1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/io.h> 57 #include <asm/kvm_ppc.h> 58 #include <asm/kvm_book3s.h> 59 #include <asm/mmu_context.h> 60 #include <asm/lppaca.h> 61 #include <asm/processor.h> 62 #include <asm/cputhreads.h> 63 #include <asm/page.h> 64 #include <asm/hvcall.h> 65 #include <asm/switch_to.h> 66 #include <asm/smp.h> 67 #include <asm/dbell.h> 68 #include <asm/hmi.h> 69 #include <asm/pnv-pci.h> 70 #include <asm/mmu.h> 71 #include <asm/opal.h> 72 #include <asm/xics.h> 73 #include <asm/xive.h> 74 #include <asm/hw_breakpoint.h> 75 #include <asm/kvm_host.h> 76 #include <asm/kvm_book3s_uvmem.h> 77 #include <asm/ultravisor.h> 78 79 #include "book3s.h" 80 81 #define CREATE_TRACE_POINTS 82 #include "trace_hv.h" 83 84 /* #define EXIT_DEBUG */ 85 /* #define EXIT_DEBUG_SIMPLE */ 86 /* #define EXIT_DEBUG_INT */ 87 88 /* Used to indicate that a guest page fault needs to be handled */ 89 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 90 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 91 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 92 93 /* Used as a "null" value for timebase values */ 94 #define TB_NIL (~(u64)0) 95 96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 97 98 static int dynamic_mt_modes = 6; 99 module_param(dynamic_mt_modes, int, 0644); 100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 101 static int target_smt_mode; 102 module_param(target_smt_mode, int, 0644); 103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 104 105 static bool indep_threads_mode = true; 106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 108 109 static bool one_vm_per_core; 110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 112 113 #ifdef CONFIG_KVM_XICS 114 static struct kernel_param_ops module_param_ops = { 115 .set = param_set_int, 116 .get = param_get_int, 117 }; 118 119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 121 122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 124 #endif 125 126 /* If set, guests are allowed to create and control nested guests */ 127 static bool nested = true; 128 module_param(nested, bool, S_IRUGO | S_IWUSR); 129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 130 131 static inline bool nesting_enabled(struct kvm *kvm) 132 { 133 return kvm->arch.nested_enable && kvm_is_radix(kvm); 134 } 135 136 /* If set, the threads on each CPU core have to be in the same MMU mode */ 137 static bool no_mixing_hpt_and_radix; 138 139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 140 141 /* 142 * RWMR values for POWER8. These control the rate at which PURR 143 * and SPURR count and should be set according to the number of 144 * online threads in the vcore being run. 145 */ 146 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 148 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 150 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 151 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 152 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 153 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 154 155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 156 RWMR_RPA_P8_1THREAD, 157 RWMR_RPA_P8_1THREAD, 158 RWMR_RPA_P8_2THREAD, 159 RWMR_RPA_P8_3THREAD, 160 RWMR_RPA_P8_4THREAD, 161 RWMR_RPA_P8_5THREAD, 162 RWMR_RPA_P8_6THREAD, 163 RWMR_RPA_P8_7THREAD, 164 RWMR_RPA_P8_8THREAD, 165 }; 166 167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 168 int *ip) 169 { 170 int i = *ip; 171 struct kvm_vcpu *vcpu; 172 173 while (++i < MAX_SMT_THREADS) { 174 vcpu = READ_ONCE(vc->runnable_threads[i]); 175 if (vcpu) { 176 *ip = i; 177 return vcpu; 178 } 179 } 180 return NULL; 181 } 182 183 /* Used to traverse the list of runnable threads for a given vcore */ 184 #define for_each_runnable_thread(i, vcpu, vc) \ 185 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 186 187 static bool kvmppc_ipi_thread(int cpu) 188 { 189 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 190 191 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 192 if (kvmhv_on_pseries()) 193 return false; 194 195 /* On POWER9 we can use msgsnd to IPI any cpu */ 196 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 197 msg |= get_hard_smp_processor_id(cpu); 198 smp_mb(); 199 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 200 return true; 201 } 202 203 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 204 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 205 preempt_disable(); 206 if (cpu_first_thread_sibling(cpu) == 207 cpu_first_thread_sibling(smp_processor_id())) { 208 msg |= cpu_thread_in_core(cpu); 209 smp_mb(); 210 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 211 preempt_enable(); 212 return true; 213 } 214 preempt_enable(); 215 } 216 217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 218 if (cpu >= 0 && cpu < nr_cpu_ids) { 219 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 220 xics_wake_cpu(cpu); 221 return true; 222 } 223 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 224 return true; 225 } 226 #endif 227 228 return false; 229 } 230 231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 232 { 233 int cpu; 234 struct swait_queue_head *wqp; 235 236 wqp = kvm_arch_vcpu_wq(vcpu); 237 if (swq_has_sleeper(wqp)) { 238 swake_up_one(wqp); 239 ++vcpu->stat.halt_wakeup; 240 } 241 242 cpu = READ_ONCE(vcpu->arch.thread_cpu); 243 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 244 return; 245 246 /* CPU points to the first thread of the core */ 247 cpu = vcpu->cpu; 248 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 249 smp_send_reschedule(cpu); 250 } 251 252 /* 253 * We use the vcpu_load/put functions to measure stolen time. 254 * Stolen time is counted as time when either the vcpu is able to 255 * run as part of a virtual core, but the task running the vcore 256 * is preempted or sleeping, or when the vcpu needs something done 257 * in the kernel by the task running the vcpu, but that task is 258 * preempted or sleeping. Those two things have to be counted 259 * separately, since one of the vcpu tasks will take on the job 260 * of running the core, and the other vcpu tasks in the vcore will 261 * sleep waiting for it to do that, but that sleep shouldn't count 262 * as stolen time. 263 * 264 * Hence we accumulate stolen time when the vcpu can run as part of 265 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 266 * needs its task to do other things in the kernel (for example, 267 * service a page fault) in busy_stolen. We don't accumulate 268 * stolen time for a vcore when it is inactive, or for a vcpu 269 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 270 * a misnomer; it means that the vcpu task is not executing in 271 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 272 * the kernel. We don't have any way of dividing up that time 273 * between time that the vcpu is genuinely stopped, time that 274 * the task is actively working on behalf of the vcpu, and time 275 * that the task is preempted, so we don't count any of it as 276 * stolen. 277 * 278 * Updates to busy_stolen are protected by arch.tbacct_lock; 279 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 280 * lock. The stolen times are measured in units of timebase ticks. 281 * (Note that the != TB_NIL checks below are purely defensive; 282 * they should never fail.) 283 */ 284 285 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 286 { 287 unsigned long flags; 288 289 spin_lock_irqsave(&vc->stoltb_lock, flags); 290 vc->preempt_tb = mftb(); 291 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 292 } 293 294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 295 { 296 unsigned long flags; 297 298 spin_lock_irqsave(&vc->stoltb_lock, flags); 299 if (vc->preempt_tb != TB_NIL) { 300 vc->stolen_tb += mftb() - vc->preempt_tb; 301 vc->preempt_tb = TB_NIL; 302 } 303 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 304 } 305 306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 307 { 308 struct kvmppc_vcore *vc = vcpu->arch.vcore; 309 unsigned long flags; 310 311 /* 312 * We can test vc->runner without taking the vcore lock, 313 * because only this task ever sets vc->runner to this 314 * vcpu, and once it is set to this vcpu, only this task 315 * ever sets it to NULL. 316 */ 317 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 318 kvmppc_core_end_stolen(vc); 319 320 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 321 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 322 vcpu->arch.busy_preempt != TB_NIL) { 323 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 324 vcpu->arch.busy_preempt = TB_NIL; 325 } 326 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 327 } 328 329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 330 { 331 struct kvmppc_vcore *vc = vcpu->arch.vcore; 332 unsigned long flags; 333 334 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 335 kvmppc_core_start_stolen(vc); 336 337 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 338 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 339 vcpu->arch.busy_preempt = mftb(); 340 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 341 } 342 343 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 344 { 345 vcpu->arch.pvr = pvr; 346 } 347 348 /* Dummy value used in computing PCR value below */ 349 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 350 351 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 352 { 353 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 354 struct kvmppc_vcore *vc = vcpu->arch.vcore; 355 356 /* We can (emulate) our own architecture version and anything older */ 357 if (cpu_has_feature(CPU_FTR_ARCH_300)) 358 host_pcr_bit = PCR_ARCH_300; 359 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 360 host_pcr_bit = PCR_ARCH_207; 361 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 362 host_pcr_bit = PCR_ARCH_206; 363 else 364 host_pcr_bit = PCR_ARCH_205; 365 366 /* Determine lowest PCR bit needed to run guest in given PVR level */ 367 guest_pcr_bit = host_pcr_bit; 368 if (arch_compat) { 369 switch (arch_compat) { 370 case PVR_ARCH_205: 371 guest_pcr_bit = PCR_ARCH_205; 372 break; 373 case PVR_ARCH_206: 374 case PVR_ARCH_206p: 375 guest_pcr_bit = PCR_ARCH_206; 376 break; 377 case PVR_ARCH_207: 378 guest_pcr_bit = PCR_ARCH_207; 379 break; 380 case PVR_ARCH_300: 381 guest_pcr_bit = PCR_ARCH_300; 382 break; 383 default: 384 return -EINVAL; 385 } 386 } 387 388 /* Check requested PCR bits don't exceed our capabilities */ 389 if (guest_pcr_bit > host_pcr_bit) 390 return -EINVAL; 391 392 spin_lock(&vc->lock); 393 vc->arch_compat = arch_compat; 394 /* 395 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 396 * Also set all reserved PCR bits 397 */ 398 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 399 spin_unlock(&vc->lock); 400 401 return 0; 402 } 403 404 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 405 { 406 int r; 407 408 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 409 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 410 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 411 for (r = 0; r < 16; ++r) 412 pr_err("r%2d = %.16lx r%d = %.16lx\n", 413 r, kvmppc_get_gpr(vcpu, r), 414 r+16, kvmppc_get_gpr(vcpu, r+16)); 415 pr_err("ctr = %.16lx lr = %.16lx\n", 416 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 417 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 418 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 419 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 420 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 421 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 422 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 423 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 424 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 425 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 426 pr_err("fault dar = %.16lx dsisr = %.8x\n", 427 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 428 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 429 for (r = 0; r < vcpu->arch.slb_max; ++r) 430 pr_err(" ESID = %.16llx VSID = %.16llx\n", 431 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 432 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 433 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 434 vcpu->arch.last_inst); 435 } 436 437 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 438 { 439 return kvm_get_vcpu_by_id(kvm, id); 440 } 441 442 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 443 { 444 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 445 vpa->yield_count = cpu_to_be32(1); 446 } 447 448 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 449 unsigned long addr, unsigned long len) 450 { 451 /* check address is cacheline aligned */ 452 if (addr & (L1_CACHE_BYTES - 1)) 453 return -EINVAL; 454 spin_lock(&vcpu->arch.vpa_update_lock); 455 if (v->next_gpa != addr || v->len != len) { 456 v->next_gpa = addr; 457 v->len = addr ? len : 0; 458 v->update_pending = 1; 459 } 460 spin_unlock(&vcpu->arch.vpa_update_lock); 461 return 0; 462 } 463 464 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 465 struct reg_vpa { 466 u32 dummy; 467 union { 468 __be16 hword; 469 __be32 word; 470 } length; 471 }; 472 473 static int vpa_is_registered(struct kvmppc_vpa *vpap) 474 { 475 if (vpap->update_pending) 476 return vpap->next_gpa != 0; 477 return vpap->pinned_addr != NULL; 478 } 479 480 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 481 unsigned long flags, 482 unsigned long vcpuid, unsigned long vpa) 483 { 484 struct kvm *kvm = vcpu->kvm; 485 unsigned long len, nb; 486 void *va; 487 struct kvm_vcpu *tvcpu; 488 int err; 489 int subfunc; 490 struct kvmppc_vpa *vpap; 491 492 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 493 if (!tvcpu) 494 return H_PARAMETER; 495 496 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 497 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 498 subfunc == H_VPA_REG_SLB) { 499 /* Registering new area - address must be cache-line aligned */ 500 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 501 return H_PARAMETER; 502 503 /* convert logical addr to kernel addr and read length */ 504 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 505 if (va == NULL) 506 return H_PARAMETER; 507 if (subfunc == H_VPA_REG_VPA) 508 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 509 else 510 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 511 kvmppc_unpin_guest_page(kvm, va, vpa, false); 512 513 /* Check length */ 514 if (len > nb || len < sizeof(struct reg_vpa)) 515 return H_PARAMETER; 516 } else { 517 vpa = 0; 518 len = 0; 519 } 520 521 err = H_PARAMETER; 522 vpap = NULL; 523 spin_lock(&tvcpu->arch.vpa_update_lock); 524 525 switch (subfunc) { 526 case H_VPA_REG_VPA: /* register VPA */ 527 /* 528 * The size of our lppaca is 1kB because of the way we align 529 * it for the guest to avoid crossing a 4kB boundary. We only 530 * use 640 bytes of the structure though, so we should accept 531 * clients that set a size of 640. 532 */ 533 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 534 if (len < sizeof(struct lppaca)) 535 break; 536 vpap = &tvcpu->arch.vpa; 537 err = 0; 538 break; 539 540 case H_VPA_REG_DTL: /* register DTL */ 541 if (len < sizeof(struct dtl_entry)) 542 break; 543 len -= len % sizeof(struct dtl_entry); 544 545 /* Check that they have previously registered a VPA */ 546 err = H_RESOURCE; 547 if (!vpa_is_registered(&tvcpu->arch.vpa)) 548 break; 549 550 vpap = &tvcpu->arch.dtl; 551 err = 0; 552 break; 553 554 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 555 /* Check that they have previously registered a VPA */ 556 err = H_RESOURCE; 557 if (!vpa_is_registered(&tvcpu->arch.vpa)) 558 break; 559 560 vpap = &tvcpu->arch.slb_shadow; 561 err = 0; 562 break; 563 564 case H_VPA_DEREG_VPA: /* deregister VPA */ 565 /* Check they don't still have a DTL or SLB buf registered */ 566 err = H_RESOURCE; 567 if (vpa_is_registered(&tvcpu->arch.dtl) || 568 vpa_is_registered(&tvcpu->arch.slb_shadow)) 569 break; 570 571 vpap = &tvcpu->arch.vpa; 572 err = 0; 573 break; 574 575 case H_VPA_DEREG_DTL: /* deregister DTL */ 576 vpap = &tvcpu->arch.dtl; 577 err = 0; 578 break; 579 580 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 581 vpap = &tvcpu->arch.slb_shadow; 582 err = 0; 583 break; 584 } 585 586 if (vpap) { 587 vpap->next_gpa = vpa; 588 vpap->len = len; 589 vpap->update_pending = 1; 590 } 591 592 spin_unlock(&tvcpu->arch.vpa_update_lock); 593 594 return err; 595 } 596 597 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 598 { 599 struct kvm *kvm = vcpu->kvm; 600 void *va; 601 unsigned long nb; 602 unsigned long gpa; 603 604 /* 605 * We need to pin the page pointed to by vpap->next_gpa, 606 * but we can't call kvmppc_pin_guest_page under the lock 607 * as it does get_user_pages() and down_read(). So we 608 * have to drop the lock, pin the page, then get the lock 609 * again and check that a new area didn't get registered 610 * in the meantime. 611 */ 612 for (;;) { 613 gpa = vpap->next_gpa; 614 spin_unlock(&vcpu->arch.vpa_update_lock); 615 va = NULL; 616 nb = 0; 617 if (gpa) 618 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 619 spin_lock(&vcpu->arch.vpa_update_lock); 620 if (gpa == vpap->next_gpa) 621 break; 622 /* sigh... unpin that one and try again */ 623 if (va) 624 kvmppc_unpin_guest_page(kvm, va, gpa, false); 625 } 626 627 vpap->update_pending = 0; 628 if (va && nb < vpap->len) { 629 /* 630 * If it's now too short, it must be that userspace 631 * has changed the mappings underlying guest memory, 632 * so unregister the region. 633 */ 634 kvmppc_unpin_guest_page(kvm, va, gpa, false); 635 va = NULL; 636 } 637 if (vpap->pinned_addr) 638 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 639 vpap->dirty); 640 vpap->gpa = gpa; 641 vpap->pinned_addr = va; 642 vpap->dirty = false; 643 if (va) 644 vpap->pinned_end = va + vpap->len; 645 } 646 647 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 648 { 649 if (!(vcpu->arch.vpa.update_pending || 650 vcpu->arch.slb_shadow.update_pending || 651 vcpu->arch.dtl.update_pending)) 652 return; 653 654 spin_lock(&vcpu->arch.vpa_update_lock); 655 if (vcpu->arch.vpa.update_pending) { 656 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 657 if (vcpu->arch.vpa.pinned_addr) 658 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 659 } 660 if (vcpu->arch.dtl.update_pending) { 661 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 662 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 663 vcpu->arch.dtl_index = 0; 664 } 665 if (vcpu->arch.slb_shadow.update_pending) 666 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 667 spin_unlock(&vcpu->arch.vpa_update_lock); 668 } 669 670 /* 671 * Return the accumulated stolen time for the vcore up until `now'. 672 * The caller should hold the vcore lock. 673 */ 674 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 675 { 676 u64 p; 677 unsigned long flags; 678 679 spin_lock_irqsave(&vc->stoltb_lock, flags); 680 p = vc->stolen_tb; 681 if (vc->vcore_state != VCORE_INACTIVE && 682 vc->preempt_tb != TB_NIL) 683 p += now - vc->preempt_tb; 684 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 685 return p; 686 } 687 688 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 689 struct kvmppc_vcore *vc) 690 { 691 struct dtl_entry *dt; 692 struct lppaca *vpa; 693 unsigned long stolen; 694 unsigned long core_stolen; 695 u64 now; 696 unsigned long flags; 697 698 dt = vcpu->arch.dtl_ptr; 699 vpa = vcpu->arch.vpa.pinned_addr; 700 now = mftb(); 701 core_stolen = vcore_stolen_time(vc, now); 702 stolen = core_stolen - vcpu->arch.stolen_logged; 703 vcpu->arch.stolen_logged = core_stolen; 704 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 705 stolen += vcpu->arch.busy_stolen; 706 vcpu->arch.busy_stolen = 0; 707 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 708 if (!dt || !vpa) 709 return; 710 memset(dt, 0, sizeof(struct dtl_entry)); 711 dt->dispatch_reason = 7; 712 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 713 dt->timebase = cpu_to_be64(now + vc->tb_offset); 714 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 715 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 716 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 717 ++dt; 718 if (dt == vcpu->arch.dtl.pinned_end) 719 dt = vcpu->arch.dtl.pinned_addr; 720 vcpu->arch.dtl_ptr = dt; 721 /* order writing *dt vs. writing vpa->dtl_idx */ 722 smp_wmb(); 723 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 724 vcpu->arch.dtl.dirty = true; 725 } 726 727 /* See if there is a doorbell interrupt pending for a vcpu */ 728 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 729 { 730 int thr; 731 struct kvmppc_vcore *vc; 732 733 if (vcpu->arch.doorbell_request) 734 return true; 735 /* 736 * Ensure that the read of vcore->dpdes comes after the read 737 * of vcpu->doorbell_request. This barrier matches the 738 * smp_wmb() in kvmppc_guest_entry_inject(). 739 */ 740 smp_rmb(); 741 vc = vcpu->arch.vcore; 742 thr = vcpu->vcpu_id - vc->first_vcpuid; 743 return !!