xref: /linux/arch/powerpc/kvm/book3s_hv.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_host.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
78 
79 #include "book3s.h"
80 
81 #define CREATE_TRACE_POINTS
82 #include "trace_hv.h"
83 
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
87 
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
92 
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL	(~(u64)0)
95 
96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
97 
98 static int dynamic_mt_modes = 6;
99 module_param(dynamic_mt_modes, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode;
102 module_param(target_smt_mode, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104 
105 static bool indep_threads_mode = true;
106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
108 
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
112 
113 #ifdef CONFIG_KVM_XICS
114 static struct kernel_param_ops module_param_ops = {
115 	.set = param_set_int,
116 	.get = param_get_int,
117 };
118 
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121 
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125 
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130 
131 static inline bool nesting_enabled(struct kvm *kvm)
132 {
133 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
134 }
135 
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix;
138 
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140 
141 /*
142  * RWMR values for POWER8.  These control the rate at which PURR
143  * and SPURR count and should be set according to the number of
144  * online threads in the vcore being run.
145  */
146 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
154 
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156 	RWMR_RPA_P8_1THREAD,
157 	RWMR_RPA_P8_1THREAD,
158 	RWMR_RPA_P8_2THREAD,
159 	RWMR_RPA_P8_3THREAD,
160 	RWMR_RPA_P8_4THREAD,
161 	RWMR_RPA_P8_5THREAD,
162 	RWMR_RPA_P8_6THREAD,
163 	RWMR_RPA_P8_7THREAD,
164 	RWMR_RPA_P8_8THREAD,
165 };
166 
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168 		int *ip)
169 {
170 	int i = *ip;
171 	struct kvm_vcpu *vcpu;
172 
173 	while (++i < MAX_SMT_THREADS) {
174 		vcpu = READ_ONCE(vc->runnable_threads[i]);
175 		if (vcpu) {
176 			*ip = i;
177 			return vcpu;
178 		}
179 	}
180 	return NULL;
181 }
182 
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186 
187 static bool kvmppc_ipi_thread(int cpu)
188 {
189 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190 
191 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192 	if (kvmhv_on_pseries())
193 		return false;
194 
195 	/* On POWER9 we can use msgsnd to IPI any cpu */
196 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197 		msg |= get_hard_smp_processor_id(cpu);
198 		smp_mb();
199 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200 		return true;
201 	}
202 
203 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
204 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205 		preempt_disable();
206 		if (cpu_first_thread_sibling(cpu) ==
207 		    cpu_first_thread_sibling(smp_processor_id())) {
208 			msg |= cpu_thread_in_core(cpu);
209 			smp_mb();
210 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211 			preempt_enable();
212 			return true;
213 		}
214 		preempt_enable();
215 	}
216 
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218 	if (cpu >= 0 && cpu < nr_cpu_ids) {
219 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220 			xics_wake_cpu(cpu);
221 			return true;
222 		}
223 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224 		return true;
225 	}
226 #endif
227 
228 	return false;
229 }
230 
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233 	int cpu;
234 	struct swait_queue_head *wqp;
235 
236 	wqp = kvm_arch_vcpu_wq(vcpu);
237 	if (swq_has_sleeper(wqp)) {
238 		swake_up_one(wqp);
239 		++vcpu->stat.halt_wakeup;
240 	}
241 
242 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
243 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
244 		return;
245 
246 	/* CPU points to the first thread of the core */
247 	cpu = vcpu->cpu;
248 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
249 		smp_send_reschedule(cpu);
250 }
251 
252 /*
253  * We use the vcpu_load/put functions to measure stolen time.
254  * Stolen time is counted as time when either the vcpu is able to
255  * run as part of a virtual core, but the task running the vcore
256  * is preempted or sleeping, or when the vcpu needs something done
257  * in the kernel by the task running the vcpu, but that task is
258  * preempted or sleeping.  Those two things have to be counted
259  * separately, since one of the vcpu tasks will take on the job
260  * of running the core, and the other vcpu tasks in the vcore will
261  * sleep waiting for it to do that, but that sleep shouldn't count
262  * as stolen time.
263  *
264  * Hence we accumulate stolen time when the vcpu can run as part of
265  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
266  * needs its task to do other things in the kernel (for example,
267  * service a page fault) in busy_stolen.  We don't accumulate
268  * stolen time for a vcore when it is inactive, or for a vcpu
269  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
270  * a misnomer; it means that the vcpu task is not executing in
271  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
272  * the kernel.  We don't have any way of dividing up that time
273  * between time that the vcpu is genuinely stopped, time that
274  * the task is actively working on behalf of the vcpu, and time
275  * that the task is preempted, so we don't count any of it as
276  * stolen.
277  *
278  * Updates to busy_stolen are protected by arch.tbacct_lock;
279  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
280  * lock.  The stolen times are measured in units of timebase ticks.
281  * (Note that the != TB_NIL checks below are purely defensive;
282  * they should never fail.)
283  */
284 
285 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
286 {
287 	unsigned long flags;
288 
289 	spin_lock_irqsave(&vc->stoltb_lock, flags);
290 	vc->preempt_tb = mftb();
291 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 }
293 
294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
295 {
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&vc->stoltb_lock, flags);
299 	if (vc->preempt_tb != TB_NIL) {
300 		vc->stolen_tb += mftb() - vc->preempt_tb;
301 		vc->preempt_tb = TB_NIL;
302 	}
303 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
304 }
305 
306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
307 {
308 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
309 	unsigned long flags;
310 
311 	/*
312 	 * We can test vc->runner without taking the vcore lock,
313 	 * because only this task ever sets vc->runner to this
314 	 * vcpu, and once it is set to this vcpu, only this task
315 	 * ever sets it to NULL.
316 	 */
317 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
318 		kvmppc_core_end_stolen(vc);
319 
320 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
322 	    vcpu->arch.busy_preempt != TB_NIL) {
323 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
324 		vcpu->arch.busy_preempt = TB_NIL;
325 	}
326 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 }
328 
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 {
331 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
332 	unsigned long flags;
333 
334 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
335 		kvmppc_core_start_stolen(vc);
336 
337 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
338 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
339 		vcpu->arch.busy_preempt = mftb();
340 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
341 }
342 
343 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
344 {
345 	vcpu->arch.pvr = pvr;
346 }
347 
348 /* Dummy value used in computing PCR value below */
349 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
350 
351 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
352 {
353 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
354 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
355 
356 	/* We can (emulate) our own architecture version and anything older */
357 	if (cpu_has_feature(CPU_FTR_ARCH_300))
358 		host_pcr_bit = PCR_ARCH_300;
359 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
360 		host_pcr_bit = PCR_ARCH_207;
361 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
362 		host_pcr_bit = PCR_ARCH_206;
363 	else
364 		host_pcr_bit = PCR_ARCH_205;
365 
366 	/* Determine lowest PCR bit needed to run guest in given PVR level */
367 	guest_pcr_bit = host_pcr_bit;
368 	if (arch_compat) {
369 		switch (arch_compat) {
370 		case PVR_ARCH_205:
371 			guest_pcr_bit = PCR_ARCH_205;
372 			break;
373 		case PVR_ARCH_206:
374 		case PVR_ARCH_206p:
375 			guest_pcr_bit = PCR_ARCH_206;
376 			break;
377 		case PVR_ARCH_207:
378 			guest_pcr_bit = PCR_ARCH_207;
379 			break;
380 		case PVR_ARCH_300:
381 			guest_pcr_bit = PCR_ARCH_300;
382 			break;
383 		default:
384 			return -EINVAL;
385 		}
386 	}
387 
388 	/* Check requested PCR bits don't exceed our capabilities */
389 	if (guest_pcr_bit > host_pcr_bit)
390 		return -EINVAL;
391 
392 	spin_lock(&vc->lock);
393 	vc->arch_compat = arch_compat;
394 	/*
395 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
396 	 * Also set all reserved PCR bits
397 	 */
398 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
399 	spin_unlock(&vc->lock);
400 
401 	return 0;
402 }
403 
404 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
405 {
406 	int r;
407 
408 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
409 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
410 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
411 	for (r = 0; r < 16; ++r)
412 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
413 		       r, kvmppc_get_gpr(vcpu, r),
414 		       r+16, kvmppc_get_gpr(vcpu, r+16));
415 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
416 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
417 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
418 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
419 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
420 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
421 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
422 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
423 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
424 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
425 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
426 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
427 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
428 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
429 	for (r = 0; r < vcpu->arch.slb_max; ++r)
430 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
431 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
432 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
433 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
434 	       vcpu->arch.last_inst);
435 }
436 
437 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
438 {
439 	return kvm_get_vcpu_by_id(kvm, id);
440 }
441 
442 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
443 {
444 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
445 	vpa->yield_count = cpu_to_be32(1);
446 }
447 
448 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
449 		   unsigned long addr, unsigned long len)
450 {
451 	/* check address is cacheline aligned */
452 	if (addr & (L1_CACHE_BYTES - 1))
453 		return -EINVAL;
454 	spin_lock(&vcpu->arch.vpa_update_lock);
455 	if (v->next_gpa != addr || v->len != len) {
456 		v->next_gpa = addr;
457 		v->len = addr ? len : 0;
458 		v->update_pending = 1;
459 	}
460 	spin_unlock(&vcpu->arch.vpa_update_lock);
461 	return 0;
462 }
463 
464 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
465 struct reg_vpa {
466 	u32 dummy;
467 	union {
468 		__be16 hword;
469 		__be32 word;
470 	} length;
471 };
472 
473 static int vpa_is_registered(struct kvmppc_vpa *vpap)
474 {
475 	if (vpap->update_pending)
476 		return vpap->next_gpa != 0;
477 	return vpap->pinned_addr != NULL;
478 }
479 
480 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
481 				       unsigned long flags,
482 				       unsigned long vcpuid, unsigned long vpa)
483 {
484 	struct kvm *kvm = vcpu->kvm;
485 	unsigned long len, nb;
486 	void *va;
487 	struct kvm_vcpu *tvcpu;
488 	int err;
489 	int subfunc;
490 	struct kvmppc_vpa *vpap;
491 
492 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
493 	if (!tvcpu)
494 		return H_PARAMETER;
495 
496 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
497 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
498 	    subfunc == H_VPA_REG_SLB) {
499 		/* Registering new area - address must be cache-line aligned */
500 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
501 			return H_PARAMETER;
502 
503 		/* convert logical addr to kernel addr and read length */
504 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
505 		if (va == NULL)
506 			return H_PARAMETER;
507 		if (subfunc == H_VPA_REG_VPA)
508 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
509 		else
510 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
511 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
512 
513 		/* Check length */
514 		if (len > nb || len < sizeof(struct reg_vpa))
515 			return H_PARAMETER;
516 	} else {
517 		vpa = 0;
518 		len = 0;
519 	}
520 
521 	err = H_PARAMETER;
522 	vpap = NULL;
523 	spin_lock(&tvcpu->arch.vpa_update_lock);
524 
525 	switch (subfunc) {
526 	case H_VPA_REG_VPA:		/* register VPA */
527 		/*
528 		 * The size of our lppaca is 1kB because of the way we align
529 		 * it for the guest to avoid crossing a 4kB boundary. We only
530 		 * use 640 bytes of the structure though, so we should accept
531 		 * clients that set a size of 640.
532 		 */
533 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
534 		if (len < sizeof(struct lppaca))
535 			break;
536 		vpap = &tvcpu->arch.vpa;
537 		err = 0;
538 		break;
539 
540 	case H_VPA_REG_DTL:		/* register DTL */
541 		if (len < sizeof(struct dtl_entry))
542 			break;
543 		len -= len % sizeof(struct dtl_entry);
544 
545 		/* Check that they have previously registered a VPA */
546 		err = H_RESOURCE;
547 		if (!vpa_is_registered(&tvcpu->arch.vpa))
548 			break;
549 
550 		vpap = &tvcpu->arch.dtl;
551 		err = 0;
552 		break;
553 
554 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
555 		/* Check that they have previously registered a VPA */
556 		err = H_RESOURCE;
557 		if (!vpa_is_registered(&tvcpu->arch.vpa))
558 			break;
559 
560 		vpap = &tvcpu->arch.slb_shadow;
561 		err = 0;
562 		break;
563 
564 	case H_VPA_DEREG_VPA:		/* deregister VPA */
565 		/* Check they don't still have a DTL or SLB buf registered */
566 		err = H_RESOURCE;
567 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
568 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
569 			break;
570 
571 		vpap = &tvcpu->arch.vpa;
572 		err = 0;
573 		break;
574 
575 	case H_VPA_DEREG_DTL:		/* deregister DTL */
576 		vpap = &tvcpu->arch.dtl;
577 		err = 0;
578 		break;
579 
580 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
581 		vpap = &tvcpu->arch.slb_shadow;
582 		err = 0;
583 		break;
584 	}
585 
586 	if (vpap) {
587 		vpap->next_gpa = vpa;
588 		vpap->len = len;
589 		vpap->update_pending = 1;
590 	}
591 
592 	spin_unlock(&tvcpu->arch.vpa_update_lock);
593 
594 	return err;
595 }
596 
597 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
598 {
599 	struct kvm *kvm = vcpu->kvm;
600 	void *va;
601 	unsigned long nb;
602 	unsigned long gpa;
603 
604 	/*
605 	 * We need to pin the page pointed to by vpap->next_gpa,
606 	 * but we can't call kvmppc_pin_guest_page under the lock
607 	 * as it does get_user_pages() and down_read().  So we
608 	 * have to drop the lock, pin the page, then get the lock
609 	 * again and check that a new area didn't get registered
610 	 * in the meantime.
611 	 */
612 	for (;;) {
613 		gpa = vpap->next_gpa;
614 		spin_unlock(&vcpu->arch.vpa_update_lock);
615 		va = NULL;
616 		nb = 0;
617 		if (gpa)
618 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
619 		spin_lock(&vcpu->arch.vpa_update_lock);
620 		if (gpa == vpap->next_gpa)
621 			break;
622 		/* sigh... unpin that one and try again */
623 		if (va)
624 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
625 	}
626 
627 	vpap->update_pending = 0;
628 	if (va && nb < vpap->len) {
629 		/*
630 		 * If it's now too short, it must be that userspace
631 		 * has changed the mappings underlying guest memory,
632 		 * so unregister the region.
633 		 */
634 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
635 		va = NULL;
636 	}
637 	if (vpap->pinned_addr)
638 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
639 					vpap->dirty);
640 	vpap->gpa = gpa;
641 	vpap->pinned_addr = va;
642 	vpap->dirty = false;
643 	if (va)
644 		vpap->pinned_end = va + vpap->len;
645 }
646 
647 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
648 {
649 	if (!(vcpu->arch.vpa.update_pending ||
650 	      vcpu->arch.slb_shadow.update_pending ||
651 	      vcpu->arch.dtl.update_pending))
652 		return;
653 
654 	spin_lock(&vcpu->arch.vpa_update_lock);
655 	if (vcpu->arch.vpa.update_pending) {
656 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
657 		if (vcpu->arch.vpa.pinned_addr)
658 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
659 	}
660 	if (vcpu->arch.dtl.update_pending) {
661 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
662 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
663 		vcpu->arch.dtl_index = 0;
664 	}
665 	if (vcpu->arch.slb_shadow.update_pending)
666 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
667 	spin_unlock(&vcpu->arch.vpa_update_lock);
668 }
669 
670 /*
671  * Return the accumulated stolen time for the vcore up until `now'.
672  * The caller should hold the vcore lock.
673  */
674 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
675 {
676 	u64 p;
677 	unsigned long flags;
678 
679 	spin_lock_irqsave(&vc->stoltb_lock, flags);
680 	p = vc->stolen_tb;
681 	if (vc->vcore_state != VCORE_INACTIVE &&
682 	    vc->preempt_tb != TB_NIL)
683 		p += now - vc->preempt_tb;
684 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
685 	return p;
686 }
687 
688 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
689 				    struct kvmppc_vcore *vc)
690 {
691 	struct dtl_entry *dt;
692 	struct lppaca *vpa;
693 	unsigned long stolen;
694 	unsigned long core_stolen;
695 	u64 now;
696 	unsigned long flags;
697 
698 	dt = vcpu->arch.dtl_ptr;
699 	vpa = vcpu->arch.vpa.pinned_addr;
700 	now = mftb();
701 	core_stolen = vcore_stolen_time(vc, now);
702 	stolen = core_stolen - vcpu->arch.stolen_logged;
703 	vcpu->arch.stolen_logged = core_stolen;
704 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
705 	stolen += vcpu->arch.busy_stolen;
706 	vcpu->arch.busy_stolen = 0;
707 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
708 	if (!dt || !vpa)
709 		return;
710 	memset(dt, 0, sizeof(struct dtl_entry));
711 	dt->dispatch_reason = 7;
712 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
713 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
714 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
715 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
716 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
717 	++dt;
718 	if (dt == vcpu->arch.dtl.pinned_end)
719 		dt = vcpu->arch.dtl.pinned_addr;
720 	vcpu->arch.dtl_ptr = dt;
721 	/* order writing *dt vs. writing vpa->dtl_idx */
722 	smp_wmb();
723 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
724 	vcpu->arch.dtl.dirty = true;
725 }
726 
727 /* See if there is a doorbell interrupt pending for a vcpu */
728 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
729 {
730 	int thr;
731 	struct kvmppc_vcore *vc;
732 
733 	if (vcpu->arch.doorbell_request)
734 		return true;
735 	/*
736 	 * Ensure that the read of vcore->dpdes comes after the read
737 	 * of vcpu->doorbell_request.  This barrier matches the
738 	 * smp_wmb() in kvmppc_guest_entry_inject().
739 	 */
740 	smp_rmb();
741 	vc = vcpu->arch.vcore;
742 	thr = vcpu->vcpu_id - vc->first_vcpuid;
743 	return !!(vc->dpdes & (1 << thr));
744 }
745 
746 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
747 {
748 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
749 		return true;
750 	if ((!vcpu->arch.vcore->arch_compat) &&
751 	    cpu_has_feature(CPU_FTR_ARCH_207S))
752 		return true;
753 	return false;
754 }
755 
756 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
757 			     unsigned long resource, unsigned long value1,
758 			     unsigned long value2)
759 {
760 	switch (resource) {
761 	case H_SET_MODE_RESOURCE_SET_CIABR:
762 		if (!kvmppc_power8_compatible(vcpu))
763 			return H_P2;
764 		if (value2)
765 			return H_P4;
766 		if (mflags)
767 			return H_UNSUPPORTED_FLAG_START;
768 		/* Guests can't breakpoint the hypervisor */
769 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
770 			return H_P3;
771 		vcpu->arch.ciabr  = value1;
772 		return H_SUCCESS;
773 	case H_SET_MODE_RESOURCE_SET_DAWR:
774 		if (!kvmppc_power8_compatible(vcpu))
775 			return H_P2;
776 		if (!ppc_breakpoint_available())
777 			return H_P2;
778 		if (mflags)
779 			return H_UNSUPPORTED_FLAG_START;
780 		if (value2 & DABRX_HYP)
781 			return H_P4;
782 		vcpu->arch.dawr  = value1;
783 		vcpu->arch.dawrx = value2;
784 		return H_SUCCESS;
785 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
786 		/* KVM does not support mflags=2 (AIL=2) */
787 		if (mflags != 0 && mflags != 3)
788 			return H_UNSUPPORTED_FLAG_START;
789 		return H_TOO_HARD;
790 	default:
791 		return H_TOO_HARD;
792 	}
793 }
794 
795 /* Copy guest memory in place - must reside within a single memslot */
796 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
797 				  unsigned long len)
798 {
799 	struct kvm_memory_slot *to_memslot = NULL;
800 	struct kvm_memory_slot *from_memslot = NULL;
801 	unsigned long to_addr, from_addr;
802 	int r;
803 
804 	/* Get HPA for from address */
805 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
806 	if (!from_memslot)
807 		return -EFAULT;
808 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
809 			     << PAGE_SHIFT))
810 		return -EINVAL;
811 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
812 	if (kvm_is_error_hva(from_addr))
813 		return -EFAULT;
814 	from_addr |= (from & (PAGE_SIZE - 1));
815 
816 	/* Get HPA for to address */
817 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
818 	if (!to_memslot)
819 		return -EFAULT;
820 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
821 			   << PAGE_SHIFT))
822 		return -EINVAL;
823 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
824 	if (kvm_is_error_hva(to_addr))
825 		return -EFAULT;
826 	to_addr |= (to & (PAGE_SIZE - 1));
827 
828 	/* Perform copy */
829 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
830 			     len);
831 	if (r)
832 		return -EFAULT;
833 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
834 	return 0;
835 }
836 
837 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
838 			       unsigned long dest, unsigned long src)
839 {
840 	u64 pg_sz = SZ_4K;		/* 4K page size */
841 	u64 pg_mask = SZ_4K - 1;
842 	int ret;
843 
844 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
845 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
846 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
847 		return H_PARAMETER;
848 
849 	/* dest (and src if copy_page flag set) must be page aligned */
850 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
851 		return H_PARAMETER;
852 
853 	/* zero and/or copy the page as determined by the flags */
854 	if (flags & H_COPY_PAGE) {
855 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
856 		if (ret < 0)
857 			return H_PARAMETER;
858 	} else if (flags & H_ZERO_PAGE) {
859 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
860 		if (ret < 0)
861 			return H_PARAMETER;
862 	}
863 
864 	/* We can ignore the remaining flags */
865 
866 	return H_SUCCESS;
867 }
868 
869 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
870 {
871 	struct kvmppc_vcore *vcore = target->arch.vcore;
872 
873 	/*
874 	 * We expect to have been called by the real mode handler
875 	 * (kvmppc_rm_h_confer()) which would have directly returned
876 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
877 	 * have useful work to do and should not confer) so we don't
878 	 * recheck that here.
