 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1010 		return EMULATE_FAIL;
1011 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1012 		return RESUME_GUEST;
1013 	if (get_op(inst) != 31)
1014 		return EMULATE_FAIL;
1015 	rb = get_rb(inst);
1016 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1017 	switch (get_xop(inst)) {
1018 	case OP_31_XOP_MSGSNDP:
1019 		arg = kvmppc_get_gpr(vcpu, rb);
1020 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1021 			break;
1022 		arg &= 0x3f;
1023 		if (arg >= kvm->arch.emul_smt_mode)
1024 			break;
1025 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1026 		if (!tvcpu)
1027 			break;
1028 		if (!tvcpu->arch.doorbell_request) {
1029 			tvcpu->arch.doorbell_request = 1;
1030 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1031 		}
1032 		break;
1033 	case OP_31_XOP_MSGCLRP:
1034 		arg = kvmppc_get_gpr(vcpu, rb);
1035 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1036 			break;
1037 		vcpu->arch.vcore->dpdes = 0;
1038 		vcpu->arch.doorbell_request = 0;
1039 		break;
1040 	case OP_31_XOP_MFSPR:
1041 		switch (get_sprn(inst)) {
1042 		case SPRN_TIR:
1043 			arg = thr;
1044 			break;
1045 		case SPRN_DPDES:
1046 			arg = kvmppc_read_dpdes(vcpu);
1047 			break;
1048 		default:
1049 			return EMULATE_FAIL;
1050 		}
1051 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1052 		break;
1053 	default:
1054 		return EMULATE_FAIL;
1055 	}
1056 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1057 	return RESUME_GUEST;
1058 }
1059 
1060 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1061 				 struct task_struct *tsk)
1062 {
1063 	int r = RESUME_HOST;
1064 
1065 	vcpu->stat.sum_exits++;
1066 
1067 	/*
1068 	 * This can happen if an interrupt occurs in the last stages
1069 	 * of guest entry or the first stages of guest exit (i.e. after
1070 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1071 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1072 	 * That can happen due to a bug, or due to a machine check
1073 	 * occurring at just the wrong time.
1074 	 */
1075 	if (vcpu->arch.shregs.msr & MSR_HV) {
1076 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1077 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1078 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1079 			vcpu->arch.shregs.msr);
1080 		kvmppc_dump_regs(vcpu);
1081 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1082 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1083 		return RESUME_HOST;
1084 	}
1085 	run->exit_reason = KVM_EXIT_UNKNOWN;
1086 	run->ready_for_interrupt_injection = 1;
1087 	switch (vcpu->arch.trap) {
1088 	/* We're good on these - the host merely wanted to get our attention */
1089 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1090 		vcpu->stat.dec_exits++;
1091 		r = RESUME_GUEST;
1092 		break;
1093 	case BOOK3S_INTERRUPT_EXTERNAL:
1094 	case BOOK3S_INTERRUPT_H_DOORBELL:
1095 	case BOOK3S_INTERRUPT_H_VIRT:
1096 		vcpu->stat.ext_intr_exits++;
1097 		r = RESUME_GUEST;
1098 		break;
1099 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1100 	case BOOK3S_INTERRUPT_HMI:
1101 	case BOOK3S_INTERRUPT_PERFMON:
1102 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1103 		r = RESUME_GUEST;
1104 		break;
1105 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1106 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1107 		run->exit_reason = KVM_EXIT_NMI;
1108 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1109 		/* Clear out the old NMI status from run->flags */
1110 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1111 		/* Now set the NMI status */
1112 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1113 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1114 		else
1115 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1116 
1117 		r = RESUME_HOST;
1118 		/* Print the MCE event to host console. */
1119 		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1120 		break;
1121 	case BOOK3S_INTERRUPT_PROGRAM:
1122 	{
1123 		ulong flags;
1124 		/*
1125 		 * Normally program interrupts are delivered directly
1126 		 * to the guest by the hardware, but we can get here
1127 		 * as a result of a hypervisor emulation interrupt
1128 		 * (e40) getting turned into a 700 by BML RTAS.
1129 		 */
1130 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1131 		kvmppc_core_queue_program(vcpu, flags);
1132 		r = RESUME_GUEST;
1133 		break;
1134 	}
1135 	case BOOK3S_INTERRUPT_SYSCALL:
1136 	{
1137 		/* hcall - punt to userspace */
1138 		int i;
1139 
1140 		/* hypercall with MSR_PR has already been handled in rmode,
1141 		 * and never reaches here.
1142 		 */
1143 
1144 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1145 		for (i = 0; i < 9; ++i)
1146 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1147 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1148 		vcpu->arch.hcall_needed = 1;
1149 		r = RESUME_HOST;
1150 		break;
1151 	}
1152 	/*
1153 	 * We get these next two if the guest accesses a page which it thinks
1154 	 * it has mapped but which is not actually present, either because
1155 	 * it is for an emulated I/O device or because the corresonding
1156 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1157 	 * have been handled already.
1158 	 */
1159 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1160 		r = RESUME_PAGE_FAULT;
1161 		break;
1162 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1163 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1164 		vcpu->arch.fault_dsisr = 0;
1165 		r = RESUME_PAGE_FAULT;
1166 		break;
1167 	/*
1168 	 * This occurs if the guest executes an illegal instruction.
1169 	 * If the guest debug is disabled, generate a program interrupt
1170 	 * to the guest. If guest debug is enabled, we need to check
1171 	 * whether the instruction is a software breakpoint instruction.
1172 	 * Accordingly return to Guest or Host.
1173 	 */
1174 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1175 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1176 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1177 				swab32(vcpu->arch.emul_inst) :
1178 				vcpu->arch.emul_inst;
1179 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1180 			r = kvmppc_emulate_debug_inst(run, vcpu);
1181 		} else {
1182 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1183 			r = RESUME_GUEST;
1184 		}
1185 		break;
1186 	/*
1187 	 * This occurs if the guest (kernel or userspace), does something that
1188 	 * is prohibited by HFSCR.
1189 	 * On POWER9, this could be a doorbell instruction that we need
1190 	 * to emulate.
1191 	 * Otherwise, we just generate a program interrupt to the guest.
1192 	 */
1193 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1194 		r = EMULATE_FAIL;
1195 		if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1196 			r = kvmppc_emulate_doorbell_instr(vcpu);
1197 		if (r == EMULATE_FAIL) {
1198 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1199 			r = RESUME_GUEST;
1200 		}
1201 		break;
1202 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1203 		r = RESUME_PASSTHROUGH;
1204 		break;
1205 	default:
1206 		kvmppc_dump_regs(vcpu);
1207 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1208 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1209 			vcpu->arch.shregs.msr);
1210 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1211 		r = RESUME_HOST;
1212 		break;
1213 	}
1214 
1215 	return r;
1216 }
1217 
1218 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1219 					    struct kvm_sregs *sregs)
1220 {
1221 	int i;
1222 
1223 	memset(sregs, 0, sizeof(struct kvm_sregs));
1224 	sregs->pvr = vcpu->arch.pvr;
1225 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1226 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1227 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1234 					    struct kvm_sregs *sregs)
1235 {
1236 	int i, j;
1237 
1238 	/* Only accept the same PVR as the host's, since we can't spoof it */
1239 	if (sregs->pvr != vcpu->arch.pvr)
1240 		return -EINVAL;
1241 
1242 	j = 0;
1243 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1244 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1245 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1246 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1247 			++j;
1248 		}
1249 	}
1250 	vcpu->arch.slb_max = j;
1251 
1252 	return 0;
1253 }
1254 
1255 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1256 		bool preserve_top32)
1257 {
1258 	struct kvm *kvm = vcpu->kvm;
1259 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1260 	u64 mask;
1261 
1262 	mutex_lock(&kvm->lock);
1263 	spin_lock(&vc->lock);
1264 	/*
1265 	 * If ILE (interrupt little-endian) has changed, update the
1266 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1267 	 */
1268 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1269 		struct kvm_vcpu *vcpu;
1270 		int i;
1271 
1272 		kvm_for_each_vcpu(i, vcpu, kvm) {
1273 			if (vcpu->arch.vcore != vc)
1274 				continue;
1275 			if (new_lpcr & LPCR_ILE)
1276 				vcpu->arch.intr_msr |= MSR_LE;
1277 			else
1278 				vcpu->arch.intr_msr &= ~MSR_LE;
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * Userspace can only modify DPFD (default prefetch depth),
1284 	 * ILE (interrupt little-endian) and TC (translation control).
1285 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1286 	 */
1287 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1288 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1289 		mask |= LPCR_AIL;
1290 	/*
1291 	 * On POWER9, allow userspace to enable large decrementer for the
1292 	 * guest, whether or not the host has it enabled.
1293 	 */
1294 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1295 		mask |= LPCR_LD;
1296 
1297 	/* Broken 32-bit version of LPCR must not clear top bits */
1298 	if (preserve_top32)
1299 		mask &= 0xFFFFFFFF;
1300 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1301 	spin_unlock(&vc->lock);
1302 	mutex_unlock(&kvm->lock);
1303 }
1304 
1305 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1306 				 union kvmppc_one_reg *val)
1307 {
1308 	int r = 0;
1309 	long int i;
1310 
1311 	switch (id) {
1312 	case KVM_REG_PPC_DEBUG_INST:
1313 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1314 		break;
1315 	case KVM_REG_PPC_HIOR:
1316 		*val = get_reg_val(id, 0);
1317 		break;
1318 	case KVM_REG_PPC_DABR:
1319 		*val = get_reg_val(id, vcpu->arch.dabr);
1320 		break;
1321 	case KVM_REG_PPC_DABRX:
1322 		*val = get_reg_val(id, vcpu->arch.dabrx);
1323 		break;
1324 	case KVM_REG_PPC_DSCR:
1325 		*val = get_reg_val(id, vcpu->arch.dscr);
1326 		break;
1327 	case KVM_REG_PPC_PURR:
1328 		*val = get_reg_val(id, vcpu->arch.purr);
1329 		break;
1330 	case KVM_REG_PPC_SPURR:
1331 		*val = get_reg_val(id, vcpu->arch.spurr);
1332 		break;
1333 	case KVM_REG_PPC_AMR:
1334 		*val = get_reg_val(id, vcpu->arch.amr);
1335 		break;
1336 	case KVM_REG_PPC_UAMOR:
1337 		*val = get_reg_val(id, vcpu->arch.uamor);
1338 		break;
1339 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1340 		i = id - KVM_REG_PPC_MMCR0;
1341 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1342 		break;
1343 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1344 		i = id - KVM_REG_PPC_PMC1;
1345 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1346 		break;
1347 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1348 		i = id - KVM_REG_PPC_SPMC1;
1349 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1350 		break;
1351 	case KVM_REG_PPC_SIAR:
1352 		*val = get_reg_val(id, vcpu->arch.siar);
1353 		break;
1354 	case KVM_REG_PPC_SDAR:
1355 		*val = get_reg_val(id, vcpu->arch.sdar);
1356 		break;
1357 	case KVM_REG_PPC_SIER:
1358 		*val = get_reg_val(id, vcpu->arch.sier);
1359 		break;
1360 	case KVM_REG_PPC_IAMR:
1361 		*val = get_reg_val(id, vcpu->arch.iamr);
1362 		break;
1363 	case KVM_REG_PPC_PSPB:
1364 		*val = get_reg_val(id, vcpu->arch.pspb);
1365 		break;
1366 	case KVM_REG_PPC_DPDES:
1367 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1368 		break;
1369 	case KVM_REG_PPC_VTB:
1370 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1371 		break;
1372 	case KVM_REG_PPC_DAWR:
1373 		*val = get_reg_val(id, vcpu->arch.dawr);
1374 		break;
1375 	case KVM_REG_PPC_DAWRX:
1376 		*val = get_reg_val(id, vcpu->arch.dawrx);
1377 		break;
1378 	case KVM_REG_PPC_CIABR:
1379 		*val = get_reg_val(id, vcpu->arch.ciabr);
1380 		break;
1381 	case KVM_REG_PPC_CSIGR:
1382 		*val = get_reg_val(id, vcpu->arch.csigr);
1383 		break;
1384 	case KVM_REG_PPC_TACR:
1385 		*val = get_reg_val(id, vcpu->arch.tacr);
1386 		break;
1387 	case KVM_REG_PPC_TCSCR:
1388 		*val = get_reg_val(id, vcpu->arch.tcscr);
1389 		break;
1390 	case KVM_REG_PPC_PID:
1391 		*val = get_reg_val(id, vcpu->arch.pid);
1392 		break;
1393 	case KVM_REG_PPC_ACOP:
1394 		*val = get_reg_val(id, vcpu->arch.acop);
1395 		break;
1396 	case KVM_REG_PPC_WORT:
1397 		*val = get_reg_val(id, vcpu->arch.wort);
1398 		break;
1399 	case KVM_REG_PPC_TIDR:
1400 		*val = get_reg_val(id, vcpu->arch.tid);
1401 		break;
1402 	case KVM_REG_PPC_PSSCR:
1403 		*val = get_reg_val(id, vcpu->arch.psscr);
1404 		break;
1405 	case KVM_REG_PPC_VPA_ADDR:
1406 		spin_lock(&vcpu->arch.vpa_update_lock);
1407 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1408 		spin_unlock(&vcpu->arch.vpa_update_lock);
1409 		break;
1410 	case KVM_REG_PPC_VPA_SLB:
1411 		spin_lock(&vcpu->arch.vpa_update_lock);
1412 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1413 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1414 		spin_unlock(&vcpu->arch.vpa_update_lock);
1415 		break;
1416 	case KVM_REG_PPC_VPA_DTL:
1417 		spin_lock(&vcpu->arch.vpa_update_lock);
1418 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1419 		val->vpaval.length = vcpu->arch.dtl.len;
1420 		spin_unlock(&vcpu->arch.vpa_update_lock);
1421 		break;
1422 	case KVM_REG_PPC_TB_OFFSET:
1423 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1424 		break;
1425 	case KVM_REG_PPC_LPCR:
1426 	case KVM_REG_PPC_LPCR_64:
1427 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1428 		break;
1429 	case KVM_REG_PPC_PPR:
1430 		*val = get_reg_val(id, vcpu->arch.ppr);
1431 		break;
1432 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1433 	case KVM_REG_PPC_TFHAR:
1434 		*val = get_reg_val(id, vcpu->arch.tfhar);
1435 		break;
1436 	case KVM_REG_PPC_TFIAR:
1437 		*val = get_reg_val(id, vcpu->arch.tfiar);
1438 		break;
1439 	case KVM_REG_PPC_TEXASR:
1440 		*val = get_reg_val(id, vcpu->arch.texasr);
1441 		break;
1442 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1443 		i = id - KVM_REG_PPC_TM_GPR0;
1444 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1445 		break;
1446 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1447 	{
1448 		int j;
1449 		i = id - KVM_REG_PPC_TM_VSR0;
1450 		if (i < 32)
1451 			for (j = 0; j < TS_FPRWIDTH; j++)
1452 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1453 		else {
1454 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1455 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1456 			else
1457 				r = -ENXIO;
1458 		}
1459 		break;
1460 	}
1461 	case KVM_REG_PPC_TM_CR:
1462 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1463 		break;
1464 	case KVM_REG_PPC_TM_XER:
1465 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1466 		break;
1467 	case KVM_REG_PPC_TM_LR:
1468 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1469 		break;
1470 	case KVM_REG_PPC_TM_CTR:
1471 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1472 		break;
1473 	case KVM_REG_PPC_TM_FPSCR:
1474 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1475 		break;
1476 	case KVM_REG_PPC_TM_AMR:
1477 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1478 		break;
1479 	case KVM_REG_PPC_TM_PPR:
1480 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1481 		break;
1482 	case KVM_REG_PPC_TM_VRSAVE:
1483 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1484 		break;
1485 	case KVM_REG_PPC_TM_VSCR:
1486 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1487 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1488 		else
1489 			r = -ENXIO;
1490 		break;
1491 	case KVM_REG_PPC_TM_DSCR:
1492 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1493 		break;
1494 	case KVM_REG_PPC_TM_TAR:
1495 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1496 		break;
1497 #endif
1498 	case KVM_REG_PPC_ARCH_COMPAT:
1499 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1500 		break;
1501 	default:
1502 		r = -EINVAL;
1503 		break;
1504 	}
1505 
1506 	return r;
1507 }
1508 
1509 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1510 				 union kvmppc_one_reg *val)
1511 {
1512 	int r = 0;
1513 	long int i;
1514 	unsigned long addr, len;
1515 
1516 	switch (id) {
1517 	case KVM_REG_PPC_HIOR:
1518 		/* Only allow this to be set to zero */
1519 		if (set_reg_val(id, *val))
1520 			r = -EINVAL;
1521 		break;
1522 	case KVM_REG_PPC_DABR:
1523 		vcpu->arch.dabr = set_reg_val(id, *val);
1524 		break;
1525 	case KVM_REG_PPC_DABRX:
1526 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1527 		break;
1528 	case KVM_REG_PPC_DSCR:
1529 		vcpu->arch.dscr = set_reg_val(id, *val);
1530 		break;
1531 	case KVM_REG_PPC_PURR:
1532 		vcpu->arch.purr = set_reg_val(id, *val);
1533 		break;
1534 	case KVM_REG_PPC_SPURR:
1535 		vcpu->arch.spurr = set_reg_val(id, *val);
1536 		break;
1537 	case KVM_REG_PPC_AMR:
1538 		vcpu->arch.amr = set_reg_val(id, *val);
1539 		break;
1540 	case KVM_REG_PPC_UAMOR:
1541 		vcpu->arch.uamor = set_reg_val(id, *val);
1542 		break;
1543 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1544 		i = id - KVM_REG_PPC_MMCR0;
1545 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1546 		break;
1547 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1548 		i = id - KVM_REG_PPC_PMC1;
1549 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1550 		break;
1551 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1552 		i = id - KVM_REG_PPC_SPMC1;
1553 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1554 		break;
1555 	case KVM_REG_PPC_SIAR:
1556 		vcpu->arch.siar = set_reg_val(id, *val);
1557 		break;
1558 	case KVM_REG_PPC_SDAR:
1559 		vcpu->arch.sdar = set_reg_val(id, *val);
1560 		break;
1561 	case KVM_REG_PPC_SIER:
1562 		vcpu->arch.sier = set_reg_val(id, *val);
1563 		break;
1564 	case KVM_REG_PPC_IAMR:
1565 		vcpu->arch.iamr = set_reg_val(id, *val);
1566 		break;
1567 	case KVM_REG_PPC_PSPB:
1568 		vcpu->arch.pspb = set_reg_val(id, *val);
1569 		break;
1570 	case KVM_REG_PPC_DPDES:
1571 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1572 		break;
1573 	case KVM_REG_PPC_VTB:
1574 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1575 		break;
1576 	case KVM_REG_PPC_DAWR:
1577 		vcpu->arch.dawr = set_reg_val(id, *val);
1578 		break;
1579 	case KVM_REG_PPC_DAWRX:
1580 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1581 		break;
1582 	case KVM_REG_PPC_CIABR:
1583 		vcpu->arch.ciabr = set_reg_val(id, *val);
1584 		/* Don't allow setting breakpoints in hypervisor code */
1585 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1586 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1587 		break;
1588 	case KVM_REG_PPC_CSIGR:
1589 		vcpu->arch.csigr = set_reg_val(id, *val);
1590 		break;
1591 	case KVM_REG_PPC_TACR:
1592 		vcpu->arch.tacr = set_reg_val(id, *val);
1593 		break;
1594 	case KVM_REG_PPC_TCSCR:
1595 		vcpu->arch.tcscr = set_reg_val(id, *val);
1596 		break;
1597 	case KVM_REG_PPC_PID:
1598 		vcpu->arch.pid = set_reg_val(id, *val);
1599 		break;
1600 	case KVM_REG_PPC_ACOP:
1601 		vcpu->arch.acop = set_reg_val(id, *val);
1602 		break;
1603 	case KVM_REG_PPC_WORT:
1604 		vcpu->arch.wort = set_reg_val(id, *val);
1605 		break;
1606 	case KVM_REG_PPC_TIDR:
1607 		vcpu->arch.tid = set_reg_val(id, *val);
1608 		break;
1609 	case KVM_REG_PPC_PSSCR:
1610 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1611 		break;
1612 	case KVM_REG_PPC_VPA_ADDR:
1613 		addr = set_reg_val(id, *val);
1614 		r = -EINVAL;
1615 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1616 			      vcpu->arch.dtl.next_gpa))
1617 			break;
1618 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1619 		break;
1620 	case KVM_REG_PPC_VPA_SLB:
1621 		addr = val->vpaval.addr;
1622 		len = val->vpaval.length;
1623 		r = -EINVAL;
1624 		if (addr && !vcpu->arch.vpa.next_gpa)
1625 			break;
1626 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1627 		break;
1628 	case KVM_REG_PPC_VPA_DTL:
1629 		addr = val->vpaval.addr;
1630 		len = val->vpaval.length;
1631 		r = -EINVAL;
1632 		if (addr && (len < sizeof(struct dtl_entry) ||
1633 			     !vcpu->arch.vpa.next_gpa))
1634 			break;
1635 		len -= len % sizeof(struct dtl_entry);
1636 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1637 		break;
1638 	case KVM_REG_PPC_TB_OFFSET:
1639 		/*
1640 		 * POWER9 DD1 has an erratum where writing TBU40 causes
1641 		 * the timebase to lose ticks.  So we don't let the
1642 		 * timebase offset be changed on P9 DD1.  (It is
1643 		 * initialized to zero.)
1644 		 */
1645 		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1646 			break;
1647 		/* round up to multiple of 2^24 */
1648 		vcpu->arch.vcore->tb_offset =
1649 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1650 		break;
1651 	case KVM_REG_PPC_LPCR:
1652 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1653 		break;
1654 	case KVM_REG_PPC_LPCR_64:
1655 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1656 		break;
1657 	case KVM_REG_PPC_PPR:
1658 		vcpu->arch.ppr = set_reg_val(id, *val);
1659 		break;
1660 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1661 	case KVM_REG_PPC_TFHAR:
1662 		vcpu->arch.tfhar = set_reg_val(id, *val);
1663 		break;
1664 	case KVM_REG_PPC_TFIAR:
1665 		vcpu->arch.tfiar = set_reg_val(id, *val);
1666 		break;
1667 	case KVM_REG_PPC_TEXASR:
1668 		vcpu->arch.texasr = set_reg_val(id, *val);
1669 		break;
1670 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1671 		i = id - KVM_REG_PPC_TM_GPR0;
1672 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1673 		break;
1674 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1675 	{
1676 		int j;
1677 		i = id - KVM_REG_PPC_TM_VSR0;
1678 		if (i < 32)
1679 			for (j = 0; j < TS_FPRWIDTH; j++)
1680 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1681 		else
1682 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1683 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1684 			else
1685 				r = -ENXIO;
1686 		break;
1687 	}
1688 	case KVM_REG_PPC_TM_CR:
1689 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1690 		break;
1691 	case KVM_REG_PPC_TM_XER:
1692 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1693 		break;
1694 	case KVM_REG_PPC_TM_LR:
1695 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1696 		break;
1697 	case KVM_REG_PPC_TM_CTR:
1698 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1699 		break;
1700 	case KVM_REG_PPC_TM_FPSCR:
1701 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1702 		break;
1703 	case KVM_REG_PPC_TM_AMR:
1704 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1705 		break;
1706 	case KVM_REG_PPC_TM_PPR:
1707 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1708 		break;
1709 	case KVM_REG_PPC_TM_VRSAVE:
1710 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1711 		break;
1712 	case KVM_REG_PPC_TM_VSCR:
1713 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1714 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1715 		else
1716 			r = - ENXIO;
1717 		break;
1718 	case KVM_REG_PPC_TM_DSCR:
1719 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1720 		break;
1721 	case KVM_REG_PPC_TM_TAR:
1722 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1723 		break;
1724 #endif
1725 	case KVM_REG_PPC_ARCH_COMPAT:
1726 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1727 		break;
1728 	default:
1729 		r = -EINVAL;
1730 		break;
1731 	}
1732 
1733 	return r;
1734 }
1735 
1736 /*
1737  * On POWER9, threads are independent and can be in different partitions.
1738  * Therefore we consider each thread to be a subcore.
1739  * There is a restriction that all threads have to be in the same
1740  * MMU mode (radix or HPT), unfortunately, but since we only support
1741  * HPT guests on a HPT host so far, that isn't an impediment yet.
1742  */
1743 static int threads_per_vcore(struct kvm *kvm)
1744 {
1745 	if (kvm->arch.threads_indep)
1746 		return 1;
1747 	return threads_per_subcore;
1748 }
1749 
1750 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1751 {
1752 	struct kvmppc_vcore *vcore;
1753 
1754 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1755 
1756 	if (vcore == NULL)
1757 		return NULL;
1758 
1759 	spin_lock_init(&vcore->lock);
1760 	spin_lock_init(&vcore->stoltb_lock);
1761 	init_swait_queue_head(&vcore->wq);
1762 	vcore->preempt_tb = TB_NIL;
1763 	vcore->lpcr = kvm->arch.lpcr;
1764 	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1765 	vcore->kvm = kvm;
1766 	INIT_LIST_HEAD(&vcore->preempt_list);
1767 
1768 	return vcore;
1769 }
1770 
1771 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1772 static struct debugfs_timings_element {
1773 	const char *name;
1774 	size_t offset;
1775 } timings[] = {
1776 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1777 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1778 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1779 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1780 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1781 };
1782 
1783 #define N_TIMINGS	(ARRAY_SIZE(timings))
1784 
1785 struct debugfs_timings_state {
1786 	struct kvm_vcpu	*vcpu;
1787 	unsigned int	buflen;
1788 	char		buf[N_TIMINGS * 100];
1789 };
1790 
1791 static int debugfs_timings_open(struct inode *inode, struct file *file)
1792 {
1793 	struct kvm_vcpu *vcpu = inode->i_private;
1794 	struct debugfs_timings_state *p;
1795 
1796 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1797 	if (!p)
1798 		return -ENOMEM;
1799 
1800 	kvm_get_kvm(vcpu->kvm);
1801 	p->vcpu = vcpu;
1802 	file->private_data = p;
1803 
1804 	return nonseekable_open(inode, file);
1805 }
1806 
1807 static int debugfs_timings_release(struct inode *inode, struct file *file)
1808 {
1809 	struct debugfs_timings_state *p = file->private_data;
1810 
1811 	kvm_put_kvm(p->vcpu->kvm);
1812 	kfree(p);
1813 	return 0;
1814 }
1815 
1816 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1817 				    size_t len, loff_t *ppos)
1818 {
1819 	struct debugfs_timings_state *p = file->private_data;
1820 	struct kvm_vcpu *vcpu = p->vcpu;
1821 	char *s, *buf_end;
1822 	struct kvmhv_tb_accumulator tb;
1823 	u64 count;
1824 	loff_t pos;
1825 	ssize_t n;
1826 	int i, loops;
1827 	bool ok;
1828 
1829 	if (!p->buflen) {
1830 		s = p->buf;
1831 		buf_end = s + sizeof(p->buf);
1832 		for (i = 0; i < N_TIMINGS; ++i) {
1833 			struct kvmhv_tb_accumulator *acc;
1834 
1835 			acc = (struct kvmhv_tb_accumulator *)
1836 				((unsigned long)vcpu + timings[i].offset);
1837 			ok = false;
1838 			for (loops = 0; loops < 1000; ++loops) {
1839 				count = acc->seqcount;
1840 				if (!(count & 1)) {
1841 					smp_rmb();
1842 					tb = *acc;
1843 					smp_rmb();
1844 					if (count == acc->seqcount) {
1845 						ok = true;
1846 						break;
1847 					}
1848 				}
1849 				udelay(1);
1850 			}
1851 			if (!ok)
1852 				snprintf(s, buf_end - s, "%s: stuck\n",
1853 					timings[i].name);
1854 			else
1855 				snprintf(s, buf_end - s,
1856 					"%s: %llu %llu %llu %llu\n",
1857 					timings[i].name, count / 2,
1858 					tb_to_ns(tb.tb_total),
1859 					tb_to_ns(tb.tb_min),
1860 					tb_to_ns(tb.tb_max));
1861 			s += strlen(s);
1862 		}
1863 		p->buflen = s - p->buf;
1864 	}
1865 
1866 	pos = *ppos;
1867 	if (pos >= p->buflen)
1868 		return 0;
1869 	if (len > p->buflen - pos)
1870 		len = p->buflen - pos;
1871 	n = copy_to_user(buf, p->buf + pos, len);
1872 	if (n) {
1873 		if (n == len)
1874 			return -EFAULT;
1875 		len -= n;
1876 	}
1877 	*ppos = pos + len;
1878 	return len;
1879 }
1880 
1881 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1882 				     size_t len, loff_t *ppos)
1883 {
1884 	return -EACCES;
1885 }
1886 
1887 static const struct file_operations debugfs_timings_ops = {
1888 	.owner	 = THIS_MODULE,
1889 	.open	 = debugfs_timings_open,
1890 	.release = debugfs_timings_release,
1891 	.read	 = debugfs_timings_read,
1892 	.write	 = debugfs_timings_write,
1893 	.llseek	 = generic_file_llseek,
1894 };
1895 
1896 /* Create a debugfs directory for the vcpu */
1897 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1898 {
1899 	char buf[16];
1900 	struct kvm *kvm = vcpu->kvm;
1901 
1902 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1903 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1904 		return;
1905 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1906 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1907 		return;
1908 	vcpu->arch.debugfs_timings =
1909 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1910 				    vcpu, &debugfs_timings_ops);
1911 }
1912 
1913 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1914 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1915 {
1916 }
1917 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1918 
1919 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1920 						   unsigned int id)
1921 {
1922 	struct kvm_vcpu *vcpu;
1923 	int err;
1924 	int core;
1925 	struct kvmppc_vcore *vcore;
1926 
1927 	err = -ENOMEM;
1928 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1929 	if (!vcpu)
1930 		goto out;
1931 
1932 	err = kvm_vcpu_init(vcpu, kvm, id);
1933 	if (err)
1934 		goto free_vcpu;
1935 
1936 	vcpu->arch.shared = &vcpu->arch.shregs;
1937 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1938 	/*
1939 	 * The shared struct is never shared on HV,
1940 	 * so we can always use host endianness
1941 	 */
1942 #ifdef __BIG_ENDIAN__
1943 	vcpu->arch.shared_big_endian = true;
1944 #else
1945 	vcpu->arch.shared_big_endian = false;
1946 #endif
1947 #endif
1948 	vcpu->arch.mmcr[0] = MMCR0_FC;
1949 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1950 	/* default to host PVR, since we can't spoof it */
1951 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1952 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1953 	spin_lock_init(&vcpu->arch.tbacct_lock);
1954 	vcpu->arch.busy_preempt = TB_NIL;
1955 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1956 
1957 	/*
1958 	 * Set the default HFSCR for the guest from the host value.