(vc->dpdes & (1 << thr)); 744 } 745 746 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 747 { 748 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 749 return true; 750 if ((!vcpu->arch.vcore->arch_compat) && 751 cpu_has_feature(CPU_FTR_ARCH_207S)) 752 return true; 753 return false; 754 } 755 756 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 757 unsigned long resource, unsigned long value1, 758 unsigned long value2) 759 { 760 switch (resource) { 761 case H_SET_MODE_RESOURCE_SET_CIABR: 762 if (!kvmppc_power8_compatible(vcpu)) 763 return H_P2; 764 if (value2) 765 return H_P4; 766 if (mflags) 767 return H_UNSUPPORTED_FLAG_START; 768 /* Guests can't breakpoint the hypervisor */ 769 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 770 return H_P3; 771 vcpu->arch.ciabr = value1; 772 return H_SUCCESS; 773 case H_SET_MODE_RESOURCE_SET_DAWR: 774 if (!kvmppc_power8_compatible(vcpu)) 775 return H_P2; 776 if (!ppc_breakpoint_available()) 777 return H_P2; 778 if (mflags) 779 return H_UNSUPPORTED_FLAG_START; 780 if (value2 & DABRX_HYP) 781 return H_P4; 782 vcpu->arch.dawr = value1; 783 vcpu->arch.dawrx = value2; 784 return H_SUCCESS; 785 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 786 /* KVM does not support mflags=2 (AIL=2) */ 787 if (mflags != 0 && mflags != 3) 788 return H_UNSUPPORTED_FLAG_START; 789 return H_TOO_HARD; 790 default: 791 return H_TOO_HARD; 792 } 793 } 794 795 /* Copy guest memory in place - must reside within a single memslot */ 796 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 797 unsigned long len) 798 { 799 struct kvm_memory_slot *to_memslot = NULL; 800 struct kvm_memory_slot *from_memslot = NULL; 801 unsigned long to_addr, from_addr; 802 int r; 803 804 /* Get HPA for from address */ 805 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 806 if (!from_memslot) 807 return -EFAULT; 808 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 809 << PAGE_SHIFT)) 810 return -EINVAL; 811 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 812 if (kvm_is_error_hva(from_addr)) 813 return -EFAULT; 814 from_addr |= (from & (PAGE_SIZE - 1)); 815 816 /* Get HPA for to address */ 817 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 818 if (!to_memslot) 819 return -EFAULT; 820 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 821 << PAGE_SHIFT)) 822 return -EINVAL; 823 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 824 if (kvm_is_error_hva(to_addr)) 825 return -EFAULT; 826 to_addr |= (to & (PAGE_SIZE - 1)); 827 828 /* Perform copy */ 829 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 830 len); 831 if (r) 832 return -EFAULT; 833 mark_page_dirty(kvm, to >> PAGE_SHIFT); 834 return 0; 835 } 836 837 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 838 unsigned long dest, unsigned long src) 839 { 840 u64 pg_sz = SZ_4K; /* 4K page size */ 841 u64 pg_mask = SZ_4K - 1; 842 int ret; 843 844 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 845 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 846 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 847 return H_PARAMETER; 848 849 /* dest (and src if copy_page flag set) must be page aligned */ 850 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 851 return H_PARAMETER; 852 853 /* zero and/or copy the page as determined by the flags */ 854 if (flags & H_COPY_PAGE) { 855 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 856 if (ret < 0) 857 return H_PARAMETER; 858 } else if (flags & H_ZERO_PAGE) { 859 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 860 if (ret < 0) 861 return H_PARAMETER; 862 } 863 864 /* We can ignore the remaining flags */ 865 866 return H_SUCCESS; 867 } 868 869 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 870 { 871 struct kvmppc_vcore *vcore = target->arch.vcore; 872 873 /* 874 * We expect to have been called by the real mode handler 875 * (kvmppc_rm_h_confer()) which would have directly returned 876 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 877 * have useful work to do and should not confer) so we don't 878 * recheck that here. 879 */ 880 881 spin_lock(&vcore->lock); 882 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 883 vcore->vcore_state != VCORE_INACTIVE && 884 vcore->runner) 885 target = vcore->runner; 886 spin_unlock(&vcore->lock); 887 888 return kvm_vcpu_yield_to(target); 889 } 890 891 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 892 { 893 int yield_count = 0; 894 struct lppaca *lppaca; 895 896 spin_lock(&vcpu->arch.vpa_update_lock); 897 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 898 if (lppaca) 899 yield_count = be32_to_cpu(lppaca->yield_count); 900 spin_unlock(&vcpu->arch.vpa_update_lock); 901 return yield_count; 902 } 903 904 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 905 { 906 unsigned long req = kvmppc_get_gpr(vcpu, 3); 907 unsigned long target, ret = H_SUCCESS; 908 int yield_count; 909 struct kvm_vcpu *tvcpu; 910 int idx, rc; 911 912 if (req <= MAX_HCALL_OPCODE && 913 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 914 return RESUME_HOST; 915 916 switch (req) { 917 case H_CEDE: 918 break; 919 case H_PROD: 920 target = kvmppc_get_gpr(vcpu, 4); 921 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 922 if (!tvcpu) { 923 ret = H_PARAMETER; 924 break; 925 } 926 tvcpu->arch.prodded = 1; 927 smp_mb(); 928 if (tvcpu->arch.ceded) 929 kvmppc_fast_vcpu_kick_hv(tvcpu); 930 break; 931 case H_CONFER: 932 target = kvmppc_get_gpr(vcpu, 4); 933 if (target == -1) 934 break; 935 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 936 if (!tvcpu) { 937 ret = H_PARAMETER; 938 break; 939 } 940 yield_count = kvmppc_get_gpr(vcpu, 5); 941 if (kvmppc_get_yield_count(tvcpu) != yield_count) 942 break; 943 kvm_arch_vcpu_yield_to(tvcpu); 944 break; 945 case H_REGISTER_VPA: 946 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 947 kvmppc_get_gpr(vcpu, 5), 948 kvmppc_get_gpr(vcpu, 6)); 949 break; 950 case H_RTAS: 951 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 952 return RESUME_HOST; 953 954 idx = srcu_read_lock(&vcpu->kvm->srcu); 955 rc = kvmppc_rtas_hcall(vcpu); 956 srcu_read_unlock(&vcpu->kvm->srcu, idx); 957 958 if (rc == -ENOENT) 959 return RESUME_HOST; 960 else if (rc == 0) 961 break; 962 963 /* Send the error out to userspace via KVM_RUN */ 964 return rc; 965 case H_LOGICAL_CI_LOAD: 966 ret = kvmppc_h_logical_ci_load(vcpu); 967 if (ret == H_TOO_HARD) 968 return RESUME_HOST; 969 break; 970 case H_LOGICAL_CI_STORE: 971 ret = kvmppc_h_logical_ci_store(vcpu); 972 if (ret == H_TOO_HARD) 973 return RESUME_HOST; 974 break; 975 case H_SET_MODE: 976 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 977 kvmppc_get_gpr(vcpu, 5), 978 kvmppc_get_gpr(vcpu, 6), 979 kvmppc_get_gpr(vcpu, 7)); 980 if (ret == H_TOO_HARD) 981 return RESUME_HOST; 982 break; 983 case H_XIRR: 984 case H_CPPR: 985 case H_EOI: 986 case H_IPI: 987 case H_IPOLL: 988 case H_XIRR_X: 989 if (kvmppc_xics_enabled(vcpu)) { 990 if (xics_on_xive()) { 991 ret = H_NOT_AVAILABLE; 992 return RESUME_GUEST; 993 } 994 ret = kvmppc_xics_hcall(vcpu, req); 995 break; 996 } 997 return RESUME_HOST; 998 case H_SET_DABR: 999 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1000 break; 1001 case H_SET_XDABR: 1002 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1003 kvmppc_get_gpr(vcpu, 5)); 1004 break; 1005 #ifdef CONFIG_SPAPR_TCE_IOMMU 1006 case H_GET_TCE: 1007 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1008 kvmppc_get_gpr(vcpu, 5)); 1009 if (ret == H_TOO_HARD) 1010 return RESUME_HOST; 1011 break; 1012 case H_PUT_TCE: 1013 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1014 kvmppc_get_gpr(vcpu, 5), 1015 kvmppc_get_gpr(vcpu, 6)); 1016 if (ret == H_TOO_HARD) 1017 return RESUME_HOST; 1018 break; 1019 case H_PUT_TCE_INDIRECT: 1020 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1021 kvmppc_get_gpr(vcpu, 5), 1022 kvmppc_get_gpr(vcpu, 6), 1023 kvmppc_get_gpr(vcpu, 7)); 1024 if (ret == H_TOO_HARD) 1025 return RESUME_HOST; 1026 break; 1027 case H_STUFF_TCE: 1028 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1029 kvmppc_get_gpr(vcpu, 5), 1030 kvmppc_get_gpr(vcpu, 6), 1031 kvmppc_get_gpr(vcpu, 7)); 1032 if (ret == H_TOO_HARD) 1033 return RESUME_HOST; 1034 break; 1035 #endif 1036 case H_RANDOM: 1037 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1038 ret = H_HARDWARE; 1039 break; 1040 1041 case H_SET_PARTITION_TABLE: 1042 ret = H_FUNCTION; 1043 if (nesting_enabled(vcpu->kvm)) 1044 ret = kvmhv_set_partition_table(vcpu); 1045 break; 1046 case H_ENTER_NESTED: 1047 ret = H_FUNCTION; 1048 if (!nesting_enabled(vcpu->kvm)) 1049 break; 1050 ret = kvmhv_enter_nested_guest(vcpu); 1051 if (ret == H_INTERRUPT) { 1052 kvmppc_set_gpr(vcpu, 3, 0); 1053 vcpu->arch.hcall_needed = 0; 1054 return -EINTR; 1055 } else if (ret == H_TOO_HARD) { 1056 kvmppc_set_gpr(vcpu, 3, 0); 1057 vcpu->arch.hcall_needed = 0; 1058 return RESUME_HOST; 1059 } 1060 break; 1061 case H_TLB_INVALIDATE: 1062 ret = H_FUNCTION; 1063 if (nesting_enabled(vcpu->kvm)) 1064 ret = kvmhv_do_nested_tlbie(vcpu); 1065 break; 1066 case H_COPY_TOFROM_GUEST: 1067 ret = H_FUNCTION; 1068 if (nesting_enabled(vcpu->kvm)) 1069 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1070 break; 1071 case H_PAGE_INIT: 1072 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1073 kvmppc_get_gpr(vcpu, 5), 1074 kvmppc_get_gpr(vcpu, 6)); 1075 break; 1076 case H_SVM_PAGE_IN: 1077 ret = kvmppc_h_svm_page_in(vcpu->kvm, 1078 kvmppc_get_gpr(vcpu, 4), 1079 kvmppc_get_gpr(vcpu, 5), 1080 kvmppc_get_gpr(vcpu, 6)); 1081 break; 1082 case H_SVM_PAGE_OUT: 1083 ret = kvmppc_h_svm_page_out(vcpu->kvm, 1084 kvmppc_get_gpr(vcpu, 4), 1085 kvmppc_get_gpr(vcpu, 5), 1086 kvmppc_get_gpr(vcpu, 6)); 1087 break; 1088 case H_SVM_INIT_START: 1089 ret = kvmppc_h_svm_init_start(vcpu->kvm); 1090 break; 1091 case H_SVM_INIT_DONE: 1092 ret = kvmppc_h_svm_init_done(vcpu->kvm); 1093 break; 1094 1095 default: 1096 return RESUME_HOST; 1097 } 1098 kvmppc_set_gpr(vcpu, 3, ret); 1099 vcpu->arch.hcall_needed = 0; 1100 return RESUME_GUEST; 1101 } 1102 1103 /* 1104 * Handle H_CEDE in the nested virtualization case where we haven't 1105 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1106 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1107 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1108 */ 1109 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1110 { 1111 vcpu->arch.shregs.msr |= MSR_EE; 1112 vcpu->arch.ceded = 1; 1113 smp_mb(); 1114 if (vcpu->arch.prodded) { 1115 vcpu->arch.prodded = 0; 1116 smp_mb(); 1117 vcpu->arch.ceded = 0; 1118 } 1119 } 1120 1121 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1122 { 1123 switch (cmd) { 1124 case H_CEDE: 1125 case H_PROD: 1126 case H_CONFER: 1127 case H_REGISTER_VPA: 1128 case H_SET_MODE: 1129 case H_LOGICAL_CI_LOAD: 1130 case H_LOGICAL_CI_STORE: 1131 #ifdef CONFIG_KVM_XICS 1132 case H_XIRR: 1133 case H_CPPR: 1134 case H_EOI: 1135 case H_IPI: 1136 case H_IPOLL: 1137 case H_XIRR_X: 1138 #endif 1139 case H_PAGE_INIT: 1140 return 1; 1141 } 1142 1143 /* See if it's in the real-mode table */ 1144 return kvmppc_hcall_impl_hv_realmode(cmd); 1145 } 1146 1147 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 1148 struct kvm_vcpu *vcpu) 1149 { 1150 u32 last_inst; 1151 1152 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1153 EMULATE_DONE) { 1154 /* 1155 * Fetch failed, so return to guest and 1156 * try executing it again. 1157 */ 1158 return RESUME_GUEST; 1159 } 1160 1161 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1162 run->exit_reason = KVM_EXIT_DEBUG; 1163 run->debug.arch.address = kvmppc_get_pc(vcpu); 1164 return RESUME_HOST; 1165 } else { 1166 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1167 return RESUME_GUEST; 1168 } 1169 } 1170 1171 static void do_nothing(void *x) 1172 { 1173 } 1174 1175 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1176 { 1177 int thr, cpu, pcpu, nthreads; 1178 struct kvm_vcpu *v; 1179 unsigned long dpdes; 1180 1181 nthreads = vcpu->kvm->arch.emul_smt_mode; 1182 dpdes = 0; 1183 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1184 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1185 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1186 if (!v) 1187 continue; 1188 /* 1189 * If the vcpu is currently running on a physical cpu thread, 1190 * interrupt it in order to pull it out of the guest briefly, 1191 * which will update its vcore->dpdes value. 1192 */ 1193 pcpu = READ_ONCE(v->cpu); 1194 if (pcpu >= 0) 1195 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1196 if (kvmppc_doorbell_pending(v)) 1197 dpdes |= 1 << thr; 1198 } 1199 return dpdes; 1200 } 1201 1202 /* 1203 * On POWER9, emulate doorbell-related instructions in order to 1204 * give the guest the illusion of running on a multi-threaded core. 1205 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1206 * and mfspr DPDES. 1207 */ 1208 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1209 { 1210 u32 inst, rb, thr; 1211 unsigned long arg; 1212 struct kvm *kvm = vcpu->kvm; 1213 struct kvm_vcpu *tvcpu; 1214 1215 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1216 return RESUME_GUEST; 1217 if (get_op(inst) != 31) 1218 return EMULATE_FAIL; 1219 rb = get_rb(inst); 1220 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1221 switch (get_xop(inst)) { 1222 case OP_31_XOP_MSGSNDP: 1223 arg = kvmppc_get_gpr(vcpu, rb); 1224 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1225 break; 1226 arg &= 0x3f; 1227 if (arg >= kvm->arch.emul_smt_mode) 1228 break; 1229 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1230 if (!tvcpu) 1231 break; 1232 if (!tvcpu->arch.doorbell_request) { 1233 tvcpu->arch.doorbell_request = 1; 1234 kvmppc_fast_vcpu_kick_hv(tvcpu); 1235 } 1236 break; 1237 case OP_31_XOP_MSGCLRP: 1238 arg = kvmppc_get_gpr(vcpu, rb); 1239 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1240 break; 1241 vcpu->arch.vcore->dpdes = 0; 1242 vcpu->arch.doorbell_request = 0; 1243 break; 1244 case OP_31_XOP_MFSPR: 1245 switch (get_sprn(inst)) { 1246 case SPRN_TIR: 1247 arg = thr; 1248 break; 1249 case SPRN_DPDES: 1250 arg = kvmppc_read_dpdes(vcpu); 1251 break; 1252 default: 1253 return EMULATE_FAIL; 1254 } 1255 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1256 break; 1257 default: 1258 return EMULATE_FAIL; 1259 } 1260 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1261 return RESUME_GUEST; 1262 } 1263 1264 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1265 struct task_struct *tsk) 1266 { 1267 int r = RESUME_HOST; 1268 1269 vcpu->stat.sum_exits++; 1270 1271 /* 1272 * This can happen if an interrupt occurs in the last stages 1273 * of guest entry or the first stages of guest exit (i.e. after 1274 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1275 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1276 * That can happen due to a bug, or due to a machine check 1277 * occurring at just the wrong time. 1278 */ 1279 if (vcpu->arch.shregs.msr & MSR_HV) { 1280 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1281 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1282 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1283 vcpu->arch.shregs.msr); 1284 kvmppc_dump_regs(vcpu); 1285 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1286 run->hw.hardware_exit_reason = vcpu->arch.trap; 1287 return RESUME_HOST; 1288 } 1289 run->exit_reason = KVM_EXIT_UNKNOWN; 1290 run->ready_for_interrupt_injection = 1; 1291 switch (vcpu->arch.trap) { 1292 /* We're good on these - the host merely wanted to get our attention */ 1293 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1294 vcpu->stat.dec_exits++; 1295 r = RESUME_GUEST; 1296 break; 1297 case BOOK3S_INTERRUPT_EXTERNAL: 1298 case BOOK3S_INTERRUPT_H_DOORBELL: 1299 case BOOK3S_INTERRUPT_H_VIRT: 1300 vcpu->stat.ext_intr_exits++; 1301 r = RESUME_GUEST; 1302 break; 1303 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1304 case BOOK3S_INTERRUPT_HMI: 1305 case BOOK3S_INTERRUPT_PERFMON: 1306 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1307 r = RESUME_GUEST; 1308 break; 1309 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1310 /* Print the MCE event to host console. */ 1311 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1312 1313 /* 1314 * If the guest can do FWNMI, exit to userspace so it can 1315 * deliver a FWNMI to the guest. 1316 * Otherwise we synthesize a machine check for the guest 1317 * so that it knows that the machine check occurred. 1318 */ 1319 if (!vcpu->kvm->arch.fwnmi_enabled) { 1320 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1321 kvmppc_core_queue_machine_check(vcpu, flags); 1322 r = RESUME_GUEST; 1323 break; 1324 } 1325 1326 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1327 run->exit_reason = KVM_EXIT_NMI; 1328 run->hw.hardware_exit_reason = vcpu->arch.trap; 1329 /* Clear out the old NMI status from run->flags */ 1330 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1331 /* Now set the NMI status */ 1332 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1333 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1334 else 1335 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1336 1337 r = RESUME_HOST; 1338 break; 1339 case BOOK3S_INTERRUPT_PROGRAM: 1340 { 1341 ulong flags; 1342 /* 1343 * Normally program interrupts are delivered directly 1344 * to the guest by the hardware, but we can get here 1345 * as a result of a hypervisor emulation interrupt 1346 * (e40) getting turned into a 700 by BML RTAS. 1347 */ 1348 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1349 kvmppc_core_queue_program(vcpu, flags); 1350 r = RESUME_GUEST; 1351 break; 1352 } 1353 case BOOK3S_INTERRUPT_SYSCALL: 1354 { 1355 /* hcall - punt to userspace */ 1356 int i; 1357 1358 /* hypercall with MSR_PR has already been handled in rmode, 1359 * and never reaches here. 1360 */ 1361 1362 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1363 for (i = 0; i < 9; ++i) 1364 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1365 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1366 vcpu->arch.hcall_needed = 1; 1367 r = RESUME_HOST; 1368 break; 1369 } 1370 /* 1371 * We get these next two if the guest accesses a page which it thinks 1372 * it has mapped but which is not actually present, either because 1373 * it is for an emulated I/O device or because the corresonding 1374 * host page has been paged out. Any other HDSI/HISI interrupts 1375 * have been handled already. 1376 */ 1377 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1378 r = RESUME_PAGE_FAULT; 1379 break; 1380 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1381 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1382 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1383 DSISR_SRR1_MATCH_64S; 1384 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1385 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1386 r = RESUME_PAGE_FAULT; 1387 break; 1388 /* 1389 * This occurs if the guest executes an illegal instruction. 1390 * If the guest debug is disabled, generate a program interrupt 1391 * to the guest. If guest debug is enabled, we need to check 1392 * whether the instruction is a software breakpoint instruction. 1393 * Accordingly return to Guest or Host. 1394 */ 1395 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1396 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1397 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1398 swab32(vcpu->arch.emul_inst) : 1399 vcpu->arch.emul_inst; 1400 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1401 r = kvmppc_emulate_debug_inst(run, vcpu); 1402 } else { 1403 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1404 r = RESUME_GUEST; 1405 } 1406 break; 1407 /* 1408 * This occurs if the guest (kernel or userspace), does something that 1409 * is prohibited by HFSCR. 1410 * On POWER9, this could be a doorbell instruction that we need 1411 * to emulate. 1412 * Otherwise, we just generate a program interrupt to the guest. 1413 */ 1414 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1415 r = EMULATE_FAIL; 1416 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1417 cpu_has_feature(CPU_FTR_ARCH_300)) 1418 r = kvmppc_emulate_doorbell_instr(vcpu); 1419 if (r == EMULATE_FAIL) { 1420 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1421 r = RESUME_GUEST; 1422 } 1423 break; 1424 1425 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1426 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1427 /* 1428 * This occurs for various TM-related instructions that 1429 * we need to emulate on POWER9 DD2.2. We have already 1430 * handled the cases where the guest was in real-suspend 1431 * mode and was transitioning to transactional state. 