879 	 */
880 
881 	spin_lock(&vcore->lock);
882 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
883 	    vcore->vcore_state != VCORE_INACTIVE &&
884 	    vcore->runner)
885 		target = vcore->runner;
886 	spin_unlock(&vcore->lock);
887 
888 	return kvm_vcpu_yield_to(target);
889 }
890 
891 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
892 {
893 	int yield_count = 0;
894 	struct lppaca *lppaca;
895 
896 	spin_lock(&vcpu->arch.vpa_update_lock);
897 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
898 	if (lppaca)
899 		yield_count = be32_to_cpu(lppaca->yield_count);
900 	spin_unlock(&vcpu->arch.vpa_update_lock);
901 	return yield_count;
902 }
903 
904 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
905 {
906 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
907 	unsigned long target, ret = H_SUCCESS;
908 	int yield_count;
909 	struct kvm_vcpu *tvcpu;
910 	int idx, rc;
911 
912 	if (req <= MAX_HCALL_OPCODE &&
913 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
914 		return RESUME_HOST;
915 
916 	switch (req) {
917 	case H_CEDE:
918 		break;
919 	case H_PROD:
920 		target = kvmppc_get_gpr(vcpu, 4);
921 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
922 		if (!tvcpu) {
923 			ret = H_PARAMETER;
924 			break;
925 		}
926 		tvcpu->arch.prodded = 1;
927 		smp_mb();
928 		if (tvcpu->arch.ceded)
929 			kvmppc_fast_vcpu_kick_hv(tvcpu);
930 		break;
931 	case H_CONFER:
932 		target = kvmppc_get_gpr(vcpu, 4);
933 		if (target == -1)
934 			break;
935 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
936 		if (!tvcpu) {
937 			ret = H_PARAMETER;
938 			break;
939 		}
940 		yield_count = kvmppc_get_gpr(vcpu, 5);
941 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
942 			break;
943 		kvm_arch_vcpu_yield_to(tvcpu);
944 		break;
945 	case H_REGISTER_VPA:
946 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
947 					kvmppc_get_gpr(vcpu, 5),
948 					kvmppc_get_gpr(vcpu, 6));
949 		break;
950 	case H_RTAS:
951 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
952 			return RESUME_HOST;
953 
954 		idx = srcu_read_lock(&vcpu->kvm->srcu);
955 		rc = kvmppc_rtas_hcall(vcpu);
956 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
957 
958 		if (rc == -ENOENT)
959 			return RESUME_HOST;
960 		else if (rc == 0)
961 			break;
962 
963 		/* Send the error out to userspace via KVM_RUN */
964 		return rc;
965 	case H_LOGICAL_CI_LOAD:
966 		ret = kvmppc_h_logical_ci_load(vcpu);
967 		if (ret == H_TOO_HARD)
968 			return RESUME_HOST;
969 		break;
970 	case H_LOGICAL_CI_STORE:
971 		ret = kvmppc_h_logical_ci_store(vcpu);
972 		if (ret == H_TOO_HARD)
973 			return RESUME_HOST;
974 		break;
975 	case H_SET_MODE:
976 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
977 					kvmppc_get_gpr(vcpu, 5),
978 					kvmppc_get_gpr(vcpu, 6),
979 					kvmppc_get_gpr(vcpu, 7));
980 		if (ret == H_TOO_HARD)
981 			return RESUME_HOST;
982 		break;
983 	case H_XIRR:
984 	case H_CPPR:
985 	case H_EOI:
986 	case H_IPI:
987 	case H_IPOLL:
988 	case H_XIRR_X:
989 		if (kvmppc_xics_enabled(vcpu)) {
990 			if (xics_on_xive()) {
991 				ret = H_NOT_AVAILABLE;
992 				return RESUME_GUEST;
993 			}
994 			ret = kvmppc_xics_hcall(vcpu, req);
995 			break;
996 		}
997 		return RESUME_HOST;
998 	case H_SET_DABR:
999 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1000 		break;
1001 	case H_SET_XDABR:
1002 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1003 						kvmppc_get_gpr(vcpu, 5));
1004 		break;
1005 #ifdef CONFIG_SPAPR_TCE_IOMMU
1006 	case H_GET_TCE:
1007 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1008 						kvmppc_get_gpr(vcpu, 5));
1009 		if (ret == H_TOO_HARD)
1010 			return RESUME_HOST;
1011 		break;
1012 	case H_PUT_TCE:
1013 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1014 						kvmppc_get_gpr(vcpu, 5),
1015 						kvmppc_get_gpr(vcpu, 6));
1016 		if (ret == H_TOO_HARD)
1017 			return RESUME_HOST;
1018 		break;
1019 	case H_PUT_TCE_INDIRECT:
1020 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1021 						kvmppc_get_gpr(vcpu, 5),
1022 						kvmppc_get_gpr(vcpu, 6),
1023 						kvmppc_get_gpr(vcpu, 7));
1024 		if (ret == H_TOO_HARD)
1025 			return RESUME_HOST;
1026 		break;
1027 	case H_STUFF_TCE:
1028 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1029 						kvmppc_get_gpr(vcpu, 5),
1030 						kvmppc_get_gpr(vcpu, 6),
1031 						kvmppc_get_gpr(vcpu, 7));
1032 		if (ret == H_TOO_HARD)
1033 			return RESUME_HOST;
1034 		break;
1035 #endif
1036 	case H_RANDOM:
1037 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1038 			ret = H_HARDWARE;
1039 		break;
1040 
1041 	case H_SET_PARTITION_TABLE:
1042 		ret = H_FUNCTION;
1043 		if (nesting_enabled(vcpu->kvm))
1044 			ret = kvmhv_set_partition_table(vcpu);
1045 		break;
1046 	case H_ENTER_NESTED:
1047 		ret = H_FUNCTION;
1048 		if (!nesting_enabled(vcpu->kvm))
1049 			break;
1050 		ret = kvmhv_enter_nested_guest(vcpu);
1051 		if (ret == H_INTERRUPT) {
1052 			kvmppc_set_gpr(vcpu, 3, 0);
1053 			vcpu->arch.hcall_needed = 0;
1054 			return -EINTR;
1055 		} else if (ret == H_TOO_HARD) {
1056 			kvmppc_set_gpr(vcpu, 3, 0);
1057 			vcpu->arch.hcall_needed = 0;
1058 			return RESUME_HOST;
1059 		}
1060 		break;
1061 	case H_TLB_INVALIDATE:
1062 		ret = H_FUNCTION;
1063 		if (nesting_enabled(vcpu->kvm))
1064 			ret = kvmhv_do_nested_tlbie(vcpu);
1065 		break;
1066 	case H_COPY_TOFROM_GUEST:
1067 		ret = H_FUNCTION;
1068 		if (nesting_enabled(vcpu->kvm))
1069 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1070 		break;
1071 	case H_PAGE_INIT:
1072 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1073 					 kvmppc_get_gpr(vcpu, 5),
1074 					 kvmppc_get_gpr(vcpu, 6));
1075 		break;
1076 	case H_SVM_PAGE_IN:
1077 		ret = kvmppc_h_svm_page_in(vcpu->kvm,
1078 					   kvmppc_get_gpr(vcpu, 4),
1079 					   kvmppc_get_gpr(vcpu, 5),
1080 					   kvmppc_get_gpr(vcpu, 6));
1081 		break;
1082 	case H_SVM_PAGE_OUT:
1083 		ret = kvmppc_h_svm_page_out(vcpu->kvm,
1084 					    kvmppc_get_gpr(vcpu, 4),
1085 					    kvmppc_get_gpr(vcpu, 5),
1086 					    kvmppc_get_gpr(vcpu, 6));
1087 		break;
1088 	case H_SVM_INIT_START:
1089 		ret = kvmppc_h_svm_init_start(vcpu->kvm);
1090 		break;
1091 	case H_SVM_INIT_DONE:
1092 		ret = kvmppc_h_svm_init_done(vcpu->kvm);
1093 		break;
1094 
1095 	default:
1096 		return RESUME_HOST;
1097 	}
1098 	kvmppc_set_gpr(vcpu, 3, ret);
1099 	vcpu->arch.hcall_needed = 0;
1100 	return RESUME_GUEST;
1101 }
1102 
1103 /*
1104  * Handle H_CEDE in the nested virtualization case where we haven't
1105  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1106  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1107  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1108  */
1109 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1110 {
1111 	vcpu->arch.shregs.msr |= MSR_EE;
1112 	vcpu->arch.ceded = 1;
1113 	smp_mb();
1114 	if (vcpu->arch.prodded) {
1115 		vcpu->arch.prodded = 0;
1116 		smp_mb();
1117 		vcpu->arch.ceded = 0;
1118 	}
1119 }
1120 
1121 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1122 {
1123 	switch (cmd) {
1124 	case H_CEDE:
1125 	case H_PROD:
1126 	case H_CONFER:
1127 	case H_REGISTER_VPA:
1128 	case H_SET_MODE:
1129 	case H_LOGICAL_CI_LOAD:
1130 	case H_LOGICAL_CI_STORE:
1131 #ifdef CONFIG_KVM_XICS
1132 	case H_XIRR:
1133 	case H_CPPR:
1134 	case H_EOI:
1135 	case H_IPI:
1136 	case H_IPOLL:
1137 	case H_XIRR_X:
1138 #endif
1139 	case H_PAGE_INIT:
1140 		return 1;
1141 	}
1142 
1143 	/* See if it's in the real-mode table */
1144 	return kvmppc_hcall_impl_hv_realmode(cmd);
1145 }
1146 
1147 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1148 					struct kvm_vcpu *vcpu)
1149 {
1150 	u32 last_inst;
1151 
1152 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1153 					EMULATE_DONE) {
1154 		/*
1155 		 * Fetch failed, so return to guest and
1156 		 * try executing it again.
1157 		 */
1158 		return RESUME_GUEST;
1159 	}
1160 
1161 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1162 		run->exit_reason = KVM_EXIT_DEBUG;
1163 		run->debug.arch.address = kvmppc_get_pc(vcpu);
1164 		return RESUME_HOST;
1165 	} else {
1166 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1167 		return RESUME_GUEST;
1168 	}
1169 }
1170 
1171 static void do_nothing(void *x)
1172 {
1173 }
1174 
1175 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1176 {
1177 	int thr, cpu, pcpu, nthreads;
1178 	struct kvm_vcpu *v;
1179 	unsigned long dpdes;
1180 
1181 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1182 	dpdes = 0;
1183 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1184 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1185 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1186 		if (!v)
1187 			continue;
1188 		/*
1189 		 * If the vcpu is currently running on a physical cpu thread,
1190 		 * interrupt it in order to pull it out of the guest briefly,
1191 		 * which will update its vcore->dpdes value.
1192 		 */
1193 		pcpu = READ_ONCE(v->cpu);
1194 		if (pcpu >= 0)
1195 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1196 		if (kvmppc_doorbell_pending(v))
1197 			dpdes |= 1 << thr;
1198 	}
1199 	return dpdes;
1200 }
1201 
1202 /*
1203  * On POWER9, emulate doorbell-related instructions in order to
1204  * give the guest the illusion of running on a multi-threaded core.
1205  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1206  * and mfspr DPDES.
1207  */
1208 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1209 {
1210 	u32 inst, rb, thr;
1211 	unsigned long arg;
1212 	struct kvm *kvm = vcpu->kvm;
1213 	struct kvm_vcpu *tvcpu;
1214 
1215 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1216 		return RESUME_GUEST;
1217 	if (get_op(inst) != 31)
1218 		return EMULATE_FAIL;
1219 	rb = get_rb(inst);
1220 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1221 	switch (get_xop(inst)) {
1222 	case OP_31_XOP_MSGSNDP:
1223 		arg = kvmppc_get_gpr(vcpu, rb);
1224 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1225 			break;
1226 		arg &= 0x3f;
1227 		if (arg >= kvm->arch.emul_smt_mode)
1228 			break;
1229 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1230 		if (!tvcpu)
1231 			break;
1232 		if (!tvcpu->arch.doorbell_request) {
1233 			tvcpu->arch.doorbell_request = 1;
1234 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1235 		}
1236 		break;
1237 	case OP_31_XOP_MSGCLRP:
1238 		arg = kvmppc_get_gpr(vcpu, rb);
1239 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1240 			break;
1241 		vcpu->arch.vcore->dpdes = 0;
1242 		vcpu->arch.doorbell_request = 0;
1243 		break;
1244 	case OP_31_XOP_MFSPR:
1245 		switch (get_sprn(inst)) {
1246 		case SPRN_TIR:
1247 			arg = thr;
1248 			break;
1249 		case SPRN_DPDES:
1250 			arg = kvmppc_read_dpdes(vcpu);
1251 			break;
1252 		default:
1253 			return EMULATE_FAIL;
1254 		}
1255 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1256 		break;
1257 	default:
1258 		return EMULATE_FAIL;
1259 	}
1260 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1261 	return RESUME_GUEST;
1262 }
1263 
1264 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1265 				 struct task_struct *tsk)
1266 {
1267 	int r = RESUME_HOST;
1268 
1269 	vcpu->stat.sum_exits++;
1270 
1271 	/*
1272 	 * This can happen if an interrupt occurs in the last stages
1273 	 * of guest entry or the first stages of guest exit (i.e. after
1274 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1275 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1276 	 * That can happen due to a bug, or due to a machine check
1277 	 * occurring at just the wrong time.
1278 	 */
1279 	if (vcpu->arch.shregs.msr & MSR_HV) {
1280 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1281 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1282 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1283 			vcpu->arch.shregs.msr);
1284 		kvmppc_dump_regs(vcpu);
1285 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1286 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1287 		return RESUME_HOST;
1288 	}
1289 	run->exit_reason = KVM_EXIT_UNKNOWN;
1290 	run->ready_for_interrupt_injection = 1;
1291 	switch (vcpu->arch.trap) {
1292 	/* We're good on these - the host merely wanted to get our attention */
1293 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1294 		vcpu->stat.dec_exits++;
1295 		r = RESUME_GUEST;
1296 		break;
1297 	case BOOK3S_INTERRUPT_EXTERNAL:
1298 	case BOOK3S_INTERRUPT_H_DOORBELL:
1299 	case BOOK3S_INTERRUPT_H_VIRT:
1300 		vcpu->stat.ext_intr_exits++;
1301 		r = RESUME_GUEST;
1302 		break;
1303 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1304 	case BOOK3S_INTERRUPT_HMI:
1305 	case BOOK3S_INTERRUPT_PERFMON:
1306 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1307 		r = RESUME_GUEST;
1308 		break;
1309 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1310 		/* Print the MCE event to host console. */
1311 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1312 
1313 		/*
1314 		 * If the guest can do FWNMI, exit to userspace so it can
1315 		 * deliver a FWNMI to the guest.
1316 		 * Otherwise we synthesize a machine check for the guest
1317 		 * so that it knows that the machine check occurred.
1318 		 */
1319 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1320 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1321 			kvmppc_core_queue_machine_check(vcpu, flags);
1322 			r = RESUME_GUEST;
1323 			break;
1324 		}
1325 
1326 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1327 		run->exit_reason = KVM_EXIT_NMI;
1328 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1329 		/* Clear out the old NMI status from run->flags */
1330 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1331 		/* Now set the NMI status */
1332 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1333 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1334 		else
1335 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1336 
1337 		r = RESUME_HOST;
1338 		break;
1339 	case BOOK3S_INTERRUPT_PROGRAM:
1340 	{
1341 		ulong flags;
1342 		/*
1343 		 * Normally program interrupts are delivered directly
1344 		 * to the guest by the hardware, but we can get here
1345 		 * as a result of a hypervisor emulation interrupt
1346 		 * (e40) getting turned into a 700 by BML RTAS.
1347 		 */
1348 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1349 		kvmppc_core_queue_program(vcpu, flags);
1350 		r = RESUME_GUEST;
1351 		break;
1352 	}
1353 	case BOOK3S_INTERRUPT_SYSCALL:
1354 	{
1355 		/* hcall - punt to userspace */
1356 		int i;
1357 
1358 		/* hypercall with MSR_PR has already been handled in rmode,
1359 		 * and never reaches here.
1360 		 */
1361 
1362 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1363 		for (i = 0; i < 9; ++i)
1364 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1365 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1366 		vcpu->arch.hcall_needed = 1;
1367 		r = RESUME_HOST;
1368 		break;
1369 	}
1370 	/*
1371 	 * We get these next two if the guest accesses a page which it thinks
1372 	 * it has mapped but which is not actually present, either because
1373 	 * it is for an emulated I/O device or because the corresonding
1374 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1375 	 * have been handled already.
1376 	 */
1377 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1378 		r = RESUME_PAGE_FAULT;
1379 		break;
1380 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1381 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1382 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1383 			DSISR_SRR1_MATCH_64S;
1384 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1385 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1386 		r = RESUME_PAGE_FAULT;
1387 		break;
1388 	/*
1389 	 * This occurs if the guest executes an illegal instruction.
1390 	 * If the guest debug is disabled, generate a program interrupt
1391 	 * to the guest. If guest debug is enabled, we need to check
1392 	 * whether the instruction is a software breakpoint instruction.
1393 	 * Accordingly return to Guest or Host.
1394 	 */
1395 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1396 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1397 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1398 				swab32(vcpu->arch.emul_inst) :
1399 				vcpu->arch.emul_inst;
1400 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1401 			r = kvmppc_emulate_debug_inst(run, vcpu);
1402 		} else {
1403 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1404 			r = RESUME_GUEST;
1405 		}
1406 		break;
1407 	/*
1408 	 * This occurs if the guest (kernel or userspace), does something that
1409 	 * is prohibited by HFSCR.
1410 	 * On POWER9, this could be a doorbell instruction that we need
1411 	 * to emulate.
1412 	 * Otherwise, we just generate a program interrupt to the guest.
1413 	 */
1414 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1415 		r = EMULATE_FAIL;
1416 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1417 		    cpu_has_feature(CPU_FTR_ARCH_300))
1418 			r = kvmppc_emulate_doorbell_instr(vcpu);
1419 		if (r == EMULATE_FAIL) {
1420 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1421 			r = RESUME_GUEST;
1422 		}
1423 		break;
1424 
1425 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1426 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1427 		/*
1428 		 * This occurs for various TM-related instructions that
1429 		 * we need to emulate on POWER9 DD2.2.  We have already
1430 		 * handled the cases where the guest was in real-suspend
1431 		 * mode and was transitioning to transactional state.
1432 		 */
1433 		r = kvmhv_p9_tm_emulation(vcpu);
1434 		break;
1435 #endif
1436 
1437 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1438 		r = RESUME_PASSTHROUGH;
1439 		break;
1440 	default:
1441 		kvmppc_dump_regs(vcpu);
1442 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1443 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1444 			vcpu->arch.shregs.msr);
1445 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1446 		r = RESUME_HOST;
1447 		break;
1448 	}
1449 
1450 	return r;
1451 }
1452 
1453 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1454 {
1455 	int r;
1456 	int srcu_idx;
1457 
1458 	vcpu->stat.sum_exits++;
1459 
1460 	/*
1461 	 * This can happen if an interrupt occurs in the last stages
1462 	 * of guest entry or the first stages of guest exit (i.e. after
1463 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1464 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1465 	 * That can happen due to a bug, or due to a machine check
1466 	 * occurring at just the wrong time.