1959 	 * This value is only used on POWER9.
1960 	 * On POWER9 DD1, TM doesn't work, so we make sure to
1961 	 * prevent the guest from using it.
1962 	 * On POWER9, we want to virtualize the doorbell facility, so we
1963 	 * turn off the HFSCR bit, which causes those instructions to trap.
1964 	 */
1965 	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1966 	if (!cpu_has_feature(CPU_FTR_TM))
1967 		vcpu->arch.hfscr &= ~HFSCR_TM;
1968 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1969 		vcpu->arch.hfscr &= ~HFSCR_MSGP;
1970 
1971 	kvmppc_mmu_book3s_hv_init(vcpu);
1972 
1973 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1974 
1975 	init_waitqueue_head(&vcpu->arch.cpu_run);
1976 
1977 	mutex_lock(&kvm->lock);
1978 	vcore = NULL;
1979 	err = -EINVAL;
1980 	core = id / kvm->arch.smt_mode;
1981 	if (core < KVM_MAX_VCORES) {
1982 		vcore = kvm->arch.vcores[core];
1983 		if (!vcore) {
1984 			err = -ENOMEM;
1985 			vcore = kvmppc_vcore_create(kvm, core);
1986 			kvm->arch.vcores[core] = vcore;
1987 			kvm->arch.online_vcores++;
1988 		}
1989 	}
1990 	mutex_unlock(&kvm->lock);
1991 
1992 	if (!vcore)
1993 		goto free_vcpu;
1994 
1995 	spin_lock(&vcore->lock);
1996 	++vcore->num_threads;
1997 	spin_unlock(&vcore->lock);
1998 	vcpu->arch.vcore = vcore;
1999 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2000 	vcpu->arch.thread_cpu = -1;
2001 	vcpu->arch.prev_cpu = -1;
2002 
2003 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2004 	kvmppc_sanity_check(vcpu);
2005 
2006 	debugfs_vcpu_init(vcpu, id);
2007 
2008 	return vcpu;
2009 
2010 free_vcpu:
2011 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2012 out:
2013 	return ERR_PTR(err);
2014 }
2015 
2016 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2017 			      unsigned long flags)
2018 {
2019 	int err;
2020 	int esmt = 0;
2021 
2022 	if (flags)
2023 		return -EINVAL;
2024 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2025 		return -EINVAL;
2026 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2027 		/*
2028 		 * On POWER8 (or POWER7), the threading mode is "strict",
2029 		 * so we pack smt_mode vcpus per vcore.
2030 		 */
2031 		if (smt_mode > threads_per_subcore)
2032 			return -EINVAL;
2033 	} else {
2034 		/*
2035 		 * On POWER9, the threading mode is "loose",
2036 		 * so each vcpu gets its own vcore.
2037 		 */
2038 		esmt = smt_mode;
2039 		smt_mode = 1;
2040 	}
2041 	mutex_lock(&kvm->lock);
2042 	err = -EBUSY;
2043 	if (!kvm->arch.online_vcores) {
2044 		kvm->arch.smt_mode = smt_mode;
2045 		kvm->arch.emul_smt_mode = esmt;
2046 		err = 0;
2047 	}
2048 	mutex_unlock(&kvm->lock);
2049 
2050 	return err;
2051 }
2052 
2053 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2054 {
2055 	if (vpa->pinned_addr)
2056 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2057 					vpa->dirty);
2058 }
2059 
2060 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2061 {
2062 	spin_lock(&vcpu->arch.vpa_update_lock);
2063 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2064 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2065 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2066 	spin_unlock(&vcpu->arch.vpa_update_lock);
2067 	kvm_vcpu_uninit(vcpu);
2068 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2069 }
2070 
2071 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2072 {
2073 	/* Indicate we want to get back into the guest */
2074 	return 1;
2075 }
2076 
2077 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2078 {
2079 	unsigned long dec_nsec, now;
2080 
2081 	now = get_tb();
2082 	if (now > vcpu->arch.dec_expires) {
2083 		/* decrementer has already gone negative */
2084 		kvmppc_core_queue_dec(vcpu);
2085 		kvmppc_core_prepare_to_enter(vcpu);
2086 		return;
2087 	}
2088 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2089 		   / tb_ticks_per_sec;
2090 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2091 	vcpu->arch.timer_running = 1;
2092 }
2093 
2094 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2095 {
2096 	vcpu->arch.ceded = 0;
2097 	if (vcpu->arch.timer_running) {
2098 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2099 		vcpu->arch.timer_running = 0;
2100 	}
2101 }
2102 
2103 extern int __kvmppc_vcore_entry(void);
2104 
2105 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2106 				   struct kvm_vcpu *vcpu)
2107 {
2108 	u64 now;
2109 
2110 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2111 		return;
2112 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2113 	now = mftb();
2114 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2115 		vcpu->arch.stolen_logged;
2116 	vcpu->arch.busy_preempt = now;
2117 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2118 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2119 	--vc->n_runnable;
2120 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2121 }
2122 
2123 static int kvmppc_grab_hwthread(int cpu)
2124 {
2125 	struct paca_struct *tpaca;
2126 	long timeout = 10000;
2127 
2128 	tpaca = &paca[cpu];
2129 
2130 	/* Ensure the thread won't go into the kernel if it wakes */
2131 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2132 	tpaca->kvm_hstate.kvm_vcore = NULL;
2133 	tpaca->kvm_hstate.napping = 0;
2134 	smp_wmb();
2135 	tpaca->kvm_hstate.hwthread_req = 1;
2136 
2137 	/*
2138 	 * If the thread is already executing in the kernel (e.g. handling
2139 	 * a stray interrupt), wait for it to get back to nap mode.
2140 	 * The smp_mb() is to ensure that our setting of hwthread_req
2141 	 * is visible before we look at hwthread_state, so if this
2142 	 * races with the code at system_reset_pSeries and the thread
2143 	 * misses our setting of hwthread_req, we are sure to see its
2144 	 * setting of hwthread_state, and vice versa.
2145 	 */
2146 	smp_mb();
2147 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2148 		if (--timeout <= 0) {
2149 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2150 			return -EBUSY;
2151 		}
2152 		udelay(1);
2153 	}
2154 	return 0;
2155 }
2156 
2157 static void kvmppc_release_hwthread(int cpu)
2158 {
2159 	struct paca_struct *tpaca;
2160 
2161 	tpaca = &paca[cpu];
2162 	tpaca->kvm_hstate.hwthread_req = 0;
2163 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2164 	tpaca->kvm_hstate.kvm_vcore = NULL;
2165 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2166 }
2167 
2168 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2169 {
2170 	int i;
2171 
2172 	cpu = cpu_first_thread_sibling(cpu);
2173 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2174 	/*
2175 	 * Make sure setting of bit in need_tlb_flush precedes
2176 	 * testing of cpu_in_guest bits.  The matching barrier on
2177 	 * the other side is the first smp_mb() in kvmppc_run_core().
2178 	 */
2179 	smp_mb();
2180 	for (i = 0; i < threads_per_core; ++i)
2181 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2182 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2183 }
2184 
2185 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2186 {
2187 	struct kvm *kvm = vcpu->kvm;
2188 
2189 	/*
2190 	 * With radix, the guest can do TLB invalidations itself,
2191 	 * and it could choose to use the local form (tlbiel) if
2192 	 * it is invalidating a translation that has only ever been
2193 	 * used on one vcpu.  However, that doesn't mean it has
2194 	 * only ever been used on one physical cpu, since vcpus
2195 	 * can move around between pcpus.  To cope with this, when
2196 	 * a vcpu moves from one pcpu to another, we need to tell
2197 	 * any vcpus running on the same core as this vcpu previously
2198 	 * ran to flush the TLB.  The TLB is shared between threads,
2199 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2200 	 */
2201 	if (vcpu->arch.prev_cpu != pcpu) {
2202 		if (vcpu->arch.prev_cpu >= 0 &&
2203 		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2204 		    cpu_first_thread_sibling(pcpu))
2205 			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2206 		vcpu->arch.prev_cpu = pcpu;
2207 	}
2208 }
2209 
2210 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2211 {
2212 	int cpu;
2213 	struct paca_struct *tpaca;
2214 	struct kvm *kvm = vc->kvm;
2215 
2216 	cpu = vc->pcpu;
2217 	if (vcpu) {
2218 		if (vcpu->arch.timer_running) {
2219 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2220 			vcpu->arch.timer_running = 0;
2221 		}
2222 		cpu += vcpu->arch.ptid;
2223 		vcpu->cpu = vc->pcpu;
2224 		vcpu->arch.thread_cpu = cpu;
2225 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2226 	}
2227 	tpaca = &paca[cpu];
2228 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2229 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2230 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2231 	smp_wmb();
2232 	tpaca->kvm_hstate.kvm_vcore = vc;
2233 	if (cpu != smp_processor_id())
2234 		kvmppc_ipi_thread(cpu);
2235 }
2236 
2237 static void kvmppc_wait_for_nap(int n_threads)
2238 {
2239 	int cpu = smp_processor_id();
2240 	int i, loops;
2241 
2242 	if (n_threads <= 1)
2243 		return;
2244 	for (loops = 0; loops < 1000000; ++loops) {
2245 		/*
2246 		 * Check if all threads are finished.
2247 		 * We set the vcore pointer when starting a thread
2248 		 * and the thread clears it when finished, so we look
2249 		 * for any threads that still have a non-NULL vcore ptr.
2250 		 */
2251 		for (i = 1; i < n_threads; ++i)
2252 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2253 				break;
2254 		if (i == n_threads) {
2255 			HMT_medium();
2256 			return;
2257 		}
2258 		HMT_low();
2259 	}
2260 	HMT_medium();
2261 	for (i = 1; i < n_threads; ++i)
2262 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2263 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2264 }
2265 
2266 /*
2267  * Check that we are on thread 0 and that any other threads in
2268  * this core are off-line.  Then grab the threads so they can't
2269  * enter the kernel.
2270  */
2271 static int on_primary_thread(void)
2272 {
2273 	int cpu = smp_processor_id();
2274 	int thr;
2275 
2276 	/* Are we on a primary subcore? */
2277 	if (cpu_thread_in_subcore(cpu))
2278 		return 0;
2279 
2280 	thr = 0;
2281 	while (++thr < threads_per_subcore)
2282 		if (cpu_online(cpu + thr))
2283 			return 0;
2284 
2285 	/* Grab all hw threads so they can't go into the kernel */
2286 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2287 		if (kvmppc_grab_hwthread(cpu + thr)) {
2288 			/* Couldn't grab one; let the others go */
2289 			do {
2290 				kvmppc_release_hwthread(cpu + thr);
2291 			} while (--thr > 0);
2292 			return 0;
2293 		}
2294 	}
2295 	return 1;
2296 }
2297 
2298 /*
2299  * A list of virtual cores for each physical CPU.