1432 */ 1433 r = kvmhv_p9_tm_emulation(vcpu); 1434 break; 1435 #endif 1436 1437 case BOOK3S_INTERRUPT_HV_RM_HARD: 1438 r = RESUME_PASSTHROUGH; 1439 break; 1440 default: 1441 kvmppc_dump_regs(vcpu); 1442 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1443 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1444 vcpu->arch.shregs.msr); 1445 run->hw.hardware_exit_reason = vcpu->arch.trap; 1446 r = RESUME_HOST; 1447 break; 1448 } 1449 1450 return r; 1451 } 1452 1453 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1454 { 1455 int r; 1456 int srcu_idx; 1457 1458 vcpu->stat.sum_exits++; 1459 1460 /* 1461 * This can happen if an interrupt occurs in the last stages 1462 * of guest entry or the first stages of guest exit (i.e. after 1463 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1464 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1465 * That can happen due to a bug, or due to a machine check 1466 * occurring at just the wrong time. 1467 */ 1468 if (vcpu->arch.shregs.msr & MSR_HV) { 1469 pr_emerg("KVM trap in HV mode while nested!\n"); 1470 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1471 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1472 vcpu->arch.shregs.msr); 1473 kvmppc_dump_regs(vcpu); 1474 return RESUME_HOST; 1475 } 1476 switch (vcpu->arch.trap) { 1477 /* We're good on these - the host merely wanted to get our attention */ 1478 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1479 vcpu->stat.dec_exits++; 1480 r = RESUME_GUEST; 1481 break; 1482 case BOOK3S_INTERRUPT_EXTERNAL: 1483 vcpu->stat.ext_intr_exits++; 1484 r = RESUME_HOST; 1485 break; 1486 case BOOK3S_INTERRUPT_H_DOORBELL: 1487 case BOOK3S_INTERRUPT_H_VIRT: 1488 vcpu->stat.ext_intr_exits++; 1489 r = RESUME_GUEST; 1490 break; 1491 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1492 case BOOK3S_INTERRUPT_HMI: 1493 case BOOK3S_INTERRUPT_PERFMON: 1494 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1495 r = RESUME_GUEST; 1496 break; 1497 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1498 /* Pass the machine check to the L1 guest */ 1499 r = RESUME_HOST; 1500 /* Print the MCE event to host console. */ 1501 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1502 break; 1503 /* 1504 * We get these next two if the guest accesses a page which it thinks 1505 * it has mapped but which is not actually present, either because 1506 * it is for an emulated I/O device or because the corresonding 1507 * host page has been paged out. 1508 */ 1509 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1510 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1511 r = kvmhv_nested_page_fault(run, vcpu); 1512 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1513 break; 1514 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1515 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1516 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1517 DSISR_SRR1_MATCH_64S; 1518 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1519 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1520 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1521 r = kvmhv_nested_page_fault(run, vcpu); 1522 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1523 break; 1524 1525 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1526 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1527 /* 1528 * This occurs for various TM-related instructions that 1529 * we need to emulate on POWER9 DD2.2. We have already 1530 * handled the cases where the guest was in real-suspend 1531 * mode and was transitioning to transactional state. 1532 */ 1533 r = kvmhv_p9_tm_emulation(vcpu); 1534 break; 1535 #endif 1536 1537 case BOOK3S_INTERRUPT_HV_RM_HARD: 1538 vcpu->arch.trap = 0; 1539 r = RESUME_GUEST; 1540 if (!xics_on_xive()) 1541 kvmppc_xics_rm_complete(vcpu, 0); 1542 break; 1543 default: 1544 r = RESUME_HOST; 1545 break; 1546 } 1547 1548 return r; 1549 } 1550 1551 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1552 struct kvm_sregs *sregs) 1553 { 1554 int i; 1555 1556 memset(sregs, 0, sizeof(struct kvm_sregs)); 1557 sregs->pvr = vcpu->arch.pvr; 1558 for (i = 0; i < vcpu->arch.slb_max; i++) { 1559 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1560 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1561 } 1562 1563 return 0; 1564 } 1565 1566 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1567 struct kvm_sregs *sregs) 1568 { 1569 int i, j; 1570 1571 /* Only accept the same PVR as the host's, since we can't spoof it */ 1572 if (sregs->pvr != vcpu->arch.pvr) 1573 return -EINVAL; 1574 1575 j = 0; 1576 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1577 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1578 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1579 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1580 ++j; 1581 } 1582 } 1583 vcpu->arch.slb_max = j; 1584 1585 return 0; 1586 } 1587 1588 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1589 bool preserve_top32) 1590 { 1591 struct kvm *kvm = vcpu->kvm; 1592 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1593 u64 mask; 1594 1595 spin_lock(&vc->lock); 1596 /* 1597 * If ILE (interrupt little-endian) has changed, update the 1598 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1599 */ 1600 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1601 struct kvm_vcpu *vcpu; 1602 int i; 1603 1604 kvm_for_each_vcpu(i, vcpu, kvm) { 1605 if (vcpu->arch.vcore != vc) 1606 continue; 1607 if (new_lpcr & LPCR_ILE) 1608 vcpu->arch.intr_msr |= MSR_LE; 1609 else 1610 vcpu->arch.intr_msr &= ~MSR_LE; 1611 } 1612 } 1613 1614 /* 1615 * Userspace can only modify DPFD (default prefetch depth), 1616 * ILE (interrupt little-endian) and TC (translation control). 1617 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1618 */ 1619 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1620 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1621 mask |= LPCR_AIL; 1622 /* 1623 * On POWER9, allow userspace to enable large decrementer for the 1624 * guest, whether or not the host has it enabled. 1625 */ 1626 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1627 mask |= LPCR_LD; 1628 1629 /* Broken 32-bit version of LPCR must not clear top bits */ 1630 if (preserve_top32) 1631 mask &= 0xFFFFFFFF; 1632 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1633 spin_unlock(&vc->lock); 1634 } 1635 1636 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1637 union kvmppc_one_reg *val) 1638 { 1639 int r = 0; 1640 long int i; 1641 1642 switch (id) { 1643 case KVM_REG_PPC_DEBUG_INST: 1644 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1645 break; 1646 case KVM_REG_PPC_HIOR: 1647 *val = get_reg_val(id, 0); 1648 break; 1649 case KVM_REG_PPC_DABR: 1650 *val = get_reg_val(id, vcpu->arch.dabr); 1651 break; 1652 case KVM_REG_PPC_DABRX: 1653 *val = get_reg_val(id, vcpu->arch.dabrx); 1654 break; 1655 case KVM_REG_PPC_DSCR: 1656 *val = get_reg_val(id, vcpu->arch.dscr); 1657 break; 1658 case KVM_REG_PPC_PURR: 1659 *val = get_reg_val(id, vcpu->arch.purr); 1660 break; 1661 case KVM_REG_PPC_SPURR: 1662 *val = get_reg_val(id, vcpu->arch.spurr); 1663 break; 1664 case KVM_REG_PPC_AMR: 1665 *val = get_reg_val(id, vcpu->arch.amr); 1666 break; 1667 case KVM_REG_PPC_UAMOR: 1668 *val = get_reg_val(id, vcpu->arch.uamor); 1669 break; 1670 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1671 i = id - KVM_REG_PPC_MMCR0; 1672 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1673 break; 1674 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1675 i = id - KVM_REG_PPC_PMC1; 1676 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1677 break; 1678 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1679 i = id - KVM_REG_PPC_SPMC1; 1680 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1681 break; 1682 case KVM_REG_PPC_SIAR: 1683 *val = get_reg_val(id, vcpu->arch.siar); 1684 break; 1685 case KVM_REG_PPC_SDAR: 1686 *val = get_reg_val(id, vcpu->arch.sdar); 1687 break; 1688 case KVM_REG_PPC_SIER: 1689 *val = get_reg_val(id, vcpu->arch.sier); 1690 break; 1691 case KVM_REG_PPC_IAMR: 1692 *val = get_reg_val(id, vcpu->arch.iamr); 1693 break; 1694 case KVM_REG_PPC_PSPB: 1695 *val = get_reg_val(id, vcpu->arch.pspb); 1696 break; 1697 case KVM_REG_PPC_DPDES: 1698 /* 1699 * On POWER9, where we are emulating msgsndp etc., 1700 * we return 1 bit for each vcpu, which can come from 1701 * either vcore->dpdes or doorbell_request. 1702 * On POWER8, doorbell_request is 0. 1703 */ 1704 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1705 vcpu->arch.doorbell_request); 1706 break; 1707 case KVM_REG_PPC_VTB: 1708 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1709 break; 1710 case KVM_REG_PPC_DAWR: 1711 *val = get_reg_val(id, vcpu->arch.dawr); 1712 break; 1713 case KVM_REG_PPC_DAWRX: 1714 *val = get_reg_val(id, vcpu->arch.dawrx); 1715 break; 1716 case KVM_REG_PPC_CIABR: 1717 *val = get_reg_val(id, vcpu->arch.ciabr); 1718 break; 1719 case KVM_REG_PPC_CSIGR: 1720 *val = get_reg_val(id, vcpu->arch.csigr); 1721 break; 1722 case KVM_REG_PPC_TACR: 1723 *val = get_reg_val(id, vcpu->arch.tacr); 1724 break; 1725 case KVM_REG_PPC_TCSCR: 1726 *val = get_reg_val(id, vcpu->arch.tcscr); 1727 break; 1728 case KVM_REG_PPC_PID: 1729 *val = get_reg_val(id, vcpu->arch.pid); 1730 break; 1731 case KVM_REG_PPC_ACOP: 1732 *val = get_reg_val(id, vcpu->arch.acop); 1733 break; 1734 case KVM_REG_PPC_WORT: 1735 *val = get_reg_val(id, vcpu->arch.wort); 1736 break; 1737 case KVM_REG_PPC_TIDR: 1738 *val = get_reg_val(id, vcpu->arch.tid); 1739 break; 1740 case KVM_REG_PPC_PSSCR: 1741 *val = get_reg_val(id, vcpu->arch.psscr); 1742 break; 1743 case KVM_REG_PPC_VPA_ADDR: 1744 spin_lock(&vcpu->arch.vpa_update_lock); 1745 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1746 spin_unlock(&vcpu->arch.vpa_update_lock); 1747 break; 1748 case KVM_REG_PPC_VPA_SLB: 1749 spin_lock(&vcpu->arch.vpa_update_lock); 1750 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1751 val->vpaval.length = vcpu->arch.slb_shadow.len; 1752 spin_unlock(&vcpu->arch.vpa_update_lock); 1753 break; 1754 case KVM_REG_PPC_VPA_DTL: 1755 spin_lock(&vcpu->arch.vpa_update_lock); 1756 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1757 val->vpaval.length = vcpu->arch.dtl.len; 1758 spin_unlock(&vcpu->arch.vpa_update_lock); 1759 break; 1760 case KVM_REG_PPC_TB_OFFSET: 1761 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1762 break; 1763 case KVM_REG_PPC_LPCR: 1764 case KVM_REG_PPC_LPCR_64: 1765 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1766 break; 1767 case KVM_REG_PPC_PPR: 1768 *val = get_reg_val(id, vcpu->arch.ppr); 1769 break; 1770 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1771 case KVM_REG_PPC_TFHAR: 1772 *val = get_reg_val(id, vcpu->arch.tfhar); 1773 break; 1774 case KVM_REG_PPC_TFIAR: 1775 *val = get_reg_val(id, vcpu->arch.tfiar); 1776 break; 1777 case KVM_REG_PPC_TEXASR: 1778 *val = get_reg_val(id, vcpu->arch.texasr); 1779 break; 1780 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1781 i = id - KVM_REG_PPC_TM_GPR0; 1782 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1783 break; 1784 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1785 { 1786 int j; 1787 i = id - KVM_REG_PPC_TM_VSR0; 1788 if (i < 32) 1789 for (j = 0; j < TS_FPRWIDTH; j++) 1790 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1791 else { 1792 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1793 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1794 else 1795 r = -ENXIO; 1796 } 1797 break; 1798 } 1799 case KVM_REG_PPC_TM_CR: 1800 *val = get_reg_val(id, vcpu->arch.cr_tm); 1801 break; 1802 case KVM_REG_PPC_TM_XER: 1803 *val = get_reg_val(id, vcpu->arch.xer_tm); 1804 break; 1805 case KVM_REG_PPC_TM_LR: 1806 *val = get_reg_val(id, vcpu->arch.lr_tm); 1807 break; 1808 case KVM_REG_PPC_TM_CTR: 1809 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1810 break; 1811 case KVM_REG_PPC_TM_FPSCR: 1812 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1813 break; 1814 case KVM_REG_PPC_TM_AMR: 1815 *val = get_reg_val(id, vcpu->arch.amr_tm); 1816 break; 1817 case KVM_REG_PPC_TM_PPR: 1818 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1819 break; 1820 case KVM_REG_PPC_TM_VRSAVE: 1821 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1822 break; 1823 case KVM_REG_PPC_TM_VSCR: 1824 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1825 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1826 else 1827 r = -ENXIO; 1828 break; 1829 case KVM_REG_PPC_TM_DSCR: 1830 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1831 break; 1832 case KVM_REG_PPC_TM_TAR: 1833 *val = get_reg_val(id, vcpu->arch.tar_tm); 1834 break; 1835 #endif 1836 case KVM_REG_PPC_ARCH_COMPAT: 1837 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1838 break; 1839 case KVM_REG_PPC_DEC_EXPIRY: 1840 *val = get_reg_val(id, vcpu->arch.dec_expires + 1841 vcpu->arch.vcore->tb_offset); 1842 break; 1843 case KVM_REG_PPC_ONLINE: 1844 *val = get_reg_val(id, vcpu->arch.online); 1845 break; 1846 case KVM_REG_PPC_PTCR: 1847 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1848 break; 1849 default: 1850 r = -EINVAL; 1851 break; 1852 } 1853 1854 return r; 1855 } 1856 1857 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1858 union kvmppc_one_reg *val) 1859 { 1860 int r = 0; 1861 long int i; 1862 unsigned long addr, len; 1863 1864 switch (id) { 1865 case KVM_REG_PPC_HIOR: 1866 /* Only allow this to be set to zero */ 1867 if (set_reg_val(id, *val)) 1868 r = -EINVAL; 1869 break; 1870 case KVM_REG_PPC_DABR: 1871 vcpu->arch.dabr = set_reg_val(id, *val); 1872 break; 1873 case KVM_REG_PPC_DABRX: 1874 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1875 break; 1876 case KVM_REG_PPC_DSCR: 1877 vcpu->arch.dscr = set_reg_val(id, *val); 1878 break; 1879 case KVM_REG_PPC_PURR: 1880 vcpu->arch.purr = set_reg_val(id, *val); 1881 break; 1882 case KVM_REG_PPC_SPURR: 1883 vcpu->arch.spurr = set_reg_val(id, *val); 1884 break; 1885 case KVM_REG_PPC_AMR: 1886 vcpu->arch.amr = set_reg_val(id, *val); 1887 break; 1888 case KVM_REG_PPC_UAMOR: 1889 vcpu->arch.uamor = set_reg_val(id, *val); 1890 break; 1891 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1892 i = id - KVM_REG_PPC_MMCR0; 1893 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1894 break; 1895 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1896 i = id - KVM_REG_PPC_PMC1; 1897 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1898 break; 1899 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1900 i = id - KVM_REG_PPC_SPMC1; 1901 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1902 break; 1903 case KVM_REG_PPC_SIAR: 1904 vcpu->arch.siar = set_reg_val(id, *val); 1905 break; 1906 case KVM_REG_PPC_SDAR: 1907 vcpu->arch.sdar = set_reg_val(id, *val); 1908 break; 1909 case KVM_REG_PPC_SIER: 1910 vcpu->arch.sier = set_reg_val(id, *val); 1911 break; 1912 case KVM_REG_PPC_IAMR: 1913 vcpu->arch.iamr = set_reg_val(id, *val); 1914 break; 1915 case KVM_REG_PPC_PSPB: 1916 vcpu->arch.pspb = set_reg_val(id, *val); 1917 break; 1918 case KVM_REG_PPC_DPDES: 1919 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1920 break; 1921 case KVM_REG_PPC_VTB: 1922 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1923 break; 1924 case KVM_REG_PPC_DAWR: 1925 vcpu->arch.dawr = set_reg_val(id, *val); 1926 break; 1927 case KVM_REG_PPC_DAWRX: 1928 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1929 break; 1930 case KVM_REG_PPC_CIABR: 1931 vcpu->arch.ciabr = set_reg_val(id, *val); 1932 /* Don't allow setting breakpoints in hypervisor code */ 1933 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1934 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1935 break; 1936 case KVM_REG_PPC_CSIGR: 1937 vcpu->arch.csigr = set_reg_val(id, *val); 1938 break; 1939 case KVM_REG_PPC_TACR: 1940 vcpu->arch.tacr = set_reg_val(id, *val); 1941 break; 1942 case KVM_REG_PPC_TCSCR: 1943 vcpu->arch.tcscr = set_reg_val(id, *val); 1944 break; 1945 case KVM_REG_PPC_PID: 1946 vcpu->arch.pid = set_reg_val(id, *val); 1947 break; 1948 case KVM_REG_PPC_ACOP: 1949 vcpu->arch.acop = set_reg_val(id, *val); 1950 break; 1951 case KVM_REG_PPC_WORT: 1952 vcpu->arch.wort = set_reg_val(id, *val); 1953 break; 1954 case KVM_REG_PPC_TIDR: 1955 vcpu->arch.tid = set_reg_val(id, *val); 1956 break; 1957 case KVM_REG_PPC_PSSCR: 1958 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1959 break; 1960 case KVM_REG_PPC_VPA_ADDR: 1961 addr = set_reg_val(id, *val); 1962 r = -EINVAL; 1963 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1964 vcpu->arch.dtl.next_gpa)) 1965 break; 1966 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1967 break; 1968 case KVM_REG_PPC_VPA_SLB: 1969 addr = val->vpaval.addr; 1970 len = val->vpaval.length; 1971 r = -EINVAL; 1972 if (addr && !vcpu->arch.vpa.next_gpa) 1973 break; 1974 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1975 break; 1976 case KVM_REG_PPC_VPA_DTL: 1977 addr = val->vpaval.addr; 1978 len = val->vpaval.length; 1979 r = -EINVAL; 1980 if (addr && (len < sizeof(struct dtl_entry) || 1981 !vcpu->arch.vpa.next_gpa)) 1982 break; 1983 len -= len % sizeof(struct dtl_entry); 1984 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1985 break; 1986 case KVM_REG_PPC_TB_OFFSET: 1987 /* round up to multiple of 2^24 */ 1988 vcpu->arch.vcore->tb_offset = 1989 ALIGN(set_reg_val(id, *val), 1UL << 24); 1990 break; 1991 case KVM_REG_PPC_LPCR: 1992 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1993 break; 1994 case KVM_REG_PPC_LPCR_64: 1995 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1996 break; 1997 case KVM_REG_PPC_PPR: 1998 vcpu->arch.ppr = set_reg_val(id, *val); 1999 break; 2000 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2001 case KVM_REG_PPC_TFHAR: 2002 vcpu->arch.tfhar = set_reg_val(id, *val); 2003 break; 2004 case KVM_REG_PPC_TFIAR: 2005 vcpu->arch.tfiar = set_reg_val(id, *val); 2006 break; 2007 case KVM_REG_PPC_TEXASR: 2008 vcpu->arch.texasr = set_reg_val(id, *val); 2009 break; 2010 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2011 i = id - KVM_REG_PPC_TM_GPR0; 2012 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2013 break; 2014 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2015 { 2016 int j; 2017 i = id - KVM_REG_PPC_TM_VSR0; 2018 if (i < 32) 2019 for (j = 0; j < TS_FPRWIDTH; j++) 2020 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2021 else 2022 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2023 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2024 else 2025 r = -ENXIO; 2026 break; 2027 } 2028 case KVM_REG_PPC_TM_CR: 2029 vcpu->arch.cr_tm = set_reg_val(id, *val); 2030 break; 2031 case KVM_REG_PPC_TM_XER: 2032 vcpu->arch.xer_tm = set_reg_val(id, *val); 2033 break; 2034 case KVM_REG_PPC_TM_LR: 2035 vcpu->arch.lr_tm = set_reg_val(id, *val); 2036 break; 2037 case KVM_REG_PPC_TM_CTR: 2038 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2039 break; 2040 case KVM_REG_PPC_TM_FPSCR: 2041 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2042 break; 2043 case KVM_REG_PPC_TM_AMR: 2044 vcpu->arch.amr_tm = set_reg_val(id, *val); 2045 break; 2046 case KVM_REG_PPC_TM_PPR: 2047 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2048 break; 2049 case KVM_REG_PPC_TM_VRSAVE: 2050 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2051 break; 2052 case KVM_REG_PPC_TM_VSCR: 2053 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2054 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2055 else 2056 r = - ENXIO; 2057 break; 2058 case KVM_REG_PPC_TM_DSCR: 2059 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2060 break; 2061 case KVM_REG_PPC_TM_TAR: 2062 vcpu->arch.tar_tm = set_reg_val(id, *val); 2063 break; 2064 #endif 2065 case KVM_REG_PPC_ARCH_COMPAT: 2066 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2067 break; 2068 case KVM_REG_PPC_DEC_EXPIRY: 2069 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2070 vcpu->arch.vcore->tb_offset; 2071 break; 2072 case KVM_REG_PPC_ONLINE: 2073 i = set_reg_val(id, *val); 2074 if (i && !vcpu->arch.online) 2075 atomic_inc(&vcpu->arch.vcore->online_count); 2076 else if (!i && vcpu->arch.online) 2077 atomic_dec(&vcpu->arch.vcore->online_count); 2078 vcpu->arch.online = i; 2079 break; 2080 case KVM_REG_PPC_PTCR: 2081 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2082 break; 2083 default: 2084 r = -EINVAL; 2085 break; 2086 } 2087 2088 return r; 2089 } 2090 2091 /* 2092 * On POWER9, threads are independent and can be in different partitions. 2093 * Therefore we consider each thread to be a subcore. 