1467 	 */
1468 	if (vcpu->arch.shregs.msr & MSR_HV) {
1469 		pr_emerg("KVM trap in HV mode while nested!\n");
1470 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1471 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1472 			 vcpu->arch.shregs.msr);
1473 		kvmppc_dump_regs(vcpu);
1474 		return RESUME_HOST;
1475 	}
1476 	switch (vcpu->arch.trap) {
1477 	/* We're good on these - the host merely wanted to get our attention */
1478 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1479 		vcpu->stat.dec_exits++;
1480 		r = RESUME_GUEST;
1481 		break;
1482 	case BOOK3S_INTERRUPT_EXTERNAL:
1483 		vcpu->stat.ext_intr_exits++;
1484 		r = RESUME_HOST;
1485 		break;
1486 	case BOOK3S_INTERRUPT_H_DOORBELL:
1487 	case BOOK3S_INTERRUPT_H_VIRT:
1488 		vcpu->stat.ext_intr_exits++;
1489 		r = RESUME_GUEST;
1490 		break;
1491 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1492 	case BOOK3S_INTERRUPT_HMI:
1493 	case BOOK3S_INTERRUPT_PERFMON:
1494 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1495 		r = RESUME_GUEST;
1496 		break;
1497 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1498 		/* Pass the machine check to the L1 guest */
1499 		r = RESUME_HOST;
1500 		/* Print the MCE event to host console. */
1501 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1502 		break;
1503 	/*
1504 	 * We get these next two if the guest accesses a page which it thinks
1505 	 * it has mapped but which is not actually present, either because
1506 	 * it is for an emulated I/O device or because the corresonding
1507 	 * host page has been paged out.
1508 	 */
1509 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1510 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1511 		r = kvmhv_nested_page_fault(run, vcpu);
1512 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1513 		break;
1514 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1515 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1516 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1517 					 DSISR_SRR1_MATCH_64S;
1518 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1519 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1520 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1521 		r = kvmhv_nested_page_fault(run, vcpu);
1522 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1523 		break;
1524 
1525 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1526 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1527 		/*
1528 		 * This occurs for various TM-related instructions that
1529 		 * we need to emulate on POWER9 DD2.2.  We have already
1530 		 * handled the cases where the guest was in real-suspend
1531 		 * mode and was transitioning to transactional state.
1532 		 */
1533 		r = kvmhv_p9_tm_emulation(vcpu);
1534 		break;
1535 #endif
1536 
1537 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1538 		vcpu->arch.trap = 0;
1539 		r = RESUME_GUEST;
1540 		if (!xics_on_xive())
1541 			kvmppc_xics_rm_complete(vcpu, 0);
1542 		break;
1543 	default:
1544 		r = RESUME_HOST;
1545 		break;
1546 	}
1547 
1548 	return r;
1549 }
1550 
1551 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1552 					    struct kvm_sregs *sregs)
1553 {
1554 	int i;
1555 
1556 	memset(sregs, 0, sizeof(struct kvm_sregs));
1557 	sregs->pvr = vcpu->arch.pvr;
1558 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1559 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1560 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1567 					    struct kvm_sregs *sregs)
1568 {
1569 	int i, j;
1570 
1571 	/* Only accept the same PVR as the host's, since we can't spoof it */
1572 	if (sregs->pvr != vcpu->arch.pvr)
1573 		return -EINVAL;
1574 
1575 	j = 0;
1576 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1577 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1578 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1579 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1580 			++j;
1581 		}
1582 	}
1583 	vcpu->arch.slb_max = j;
1584 
1585 	return 0;
1586 }
1587 
1588 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1589 		bool preserve_top32)
1590 {
1591 	struct kvm *kvm = vcpu->kvm;
1592 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1593 	u64 mask;
1594 
1595 	spin_lock(&vc->lock);
1596 	/*
1597 	 * If ILE (interrupt little-endian) has changed, update the
1598 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1599 	 */
1600 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1601 		struct kvm_vcpu *vcpu;
1602 		int i;
1603 
1604 		kvm_for_each_vcpu(i, vcpu, kvm) {
1605 			if (vcpu->arch.vcore != vc)
1606 				continue;
1607 			if (new_lpcr & LPCR_ILE)
1608 				vcpu->arch.intr_msr |= MSR_LE;
1609 			else
1610 				vcpu->arch.intr_msr &= ~MSR_LE;
1611 		}
1612 	}
1613 
1614 	/*
1615 	 * Userspace can only modify DPFD (default prefetch depth),
1616 	 * ILE (interrupt little-endian) and TC (translation control).
1617 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1618 	 */
1619 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1620 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1621 		mask |= LPCR_AIL;
1622 	/*
1623 	 * On POWER9, allow userspace to enable large decrementer for the
1624 	 * guest, whether or not the host has it enabled.
1625 	 */
1626 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1627 		mask |= LPCR_LD;
1628 
1629 	/* Broken 32-bit version of LPCR must not clear top bits */
1630 	if (preserve_top32)
1631 		mask &= 0xFFFFFFFF;
1632 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1633 	spin_unlock(&vc->lock);
1634 }
1635 
1636 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1637 				 union kvmppc_one_reg *val)
1638 {
1639 	int r = 0;
1640 	long int i;
1641 
1642 	switch (id) {
1643 	case KVM_REG_PPC_DEBUG_INST:
1644 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1645 		break;
1646 	case KVM_REG_PPC_HIOR:
1647 		*val = get_reg_val(id, 0);
1648 		break;
1649 	case KVM_REG_PPC_DABR:
1650 		*val = get_reg_val(id, vcpu->arch.dabr);
1651 		break;
1652 	case KVM_REG_PPC_DABRX:
1653 		*val = get_reg_val(id, vcpu->arch.dabrx);
1654 		break;
1655 	case KVM_REG_PPC_DSCR:
1656 		*val = get_reg_val(id, vcpu->arch.dscr);
1657 		break;
1658 	case KVM_REG_PPC_PURR:
1659 		*val = get_reg_val(id, vcpu->arch.purr);
1660 		break;
1661 	case KVM_REG_PPC_SPURR:
1662 		*val = get_reg_val(id, vcpu->arch.spurr);
1663 		break;
1664 	case KVM_REG_PPC_AMR:
1665 		*val = get_reg_val(id, vcpu->arch.amr);
1666 		break;
1667 	case KVM_REG_PPC_UAMOR:
1668 		*val = get_reg_val(id, vcpu->arch.uamor);
1669 		break;
1670 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1671 		i = id - KVM_REG_PPC_MMCR0;
1672 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1673 		break;
1674 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1675 		i = id - KVM_REG_PPC_PMC1;
1676 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1677 		break;
1678 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1679 		i = id - KVM_REG_PPC_SPMC1;
1680 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1681 		break;
1682 	case KVM_REG_PPC_SIAR:
1683 		*val = get_reg_val(id, vcpu->arch.siar);
1684 		break;
1685 	case KVM_REG_PPC_SDAR:
1686 		*val = get_reg_val(id, vcpu->arch.sdar);
1687 		break;
1688 	case KVM_REG_PPC_SIER:
1689 		*val = get_reg_val(id, vcpu->arch.sier);
1690 		break;
1691 	case KVM_REG_PPC_IAMR:
1692 		*val = get_reg_val(id, vcpu->arch.iamr);
1693 		break;
1694 	case KVM_REG_PPC_PSPB:
1695 		*val = get_reg_val(id, vcpu->arch.pspb);
1696 		break;
1697 	case KVM_REG_PPC_DPDES:
1698 		/*
1699 		 * On POWER9, where we are emulating msgsndp etc.,
1700 		 * we return 1 bit for each vcpu, which can come from
1701 		 * either vcore->dpdes or doorbell_request.
1702 		 * On POWER8, doorbell_request is 0.
1703 		 */
1704 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1705 				   vcpu->arch.doorbell_request);
1706 		break;
1707 	case KVM_REG_PPC_VTB:
1708 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1709 		break;
1710 	case KVM_REG_PPC_DAWR:
1711 		*val = get_reg_val(id, vcpu->arch.dawr);
1712 		break;
1713 	case KVM_REG_PPC_DAWRX:
1714 		*val = get_reg_val(id, vcpu->arch.dawrx);
1715 		break;
1716 	case KVM_REG_PPC_CIABR:
1717 		*val = get_reg_val(id, vcpu->arch.ciabr);
1718 		break;
1719 	case KVM_REG_PPC_CSIGR:
1720 		*val = get_reg_val(id, vcpu->arch.csigr);
1721 		break;
1722 	case KVM_REG_PPC_TACR:
1723 		*val = get_reg_val(id, vcpu->arch.tacr);
1724 		break;
1725 	case KVM_REG_PPC_TCSCR:
1726 		*val = get_reg_val(id, vcpu->arch.tcscr);
1727 		break;
1728 	case KVM_REG_PPC_PID:
1729 		*val = get_reg_val(id, vcpu->arch.pid);
1730 		break;
1731 	case KVM_REG_PPC_ACOP:
1732 		*val = get_reg_val(id, vcpu->arch.acop);
1733 		break;
1734 	case KVM_REG_PPC_WORT:
1735 		*val = get_reg_val(id, vcpu->arch.wort);
1736 		break;
1737 	case KVM_REG_PPC_TIDR:
1738 		*val = get_reg_val(id, vcpu->arch.tid);
1739 		break;
1740 	case KVM_REG_PPC_PSSCR:
1741 		*val = get_reg_val(id, vcpu->arch.psscr);
1742 		break;
1743 	case KVM_REG_PPC_VPA_ADDR:
1744 		spin_lock(&vcpu->arch.vpa_update_lock);
1745 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1746 		spin_unlock(&vcpu->arch.vpa_update_lock);
1747 		break;
1748 	case KVM_REG_PPC_VPA_SLB:
1749 		spin_lock(&vcpu->arch.vpa_update_lock);
1750 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1751 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1752 		spin_unlock(&vcpu->arch.vpa_update_lock);
1753 		break;
1754 	case KVM_REG_PPC_VPA_DTL:
1755 		spin_lock(&vcpu->arch.vpa_update_lock);
1756 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1757 		val->vpaval.length = vcpu->arch.dtl.len;
1758 		spin_unlock(&vcpu->arch.vpa_update_lock);
1759 		break;
1760 	case KVM_REG_PPC_TB_OFFSET:
1761 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1762 		break;
1763 	case KVM_REG_PPC_LPCR:
1764 	case KVM_REG_PPC_LPCR_64:
1765 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1766 		break;
1767 	case KVM_REG_PPC_PPR:
1768 		*val = get_reg_val(id, vcpu->arch.ppr);
1769 		break;
1770 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1771 	case KVM_REG_PPC_TFHAR:
1772 		*val = get_reg_val(id, vcpu->arch.tfhar);
1773 		break;
1774 	case KVM_REG_PPC_TFIAR:
1775 		*val = get_reg_val(id, vcpu->arch.tfiar);
1776 		break;
1777 	case KVM_REG_PPC_TEXASR:
1778 		*val = get_reg_val(id, vcpu->arch.texasr);
1779 		break;
1780 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1781 		i = id - KVM_REG_PPC_TM_GPR0;
1782 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1783 		break;
1784 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1785 	{
1786 		int j;
1787 		i = id - KVM_REG_PPC_TM_VSR0;
1788 		if (i < 32)
1789 			for (j = 0; j < TS_FPRWIDTH; j++)
1790 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1791 		else {
1792 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1793 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1794 			else
1795 				r = -ENXIO;
1796 		}
1797 		break;
1798 	}
1799 	case KVM_REG_PPC_TM_CR:
1800 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1801 		break;
1802 	case KVM_REG_PPC_TM_XER:
1803 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1804 		break;
1805 	case KVM_REG_PPC_TM_LR:
1806 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1807 		break;
1808 	case KVM_REG_PPC_TM_CTR:
1809 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1810 		break;
1811 	case KVM_REG_PPC_TM_FPSCR:
1812 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1813 		break;
1814 	case KVM_REG_PPC_TM_AMR:
1815 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1816 		break;
1817 	case KVM_REG_PPC_TM_PPR:
1818 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1819 		break;
1820 	case KVM_REG_PPC_TM_VRSAVE:
1821 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1822 		break;
1823 	case KVM_REG_PPC_TM_VSCR:
1824 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1825 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1826 		else
1827 			r = -ENXIO;
1828 		break;
1829 	case KVM_REG_PPC_TM_DSCR:
1830 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1831 		break;
1832 	case KVM_REG_PPC_TM_TAR:
1833 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1834 		break;
1835 #endif
1836 	case KVM_REG_PPC_ARCH_COMPAT:
1837 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1838 		break;
1839 	case KVM_REG_PPC_DEC_EXPIRY:
1840 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1841 				   vcpu->arch.vcore->tb_offset);
1842 		break;
1843 	case KVM_REG_PPC_ONLINE:
1844 		*val = get_reg_val(id, vcpu->arch.online);
1845 		break;
1846 	case KVM_REG_PPC_PTCR:
1847 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1848 		break;
1849 	default:
1850 		r = -EINVAL;
1851 		break;
1852 	}
1853 
1854 	return r;
1855 }
1856 
1857 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1858 				 union kvmppc_one_reg *val)
1859 {
1860 	int r = 0;
1861 	long int i;
1862 	unsigned long addr, len;
1863 
1864 	switch (id) {
1865 	case KVM_REG_PPC_HIOR:
1866 		/* Only allow this to be set to zero */
1867 		if (set_reg_val(id, *val))
1868 			r = -EINVAL;
1869 		break;
1870 	case KVM_REG_PPC_DABR:
1871 		vcpu->arch.dabr = set_reg_val(id, *val);
1872 		break;
1873 	case KVM_REG_PPC_DABRX:
1874 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1875 		break;
1876 	case KVM_REG_PPC_DSCR:
1877 		vcpu->arch.dscr = set_reg_val(id, *val);
1878 		break;
1879 	case KVM_REG_PPC_PURR:
1880 		vcpu->arch.purr = set_reg_val(id, *val);
1881 		break;
1882 	case KVM_REG_PPC_SPURR:
1883 		vcpu->arch.spurr = set_reg_val(id, *val);
1884 		break;
1885 	case KVM_REG_PPC_AMR:
1886 		vcpu->arch.amr = set_reg_val(id, *val);
1887 		break;
1888 	case KVM_REG_PPC_UAMOR:
1889 		vcpu->arch.uamor = set_reg_val(id, *val);
1890 		break;
1891 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1892 		i = id - KVM_REG_PPC_MMCR0;
1893 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1894 		break;
1895 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1896 		i = id - KVM_REG_PPC_PMC1;
1897 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1898 		break;
1899 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1900 		i = id - KVM_REG_PPC_SPMC1;
1901 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1902 		break;
1903 	case KVM_REG_PPC_SIAR:
1904 		vcpu->arch.siar = set_reg_val(id, *val);
1905 		break;
1906 	case KVM_REG_PPC_SDAR:
1907 		vcpu->arch.sdar = set_reg_val(id, *val);
1908 		break;
1909 	case KVM_REG_PPC_SIER:
1910 		vcpu->arch.sier = set_reg_val(id, *val);
1911 		break;
1912 	case KVM_REG_PPC_IAMR:
1913 		vcpu->arch.iamr = set_reg_val(id, *val);
1914 		break;
1915 	case KVM_REG_PPC_PSPB:
1916 		vcpu->arch.pspb = set_reg_val(id, *val);
1917 		break;
1918 	case KVM_REG_PPC_DPDES:
1919 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1920 		break;
1921 	case KVM_REG_PPC_VTB:
1922 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1923 		break;
1924 	case KVM_REG_PPC_DAWR:
1925 		vcpu->arch.dawr = set_reg_val(id, *val);
1926 		break;
1927 	case KVM_REG_PPC_DAWRX:
1928 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1929 		break;
1930 	case KVM_REG_PPC_CIABR:
1931 		vcpu->arch.ciabr = set_reg_val(id, *val);
1932 		/* Don't allow setting breakpoints in hypervisor code */
1933 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1934 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1935 		break;
1936 	case KVM_REG_PPC_CSIGR:
1937 		vcpu->arch.csigr = set_reg_val(id, *val);
1938 		break;
1939 	case KVM_REG_PPC_TACR:
1940 		vcpu->arch.tacr = set_reg_val(id, *val);
1941 		break;
1942 	case KVM_REG_PPC_TCSCR:
1943 		vcpu->arch.tcscr = set_reg_val(id, *val);
1944 		break;
1945 	case KVM_REG_PPC_PID:
1946 		vcpu->arch.pid = set_reg_val(id, *val);
1947 		break;
1948 	case KVM_REG_PPC_ACOP:
1949 		vcpu->arch.acop = set_reg_val(id, *val);
1950 		break;
1951 	case KVM_REG_PPC_WORT:
1952 		vcpu->arch.wort = set_reg_val(id, *val);
1953 		break;
1954 	case KVM_REG_PPC_TIDR:
1955 		vcpu->arch.tid = set_reg_val(id, *val);
1956 		break;
1957 	case KVM_REG_PPC_PSSCR:
1958 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1959 		break;
1960 	case KVM_REG_PPC_VPA_ADDR:
1961 		addr = set_reg_val(id, *val);
1962 		r = -EINVAL;
1963 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1964 			      vcpu->arch.dtl.next_gpa))
1965 			break;
1966 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1967 		break;
1968 	case KVM_REG_PPC_VPA_SLB:
1969 		addr = val->vpaval.addr;
1970 		len = val->vpaval.length;
1971 		r = -EINVAL;
1972 		if (addr && !vcpu->arch.vpa.next_gpa)
1973 			break;
1974 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1975 		break;
1976 	case KVM_REG_PPC_VPA_DTL:
1977 		addr = val->vpaval.addr;
1978 		len = val->vpaval.length;
1979 		r = -EINVAL;
1980 		if (addr && (len < sizeof(struct dtl_entry) ||
1981 			     !vcpu->arch.vpa.next_gpa))
1982 			break;
1983 		len -= len % sizeof(struct dtl_entry);
1984 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1985 		break;
1986 	case KVM_REG_PPC_TB_OFFSET:
1987 		/* round up to multiple of 2^24 */
1988 		vcpu->arch.vcore->tb_offset =
1989 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1990 		break;
1991 	case KVM_REG_PPC_LPCR:
1992 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1993 		break;
1994 	case KVM_REG_PPC_LPCR_64:
1995 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1996 		break;
1997 	case KVM_REG_PPC_PPR:
1998 		vcpu->arch.ppr = set_reg_val(id, *val);
1999 		break;
2000 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2001 	case KVM_REG_PPC_TFHAR:
2002 		vcpu->arch.tfhar = set_reg_val(id, *val);
2003 		break;
2004 	case KVM_REG_PPC_TFIAR:
2005 		vcpu->arch.tfiar = set_reg_val(id, *val);
2006 		break;
2007 	case KVM_REG_PPC_TEXASR:
2008 		vcpu->arch.texasr = set_reg_val(id, *val);
2009 		break;
2010 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2011 		i = id - KVM_REG_PPC_TM_GPR0;
2012 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2013 		break;
2014 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2015 	{
2016 		int j;
2017 		i = id - KVM_REG_PPC_TM_VSR0;
2018 		if (i < 32)
2019 			for (j = 0; j < TS_FPRWIDTH; j++)
2020 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2021 		else
2022 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2023 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2024 			else
2025 				r = -ENXIO;
2026 		break;
2027 	}
2028 	case KVM_REG_PPC_TM_CR:
2029 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2030 		break;
2031 	case KVM_REG_PPC_TM_XER:
2032 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2033 		break;
2034 	case KVM_REG_PPC_TM_LR:
2035 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2036 		break;
2037 	case KVM_REG_PPC_TM_CTR:
2038 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2039 		break;
2040 	case KVM_REG_PPC_TM_FPSCR:
2041 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2042 		break;
2043 	case KVM_REG_PPC_TM_AMR:
2044 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2045 		break;
2046 	case KVM_REG_PPC_TM_PPR:
2047 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2048 		break;
2049 	case KVM_REG_PPC_TM_VRSAVE:
2050 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2051 		break;
2052 	case KVM_REG_PPC_TM_VSCR:
2053 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2054 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2055 		else
2056 			r = - ENXIO;
2057 		break;
2058 	case KVM_REG_PPC_TM_DSCR:
2059 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2060 		break;
2061 	case KVM_REG_PPC_TM_TAR:
2062 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2063 		break;
2064 #endif
2065 	case KVM_REG_PPC_ARCH_COMPAT:
2066 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2067 		break;
2068 	case KVM_REG_PPC_DEC_EXPIRY:
2069 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2070 			vcpu->arch.vcore->tb_offset;
2071 		break;
2072 	case KVM_REG_PPC_ONLINE:
2073 		i = set_reg_val(id, *val);
2074 		if (i && !vcpu->arch.online)
2075 			atomic_inc(&vcpu->arch.vcore->online_count);
2076 		else if (!i && vcpu->arch.online)
2077 			atomic_dec(&vcpu->arch.vcore->online_count);
2078 		vcpu->arch.online = i;
2079 		break;
2080 	case KVM_REG_PPC_PTCR:
2081 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2082 		break;
2083 	default:
2084 		r = -EINVAL;
2085 		break;
2086 	}
2087 
2088 	return r;
2089 }
2090 
2091 /*
2092  * On POWER9, threads are independent and can be in different partitions.