2300  * These are vcores that could run but their runner VCPU tasks are
2301  * (or may be) preempted.
2302  */
2303 struct preempted_vcore_list {
2304 	struct list_head	list;
2305 	spinlock_t		lock;
2306 };
2307 
2308 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2309 
2310 static void init_vcore_lists(void)
2311 {
2312 	int cpu;
2313 
2314 	for_each_possible_cpu(cpu) {
2315 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2316 		spin_lock_init(&lp->lock);
2317 		INIT_LIST_HEAD(&lp->list);
2318 	}
2319 }
2320 
2321 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2322 {
2323 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2324 
2325 	vc->vcore_state = VCORE_PREEMPT;
2326 	vc->pcpu = smp_processor_id();
2327 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2328 		spin_lock(&lp->lock);
2329 		list_add_tail(&vc->preempt_list, &lp->list);
2330 		spin_unlock(&lp->lock);
2331 	}
2332 
2333 	/* Start accumulating stolen time */
2334 	kvmppc_core_start_stolen(vc);
2335 }
2336 
2337 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2338 {
2339 	struct preempted_vcore_list *lp;
2340 
2341 	kvmppc_core_end_stolen(vc);
2342 	if (!list_empty(&vc->preempt_list)) {
2343 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2344 		spin_lock(&lp->lock);
2345 		list_del_init(&vc->preempt_list);
2346 		spin_unlock(&lp->lock);
2347 	}
2348 	vc->vcore_state = VCORE_INACTIVE;
2349 }
2350 
2351 /*
2352  * This stores information about the virtual cores currently
2353  * assigned to a physical core.
2354  */
2355 struct core_info {
2356 	int		n_subcores;
2357 	int		max_subcore_threads;
2358 	int		total_threads;
2359 	int		subcore_threads[MAX_SUBCORES];
2360 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2361 };
2362 
2363 /*
2364  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2365  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2366  */
2367 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2368 
2369 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2370 {
2371 	memset(cip, 0, sizeof(*cip));
2372 	cip->n_subcores = 1;
2373 	cip->max_subcore_threads = vc->num_threads;
2374 	cip->total_threads = vc->num_threads;
2375 	cip->subcore_threads[0] = vc->num_threads;
2376 	cip->vc[0] = vc;
2377 }
2378 
2379 static bool subcore_config_ok(int n_subcores, int n_threads)
2380 {
2381 	/*
2382 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way split-core
2383 	 * mode, with one thread per subcore.
2384 	 */
2385 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2386 		return n_subcores <= 4 && n_threads == 1;
2387 
2388 	/* On POWER8, can only dynamically split if unsplit to begin with */
2389 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2390 		return false;
2391 	if (n_subcores > MAX_SUBCORES)
2392 		return false;
2393 	if (n_subcores > 1) {
2394 		if (!(dynamic_mt_modes & 2))
2395 			n_subcores = 4;
2396 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2397 			return false;
2398 	}
2399 
2400 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2401 }
2402 
2403 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2404 {
2405 	vc->entry_exit_map = 0;
2406 	vc->in_guest = 0;
2407 	vc->napping_threads = 0;
2408 	vc->conferring_threads = 0;
2409 }
2410 
2411 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2412 {
2413 	int n_threads = vc->num_threads;
2414 	int sub;
2415 
2416 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2417 		return false;
2418 
2419 	/* POWER9 currently requires all threads to be in the same MMU mode */
2420 	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
2421 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2422 		return false;
2423 
2424 	if (n_threads < cip->max_subcore_threads)
2425 		n_threads = cip->max_subcore_threads;
2426 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2427 		return false;
2428 	cip->max_subcore_threads = n_threads;
2429 
2430 	sub = cip->n_subcores;
2431 	++cip->n_subcores;
2432 	cip->total_threads += vc->num_threads;
2433 	cip->subcore_threads[sub] = vc->num_threads;
2434 	cip->vc[sub] = vc;
2435 	init_vcore_to_run(vc);
2436 	list_del_init(&vc->preempt_list);
2437 
2438 	return true;
2439 }
2440 
2441 /*
2442  * Work out whether it is possible to piggyback the execution of
2443  * vcore *pvc onto the execution of the other vcores described in *cip.
2444  */
2445 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2446 			  int target_threads)
2447 {
2448 	if (cip->total_threads + pvc->num_threads > target_threads)
2449 		return false;
2450 
2451 	return can_dynamic_split(pvc, cip);
2452 }
2453 
2454 static void prepare_threads(struct kvmppc_vcore *vc)
2455 {
2456 	int i;
2457 	struct kvm_vcpu *vcpu;
2458 
2459 	for_each_runnable_thread(i, vcpu, vc) {
2460 		if (signal_pending(vcpu->arch.run_task))
2461 			vcpu->arch.ret = -EINTR;
2462 		else if (vcpu->arch.vpa.update_pending ||
2463 			 vcpu->arch.slb_shadow.update_pending ||
2464 			 vcpu->arch.dtl.update_pending)
2465 			vcpu->arch.ret = RESUME_GUEST;
2466 		else
2467 			continue;
2468 		kvmppc_remove_runnable(vc, vcpu);
2469 		wake_up(&vcpu->arch.cpu_run);
2470 	}
2471 }
2472 
2473 static void collect_piggybacks(struct core_info *cip, int target_threads)
2474 {
2475 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2476 	struct kvmppc_vcore *pvc, *vcnext;
2477 
2478 	spin_lock(&lp->lock);
2479 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2480 		if (!spin_trylock(&pvc->lock))
2481 			continue;
2482 		prepare_threads(pvc);
2483 		if (!pvc->n_runnable) {
2484 			list_del_init(&pvc->preempt_list);
2485 			if (pvc->runner == NULL) {
2486 				pvc->vcore_state = VCORE_INACTIVE;
2487 				kvmppc_core_end_stolen(pvc);
2488 			}
2489 			spin_unlock(&pvc->lock);
2490 			continue;
2491 		}
2492 		if (!can_piggyback(pvc, cip, target_threads)) {
2493 			spin_unlock(&pvc->lock);
2494 			continue;
2495 		}
2496 		kvmppc_core_end_stolen(pvc);
2497 		pvc->vcore_state = VCORE_PIGGYBACK;
2498 		if (cip->total_threads >= target_threads)
2499 			break;
2500 	}
2501 	spin_unlock(&lp->lock);
2502 }
2503 
2504 static bool recheck_signals(struct core_info *cip)
2505 {
2506 	int sub, i;
2507 	struct kvm_vcpu *vcpu;
2508 
2509 	for (sub = 0; sub < cip->n_subcores; ++sub)
2510 		for_each_runnable_thread(i, vcpu, cip->vc[sub])
2511 			if (signal_pending(vcpu->arch.run_task))
2512 				return true;
2513 	return false;
2514 }
2515 
2516 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2517 {
2518 	int still_running = 0, i;
2519 	u64 now;
2520 	long ret;
2521 	struct kvm_vcpu *vcpu;
2522 
2523 	spin_lock(&vc->lock);
2524 	now = get_tb();
2525 	for_each_runnable_thread(i, vcpu, vc) {
2526 		/* cancel pending dec exception if dec is positive */
2527 		if (now < vcpu->arch.dec_expires &&
2528 		    kvmppc_core_pending_dec(vcpu))
2529 			kvmppc_core_dequeue_dec(vcpu);
2530 
2531 		trace_kvm_guest_exit(vcpu);
2532 
2533 		ret = RESUME_GUEST;
2534 		if (vcpu->arch.trap)
2535 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2536 						    vcpu->arch.run_task);
2537 
2538 		vcpu->arch.ret = ret;
2539 		vcpu->arch.trap = 0;
2540 
2541 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2542 			if (vcpu->arch.pending_exceptions)
2543 				kvmppc_core_prepare_to_enter(vcpu);
2544 			if (vcpu->arch.ceded)
2545 				kvmppc_set_timer(vcpu);
2546 			else
2547 				++still_running;
2548 		} else {
2549 			kvmppc_remove_runnable(vc, vcpu);
2550 			wake_up(&vcpu->arch.cpu_run);
2551 		}
2552 	}
2553 	if (!is_master) {
2554 		if (still_running > 0) {
2555 			kvmppc_vcore_preempt(vc);
2556 		} else if (vc->runner) {
2557 			vc->vcore_state = VCORE_PREEMPT;
2558 			kvmppc_core_start_stolen(vc);
2559 		} else {
2560 			vc->vcore_state = VCORE_INACTIVE;
2561 		}
2562 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2563 			/* make sure there's a candidate runner awake */
2564 			i = -1;
2565 			vcpu = next_runnable_thread(vc, &i);
2566 			wake_up(&vcpu->arch.cpu_run);
2567 		}
2568 	}
2569 	spin_unlock(&vc->lock);
2570 }
2571 
2572 /*
2573  * Clear core from the list of active host cores as we are about to
2574  * enter the guest. Only do this if it is the primary thread of the
2575  * core (not if a subcore) that is entering the guest.
2576  */
2577 static inline int kvmppc_clear_host_core(unsigned int cpu)
2578 {
2579 	int core;
2580 
2581 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2582 		return 0;
2583 	/*
2584 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2585 	 * later in kvmppc_start_thread and we need ensure that state is
2586 	 * visible to other CPUs only after we enter guest.
2587 	 */
2588 	core = cpu >> threads_shift;
2589 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2590 	return 0;
2591 }
2592 
2593 /*
2594  * Advertise this core as an active host core since we exited the guest
2595  * Only need to do this if it is the primary thread of the core that is
2596  * exiting.
2597  */
2598 static inline int kvmppc_set_host_core(unsigned int cpu)
2599 {
2600 	int core;
2601 
2602 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2603 		return 0;
2604 
2605 	/*
2606 	 * Memory barrier can be omitted here because we do a spin_unlock
2607 	 * immediately after this which provides the memory barrier.
2608 	 */
2609 	core = cpu >> threads_shift;
2610 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2611 	return 0;
2612 }
2613 
2614 static void set_irq_happened(int trap)
2615 {
2616 	switch (trap) {
2617 	case BOOK3S_INTERRUPT_EXTERNAL:
2618 		local_paca->irq_happened |= PACA_IRQ_EE;
2619 		break;
2620 	case BOOK3S_INTERRUPT_H_DOORBELL:
2621 		local_paca->irq_happened |= PACA_IRQ_DBELL;
2622 		break;
2623 	case BOOK3S_INTERRUPT_HMI:
2624 		local_paca->irq_happened |= PACA_IRQ_HMI;
2625 		break;
2626 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
2627 		replay_system_reset();
2628 		break;
2629 	}
2630 }
2631 
2632 /*
2633  * Run a set of guest threads on a physical core.
2634  * Called with vc->lock held.
2635  */
2636 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2637 {
2638 	struct kvm_vcpu *vcpu;
2639 	int i;
2640 	int srcu_idx;
2641 	struct core_info core_info;
2642 	struct kvmppc_vcore *pvc;
2643 	struct kvm_split_mode split_info, *sip;
2644 	int split, subcore_size, active;
2645 	int sub;
2646 	bool thr0_done;
2647 	unsigned long cmd_bit, stat_bit;
2648 	int pcpu, thr;
2649 	int target_threads;
2650 	int controlled_threads;
2651 	int trap;
2652 	bool is_power8;
2653 	bool hpt_on_radix;
2654 
2655 	/*
2656 	 * Remove from the list any threads that have a signal pending
2657 	 * or need a VPA update done
2658 	 */
2659 	prepare_threads(vc);
2660 
2661 	/* if the runner is no longer runnable, let the caller pick a new one */
2662 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2663 		return;
2664 
2665 	/*
2666 	 * Initialize *vc.
2667 	 */
2668 	init_vcore_to_run(vc);
2669 	vc->preempt_tb = TB_NIL;
2670 
2671 	/*
2672 	 * Number of threads that we will be controlling: the same as
2673 	 * the number of threads per subcore, except on POWER9,
2674 	 * where it's 1 because the threads are (mostly) independent.
2675 	 */
2676 	controlled_threads = threads_per_vcore(vc->kvm);
2677 
2678 	/*
2679 	 * Make sure we are running on primary threads, and that secondary
2680 	 * threads are offline.  Also check if the number of threads in this
2681 	 * guest are greater than the current system threads per guest.
2682 	 * On POWER9, we need to be not in independent-threads mode if
2683 	 * this is a HPT guest on a radix host.
2684 	 */
2685 	hpt_on_radix = radix_enabled() && !kvm_is_radix(vc->kvm);
2686 	if (((controlled_threads > 1) &&
2687 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2688 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2689 		for_each_runnable_thread(i, vcpu, vc) {
2690 			vcpu->arch.ret = -EBUSY;
2691 			kvmppc_remove_runnable(vc, vcpu);
2692 			wake_up(&vcpu->arch.cpu_run);
2693 		}
2694 		goto out;
2695 	}
2696 
2697 	/*
2698 	 * See if we could run any other vcores on the physical core
2699 	 * along with this one.
2700 	 */
2701 	init_core_info(&core_info, vc);
2702 	pcpu = smp_processor_id();
2703 	target_threads = controlled_threads;
2704 	if (target_smt_mode && target_smt_mode < target_threads)
2705 		target_threads = target_smt_mode;
2706 	if (vc->num_threads < target_threads)
2707 		collect_piggybacks(&core_info, target_threads);
2708 
2709 	/*
2710 	 * On radix, arrange for TLB flushing if necessary.
2711 	 * This has to be done before disabling interrupts since
2712 	 * it uses smp_call_function().
2713 	 */
2714 	pcpu = smp_processor_id();
2715 	if (kvm_is_radix(vc->kvm)) {
2716 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2717 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2718 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2719 	}
2720 
2721 	/*
2722 	 * Hard-disable interrupts, and check resched flag and signals.
2723 	 * If we need to reschedule or deliver a signal, clean up
2724 	 * and return without going into the guest(s).