2094 * There is a restriction that all threads have to be in the same 2095 * MMU mode (radix or HPT), unfortunately, but since we only support 2096 * HPT guests on a HPT host so far, that isn't an impediment yet. 2097 */ 2098 static int threads_per_vcore(struct kvm *kvm) 2099 { 2100 if (kvm->arch.threads_indep) 2101 return 1; 2102 return threads_per_subcore; 2103 } 2104 2105 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2106 { 2107 struct kvmppc_vcore *vcore; 2108 2109 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2110 2111 if (vcore == NULL) 2112 return NULL; 2113 2114 spin_lock_init(&vcore->lock); 2115 spin_lock_init(&vcore->stoltb_lock); 2116 init_swait_queue_head(&vcore->wq); 2117 vcore->preempt_tb = TB_NIL; 2118 vcore->lpcr = kvm->arch.lpcr; 2119 vcore->first_vcpuid = id; 2120 vcore->kvm = kvm; 2121 INIT_LIST_HEAD(&vcore->preempt_list); 2122 2123 return vcore; 2124 } 2125 2126 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2127 static struct debugfs_timings_element { 2128 const char *name; 2129 size_t offset; 2130 } timings[] = { 2131 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2132 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2133 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2134 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2135 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2136 }; 2137 2138 #define N_TIMINGS (ARRAY_SIZE(timings)) 2139 2140 struct debugfs_timings_state { 2141 struct kvm_vcpu *vcpu; 2142 unsigned int buflen; 2143 char buf[N_TIMINGS * 100]; 2144 }; 2145 2146 static int debugfs_timings_open(struct inode *inode, struct file *file) 2147 { 2148 struct kvm_vcpu *vcpu = inode->i_private; 2149 struct debugfs_timings_state *p; 2150 2151 p = kzalloc(sizeof(*p), GFP_KERNEL); 2152 if (!p) 2153 return -ENOMEM; 2154 2155 kvm_get_kvm(vcpu->kvm); 2156 p->vcpu = vcpu; 2157 file->private_data = p; 2158 2159 return nonseekable_open(inode, file); 2160 } 2161 2162 static int debugfs_timings_release(struct inode *inode, struct file *file) 2163 { 2164 struct debugfs_timings_state *p = file->private_data; 2165 2166 kvm_put_kvm(p->vcpu->kvm); 2167 kfree(p); 2168 return 0; 2169 } 2170 2171 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2172 size_t len, loff_t *ppos) 2173 { 2174 struct debugfs_timings_state *p = file->private_data; 2175 struct kvm_vcpu *vcpu = p->vcpu; 2176 char *s, *buf_end; 2177 struct kvmhv_tb_accumulator tb; 2178 u64 count; 2179 loff_t pos; 2180 ssize_t n; 2181 int i, loops; 2182 bool ok; 2183 2184 if (!p->buflen) { 2185 s = p->buf; 2186 buf_end = s + sizeof(p->buf); 2187 for (i = 0; i < N_TIMINGS; ++i) { 2188 struct kvmhv_tb_accumulator *acc; 2189 2190 acc = (struct kvmhv_tb_accumulator *) 2191 ((unsigned long)vcpu + timings[i].offset); 2192 ok = false; 2193 for (loops = 0; loops < 1000; ++loops) { 2194 count = acc->seqcount; 2195 if (!(count & 1)) { 2196 smp_rmb(); 2197 tb = *acc; 2198 smp_rmb(); 2199 if (count == acc->seqcount) { 2200 ok = true; 2201 break; 2202 } 2203 } 2204 udelay(1); 2205 } 2206 if (!ok) 2207 snprintf(s, buf_end - s, "%s: stuck\n", 2208 timings[i].name); 2209 else 2210 snprintf(s, buf_end - s, 2211 "%s: %llu %llu %llu %llu\n", 2212 timings[i].name, count / 2, 2213 tb_to_ns(tb.tb_total), 2214 tb_to_ns(tb.tb_min), 2215 tb_to_ns(tb.tb_max)); 2216 s += strlen(s); 2217 } 2218 p->buflen = s - p->buf; 2219 } 2220 2221 pos = *ppos; 2222 if (pos >= p->buflen) 2223 return 0; 2224 if (len > p->buflen - pos) 2225 len = p->buflen - pos; 2226 n = copy_to_user(buf, p->buf + pos, len); 2227 if (n) { 2228 if (n == len) 2229 return -EFAULT; 2230 len -= n; 2231 } 2232 *ppos = pos + len; 2233 return len; 2234 } 2235 2236 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2237 size_t len, loff_t *ppos) 2238 { 2239 return -EACCES; 2240 } 2241 2242 static const struct file_operations debugfs_timings_ops = { 2243 .owner = THIS_MODULE, 2244 .open = debugfs_timings_open, 2245 .release = debugfs_timings_release, 2246 .read = debugfs_timings_read, 2247 .write = debugfs_timings_write, 2248 .llseek = generic_file_llseek, 2249 }; 2250 2251 /* Create a debugfs directory for the vcpu */ 2252 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2253 { 2254 char buf[16]; 2255 struct kvm *kvm = vcpu->kvm; 2256 2257 snprintf(buf, sizeof(buf), "vcpu%u", id); 2258 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 2259 return; 2260 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2261 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 2262 return; 2263 vcpu->arch.debugfs_timings = 2264 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 2265 vcpu, &debugfs_timings_ops); 2266 } 2267 2268 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2269 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2270 { 2271 } 2272 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2273 2274 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 2275 unsigned int id) 2276 { 2277 struct kvm_vcpu *vcpu; 2278 int err; 2279 int core; 2280 struct kvmppc_vcore *vcore; 2281 2282 err = -ENOMEM; 2283 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2284 if (!vcpu) 2285 goto out; 2286 2287 err = kvm_vcpu_init(vcpu, kvm, id); 2288 if (err) 2289 goto free_vcpu; 2290 2291 vcpu->arch.shared = &vcpu->arch.shregs; 2292 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2293 /* 2294 * The shared struct is never shared on HV, 2295 * so we can always use host endianness 2296 */ 2297 #ifdef __BIG_ENDIAN__ 2298 vcpu->arch.shared_big_endian = true; 2299 #else 2300 vcpu->arch.shared_big_endian = false; 2301 #endif 2302 #endif 2303 vcpu->arch.mmcr[0] = MMCR0_FC; 2304 vcpu->arch.ctrl = CTRL_RUNLATCH; 2305 /* default to host PVR, since we can't spoof it */ 2306 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2307 spin_lock_init(&vcpu->arch.vpa_update_lock); 2308 spin_lock_init(&vcpu->arch.tbacct_lock); 2309 vcpu->arch.busy_preempt = TB_NIL; 2310 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2311 2312 /* 2313 * Set the default HFSCR for the guest from the host value. 2314 * This value is only used on POWER9. 2315 * On POWER9, we want to virtualize the doorbell facility, so we 2316 * don't set the HFSCR_MSGP bit, and that causes those instructions 2317 * to trap and then we emulate them. 2318 */ 2319 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2320 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2321 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2322 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2323 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2324 vcpu->arch.hfscr |= HFSCR_TM; 2325 } 2326 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2327 vcpu->arch.hfscr |= HFSCR_TM; 2328 2329 kvmppc_mmu_book3s_hv_init(vcpu); 2330 2331 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2332 2333 init_waitqueue_head(&vcpu->arch.cpu_run); 2334 2335 mutex_lock(&kvm->lock); 2336 vcore = NULL; 2337 err = -EINVAL; 2338 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2339 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2340 pr_devel("KVM: VCPU ID too high\n"); 2341 core = KVM_MAX_VCORES; 2342 } else { 2343 BUG_ON(kvm->arch.smt_mode != 1); 2344 core = kvmppc_pack_vcpu_id(kvm, id); 2345 } 2346 } else { 2347 core = id / kvm->arch.smt_mode; 2348 } 2349 if (core < KVM_MAX_VCORES) { 2350 vcore = kvm->arch.vcores[core]; 2351 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2352 pr_devel("KVM: collision on id %u", id); 2353 vcore = NULL; 2354 } else if (!vcore) { 2355 /* 2356 * Take mmu_setup_lock for mutual exclusion 2357 * with kvmppc_update_lpcr(). 2358 */ 2359 err = -ENOMEM; 2360 vcore = kvmppc_vcore_create(kvm, 2361 id & ~(kvm->arch.smt_mode - 1)); 2362 mutex_lock(&kvm->arch.mmu_setup_lock); 2363 kvm->arch.vcores[core] = vcore; 2364 kvm->arch.online_vcores++; 2365 mutex_unlock(&kvm->arch.mmu_setup_lock); 2366 } 2367 } 2368 mutex_unlock(&kvm->lock); 2369 2370 if (!vcore) 2371 goto free_vcpu; 2372 2373 spin_lock(&vcore->lock); 2374 ++vcore->num_threads; 2375 spin_unlock(&vcore->lock); 2376 vcpu->arch.vcore = vcore; 2377 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2378 vcpu->arch.thread_cpu = -1; 2379 vcpu->arch.prev_cpu = -1; 2380 2381 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2382 kvmppc_sanity_check(vcpu); 2383 2384 debugfs_vcpu_init(vcpu, id); 2385 2386 return vcpu; 2387 2388 free_vcpu: 2389 kmem_cache_free(kvm_vcpu_cache, vcpu); 2390 out: 2391 return ERR_PTR(err); 2392 } 2393 2394 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2395 unsigned long flags) 2396 { 2397 int err; 2398 int esmt = 0; 2399 2400 if (flags) 2401 return -EINVAL; 2402 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2403 return -EINVAL; 2404 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2405 /* 2406 * On POWER8 (or POWER7), the threading mode is "strict", 2407 * so we pack smt_mode vcpus per vcore. 2408 */ 2409 if (smt_mode > threads_per_subcore) 2410 return -EINVAL; 2411 } else { 2412 /* 2413 * On POWER9, the threading mode is "loose", 2414 * so each vcpu gets its own vcore. 2415 */ 2416 esmt = smt_mode; 2417 smt_mode = 1; 2418 } 2419 mutex_lock(&kvm->lock); 2420 err = -EBUSY; 2421 if (!kvm->arch.online_vcores) { 2422 kvm->arch.smt_mode = smt_mode; 2423 kvm->arch.emul_smt_mode = esmt; 2424 err = 0; 2425 } 2426 mutex_unlock(&kvm->lock); 2427 2428 return err; 2429 } 2430 2431 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2432 { 2433 if (vpa->pinned_addr) 2434 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2435 vpa->dirty); 2436 } 2437 2438 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2439 { 2440 spin_lock(&vcpu->arch.vpa_update_lock); 2441 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2442 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2443 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2444 spin_unlock(&vcpu->arch.vpa_update_lock); 2445 kvm_vcpu_uninit(vcpu); 2446 kmem_cache_free(kvm_vcpu_cache, vcpu); 2447 } 2448 2449 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2450 { 2451 /* Indicate we want to get back into the guest */ 2452 return 1; 2453 } 2454 2455 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2456 { 2457 unsigned long dec_nsec, now; 2458 2459 now = get_tb(); 2460 if (now > vcpu->arch.dec_expires) { 2461 /* decrementer has already gone negative */ 2462 kvmppc_core_queue_dec(vcpu); 2463 kvmppc_core_prepare_to_enter(vcpu); 2464 return; 2465 } 2466 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2467 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2468 vcpu->arch.timer_running = 1; 2469 } 2470 2471 extern int __kvmppc_vcore_entry(void); 2472 2473 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2474 struct kvm_vcpu *vcpu) 2475 { 2476 u64 now; 2477 2478 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2479 return; 2480 spin_lock_irq(&vcpu->arch.tbacct_lock); 2481 now = mftb(); 2482 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2483 vcpu->arch.stolen_logged; 2484 vcpu->arch.busy_preempt = now; 2485 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2486 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2487 --vc->n_runnable; 2488 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2489 } 2490 2491 static int kvmppc_grab_hwthread(int cpu) 2492 { 2493 struct paca_struct *tpaca; 2494 long timeout = 10000; 2495 2496 tpaca = paca_ptrs[cpu]; 2497 2498 /* Ensure the thread won't go into the kernel if it wakes */ 2499 tpaca->kvm_hstate.kvm_vcpu = NULL; 2500 tpaca->kvm_hstate.kvm_vcore = NULL; 2501 tpaca->kvm_hstate.napping = 0; 2502 smp_wmb(); 2503 tpaca->kvm_hstate.hwthread_req = 1; 2504 2505 /* 2506 * If the thread is already executing in the kernel (e.g. handling 2507 * a stray interrupt), wait for it to get back to nap mode. 2508 * The smp_mb() is to ensure that our setting of hwthread_req 2509 * is visible before we look at hwthread_state, so if this 2510 * races with the code at system_reset_pSeries and the thread 2511 * misses our setting of hwthread_req, we are sure to see its 2512 * setting of hwthread_state, and vice versa. 2513 */ 2514 smp_mb(); 2515 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2516 if (--timeout <= 0) { 2517 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2518 return -EBUSY; 2519 } 2520 udelay(1); 2521 } 2522 return 0; 2523 } 2524 2525 static void kvmppc_release_hwthread(int cpu) 2526 { 2527 struct paca_struct *tpaca; 2528 2529 tpaca = paca_ptrs[cpu]; 2530 tpaca->kvm_hstate.hwthread_req = 0; 2531 tpaca->kvm_hstate.kvm_vcpu = NULL; 2532 tpaca->kvm_hstate.kvm_vcore = NULL; 2533 tpaca->kvm_hstate.kvm_split_mode = NULL; 2534 } 2535 2536 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2537 { 2538 struct kvm_nested_guest *nested = vcpu->arch.nested; 2539 cpumask_t *cpu_in_guest; 2540 int i; 2541 2542 cpu = cpu_first_thread_sibling(cpu); 2543 if (nested) { 2544 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2545 cpu_in_guest = &nested->cpu_in_guest; 2546 } else { 2547 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2548 cpu_in_guest = &kvm->arch.cpu_in_guest; 2549 } 2550 /* 2551 * Make sure setting of bit in need_tlb_flush precedes 2552 * testing of cpu_in_guest bits. The matching barrier on 2553 * the other side is the first smp_mb() in kvmppc_run_core(). 2554 */ 2555 smp_mb(); 2556 for (i = 0; i < threads_per_core; ++i) 2557 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2558 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2559 } 2560 2561 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2562 { 2563 struct kvm_nested_guest *nested = vcpu->arch.nested; 2564 struct kvm *kvm = vcpu->kvm; 2565 int prev_cpu; 2566 2567 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2568 return; 2569 2570 if (nested) 2571 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2572 else 2573 prev_cpu = vcpu->arch.prev_cpu; 2574 2575 /* 2576 * With radix, the guest can do TLB invalidations itself, 2577 * and it could choose to use the local form (tlbiel) if 2578 * it is invalidating a translation that has only ever been 2579 * used on one vcpu. However, that doesn't mean it has 2580 * only ever been used on one physical cpu, since vcpus 2581 * can move around between pcpus. To cope with this, when 2582 * a vcpu moves from one pcpu to another, we need to tell 2583 * any vcpus running on the same core as this vcpu previously 2584 * ran to flush the TLB. The TLB is shared between threads, 2585 * so we use a single bit in .need_tlb_flush for all 4 threads. 2586 */ 2587 if (prev_cpu != pcpu) { 2588 if (prev_cpu >= 0 && 2589 cpu_first_thread_sibling(prev_cpu) != 2590 cpu_first_thread_sibling(pcpu)) 2591 radix_flush_cpu(kvm, prev_cpu, vcpu); 2592 if (nested) 2593 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2594 else 2595 vcpu->arch.prev_cpu = pcpu; 2596 } 2597 } 2598 2599 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2600 { 2601 int cpu; 2602 struct paca_struct *tpaca; 2603 struct kvm *kvm = vc->kvm; 2604 2605 cpu = vc->pcpu; 2606 if (vcpu) { 2607 if (vcpu->arch.timer_running) { 2608 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2609 vcpu->arch.timer_running = 0; 2610 } 2611 cpu += vcpu->arch.ptid; 2612 vcpu->cpu = vc->pcpu; 2613 vcpu->arch.thread_cpu = cpu; 2614 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2615 } 2616 tpaca = paca_ptrs[cpu]; 2617 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2618 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2619 tpaca->kvm_hstate.fake_suspend = 0; 2620 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2621 smp_wmb(); 2622 tpaca->kvm_hstate.kvm_vcore = vc; 2623 if (cpu != smp_processor_id()) 2624 kvmppc_ipi_thread(cpu); 2625 } 2626 2627 static void kvmppc_wait_for_nap(int n_threads) 2628 { 2629 int cpu = smp_processor_id(); 2630 int i, loops; 2631 2632 if (n_threads <= 1) 2633 return; 2634 for (loops = 0; loops < 1000000; ++loops) { 2635 /* 2636 * Check if all threads are finished. 2637 * We set the vcore pointer when starting a thread 2638 * and the thread clears it when finished, so we look 2639 * for any threads that still have a non-NULL vcore ptr. 2640 */ 2641 for (i = 1; i < n_threads; ++i) 2642 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2643 break; 2644 if (i == n_threads) { 2645 HMT_medium(); 2646 return; 2647 } 2648 HMT_low(); 2649 } 2650 HMT_medium(); 2651 for (i = 1; i < n_threads; ++i) 2652 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2653 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2654 } 2655 2656 /* 2657 * Check that we are on thread 0 and that any other threads in 2658 * this core are off-line. Then grab the threads so they can't 2659 * enter the kernel. 2660 */ 2661 static int on_primary_thread(void) 2662 { 2663 int cpu = smp_processor_id(); 2664 int thr; 2665 2666 /* Are we on a primary subcore? */ 2667 if (cpu_thread_in_subcore(cpu)) 2668 return 0; 2669 2670 thr = 0; 2671 while (++thr < threads_per_subcore) 2672 if (cpu_online(cpu + thr)) 2673 return 0; 2674 2675 /* Grab all hw threads so they can't go into the kernel */ 2676 for (thr = 1; thr < threads_per_subcore; ++thr) { 2677 if (kvmppc_grab_hwthread(cpu + thr)) { 2678 /* Couldn't grab one; let the others go */ 2679 do { 2680 kvmppc_release_hwthread(cpu + thr); 2681 } while (--thr > 0); 2682 return 0; 2683 } 2684 } 2685 return 1; 2686 } 2687 2688 /* 2689 * A list of virtual cores for each physical CPU. 2690 * These are vcores that could run but their runner VCPU tasks are 2691 * (or may be) preempted. 2692 */ 2693 struct preempted_vcore_list { 2694 struct list_head list; 2695 spinlock_t lock; 2696 }; 2697 2698 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2699 2700 static void init_vcore_lists(void) 2701 { 2702 int cpu; 2703 2704 for_each_possible_cpu(cpu) { 2705 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2706 spin_lock_init(&lp->lock); 2707 INIT_LIST_HEAD(&lp->list); 2708 } 2709 } 2710 2711 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2712 { 2713 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2714 2715 vc->vcore_state = VCORE_PREEMPT; 2716 vc->pcpu = smp_processor_id(); 2717 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2718 spin_lock(&lp->lock); 2719 list_add_tail(&vc->preempt_list, &lp->list); 2720 spin_unlock(&lp->lock); 2721 } 2722 2723 /* Start accumulating stolen time */ 2724 kvmppc_core_start_stolen(vc); 2725 } 2726 2727 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2728 { 2729 struct preempted_vcore_list *lp; 2730 2731 kvmppc_core_end_stolen(vc); 2732 if (!list_empty(&vc->preempt_list)) { 2733 lp = &per_cpu(preempted_vcores, vc->pcpu); 2734 spin_lock(&lp->lock); 2735 list_del_init(&vc->preempt_list); 2736 spin_unlock(&lp->lock); 2737 } 2738 vc->vcore_state = VCORE_INACTIVE; 2739 } 2740 2741 /* 2742 * This stores information about the virtual cores currently 2743 * assigned to a physical core. 2744 */ 2745 struct core_info { 2746 int n_subcores; 2747 int max_subcore_threads; 2748 int total_threads; 2749 int subcore_threads[MAX_SUBCORES]; 2750 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2751 }; 2752 2753 /* 2754 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2755 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2756 */ 2757 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2758 2759 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2760 { 2761 memset(cip, 0, sizeof(*cip)); 2762 cip->n_subcores = 1; 2763 cip->max_subcore_threads = vc->num_threads; 2764 cip->total_threads = vc->num_threads; 2765 cip->subcore_threads[0] = vc->num_threads; 2766 cip->vc[0] = vc; 2767 } 2768 2769 static bool subcore_config_ok(int n_subcores, int n_threads) 2770 { 2771 /* 2772 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2773 * split-core mode, with one thread per subcore. 2774 */ 2775 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2776 return n_subcores <= 4 && n_threads == 1; 2777 2778 /* On POWER8, can only dynamically split if unsplit to begin with */ 2779 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2780 return false; 2781 if (n_subcores > MAX_SUBCORES) 2782 return false; 2783 if (n_subcores > 1) { 2784 if (!