2093  * Therefore we consider each thread to be a subcore.
2094  * There is a restriction that all threads have to be in the same
2095  * MMU mode (radix or HPT), unfortunately, but since we only support
2096  * HPT guests on a HPT host so far, that isn't an impediment yet.
2097  */
2098 static int threads_per_vcore(struct kvm *kvm)
2099 {
2100 	if (kvm->arch.threads_indep)
2101 		return 1;
2102 	return threads_per_subcore;
2103 }
2104 
2105 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2106 {
2107 	struct kvmppc_vcore *vcore;
2108 
2109 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2110 
2111 	if (vcore == NULL)
2112 		return NULL;
2113 
2114 	spin_lock_init(&vcore->lock);
2115 	spin_lock_init(&vcore->stoltb_lock);
2116 	init_swait_queue_head(&vcore->wq);
2117 	vcore->preempt_tb = TB_NIL;
2118 	vcore->lpcr = kvm->arch.lpcr;
2119 	vcore->first_vcpuid = id;
2120 	vcore->kvm = kvm;
2121 	INIT_LIST_HEAD(&vcore->preempt_list);
2122 
2123 	return vcore;
2124 }
2125 
2126 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2127 static struct debugfs_timings_element {
2128 	const char *name;
2129 	size_t offset;
2130 } timings[] = {
2131 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2132 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2133 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2134 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2135 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2136 };
2137 
2138 #define N_TIMINGS	(ARRAY_SIZE(timings))
2139 
2140 struct debugfs_timings_state {
2141 	struct kvm_vcpu	*vcpu;
2142 	unsigned int	buflen;
2143 	char		buf[N_TIMINGS * 100];
2144 };
2145 
2146 static int debugfs_timings_open(struct inode *inode, struct file *file)
2147 {
2148 	struct kvm_vcpu *vcpu = inode->i_private;
2149 	struct debugfs_timings_state *p;
2150 
2151 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2152 	if (!p)
2153 		return -ENOMEM;
2154 
2155 	kvm_get_kvm(vcpu->kvm);
2156 	p->vcpu = vcpu;
2157 	file->private_data = p;
2158 
2159 	return nonseekable_open(inode, file);
2160 }
2161 
2162 static int debugfs_timings_release(struct inode *inode, struct file *file)
2163 {
2164 	struct debugfs_timings_state *p = file->private_data;
2165 
2166 	kvm_put_kvm(p->vcpu->kvm);
2167 	kfree(p);
2168 	return 0;
2169 }
2170 
2171 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2172 				    size_t len, loff_t *ppos)
2173 {
2174 	struct debugfs_timings_state *p = file->private_data;
2175 	struct kvm_vcpu *vcpu = p->vcpu;
2176 	char *s, *buf_end;
2177 	struct kvmhv_tb_accumulator tb;
2178 	u64 count;
2179 	loff_t pos;
2180 	ssize_t n;
2181 	int i, loops;
2182 	bool ok;
2183 
2184 	if (!p->buflen) {
2185 		s = p->buf;
2186 		buf_end = s + sizeof(p->buf);
2187 		for (i = 0; i < N_TIMINGS; ++i) {
2188 			struct kvmhv_tb_accumulator *acc;
2189 
2190 			acc = (struct kvmhv_tb_accumulator *)
2191 				((unsigned long)vcpu + timings[i].offset);
2192 			ok = false;
2193 			for (loops = 0; loops < 1000; ++loops) {
2194 				count = acc->seqcount;
2195 				if (!(count & 1)) {
2196 					smp_rmb();
2197 					tb = *acc;
2198 					smp_rmb();
2199 					if (count == acc->seqcount) {
2200 						ok = true;
2201 						break;
2202 					}
2203 				}
2204 				udelay(1);
2205 			}
2206 			if (!ok)
2207 				snprintf(s, buf_end - s, "%s: stuck\n",
2208 					timings[i].name);
2209 			else
2210 				snprintf(s, buf_end - s,
2211 					"%s: %llu %llu %llu %llu\n",
2212 					timings[i].name, count / 2,
2213 					tb_to_ns(tb.tb_total),
2214 					tb_to_ns(tb.tb_min),
2215 					tb_to_ns(tb.tb_max));
2216 			s += strlen(s);
2217 		}
2218 		p->buflen = s - p->buf;
2219 	}
2220 
2221 	pos = *ppos;
2222 	if (pos >= p->buflen)
2223 		return 0;
2224 	if (len > p->buflen - pos)
2225 		len = p->buflen - pos;
2226 	n = copy_to_user(buf, p->buf + pos, len);
2227 	if (n) {
2228 		if (n == len)
2229 			return -EFAULT;
2230 		len -= n;
2231 	}
2232 	*ppos = pos + len;
2233 	return len;
2234 }
2235 
2236 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2237 				     size_t len, loff_t *ppos)
2238 {
2239 	return -EACCES;
2240 }
2241 
2242 static const struct file_operations debugfs_timings_ops = {
2243 	.owner	 = THIS_MODULE,
2244 	.open	 = debugfs_timings_open,
2245 	.release = debugfs_timings_release,
2246 	.read	 = debugfs_timings_read,
2247 	.write	 = debugfs_timings_write,
2248 	.llseek	 = generic_file_llseek,
2249 };
2250 
2251 /* Create a debugfs directory for the vcpu */
2252 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2253 {
2254 	char buf[16];
2255 	struct kvm *kvm = vcpu->kvm;
2256 
2257 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2258 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2259 		return;
2260 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2261 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2262 		return;
2263 	vcpu->arch.debugfs_timings =
2264 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2265 				    vcpu, &debugfs_timings_ops);
2266 }
2267 
2268 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2269 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2270 {
2271 }
2272 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2273 
2274 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2275 						   unsigned int id)
2276 {
2277 	struct kvm_vcpu *vcpu;
2278 	int err;
2279 	int core;
2280 	struct kvmppc_vcore *vcore;
2281 
2282 	err = -ENOMEM;
2283 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2284 	if (!vcpu)
2285 		goto out;
2286 
2287 	err = kvm_vcpu_init(vcpu, kvm, id);
2288 	if (err)
2289 		goto free_vcpu;
2290 
2291 	vcpu->arch.shared = &vcpu->arch.shregs;
2292 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2293 	/*
2294 	 * The shared struct is never shared on HV,
2295 	 * so we can always use host endianness
2296 	 */
2297 #ifdef __BIG_ENDIAN__
2298 	vcpu->arch.shared_big_endian = true;
2299 #else
2300 	vcpu->arch.shared_big_endian = false;
2301 #endif
2302 #endif
2303 	vcpu->arch.mmcr[0] = MMCR0_FC;
2304 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2305 	/* default to host PVR, since we can't spoof it */
2306 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2307 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2308 	spin_lock_init(&vcpu->arch.tbacct_lock);
2309 	vcpu->arch.busy_preempt = TB_NIL;
2310 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2311 
2312 	/*
2313 	 * Set the default HFSCR for the guest from the host value.
2314 	 * This value is only used on POWER9.
2315 	 * On POWER9, we want to virtualize the doorbell facility, so we
2316 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2317 	 * to trap and then we emulate them.
2318 	 */
2319 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2320 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2321 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2322 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2323 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2324 			vcpu->arch.hfscr |= HFSCR_TM;
2325 	}
2326 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2327 		vcpu->arch.hfscr |= HFSCR_TM;
2328 
2329 	kvmppc_mmu_book3s_hv_init(vcpu);
2330 
2331 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2332 
2333 	init_waitqueue_head(&vcpu->arch.cpu_run);
2334 
2335 	mutex_lock(&kvm->lock);
2336 	vcore = NULL;
2337 	err = -EINVAL;
2338 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2339 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2340 			pr_devel("KVM: VCPU ID too high\n");
2341 			core = KVM_MAX_VCORES;
2342 		} else {
2343 			BUG_ON(kvm->arch.smt_mode != 1);
2344 			core = kvmppc_pack_vcpu_id(kvm, id);
2345 		}
2346 	} else {
2347 		core = id / kvm->arch.smt_mode;
2348 	}
2349 	if (core < KVM_MAX_VCORES) {
2350 		vcore = kvm->arch.vcores[core];
2351 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2352 			pr_devel("KVM: collision on id %u", id);
2353 			vcore = NULL;
2354 		} else if (!vcore) {
2355 			/*
2356 			 * Take mmu_setup_lock for mutual exclusion
2357 			 * with kvmppc_update_lpcr().
2358 			 */
2359 			err = -ENOMEM;
2360 			vcore = kvmppc_vcore_create(kvm,
2361 					id & ~(kvm->arch.smt_mode - 1));
2362 			mutex_lock(&kvm->arch.mmu_setup_lock);
2363 			kvm->arch.vcores[core] = vcore;
2364 			kvm->arch.online_vcores++;
2365 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2366 		}
2367 	}
2368 	mutex_unlock(&kvm->lock);
2369 
2370 	if (!vcore)
2371 		goto free_vcpu;
2372 
2373 	spin_lock(&vcore->lock);
2374 	++vcore->num_threads;
2375 	spin_unlock(&vcore->lock);
2376 	vcpu->arch.vcore = vcore;
2377 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2378 	vcpu->arch.thread_cpu = -1;
2379 	vcpu->arch.prev_cpu = -1;
2380 
2381 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2382 	kvmppc_sanity_check(vcpu);
2383 
2384 	debugfs_vcpu_init(vcpu, id);
2385 
2386 	return vcpu;
2387 
2388 free_vcpu:
2389 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2390 out:
2391 	return ERR_PTR(err);
2392 }
2393 
2394 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2395 			      unsigned long flags)
2396 {
2397 	int err;
2398 	int esmt = 0;
2399 
2400 	if (flags)
2401 		return -EINVAL;
2402 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2403 		return -EINVAL;
2404 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2405 		/*
2406 		 * On POWER8 (or POWER7), the threading mode is "strict",
2407 		 * so we pack smt_mode vcpus per vcore.
2408 		 */
2409 		if (smt_mode > threads_per_subcore)
2410 			return -EINVAL;
2411 	} else {
2412 		/*
2413 		 * On POWER9, the threading mode is "loose",
2414 		 * so each vcpu gets its own vcore.
2415 		 */
2416 		esmt = smt_mode;
2417 		smt_mode = 1;
2418 	}
2419 	mutex_lock(&kvm->lock);
2420 	err = -EBUSY;
2421 	if (!kvm->arch.online_vcores) {
2422 		kvm->arch.smt_mode = smt_mode;
2423 		kvm->arch.emul_smt_mode = esmt;
2424 		err = 0;
2425 	}
2426 	mutex_unlock(&kvm->lock);
2427 
2428 	return err;
2429 }
2430 
2431 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2432 {
2433 	if (vpa->pinned_addr)
2434 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2435 					vpa->dirty);
2436 }
2437 
2438 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2439 {
2440 	spin_lock(&vcpu->arch.vpa_update_lock);
2441 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2442 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2443 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2444 	spin_unlock(&vcpu->arch.vpa_update_lock);
2445 	kvm_vcpu_uninit(vcpu);
2446 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2447 }
2448 
2449 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2450 {
2451 	/* Indicate we want to get back into the guest */
2452 	return 1;
2453 }
2454 
2455 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2456 {
2457 	unsigned long dec_nsec, now;
2458 
2459 	now = get_tb();
2460 	if (now > vcpu->arch.dec_expires) {
2461 		/* decrementer has already gone negative */
2462 		kvmppc_core_queue_dec(vcpu);
2463 		kvmppc_core_prepare_to_enter(vcpu);
2464 		return;
2465 	}
2466 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2467 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2468 	vcpu->arch.timer_running = 1;
2469 }
2470 
2471 extern int __kvmppc_vcore_entry(void);
2472 
2473 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2474 				   struct kvm_vcpu *vcpu)
2475 {
2476 	u64 now;
2477 
2478 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2479 		return;
2480 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2481 	now = mftb();
2482 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2483 		vcpu->arch.stolen_logged;
2484 	vcpu->arch.busy_preempt = now;
2485 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2486 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2487 	--vc->n_runnable;
2488 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2489 }
2490 
2491 static int kvmppc_grab_hwthread(int cpu)
2492 {
2493 	struct paca_struct *tpaca;
2494 	long timeout = 10000;
2495 
2496 	tpaca = paca_ptrs[cpu];
2497 
2498 	/* Ensure the thread won't go into the kernel if it wakes */
2499 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2500 	tpaca->kvm_hstate.kvm_vcore = NULL;
2501 	tpaca->kvm_hstate.napping = 0;
2502 	smp_wmb();
2503 	tpaca->kvm_hstate.hwthread_req = 1;
2504 
2505 	/*
2506 	 * If the thread is already executing in the kernel (e.g. handling
2507 	 * a stray interrupt), wait for it to get back to nap mode.
2508 	 * The smp_mb() is to ensure that our setting of hwthread_req
2509 	 * is visible before we look at hwthread_state, so if this
2510 	 * races with the code at system_reset_pSeries and the thread
2511 	 * misses our setting of hwthread_req, we are sure to see its
2512 	 * setting of hwthread_state, and vice versa.
2513 	 */
2514 	smp_mb();
2515 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2516 		if (--timeout <= 0) {
2517 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2518 			return -EBUSY;
2519 		}
2520 		udelay(1);
2521 	}
2522 	return 0;
2523 }
2524 
2525 static void kvmppc_release_hwthread(int cpu)
2526 {
2527 	struct paca_struct *tpaca;
2528 
2529 	tpaca = paca_ptrs[cpu];
2530 	tpaca->kvm_hstate.hwthread_req = 0;
2531 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2532 	tpaca->kvm_hstate.kvm_vcore = NULL;
2533 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2534 }
2535 
2536 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2537 {
2538 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2539 	cpumask_t *cpu_in_guest;
2540 	int i;
2541 
2542 	cpu = cpu_first_thread_sibling(cpu);
2543 	if (nested) {
2544 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2545 		cpu_in_guest = &nested->cpu_in_guest;
2546 	} else {
2547 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2548 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2549 	}
2550 	/*
2551 	 * Make sure setting of bit in need_tlb_flush precedes
2552 	 * testing of cpu_in_guest bits.  The matching barrier on
2553 	 * the other side is the first smp_mb() in kvmppc_run_core().
2554 	 */
2555 	smp_mb();
2556 	for (i = 0; i < threads_per_core; ++i)
2557 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2558 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2559 }
2560 
2561 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2562 {
2563 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2564 	struct kvm *kvm = vcpu->kvm;
2565 	int prev_cpu;
2566 
2567 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2568 		return;
2569 
2570 	if (nested)
2571 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2572 	else
2573 		prev_cpu = vcpu->arch.prev_cpu;
2574 
2575 	/*
2576 	 * With radix, the guest can do TLB invalidations itself,
2577 	 * and it could choose to use the local form (tlbiel) if
2578 	 * it is invalidating a translation that has only ever been
2579 	 * used on one vcpu.  However, that doesn't mean it has
2580 	 * only ever been used on one physical cpu, since vcpus
2581 	 * can move around between pcpus.  To cope with this, when
2582 	 * a vcpu moves from one pcpu to another, we need to tell
2583 	 * any vcpus running on the same core as this vcpu previously
2584 	 * ran to flush the TLB.  The TLB is shared between threads,
2585 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2586 	 */
2587 	if (prev_cpu != pcpu) {
2588 		if (prev_cpu >= 0 &&
2589 		    cpu_first_thread_sibling(prev_cpu) !=
2590 		    cpu_first_thread_sibling(pcpu))
2591 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2592 		if (nested)
2593 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2594 		else
2595 			vcpu->arch.prev_cpu = pcpu;
2596 	}
2597 }
2598 
2599 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2600 {
2601 	int cpu;
2602 	struct paca_struct *tpaca;
2603 	struct kvm *kvm = vc->kvm;
2604 
2605 	cpu = vc->pcpu;
2606 	if (vcpu) {
2607 		if (vcpu->arch.timer_running) {
2608 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2609 			vcpu->arch.timer_running = 0;
2610 		}
2611 		cpu += vcpu->arch.ptid;
2612 		vcpu->cpu = vc->pcpu;
2613 		vcpu->arch.thread_cpu = cpu;
2614 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2615 	}
2616 	tpaca = paca_ptrs[cpu];
2617 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2618 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2619 	tpaca->kvm_hstate.fake_suspend = 0;
2620 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2621 	smp_wmb();
2622 	tpaca->kvm_hstate.kvm_vcore = vc;
2623 	if (cpu != smp_processor_id())
2624 		kvmppc_ipi_thread(cpu);
2625 }
2626 
2627 static void kvmppc_wait_for_nap(int n_threads)
2628 {
2629 	int cpu = smp_processor_id();
2630 	int i, loops;
2631 
2632 	if (n_threads <= 1)
2633 		return;
2634 	for (loops = 0; loops < 1000000; ++loops) {
2635 		/*
2636 		 * Check if all threads are finished.
2637 		 * We set the vcore pointer when starting a thread
2638 		 * and the thread clears it when finished, so we look
2639 		 * for any threads that still have a non-NULL vcore ptr.
2640 		 */
2641 		for (i = 1; i < n_threads; ++i)
2642 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2643 				break;
2644 		if (i == n_threads) {
2645 			HMT_medium();
2646 			return;
2647 		}
2648 		HMT_low();
2649 	}
2650 	HMT_medium();
2651 	for (i = 1; i < n_threads; ++i)
2652 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2653 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2654 }
2655 
2656 /*
2657  * Check that we are on thread 0 and that any other threads in
2658  * this core are off-line.  Then grab the threads so they can't
2659  * enter the kernel.
2660  */
2661 static int on_primary_thread(void)
2662 {
2663 	int cpu = smp_processor_id();
2664 	int thr;
2665 
2666 	/* Are we on a primary subcore? */
2667 	if (cpu_thread_in_subcore(cpu))
2668 		return 0;
2669 
2670 	thr = 0;
2671 	while (++thr < threads_per_subcore)
2672 		if (cpu_online(cpu + thr))
2673 			return 0;
2674 
2675 	/* Grab all hw threads so they can't go into the kernel */
2676 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2677 		if (kvmppc_grab_hwthread(cpu + thr)) {
2678 			/* Couldn't grab one; let the others go */
2679 			do {
2680 				kvmppc_release_hwthread(cpu + thr);
2681 			} while (--thr > 0);
2682 			return 0;
2683 		}
2684 	}
2685 	return 1;
2686 }
2687 
2688 /*
2689  * A list of virtual cores for each physical CPU.
2690  * These are vcores that could run but their runner VCPU tasks are
2691  * (or may be) preempted.
2692  */
2693 struct preempted_vcore_list {
2694 	struct list_head	list;
2695 	spinlock_t		lock;
2696 };
2697 
2698 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2699 
2700 static void init_vcore_lists(void)
2701 {
2702 	int cpu;
2703 
2704 	for_each_possible_cpu(cpu) {
2705 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2706 		spin_lock_init(&lp->lock);
2707 		INIT_LIST_HEAD(&lp->list);
2708 	}
2709 }
2710 
2711 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2712 {
2713 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2714 
2715 	vc->vcore_state = VCORE_PREEMPT;
2716 	vc->pcpu = smp_processor_id();
2717 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2718 		spin_lock(&lp->lock);
2719 		list_add_tail(&vc->preempt_list, &lp->list);
2720 		spin_unlock(&lp->lock);
2721 	}
2722 
2723 	/* Start accumulating stolen time */
2724 	kvmppc_core_start_stolen(vc);
2725 }
2726 
2727 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2728 {
2729 	struct preempted_vcore_list *lp;
2730 
2731 	kvmppc_core_end_stolen(vc);
2732 	if (!list_empty(&vc->preempt_list)) {
2733 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2734 		spin_lock(&lp->lock);
2735 		list_del_init(&vc->preempt_list);
2736 		spin_unlock(&lp->lock);
2737 	}
2738 	vc->vcore_state = VCORE_INACTIVE;
2739 }
2740 
2741 /*
2742  * This stores information about the virtual cores currently
2743  * assigned to a physical core.