2725 	 * If the mmu_ready flag has been cleared, don't go into the
2726 	 * guest because that means a HPT resize operation is in progress.
2727 	 */
2728 	local_irq_disable();
2729 	hard_irq_disable();
2730 	if (lazy_irq_pending() || need_resched() ||
2731 	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2732 		local_irq_enable();
2733 		vc->vcore_state = VCORE_INACTIVE;
2734 		/* Unlock all except the primary vcore */
2735 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
2736 			pvc = core_info.vc[sub];
2737 			/* Put back on to the preempted vcores list */
2738 			kvmppc_vcore_preempt(pvc);
2739 			spin_unlock(&pvc->lock);
2740 		}
2741 		for (i = 0; i < controlled_threads; ++i)
2742 			kvmppc_release_hwthread(pcpu + i);
2743 		return;
2744 	}
2745 
2746 	kvmppc_clear_host_core(pcpu);
2747 
2748 	/* Decide on micro-threading (split-core) mode */
2749 	subcore_size = threads_per_subcore;
2750 	cmd_bit = stat_bit = 0;
2751 	split = core_info.n_subcores;
2752 	sip = NULL;
2753 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2754 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
2755 
2756 	if (split > 1 || hpt_on_radix) {
2757 		sip = &split_info;
2758 		memset(&split_info, 0, sizeof(split_info));
2759 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2760 			split_info.vc[sub] = core_info.vc[sub];
2761 
2762 		if (is_power8) {
2763 			if (split == 2 && (dynamic_mt_modes & 2)) {
2764 				cmd_bit = HID0_POWER8_1TO2LPAR;
2765 				stat_bit = HID0_POWER8_2LPARMODE;
2766 			} else {
2767 				split = 4;
2768 				cmd_bit = HID0_POWER8_1TO4LPAR;
2769 				stat_bit = HID0_POWER8_4LPARMODE;
2770 			}
2771 			subcore_size = MAX_SMT_THREADS / split;
2772 			split_info.rpr = mfspr(SPRN_RPR);
2773 			split_info.pmmar = mfspr(SPRN_PMMAR);
2774 			split_info.ldbar = mfspr(SPRN_LDBAR);
2775 			split_info.subcore_size = subcore_size;
2776 		} else {
2777 			split_info.subcore_size = 1;
2778 			if (hpt_on_radix) {
2779 				/* Use the split_info for LPCR/LPIDR changes */
2780 				split_info.lpcr_req = vc->lpcr;
2781 				split_info.lpidr_req = vc->kvm->arch.lpid;
2782 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2783 				split_info.do_set = 1;
2784 			}
2785 		}
2786 
2787 		/* order writes to split_info before kvm_split_mode pointer */
2788 		smp_wmb();
2789 	}
2790 
2791 	for (thr = 0; thr < controlled_threads; ++thr) {
2792 		paca[pcpu + thr].kvm_hstate.tid = thr;
2793 		paca[pcpu + thr].kvm_hstate.napping = 0;
2794 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2795 	}
2796 
2797 	/* Initiate micro-threading (split-core) on POWER8 if required */
2798 	if (cmd_bit) {
2799 		unsigned long hid0 = mfspr(SPRN_HID0);
2800 
2801 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2802 		mb();
2803 		mtspr(SPRN_HID0, hid0);
2804 		isync();
2805 		for (;;) {
2806 			hid0 = mfspr(SPRN_HID0);
2807 			if (hid0 & stat_bit)
2808 				break;
2809 			cpu_relax();
2810 		}
2811 	}
2812 
2813 	/* Start all the threads */
2814 	active = 0;
2815 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2816 		thr = is_power8 ? subcore_thread_map[sub] : sub;
2817 		thr0_done = false;
2818 		active |= 1 << thr;
2819 		pvc = core_info.vc[sub];
2820 		pvc->pcpu = pcpu + thr;
2821 		for_each_runnable_thread(i, vcpu, pvc) {
2822 			kvmppc_start_thread(vcpu, pvc);
2823 			kvmppc_create_dtl_entry(vcpu, pvc);
2824 			trace_kvm_guest_enter(vcpu);
2825 			if (!vcpu->arch.ptid)
2826 				thr0_done = true;
2827 			active |= 1 << (thr + vcpu->arch.ptid);
2828 		}
2829 		/*
2830 		 * We need to start the first thread of each subcore
2831 		 * even if it doesn't have a vcpu.
2832 		 */
2833 		if (!thr0_done)
2834 			kvmppc_start_thread(NULL, pvc);
2835 		thr += pvc->num_threads;
2836 	}
2837 
2838 	/*
2839 	 * Ensure that split_info.do_nap is set after setting
2840 	 * the vcore pointer in the PACA of the secondaries.
2841 	 */
2842 	smp_mb();
2843 
2844 	/*
2845 	 * When doing micro-threading, poke the inactive threads as well.
2846 	 * This gets them to the nap instruction after kvm_do_nap,
2847 	 * which reduces the time taken to unsplit later.
2848 	 * For POWER9 HPT guest on radix host, we need all the secondary
2849 	 * threads woken up so they can do the LPCR/LPIDR change.
2850 	 */
2851 	if (cmd_bit || hpt_on_radix) {
2852 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2853 		for (thr = 1; thr < threads_per_subcore; ++thr)
2854 			if (!(active & (1 << thr)))
2855 				kvmppc_ipi_thread(pcpu + thr);
2856 	}
2857 
2858 	vc->vcore_state = VCORE_RUNNING;
2859 	preempt_disable();
2860 
2861 	trace_kvmppc_run_core(vc, 0);
2862 
2863 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2864 		spin_unlock(&core_info.vc[sub]->lock);
2865 
2866 	/*
2867 	 * Interrupts will be enabled once we get into the guest,
2868 	 * so tell lockdep that we're about to enable interrupts.
2869 	 */
2870 	trace_hardirqs_on();
2871 
2872 	guest_enter();
2873 
2874 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2875 
2876 	trap = __kvmppc_vcore_entry();
2877 
2878 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2879 
2880 	guest_exit();
2881 
2882 	trace_hardirqs_off();
2883 	set_irq_happened(trap);
2884 
2885 	spin_lock(&vc->lock);
2886 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2887 	vc->vcore_state = VCORE_EXITING;
2888 
2889 	/* wait for secondary threads to finish writing their state to memory */
2890 	kvmppc_wait_for_nap(controlled_threads);
2891 
2892 	/* Return to whole-core mode if we split the core earlier */
2893 	if (cmd_bit) {
2894 		unsigned long hid0 = mfspr(SPRN_HID0);
2895 		unsigned long loops = 0;
2896 
2897 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2898 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2899 		mb();
2900 		mtspr(SPRN_HID0, hid0);
2901 		isync();
2902 		for (;;) {
2903 			hid0 = mfspr(SPRN_HID0);
2904 			if (!(hid0 & stat_bit))
2905 				break;
2906 			cpu_relax();
2907 			++loops;
2908 		}
2909 	} else if (hpt_on_radix) {
2910 		/* Wait for all threads to have seen final sync */
2911 		for (thr = 1; thr < controlled_threads; ++thr) {
2912 			while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2913 				HMT_low();
2914 				barrier();
2915 			}
2916 			HMT_medium();
2917 		}
2918 	}
2919 	split_info.do_nap = 0;
2920 
2921 	kvmppc_set_host_core(pcpu);
2922 
2923 	local_irq_enable();
2924 
2925 	/* Let secondaries go back to the offline loop */
2926 	for (i = 0; i < controlled_threads; ++i) {
2927 		kvmppc_release_hwthread(pcpu + i);
2928 		if (sip && sip->napped[i])
2929 			kvmppc_ipi_thread(pcpu + i);
2930 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2931 	}
2932 
2933 	spin_unlock(&vc->lock);
2934 
2935 	/* make sure updates to secondary vcpu structs are visible now */
2936 	smp_mb();
2937 
2938 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2939 		pvc = core_info.vc[sub];
2940 		post_guest_process(pvc, pvc == vc);
2941 	}
2942 
2943 	spin_lock(&vc->lock);
2944 	preempt_enable();
2945 
2946  out:
2947 	vc->vcore_state = VCORE_INACTIVE;
2948 	trace_kvmppc_run_core(vc, 1);
2949 }
2950 
2951 /*
2952  * Wait for some other vcpu thread to execute us, and
2953  * wake us up when we need to handle something in the host.
2954  */
2955 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2956 				 struct kvm_vcpu *vcpu, int wait_state)
2957 {
2958 	DEFINE_WAIT(wait);
2959 
2960 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2961 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2962 		spin_unlock(&vc->lock);
2963 		schedule();
2964 		spin_lock(&vc->lock);
2965 	}
2966 	finish_wait(&vcpu->arch.cpu_run, &wait);
2967 }
2968 
2969 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2970 {
2971 	/* 10us base */
2972 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2973 		vc->halt_poll_ns = 10000;
2974 	else
2975 		vc->halt_poll_ns *= halt_poll_ns_grow;
2976 }
2977 
2978 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2979 {
2980 	if (halt_poll_ns_shrink == 0)
2981 		vc->halt_poll_ns = 0;
2982 	else
2983 		vc->halt_poll_ns /= halt_poll_ns_shrink;
2984 }
2985 
2986 #ifdef CONFIG_KVM_XICS
2987 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2988 {
2989 	if (!xive_enabled())
2990 		return false;
2991 	return vcpu->arch.xive_saved_state.pipr <
2992 		vcpu->arch.xive_saved_state.cppr;
2993 }
2994 #else
2995 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2996 {
2997 	return false;
2998 }
2999 #endif /* CONFIG_KVM_XICS */
3000 
3001 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3002 {
3003 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3004 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3005 		return true;
3006 
3007 	return false;
3008 }
3009 
3010 /*
3011  * Check to see if any of the runnable vcpus on the vcore have pending
3012  * exceptions or are no longer ceded
3013  */
3014 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3015 {
3016 	struct kvm_vcpu *vcpu;
3017 	int i;
3018 
3019 	for_each_runnable_thread(i, vcpu, vc) {
3020 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3021 			return 1;
3022 	}
3023 
3024 	return 0;
3025 }
3026 
3027 /*
3028  * All the vcpus in this vcore are idle, so wait for a decrementer
3029  * or external interrupt to one of the vcpus.  vc->lock is held.
3030  */
3031 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3032 {
3033 	ktime_t cur, start_poll, start_wait;
3034 	int do_sleep = 1;
3035 	u64 block_ns;
3036 	DECLARE_SWAITQUEUE(wait);
3037 
3038 	/* Poll for pending exceptions and ceded state */
3039 	cur = start_poll = ktime_get();
3040 	if (vc->halt_poll_ns) {
3041 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3042 		++vc->runner->stat.halt_attempted_poll;
3043 
3044 		vc->vcore_state = VCORE_POLLING;
3045 		spin_unlock(&vc->lock);
3046 
3047 		do {
3048 			if (kvmppc_vcore_check_block(vc)) {
3049 				do_sleep = 0;
3050 				break;
3051 			}
3052 			cur = ktime_get();
3053 		} while (single_task_running() && ktime_before(cur, stop));
3054 
3055 		spin_lock(&vc->lock);
3056 		vc->vcore_state = VCORE_INACTIVE;
3057 
3058 		if (!do_sleep) {
3059 			++vc->runner->stat.halt_successful_poll;
3060 			goto out;
3061 		}
3062 	}
3063 
3064 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3065 
3066 	if (kvmppc_vcore_check_block(vc)) {
3067 		finish_swait(&vc->wq, &wait);
3068 		do_sleep = 0;
3069 		/* If we polled, count this as a successful poll */
3070 		if (vc->halt_poll_ns)
3071 			++vc->runner->stat.halt_successful_poll;
3072 		goto out;
3073 	}
3074 
3075 	start_wait = ktime_get();
3076 
3077 	vc->vcore_state = VCORE_SLEEPING;
3078 	trace_kvmppc_vcore_blocked(vc, 0);
3079 	spin_unlock(&vc->lock);
3080 	schedule();
3081 	finish_swait(&vc->wq, &wait);
3082 	spin_lock(&vc->lock);
3083 	vc->vcore_state = VCORE_INACTIVE;
3084 	trace_kvmppc_vcore_blocked(vc, 1);
3085 	++vc->runner->stat.halt_successful_wait;
3086 
3087 	cur = ktime_get();
3088 
3089 out:
3090 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3091 
3092 	/* Attribute wait time */
3093 	if (do_sleep) {
3094 		vc->runner->stat.halt_wait_ns +=
3095 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3096 		/* Attribute failed poll time */
3097 		if (vc->halt_poll_ns)
3098 			vc->runner->stat.halt_poll_fail_ns +=
3099 				ktime_to_ns(start_wait) -
3100 				ktime_to_ns(start_poll);
3101 	} else {
3102 		/* Attribute successful poll time */
3103 		if (vc->halt_poll_ns)
3104 			vc->runner->stat.halt_poll_success_ns +=
3105 				ktime_to_ns(cur) -
3106 				ktime_to_ns(start_poll);
3107 	}
3108 
3109 	/* Adjust poll time */
3110 	if (halt_poll_ns) {
3111 		if (block_ns <= vc->halt_poll_ns)
3112 			;
3113 		/* We slept and blocked for longer than the max halt time */
3114 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3115 			shrink_halt_poll_ns(vc);
3116 		/* We slept and our poll time is too small */
3117 		else if (vc->halt_poll_ns < halt_poll_ns &&
3118 				block_ns < halt_poll_ns)
3119 			grow_halt_poll_ns(vc);
3120 		if (vc->halt_poll_ns > halt_poll_ns)
3121 			vc->halt_poll_ns = halt_poll_ns;
3122 	} else
3123 		vc->halt_poll_ns = 0;
3124 
3125 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3126 }
3127 
3128 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3129 {
3130 	int r = 0;
3131 	struct kvm *kvm = vcpu->kvm;
3132 
3133 	mutex_lock(&kvm->lock);
3134 	if (!kvm->arch.mmu_ready) {
3135 		if (!kvm_is_radix(kvm))
3136 			r = kvmppc_hv_setup_htab_rma(vcpu);
3137 		if (!r) {
3138 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3139 				kvmppc_setup_partition_table(kvm);
3140 			kvm->arch.mmu_ready = 1;
3141 		}
3142 	}
3143 	mutex_unlock(&kvm->lock);
3144 	return r;
3145 }
3146 
3147 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3148 {
3149 	int n_ceded, i, r;
3150 	struct kvmppc_vcore *vc;
3151 	struct kvm_vcpu *v;
3152 
3153 	trace_kvmppc_run_vcpu_enter(vcpu);
3154 
3155 	kvm_run->exit_reason = 0;
3156 	vcpu->arch.ret = RESUME_GUEST;
3157 	vcpu->arch.trap = 0;
3158 	kvmppc_update_vpas(vcpu);
3159 
3160 	/*
3161 	 * Synchronize with other threads in this virtual core
3162 	 */
3163 	vc = vcpu->arch.vcore;
3164 	spin_lock(&vc->lock);
3165 	vcpu->arch.ceded = 0;
3166 	vcpu->arch.run_task = current;
3167 	vcpu->arch.kvm_run = kvm_run;
3168 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3169 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3170 	vcpu->arch.busy_preempt = TB_NIL;
3171 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3172 	++vc->n_runnable;
3173 
3174 	/*
3175 	 * This happens the first time this is called for a vcpu.