(dynamic_mt_modes & 2)) 2785 n_subcores = 4; 2786 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2787 return false; 2788 } 2789 2790 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2791 } 2792 2793 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2794 { 2795 vc->entry_exit_map = 0; 2796 vc->in_guest = 0; 2797 vc->napping_threads = 0; 2798 vc->conferring_threads = 0; 2799 vc->tb_offset_applied = 0; 2800 } 2801 2802 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2803 { 2804 int n_threads = vc->num_threads; 2805 int sub; 2806 2807 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2808 return false; 2809 2810 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2811 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2812 return false; 2813 2814 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2815 if (no_mixing_hpt_and_radix && 2816 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2817 return false; 2818 2819 if (n_threads < cip->max_subcore_threads) 2820 n_threads = cip->max_subcore_threads; 2821 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2822 return false; 2823 cip->max_subcore_threads = n_threads; 2824 2825 sub = cip->n_subcores; 2826 ++cip->n_subcores; 2827 cip->total_threads += vc->num_threads; 2828 cip->subcore_threads[sub] = vc->num_threads; 2829 cip->vc[sub] = vc; 2830 init_vcore_to_run(vc); 2831 list_del_init(&vc->preempt_list); 2832 2833 return true; 2834 } 2835 2836 /* 2837 * Work out whether it is possible to piggyback the execution of 2838 * vcore *pvc onto the execution of the other vcores described in *cip. 2839 */ 2840 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2841 int target_threads) 2842 { 2843 if (cip->total_threads + pvc->num_threads > target_threads) 2844 return false; 2845 2846 return can_dynamic_split(pvc, cip); 2847 } 2848 2849 static void prepare_threads(struct kvmppc_vcore *vc) 2850 { 2851 int i; 2852 struct kvm_vcpu *vcpu; 2853 2854 for_each_runnable_thread(i, vcpu, vc) { 2855 if (signal_pending(vcpu->arch.run_task)) 2856 vcpu->arch.ret = -EINTR; 2857 else if (vcpu->arch.vpa.update_pending || 2858 vcpu->arch.slb_shadow.update_pending || 2859 vcpu->arch.dtl.update_pending) 2860 vcpu->arch.ret = RESUME_GUEST; 2861 else 2862 continue; 2863 kvmppc_remove_runnable(vc, vcpu); 2864 wake_up(&vcpu->arch.cpu_run); 2865 } 2866 } 2867 2868 static void collect_piggybacks(struct core_info *cip, int target_threads) 2869 { 2870 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2871 struct kvmppc_vcore *pvc, *vcnext; 2872 2873 spin_lock(&lp->lock); 2874 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2875 if (!spin_trylock(&pvc->lock)) 2876 continue; 2877 prepare_threads(pvc); 2878 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 2879 list_del_init(&pvc->preempt_list); 2880 if (pvc->runner == NULL) { 2881 pvc->vcore_state = VCORE_INACTIVE; 2882 kvmppc_core_end_stolen(pvc); 2883 } 2884 spin_unlock(&pvc->lock); 2885 continue; 2886 } 2887 if (!can_piggyback(pvc, cip, target_threads)) { 2888 spin_unlock(&pvc->lock); 2889 continue; 2890 } 2891 kvmppc_core_end_stolen(pvc); 2892 pvc->vcore_state = VCORE_PIGGYBACK; 2893 if (cip->total_threads >= target_threads) 2894 break; 2895 } 2896 spin_unlock(&lp->lock); 2897 } 2898 2899 static bool recheck_signals_and_mmu(struct core_info *cip) 2900 { 2901 int sub, i; 2902 struct kvm_vcpu *vcpu; 2903 struct kvmppc_vcore *vc; 2904 2905 for (sub = 0; sub < cip->n_subcores; ++sub) { 2906 vc = cip->vc[sub]; 2907 if (!vc->kvm->arch.mmu_ready) 2908 return true; 2909 for_each_runnable_thread(i, vcpu, vc) 2910 if (signal_pending(vcpu->arch.run_task)) 2911 return true; 2912 } 2913 return false; 2914 } 2915 2916 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2917 { 2918 int still_running = 0, i; 2919 u64 now; 2920 long ret; 2921 struct kvm_vcpu *vcpu; 2922 2923 spin_lock(&vc->lock); 2924 now = get_tb(); 2925 for_each_runnable_thread(i, vcpu, vc) { 2926 /* 2927 * It's safe to unlock the vcore in the loop here, because 2928 * for_each_runnable_thread() is safe against removal of 2929 * the vcpu, and the vcore state is VCORE_EXITING here, 2930 * so any vcpus becoming runnable will have their arch.trap 2931 * set to zero and can't actually run in the guest. 2932 */ 2933 spin_unlock(&vc->lock); 2934 /* cancel pending dec exception if dec is positive */ 2935 if (now < vcpu->arch.dec_expires && 2936 kvmppc_core_pending_dec(vcpu)) 2937 kvmppc_core_dequeue_dec(vcpu); 2938 2939 trace_kvm_guest_exit(vcpu); 2940 2941 ret = RESUME_GUEST; 2942 if (vcpu->arch.trap) 2943 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2944 vcpu->arch.run_task); 2945 2946 vcpu->arch.ret = ret; 2947 vcpu->arch.trap = 0; 2948 2949 spin_lock(&vc->lock); 2950 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2951 if (vcpu->arch.pending_exceptions) 2952 kvmppc_core_prepare_to_enter(vcpu); 2953 if (vcpu->arch.ceded) 2954 kvmppc_set_timer(vcpu); 2955 else 2956 ++still_running; 2957 } else { 2958 kvmppc_remove_runnable(vc, vcpu); 2959 wake_up(&vcpu->arch.cpu_run); 2960 } 2961 } 2962 if (!is_master) { 2963 if (still_running > 0) { 2964 kvmppc_vcore_preempt(vc); 2965 } else if (vc->runner) { 2966 vc->vcore_state = VCORE_PREEMPT; 2967 kvmppc_core_start_stolen(vc); 2968 } else { 2969 vc->vcore_state = VCORE_INACTIVE; 2970 } 2971 if (vc->n_runnable > 0 && vc->runner == NULL) { 2972 /* make sure there's a candidate runner awake */ 2973 i = -1; 2974 vcpu = next_runnable_thread(vc, &i); 2975 wake_up(&vcpu->arch.cpu_run); 2976 } 2977 } 2978 spin_unlock(&vc->lock); 2979 } 2980 2981 /* 2982 * Clear core from the list of active host cores as we are about to 2983 * enter the guest. Only do this if it is the primary thread of the 2984 * core (not if a subcore) that is entering the guest. 2985 */ 2986 static inline int kvmppc_clear_host_core(unsigned int cpu) 2987 { 2988 int core; 2989 2990 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2991 return 0; 2992 /* 2993 * Memory barrier can be omitted here as we will do a smp_wmb() 2994 * later in kvmppc_start_thread and we need ensure that state is 2995 * visible to other CPUs only after we enter guest. 2996 */ 2997 core = cpu >> threads_shift; 2998 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2999 return 0; 3000 } 3001 3002 /* 3003 * Advertise this core as an active host core since we exited the guest 3004 * Only need to do this if it is the primary thread of the core that is 3005 * exiting. 3006 */ 3007 static inline int kvmppc_set_host_core(unsigned int cpu) 3008 { 3009 int core; 3010 3011 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3012 return 0; 3013 3014 /* 3015 * Memory barrier can be omitted here because we do a spin_unlock 3016 * immediately after this which provides the memory barrier. 3017 */ 3018 core = cpu >> threads_shift; 3019 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3020 return 0; 3021 } 3022 3023 static void set_irq_happened(int trap) 3024 { 3025 switch (trap) { 3026 case BOOK3S_INTERRUPT_EXTERNAL: 3027 local_paca->irq_happened |= PACA_IRQ_EE; 3028 break; 3029 case BOOK3S_INTERRUPT_H_DOORBELL: 3030 local_paca->irq_happened |= PACA_IRQ_DBELL; 3031 break; 3032 case BOOK3S_INTERRUPT_HMI: 3033 local_paca->irq_happened |= PACA_IRQ_HMI; 3034 break; 3035 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3036 replay_system_reset(); 3037 break; 3038 } 3039 } 3040 3041 /* 3042 * Run a set of guest threads on a physical core. 3043 * Called with vc->lock held. 3044 */ 3045 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3046 { 3047 struct kvm_vcpu *vcpu; 3048 int i; 3049 int srcu_idx; 3050 struct core_info core_info; 3051 struct kvmppc_vcore *pvc; 3052 struct kvm_split_mode split_info, *sip; 3053 int split, subcore_size, active; 3054 int sub; 3055 bool thr0_done; 3056 unsigned long cmd_bit, stat_bit; 3057 int pcpu, thr; 3058 int target_threads; 3059 int controlled_threads; 3060 int trap; 3061 bool is_power8; 3062 bool hpt_on_radix; 3063 3064 /* 3065 * Remove from the list any threads that have a signal pending 3066 * or need a VPA update done 3067 */ 3068 prepare_threads(vc); 3069 3070 /* if the runner is no longer runnable, let the caller pick a new one */ 3071 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3072 return; 3073 3074 /* 3075 * Initialize *vc. 3076 */ 3077 init_vcore_to_run(vc); 3078 vc->preempt_tb = TB_NIL; 3079 3080 /* 3081 * Number of threads that we will be controlling: the same as 3082 * the number of threads per subcore, except on POWER9, 3083 * where it's 1 because the threads are (mostly) independent. 3084 */ 3085 controlled_threads = threads_per_vcore(vc->kvm); 3086 3087 /* 3088 * Make sure we are running on primary threads, and that secondary 3089 * threads are offline. Also check if the number of threads in this 3090 * guest are greater than the current system threads per guest. 3091 * On POWER9, we need to be not in independent-threads mode if 3092 * this is a HPT guest on a radix host machine where the 3093 * CPU threads may not be in different MMU modes. 3094 */ 3095 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 3096 !kvm_is_radix(vc->kvm); 3097 if (((controlled_threads > 1) && 3098 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 3099 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 3100 for_each_runnable_thread(i, vcpu, vc) { 3101 vcpu->arch.ret = -EBUSY; 3102 kvmppc_remove_runnable(vc, vcpu); 3103 wake_up(&vcpu->arch.cpu_run); 3104 } 3105 goto out; 3106 } 3107 3108 /* 3109 * See if we could run any other vcores on the physical core 3110 * along with this one. 3111 */ 3112 init_core_info(&core_info, vc); 3113 pcpu = smp_processor_id(); 3114 target_threads = controlled_threads; 3115 if (target_smt_mode && target_smt_mode < target_threads) 3116 target_threads = target_smt_mode; 3117 if (vc->num_threads < target_threads) 3118 collect_piggybacks(&core_info, target_threads); 3119 3120 /* 3121 * On radix, arrange for TLB flushing if necessary. 3122 * This has to be done before disabling interrupts since 3123 * it uses smp_call_function(). 3124 */ 3125 pcpu = smp_processor_id(); 3126 if (kvm_is_radix(vc->kvm)) { 3127 for (sub = 0; sub < core_info.n_subcores; ++sub) 3128 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3129 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3130 } 3131 3132 /* 3133 * Hard-disable interrupts, and check resched flag and signals. 3134 * If we need to reschedule or deliver a signal, clean up 3135 * and return without going into the guest(s). 3136 * If the mmu_ready flag has been cleared, don't go into the 3137 * guest because that means a HPT resize operation is in progress. 3138 */ 3139 local_irq_disable(); 3140 hard_irq_disable(); 3141 if (lazy_irq_pending() || need_resched() || 3142 recheck_signals_and_mmu(&core_info)) { 3143 local_irq_enable(); 3144 vc->vcore_state = VCORE_INACTIVE; 3145 /* Unlock all except the primary vcore */ 3146 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3147 pvc = core_info.vc[sub]; 3148 /* Put back on to the preempted vcores list */ 3149 kvmppc_vcore_preempt(pvc); 3150 spin_unlock(&pvc->lock); 3151 } 3152 for (i = 0; i < controlled_threads; ++i) 3153 kvmppc_release_hwthread(pcpu + i); 3154 return; 3155 } 3156 3157 kvmppc_clear_host_core(pcpu); 3158 3159 /* Decide on micro-threading (split-core) mode */ 3160 subcore_size = threads_per_subcore; 3161 cmd_bit = stat_bit = 0; 3162 split = core_info.n_subcores; 3163 sip = NULL; 3164 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3165 && !cpu_has_feature(CPU_FTR_ARCH_300); 3166 3167 if (split > 1 || hpt_on_radix) { 3168 sip = &split_info; 3169 memset(&split_info, 0, sizeof(split_info)); 3170 for (sub = 0; sub < core_info.n_subcores; ++sub) 3171 split_info.vc[sub] = core_info.vc[sub]; 3172 3173 if (is_power8) { 3174 if (split == 2 && (dynamic_mt_modes & 2)) { 3175 cmd_bit = HID0_POWER8_1TO2LPAR; 3176 stat_bit = HID0_POWER8_2LPARMODE; 3177 } else { 3178 split = 4; 3179 cmd_bit = HID0_POWER8_1TO4LPAR; 3180 stat_bit = HID0_POWER8_4LPARMODE; 3181 } 3182 subcore_size = MAX_SMT_THREADS / split; 3183 split_info.rpr = mfspr(SPRN_RPR); 3184 split_info.pmmar = mfspr(SPRN_PMMAR); 3185 split_info.ldbar = mfspr(SPRN_LDBAR); 3186 split_info.subcore_size = subcore_size; 3187 } else { 3188 split_info.subcore_size = 1; 3189 if (hpt_on_radix) { 3190 /* Use the split_info for LPCR/LPIDR changes */ 3191 split_info.lpcr_req = vc->lpcr; 3192 split_info.lpidr_req = vc->kvm->arch.lpid; 3193 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 3194 split_info.do_set = 1; 3195 } 3196 } 3197 3198 /* order writes to split_info before kvm_split_mode pointer */ 3199 smp_wmb(); 3200 } 3201 3202 for (thr = 0; thr < controlled_threads; ++thr) { 3203 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3204 3205 paca->kvm_hstate.tid = thr; 3206 paca->kvm_hstate.napping = 0; 3207 paca->kvm_hstate.kvm_split_mode = sip; 3208 } 3209 3210 /* Initiate micro-threading (split-core) on POWER8 if required */ 3211 if (cmd_bit) { 3212 unsigned long hid0 = mfspr(SPRN_HID0); 3213 3214 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3215 mb(); 3216 mtspr(SPRN_HID0, hid0); 3217 isync(); 3218 for (;;) { 3219 hid0 = mfspr(SPRN_HID0); 3220 if (hid0 & stat_bit) 3221 break; 3222 cpu_relax(); 3223 } 3224 } 3225 3226 /* 3227 * On POWER8, set RWMR register. 3228 * Since it only affects PURR and SPURR, it doesn't affect 3229 * the host, so we don't save/restore the host value. 3230 */ 3231 if (is_power8) { 3232 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3233 int n_online = atomic_read(&vc->online_count); 3234 3235 /* 3236 * Use the 8-thread value if we're doing split-core 3237 * or if the vcore's online count looks bogus. 3238 */ 3239 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3240 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3241 rwmr_val = p8_rwmr_values[n_online]; 3242 mtspr(SPRN_RWMR, rwmr_val); 3243 } 3244 3245 /* Start all the threads */ 3246 active = 0; 3247 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3248 thr = is_power8 ? subcore_thread_map[sub] : sub; 3249 thr0_done = false; 3250 active |= 1 << thr; 3251 pvc = core_info.vc[sub]; 3252 pvc->pcpu = pcpu + thr; 3253 for_each_runnable_thread(i, vcpu, pvc) { 3254 kvmppc_start_thread(vcpu, pvc); 3255 kvmppc_create_dtl_entry(vcpu, pvc); 3256 trace_kvm_guest_enter(vcpu); 3257 if (!vcpu->arch.ptid) 3258 thr0_done = true; 3259 active |= 1 << (thr + vcpu->arch.ptid); 3260 } 3261 /* 3262 * We need to start the first thread of each subcore 3263 * even if it doesn't have a vcpu. 3264 */ 3265 if (!thr0_done) 3266 kvmppc_start_thread(NULL, pvc); 3267 } 3268 3269 /* 3270 * Ensure that split_info.do_nap is set after setting 3271 * the vcore pointer in the PACA of the secondaries. 3272 */ 3273 smp_mb(); 3274 3275 /* 3276 * When doing micro-threading, poke the inactive threads as well. 3277 * This gets them to the nap instruction after kvm_do_nap, 3278 * which reduces the time taken to unsplit later. 3279 * For POWER9 HPT guest on radix host, we need all the secondary 3280 * threads woken up so they can do the LPCR/LPIDR change. 3281 */ 3282 if (cmd_bit || hpt_on_radix) { 3283 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3284 for (thr = 1; thr < threads_per_subcore; ++thr) 3285 if (!(active & (1 << thr))) 3286 kvmppc_ipi_thread(pcpu + thr); 3287 } 3288 3289 vc->vcore_state = VCORE_RUNNING; 3290 preempt_disable(); 3291 3292 trace_kvmppc_run_core(vc, 0); 3293 3294 for (sub = 0; sub < core_info.n_subcores; ++sub) 3295 spin_unlock(&core_info.vc[sub]->lock); 3296 3297 guest_enter_irqoff(); 3298 3299 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3300 3301 this_cpu_disable_ftrace(); 3302 3303 /* 3304 * Interrupts will be enabled once we get into the guest, 3305 * so tell lockdep that we're about to enable interrupts. 3306 */ 3307 trace_hardirqs_on(); 3308 3309 trap = __kvmppc_vcore_entry(); 3310 3311 trace_hardirqs_off(); 3312 3313 this_cpu_enable_ftrace(); 3314 3315 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3316 3317 set_irq_happened(trap); 3318 3319 spin_lock(&vc->lock); 3320 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3321 vc->vcore_state = VCORE_EXITING; 3322 3323 /* wait for secondary threads to finish writing their state to memory */ 3324 kvmppc_wait_for_nap(controlled_threads); 3325 3326 /* Return to whole-core mode if we split the core earlier */ 3327 if (cmd_bit) { 3328 unsigned long hid0 = mfspr(SPRN_HID0); 3329 unsigned long loops = 0; 3330 3331 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3332 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3333 mb(); 3334 mtspr(SPRN_HID0, hid0); 3335 isync(); 3336 for (;;) { 3337 hid0 = mfspr(SPRN_HID0); 3338 if (!(hid0 & stat_bit)) 3339 break; 3340 cpu_relax(); 3341 ++loops; 3342 } 3343 } else if (hpt_on_radix) { 3344 /* Wait for all threads to have seen final sync */ 3345 for (thr = 1; thr < controlled_threads; ++thr) { 3346 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3347 3348 while (paca->kvm_hstate.kvm_split_mode) { 3349 HMT_low(); 3350 barrier(); 3351 } 3352 HMT_medium(); 3353 } 3354 } 3355 split_info.do_nap = 0; 3356 3357 kvmppc_set_host_core(pcpu); 3358 3359 local_irq_enable(); 3360 guest_exit(); 3361 3362 /* Let secondaries go back to the offline loop */ 3363 for (i = 0; i < controlled_threads; ++i) { 3364 kvmppc_release_hwthread(pcpu + i); 3365 if (sip && sip->napped[i]) 3366 kvmppc_ipi_thread(pcpu + i); 3367 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3368 } 3369 3370 spin_unlock(&vc->lock); 3371 3372 /* make sure updates to secondary vcpu structs are visible now */ 3373 smp_mb(); 3374 3375 preempt_enable(); 3376 3377 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3378 pvc = core_info.vc[sub]; 3379 post_guest_process(pvc, pvc == vc); 3380 } 3381 3382 spin_lock(&vc->lock); 3383 3384 out: 3385 vc->vcore_state = VCORE_INACTIVE; 3386 trace_kvmppc_run_core(vc, 1); 3387 } 3388 3389 /* 3390 * Load up hypervisor-mode registers on P9. 3391 */ 3392 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3393 unsigned long lpcr) 3394 { 3395 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3396 s64 hdec; 3397 u64 tb, purr, spurr; 3398 int trap; 3399 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3400 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3401 unsigned long host_dawr = mfspr(SPRN_DAWR); 3402 unsigned long host_dawrx = mfspr(SPRN_DAWRX); 3403 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3404 unsigned long host_pidr = mfspr(SPRN_PID); 3405 3406 hdec = time_limit - mftb(); 3407 if (hdec < 0) 3408 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3409 mtspr(SPRN_HDEC, hdec); 3410 3411 if (vc->tb_offset) { 3412 u64 new_tb = mftb() + vc->tb_offset; 3413 mtspr(SPRN_TBU40, new_tb); 3414 tb = mftb(); 3415 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3416 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3417 vc->tb_offset_applied = vc->tb_offset; 3418 } 3419 3420 if (vc->pcr) 3421 mtspr(SPRN_PCR, vc->pcr | PCR_MASK); 3422 mtspr(SPRN_DPDES, vc->dpdes); 3423 mtspr(SPRN_VTB, vc->vtb); 3424 3425 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3426 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3427 mtspr(SPRN_PURR, vcpu->arch.purr); 3428 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3429 3430 if (dawr_enabled()) { 3431 mtspr(SPRN_DAWR, vcpu->arch.dawr); 3432 mtspr(SPRN_DAWRX, vcpu->arch.dawrx); 3433 } 3434 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3435 mtspr(SPRN_IC, vcpu->arch.ic); 3436 mtspr(SPRN_PID, vcpu->arch.pid); 3437 3438 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3439 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3440 3441 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3442 3443 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3444 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3445 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3446 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3447 3448 mtspr(SPRN_AMOR, ~0UL); 3449 3450 mtspr(SPRN_LPCR, lpcr); 3451 isync(); 3452 3453 kvmppc_xive_push_vcpu(vcpu); 3454 3455 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3456 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3457 3458 trap = __kvmhv_vcpu_entry_p9(vcpu); 3459 3460 /* Advance host PURR/SPURR by the amount used by guest */ 3461 purr = mfspr(SPRN_PURR); 3462 spurr = mfspr(SPRN_SPURR); 3463 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3464 purr - vcpu->arch.purr); 3465 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3466 spurr - vcpu->arch.spurr); 3467 vcpu->arch.purr = purr; 3468 vcpu->arch.spurr = spurr; 3469 3470 vcpu->arch.ic = mfspr(SPRN_IC); 3471 vcpu->arch.pid = mfspr(SPRN_PID); 3472 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3473 3474 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3475 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3476 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3477 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3478 3479 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3480 mtspr(SPRN_PSSCR, host_psscr | 3481 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3482 mtspr(SPRN_HFSCR, host_hfscr); 3483 mtspr(SPRN_CIABR, host_ciabr); 3484 mtspr(SPRN_DAWR, host_dawr); 3485 mtspr(SPRN_DAWRX, host_dawrx); 3486 mtspr(SPRN_PID, host_pidr); 3487 3488 /* 3489 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3490 * case we interrupted the guest between a tlbie and a ptesync. 