2744  */
2745 struct core_info {
2746 	int		n_subcores;
2747 	int		max_subcore_threads;
2748 	int		total_threads;
2749 	int		subcore_threads[MAX_SUBCORES];
2750 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2751 };
2752 
2753 /*
2754  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2755  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2756  */
2757 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2758 
2759 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2760 {
2761 	memset(cip, 0, sizeof(*cip));
2762 	cip->n_subcores = 1;
2763 	cip->max_subcore_threads = vc->num_threads;
2764 	cip->total_threads = vc->num_threads;
2765 	cip->subcore_threads[0] = vc->num_threads;
2766 	cip->vc[0] = vc;
2767 }
2768 
2769 static bool subcore_config_ok(int n_subcores, int n_threads)
2770 {
2771 	/*
2772 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2773 	 * split-core mode, with one thread per subcore.
2774 	 */
2775 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2776 		return n_subcores <= 4 && n_threads == 1;
2777 
2778 	/* On POWER8, can only dynamically split if unsplit to begin with */
2779 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2780 		return false;
2781 	if (n_subcores > MAX_SUBCORES)
2782 		return false;
2783 	if (n_subcores > 1) {
2784 		if (!(dynamic_mt_modes & 2))
2785 			n_subcores = 4;
2786 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2787 			return false;
2788 	}
2789 
2790 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2791 }
2792 
2793 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2794 {
2795 	vc->entry_exit_map = 0;
2796 	vc->in_guest = 0;
2797 	vc->napping_threads = 0;
2798 	vc->conferring_threads = 0;
2799 	vc->tb_offset_applied = 0;
2800 }
2801 
2802 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2803 {
2804 	int n_threads = vc->num_threads;
2805 	int sub;
2806 
2807 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2808 		return false;
2809 
2810 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2811 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2812 		return false;
2813 
2814 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2815 	if (no_mixing_hpt_and_radix &&
2816 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2817 		return false;
2818 
2819 	if (n_threads < cip->max_subcore_threads)
2820 		n_threads = cip->max_subcore_threads;
2821 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2822 		return false;
2823 	cip->max_subcore_threads = n_threads;
2824 
2825 	sub = cip->n_subcores;
2826 	++cip->n_subcores;
2827 	cip->total_threads += vc->num_threads;
2828 	cip->subcore_threads[sub] = vc->num_threads;
2829 	cip->vc[sub] = vc;
2830 	init_vcore_to_run(vc);
2831 	list_del_init(&vc->preempt_list);
2832 
2833 	return true;
2834 }
2835 
2836 /*
2837  * Work out whether it is possible to piggyback the execution of
2838  * vcore *pvc onto the execution of the other vcores described in *cip.
2839  */
2840 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2841 			  int target_threads)
2842 {
2843 	if (cip->total_threads + pvc->num_threads > target_threads)
2844 		return false;
2845 
2846 	return can_dynamic_split(pvc, cip);
2847 }
2848 
2849 static void prepare_threads(struct kvmppc_vcore *vc)
2850 {
2851 	int i;
2852 	struct kvm_vcpu *vcpu;
2853 
2854 	for_each_runnable_thread(i, vcpu, vc) {
2855 		if (signal_pending(vcpu->arch.run_task))
2856 			vcpu->arch.ret = -EINTR;
2857 		else if (vcpu->arch.vpa.update_pending ||
2858 			 vcpu->arch.slb_shadow.update_pending ||
2859 			 vcpu->arch.dtl.update_pending)
2860 			vcpu->arch.ret = RESUME_GUEST;
2861 		else
2862 			continue;
2863 		kvmppc_remove_runnable(vc, vcpu);
2864 		wake_up(&vcpu->arch.cpu_run);
2865 	}
2866 }
2867 
2868 static void collect_piggybacks(struct core_info *cip, int target_threads)
2869 {
2870 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2871 	struct kvmppc_vcore *pvc, *vcnext;
2872 
2873 	spin_lock(&lp->lock);
2874 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2875 		if (!spin_trylock(&pvc->lock))
2876 			continue;
2877 		prepare_threads(pvc);
2878 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2879 			list_del_init(&pvc->preempt_list);
2880 			if (pvc->runner == NULL) {
2881 				pvc->vcore_state = VCORE_INACTIVE;
2882 				kvmppc_core_end_stolen(pvc);
2883 			}
2884 			spin_unlock(&pvc->lock);
2885 			continue;
2886 		}
2887 		if (!can_piggyback(pvc, cip, target_threads)) {
2888 			spin_unlock(&pvc->lock);
2889 			continue;
2890 		}
2891 		kvmppc_core_end_stolen(pvc);
2892 		pvc->vcore_state = VCORE_PIGGYBACK;
2893 		if (cip->total_threads >= target_threads)
2894 			break;
2895 	}
2896 	spin_unlock(&lp->lock);
2897 }
2898 
2899 static bool recheck_signals_and_mmu(struct core_info *cip)
2900 {
2901 	int sub, i;
2902 	struct kvm_vcpu *vcpu;
2903 	struct kvmppc_vcore *vc;
2904 
2905 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2906 		vc = cip->vc[sub];
2907 		if (!vc->kvm->arch.mmu_ready)
2908 			return true;
2909 		for_each_runnable_thread(i, vcpu, vc)
2910 			if (signal_pending(vcpu->arch.run_task))
2911 				return true;
2912 	}
2913 	return false;
2914 }
2915 
2916 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2917 {
2918 	int still_running = 0, i;
2919 	u64 now;
2920 	long ret;
2921 	struct kvm_vcpu *vcpu;
2922 
2923 	spin_lock(&vc->lock);
2924 	now = get_tb();
2925 	for_each_runnable_thread(i, vcpu, vc) {
2926 		/*
2927 		 * It's safe to unlock the vcore in the loop here, because
2928 		 * for_each_runnable_thread() is safe against removal of
2929 		 * the vcpu, and the vcore state is VCORE_EXITING here,
2930 		 * so any vcpus becoming runnable will have their arch.trap
2931 		 * set to zero and can't actually run in the guest.
2932 		 */
2933 		spin_unlock(&vc->lock);
2934 		/* cancel pending dec exception if dec is positive */
2935 		if (now < vcpu->arch.dec_expires &&
2936 		    kvmppc_core_pending_dec(vcpu))
2937 			kvmppc_core_dequeue_dec(vcpu);
2938 
2939 		trace_kvm_guest_exit(vcpu);
2940 
2941 		ret = RESUME_GUEST;
2942 		if (vcpu->arch.trap)
2943 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2944 						    vcpu->arch.run_task);
2945 
2946 		vcpu->arch.ret = ret;
2947 		vcpu->arch.trap = 0;
2948 
2949 		spin_lock(&vc->lock);
2950 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2951 			if (vcpu->arch.pending_exceptions)
2952 				kvmppc_core_prepare_to_enter(vcpu);
2953 			if (vcpu->arch.ceded)
2954 				kvmppc_set_timer(vcpu);
2955 			else
2956 				++still_running;
2957 		} else {
2958 			kvmppc_remove_runnable(vc, vcpu);
2959 			wake_up(&vcpu->arch.cpu_run);
2960 		}
2961 	}
2962 	if (!is_master) {
2963 		if (still_running > 0) {
2964 			kvmppc_vcore_preempt(vc);
2965 		} else if (vc->runner) {
2966 			vc->vcore_state = VCORE_PREEMPT;
2967 			kvmppc_core_start_stolen(vc);
2968 		} else {
2969 			vc->vcore_state = VCORE_INACTIVE;
2970 		}
2971 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2972 			/* make sure there's a candidate runner awake */
2973 			i = -1;
2974 			vcpu = next_runnable_thread(vc, &i);
2975 			wake_up(&vcpu->arch.cpu_run);
2976 		}
2977 	}
2978 	spin_unlock(&vc->lock);
2979 }
2980 
2981 /*
2982  * Clear core from the list of active host cores as we are about to
2983  * enter the guest. Only do this if it is the primary thread of the
2984  * core (not if a subcore) that is entering the guest.
2985  */
2986 static inline int kvmppc_clear_host_core(unsigned int cpu)
2987 {
2988 	int core;
2989 
2990 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2991 		return 0;
2992 	/*
2993 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2994 	 * later in kvmppc_start_thread and we need ensure that state is
2995 	 * visible to other CPUs only after we enter guest.
2996 	 */
2997 	core = cpu >> threads_shift;
2998 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2999 	return 0;
3000 }
3001 
3002 /*
3003  * Advertise this core as an active host core since we exited the guest
3004  * Only need to do this if it is the primary thread of the core that is
3005  * exiting.
3006  */
3007 static inline int kvmppc_set_host_core(unsigned int cpu)
3008 {
3009 	int core;
3010 
3011 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3012 		return 0;
3013 
3014 	/*
3015 	 * Memory barrier can be omitted here because we do a spin_unlock
3016 	 * immediately after this which provides the memory barrier.
3017 	 */
3018 	core = cpu >> threads_shift;
3019 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3020 	return 0;
3021 }
3022 
3023 static void set_irq_happened(int trap)
3024 {
3025 	switch (trap) {
3026 	case BOOK3S_INTERRUPT_EXTERNAL:
3027 		local_paca->irq_happened |= PACA_IRQ_EE;
3028 		break;
3029 	case BOOK3S_INTERRUPT_H_DOORBELL:
3030 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3031 		break;
3032 	case BOOK3S_INTERRUPT_HMI:
3033 		local_paca->irq_happened |= PACA_IRQ_HMI;
3034 		break;
3035 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3036 		replay_system_reset();
3037 		break;
3038 	}
3039 }
3040 
3041 /*
3042  * Run a set of guest threads on a physical core.
3043  * Called with vc->lock held.
3044  */
3045 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3046 {
3047 	struct kvm_vcpu *vcpu;
3048 	int i;
3049 	int srcu_idx;
3050 	struct core_info core_info;
3051 	struct kvmppc_vcore *pvc;
3052 	struct kvm_split_mode split_info, *sip;
3053 	int split, subcore_size, active;
3054 	int sub;
3055 	bool thr0_done;
3056 	unsigned long cmd_bit, stat_bit;
3057 	int pcpu, thr;
3058 	int target_threads;
3059 	int controlled_threads;
3060 	int trap;
3061 	bool is_power8;
3062 	bool hpt_on_radix;
3063 
3064 	/*
3065 	 * Remove from the list any threads that have a signal pending
3066 	 * or need a VPA update done
3067 	 */
3068 	prepare_threads(vc);
3069 
3070 	/* if the runner is no longer runnable, let the caller pick a new one */
3071 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3072 		return;
3073 
3074 	/*
3075 	 * Initialize *vc.
3076 	 */
3077 	init_vcore_to_run(vc);
3078 	vc->preempt_tb = TB_NIL;
3079 
3080 	/*
3081 	 * Number of threads that we will be controlling: the same as
3082 	 * the number of threads per subcore, except on POWER9,
3083 	 * where it's 1 because the threads are (mostly) independent.
3084 	 */
3085 	controlled_threads = threads_per_vcore(vc->kvm);
3086 
3087 	/*
3088 	 * Make sure we are running on primary threads, and that secondary
3089 	 * threads are offline.  Also check if the number of threads in this
3090 	 * guest are greater than the current system threads per guest.
3091 	 * On POWER9, we need to be not in independent-threads mode if
3092 	 * this is a HPT guest on a radix host machine where the
3093 	 * CPU threads may not be in different MMU modes.
3094 	 */
3095 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3096 		!kvm_is_radix(vc->kvm);
3097 	if (((controlled_threads > 1) &&
3098 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3099 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3100 		for_each_runnable_thread(i, vcpu, vc) {
3101 			vcpu->arch.ret = -EBUSY;
3102 			kvmppc_remove_runnable(vc, vcpu);
3103 			wake_up(&vcpu->arch.cpu_run);
3104 		}
3105 		goto out;
3106 	}
3107 
3108 	/*
3109 	 * See if we could run any other vcores on the physical core
3110 	 * along with this one.
3111 	 */
3112 	init_core_info(&core_info, vc);
3113 	pcpu = smp_processor_id();
3114 	target_threads = controlled_threads;
3115 	if (target_smt_mode && target_smt_mode < target_threads)
3116 		target_threads = target_smt_mode;
3117 	if (vc->num_threads < target_threads)
3118 		collect_piggybacks(&core_info, target_threads);
3119 
3120 	/*
3121 	 * On radix, arrange for TLB flushing if necessary.
3122 	 * This has to be done before disabling interrupts since
3123 	 * it uses smp_call_function().
3124 	 */
3125 	pcpu = smp_processor_id();
3126 	if (kvm_is_radix(vc->kvm)) {
3127 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3128 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3129 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3130 	}
3131 
3132 	/*
3133 	 * Hard-disable interrupts, and check resched flag and signals.
3134 	 * If we need to reschedule or deliver a signal, clean up
3135 	 * and return without going into the guest(s).
3136 	 * If the mmu_ready flag has been cleared, don't go into the
3137 	 * guest because that means a HPT resize operation is in progress.
3138 	 */
3139 	local_irq_disable();
3140 	hard_irq_disable();
3141 	if (lazy_irq_pending() || need_resched() ||
3142 	    recheck_signals_and_mmu(&core_info)) {
3143 		local_irq_enable();
3144 		vc->vcore_state = VCORE_INACTIVE;
3145 		/* Unlock all except the primary vcore */
3146 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3147 			pvc = core_info.vc[sub];
3148 			/* Put back on to the preempted vcores list */
3149 			kvmppc_vcore_preempt(pvc);
3150 			spin_unlock(&pvc->lock);
3151 		}
3152 		for (i = 0; i < controlled_threads; ++i)
3153 			kvmppc_release_hwthread(pcpu + i);
3154 		return;
3155 	}
3156 
3157 	kvmppc_clear_host_core(pcpu);
3158 
3159 	/* Decide on micro-threading (split-core) mode */
3160 	subcore_size = threads_per_subcore;
3161 	cmd_bit = stat_bit = 0;
3162 	split = core_info.n_subcores;
3163 	sip = NULL;
3164 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3165 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3166 
3167 	if (split > 1 || hpt_on_radix) {
3168 		sip = &split_info;
3169 		memset(&split_info, 0, sizeof(split_info));
3170 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3171 			split_info.vc[sub] = core_info.vc[sub];
3172 
3173 		if (is_power8) {
3174 			if (split == 2 && (dynamic_mt_modes & 2)) {
3175 				cmd_bit = HID0_POWER8_1TO2LPAR;
3176 				stat_bit = HID0_POWER8_2LPARMODE;
3177 			} else {
3178 				split = 4;
3179 				cmd_bit = HID0_POWER8_1TO4LPAR;
3180 				stat_bit = HID0_POWER8_4LPARMODE;
3181 			}
3182 			subcore_size = MAX_SMT_THREADS / split;
3183 			split_info.rpr = mfspr(SPRN_RPR);
3184 			split_info.pmmar = mfspr(SPRN_PMMAR);
3185 			split_info.ldbar = mfspr(SPRN_LDBAR);
3186 			split_info.subcore_size = subcore_size;
3187 		} else {
3188 			split_info.subcore_size = 1;
3189 			if (hpt_on_radix) {
3190 				/* Use the split_info for LPCR/LPIDR changes */
3191 				split_info.lpcr_req = vc->lpcr;
3192 				split_info.lpidr_req = vc->kvm->arch.lpid;
3193 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3194 				split_info.do_set = 1;
3195 			}
3196 		}
3197 
3198 		/* order writes to split_info before kvm_split_mode pointer */
3199 		smp_wmb();
3200 	}
3201 
3202 	for (thr = 0; thr < controlled_threads; ++thr) {
3203 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3204 
3205 		paca->kvm_hstate.tid = thr;
3206 		paca->kvm_hstate.napping = 0;
3207 		paca->kvm_hstate.kvm_split_mode = sip;
3208 	}
3209 
3210 	/* Initiate micro-threading (split-core) on POWER8 if required */
3211 	if (cmd_bit) {
3212 		unsigned long hid0 = mfspr(SPRN_HID0);
3213 
3214 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3215 		mb();
3216 		mtspr(SPRN_HID0, hid0);
3217 		isync();
3218 		for (;;) {
3219 			hid0 = mfspr(SPRN_HID0);
3220 			if (hid0 & stat_bit)
3221 				break;
3222 			cpu_relax();
3223 		}
3224 	}
3225 
3226 	/*
3227 	 * On POWER8, set RWMR register.
3228 	 * Since it only affects PURR and SPURR, it doesn't affect
3229 	 * the host, so we don't save/restore the host value.
3230 	 */
3231 	if (is_power8) {
3232 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3233 		int n_online = atomic_read(&vc->online_count);
3234 
3235 		/*
3236 		 * Use the 8-thread value if we're doing split-core
3237 		 * or if the vcore's online count looks bogus.
3238 		 */
3239 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3240 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3241 			rwmr_val = p8_rwmr_values[n_online];
3242 		mtspr(SPRN_RWMR, rwmr_val);
3243 	}
3244 
3245 	/* Start all the threads */
3246 	active = 0;
3247 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3248 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3249 		thr0_done = false;
3250 		active |= 1 << thr;
3251 		pvc = core_info.vc[sub];
3252 		pvc->pcpu = pcpu + thr;
3253 		for_each_runnable_thread(i, vcpu, pvc) {
3254 			kvmppc_start_thread(vcpu, pvc);
3255 			kvmppc_create_dtl_entry(vcpu, pvc);
3256 			trace_kvm_guest_enter(vcpu);
3257 			if (!vcpu->arch.ptid)
3258 				thr0_done = true;
3259 			active |= 1 << (thr + vcpu->arch.ptid);
3260 		}
3261 		/*
3262 		 * We need to start the first thread of each subcore
3263 		 * even if it doesn't have a vcpu.
3264 		 */
3265 		if (!thr0_done)
3266 			kvmppc_start_thread(NULL, pvc);
3267 	}
3268 
3269 	/*
3270 	 * Ensure that split_info.do_nap is set after setting
3271 	 * the vcore pointer in the PACA of the secondaries.
3272 	 */
3273 	smp_mb();
3274 
3275 	/*
3276 	 * When doing micro-threading, poke the inactive threads as well.
3277 	 * This gets them to the nap instruction after kvm_do_nap,
3278 	 * which reduces the time taken to unsplit later.
3279 	 * For POWER9 HPT guest on radix host, we need all the secondary
3280 	 * threads woken up so they can do the LPCR/LPIDR change.
3281 	 */
3282 	if (cmd_bit || hpt_on_radix) {
3283 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3284 		for (thr = 1; thr < threads_per_subcore; ++thr)
3285 			if (!(active & (1 << thr)))
3286 				kvmppc_ipi_thread(pcpu + thr);
3287 	}
3288 
3289 	vc->vcore_state = VCORE_RUNNING;
3290 	preempt_disable();
3291 
3292 	trace_kvmppc_run_core(vc, 0);
3293 
3294 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3295 		spin_unlock(&core_info.vc[sub]->lock);
3296 
3297 	guest_enter_irqoff();
3298 
3299 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3300 
3301 	this_cpu_disable_ftrace();
3302 
3303 	/*
3304 	 * Interrupts will be enabled once we get into the guest,
3305 	 * so tell lockdep that we're about to enable interrupts.