3176 	 * If the vcore is already running, we may be able to start
3177 	 * this thread straight away and have it join in.
3178 	 */
3179 	if (!signal_pending(current)) {
3180 		if (vc->vcore_state == VCORE_PIGGYBACK) {
3181 			if (spin_trylock(&vc->lock)) {
3182 				if (vc->vcore_state == VCORE_RUNNING &&
3183 				    !VCORE_IS_EXITING(vc)) {
3184 					kvmppc_create_dtl_entry(vcpu, vc);
3185 					kvmppc_start_thread(vcpu, vc);
3186 					trace_kvm_guest_enter(vcpu);
3187 				}
3188 				spin_unlock(&vc->lock);
3189 			}
3190 		} else if (vc->vcore_state == VCORE_RUNNING &&
3191 			   !VCORE_IS_EXITING(vc)) {
3192 			kvmppc_create_dtl_entry(vcpu, vc);
3193 			kvmppc_start_thread(vcpu, vc);
3194 			trace_kvm_guest_enter(vcpu);
3195 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3196 			swake_up(&vc->wq);
3197 		}
3198 
3199 	}
3200 
3201 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3202 	       !signal_pending(current)) {
3203 		/* See if the MMU is ready to go */
3204 		if (!vcpu->kvm->arch.mmu_ready) {
3205 			spin_unlock(&vc->lock);
3206 			r = kvmhv_setup_mmu(vcpu);
3207 			spin_lock(&vc->lock);
3208 			if (r) {
3209 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3210 				kvm_run->fail_entry.
3211 					hardware_entry_failure_reason = 0;
3212 				vcpu->arch.ret = r;
3213 				break;
3214 			}
3215 		}
3216 
3217 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3218 			kvmppc_vcore_end_preempt(vc);
3219 
3220 		if (vc->vcore_state != VCORE_INACTIVE) {
3221 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3222 			continue;
3223 		}
3224 		for_each_runnable_thread(i, v, vc) {
3225 			kvmppc_core_prepare_to_enter(v);
3226 			if (signal_pending(v->arch.run_task)) {
3227 				kvmppc_remove_runnable(vc, v);
3228 				v->stat.signal_exits++;
3229 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3230 				v->arch.ret = -EINTR;
3231 				wake_up(&v->arch.cpu_run);
3232 			}
3233 		}
3234 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3235 			break;
3236 		n_ceded = 0;
3237 		for_each_runnable_thread(i, v, vc) {
3238 			if (!kvmppc_vcpu_woken(v))
3239 				n_ceded += v->arch.ceded;
3240 			else
3241 				v->arch.ceded = 0;
3242 		}
3243 		vc->runner = vcpu;
3244 		if (n_ceded == vc->n_runnable) {
3245 			kvmppc_vcore_blocked(vc);
3246 		} else if (need_resched()) {
3247 			kvmppc_vcore_preempt(vc);
3248 			/* Let something else run */
3249 			cond_resched_lock(&vc->lock);
3250 			if (vc->vcore_state == VCORE_PREEMPT)
3251 				kvmppc_vcore_end_preempt(vc);
3252 		} else {
3253 			kvmppc_run_core(vc);
3254 		}
3255 		vc->runner = NULL;
3256 	}
3257 
3258 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3259 	       (vc->vcore_state == VCORE_RUNNING ||
3260 		vc->vcore_state == VCORE_EXITING ||
3261 		vc->vcore_state == VCORE_PIGGYBACK))
3262 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3263 
3264 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3265 		kvmppc_vcore_end_preempt(vc);
3266 
3267 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3268 		kvmppc_remove_runnable(vc, vcpu);
3269 		vcpu->stat.signal_exits++;
3270 		kvm_run->exit_reason = KVM_EXIT_INTR;
3271 		vcpu->arch.ret = -EINTR;
3272 	}
3273 
3274 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3275 		/* Wake up some vcpu to run the core */
3276 		i = -1;
3277 		v = next_runnable_thread(vc, &i);
3278 		wake_up(&v->arch.cpu_run);
3279 	}
3280 
3281 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3282 	spin_unlock(&vc->lock);
3283 	return vcpu->arch.ret;
3284 }
3285 
3286 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3287 {
3288 	int r;
3289 	int srcu_idx;
3290 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3291 	unsigned long user_tar = 0;
3292 	unsigned int user_vrsave;
3293 	struct kvm *kvm;
3294 
3295 	if (!vcpu->arch.sane) {
3296 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3297 		return -EINVAL;
3298 	}
3299 
3300 	/*
3301 	 * Don't allow entry with a suspended transaction, because
3302 	 * the guest entry/exit code will lose it.
3303 	 * If the guest has TM enabled, save away their TM-related SPRs
3304 	 * (they will get restored by the TM unavailable interrupt).
3305 	 */
3306 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3307 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3308 	    (current->thread.regs->msr & MSR_TM)) {
3309 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3310 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3311 			run->fail_entry.hardware_entry_failure_reason = 0;
3312 			return -EINVAL;
3313 		}
3314 		/* Enable TM so we can read the TM SPRs */
3315 		mtmsr(mfmsr() | MSR_TM);
3316 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3317 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3318 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3319 		current->thread.regs->msr &= ~MSR_TM;
3320 	}
3321 #endif
3322 
3323 	kvmppc_core_prepare_to_enter(vcpu);
3324 
3325 	/* No need to go into the guest when all we'll do is come back out */
3326 	if (signal_pending(current)) {
3327 		run->exit_reason = KVM_EXIT_INTR;
3328 		return -EINTR;
3329 	}
3330 
3331 	kvm = vcpu->kvm;
3332 	atomic_inc(&kvm->arch.vcpus_running);
3333 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3334 	smp_mb();
3335 
3336 	flush_all_to_thread(current);
3337 
3338 	/* Save userspace EBB and other register values */
3339 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3340 		ebb_regs[0] = mfspr(SPRN_EBBHR);
3341 		ebb_regs[1] = mfspr(SPRN_EBBRR);
3342 		ebb_regs[2] = mfspr(SPRN_BESCR);
3343 		user_tar = mfspr(SPRN_TAR);
3344 	}
3345 	user_vrsave = mfspr(SPRN_VRSAVE);
3346 
3347 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3348 	vcpu->arch.pgdir = current->mm->pgd;
3349 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3350 
3351 	do {
3352 		r = kvmppc_run_vcpu(run, vcpu);
3353 
3354 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3355 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3356 			trace_kvm_hcall_enter(vcpu);
3357 			r = kvmppc_pseries_do_hcall(vcpu);
3358 			trace_kvm_hcall_exit(vcpu, r);
3359 			kvmppc_core_prepare_to_enter(vcpu);
3360 		} else if (r == RESUME_PAGE_FAULT) {
3361 			srcu_idx = srcu_read_lock(&kvm->srcu);
3362 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
3363 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3364 			srcu_read_unlock(&kvm->srcu, srcu_idx);
3365 		} else if (r == RESUME_PASSTHROUGH) {
3366 			if (WARN_ON(xive_enabled()))
3367 				r = H_SUCCESS;
3368 			else
3369 				r = kvmppc_xics_rm_complete(vcpu, 0);
3370 		}
3371 	} while (is_kvmppc_resume_guest(r));
3372 
3373 	/* Restore userspace EBB and other register values */
3374 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3375 		mtspr(SPRN_EBBHR, ebb_regs[0]);
3376 		mtspr(SPRN_EBBRR, ebb_regs[1]);
3377 		mtspr(SPRN_BESCR, ebb_regs[2]);
3378 		mtspr(SPRN_TAR, user_tar);
3379 		mtspr(SPRN_FSCR, current->thread.fscr);
3380 	}
3381 	mtspr(SPRN_VRSAVE, user_vrsave);
3382 
3383 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3384 	atomic_dec(&kvm->arch.vcpus_running);
3385 	return r;
3386 }
3387 
3388 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3389 				     int shift, int sllp)
3390 {
3391 	(*sps)->page_shift = shift;
3392 	(*sps)->slb_enc = sllp;
3393 	(*sps)->enc[0].page_shift = shift;
3394 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3395 	/*
3396 	 * Add 16MB MPSS support (may get filtered out by userspace)
3397 	 */
3398 	if (shift != 24) {
3399 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3400 		if (penc != -1) {
3401 			(*sps)->enc[1].page_shift = 24;
3402 			(*sps)->enc[1].pte_enc = penc;
3403 		}
3404 	}
3405 	(*sps)++;
3406 }
3407 
3408 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3409 					 struct kvm_ppc_smmu_info *info)
3410 {
3411 	struct kvm_ppc_one_seg_page_size *sps;
3412 
3413 	/*
3414 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3415 	 * POWER7 doesn't support keys for instruction accesses,
3416 	 * POWER8 and POWER9 do.
3417 	 */
3418 	info->data_keys = 32;
3419 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3420 
3421 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3422 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3423 	info->slb_size = 32;
3424 
3425 	/* We only support these sizes for now, and no muti-size segments */
3426 	sps = &info->sps[0];
3427 	kvmppc_add_seg_page_size(&sps, 12, 0);
3428 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3429 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3430 
3431 	return 0;
3432 }
3433 
3434 /*
3435  * Get (and clear) the dirty memory log for a memory slot.
3436  */
3437 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3438 					 struct kvm_dirty_log *log)
3439 {
3440 	struct kvm_memslots *slots;
3441 	struct kvm_memory_slot *memslot;
3442 	int i, r;
3443 	unsigned long n;
3444 	unsigned long *buf, *p;
3445 	struct kvm_vcpu *vcpu;
3446 
3447 	mutex_lock(&kvm->slots_lock);
3448 
3449 	r = -EINVAL;
3450 	if (log->slot >= KVM_USER_MEM_SLOTS)
3451 		goto out;
3452 
3453 	slots = kvm_memslots(kvm);
3454 	memslot = id_to_memslot(slots, log->slot);
3455 	r = -ENOENT;
3456 	if (!memslot->dirty_bitmap)
3457 		goto out;
3458 
3459 	/*
3460 	 * Use second half of bitmap area because both HPT and radix
3461 	 * accumulate bits in the first half.
3462 	 */
3463 	n = kvm_dirty_bitmap_bytes(memslot);
3464 	buf = memslot->dirty_bitmap + n / sizeof(long);
3465 	memset(buf, 0, n);
3466 
3467 	if (kvm_is_radix(kvm))
3468 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3469 	else
3470 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3471 	if (r)
3472 		goto out;
3473 
3474 	/*
3475 	 * We accumulate dirty bits in the first half of the
3476 	 * memslot's dirty_bitmap area, for when pages are paged
3477 	 * out or modified by the host directly.  Pick up these
3478 	 * bits and add them to the map.
3479 	 */
3480 	p = memslot->dirty_bitmap;
3481 	for (i = 0; i < n / sizeof(long); ++i)
3482 		buf[i] |= xchg(&p[i], 0);
3483 
3484 	/* Harvest dirty bits from VPA and DTL updates */
3485 	/* Note: we never modify the SLB shadow buffer areas */
3486 	kvm_for_each_vcpu(i, vcpu, kvm) {
3487 		spin_lock(&vcpu->arch.vpa_update_lock);
3488 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3489 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3490 		spin_unlock(&vcpu->arch.vpa_update_lock);
3491 	}
3492 
3493 	r = -EFAULT;
3494 	if (copy_to_user(log->dirty_bitmap, buf, n))
3495 		goto out;
3496 
3497 	r = 0;
3498 out:
3499 	mutex_unlock(&kvm->slots_lock);
3500 	return r;
3501 }
3502 
3503 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3504 					struct kvm_memory_slot *dont)
3505 {
3506 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3507 		vfree(free->arch.rmap);
3508 		free->arch.rmap = NULL;
3509 	}
3510 }
3511 
3512 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3513 					 unsigned long npages)
3514 {
3515 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3516 	if (!slot->arch.rmap)
3517 		return -ENOMEM;
3518 
3519 	return 0;
3520 }
3521 
3522 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3523 					struct kvm_memory_slot *memslot,
3524 					const struct kvm_userspace_memory_region *mem)
3525 {
3526 	return 0;
3527 }
3528 
3529 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3530 				const struct kvm_userspace_memory_region *mem,
3531 				const struct kvm_memory_slot *old,
3532 				const struct kvm_memory_slot *new)
3533 {
3534 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3535 
3536 	/*
3537 	 * If we are making a new memslot, it might make
3538 	 * some address that was previously cached as emulated
3539 	 * MMIO be no longer emulated MMIO, so invalidate
3540 	 * all the caches of emulated MMIO translations.