3491 */ 3492 asm volatile("eieio; tlbsync; ptesync"); 3493 3494 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3495 isync(); 3496 3497 vc->dpdes = mfspr(SPRN_DPDES); 3498 vc->vtb = mfspr(SPRN_VTB); 3499 mtspr(SPRN_DPDES, 0); 3500 if (vc->pcr) 3501 mtspr(SPRN_PCR, PCR_MASK); 3502 3503 if (vc->tb_offset_applied) { 3504 u64 new_tb = mftb() - vc->tb_offset_applied; 3505 mtspr(SPRN_TBU40, new_tb); 3506 tb = mftb(); 3507 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3508 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3509 vc->tb_offset_applied = 0; 3510 } 3511 3512 mtspr(SPRN_HDEC, 0x7fffffff); 3513 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3514 3515 return trap; 3516 } 3517 3518 /* 3519 * Virtual-mode guest entry for POWER9 and later when the host and 3520 * guest are both using the radix MMU. The LPIDR has already been set. 3521 */ 3522 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3523 unsigned long lpcr) 3524 { 3525 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3526 unsigned long host_dscr = mfspr(SPRN_DSCR); 3527 unsigned long host_tidr = mfspr(SPRN_TIDR); 3528 unsigned long host_iamr = mfspr(SPRN_IAMR); 3529 unsigned long host_amr = mfspr(SPRN_AMR); 3530 s64 dec; 3531 u64 tb; 3532 int trap, save_pmu; 3533 3534 dec = mfspr(SPRN_DEC); 3535 tb = mftb(); 3536 if (dec < 512) 3537 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3538 local_paca->kvm_hstate.dec_expires = dec + tb; 3539 if (local_paca->kvm_hstate.dec_expires < time_limit) 3540 time_limit = local_paca->kvm_hstate.dec_expires; 3541 3542 vcpu->arch.ceded = 0; 3543 3544 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3545 3546 kvmppc_subcore_enter_guest(); 3547 3548 vc->entry_exit_map = 1; 3549 vc->in_guest = 1; 3550 3551 if (vcpu->arch.vpa.pinned_addr) { 3552 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3553 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3554 lp->yield_count = cpu_to_be32(yield_count); 3555 vcpu->arch.vpa.dirty = 1; 3556 } 3557 3558 if (cpu_has_feature(CPU_FTR_TM) || 3559 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3560 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3561 3562 kvmhv_load_guest_pmu(vcpu); 3563 3564 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3565 load_fp_state(&vcpu->arch.fp); 3566 #ifdef CONFIG_ALTIVEC 3567 load_vr_state(&vcpu->arch.vr); 3568 #endif 3569 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3570 3571 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3572 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3573 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3574 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3575 mtspr(SPRN_TAR, vcpu->arch.tar); 3576 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3577 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3578 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3579 mtspr(SPRN_WORT, vcpu->arch.wort); 3580 mtspr(SPRN_TIDR, vcpu->arch.tid); 3581 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3582 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3583 mtspr(SPRN_AMR, vcpu->arch.amr); 3584 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3585 3586 if (!(vcpu->arch.ctrl & 1)) 3587 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3588 3589 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3590 3591 if (kvmhv_on_pseries()) { 3592 /* 3593 * We need to save and restore the guest visible part of the 3594 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3595 * doesn't do this for us. Note only required if pseries since 3596 * this is done in kvmhv_load_hv_regs_and_go() below otherwise. 3597 */ 3598 unsigned long host_psscr; 3599 /* call our hypervisor to load up HV regs and go */ 3600 struct hv_guest_state hvregs; 3601 3602 host_psscr = mfspr(SPRN_PSSCR_PR); 3603 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3604 kvmhv_save_hv_regs(vcpu, &hvregs); 3605 hvregs.lpcr = lpcr; 3606 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3607 hvregs.version = HV_GUEST_STATE_VERSION; 3608 if (vcpu->arch.nested) { 3609 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3610 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3611 } else { 3612 hvregs.lpid = vcpu->kvm->arch.lpid; 3613 hvregs.vcpu_token = vcpu->vcpu_id; 3614 } 3615 hvregs.hdec_expiry = time_limit; 3616 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3617 __pa(&vcpu->arch.regs)); 3618 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3619 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3620 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3621 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3622 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3623 mtspr(SPRN_PSSCR_PR, host_psscr); 3624 3625 /* H_CEDE has to be handled now, not later */ 3626 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3627 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3628 kvmppc_nested_cede(vcpu); 3629 trap = 0; 3630 } 3631 } else { 3632 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3633 } 3634 3635 vcpu->arch.slb_max = 0; 3636 dec = mfspr(SPRN_DEC); 3637 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3638 dec = (s32) dec; 3639 tb = mftb(); 3640 vcpu->arch.dec_expires = dec + tb; 3641 vcpu->cpu = -1; 3642 vcpu->arch.thread_cpu = -1; 3643 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3644 3645 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3646 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3647 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3648 vcpu->arch.tar = mfspr(SPRN_TAR); 3649 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3650 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3651 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3652 vcpu->arch.wort = mfspr(SPRN_WORT); 3653 vcpu->arch.tid = mfspr(SPRN_TIDR); 3654 vcpu->arch.amr = mfspr(SPRN_AMR); 3655 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3656 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3657 3658 mtspr(SPRN_PSPB, 0); 3659 mtspr(SPRN_WORT, 0); 3660 mtspr(SPRN_UAMOR, 0); 3661 mtspr(SPRN_DSCR, host_dscr); 3662 mtspr(SPRN_TIDR, host_tidr); 3663 mtspr(SPRN_IAMR, host_iamr); 3664 mtspr(SPRN_PSPB, 0); 3665 3666 if (host_amr != vcpu->arch.amr) 3667 mtspr(SPRN_AMR, host_amr); 3668 3669 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3670 store_fp_state(&vcpu->arch.fp); 3671 #ifdef CONFIG_ALTIVEC 3672 store_vr_state(&vcpu->arch.vr); 3673 #endif 3674 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3675 3676 if (cpu_has_feature(CPU_FTR_TM) || 3677 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3678 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3679 3680 save_pmu = 1; 3681 if (vcpu->arch.vpa.pinned_addr) { 3682 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3683 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3684 lp->yield_count = cpu_to_be32(yield_count); 3685 vcpu->arch.vpa.dirty = 1; 3686 save_pmu = lp->pmcregs_in_use; 3687 } 3688 /* Must save pmu if this guest is capable of running nested guests */ 3689 save_pmu |= nesting_enabled(vcpu->kvm); 3690 3691 kvmhv_save_guest_pmu(vcpu, save_pmu); 3692 3693 vc->entry_exit_map = 0x101; 3694 vc->in_guest = 0; 3695 3696 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3697 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3698 3699 kvmhv_load_host_pmu(); 3700 3701 kvmppc_subcore_exit_guest(); 3702 3703 return trap; 3704 } 3705 3706 /* 3707 * Wait for some other vcpu thread to execute us, and 3708 * wake us up when we need to handle something in the host. 3709 */ 3710 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3711 struct kvm_vcpu *vcpu, int wait_state) 3712 { 3713 DEFINE_WAIT(wait); 3714 3715 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3716 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3717 spin_unlock(&vc->lock); 3718 schedule(); 3719 spin_lock(&vc->lock); 3720 } 3721 finish_wait(&vcpu->arch.cpu_run, &wait); 3722 } 3723 3724 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3725 { 3726 if (!halt_poll_ns_grow) 3727 return; 3728 3729 vc->halt_poll_ns *= halt_poll_ns_grow; 3730 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3731 vc->halt_poll_ns = halt_poll_ns_grow_start; 3732 } 3733 3734 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3735 { 3736 if (halt_poll_ns_shrink == 0) 3737 vc->halt_poll_ns = 0; 3738 else 3739 vc->halt_poll_ns /= halt_poll_ns_shrink; 3740 } 3741 3742 #ifdef CONFIG_KVM_XICS 3743 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3744 { 3745 if (!xics_on_xive()) 3746 return false; 3747 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3748 vcpu->arch.xive_saved_state.cppr; 3749 } 3750 #else 3751 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3752 { 3753 return false; 3754 } 3755 #endif /* CONFIG_KVM_XICS */ 3756 3757 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3758 { 3759 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3760 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3761 return true; 3762 3763 return false; 3764 } 3765 3766 /* 3767 * Check to see if any of the runnable vcpus on the vcore have pending 3768 * exceptions or are no longer ceded 3769 */ 3770 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3771 { 3772 struct kvm_vcpu *vcpu; 3773 int i; 3774 3775 for_each_runnable_thread(i, vcpu, vc) { 3776 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3777 return 1; 3778 } 3779 3780 return 0; 3781 } 3782 3783 /* 3784 * All the vcpus in this vcore are idle, so wait for a decrementer 3785 * or external interrupt to one of the vcpus. vc->lock is held. 3786 */ 3787 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3788 { 3789 ktime_t cur, start_poll, start_wait; 3790 int do_sleep = 1; 3791 u64 block_ns; 3792 DECLARE_SWAITQUEUE(wait); 3793 3794 /* Poll for pending exceptions and ceded state */ 3795 cur = start_poll = ktime_get(); 3796 if (vc->halt_poll_ns) { 3797 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3798 ++vc->runner->stat.halt_attempted_poll; 3799 3800 vc->vcore_state = VCORE_POLLING; 3801 spin_unlock(&vc->lock); 3802 3803 do { 3804 if (kvmppc_vcore_check_block(vc)) { 3805 do_sleep = 0; 3806 break; 3807 } 3808 cur = ktime_get(); 3809 } while (single_task_running() && ktime_before(cur, stop)); 3810 3811 spin_lock(&vc->lock); 3812 vc->vcore_state = VCORE_INACTIVE; 3813 3814 if (!do_sleep) { 3815 ++vc->runner->stat.halt_successful_poll; 3816 goto out; 3817 } 3818 } 3819 3820 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3821 3822 if (kvmppc_vcore_check_block(vc)) { 3823 finish_swait(&vc->wq, &wait); 3824 do_sleep = 0; 3825 /* If we polled, count this as a successful poll */ 3826 if (vc->halt_poll_ns) 3827 ++vc->runner->stat.halt_successful_poll; 3828 goto out; 3829 } 3830 3831 start_wait = ktime_get(); 3832 3833 vc->vcore_state = VCORE_SLEEPING; 3834 trace_kvmppc_vcore_blocked(vc, 0); 3835 spin_unlock(&vc->lock); 3836 schedule(); 3837 finish_swait(&vc->wq, &wait); 3838 spin_lock(&vc->lock); 3839 vc->vcore_state = VCORE_INACTIVE; 3840 trace_kvmppc_vcore_blocked(vc, 1); 3841 ++vc->runner->stat.halt_successful_wait; 3842 3843 cur = ktime_get(); 3844 3845 out: 3846 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3847 3848 /* Attribute wait time */ 3849 if (do_sleep) { 3850 vc->runner->stat.halt_wait_ns += 3851 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3852 /* Attribute failed poll time */ 3853 if (vc->halt_poll_ns) 3854 vc->runner->stat.halt_poll_fail_ns += 3855 ktime_to_ns(start_wait) - 3856 ktime_to_ns(start_poll); 3857 } else { 3858 /* Attribute successful poll time */ 3859 if (vc->halt_poll_ns) 3860 vc->runner->stat.halt_poll_success_ns += 3861 ktime_to_ns(cur) - 3862 ktime_to_ns(start_poll); 3863 } 3864 3865 /* Adjust poll time */ 3866 if (halt_poll_ns) { 3867 if (block_ns <= vc->halt_poll_ns) 3868 ; 3869 /* We slept and blocked for longer than the max halt time */ 3870 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3871 shrink_halt_poll_ns(vc); 3872 /* We slept and our poll time is too small */ 3873 else if (vc->halt_poll_ns < halt_poll_ns && 3874 block_ns < halt_poll_ns) 3875 grow_halt_poll_ns(vc); 3876 if (vc->halt_poll_ns > halt_poll_ns) 3877 vc->halt_poll_ns = halt_poll_ns; 3878 } else 3879 vc->halt_poll_ns = 0; 3880 3881 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3882 } 3883 3884 /* 3885 * This never fails for a radix guest, as none of the operations it does 3886 * for a radix guest can fail or have a way to report failure. 3887 * kvmhv_run_single_vcpu() relies on this fact. 3888 */ 3889 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3890 { 3891 int r = 0; 3892 struct kvm *kvm = vcpu->kvm; 3893 3894 mutex_lock(&kvm->arch.mmu_setup_lock); 3895 if (!kvm->arch.mmu_ready) { 3896 if (!kvm_is_radix(kvm)) 3897 r = kvmppc_hv_setup_htab_rma(vcpu); 3898 if (!r) { 3899 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3900 kvmppc_setup_partition_table(kvm); 3901 kvm->arch.mmu_ready = 1; 3902 } 3903 } 3904 mutex_unlock(&kvm->arch.mmu_setup_lock); 3905 return r; 3906 } 3907 3908 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3909 { 3910 int n_ceded, i, r; 3911 struct kvmppc_vcore *vc; 3912 struct kvm_vcpu *v; 3913 3914 trace_kvmppc_run_vcpu_enter(vcpu); 3915 3916 kvm_run->exit_reason = 0; 3917 vcpu->arch.ret = RESUME_GUEST; 3918 vcpu->arch.trap = 0; 3919 kvmppc_update_vpas(vcpu); 3920 3921 /* 3922 * Synchronize with other threads in this virtual core 3923 */ 3924 vc = vcpu->arch.vcore; 3925 spin_lock(&vc->lock); 3926 vcpu->arch.ceded = 0; 3927 vcpu->arch.run_task = current; 3928 vcpu->arch.kvm_run = kvm_run; 3929 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3930 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3931 vcpu->arch.busy_preempt = TB_NIL; 3932 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3933 ++vc->n_runnable; 3934 3935 /* 3936 * This happens the first time this is called for a vcpu. 3937 * If the vcore is already running, we may be able to start 3938 * this thread straight away and have it join in. 3939 */ 3940 if (!signal_pending(current)) { 3941 if ((vc->vcore_state == VCORE_PIGGYBACK || 3942 vc->vcore_state == VCORE_RUNNING) && 3943 !VCORE_IS_EXITING(vc)) { 3944 kvmppc_create_dtl_entry(vcpu, vc); 3945 kvmppc_start_thread(vcpu, vc); 3946 trace_kvm_guest_enter(vcpu); 3947 } else if (vc->vcore_state == VCORE_SLEEPING) { 3948 swake_up_one(&vc->wq); 3949 } 3950 3951 } 3952 3953 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3954 !signal_pending(current)) { 3955 /* See if the MMU is ready to go */ 3956 if (!vcpu->kvm->arch.mmu_ready) { 3957 spin_unlock(&vc->lock); 3958 r = kvmhv_setup_mmu(vcpu); 3959 spin_lock(&vc->lock); 3960 if (r) { 3961 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3962 kvm_run->fail_entry. 3963 hardware_entry_failure_reason = 0; 3964 vcpu->arch.ret = r; 3965 break; 3966 } 3967 } 3968 3969 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3970 kvmppc_vcore_end_preempt(vc); 3971 3972 if (vc->vcore_state != VCORE_INACTIVE) { 3973 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3974 continue; 3975 } 3976 for_each_runnable_thread(i, v, vc) { 3977 kvmppc_core_prepare_to_enter(v); 3978 if (signal_pending(v->arch.run_task)) { 3979 kvmppc_remove_runnable(vc, v); 3980 v->stat.signal_exits++; 3981 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3982 v->arch.ret = -EINTR; 3983 wake_up(&v->arch.cpu_run); 3984 } 3985 } 3986 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3987 break; 3988 n_ceded = 0; 3989 for_each_runnable_thread(i, v, vc) { 3990 if (!kvmppc_vcpu_woken(v)) 3991 n_ceded += v->arch.ceded; 3992 else 3993 v->arch.ceded = 0; 3994 } 3995 vc->runner = vcpu; 3996 if (n_ceded == vc->n_runnable) { 3997 kvmppc_vcore_blocked(vc); 3998 } else if (need_resched()) { 3999 kvmppc_vcore_preempt(vc); 4000 /* Let something else run */ 4001 cond_resched_lock(&vc->lock); 4002 if (vc->vcore_state == VCORE_PREEMPT) 4003 kvmppc_vcore_end_preempt(vc); 4004 } else { 4005 kvmppc_run_core(vc); 4006 } 4007 vc->runner = NULL; 4008 } 4009 4010 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4011 (vc->vcore_state == VCORE_RUNNING || 4012 vc->vcore_state == VCORE_EXITING || 4013 vc->vcore_state == VCORE_PIGGYBACK)) 4014 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4015 4016 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4017 kvmppc_vcore_end_preempt(vc); 4018 4019 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4020 kvmppc_remove_runnable(vc, vcpu); 4021 vcpu->stat.signal_exits++; 4022 kvm_run->exit_reason = KVM_EXIT_INTR; 4023 vcpu->arch.ret = -EINTR; 4024 } 4025 4026 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4027 /* Wake up some vcpu to run the core */ 4028 i = -1; 4029 v = next_runnable_thread(vc, &i); 4030 wake_up(&v->arch.cpu_run); 4031 } 4032 4033 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4034 spin_unlock(&vc->lock); 4035 return vcpu->arch.ret; 4036 } 4037 4038 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, 4039 struct kvm_vcpu *vcpu, u64 time_limit, 4040 unsigned long lpcr) 4041 { 4042 int trap, r, pcpu; 4043 int srcu_idx, lpid; 4044 struct kvmppc_vcore *vc; 4045 struct kvm *kvm = vcpu->kvm; 4046 struct kvm_nested_guest *nested = vcpu->arch.nested; 4047 4048 trace_kvmppc_run_vcpu_enter(vcpu); 4049 4050 kvm_run->exit_reason = 0; 4051 vcpu->arch.ret = RESUME_GUEST; 4052 vcpu->arch.trap = 0; 4053 4054 vc = vcpu->arch.vcore; 4055 vcpu->arch.ceded = 0; 4056 vcpu->arch.run_task = current; 4057 vcpu->arch.kvm_run = kvm_run; 4058 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4059 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4060 vcpu->arch.busy_preempt = TB_NIL; 4061 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4062 vc->runnable_threads[0] = vcpu; 4063 vc->n_runnable = 1; 4064 vc->runner = vcpu; 4065 4066 /* See if the MMU is ready to go */ 4067 if (!kvm->arch.mmu_ready) 4068 kvmhv_setup_mmu(vcpu); 4069 4070 if (need_resched()) 4071 cond_resched(); 4072 4073 kvmppc_update_vpas(vcpu); 4074 4075 init_vcore_to_run(vc); 4076 vc->preempt_tb = TB_NIL; 4077 4078 preempt_disable(); 4079 pcpu = smp_processor_id(); 4080 vc->pcpu = pcpu; 4081 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4082 4083 local_irq_disable(); 4084 hard_irq_disable(); 4085 if (signal_pending(current)) 4086 goto sigpend; 4087 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4088 goto out; 4089 4090 if (!nested) { 4091 kvmppc_core_prepare_to_enter(vcpu); 4092 if (vcpu->arch.doorbell_request) { 4093 vc->dpdes = 1; 4094 smp_wmb(); 4095 vcpu->arch.doorbell_request = 0; 4096 } 4097 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4098 &vcpu->arch.pending_exceptions)) 4099 lpcr |= LPCR_MER; 4100 } else if (vcpu->arch.pending_exceptions || 4101 vcpu->arch.doorbell_request || 4102 xive_interrupt_pending(vcpu)) { 4103 vcpu->arch.ret = RESUME_HOST; 4104 goto out; 4105 } 4106 4107 kvmppc_clear_host_core(pcpu); 4108 4109 local_paca->kvm_hstate.tid = 0; 4110 local_paca->kvm_hstate.napping = 0; 4111 local_paca->kvm_hstate.kvm_split_mode = NULL; 4112 kvmppc_start_thread(vcpu, vc); 4113 kvmppc_create_dtl_entry(vcpu, vc); 4114 trace_kvm_guest_enter(vcpu); 4115 4116 vc->vcore_state = VCORE_RUNNING; 4117 trace_kvmppc_run_core(vc, 0); 4118 4119 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4120 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4121 mtspr(SPRN_LPID, lpid); 4122 isync(); 4123 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4124 } 4125 4126 guest_enter_irqoff(); 4127 4128 srcu_idx = srcu_read_lock(&kvm->srcu); 4129 4130 this_cpu_disable_ftrace(); 4131 4132 /* Tell lockdep that we're about to enable interrupts */ 4133 trace_hardirqs_on(); 4134 4135 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4136 vcpu->arch.trap = trap; 4137 4138 trace_hardirqs_off(); 4139 4140 this_cpu_enable_ftrace(); 4141 4142 srcu_read_unlock(&kvm->srcu, srcu_idx); 4143 4144 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4145 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4146 isync(); 4147 } 4148 4149 set_irq_happened(trap); 4150 4151 kvmppc_set_host_core(pcpu); 4152 4153 local_irq_enable(); 4154 guest_exit(); 4155 4156 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4157 4158 preempt_enable(); 4159 4160 /* 4161 * cancel pending decrementer exception if DEC is now positive, or if 4162 * entering a nested guest in which case the decrementer is now owned 4163 * by L2 and the L1 decrementer is provided in hdec_expires 4164 */ 4165 if (kvmppc_core_pending_dec(vcpu) && 4166 ((get_tb() < vcpu->arch.dec_expires) || 4167 (trap == BOOK3S_INTERRUPT_SYSCALL && 4168 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4169 kvmppc_core_dequeue_dec(vcpu); 4170 4171 trace_kvm_guest_exit(vcpu); 4172 r = RESUME_GUEST; 4173 if (trap) { 4174 if (!nested) 4175 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current); 4176 else 4177 r = kvmppc_handle_nested_exit(kvm_run, vcpu); 4178 } 4179 vcpu->arch.ret = r; 4180 4181 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4182 !kvmppc_vcpu_woken(vcpu)) { 4183 kvmppc_set_timer(vcpu); 4184 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4185 if (signal_pending(current)) { 4186 vcpu->stat.signal_exits++; 4187 kvm_run->exit_reason = KVM_EXIT_INTR; 4188 vcpu->arch.ret = -EINTR; 4189 break; 4190 } 4191 spin_lock(&vc->lock); 4192 kvmppc_vcore_blocked(vc); 4193 spin_unlock(&vc->lock); 4194 } 4195 } 4196 vcpu->arch.ceded = 0; 4197 4198 vc->vcore_state = VCORE_INACTIVE; 4199 trace_kvmppc_run_core(vc, 1); 4200 4201 done: 4202 kvmppc_remove_runnable(vc, vcpu); 4203 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4204 4205 return vcpu->arch.ret; 4206 4207 sigpend: 4208 vcpu->stat.signal_exits++; 4209 kvm_run->exit_reason = KVM_EXIT_INTR; 4210 vcpu->arch.ret = -EINTR; 4211 out: 4212 local_irq_enable(); 4213 preempt_enable(); 4214 goto done; 4215 } 4216 4217 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 4218 { 4219 int r; 4220 int srcu_idx; 4221 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4222 unsigned long user_tar = 0; 4223 unsigned int user_vrsave; 4224 struct kvm *kvm; 4225 4226 if (!vcpu->arch.sane) { 4227 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4228 return -EINVAL; 4229 } 4230 4231 /* 4232 * Don't allow entry with a suspended transaction, because 4233 * the guest entry/exit code will lose it. 4234 * If the guest has TM enabled, save away their TM-related SPRs 4235 * (they will get restored by the TM unavailable interrupt). 