3306 	 */
3307 	trace_hardirqs_on();
3308 
3309 	trap = __kvmppc_vcore_entry();
3310 
3311 	trace_hardirqs_off();
3312 
3313 	this_cpu_enable_ftrace();
3314 
3315 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3316 
3317 	set_irq_happened(trap);
3318 
3319 	spin_lock(&vc->lock);
3320 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3321 	vc->vcore_state = VCORE_EXITING;
3322 
3323 	/* wait for secondary threads to finish writing their state to memory */
3324 	kvmppc_wait_for_nap(controlled_threads);
3325 
3326 	/* Return to whole-core mode if we split the core earlier */
3327 	if (cmd_bit) {
3328 		unsigned long hid0 = mfspr(SPRN_HID0);
3329 		unsigned long loops = 0;
3330 
3331 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3332 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3333 		mb();
3334 		mtspr(SPRN_HID0, hid0);
3335 		isync();
3336 		for (;;) {
3337 			hid0 = mfspr(SPRN_HID0);
3338 			if (!(hid0 & stat_bit))
3339 				break;
3340 			cpu_relax();
3341 			++loops;
3342 		}
3343 	} else if (hpt_on_radix) {
3344 		/* Wait for all threads to have seen final sync */
3345 		for (thr = 1; thr < controlled_threads; ++thr) {
3346 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3347 
3348 			while (paca->kvm_hstate.kvm_split_mode) {
3349 				HMT_low();
3350 				barrier();
3351 			}
3352 			HMT_medium();
3353 		}
3354 	}
3355 	split_info.do_nap = 0;
3356 
3357 	kvmppc_set_host_core(pcpu);
3358 
3359 	local_irq_enable();
3360 	guest_exit();
3361 
3362 	/* Let secondaries go back to the offline loop */
3363 	for (i = 0; i < controlled_threads; ++i) {
3364 		kvmppc_release_hwthread(pcpu + i);
3365 		if (sip && sip->napped[i])
3366 			kvmppc_ipi_thread(pcpu + i);
3367 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3368 	}
3369 
3370 	spin_unlock(&vc->lock);
3371 
3372 	/* make sure updates to secondary vcpu structs are visible now */
3373 	smp_mb();
3374 
3375 	preempt_enable();
3376 
3377 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3378 		pvc = core_info.vc[sub];
3379 		post_guest_process(pvc, pvc == vc);
3380 	}
3381 
3382 	spin_lock(&vc->lock);
3383 
3384  out:
3385 	vc->vcore_state = VCORE_INACTIVE;
3386 	trace_kvmppc_run_core(vc, 1);
3387 }
3388 
3389 /*
3390  * Load up hypervisor-mode registers on P9.
3391  */
3392 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3393 				     unsigned long lpcr)
3394 {
3395 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3396 	s64 hdec;
3397 	u64 tb, purr, spurr;
3398 	int trap;
3399 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3400 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3401 	unsigned long host_dawr = mfspr(SPRN_DAWR);
3402 	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3403 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3404 	unsigned long host_pidr = mfspr(SPRN_PID);
3405 
3406 	hdec = time_limit - mftb();
3407 	if (hdec < 0)
3408 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3409 	mtspr(SPRN_HDEC, hdec);
3410 
3411 	if (vc->tb_offset) {
3412 		u64 new_tb = mftb() + vc->tb_offset;
3413 		mtspr(SPRN_TBU40, new_tb);
3414 		tb = mftb();
3415 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3416 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3417 		vc->tb_offset_applied = vc->tb_offset;
3418 	}
3419 
3420 	if (vc->pcr)
3421 		mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3422 	mtspr(SPRN_DPDES, vc->dpdes);
3423 	mtspr(SPRN_VTB, vc->vtb);
3424 
3425 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3426 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3427 	mtspr(SPRN_PURR, vcpu->arch.purr);
3428 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3429 
3430 	if (dawr_enabled()) {
3431 		mtspr(SPRN_DAWR, vcpu->arch.dawr);
3432 		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3433 	}
3434 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3435 	mtspr(SPRN_IC, vcpu->arch.ic);
3436 	mtspr(SPRN_PID, vcpu->arch.pid);
3437 
3438 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3439 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3440 
3441 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3442 
3443 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3444 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3445 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3446 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3447 
3448 	mtspr(SPRN_AMOR, ~0UL);
3449 
3450 	mtspr(SPRN_LPCR, lpcr);
3451 	isync();
3452 
3453 	kvmppc_xive_push_vcpu(vcpu);
3454 
3455 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3456 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3457 
3458 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3459 
3460 	/* Advance host PURR/SPURR by the amount used by guest */
3461 	purr = mfspr(SPRN_PURR);
3462 	spurr = mfspr(SPRN_SPURR);
3463 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3464 	      purr - vcpu->arch.purr);
3465 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3466 	      spurr - vcpu->arch.spurr);
3467 	vcpu->arch.purr = purr;
3468 	vcpu->arch.spurr = spurr;
3469 
3470 	vcpu->arch.ic = mfspr(SPRN_IC);
3471 	vcpu->arch.pid = mfspr(SPRN_PID);
3472 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3473 
3474 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3475 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3476 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3477 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3478 
3479 	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3480 	mtspr(SPRN_PSSCR, host_psscr |
3481 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3482 	mtspr(SPRN_HFSCR, host_hfscr);
3483 	mtspr(SPRN_CIABR, host_ciabr);
3484 	mtspr(SPRN_DAWR, host_dawr);
3485 	mtspr(SPRN_DAWRX, host_dawrx);
3486 	mtspr(SPRN_PID, host_pidr);
3487 
3488 	/*
3489 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3490 	 * case we interrupted the guest between a tlbie and a ptesync.
3491 	 */
3492 	asm volatile("eieio; tlbsync; ptesync");
3493 
3494 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3495 	isync();
3496 
3497 	vc->dpdes = mfspr(SPRN_DPDES);
3498 	vc->vtb = mfspr(SPRN_VTB);
3499 	mtspr(SPRN_DPDES, 0);
3500 	if (vc->pcr)
3501 		mtspr(SPRN_PCR, PCR_MASK);
3502 
3503 	if (vc->tb_offset_applied) {
3504 		u64 new_tb = mftb() - vc->tb_offset_applied;
3505 		mtspr(SPRN_TBU40, new_tb);
3506 		tb = mftb();
3507 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3508 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3509 		vc->tb_offset_applied = 0;
3510 	}
3511 
3512 	mtspr(SPRN_HDEC, 0x7fffffff);
3513 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3514 
3515 	return trap;
3516 }
3517 
3518 /*
3519  * Virtual-mode guest entry for POWER9 and later when the host and
3520  * guest are both using the radix MMU.  The LPIDR has already been set.
3521  */
3522 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3523 			 unsigned long lpcr)
3524 {
3525 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3526 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3527 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3528 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3529 	unsigned long host_amr = mfspr(SPRN_AMR);
3530 	s64 dec;
3531 	u64 tb;
3532 	int trap, save_pmu;
3533 
3534 	dec = mfspr(SPRN_DEC);
3535 	tb = mftb();
3536 	if (dec < 512)
3537 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3538 	local_paca->kvm_hstate.dec_expires = dec + tb;
3539 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3540 		time_limit = local_paca->kvm_hstate.dec_expires;
3541 
3542 	vcpu->arch.ceded = 0;
3543 
3544 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3545 
3546 	kvmppc_subcore_enter_guest();
3547 
3548 	vc->entry_exit_map = 1;
3549 	vc->in_guest = 1;
3550 
3551 	if (vcpu->arch.vpa.pinned_addr) {
3552 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3553 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3554 		lp->yield_count = cpu_to_be32(yield_count);
3555 		vcpu->arch.vpa.dirty = 1;
3556 	}
3557 
3558 	if (cpu_has_feature(CPU_FTR_TM) ||
3559 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3560 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3561 
3562 	kvmhv_load_guest_pmu(vcpu);
3563 
3564 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3565 	load_fp_state(&vcpu->arch.fp);
3566 #ifdef CONFIG_ALTIVEC
3567 	load_vr_state(&vcpu->arch.vr);
3568 #endif
3569 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3570 
3571 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3572 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3573 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3574 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3575 	mtspr(SPRN_TAR, vcpu->arch.tar);
3576 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3577 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3578 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3579 	mtspr(SPRN_WORT, vcpu->arch.wort);
3580 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3581 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3582 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3583 	mtspr(SPRN_AMR, vcpu->arch.amr);
3584 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3585 
3586 	if (!(vcpu->arch.ctrl & 1))
3587 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3588 
3589 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3590 
3591 	if (kvmhv_on_pseries()) {
3592 		/*
3593 		 * We need to save and restore the guest visible part of the
3594 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3595 		 * doesn't do this for us. Note only required if pseries since
3596 		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3597 		 */
3598 		unsigned long host_psscr;
3599 		/* call our hypervisor to load up HV regs and go */
3600 		struct hv_guest_state hvregs;
3601 
3602 		host_psscr = mfspr(SPRN_PSSCR_PR);
3603 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3604 		kvmhv_save_hv_regs(vcpu, &hvregs);
3605 		hvregs.lpcr = lpcr;
3606 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3607 		hvregs.version = HV_GUEST_STATE_VERSION;
3608 		if (vcpu->arch.nested) {
3609 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3610 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3611 		} else {
3612 			hvregs.lpid = vcpu->kvm->arch.lpid;
3613 			hvregs.vcpu_token = vcpu->vcpu_id;
3614 		}
3615 		hvregs.hdec_expiry = time_limit;
3616 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3617 					  __pa(&vcpu->arch.regs));
3618 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3619 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3620 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3621 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3622 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3623 		mtspr(SPRN_PSSCR_PR, host_psscr);
3624 
3625 		/* H_CEDE has to be handled now, not later */
3626 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3627 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3628 			kvmppc_nested_cede(vcpu);
3629 			trap = 0;
3630 		}
3631 	} else {
3632 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3633 	}
3634 
3635 	vcpu->arch.slb_max = 0;
3636 	dec = mfspr(SPRN_DEC);
3637 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3638 		dec = (s32) dec;
3639 	tb = mftb();
3640 	vcpu->arch.dec_expires = dec + tb;
3641 	vcpu->cpu = -1;
3642 	vcpu->arch.thread_cpu = -1;
3643 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3644 
3645 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3646 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3647 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3648 	vcpu->arch.tar = mfspr(SPRN_TAR);
3649 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3650 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3651 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3652 	vcpu->arch.wort = mfspr(SPRN_WORT);
3653 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3654 	vcpu->arch.amr = mfspr(SPRN_AMR);
3655 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3656 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3657 
3658 	mtspr(SPRN_PSPB, 0);
3659 	mtspr(SPRN_WORT, 0);
3660 	mtspr(SPRN_UAMOR, 0);
3661 	mtspr(SPRN_DSCR, host_dscr);
3662 	mtspr(SPRN_TIDR, host_tidr);
3663 	mtspr(SPRN_IAMR, host_iamr);
3664 	mtspr(SPRN_PSPB, 0);
3665 
3666 	if (host_amr != vcpu->arch.amr)
3667 		mtspr(SPRN_AMR, host_amr);
3668 
3669 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3670 	store_fp_state(&vcpu->arch.fp);
3671 #ifdef CONFIG_ALTIVEC
3672 	store_vr_state(&vcpu->arch.vr);
3673 #endif
3674 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3675 
3676 	if (cpu_has_feature(CPU_FTR_TM) ||
3677 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3678 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3679 
3680 	save_pmu = 1;
3681 	if (vcpu->arch.vpa.pinned_addr) {
3682 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3683 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3684 		lp->yield_count = cpu_to_be32(yield_count);
3685 		vcpu->arch.vpa.dirty = 1;
3686 		save_pmu = lp->pmcregs_in_use;
3687 	}
3688 	/* Must save pmu if this guest is capable of running nested guests */
3689 	save_pmu |= nesting_enabled(vcpu->kvm);
3690 
3691 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3692 
3693 	vc->entry_exit_map = 0x101;
3694 	vc->in_guest = 0;
3695 
3696 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3697 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3698 
3699 	kvmhv_load_host_pmu();
3700 
3701 	kvmppc_subcore_exit_guest();
3702 
3703 	return trap;
3704 }
3705 
3706 /*
3707  * Wait for some other vcpu thread to execute us, and
3708  * wake us up when we need to handle something in the host.
3709  */
3710 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3711 				 struct kvm_vcpu *vcpu, int wait_state)
3712 {
3713 	DEFINE_WAIT(wait);
3714 
3715 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3716 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3717 		spin_unlock(&vc->lock);
3718 		schedule();
3719 		spin_lock(&vc->lock);
3720 	}
3721 	finish_wait(&vcpu->arch.cpu_run, &wait);
3722 }
3723 
3724 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3725 {
3726 	if (!halt_poll_ns_grow)
3727 		return;
3728 
3729 	vc->halt_poll_ns *= halt_poll_ns_grow;
3730 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3731 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3732 }
3733 
3734 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3735 {
3736 	if (halt_poll_ns_shrink == 0)
3737 		vc->halt_poll_ns = 0;
3738 	else
3739 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3740 }
3741 
3742 #ifdef CONFIG_KVM_XICS
3743 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3744 {
3745 	if (!xics_on_xive())
3746 		return false;
3747 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3748 		vcpu->arch.xive_saved_state.cppr;
3749 }
3750 #else
3751 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3752 {
3753 	return false;
3754 }
3755 #endif /* CONFIG_KVM_XICS */
3756 
3757 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3758 {
3759 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3760 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3761 		return true;
3762 
3763 	return false;
3764 }
3765 
3766 /*
3767  * Check to see if any of the runnable vcpus on the vcore have pending
3768  * exceptions or are no longer ceded
3769  */
3770 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3771 {
3772 	struct kvm_vcpu *vcpu;
3773 	int i;
3774 
3775 	for_each_runnable_thread(i, vcpu, vc) {
3776 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3777 			return 1;
3778 	}
3779 
3780 	return 0;
3781 }
3782 
3783 /*
3784  * All the vcpus in this vcore are idle, so wait for a decrementer
3785  * or external interrupt to one of the vcpus.  vc->lock is held.
3786  */
3787 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3788 {
3789 	ktime_t cur, start_poll, start_wait;
3790 	int do_sleep = 1;
3791 	u64 block_ns;
3792 	DECLARE_SWAITQUEUE(wait);
3793 
3794 	/* Poll for pending exceptions and ceded state */
3795 	cur = start_poll = ktime_get();
3796 	if (vc->halt_poll_ns) {
3797 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3798 		++vc->runner->stat.halt_attempted_poll;
3799 
3800 		vc->vcore_state = VCORE_POLLING;
3801 		spin_unlock(&vc->lock);
3802 
3803 		do {
3804 			if (kvmppc_vcore_check_block(vc)) {
3805 				do_sleep = 0;
3806 				break;
3807 			}
3808 			cur = ktime_get();
3809 		} while (single_task_running() && ktime_before(cur, stop));
3810 
3811 		spin_lock(&vc->lock);
3812 		vc->vcore_state = VCORE_INACTIVE;
3813 
3814 		if (!do_sleep) {
3815 			++vc->runner->stat.halt_successful_poll;
3816 			goto out;
3817 		}
3818 	}
3819 
3820 	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3821 
3822 	if (kvmppc_vcore_check_block(vc)) {
3823 		finish_swait(&vc->wq, &wait);
3824 		do_sleep = 0;
3825 		/* If we polled, count this as a successful poll */
3826 		if (vc->halt_poll_ns)
3827 			++vc->runner->stat.halt_successful_poll;
3828 		goto out;
3829 	}
3830 
3831 	start_wait = ktime_get();
3832 
3833 	vc->vcore_state = VCORE_SLEEPING;
3834 	trace_kvmppc_vcore_blocked(vc, 0);
3835 	spin_unlock(&vc->lock);
3836 	schedule();
3837 	finish_swait(&vc->wq, &wait);
3838 	spin_lock(&vc->lock);
3839 	vc->vcore_state = VCORE_INACTIVE;
3840 	trace_kvmppc_vcore_blocked(vc, 1);
3841 	++vc->runner->stat.halt_successful_wait;
3842 
3843 	cur = ktime_get();
3844 
3845 out:
3846 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3847 
3848 	/* Attribute wait time */
3849 	if (do_sleep) {
3850 		vc->runner->stat.halt_wait_ns +=
3851 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3852 		/* Attribute failed poll time */
3853 		if (vc->halt_poll_ns)
3854 			vc->runner->stat.halt_poll_fail_ns +=
3855 				ktime_to_ns(start_wait) -
3856 				ktime_to_ns(start_poll);
3857 	} else {
3858 		/* Attribute successful poll time */
3859 		if (vc->halt_poll_ns)
3860 			vc->runner->stat.halt_poll_success_ns +=
3861 				ktime_to_ns(cur) -
3862 				ktime_to_ns(start_poll);
3863 	}
3864 
3865 	/* Adjust poll time */
3866 	if (halt_poll_ns) {
3867 		if (block_ns <= vc->halt_poll_ns)
3868 			;
3869 		/* We slept and blocked for longer than the max halt time */
3870 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3871 			shrink_halt_poll_ns(vc);
3872 		/* We slept and our poll time is too small */
3873 		else if (vc->halt_poll_ns < halt_poll_ns &&
3874 				block_ns < halt_poll_ns)
3875 			grow_halt_poll_ns(vc);
3876 		if (vc->halt_poll_ns > halt_poll_ns)
3877 			vc->halt_poll_ns = halt_poll_ns;
3878 	} else
3879 		vc->halt_poll_ns = 0;
3880 
3881 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3882 }
3883 
3884 /*
3885  * This never fails for a radix guest, as none of the operations it does
3886  * for a radix guest can fail or have a way to report failure.
3887  * kvmhv_run_single_vcpu() relies on this fact.
3888  */
3889 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3890 {
3891 	int r = 0;
3892 	struct kvm *kvm = vcpu->kvm;
3893 
3894 	mutex_lock(&kvm->arch.mmu_setup_lock);
3895 	if (!kvm->arch.mmu_ready) {
3896 		if (!kvm_is_radix(kvm))
3897 			r = kvmppc_hv_setup_htab_rma(vcpu);
3898 		if (!r) {
3899 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3900 				kvmppc_setup_partition_table(kvm);
3901 			kvm->arch.mmu_ready = 1;
3902 		}
3903 	}
3904 	mutex_unlock(&kvm->arch.mmu_setup_lock);
3905 	return r;
3906 }
3907 
3908 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3909 {
3910 	int n_ceded, i, r;
3911 	struct kvmppc_vcore *vc;
3912 	struct kvm_vcpu *v;
3913 
3914 	trace_kvmppc_run_vcpu_enter(vcpu);
3915 
3916 	kvm_run->exit_reason = 0;
3917 	vcpu->arch.ret = RESUME_GUEST;
3918 	vcpu->arch.trap = 0;
3919 	kvmppc_update_vpas(vcpu);
3920 
3921 	/*
3922 	 * Synchronize with other threads in this virtual core
3923 	 */
3924 	vc = vcpu->arch.vcore;
3925 	spin_lock(&vc->lock);
3926 	vcpu->arch.ceded = 0;
3927 	vcpu->arch.run_task = current;
3928 	vcpu->arch.kvm_run = kvm_run;
3929 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3930 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3931 	vcpu->arch.busy_preempt = TB_NIL;
3932 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3933 	++vc->n_runnable;
3934 
3935 	/*
3936 	 * This happens the first time this is called for a vcpu.
3937 	 * If the vcore is already running, we may be able to start
3938 	 * this thread straight away and have it join in.
3939 	 */
3940 	if (!signal_pending(current)) {
3941 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3942 		     vc->vcore_state == VCORE_RUNNING) &&
3943 			   !VCORE_IS_EXITING(vc)) {
3944 			kvmppc_create_dtl_entry(vcpu, vc);
3945 			kvmppc_start_thread(vcpu, vc);
3946 			trace_kvm_guest_enter(vcpu);
3947 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3948 			swake_up_one(&vc->wq);
3949 		}
3950 
3951 	}
3952 
3953 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3954 	       !signal_pending(current)) {
3955 		/* See if the MMU is ready to go */
3956 		if (!vcpu->kvm->arch.mmu_ready) {
3957 			spin_unlock(&vc->lock);
3958 			r = kvmhv_setup_mmu(vcpu);
3959 			spin_lock(&vc->lock);
3960 			if (r) {
3961 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3962 				kvm_run->fail_entry.