3541 	 */
3542 	if (npages)
3543 		atomic64_inc(&kvm->arch.mmio_update);
3544 }
3545 
3546 /*
3547  * Update LPCR values in kvm->arch and in vcores.
3548  * Caller must hold kvm->lock.
3549  */
3550 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3551 {
3552 	long int i;
3553 	u32 cores_done = 0;
3554 
3555 	if ((kvm->arch.lpcr & mask) == lpcr)
3556 		return;
3557 
3558 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3559 
3560 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3561 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3562 		if (!vc)
3563 			continue;
3564 		spin_lock(&vc->lock);
3565 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3566 		spin_unlock(&vc->lock);
3567 		if (++cores_done >= kvm->arch.online_vcores)
3568 			break;
3569 	}
3570 }
3571 
3572 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3573 {
3574 	return;
3575 }
3576 
3577 static void kvmppc_setup_partition_table(struct kvm *kvm)
3578 {
3579 	unsigned long dw0, dw1;
3580 
3581 	if (!kvm_is_radix(kvm)) {
3582 		/* PS field - page size for VRMA */
3583 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3584 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3585 		/* HTABSIZE and HTABORG fields */
3586 		dw0 |= kvm->arch.sdr1;
3587 
3588 		/* Second dword as set by userspace */
3589 		dw1 = kvm->arch.process_table;
3590 	} else {
3591 		dw0 = PATB_HR | radix__get_tree_size() |
3592 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3593 		dw1 = PATB_GR | kvm->arch.process_table;
3594 	}
3595 
3596 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3597 }
3598 
3599 /*
3600  * Set up HPT (hashed page table) and RMA (real-mode area).
3601  * Must be called with kvm->lock held.
3602  */
3603 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3604 {
3605 	int err = 0;
3606 	struct kvm *kvm = vcpu->kvm;
3607 	unsigned long hva;
3608 	struct kvm_memory_slot *memslot;
3609 	struct vm_area_struct *vma;
3610 	unsigned long lpcr = 0, senc;
3611 	unsigned long psize, porder;
3612 	int srcu_idx;
3613 
3614 	/* Allocate hashed page table (if not done already) and reset it */
3615 	if (!kvm->arch.hpt.virt) {
3616 		int order = KVM_DEFAULT_HPT_ORDER;
3617 		struct kvm_hpt_info info;
3618 
3619 		err = kvmppc_allocate_hpt(&info, order);
3620 		/* If we get here, it means userspace didn't specify a
3621 		 * size explicitly.  So, try successively smaller
3622 		 * sizes if the default failed. */
3623 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3624 			err  = kvmppc_allocate_hpt(&info, order);
3625 
3626 		if (err < 0) {
3627 			pr_err("KVM: Couldn't alloc HPT\n");
3628 			goto out;
3629 		}
3630 
3631 		kvmppc_set_hpt(kvm, &info);
3632 	}
3633 
3634 	/* Look up the memslot for guest physical address 0 */
3635 	srcu_idx = srcu_read_lock(&kvm->srcu);
3636 	memslot = gfn_to_memslot(kvm, 0);
3637 
3638 	/* We must have some memory at 0 by now */
3639 	err = -EINVAL;
3640 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3641 		goto out_srcu;
3642 
3643 	/* Look up the VMA for the start of this memory slot */
3644 	hva = memslot->userspace_addr;
3645 	down_read(&current->mm->mmap_sem);
3646 	vma = find_vma(current->mm, hva);
3647 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3648 		goto up_out;
3649 
3650 	psize = vma_kernel_pagesize(vma);
3651 	porder = __ilog2(psize);
3652 
3653 	up_read(&current->mm->mmap_sem);
3654 
3655 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3656 	err = -EINVAL;
3657 	if (!(psize == 0x1000 || psize == 0x10000 ||
3658 	      psize == 0x1000000))
3659 		goto out_srcu;
3660 
3661 	senc = slb_pgsize_encoding(psize);
3662 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3663 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3664 	/* Create HPTEs in the hash page table for the VRMA */
3665 	kvmppc_map_vrma(vcpu, memslot, porder);
3666 
3667 	/* Update VRMASD field in the LPCR */
3668 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3669 		/* the -4 is to account for senc values starting at 0x10 */
3670 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3671 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3672 	}
3673 
3674 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3675 	smp_wmb();
3676 	err = 0;
3677  out_srcu:
3678 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3679  out:
3680 	return err;
3681 
3682  up_out:
3683 	up_read(&current->mm->mmap_sem);
3684 	goto out_srcu;
3685 }
3686 
3687 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3688 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3689 {
3690 	kvmppc_free_radix(kvm);
3691 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
3692 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3693 	kvmppc_rmap_reset(kvm);
3694 	kvm->arch.radix = 0;
3695 	kvm->arch.process_table = 0;
3696 	return 0;
3697 }
3698 
3699 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3700 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3701 {
3702 	int err;
3703 
3704 	err = kvmppc_init_vm_radix(kvm);
3705 	if (err)
3706 		return err;
3707 
3708 	kvmppc_free_hpt(&kvm->arch.hpt);
3709 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3710 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3711 	kvm->arch.radix = 1;
3712 	return 0;
3713 }
3714 
3715 #ifdef CONFIG_KVM_XICS
3716 /*
3717  * Allocate a per-core structure for managing state about which cores are
3718  * running in the host versus the guest and for exchanging data between
3719  * real mode KVM and CPU running in the host.
3720  * This is only done for the first VM.
3721  * The allocated structure stays even if all VMs have stopped.
3722  * It is only freed when the kvm-hv module is unloaded.
3723  * It's OK for this routine to fail, we just don't support host
3724  * core operations like redirecting H_IPI wakeups.
3725  */
3726 void kvmppc_alloc_host_rm_ops(void)
3727 {
3728 	struct kvmppc_host_rm_ops *ops;
3729 	unsigned long l_ops;
3730 	int cpu, core;
3731 	int size;
3732 
3733 	/* Not the first time here ? */
3734 	if (kvmppc_host_rm_ops_hv != NULL)
3735 		return;
3736 
3737 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3738 	if (!ops)
3739 		return;
3740 
3741 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3742 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3743 
3744 	if (!ops->rm_core) {
3745 		kfree(ops);
3746 		return;
3747 	}
3748 
3749 	cpus_read_lock();
3750 
3751 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3752 		if (!cpu_online(cpu))
3753 			continue;
3754 
3755 		core = cpu >> threads_shift;
3756 		ops->rm_core[core].rm_state.in_host = 1;
3757 	}
3758 
3759 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3760 
3761 	/*
3762 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3763 	 * to other CPUs before we assign it to the global variable.
3764 	 * Do an atomic assignment (no locks used here), but if someone
3765 	 * beats us to it, just free our copy and return.
3766 	 */
3767 	smp_wmb();
3768 	l_ops = (unsigned long) ops;
3769 
3770 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3771 		cpus_read_unlock();
3772 		kfree(ops->rm_core);
3773 		kfree(ops);
3774 		return;
3775 	}
3776 
3777 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3778 					     "ppc/kvm_book3s:prepare",
3779 					     kvmppc_set_host_core,
3780 					     kvmppc_clear_host_core);
3781 	cpus_read_unlock();
3782 }
3783 
3784 void kvmppc_free_host_rm_ops(void)
3785 {
3786 	if (kvmppc_host_rm_ops_hv) {
3787 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3788 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3789 		kfree(kvmppc_host_rm_ops_hv);
3790 		kvmppc_host_rm_ops_hv = NULL;
3791 	}
3792 }
3793 #endif
3794 
3795 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3796 {
3797 	unsigned long lpcr, lpid;
3798 	char buf[32];
3799 	int ret;
3800 
3801 	/* Allocate the guest's logical partition ID */
3802 
3803 	lpid = kvmppc_alloc_lpid();
3804 	if ((long)lpid < 0)
3805 		return -ENOMEM;
3806 	kvm->arch.lpid = lpid;
3807 
3808 	kvmppc_alloc_host_rm_ops();
3809 
3810 	/*
3811 	 * Since we don't flush the TLB when tearing down a VM,
3812 	 * and this lpid might have previously been used,
3813 	 * make sure we flush on each core before running the new VM.
3814 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3815 	 * does this flush for us.
3816 	 */
3817 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3818 		cpumask_setall(&kvm->arch.need_tlb_flush);
3819 
3820 	/* Start out with the default set of hcalls enabled */
3821 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3822 	       sizeof(kvm->arch.enabled_hcalls));
3823 
3824 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3825 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3826 
3827 	/* Init LPCR for virtual RMA mode */
3828 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3829 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3830 	lpcr &= LPCR_PECE | LPCR_LPES;
3831 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3832 		LPCR_VPM0 | LPCR_VPM1;
3833 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3834 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3835 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3836 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3837 		lpcr |= LPCR_ONL;
3838 	/*
3839 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3840 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3841 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3842 	 * be unnecessary but better safe than sorry in case we re-enable
3843 	 * EE in HV mode with this LPCR still set)
3844 	 */
3845 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3846 		lpcr &= ~LPCR_VPM0;
3847 		lpcr |= LPCR_HVICE | LPCR_HEIC;
3848 
3849 		/*
3850 		 * If xive is enabled, we route 0x500 interrupts directly
3851 		 * to the guest.
3852 		 */
3853 		if (xive_enabled())
3854 			lpcr |= LPCR_LPES;
3855 	}
3856 
3857 	/*
3858 	 * If the host uses radix, the guest starts out as radix.
3859 	 */
3860 	if (radix_enabled()) {
3861 		kvm->arch.radix = 1;
3862 		kvm->arch.mmu_ready = 1;
3863 		lpcr &= ~LPCR_VPM1;
3864 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3865 		ret = kvmppc_init_vm_radix(kvm);
3866 		if (ret) {
3867 			kvmppc_free_lpid(kvm->arch.lpid);
3868 			return ret;
3869 		}
3870 		kvmppc_setup_partition_table(kvm);
3871 	}
3872 
3873 	kvm->arch.lpcr = lpcr;
3874 
3875 	/* Initialization for future HPT resizes */
3876 	kvm->arch.resize_hpt = NULL;
3877 
3878 	/*
3879 	 * Work out how many sets the TLB has, for the use of
3880 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3881 	 */
3882 	if (radix_enabled())
3883 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
3884 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3885 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
3886 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3887 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
3888 	else
3889 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
3890 
3891 	/*
3892 	 * Track that we now have a HV mode VM active. This blocks secondary
3893 	 * CPU threads from coming online.
3894 	 * On POWER9, we only need to do this if the "indep_threads_mode"
3895 	 * module parameter has been set to N.
3896 	 */
3897 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3898 		kvm->arch.threads_indep = indep_threads_mode;
3899 	if (!kvm->arch.threads_indep)
3900 		kvm_hv_vm_activated();
3901 
3902 	/*
3903 	 * Initialize smt_mode depending on processor.
3904 	 * POWER8 and earlier have to use "strict" threading, where
3905 	 * all vCPUs in a vcore have to run on the same (sub)core,
3906 	 * whereas on POWER9 the threads can each run a different
3907 	 * guest.
3908 	 */
3909 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3910 		kvm->arch.smt_mode = threads_per_subcore;
3911 	else
3912 		kvm->arch.smt_mode = 1;
3913 	kvm->arch.emul_smt_mode = 1;
3914 
3915 	/*
3916 	 * Create a debugfs directory for the VM
3917 	 */
3918 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3919 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3920 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3921 		kvmppc_mmu_debugfs_init(kvm);
3922 
3923 	return 0;
3924 }
3925 
3926 static void kvmppc_free_vcores(struct kvm *kvm)
3927 {
3928 	long int i;
3929 
3930 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3931 		kfree(kvm->arch.vcores[i]);
3932 	kvm->arch.online_vcores = 0;
3933 }
3934 
3935 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3936 {
3937 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3938 
3939 	if (!kvm->arch.threads_indep)
3940 		kvm_hv_vm_deactivated();
3941 
3942 	kvmppc_free_vcores(kvm);
3943 
3944 	kvmppc_free_lpid(kvm->arch.lpid);
3945 
3946 	if (kvm_is_radix(kvm))
3947 		kvmppc_free_radix(kvm);
3948 	else
3949 		kvmppc_free_hpt(&kvm->arch.hpt);
3950 
3951 	kvmppc_free_pimap(kvm);
3952 }
3953 
3954 /* We don't need to emulate any privileged instructions or dcbz */
3955 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3956 				     unsigned int inst, int *advance)
3957 {
3958 	return EMULATE_FAIL;
3959 }
3960 
3961 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3962 					ulong spr_val)
3963 {
3964 	return EMULATE_FAIL;
3965 }
3966 
3967 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3968 					ulong *spr_val)
3969 {
3970 	return EMULATE_FAIL;
3971 }
3972 
3973 static int kvmppc_core_check_processor_compat_hv(void)
3974 {
3975 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3976 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3977 		return -EIO;
3978 
3979 	return 0;
3980 }
3981 
3982 #ifdef CONFIG_KVM_XICS
3983 
3984 void kvmppc_free_pimap(struct kvm *kvm)
3985 {
3986 	kfree(kvm->arch.pimap);
3987 }
3988 
3989 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3990 {
3991 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3992 }
3993 
3994 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3995 {
3996 	struct irq_desc *desc;
3997 	struct kvmppc_irq_map *irq_map;
3998 	struct kvmppc_passthru_irqmap *pimap;
3999 	struct irq_chip *chip;
4000 	int i, rc = 0;
4001 
4002 	if (!kvm_irq_bypass)
4003 		return 1;
4004 
4005 	desc = irq_to_desc(host_irq);
4006 	if (!desc)
4007 		return -EIO;
4008 
4009 	mutex_lock(&kvm->lock);
4010 
4011 	pimap = kvm->arch.pimap;
4012 	if (pimap == NULL) {
4013 		/* First call, allocate structure to hold IRQ map */
4014 		pimap = kvmppc_alloc_pimap();
4015 		if (pimap == NULL) {
4016 			mutex_unlock(&kvm->lock);
4017 			return -ENOMEM;
4018 		}
4019 		kvm->arch.pimap = pimap;
4020 	}
4021 
4022 	/*
4023 	 * For now, we only support interrupts for which the EOI operation
4024 	 * is an OPAL call followed by a write to XIRR, since that's
4025 	 * what our real-mode EOI code does, or a XIVE interrupt
4026 	 */
4027 	chip = irq_data_get_irq_chip(&desc->irq_data);
4028 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4029 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4030 			host_irq, guest_gsi);
4031 		mutex_unlock(&kvm->lock);
4032 		return -ENOENT;
4033 	}
4034 
4035 	/*
4036 	 * See if we already have an entry for this guest IRQ number.