4236 */ 4237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4238 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4239 (current->thread.regs->msr & MSR_TM)) { 4240 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4241 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4242 run->fail_entry.hardware_entry_failure_reason = 0; 4243 return -EINVAL; 4244 } 4245 /* Enable TM so we can read the TM SPRs */ 4246 mtmsr(mfmsr() | MSR_TM); 4247 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4248 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4249 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4250 current->thread.regs->msr &= ~MSR_TM; 4251 } 4252 #endif 4253 4254 /* 4255 * Force online to 1 for the sake of old userspace which doesn't 4256 * set it. 4257 */ 4258 if (!vcpu->arch.online) { 4259 atomic_inc(&vcpu->arch.vcore->online_count); 4260 vcpu->arch.online = 1; 4261 } 4262 4263 kvmppc_core_prepare_to_enter(vcpu); 4264 4265 /* No need to go into the guest when all we'll do is come back out */ 4266 if (signal_pending(current)) { 4267 run->exit_reason = KVM_EXIT_INTR; 4268 return -EINTR; 4269 } 4270 4271 kvm = vcpu->kvm; 4272 atomic_inc(&kvm->arch.vcpus_running); 4273 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4274 smp_mb(); 4275 4276 flush_all_to_thread(current); 4277 4278 /* Save userspace EBB and other register values */ 4279 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4280 ebb_regs[0] = mfspr(SPRN_EBBHR); 4281 ebb_regs[1] = mfspr(SPRN_EBBRR); 4282 ebb_regs[2] = mfspr(SPRN_BESCR); 4283 user_tar = mfspr(SPRN_TAR); 4284 } 4285 user_vrsave = mfspr(SPRN_VRSAVE); 4286 4287 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 4288 vcpu->arch.pgdir = current->mm->pgd; 4289 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4290 4291 do { 4292 /* 4293 * The early POWER9 chips that can't mix radix and HPT threads 4294 * on the same core also need the workaround for the problem 4295 * where the TLB would prefetch entries in the guest exit path 4296 * for radix guests using the guest PIDR value and LPID 0. 4297 * The workaround is in the old path (kvmppc_run_vcpu()) 4298 * but not the new path (kvmhv_run_single_vcpu()). 4299 */ 4300 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4301 !no_mixing_hpt_and_radix) 4302 r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0, 4303 vcpu->arch.vcore->lpcr); 4304 else 4305 r = kvmppc_run_vcpu(run, vcpu); 4306 4307 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4308 !(vcpu->arch.shregs.msr & MSR_PR)) { 4309 trace_kvm_hcall_enter(vcpu); 4310 r = kvmppc_pseries_do_hcall(vcpu); 4311 trace_kvm_hcall_exit(vcpu, r); 4312 kvmppc_core_prepare_to_enter(vcpu); 4313 } else if (r == RESUME_PAGE_FAULT) { 4314 srcu_idx = srcu_read_lock(&kvm->srcu); 4315 r = kvmppc_book3s_hv_page_fault(run, vcpu, 4316 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4317 srcu_read_unlock(&kvm->srcu, srcu_idx); 4318 } else if (r == RESUME_PASSTHROUGH) { 4319 if (WARN_ON(xics_on_xive())) 4320 r = H_SUCCESS; 4321 else 4322 r = kvmppc_xics_rm_complete(vcpu, 0); 4323 } 4324 } while (is_kvmppc_resume_guest(r)); 4325 4326 /* Restore userspace EBB and other register values */ 4327 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4328 mtspr(SPRN_EBBHR, ebb_regs[0]); 4329 mtspr(SPRN_EBBRR, ebb_regs[1]); 4330 mtspr(SPRN_BESCR, ebb_regs[2]); 4331 mtspr(SPRN_TAR, user_tar); 4332 mtspr(SPRN_FSCR, current->thread.fscr); 4333 } 4334 mtspr(SPRN_VRSAVE, user_vrsave); 4335 4336 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4337 atomic_dec(&kvm->arch.vcpus_running); 4338 return r; 4339 } 4340 4341 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4342 int shift, int sllp) 4343 { 4344 (*sps)->page_shift = shift; 4345 (*sps)->slb_enc = sllp; 4346 (*sps)->enc[0].page_shift = shift; 4347 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4348 /* 4349 * Add 16MB MPSS support (may get filtered out by userspace) 4350 */ 4351 if (shift != 24) { 4352 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4353 if (penc != -1) { 4354 (*sps)->enc[1].page_shift = 24; 4355 (*sps)->enc[1].pte_enc = penc; 4356 } 4357 } 4358 (*sps)++; 4359 } 4360 4361 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4362 struct kvm_ppc_smmu_info *info) 4363 { 4364 struct kvm_ppc_one_seg_page_size *sps; 4365 4366 /* 4367 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4368 * POWER7 doesn't support keys for instruction accesses, 4369 * POWER8 and POWER9 do. 4370 */ 4371 info->data_keys = 32; 4372 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4373 4374 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4375 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4376 info->slb_size = 32; 4377 4378 /* We only support these sizes for now, and no muti-size segments */ 4379 sps = &info->sps[0]; 4380 kvmppc_add_seg_page_size(&sps, 12, 0); 4381 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4382 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4383 4384 /* If running as a nested hypervisor, we don't support HPT guests */ 4385 if (kvmhv_on_pseries()) 4386 info->flags |= KVM_PPC_NO_HASH; 4387 4388 return 0; 4389 } 4390 4391 /* 4392 * Get (and clear) the dirty memory log for a memory slot. 4393 */ 4394 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4395 struct kvm_dirty_log *log) 4396 { 4397 struct kvm_memslots *slots; 4398 struct kvm_memory_slot *memslot; 4399 int i, r; 4400 unsigned long n; 4401 unsigned long *buf, *p; 4402 struct kvm_vcpu *vcpu; 4403 4404 mutex_lock(&kvm->slots_lock); 4405 4406 r = -EINVAL; 4407 if (log->slot >= KVM_USER_MEM_SLOTS) 4408 goto out; 4409 4410 slots = kvm_memslots(kvm); 4411 memslot = id_to_memslot(slots, log->slot); 4412 r = -ENOENT; 4413 if (!memslot->dirty_bitmap) 4414 goto out; 4415 4416 /* 4417 * Use second half of bitmap area because both HPT and radix 4418 * accumulate bits in the first half. 4419 */ 4420 n = kvm_dirty_bitmap_bytes(memslot); 4421 buf = memslot->dirty_bitmap + n / sizeof(long); 4422 memset(buf, 0, n); 4423 4424 if (kvm_is_radix(kvm)) 4425 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4426 else 4427 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4428 if (r) 4429 goto out; 4430 4431 /* 4432 * We accumulate dirty bits in the first half of the 4433 * memslot's dirty_bitmap area, for when pages are paged 4434 * out or modified by the host directly. Pick up these 4435 * bits and add them to the map. 4436 */ 4437 p = memslot->dirty_bitmap; 4438 for (i = 0; i < n / sizeof(long); ++i) 4439 buf[i] |= xchg(&p[i], 0); 4440 4441 /* Harvest dirty bits from VPA and DTL updates */ 4442 /* Note: we never modify the SLB shadow buffer areas */ 4443 kvm_for_each_vcpu(i, vcpu, kvm) { 4444 spin_lock(&vcpu->arch.vpa_update_lock); 4445 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4446 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4447 spin_unlock(&vcpu->arch.vpa_update_lock); 4448 } 4449 4450 r = -EFAULT; 4451 if (copy_to_user(log->dirty_bitmap, buf, n)) 4452 goto out; 4453 4454 r = 0; 4455 out: 4456 mutex_unlock(&kvm->slots_lock); 4457 return r; 4458 } 4459 4460 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 4461 struct kvm_memory_slot *dont) 4462 { 4463 if (!dont || free->arch.rmap != dont->arch.rmap) { 4464 vfree(free->arch.rmap); 4465 free->arch.rmap = NULL; 4466 } 4467 } 4468 4469 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 4470 unsigned long npages) 4471 { 4472 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap))); 4473 if (!slot->arch.rmap) 4474 return -ENOMEM; 4475 4476 return 0; 4477 } 4478 4479 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4480 struct kvm_memory_slot *memslot, 4481 const struct kvm_userspace_memory_region *mem) 4482 { 4483 return 0; 4484 } 4485 4486 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4487 const struct kvm_userspace_memory_region *mem, 4488 const struct kvm_memory_slot *old, 4489 const struct kvm_memory_slot *new, 4490 enum kvm_mr_change change) 4491 { 4492 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4493 4494 /* 4495 * If we are making a new memslot, it might make 4496 * some address that was previously cached as emulated 4497 * MMIO be no longer emulated MMIO, so invalidate 4498 * all the caches of emulated MMIO translations. 4499 */ 4500 if (npages) 4501 atomic64_inc(&kvm->arch.mmio_update); 4502 4503 /* 4504 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4505 * have already called kvm_arch_flush_shadow_memslot() to 4506 * flush shadow mappings. For KVM_MR_CREATE we have no 4507 * previous mappings. So the only case to handle is 4508 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4509 * has been changed. 4510 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4511 * to get rid of any THP PTEs in the partition-scoped page tables 4512 * so we can track dirtiness at the page level; we flush when 4513 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4514 * using THP PTEs. 4515 */ 4516 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4517 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4518 kvmppc_radix_flush_memslot(kvm, old); 4519 /* 4520 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4521 */ 4522 if (!kvm->arch.secure_guest) 4523 return; 4524 4525 switch (change) { 4526 case KVM_MR_CREATE: 4527 if (kvmppc_uvmem_slot_init(kvm, new)) 4528 return; 4529 uv_register_mem_slot(kvm->arch.lpid, 4530 new->base_gfn << PAGE_SHIFT, 4531 new->npages * PAGE_SIZE, 4532 0, new->id); 4533 break; 4534 case KVM_MR_DELETE: 4535 uv_unregister_mem_slot(kvm->arch.lpid, old->id); 4536 kvmppc_uvmem_slot_free(kvm, old); 4537 break; 4538 default: 4539 /* TODO: Handle KVM_MR_MOVE */ 4540 break; 4541 } 4542 } 4543 4544 /* 4545 * Update LPCR values in kvm->arch and in vcores. 4546 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4547 * of kvm->arch.lpcr update). 4548 */ 4549 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4550 { 4551 long int i; 4552 u32 cores_done = 0; 4553 4554 if ((kvm->arch.lpcr & mask) == lpcr) 4555 return; 4556 4557 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4558 4559 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4560 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4561 if (!vc) 4562 continue; 4563 spin_lock(&vc->lock); 4564 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4565 spin_unlock(&vc->lock); 4566 if (++cores_done >= kvm->arch.online_vcores) 4567 break; 4568 } 4569 } 4570 4571 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 4572 { 4573 return; 4574 } 4575 4576 void kvmppc_setup_partition_table(struct kvm *kvm) 4577 { 4578 unsigned long dw0, dw1; 4579 4580 if (!kvm_is_radix(kvm)) { 4581 /* PS field - page size for VRMA */ 4582 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4583 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4584 /* HTABSIZE and HTABORG fields */ 4585 dw0 |= kvm->arch.sdr1; 4586 4587 /* Second dword as set by userspace */ 4588 dw1 = kvm->arch.process_table; 4589 } else { 4590 dw0 = PATB_HR | radix__get_tree_size() | 4591 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4592 dw1 = PATB_GR | kvm->arch.process_table; 4593 } 4594 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4595 } 4596 4597 /* 4598 * Set up HPT (hashed page table) and RMA (real-mode area). 4599 * Must be called with kvm->arch.mmu_setup_lock held. 4600 */ 4601 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4602 { 4603 int err = 0; 4604 struct kvm *kvm = vcpu->kvm; 4605 unsigned long hva; 4606 struct kvm_memory_slot *memslot; 4607 struct vm_area_struct *vma; 4608 unsigned long lpcr = 0, senc; 4609 unsigned long psize, porder; 4610 int srcu_idx; 4611 4612 /* Allocate hashed page table (if not done already) and reset it */ 4613 if (!kvm->arch.hpt.virt) { 4614 int order = KVM_DEFAULT_HPT_ORDER; 4615 struct kvm_hpt_info info; 4616 4617 err = kvmppc_allocate_hpt(&info, order); 4618 /* If we get here, it means userspace didn't specify a 4619 * size explicitly. So, try successively smaller 4620 * sizes if the default failed. */ 4621 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4622 err = kvmppc_allocate_hpt(&info, order); 4623 4624 if (err < 0) { 4625 pr_err("KVM: Couldn't alloc HPT\n"); 4626 goto out; 4627 } 4628 4629 kvmppc_set_hpt(kvm, &info); 4630 } 4631 4632 /* Look up the memslot for guest physical address 0 */ 4633 srcu_idx = srcu_read_lock(&kvm->srcu); 4634 memslot = gfn_to_memslot(kvm, 0); 4635 4636 /* We must have some memory at 0 by now */ 4637 err = -EINVAL; 4638 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4639 goto out_srcu; 4640 4641 /* Look up the VMA for the start of this memory slot */ 4642 hva = memslot->userspace_addr; 4643 down_read(¤t->mm->mmap_sem); 4644 vma = find_vma(current->mm, hva); 4645 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4646 goto up_out; 4647 4648 psize = vma_kernel_pagesize(vma); 4649 4650 up_read(¤t->mm->mmap_sem); 4651 4652 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4653 if (psize >= 0x1000000) 4654 psize = 0x1000000; 4655 else if (psize >= 0x10000) 4656 psize = 0x10000; 4657 else 4658 psize = 0x1000; 4659 porder = __ilog2(psize); 4660 4661 senc = slb_pgsize_encoding(psize); 4662 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4663 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4664 /* Create HPTEs in the hash page table for the VRMA */ 4665 kvmppc_map_vrma(vcpu, memslot, porder); 4666 4667 /* Update VRMASD field in the LPCR */ 4668 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4669 /* the -4 is to account for senc values starting at 0x10 */ 4670 lpcr = senc << (LPCR_VRMASD_SH - 4); 4671 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4672 } 4673 4674 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4675 smp_wmb(); 4676 err = 0; 4677 out_srcu: 4678 srcu_read_unlock(&kvm->srcu, srcu_idx); 4679 out: 4680 return err; 4681 4682 up_out: 4683 up_read(¤t->mm->mmap_sem); 4684 goto out_srcu; 4685 } 4686 4687 /* 4688 * Must be called with kvm->arch.mmu_setup_lock held and 4689 * mmu_ready = 0 and no vcpus running. 4690 */ 4691 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4692 { 4693 if (nesting_enabled(kvm)) 4694 kvmhv_release_all_nested(kvm); 4695 kvmppc_rmap_reset(kvm); 4696 kvm->arch.process_table = 0; 4697 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4698 spin_lock(&kvm->mmu_lock); 4699 kvm->arch.radix = 0; 4700 spin_unlock(&kvm->mmu_lock); 4701 kvmppc_free_radix(kvm); 4702 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4703 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4704 return 0; 4705 } 4706 4707 /* 4708 * Must be called with kvm->arch.mmu_setup_lock held and 4709 * mmu_ready = 0 and no vcpus running. 4710 */ 4711 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4712 { 4713 int err; 4714 4715 err = kvmppc_init_vm_radix(kvm); 4716 if (err) 4717 return err; 4718 kvmppc_rmap_reset(kvm); 4719 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4720 spin_lock(&kvm->mmu_lock); 4721 kvm->arch.radix = 1; 4722 spin_unlock(&kvm->mmu_lock); 4723 kvmppc_free_hpt(&kvm->arch.hpt); 4724 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4725 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4726 return 0; 4727 } 4728 4729 #ifdef CONFIG_KVM_XICS 4730 /* 4731 * Allocate a per-core structure for managing state about which cores are 4732 * running in the host versus the guest and for exchanging data between 4733 * real mode KVM and CPU running in the host. 4734 * This is only done for the first VM. 4735 * The allocated structure stays even if all VMs have stopped. 4736 * It is only freed when the kvm-hv module is unloaded. 4737 * It's OK for this routine to fail, we just don't support host 4738 * core operations like redirecting H_IPI wakeups. 4739 */ 4740 void kvmppc_alloc_host_rm_ops(void) 4741 { 4742 struct kvmppc_host_rm_ops *ops; 4743 unsigned long l_ops; 4744 int cpu, core; 4745 int size; 4746 4747 /* Not the first time here ? */ 4748 if (kvmppc_host_rm_ops_hv != NULL) 4749 return; 4750 4751 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4752 if (!ops) 4753 return; 4754 4755 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4756 ops->rm_core = kzalloc(size, GFP_KERNEL); 4757 4758 if (!ops->rm_core) { 4759 kfree(ops); 4760 return; 4761 } 4762 4763 cpus_read_lock(); 4764 4765 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4766 if (!cpu_online(cpu)) 4767 continue; 4768 4769 core = cpu >> threads_shift; 4770 ops->rm_core[core].rm_state.in_host = 1; 4771 } 4772 4773 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4774 4775 /* 4776 * Make the contents of the kvmppc_host_rm_ops structure visible 4777 * to other CPUs before we assign it to the global variable. 4778 * Do an atomic assignment (no locks used here), but if someone 4779 * beats us to it, just free our copy and return. 4780 */ 4781 smp_wmb(); 4782 l_ops = (unsigned long) ops; 4783 4784 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4785 cpus_read_unlock(); 4786 kfree(ops->rm_core); 4787 kfree(ops); 4788 return; 4789 } 4790 4791 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4792 "ppc/kvm_book3s:prepare", 4793 kvmppc_set_host_core, 4794 kvmppc_clear_host_core); 4795 cpus_read_unlock(); 4796 } 4797 4798 void kvmppc_free_host_rm_ops(void) 4799 { 4800 if (kvmppc_host_rm_ops_hv) { 4801 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4802 kfree(kvmppc_host_rm_ops_hv->rm_core); 4803 kfree(kvmppc_host_rm_ops_hv); 4804 kvmppc_host_rm_ops_hv = NULL; 4805 } 4806 } 4807 #endif 4808 4809 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4810 { 4811 unsigned long lpcr, lpid; 4812 char buf[32]; 4813 int ret; 4814 4815 mutex_init(&kvm->arch.uvmem_lock); 4816 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 4817 mutex_init(&kvm->arch.mmu_setup_lock); 4818 4819 /* Allocate the guest's logical partition ID */ 4820 4821 lpid = kvmppc_alloc_lpid(); 4822 if ((long)lpid < 0) 4823 return -ENOMEM; 4824 kvm->arch.lpid = lpid; 4825 4826 kvmppc_alloc_host_rm_ops(); 4827 4828 kvmhv_vm_nested_init(kvm); 4829 4830 /* 4831 * Since we don't flush the TLB when tearing down a VM, 4832 * and this lpid might have previously been used, 4833 * make sure we flush on each core before running the new VM. 4834 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4835 * does this flush for us. 4836 */ 4837 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4838 cpumask_setall(&kvm->arch.need_tlb_flush); 4839 4840 /* Start out with the default set of hcalls enabled */ 4841 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4842 sizeof(kvm->arch.enabled_hcalls)); 4843 4844 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4845 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4846 4847 /* Init LPCR for virtual RMA mode */ 4848 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4849 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4850 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4851 lpcr &= LPCR_PECE | LPCR_LPES; 4852 } else { 4853 lpcr = 0; 4854 } 4855 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4856 LPCR_VPM0 | LPCR_VPM1; 4857 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4858 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4859 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4860 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4861 lpcr |= LPCR_ONL; 4862 /* 4863 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4864 * Set HVICE bit to enable hypervisor virtualization interrupts. 4865 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4866 * be unnecessary but better safe than sorry in case we re-enable 4867 * EE in HV mode with this LPCR still set) 4868 */ 4869 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4870 lpcr &= ~LPCR_VPM0; 4871 lpcr |= LPCR_HVICE | LPCR_HEIC; 4872 4873 /* 4874 * If xive is enabled, we route 0x500 interrupts directly 4875 * to the guest. 4876 */ 4877 if (xics_on_xive()) 4878 lpcr |= LPCR_LPES; 4879 } 4880 4881 /* 4882 * If the host uses radix, the guest starts out as radix. 4883 */ 4884 if (radix_enabled()) { 4885 kvm->arch.radix = 1; 4886 kvm->arch.mmu_ready = 1; 4887 lpcr &= ~LPCR_VPM1; 4888 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4889 ret = kvmppc_init_vm_radix(kvm); 4890 if (ret) { 4891 kvmppc_free_lpid(kvm->arch.lpid); 4892 return ret; 4893 } 4894 kvmppc_setup_partition_table(kvm); 4895 } 4896 4897 kvm->arch.lpcr = lpcr; 4898 4899 /* Initialization for future HPT resizes */ 4900 kvm->arch.resize_hpt = NULL; 4901 4902 /* 4903 * Work out how many sets the TLB has, for the use of 4904 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4905 */ 4906 if (radix_enabled()) 4907 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4908 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4909 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4910 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4911 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4912 else 4913 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4914 4915 /* 4916 * Track that we now have a HV mode VM active. This blocks secondary 4917 * CPU threads from coming online. 