3963 					hardware_entry_failure_reason = 0;
3964 				vcpu->arch.ret = r;
3965 				break;
3966 			}
3967 		}
3968 
3969 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3970 			kvmppc_vcore_end_preempt(vc);
3971 
3972 		if (vc->vcore_state != VCORE_INACTIVE) {
3973 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3974 			continue;
3975 		}
3976 		for_each_runnable_thread(i, v, vc) {
3977 			kvmppc_core_prepare_to_enter(v);
3978 			if (signal_pending(v->arch.run_task)) {
3979 				kvmppc_remove_runnable(vc, v);
3980 				v->stat.signal_exits++;
3981 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3982 				v->arch.ret = -EINTR;
3983 				wake_up(&v->arch.cpu_run);
3984 			}
3985 		}
3986 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3987 			break;
3988 		n_ceded = 0;
3989 		for_each_runnable_thread(i, v, vc) {
3990 			if (!kvmppc_vcpu_woken(v))
3991 				n_ceded += v->arch.ceded;
3992 			else
3993 				v->arch.ceded = 0;
3994 		}
3995 		vc->runner = vcpu;
3996 		if (n_ceded == vc->n_runnable) {
3997 			kvmppc_vcore_blocked(vc);
3998 		} else if (need_resched()) {
3999 			kvmppc_vcore_preempt(vc);
4000 			/* Let something else run */
4001 			cond_resched_lock(&vc->lock);
4002 			if (vc->vcore_state == VCORE_PREEMPT)
4003 				kvmppc_vcore_end_preempt(vc);
4004 		} else {
4005 			kvmppc_run_core(vc);
4006 		}
4007 		vc->runner = NULL;
4008 	}
4009 
4010 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4011 	       (vc->vcore_state == VCORE_RUNNING ||
4012 		vc->vcore_state == VCORE_EXITING ||
4013 		vc->vcore_state == VCORE_PIGGYBACK))
4014 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4015 
4016 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4017 		kvmppc_vcore_end_preempt(vc);
4018 
4019 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4020 		kvmppc_remove_runnable(vc, vcpu);
4021 		vcpu->stat.signal_exits++;
4022 		kvm_run->exit_reason = KVM_EXIT_INTR;
4023 		vcpu->arch.ret = -EINTR;
4024 	}
4025 
4026 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4027 		/* Wake up some vcpu to run the core */
4028 		i = -1;
4029 		v = next_runnable_thread(vc, &i);
4030 		wake_up(&v->arch.cpu_run);
4031 	}
4032 
4033 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4034 	spin_unlock(&vc->lock);
4035 	return vcpu->arch.ret;
4036 }
4037 
4038 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4039 			  struct kvm_vcpu *vcpu, u64 time_limit,
4040 			  unsigned long lpcr)
4041 {
4042 	int trap, r, pcpu;
4043 	int srcu_idx, lpid;
4044 	struct kvmppc_vcore *vc;
4045 	struct kvm *kvm = vcpu->kvm;
4046 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4047 
4048 	trace_kvmppc_run_vcpu_enter(vcpu);
4049 
4050 	kvm_run->exit_reason = 0;
4051 	vcpu->arch.ret = RESUME_GUEST;
4052 	vcpu->arch.trap = 0;
4053 
4054 	vc = vcpu->arch.vcore;
4055 	vcpu->arch.ceded = 0;
4056 	vcpu->arch.run_task = current;
4057 	vcpu->arch.kvm_run = kvm_run;
4058 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4059 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4060 	vcpu->arch.busy_preempt = TB_NIL;
4061 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4062 	vc->runnable_threads[0] = vcpu;
4063 	vc->n_runnable = 1;
4064 	vc->runner = vcpu;
4065 
4066 	/* See if the MMU is ready to go */
4067 	if (!kvm->arch.mmu_ready)
4068 		kvmhv_setup_mmu(vcpu);
4069 
4070 	if (need_resched())
4071 		cond_resched();
4072 
4073 	kvmppc_update_vpas(vcpu);
4074 
4075 	init_vcore_to_run(vc);
4076 	vc->preempt_tb = TB_NIL;
4077 
4078 	preempt_disable();
4079 	pcpu = smp_processor_id();
4080 	vc->pcpu = pcpu;
4081 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4082 
4083 	local_irq_disable();
4084 	hard_irq_disable();
4085 	if (signal_pending(current))
4086 		goto sigpend;
4087 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4088 		goto out;
4089 
4090 	if (!nested) {
4091 		kvmppc_core_prepare_to_enter(vcpu);
4092 		if (vcpu->arch.doorbell_request) {
4093 			vc->dpdes = 1;
4094 			smp_wmb();
4095 			vcpu->arch.doorbell_request = 0;
4096 		}
4097 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4098 			     &vcpu->arch.pending_exceptions))
4099 			lpcr |= LPCR_MER;
4100 	} else if (vcpu->arch.pending_exceptions ||
4101 		   vcpu->arch.doorbell_request ||
4102 		   xive_interrupt_pending(vcpu)) {
4103 		vcpu->arch.ret = RESUME_HOST;
4104 		goto out;
4105 	}
4106 
4107 	kvmppc_clear_host_core(pcpu);
4108 
4109 	local_paca->kvm_hstate.tid = 0;
4110 	local_paca->kvm_hstate.napping = 0;
4111 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4112 	kvmppc_start_thread(vcpu, vc);
4113 	kvmppc_create_dtl_entry(vcpu, vc);
4114 	trace_kvm_guest_enter(vcpu);
4115 
4116 	vc->vcore_state = VCORE_RUNNING;
4117 	trace_kvmppc_run_core(vc, 0);
4118 
4119 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4120 		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4121 		mtspr(SPRN_LPID, lpid);
4122 		isync();
4123 		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4124 	}
4125 
4126 	guest_enter_irqoff();
4127 
4128 	srcu_idx = srcu_read_lock(&kvm->srcu);
4129 
4130 	this_cpu_disable_ftrace();
4131 
4132 	/* Tell lockdep that we're about to enable interrupts */
4133 	trace_hardirqs_on();
4134 
4135 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4136 	vcpu->arch.trap = trap;
4137 
4138 	trace_hardirqs_off();
4139 
4140 	this_cpu_enable_ftrace();
4141 
4142 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4143 
4144 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4145 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4146 		isync();
4147 	}
4148 
4149 	set_irq_happened(trap);
4150 
4151 	kvmppc_set_host_core(pcpu);
4152 
4153 	local_irq_enable();
4154 	guest_exit();
4155 
4156 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4157 
4158 	preempt_enable();
4159 
4160 	/*
4161 	 * cancel pending decrementer exception if DEC is now positive, or if
4162 	 * entering a nested guest in which case the decrementer is now owned
4163 	 * by L2 and the L1 decrementer is provided in hdec_expires
4164 	 */
4165 	if (kvmppc_core_pending_dec(vcpu) &&
4166 			((get_tb() < vcpu->arch.dec_expires) ||
4167 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4168 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4169 		kvmppc_core_dequeue_dec(vcpu);
4170 
4171 	trace_kvm_guest_exit(vcpu);
4172 	r = RESUME_GUEST;
4173 	if (trap) {
4174 		if (!nested)
4175 			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4176 		else
4177 			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4178 	}
4179 	vcpu->arch.ret = r;
4180 
4181 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4182 	    !kvmppc_vcpu_woken(vcpu)) {
4183 		kvmppc_set_timer(vcpu);
4184 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4185 			if (signal_pending(current)) {
4186 				vcpu->stat.signal_exits++;
4187 				kvm_run->exit_reason = KVM_EXIT_INTR;
4188 				vcpu->arch.ret = -EINTR;
4189 				break;
4190 			}
4191 			spin_lock(&vc->lock);
4192 			kvmppc_vcore_blocked(vc);
4193 			spin_unlock(&vc->lock);
4194 		}
4195 	}
4196 	vcpu->arch.ceded = 0;
4197 
4198 	vc->vcore_state = VCORE_INACTIVE;
4199 	trace_kvmppc_run_core(vc, 1);
4200 
4201  done:
4202 	kvmppc_remove_runnable(vc, vcpu);
4203 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4204 
4205 	return vcpu->arch.ret;
4206 
4207  sigpend:
4208 	vcpu->stat.signal_exits++;
4209 	kvm_run->exit_reason = KVM_EXIT_INTR;
4210 	vcpu->arch.ret = -EINTR;
4211  out:
4212 	local_irq_enable();
4213 	preempt_enable();
4214 	goto done;
4215 }
4216 
4217 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4218 {
4219 	int r;
4220 	int srcu_idx;
4221 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4222 	unsigned long user_tar = 0;
4223 	unsigned int user_vrsave;
4224 	struct kvm *kvm;
4225 
4226 	if (!vcpu->arch.sane) {
4227 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4228 		return -EINVAL;
4229 	}
4230 
4231 	/*
4232 	 * Don't allow entry with a suspended transaction, because
4233 	 * the guest entry/exit code will lose it.
4234 	 * If the guest has TM enabled, save away their TM-related SPRs
4235 	 * (they will get restored by the TM unavailable interrupt).
4236 	 */
4237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4238 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4239 	    (current->thread.regs->msr & MSR_TM)) {
4240 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4241 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4242 			run->fail_entry.hardware_entry_failure_reason = 0;
4243 			return -EINVAL;
4244 		}
4245 		/* Enable TM so we can read the TM SPRs */
4246 		mtmsr(mfmsr() | MSR_TM);
4247 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4248 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4249 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4250 		current->thread.regs->msr &= ~MSR_TM;
4251 	}
4252 #endif
4253 
4254 	/*
4255 	 * Force online to 1 for the sake of old userspace which doesn't
4256 	 * set it.
4257 	 */
4258 	if (!vcpu->arch.online) {
4259 		atomic_inc(&vcpu->arch.vcore->online_count);
4260 		vcpu->arch.online = 1;
4261 	}
4262 
4263 	kvmppc_core_prepare_to_enter(vcpu);
4264 
4265 	/* No need to go into the guest when all we'll do is come back out */
4266 	if (signal_pending(current)) {
4267 		run->exit_reason = KVM_EXIT_INTR;
4268 		return -EINTR;
4269 	}
4270 
4271 	kvm = vcpu->kvm;
4272 	atomic_inc(&kvm->arch.vcpus_running);
4273 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4274 	smp_mb();
4275 
4276 	flush_all_to_thread(current);
4277 
4278 	/* Save userspace EBB and other register values */
4279 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4280 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4281 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4282 		ebb_regs[2] = mfspr(SPRN_BESCR);
4283 		user_tar = mfspr(SPRN_TAR);
4284 	}
4285 	user_vrsave = mfspr(SPRN_VRSAVE);
4286 
4287 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4288 	vcpu->arch.pgdir = current->mm->pgd;
4289 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4290 
4291 	do {
4292 		/*
4293 		 * The early POWER9 chips that can't mix radix and HPT threads
4294 		 * on the same core also need the workaround for the problem
4295 		 * where the TLB would prefetch entries in the guest exit path
4296 		 * for radix guests using the guest PIDR value and LPID 0.
4297 		 * The workaround is in the old path (kvmppc_run_vcpu())
4298 		 * but not the new path (kvmhv_run_single_vcpu()).
4299 		 */
4300 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4301 		    !no_mixing_hpt_and_radix)
4302 			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4303 						  vcpu->arch.vcore->lpcr);
4304 		else
4305 			r = kvmppc_run_vcpu(run, vcpu);
4306 
4307 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4308 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4309 			trace_kvm_hcall_enter(vcpu);
4310 			r = kvmppc_pseries_do_hcall(vcpu);
4311 			trace_kvm_hcall_exit(vcpu, r);
4312 			kvmppc_core_prepare_to_enter(vcpu);
4313 		} else if (r == RESUME_PAGE_FAULT) {
4314 			srcu_idx = srcu_read_lock(&kvm->srcu);
4315 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
4316 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4317 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4318 		} else if (r == RESUME_PASSTHROUGH) {
4319 			if (WARN_ON(xics_on_xive()))
4320 				r = H_SUCCESS;
4321 			else
4322 				r = kvmppc_xics_rm_complete(vcpu, 0);
4323 		}
4324 	} while (is_kvmppc_resume_guest(r));
4325 
4326 	/* Restore userspace EBB and other register values */
4327 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4328 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4329 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4330 		mtspr(SPRN_BESCR, ebb_regs[2]);
4331 		mtspr(SPRN_TAR, user_tar);
4332 		mtspr(SPRN_FSCR, current->thread.fscr);
4333 	}
4334 	mtspr(SPRN_VRSAVE, user_vrsave);
4335 
4336 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4337 	atomic_dec(&kvm->arch.vcpus_running);
4338 	return r;
4339 }
4340 
4341 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4342 				     int shift, int sllp)
4343 {
4344 	(*sps)->page_shift = shift;
4345 	(*sps)->slb_enc = sllp;
4346 	(*sps)->enc[0].page_shift = shift;
4347 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4348 	/*
4349 	 * Add 16MB MPSS support (may get filtered out by userspace)
4350 	 */
4351 	if (shift != 24) {
4352 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4353 		if (penc != -1) {
4354 			(*sps)->enc[1].page_shift = 24;
4355 			(*sps)->enc[1].pte_enc = penc;
4356 		}
4357 	}
4358 	(*sps)++;
4359 }
4360 
4361 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4362 					 struct kvm_ppc_smmu_info *info)
4363 {
4364 	struct kvm_ppc_one_seg_page_size *sps;
4365 
4366 	/*
4367 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4368 	 * POWER7 doesn't support keys for instruction accesses,
4369 	 * POWER8 and POWER9 do.
4370 	 */
4371 	info->data_keys = 32;
4372 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4373 
4374 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4375 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4376 	info->slb_size = 32;
4377 
4378 	/* We only support these sizes for now, and no muti-size segments */
4379 	sps = &info->sps[0];
4380 	kvmppc_add_seg_page_size(&sps, 12, 0);
4381 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4382 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4383 
4384 	/* If running as a nested hypervisor, we don't support HPT guests */
4385 	if (kvmhv_on_pseries())
4386 		info->flags |= KVM_PPC_NO_HASH;
4387 
4388 	return 0;
4389 }
4390 
4391 /*
4392  * Get (and clear) the dirty memory log for a memory slot.
4393  */
4394 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4395 					 struct kvm_dirty_log *log)
4396 {
4397 	struct kvm_memslots *slots;
4398 	struct kvm_memory_slot *memslot;
4399 	int i, r;
4400 	unsigned long n;
4401 	unsigned long *buf, *p;
4402 	struct kvm_vcpu *vcpu;
4403 
4404 	mutex_lock(&kvm->slots_lock);
4405 
4406 	r = -EINVAL;
4407 	if (log->slot >= KVM_USER_MEM_SLOTS)
4408 		goto out;
4409 
4410 	slots = kvm_memslots(kvm);
4411 	memslot = id_to_memslot(slots, log->slot);
4412 	r = -ENOENT;
4413 	if (!memslot->dirty_bitmap)
4414 		goto out;
4415 
4416 	/*
4417 	 * Use second half of bitmap area because both HPT and radix
4418 	 * accumulate bits in the first half.
4419 	 */
4420 	n = kvm_dirty_bitmap_bytes(memslot);
4421 	buf = memslot->dirty_bitmap + n / sizeof(long);
4422 	memset(buf, 0, n);
4423 
4424 	if (kvm_is_radix(kvm))
4425 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4426 	else
4427 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4428 	if (r)
4429 		goto out;
4430 
4431 	/*
4432 	 * We accumulate dirty bits in the first half of the
4433 	 * memslot's dirty_bitmap area, for when pages are paged
4434 	 * out or modified by the host directly.  Pick up these
4435 	 * bits and add them to the map.
4436 	 */
4437 	p = memslot->dirty_bitmap;
4438 	for (i = 0; i < n / sizeof(long); ++i)
4439 		buf[i] |= xchg(&p[i], 0);
4440 
4441 	/* Harvest dirty bits from VPA and DTL updates */
4442 	/* Note: we never modify the SLB shadow buffer areas */
4443 	kvm_for_each_vcpu(i, vcpu, kvm) {
4444 		spin_lock(&vcpu->arch.vpa_update_lock);
4445 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4446 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4447 		spin_unlock(&vcpu->arch.vpa_update_lock);
4448 	}
4449 
4450 	r = -EFAULT;
4451 	if (copy_to_user(log->dirty_bitmap, buf, n))
4452 		goto out;
4453 
4454 	r = 0;
4455 out:
4456 	mutex_unlock(&kvm->slots_lock);
4457 	return r;
4458 }
4459 
4460 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4461 					struct kvm_memory_slot *dont)
4462 {
4463 	if (!dont || free->arch.rmap != dont->arch.rmap) {
4464 		vfree(free->arch.rmap);
4465 		free->arch.rmap = NULL;
4466 	}
4467 }
4468 
4469 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4470 					 unsigned long npages)
4471 {
4472 	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4473 	if (!slot->arch.rmap)
4474 		return -ENOMEM;
4475 
4476 	return 0;
4477 }
4478 
4479 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4480 					struct kvm_memory_slot *memslot,
4481 					const struct kvm_userspace_memory_region *mem)
4482 {
4483 	return 0;
4484 }
4485 
4486 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4487 				const struct kvm_userspace_memory_region *mem,
4488 				const struct kvm_memory_slot *old,
4489 				const struct kvm_memory_slot *new,
4490 				enum kvm_mr_change change)
4491 {
4492 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4493 
4494 	/*
4495 	 * If we are making a new memslot, it might make
4496 	 * some address that was previously cached as emulated
4497 	 * MMIO be no longer emulated MMIO, so invalidate
4498 	 * all the caches of emulated MMIO translations.
4499 	 */
4500 	if (npages)
4501 		atomic64_inc(&kvm->arch.mmio_update);
4502 
4503 	/*
4504 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4505 	 * have already called kvm_arch_flush_shadow_memslot() to
4506 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4507 	 * previous mappings.  So the only case to handle is
4508 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4509 	 * has been changed.
4510 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4511 	 * to get rid of any THP PTEs in the partition-scoped page tables
4512 	 * so we can track dirtiness at the page level; we flush when
4513 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4514 	 * using THP PTEs.
4515 	 */
4516 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4517 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4518 		kvmppc_radix_flush_memslot(kvm, old);
4519 	/*
4520 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4521 	 */
4522 	if (!kvm->arch.secure_guest)
4523 		return;
4524 
4525 	switch (change) {
4526 	case KVM_MR_CREATE:
4527 		if (kvmppc_uvmem_slot_init(kvm, new))
4528 			return;
4529 		uv_register_mem_slot(kvm->arch.lpid,
4530 				     new->base_gfn << PAGE_SHIFT,
4531 				     new->npages * PAGE_SIZE,
4532 				     0, new->id);
4533 		break;
4534 	case KVM_MR_DELETE:
4535 		uv_unregister_mem_slot(kvm->arch.lpid, old->id);
4536 		kvmppc_uvmem_slot_free(kvm, old);
4537 		break;
4538 	default:
4539 		/* TODO: Handle KVM_MR_MOVE */
4540 		break;
4541 	}
4542 }
4543 
4544 /*
4545  * Update LPCR values in kvm->arch and in vcores.
4546  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4547  * of kvm->arch.lpcr update).
4548  */
4549 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4550 {
4551 	long int i;
4552 	u32 cores_done = 0;
4553 
4554 	if ((kvm->arch.lpcr & mask) == lpcr)
4555 		return;
4556 
4557 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4558 
4559 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4560 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4561 		if (!vc)
4562 			continue;
4563 		spin_lock(&vc->lock);
4564 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4565 		spin_unlock(&vc->lock);
4566 		if (++cores_done >= kvm->arch.online_vcores)
4567 			break;
4568 	}
4569 }
4570 
4571 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4572 {
4573 	return;
4574 }
4575 
4576 void kvmppc_setup_partition_table(struct kvm *kvm)
4577 {
4578 	unsigned long dw0, dw1;
4579 
4580 	if (!kvm_is_radix(kvm)) {
4581 		/* PS field - page size for VRMA */
4582 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4583 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4584 		/* HTABSIZE and HTABORG fields */
4585 		dw0 |= kvm->arch.sdr1;
4586 
4587 		/* Second dword as set by userspace */
4588 		dw1 = kvm->arch.process_table;
4589 	} else {
4590 		dw0 = PATB_HR | radix__get_tree_size() |
4591 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4592 		dw1 = PATB_GR | kvm->arch.process_table;
4593 	}
4594 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4595 }
4596 
4597 /*
4598  * Set up HPT (hashed page table) and RMA (real-mode area).
4599  * Must be called with kvm->arch.mmu_setup_lock held.