4037 	 * If it's mapped to a hardware IRQ number, that's an error,
4038 	 * otherwise re-use this entry.
4039 	 */
4040 	for (i = 0; i < pimap->n_mapped; i++) {
4041 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
4042 			if (pimap->mapped[i].r_hwirq) {
4043 				mutex_unlock(&kvm->lock);
4044 				return -EINVAL;
4045 			}
4046 			break;
4047 		}
4048 	}
4049 
4050 	if (i == KVMPPC_PIRQ_MAPPED) {
4051 		mutex_unlock(&kvm->lock);
4052 		return -EAGAIN;		/* table is full */
4053 	}
4054 
4055 	irq_map = &pimap->mapped[i];
4056 
4057 	irq_map->v_hwirq = guest_gsi;
4058 	irq_map->desc = desc;
4059 
4060 	/*
4061 	 * Order the above two stores before the next to serialize with
4062 	 * the KVM real mode handler.
4063 	 */
4064 	smp_wmb();
4065 	irq_map->r_hwirq = desc->irq_data.hwirq;
4066 
4067 	if (i == pimap->n_mapped)
4068 		pimap->n_mapped++;
4069 
4070 	if (xive_enabled())
4071 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4072 	else
4073 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4074 	if (rc)
4075 		irq_map->r_hwirq = 0;
4076 
4077 	mutex_unlock(&kvm->lock);
4078 
4079 	return 0;
4080 }
4081 
4082 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4083 {
4084 	struct irq_desc *desc;
4085 	struct kvmppc_passthru_irqmap *pimap;
4086 	int i, rc = 0;
4087 
4088 	if (!kvm_irq_bypass)
4089 		return 0;
4090 
4091 	desc = irq_to_desc(host_irq);
4092 	if (!desc)
4093 		return -EIO;
4094 
4095 	mutex_lock(&kvm->lock);
4096 	if (!kvm->arch.pimap)
4097 		goto unlock;
4098 
4099 	pimap = kvm->arch.pimap;
4100 
4101 	for (i = 0; i < pimap->n_mapped; i++) {
4102 		if (guest_gsi == pimap->mapped[i].v_hwirq)
4103 			break;
4104 	}
4105 
4106 	if (i == pimap->n_mapped) {
4107 		mutex_unlock(&kvm->lock);
4108 		return -ENODEV;
4109 	}
4110 
4111 	if (xive_enabled())
4112 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4113 	else
4114 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4115 
4116 	/* invalidate the entry (what do do on error from the above ?) */
4117 	pimap->mapped[i].r_hwirq = 0;
4118 
4119 	/*
4120 	 * We don't free this structure even when the count goes to
4121 	 * zero. The structure is freed when we destroy the VM.
4122 	 */
4123  unlock:
4124 	mutex_unlock(&kvm->lock);
4125 	return rc;
4126 }
4127 
4128 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4129 					     struct irq_bypass_producer *prod)
4130 {
4131 	int ret = 0;
4132 	struct kvm_kernel_irqfd *irqfd =
4133 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4134 
4135 	irqfd->producer = prod;
4136 
4137 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4138 	if (ret)
4139 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4140 			prod->irq, irqfd->gsi, ret);
4141 
4142 	return ret;
4143 }
4144 
4145 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4146 					      struct irq_bypass_producer *prod)
4147 {
4148 	int ret;
4149 	struct kvm_kernel_irqfd *irqfd =
4150 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4151 
4152 	irqfd->producer = NULL;
4153 
4154 	/*
4155 	 * When producer of consumer is unregistered, we change back to
4156 	 * default external interrupt handling mode - KVM real mode
4157 	 * will switch back to host.
4158 	 */
4159 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4160 	if (ret)
4161 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4162 			prod->irq, irqfd->gsi, ret);
4163 }
4164 #endif
4165 
4166 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4167 				 unsigned int ioctl, unsigned long arg)
4168 {
4169 	struct kvm *kvm __maybe_unused = filp->private_data;
4170 	void __user *argp = (void __user *)arg;
4171 	long r;
4172 
4173 	switch (ioctl) {
4174 
4175 	case KVM_PPC_ALLOCATE_HTAB: {
4176 		u32 htab_order;
4177 
4178 		r = -EFAULT;
4179 		if (get_user(htab_order, (u32 __user *)argp))
4180 			break;
4181 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4182 		if (r)
4183 			break;
4184 		r = 0;
4185 		break;
4186 	}
4187 
4188 	case KVM_PPC_GET_HTAB_FD: {
4189 		struct kvm_get_htab_fd ghf;
4190 
4191 		r = -EFAULT;
4192 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
4193 			break;
4194 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4195 		break;
4196 	}
4197 
4198 	case KVM_PPC_RESIZE_HPT_PREPARE: {
4199 		struct kvm_ppc_resize_hpt rhpt;
4200 
4201 		r = -EFAULT;
4202 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4203 			break;
4204 
4205 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4206 		break;
4207 	}
4208 
4209 	case KVM_PPC_RESIZE_HPT_COMMIT: {
4210 		struct kvm_ppc_resize_hpt rhpt;
4211 
4212 		r = -EFAULT;
4213 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4214 			break;
4215 
4216 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4217 		break;
4218 	}
4219 
4220 	default:
4221 		r = -ENOTTY;
4222 	}
4223 
4224 	return r;
4225 }
4226 
4227 /*
4228  * List of hcall numbers to enable by default.
4229  * For compatibility with old userspace, we enable by default
4230  * all hcalls that were implemented before the hcall-enabling
4231  * facility was added.  Note this list should not include H_RTAS.
4232  */
4233 static unsigned int default_hcall_list[] = {
4234 	H_REMOVE,
4235 	H_ENTER,
4236 	H_READ,
4237 	H_PROTECT,
4238 	H_BULK_REMOVE,
4239 	H_GET_TCE,
4240 	H_PUT_TCE,
4241 	H_SET_DABR,
4242 	H_SET_XDABR,
4243 	H_CEDE,
4244 	H_PROD,
4245 	H_CONFER,
4246 	H_REGISTER_VPA,
4247 #ifdef CONFIG_KVM_XICS
4248 	H_EOI,
4249 	H_CPPR,
4250 	H_IPI,
4251 	H_IPOLL,
4252 	H_XIRR,
4253 	H_XIRR_X,
4254 #endif
4255 	0
4256 };
4257 
4258 static void init_default_hcalls(void)
4259 {
4260 	int i;
4261 	unsigned int hcall;
4262 
4263 	for (i = 0; default_hcall_list[i]; ++i) {
4264 		hcall = default_hcall_list[i];
4265 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4266 		__set_bit(hcall / 4, default_enabled_hcalls);
4267 	}
4268 }
4269 
4270 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4271 {
4272 	unsigned long lpcr;
4273 	int radix;
4274 	int err;
4275 
4276 	/* If not on a POWER9, reject it */
4277 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4278 		return -ENODEV;
4279 
4280 	/* If any unknown flags set, reject it */
4281 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4282 		return -EINVAL;
4283 
4284 	/* GR (guest radix) bit in process_table field must match */
4285 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4286 	if (!!(cfg->process_table & PATB_GR) != radix)
4287 		return -EINVAL;
4288 
4289 	/* Process table size field must be reasonable, i.e. <= 24 */
4290 	if ((cfg->process_table & PRTS_MASK) > 24)
4291 		return -EINVAL;
4292 
4293 	/* We can change a guest to/from radix now, if the host is radix */
4294 	if (radix && !radix_enabled())
4295 		return -EINVAL;
4296 
4297 	mutex_lock(&kvm->lock);
4298 	if (radix != kvm_is_radix(kvm)) {
4299 		if (kvm->arch.mmu_ready) {
4300 			kvm->arch.mmu_ready = 0;
4301 			/* order mmu_ready vs. vcpus_running */
4302 			smp_mb();
4303 			if (atomic_read(&kvm->arch.vcpus_running)) {
4304 				kvm->arch.mmu_ready = 1;
4305 				err = -EBUSY;
4306 				goto out_unlock;
4307 			}
4308 		}
4309 		if (radix)
4310 			err = kvmppc_switch_mmu_to_radix(kvm);
4311 		else
4312 			err = kvmppc_switch_mmu_to_hpt(kvm);
4313 		if (err)
4314 			goto out_unlock;
4315 	}
4316 
4317 	kvm->arch.process_table = cfg->process_table;
4318 	kvmppc_setup_partition_table(kvm);
4319 
4320 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4321 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4322 	err = 0;
4323 
4324  out_unlock:
4325 	mutex_unlock(&kvm->lock);
4326 	return err;
4327 }
4328 
4329 static struct kvmppc_ops kvm_ops_hv = {
4330 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4331 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4332 	.get_one_reg = kvmppc_get_one_reg_hv,
4333 	.set_one_reg = kvmppc_set_one_reg_hv,
4334 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
4335 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
4336 	.set_msr     = kvmppc_set_msr_hv,
4337 	.vcpu_run    = kvmppc_vcpu_run_hv,
4338 	.vcpu_create = kvmppc_core_vcpu_create_hv,
4339 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
4340 	.check_requests = kvmppc_core_check_requests_hv,
4341 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4342 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
4343 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4344 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4345 	.unmap_hva = kvm_unmap_hva_hv,
4346 	.unmap_hva_range = kvm_unmap_hva_range_hv,
4347 	.age_hva  = kvm_age_hva_hv,
4348 	.test_age_hva = kvm_test_age_hva_hv,
4349 	.set_spte_hva = kvm_set_spte_hva_hv,
4350 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
4351 	.free_memslot = kvmppc_core_free_memslot_hv,
4352 	.create_memslot = kvmppc_core_create_memslot_hv,
4353 	.init_vm =  kvmppc_core_init_vm_hv,
4354 	.destroy_vm = kvmppc_core_destroy_vm_hv,
4355 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4356 	.emulate_op = kvmppc_core_emulate_op_hv,
4357 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4358 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4359 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4360 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4361 	.hcall_implemented = kvmppc_hcall_impl_hv,
4362 #ifdef CONFIG_KVM_XICS
4363 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4364 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4365 #endif
4366 	.configure_mmu = kvmhv_configure_mmu,
4367 	.get_rmmu_info = kvmhv_get_rmmu_info,
4368 	.set_smt_mode = kvmhv_set_smt_mode,
4369 };
4370 
4371 static int kvm_init_subcore_bitmap(void)
4372 {
4373 	int i, j;
4374 	int nr_cores = cpu_nr_cores();
4375 	struct sibling_subcore_state *sibling_subcore_state;
4376 
4377 	for (i = 0; i < nr_cores; i++) {
4378 		int first_cpu = i * threads_per_core;
4379 		int node = cpu_to_node(first_cpu);
4380 
4381 		/* Ignore if it is already allocated. */
4382 		if (paca[first_cpu].sibling_subcore_state)
4383 			continue;
4384 
4385 		sibling_subcore_state =
4386 			kmalloc_node(sizeof(struct sibling_subcore_state),
4387 							GFP_KERNEL, node);
4388 		if (!sibling_subcore_state)
4389 			return -ENOMEM;
4390 
4391 		memset(sibling_subcore_state, 0,
4392 				sizeof(struct sibling_subcore_state));
4393 
4394 		for (j = 0; j < threads_per_core; j++) {
4395 			int cpu = first_cpu + j;
4396 
4397 			paca[cpu].sibling_subcore_state = sibling_subcore_state;
4398 		}
4399 	}
4400 	return 0;
4401 }
4402 
4403 static int kvmppc_radix_possible(void)
4404 {
4405 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4406 }
4407 
4408 static int kvmppc_book3s_init_hv(void)
4409 {
4410 	int r;
4411 	/*
4412 	 * FIXME!! Do we need to check on all cpus ?
4413 	 */
4414 	r = kvmppc_core_check_processor_compat_hv();
4415 	if (r < 0)
4416 		return -ENODEV;
4417 
4418 	r = kvm_init_subcore_bitmap();
4419 	if (r)
4420 		return r;
4421 
4422 	/*
4423 	 * We need a way of accessing the XICS interrupt controller,
4424 	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4425 	 * indirectly, via OPAL.
4426 	 */
4427 #ifdef CONFIG_SMP
4428 	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4429 		struct device_node *np;
4430 
4431 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4432 		if (!np) {
4433 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4434 			return -ENODEV;
4435 		}
4436 	}
4437 #endif
4438 
4439 	kvm_ops_hv.owner = THIS_MODULE;
4440 	kvmppc_hv_ops = &kvm_ops_hv;
4441 
4442 	init_default_hcalls();
4443 
4444 	init_vcore_lists();
4445 
4446 	r = kvmppc_mmu_hv_init();
4447 	if (r)
4448 		return r;
4449 
4450 	if (kvmppc_radix_possible())
4451 		r = kvmppc_radix_init();
4452 	return r;
4453 }
4454 
4455 static void kvmppc_book3s_exit_hv(void)
4456 {
4457 	kvmppc_free_host_rm_ops();
4458 	if (kvmppc_radix_possible())
4459 		kvmppc_radix_exit();
4460 	kvmppc_hv_ops = NULL;
4461 }
4462 
4463 module_init(kvmppc_book3s_init_hv);
4464 module_exit(kvmppc_book3s_exit_hv);
4465 MODULE_LICENSE("GPL");
4466 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4467 MODULE_ALIAS("devname:kvm");
4468