4918 * On POWER9, we only need to do this if the "indep_threads_mode" 4919 * module parameter has been set to N. 4920 */ 4921 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4922 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 4923 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 4924 kvm->arch.threads_indep = true; 4925 } else { 4926 kvm->arch.threads_indep = indep_threads_mode; 4927 } 4928 } 4929 if (!kvm->arch.threads_indep) 4930 kvm_hv_vm_activated(); 4931 4932 /* 4933 * Initialize smt_mode depending on processor. 4934 * POWER8 and earlier have to use "strict" threading, where 4935 * all vCPUs in a vcore have to run on the same (sub)core, 4936 * whereas on POWER9 the threads can each run a different 4937 * guest. 4938 */ 4939 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4940 kvm->arch.smt_mode = threads_per_subcore; 4941 else 4942 kvm->arch.smt_mode = 1; 4943 kvm->arch.emul_smt_mode = 1; 4944 4945 /* 4946 * Create a debugfs directory for the VM 4947 */ 4948 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4949 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4950 kvmppc_mmu_debugfs_init(kvm); 4951 if (radix_enabled()) 4952 kvmhv_radix_debugfs_init(kvm); 4953 4954 return 0; 4955 } 4956 4957 static void kvmppc_free_vcores(struct kvm *kvm) 4958 { 4959 long int i; 4960 4961 for (i = 0; i < KVM_MAX_VCORES; ++i) 4962 kfree(kvm->arch.vcores[i]); 4963 kvm->arch.online_vcores = 0; 4964 } 4965 4966 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4967 { 4968 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4969 4970 if (!kvm->arch.threads_indep) 4971 kvm_hv_vm_deactivated(); 4972 4973 kvmppc_free_vcores(kvm); 4974 4975 4976 if (kvm_is_radix(kvm)) 4977 kvmppc_free_radix(kvm); 4978 else 4979 kvmppc_free_hpt(&kvm->arch.hpt); 4980 4981 /* Perform global invalidation and return lpid to the pool */ 4982 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4983 if (nesting_enabled(kvm)) 4984 kvmhv_release_all_nested(kvm); 4985 kvm->arch.process_table = 0; 4986 uv_svm_terminate(kvm->arch.lpid); 4987 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 4988 } 4989 4990 kvmppc_free_lpid(kvm->arch.lpid); 4991 4992 kvmppc_free_pimap(kvm); 4993 } 4994 4995 /* We don't need to emulate any privileged instructions or dcbz */ 4996 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 4997 unsigned int inst, int *advance) 4998 { 4999 return EMULATE_FAIL; 5000 } 5001 5002 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5003 ulong spr_val) 5004 { 5005 return EMULATE_FAIL; 5006 } 5007 5008 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5009 ulong *spr_val) 5010 { 5011 return EMULATE_FAIL; 5012 } 5013 5014 static int kvmppc_core_check_processor_compat_hv(void) 5015 { 5016 if (cpu_has_feature(CPU_FTR_HVMODE) && 5017 cpu_has_feature(CPU_FTR_ARCH_206)) 5018 return 0; 5019 5020 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5021 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5022 return 0; 5023 5024 return -EIO; 5025 } 5026 5027 #ifdef CONFIG_KVM_XICS 5028 5029 void kvmppc_free_pimap(struct kvm *kvm) 5030 { 5031 kfree(kvm->arch.pimap); 5032 } 5033 5034 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5035 { 5036 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5037 } 5038 5039 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5040 { 5041 struct irq_desc *desc; 5042 struct kvmppc_irq_map *irq_map; 5043 struct kvmppc_passthru_irqmap *pimap; 5044 struct irq_chip *chip; 5045 int i, rc = 0; 5046 5047 if (!kvm_irq_bypass) 5048 return 1; 5049 5050 desc = irq_to_desc(host_irq); 5051 if (!desc) 5052 return -EIO; 5053 5054 mutex_lock(&kvm->lock); 5055 5056 pimap = kvm->arch.pimap; 5057 if (pimap == NULL) { 5058 /* First call, allocate structure to hold IRQ map */ 5059 pimap = kvmppc_alloc_pimap(); 5060 if (pimap == NULL) { 5061 mutex_unlock(&kvm->lock); 5062 return -ENOMEM; 5063 } 5064 kvm->arch.pimap = pimap; 5065 } 5066 5067 /* 5068 * For now, we only support interrupts for which the EOI operation 5069 * is an OPAL call followed by a write to XIRR, since that's 5070 * what our real-mode EOI code does, or a XIVE interrupt 5071 */ 5072 chip = irq_data_get_irq_chip(&desc->irq_data); 5073 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5074 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5075 host_irq, guest_gsi); 5076 mutex_unlock(&kvm->lock); 5077 return -ENOENT; 5078 } 5079 5080 /* 5081 * See if we already have an entry for this guest IRQ number. 5082 * If it's mapped to a hardware IRQ number, that's an error, 5083 * otherwise re-use this entry. 5084 */ 5085 for (i = 0; i < pimap->n_mapped; i++) { 5086 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5087 if (pimap->mapped[i].r_hwirq) { 5088 mutex_unlock(&kvm->lock); 5089 return -EINVAL; 5090 } 5091 break; 5092 } 5093 } 5094 5095 if (i == KVMPPC_PIRQ_MAPPED) { 5096 mutex_unlock(&kvm->lock); 5097 return -EAGAIN; /* table is full */ 5098 } 5099 5100 irq_map = &pimap->mapped[i]; 5101 5102 irq_map->v_hwirq = guest_gsi; 5103 irq_map->desc = desc; 5104 5105 /* 5106 * Order the above two stores before the next to serialize with 5107 * the KVM real mode handler. 5108 */ 5109 smp_wmb(); 5110 irq_map->r_hwirq = desc->irq_data.hwirq; 5111 5112 if (i == pimap->n_mapped) 5113 pimap->n_mapped++; 5114 5115 if (xics_on_xive()) 5116 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5117 else 5118 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5119 if (rc) 5120 irq_map->r_hwirq = 0; 5121 5122 mutex_unlock(&kvm->lock); 5123 5124 return 0; 5125 } 5126 5127 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5128 { 5129 struct irq_desc *desc; 5130 struct kvmppc_passthru_irqmap *pimap; 5131 int i, rc = 0; 5132 5133 if (!kvm_irq_bypass) 5134 return 0; 5135 5136 desc = irq_to_desc(host_irq); 5137 if (!desc) 5138 return -EIO; 5139 5140 mutex_lock(&kvm->lock); 5141 if (!kvm->arch.pimap) 5142 goto unlock; 5143 5144 pimap = kvm->arch.pimap; 5145 5146 for (i = 0; i < pimap->n_mapped; i++) { 5147 if (guest_gsi == pimap->mapped[i].v_hwirq) 5148 break; 5149 } 5150 5151 if (i == pimap->n_mapped) { 5152 mutex_unlock(&kvm->lock); 5153 return -ENODEV; 5154 } 5155 5156 if (xics_on_xive()) 5157 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5158 else 5159 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5160 5161 /* invalidate the entry (what do do on error from the above ?) */ 5162 pimap->mapped[i].r_hwirq = 0; 5163 5164 /* 5165 * We don't free this structure even when the count goes to 5166 * zero. The structure is freed when we destroy the VM. 5167 */ 5168 unlock: 5169 mutex_unlock(&kvm->lock); 5170 return rc; 5171 } 5172 5173 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5174 struct irq_bypass_producer *prod) 5175 { 5176 int ret = 0; 5177 struct kvm_kernel_irqfd *irqfd = 5178 container_of(cons, struct kvm_kernel_irqfd, consumer); 5179 5180 irqfd->producer = prod; 5181 5182 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5183 if (ret) 5184 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5185 prod->irq, irqfd->gsi, ret); 5186 5187 return ret; 5188 } 5189 5190 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5191 struct irq_bypass_producer *prod) 5192 { 5193 int ret; 5194 struct kvm_kernel_irqfd *irqfd = 5195 container_of(cons, struct kvm_kernel_irqfd, consumer); 5196 5197 irqfd->producer = NULL; 5198 5199 /* 5200 * When producer of consumer is unregistered, we change back to 5201 * default external interrupt handling mode - KVM real mode 5202 * will switch back to host. 5203 */ 5204 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5205 if (ret) 5206 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5207 prod->irq, irqfd->gsi, ret); 5208 } 5209 #endif 5210 5211 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5212 unsigned int ioctl, unsigned long arg) 5213 { 5214 struct kvm *kvm __maybe_unused = filp->private_data; 5215 void __user *argp = (void __user *)arg; 5216 long r; 5217 5218 switch (ioctl) { 5219 5220 case KVM_PPC_ALLOCATE_HTAB: { 5221 u32 htab_order; 5222 5223 r = -EFAULT; 5224 if (get_user(htab_order, (u32 __user *)argp)) 5225 break; 5226 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5227 if (r) 5228 break; 5229 r = 0; 5230 break; 5231 } 5232 5233 case KVM_PPC_GET_HTAB_FD: { 5234 struct kvm_get_htab_fd ghf; 5235 5236 r = -EFAULT; 5237 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5238 break; 5239 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5240 break; 5241 } 5242 5243 case KVM_PPC_RESIZE_HPT_PREPARE: { 5244 struct kvm_ppc_resize_hpt rhpt; 5245 5246 r = -EFAULT; 5247 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5248 break; 5249 5250 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5251 break; 5252 } 5253 5254 case KVM_PPC_RESIZE_HPT_COMMIT: { 5255 struct kvm_ppc_resize_hpt rhpt; 5256 5257 r = -EFAULT; 5258 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5259 break; 5260 5261 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5262 break; 5263 } 5264 5265 default: 5266 r = -ENOTTY; 5267 } 5268 5269 return r; 5270 } 5271 5272 /* 5273 * List of hcall numbers to enable by default. 5274 * For compatibility with old userspace, we enable by default 5275 * all hcalls that were implemented before the hcall-enabling 5276 * facility was added. Note this list should not include H_RTAS. 5277 */ 5278 static unsigned int default_hcall_list[] = { 5279 H_REMOVE, 5280 H_ENTER, 5281 H_READ, 5282 H_PROTECT, 5283 H_BULK_REMOVE, 5284 H_GET_TCE, 5285 H_PUT_TCE, 5286 H_SET_DABR, 5287 H_SET_XDABR, 5288 H_CEDE, 5289 H_PROD, 5290 H_CONFER, 5291 H_REGISTER_VPA, 5292 #ifdef CONFIG_KVM_XICS 5293 H_EOI, 5294 H_CPPR, 5295 H_IPI, 5296 H_IPOLL, 5297 H_XIRR, 5298 H_XIRR_X, 5299 #endif 5300 0 5301 }; 5302 5303 static void init_default_hcalls(void) 5304 { 5305 int i; 5306 unsigned int hcall; 5307 5308 for (i = 0; default_hcall_list[i]; ++i) { 5309 hcall = default_hcall_list[i]; 5310 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5311 __set_bit(hcall / 4, default_enabled_hcalls); 5312 } 5313 } 5314 5315 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5316 { 5317 unsigned long lpcr; 5318 int radix; 5319 int err; 5320 5321 /* If not on a POWER9, reject it */ 5322 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5323 return -ENODEV; 5324 5325 /* If any unknown flags set, reject it */ 5326 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5327 return -EINVAL; 5328 5329 /* GR (guest radix) bit in process_table field must match */ 5330 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5331 if (!!(cfg->process_table & PATB_GR) != radix) 5332 return -EINVAL; 5333 5334 /* Process table size field must be reasonable, i.e. <= 24 */ 5335 if ((cfg->process_table & PRTS_MASK) > 24) 5336 return -EINVAL; 5337 5338 /* We can change a guest to/from radix now, if the host is radix */ 5339 if (radix && !radix_enabled()) 5340 return -EINVAL; 5341 5342 /* If we're a nested hypervisor, we currently only support radix */ 5343 if (kvmhv_on_pseries() && !radix) 5344 return -EINVAL; 5345 5346 mutex_lock(&kvm->arch.mmu_setup_lock); 5347 if (radix != kvm_is_radix(kvm)) { 5348 if (kvm->arch.mmu_ready) { 5349 kvm->arch.mmu_ready = 0; 5350 /* order mmu_ready vs. vcpus_running */ 5351 smp_mb(); 5352 if (atomic_read(&kvm->arch.vcpus_running)) { 5353 kvm->arch.mmu_ready = 1; 5354 err = -EBUSY; 5355 goto out_unlock; 5356 } 5357 } 5358 if (radix) 5359 err = kvmppc_switch_mmu_to_radix(kvm); 5360 else 5361 err = kvmppc_switch_mmu_to_hpt(kvm); 5362 if (err) 5363 goto out_unlock; 5364 } 5365 5366 kvm->arch.process_table = cfg->process_table; 5367 kvmppc_setup_partition_table(kvm); 5368 5369 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5370 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5371 err = 0; 5372 5373 out_unlock: 5374 mutex_unlock(&kvm->arch.mmu_setup_lock); 5375 return err; 5376 } 5377 5378 static int kvmhv_enable_nested(struct kvm *kvm) 5379 { 5380 if (!nested) 5381 return -EPERM; 5382 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5383 return -ENODEV; 5384 5385 /* kvm == NULL means the caller is testing if the capability exists */ 5386 if (kvm) 5387 kvm->arch.nested_enable = true; 5388 return 0; 5389 } 5390 5391 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5392 int size) 5393 { 5394 int rc = -EINVAL; 5395 5396 if (kvmhv_vcpu_is_radix(vcpu)) { 5397 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5398 5399 if (rc > 0) 5400 rc = -EINVAL; 5401 } 5402 5403 /* For now quadrants are the only way to access nested guest memory */ 5404 if (rc && vcpu->arch.nested) 5405 rc = -EAGAIN; 5406 5407 return rc; 5408 } 5409 5410 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5411 int size) 5412 { 5413 int rc = -EINVAL; 5414 5415 if (kvmhv_vcpu_is_radix(vcpu)) { 5416 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5417 5418 if (rc > 0) 5419 rc = -EINVAL; 5420 } 5421 5422 /* For now quadrants are the only way to access nested guest memory */ 5423 if (rc && vcpu->arch.nested) 5424 rc = -EAGAIN; 5425 5426 return rc; 5427 } 5428 5429 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5430 { 5431 unpin_vpa(kvm, vpa); 5432 vpa->gpa = 0; 5433 vpa->pinned_addr = NULL; 5434 vpa->dirty = false; 5435 vpa->update_pending = 0; 5436 } 5437 5438 /* 5439 * IOCTL handler to turn off secure mode of guest 5440 * 5441 * - Release all device pages 5442 * - Issue ucall to terminate the guest on the UV side 5443 * - Unpin the VPA pages. 5444 * - Reinit the partition scoped page tables 5445 */ 5446 static int kvmhv_svm_off(struct kvm *kvm) 5447 { 5448 struct kvm_vcpu *vcpu; 5449 int mmu_was_ready; 5450 int srcu_idx; 5451 int ret = 0; 5452 int i; 5453 5454 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5455 return ret; 5456 5457 mutex_lock(&kvm->arch.mmu_setup_lock); 5458 mmu_was_ready = kvm->arch.mmu_ready; 5459 if (kvm->arch.mmu_ready) { 5460 kvm->arch.mmu_ready = 0; 5461 /* order mmu_ready vs. vcpus_running */ 5462 smp_mb(); 5463 if (atomic_read(&kvm->arch.vcpus_running)) { 5464 kvm->arch.mmu_ready = 1; 5465 ret = -EBUSY; 5466 goto out; 5467 } 5468 } 5469 5470 srcu_idx = srcu_read_lock(&kvm->srcu); 5471 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5472 struct kvm_memory_slot *memslot; 5473 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5474 5475 if (!slots) 5476 continue; 5477 5478 kvm_for_each_memslot(memslot, slots) { 5479 kvmppc_uvmem_drop_pages(memslot, kvm); 5480 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5481 } 5482 } 5483 srcu_read_unlock(&kvm->srcu, srcu_idx); 5484 5485 ret = uv_svm_terminate(kvm->arch.lpid); 5486 if (ret != U_SUCCESS) { 5487 ret = -EINVAL; 5488 goto out; 5489 } 5490 5491 /* 5492 * When secure guest is reset, all the guest pages are sent 5493 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5494 * chance to run and unpin their VPA pages. Unpinning of all 5495 * VPA pages is done here explicitly so that VPA pages 5496 * can be migrated to the secure side. 5497 * 5498 * This is required to for the secure SMP guest to reboot 5499 * correctly. 5500 */ 5501 kvm_for_each_vcpu(i, vcpu, kvm) { 5502 spin_lock(&vcpu->arch.vpa_update_lock); 5503 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5504 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5505 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5506 spin_unlock(&vcpu->arch.vpa_update_lock); 5507 } 5508 5509 kvmppc_setup_partition_table(kvm); 5510 kvm->arch.secure_guest = 0; 5511 kvm->arch.mmu_ready = mmu_was_ready; 5512 out: 5513 mutex_unlock(&kvm->arch.mmu_setup_lock); 5514 return ret; 5515 } 5516 5517 static struct kvmppc_ops kvm_ops_hv = { 5518 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5519 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5520 .get_one_reg = kvmppc_get_one_reg_hv, 5521 .set_one_reg = kvmppc_set_one_reg_hv, 5522 .vcpu_load = kvmppc_core_vcpu_load_hv, 5523 .vcpu_put = kvmppc_core_vcpu_put_hv, 5524 .inject_interrupt = kvmppc_inject_interrupt_hv, 5525 .set_msr = kvmppc_set_msr_hv, 5526 .vcpu_run = kvmppc_vcpu_run_hv, 5527 .vcpu_create = kvmppc_core_vcpu_create_hv, 5528 .vcpu_free = kvmppc_core_vcpu_free_hv, 5529 .check_requests = kvmppc_core_check_requests_hv, 5530 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5531 .flush_memslot = kvmppc_core_flush_memslot_hv, 5532 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5533 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5534 .unmap_hva_range = kvm_unmap_hva_range_hv, 5535 .age_hva = kvm_age_hva_hv, 5536 .test_age_hva = kvm_test_age_hva_hv, 5537 .set_spte_hva = kvm_set_spte_hva_hv, 5538 .mmu_destroy = kvmppc_mmu_destroy_hv, 5539 .free_memslot = kvmppc_core_free_memslot_hv, 5540 .create_memslot = kvmppc_core_create_memslot_hv, 5541 .init_vm = kvmppc_core_init_vm_hv, 5542 .destroy_vm = kvmppc_core_destroy_vm_hv, 5543 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5544 .emulate_op = kvmppc_core_emulate_op_hv, 5545 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5546 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5547 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5548 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5549 .hcall_implemented = kvmppc_hcall_impl_hv, 5550 #ifdef CONFIG_KVM_XICS 5551 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5552 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5553 #endif 5554 .configure_mmu = kvmhv_configure_mmu, 5555 .get_rmmu_info = kvmhv_get_rmmu_info, 5556 .set_smt_mode = kvmhv_set_smt_mode, 5557 .enable_nested = kvmhv_enable_nested, 5558 .load_from_eaddr = kvmhv_load_from_eaddr, 5559 .store_to_eaddr = kvmhv_store_to_eaddr, 5560 .svm_off = kvmhv_svm_off, 5561 }; 5562 5563 static int kvm_init_subcore_bitmap(void) 5564 { 5565 int i, j; 5566 int nr_cores = cpu_nr_cores(); 5567 struct sibling_subcore_state *sibling_subcore_state; 5568 5569 for (i = 0; i < nr_cores; i++) { 5570 int first_cpu = i * threads_per_core; 5571 int node = cpu_to_node(first_cpu); 5572 5573 /* Ignore if it is already allocated. */ 5574 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5575 continue; 5576 5577 sibling_subcore_state = 5578 kzalloc_node(sizeof(struct sibling_subcore_state), 5579 GFP_KERNEL, node); 5580 if (!sibling_subcore_state) 5581 return -ENOMEM; 5582 5583 5584 for (j = 0; j < threads_per_core; j++) { 5585 int cpu = first_cpu + j; 5586 5587 paca_ptrs[cpu]->sibling_subcore_state = 5588 sibling_subcore_state; 5589 } 5590 } 5591 return 0; 5592 } 5593 5594 static int kvmppc_radix_possible(void) 5595 { 5596 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5597 } 5598 5599 static int kvmppc_book3s_init_hv(void) 5600 { 5601 int r; 5602 5603 if (!tlbie_capable) { 5604 pr_err("KVM-HV: Host does not support TLBIE\n"); 5605 return -ENODEV; 5606 } 5607 5608 /* 5609 * FIXME!! Do we need to check on all cpus ? 5610 */ 5611 r = kvmppc_core_check_processor_compat_hv(); 5612 if (r < 0) 5613 return -ENODEV; 5614 5615 r = kvmhv_nested_init(); 5616 if (r) 5617 return r; 5618 5619 r = kvm_init_subcore_bitmap(); 5620 if (r) 5621 return r; 5622 5623 /* 5624 * We need a way of accessing the XICS interrupt controller, 5625 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5626 * indirectly, via OPAL. 5627 */ 5628 #ifdef CONFIG_SMP 5629 if (!xics_on_xive() && !kvmhv_on_pseries() && 5630 !local_paca->kvm_hstate.xics_phys) { 5631 struct device_node *np; 5632 5633 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5634 if (!np) { 5635 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5636 return -ENODEV; 5637 } 5638 /* presence of intc confirmed - node can be dropped again */ 5639 of_node_put(np); 5640 } 5641 #endif 5642 5643 kvm_ops_hv.owner = THIS_MODULE; 5644 kvmppc_hv_ops = &kvm_ops_hv; 5645 5646 init_default_hcalls(); 5647 5648 init_vcore_lists(); 5649 5650 r = kvmppc_mmu_hv_init(); 5651 if (r) 5652 return r; 5653 5654 if (kvmppc_radix_possible()) 5655 r = kvmppc_radix_init(); 5656 5657 /* 5658 * POWER9 chips before version 2.02 can't have some threads in 5659 * HPT mode and some in radix mode on the same core. 5660 */ 5661 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5662 unsigned int pvr = mfspr(SPRN_PVR); 5663 if ((pvr >> 16) == PVR_POWER9 && 5664 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5665 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5666 no_mixing_hpt_and_radix = true; 5667 } 5668 5669 r = kvmppc_uvmem_init(); 5670 if (r < 0) 5671 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 5672 5673 return r; 5674 } 5675 5676 static void kvmppc_book3s_exit_hv(void) 5677 { 5678 kvmppc_uvmem_free(); 5679 kvmppc_free_host_rm_ops(); 5680 if (kvmppc_radix_possible()) 5681 kvmppc_radix_exit(); 5682 kvmppc_hv_ops = NULL; 5683 kvmhv_nested_exit(); 5684 } 5685 5686 module_init(kvmppc_book3s_init_hv); 5687 module_exit(kvmppc_book3s_exit_hv); 5688 MODULE_LICENSE("GPL"); 5689 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5690 MODULE_ALIAS("devname:kvm"); 5691