4600  */
4601 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4602 {
4603 	int err = 0;
4604 	struct kvm *kvm = vcpu->kvm;
4605 	unsigned long hva;
4606 	struct kvm_memory_slot *memslot;
4607 	struct vm_area_struct *vma;
4608 	unsigned long lpcr = 0, senc;
4609 	unsigned long psize, porder;
4610 	int srcu_idx;
4611 
4612 	/* Allocate hashed page table (if not done already) and reset it */
4613 	if (!kvm->arch.hpt.virt) {
4614 		int order = KVM_DEFAULT_HPT_ORDER;
4615 		struct kvm_hpt_info info;
4616 
4617 		err = kvmppc_allocate_hpt(&info, order);
4618 		/* If we get here, it means userspace didn't specify a
4619 		 * size explicitly.  So, try successively smaller
4620 		 * sizes if the default failed. */
4621 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4622 			err  = kvmppc_allocate_hpt(&info, order);
4623 
4624 		if (err < 0) {
4625 			pr_err("KVM: Couldn't alloc HPT\n");
4626 			goto out;
4627 		}
4628 
4629 		kvmppc_set_hpt(kvm, &info);
4630 	}
4631 
4632 	/* Look up the memslot for guest physical address 0 */
4633 	srcu_idx = srcu_read_lock(&kvm->srcu);
4634 	memslot = gfn_to_memslot(kvm, 0);
4635 
4636 	/* We must have some memory at 0 by now */
4637 	err = -EINVAL;
4638 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4639 		goto out_srcu;
4640 
4641 	/* Look up the VMA for the start of this memory slot */
4642 	hva = memslot->userspace_addr;
4643 	down_read(&current->mm->mmap_sem);
4644 	vma = find_vma(current->mm, hva);
4645 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4646 		goto up_out;
4647 
4648 	psize = vma_kernel_pagesize(vma);
4649 
4650 	up_read(&current->mm->mmap_sem);
4651 
4652 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4653 	if (psize >= 0x1000000)
4654 		psize = 0x1000000;
4655 	else if (psize >= 0x10000)
4656 		psize = 0x10000;
4657 	else
4658 		psize = 0x1000;
4659 	porder = __ilog2(psize);
4660 
4661 	senc = slb_pgsize_encoding(psize);
4662 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4663 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4664 	/* Create HPTEs in the hash page table for the VRMA */
4665 	kvmppc_map_vrma(vcpu, memslot, porder);
4666 
4667 	/* Update VRMASD field in the LPCR */
4668 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4669 		/* the -4 is to account for senc values starting at 0x10 */
4670 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4671 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4672 	}
4673 
4674 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4675 	smp_wmb();
4676 	err = 0;
4677  out_srcu:
4678 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4679  out:
4680 	return err;
4681 
4682  up_out:
4683 	up_read(&current->mm->mmap_sem);
4684 	goto out_srcu;
4685 }
4686 
4687 /*
4688  * Must be called with kvm->arch.mmu_setup_lock held and
4689  * mmu_ready = 0 and no vcpus running.
4690  */
4691 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4692 {
4693 	if (nesting_enabled(kvm))
4694 		kvmhv_release_all_nested(kvm);
4695 	kvmppc_rmap_reset(kvm);
4696 	kvm->arch.process_table = 0;
4697 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4698 	spin_lock(&kvm->mmu_lock);
4699 	kvm->arch.radix = 0;
4700 	spin_unlock(&kvm->mmu_lock);
4701 	kvmppc_free_radix(kvm);
4702 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4703 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4704 	return 0;
4705 }
4706 
4707 /*
4708  * Must be called with kvm->arch.mmu_setup_lock held and
4709  * mmu_ready = 0 and no vcpus running.
4710  */
4711 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4712 {
4713 	int err;
4714 
4715 	err = kvmppc_init_vm_radix(kvm);
4716 	if (err)
4717 		return err;
4718 	kvmppc_rmap_reset(kvm);
4719 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4720 	spin_lock(&kvm->mmu_lock);
4721 	kvm->arch.radix = 1;
4722 	spin_unlock(&kvm->mmu_lock);
4723 	kvmppc_free_hpt(&kvm->arch.hpt);
4724 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4725 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4726 	return 0;
4727 }
4728 
4729 #ifdef CONFIG_KVM_XICS
4730 /*
4731  * Allocate a per-core structure for managing state about which cores are
4732  * running in the host versus the guest and for exchanging data between
4733  * real mode KVM and CPU running in the host.
4734  * This is only done for the first VM.
4735  * The allocated structure stays even if all VMs have stopped.
4736  * It is only freed when the kvm-hv module is unloaded.
4737  * It's OK for this routine to fail, we just don't support host
4738  * core operations like redirecting H_IPI wakeups.
4739  */
4740 void kvmppc_alloc_host_rm_ops(void)
4741 {
4742 	struct kvmppc_host_rm_ops *ops;
4743 	unsigned long l_ops;
4744 	int cpu, core;
4745 	int size;
4746 
4747 	/* Not the first time here ? */
4748 	if (kvmppc_host_rm_ops_hv != NULL)
4749 		return;
4750 
4751 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4752 	if (!ops)
4753 		return;
4754 
4755 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4756 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4757 
4758 	if (!ops->rm_core) {
4759 		kfree(ops);
4760 		return;
4761 	}
4762 
4763 	cpus_read_lock();
4764 
4765 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4766 		if (!cpu_online(cpu))
4767 			continue;
4768 
4769 		core = cpu >> threads_shift;
4770 		ops->rm_core[core].rm_state.in_host = 1;
4771 	}
4772 
4773 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4774 
4775 	/*
4776 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4777 	 * to other CPUs before we assign it to the global variable.
4778 	 * Do an atomic assignment (no locks used here), but if someone
4779 	 * beats us to it, just free our copy and return.
4780 	 */
4781 	smp_wmb();
4782 	l_ops = (unsigned long) ops;
4783 
4784 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4785 		cpus_read_unlock();
4786 		kfree(ops->rm_core);
4787 		kfree(ops);
4788 		return;
4789 	}
4790 
4791 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4792 					     "ppc/kvm_book3s:prepare",
4793 					     kvmppc_set_host_core,
4794 					     kvmppc_clear_host_core);
4795 	cpus_read_unlock();
4796 }
4797 
4798 void kvmppc_free_host_rm_ops(void)
4799 {
4800 	if (kvmppc_host_rm_ops_hv) {
4801 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4802 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4803 		kfree(kvmppc_host_rm_ops_hv);
4804 		kvmppc_host_rm_ops_hv = NULL;
4805 	}
4806 }
4807 #endif
4808 
4809 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4810 {
4811 	unsigned long lpcr, lpid;
4812 	char buf[32];
4813 	int ret;
4814 
4815 	mutex_init(&kvm->arch.uvmem_lock);
4816 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4817 	mutex_init(&kvm->arch.mmu_setup_lock);
4818 
4819 	/* Allocate the guest's logical partition ID */
4820 
4821 	lpid = kvmppc_alloc_lpid();
4822 	if ((long)lpid < 0)
4823 		return -ENOMEM;
4824 	kvm->arch.lpid = lpid;
4825 
4826 	kvmppc_alloc_host_rm_ops();
4827 
4828 	kvmhv_vm_nested_init(kvm);
4829 
4830 	/*
4831 	 * Since we don't flush the TLB when tearing down a VM,
4832 	 * and this lpid might have previously been used,
4833 	 * make sure we flush on each core before running the new VM.
4834 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4835 	 * does this flush for us.
4836 	 */
4837 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4838 		cpumask_setall(&kvm->arch.need_tlb_flush);
4839 
4840 	/* Start out with the default set of hcalls enabled */
4841 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4842 	       sizeof(kvm->arch.enabled_hcalls));
4843 
4844 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4845 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4846 
4847 	/* Init LPCR for virtual RMA mode */
4848 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4849 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4850 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4851 		lpcr &= LPCR_PECE | LPCR_LPES;
4852 	} else {
4853 		lpcr = 0;
4854 	}
4855 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4856 		LPCR_VPM0 | LPCR_VPM1;
4857 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4858 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4859 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4860 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4861 		lpcr |= LPCR_ONL;
4862 	/*
4863 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4864 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4865 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4866 	 * be unnecessary but better safe than sorry in case we re-enable
4867 	 * EE in HV mode with this LPCR still set)
4868 	 */
4869 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4870 		lpcr &= ~LPCR_VPM0;
4871 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4872 
4873 		/*
4874 		 * If xive is enabled, we route 0x500 interrupts directly
4875 		 * to the guest.
4876 		 */
4877 		if (xics_on_xive())
4878 			lpcr |= LPCR_LPES;
4879 	}
4880 
4881 	/*
4882 	 * If the host uses radix, the guest starts out as radix.
4883 	 */
4884 	if (radix_enabled()) {
4885 		kvm->arch.radix = 1;
4886 		kvm->arch.mmu_ready = 1;
4887 		lpcr &= ~LPCR_VPM1;
4888 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4889 		ret = kvmppc_init_vm_radix(kvm);
4890 		if (ret) {
4891 			kvmppc_free_lpid(kvm->arch.lpid);
4892 			return ret;
4893 		}
4894 		kvmppc_setup_partition_table(kvm);
4895 	}
4896 
4897 	kvm->arch.lpcr = lpcr;
4898 
4899 	/* Initialization for future HPT resizes */
4900 	kvm->arch.resize_hpt = NULL;
4901 
4902 	/*
4903 	 * Work out how many sets the TLB has, for the use of
4904 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4905 	 */
4906 	if (radix_enabled())
4907 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4908 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4909 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4910 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4911 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4912 	else
4913 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4914 
4915 	/*
4916 	 * Track that we now have a HV mode VM active. This blocks secondary
4917 	 * CPU threads from coming online.
4918 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4919 	 * module parameter has been set to N.
4920 	 */
4921 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4922 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4923 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4924 			kvm->arch.threads_indep = true;
4925 		} else {
4926 			kvm->arch.threads_indep = indep_threads_mode;
4927 		}
4928 	}
4929 	if (!kvm->arch.threads_indep)
4930 		kvm_hv_vm_activated();
4931 
4932 	/*
4933 	 * Initialize smt_mode depending on processor.
4934 	 * POWER8 and earlier have to use "strict" threading, where
4935 	 * all vCPUs in a vcore have to run on the same (sub)core,
4936 	 * whereas on POWER9 the threads can each run a different
4937 	 * guest.
4938 	 */
4939 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4940 		kvm->arch.smt_mode = threads_per_subcore;
4941 	else
4942 		kvm->arch.smt_mode = 1;
4943 	kvm->arch.emul_smt_mode = 1;
4944 
4945 	/*
4946 	 * Create a debugfs directory for the VM
4947 	 */
4948 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
4949 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4950 	kvmppc_mmu_debugfs_init(kvm);
4951 	if (radix_enabled())
4952 		kvmhv_radix_debugfs_init(kvm);
4953 
4954 	return 0;
4955 }
4956 
4957 static void kvmppc_free_vcores(struct kvm *kvm)
4958 {
4959 	long int i;
4960 
4961 	for (i = 0; i < KVM_MAX_VCORES; ++i)
4962 		kfree(kvm->arch.vcores[i]);
4963 	kvm->arch.online_vcores = 0;
4964 }
4965 
4966 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4967 {
4968 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
4969 
4970 	if (!kvm->arch.threads_indep)
4971 		kvm_hv_vm_deactivated();
4972 
4973 	kvmppc_free_vcores(kvm);
4974 
4975 
4976 	if (kvm_is_radix(kvm))
4977 		kvmppc_free_radix(kvm);
4978 	else
4979 		kvmppc_free_hpt(&kvm->arch.hpt);
4980 
4981 	/* Perform global invalidation and return lpid to the pool */
4982 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4983 		if (nesting_enabled(kvm))
4984 			kvmhv_release_all_nested(kvm);
4985 		kvm->arch.process_table = 0;
4986 		uv_svm_terminate(kvm->arch.lpid);
4987 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4988 	}
4989 
4990 	kvmppc_free_lpid(kvm->arch.lpid);
4991 
4992 	kvmppc_free_pimap(kvm);
4993 }
4994 
4995 /* We don't need to emulate any privileged instructions or dcbz */
4996 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4997 				     unsigned int inst, int *advance)
4998 {
4999 	return EMULATE_FAIL;
5000 }
5001 
5002 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5003 					ulong spr_val)
5004 {
5005 	return EMULATE_FAIL;
5006 }
5007 
5008 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5009 					ulong *spr_val)
5010 {
5011 	return EMULATE_FAIL;
5012 }
5013 
5014 static int kvmppc_core_check_processor_compat_hv(void)
5015 {
5016 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5017 	    cpu_has_feature(CPU_FTR_ARCH_206))
5018 		return 0;
5019 
5020 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5021 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5022 		return 0;
5023 
5024 	return -EIO;
5025 }
5026 
5027 #ifdef CONFIG_KVM_XICS
5028 
5029 void kvmppc_free_pimap(struct kvm *kvm)
5030 {
5031 	kfree(kvm->arch.pimap);
5032 }
5033 
5034 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5035 {
5036 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5037 }
5038 
5039 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5040 {
5041 	struct irq_desc *desc;
5042 	struct kvmppc_irq_map *irq_map;
5043 	struct kvmppc_passthru_irqmap *pimap;
5044 	struct irq_chip *chip;
5045 	int i, rc = 0;
5046 
5047 	if (!kvm_irq_bypass)
5048 		return 1;
5049 
5050 	desc = irq_to_desc(host_irq);
5051 	if (!desc)
5052 		return -EIO;
5053 
5054 	mutex_lock(&kvm->lock);
5055 
5056 	pimap = kvm->arch.pimap;
5057 	if (pimap == NULL) {
5058 		/* First call, allocate structure to hold IRQ map */
5059 		pimap = kvmppc_alloc_pimap();
5060 		if (pimap == NULL) {
5061 			mutex_unlock(&kvm->lock);
5062 			return -ENOMEM;
5063 		}
5064 		kvm->arch.pimap = pimap;
5065 	}
5066 
5067 	/*
5068 	 * For now, we only support interrupts for which the EOI operation
5069 	 * is an OPAL call followed by a write to XIRR, since that's
5070 	 * what our real-mode EOI code does, or a XIVE interrupt
5071 	 */
5072 	chip = irq_data_get_irq_chip(&desc->irq_data);
5073 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5074 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5075 			host_irq, guest_gsi);
5076 		mutex_unlock(&kvm->lock);
5077 		return -ENOENT;
5078 	}
5079 
5080 	/*
5081 	 * See if we already have an entry for this guest IRQ number.
5082 	 * If it's mapped to a hardware IRQ number, that's an error,
5083 	 * otherwise re-use this entry.
5084 	 */
5085 	for (i = 0; i < pimap->n_mapped; i++) {
5086 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5087 			if (pimap->mapped[i].r_hwirq) {
5088 				mutex_unlock(&kvm->lock);
5089 				return -EINVAL;
5090 			}
5091 			break;
5092 		}
5093 	}
5094 
5095 	if (i == KVMPPC_PIRQ_MAPPED) {
5096 		mutex_unlock(&kvm->lock);
5097 		return -EAGAIN;		/* table is full */
5098 	}
5099 
5100 	irq_map = &pimap->mapped[i];
5101 
5102 	irq_map->v_hwirq = guest_gsi;
5103 	irq_map->desc = desc;
5104 
5105 	/*
5106 	 * Order the above two stores before the next to serialize with
5107 	 * the KVM real mode handler.
5108 	 */
5109 	smp_wmb();
5110 	irq_map->r_hwirq = desc->irq_data.hwirq;
5111 
5112 	if (i == pimap->n_mapped)
5113 		pimap->n_mapped++;
5114 
5115 	if (xics_on_xive())
5116 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5117 	else
5118 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5119 	if (rc)
5120 		irq_map->r_hwirq = 0;
5121 
5122 	mutex_unlock(&kvm->lock);
5123 
5124 	return 0;
5125 }
5126 
5127 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5128 {
5129 	struct irq_desc *desc;
5130 	struct kvmppc_passthru_irqmap *pimap;
5131 	int i, rc = 0;
5132 
5133 	if (!kvm_irq_bypass)
5134 		return 0;
5135 
5136 	desc = irq_to_desc(host_irq);
5137 	if (!desc)
5138 		return -EIO;
5139 
5140 	mutex_lock(&kvm->lock);
5141 	if (!kvm->arch.pimap)
5142 		goto unlock;
5143 
5144 	pimap = kvm->arch.pimap;
5145 
5146 	for (i = 0; i < pimap->n_mapped; i++) {
5147 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5148 			break;
5149 	}
5150 
5151 	if (i == pimap->n_mapped) {
5152 		mutex_unlock(&kvm->lock);
5153 		return -ENODEV;
5154 	}
5155 
5156 	if (xics_on_xive())
5157 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5158 	else
5159 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5160 
5161 	/* invalidate the entry (what do do on error from the above ?) */
5162 	pimap->mapped[i].r_hwirq = 0;
5163 
5164 	/*
5165 	 * We don't free this structure even when the count goes to
5166 	 * zero. The structure is freed when we destroy the VM.
5167 	 */
5168  unlock:
5169 	mutex_unlock(&kvm->lock);
5170 	return rc;
5171 }
5172 
5173 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5174 					     struct irq_bypass_producer *prod)
5175 {
5176 	int ret = 0;
5177 	struct kvm_kernel_irqfd *irqfd =
5178 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5179 
5180 	irqfd->producer = prod;
5181 
5182 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5183 	if (ret)
5184 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5185 			prod->irq, irqfd->gsi, ret);
5186 
5187 	return ret;
5188 }
5189 
5190 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5191 					      struct irq_bypass_producer *prod)
5192 {
5193 	int ret;
5194 	struct kvm_kernel_irqfd *irqfd =
5195 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5196 
5197 	irqfd->producer = NULL;
5198 
5199 	/*
5200 	 * When producer of consumer is unregistered, we change back to
5201 	 * default external interrupt handling mode - KVM real mode
5202 	 * will switch back to host.
5203 	 */
5204 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5205 	if (ret)
5206 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5207 			prod->irq, irqfd->gsi, ret);
5208 }
5209 #endif
5210 
5211 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5212 				 unsigned int ioctl, unsigned long arg)
5213 {
5214 	struct kvm *kvm __maybe_unused = filp->private_data;
5215 	void __user *argp = (void __user *)arg;
5216 	long r;
5217 
5218 	switch (ioctl) {
5219 
5220 	case KVM_PPC_ALLOCATE_HTAB: {
5221 		u32 htab_order;
5222 
5223 		r = -EFAULT;
5224 		if (get_user(htab_order, (u32 __user *)argp))
5225 			break;
5226 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5227 		if (r)
5228 			break;
5229 		r = 0;
5230 		break;
5231 	}
5232 
5233 	case KVM_PPC_GET_HTAB_FD: {
5234 		struct kvm_get_htab_fd ghf;
5235 
5236 		r = -EFAULT;
5237 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5238 			break;
5239 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5240 		break;
5241 	}
5242 
5243 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5244 		struct kvm_ppc_resize_hpt rhpt;
5245 
5246 		r = -EFAULT;
5247 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5248 			break;
5249 
5250 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5251 		break;
5252 	}
5253 
5254 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5255 		struct kvm_ppc_resize_hpt rhpt;
5256 
5257 		r = -EFAULT;
5258 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5259 			break;
5260 
5261 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5262 		break;
5263 	}
5264 
5265 	default:
5266 		r = -ENOTTY;
5267 	}
5268 
5269 	return r;
5270 }
5271 
5272 /*
5273  * List of hcall numbers to enable by default.
5274  * For compatibility with old userspace, we enable by default
5275  * all hcalls that were implemented before the hcall-enabling
5276  * facility was added.  Note this list should not include H_RTAS.
5277  */
5278 static unsigned int default_hcall_list[] = {
5279 	H_REMOVE,
5280 	H_ENTER,
5281 	H_READ,
5282 	H_PROTECT,
5283 	H_BULK_REMOVE,
5284 	H_GET_TCE,
5285 	H_PUT_TCE,
5286 	H_SET_DABR,
5287 	H_SET_XDABR,
5288 	H_CEDE,
5289 	H_PROD,
5290 	H_CONFER,
5291 	H_REGISTER_VPA,
5292 #ifdef CONFIG_KVM_XICS
5293 	H_EOI,
5294 	H_CPPR,
5295 	H_IPI,
5296 	H_IPOLL,
5297 	H_XIRR,
5298 	H_XIRR_X,
5299 #endif
5300 	0
5301 };
5302 
5303 static void init_default_hcalls(void)
5304 {
5305 	int i;
5306 	unsigned int hcall;
5307 
5308 	for (i = 0; default_hcall_list[i]; ++i) {
5309 		hcall = default_hcall_list[i];
5310 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5311 		__set_bit(hcall / 4, default_enabled_hcalls);
5312 	}
5313 }
5314 
5315 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5316 {
5317 	unsigned long lpcr;
5318 	int radix;
5319 	int err;
5320 
5321 	/* If not on a POWER9, reject it */
5322 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5323 		return -ENODEV;
5324 
5325 	/* If any unknown flags set, reject it */
5326 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5327 		return -EINVAL;
5328 
5329 	/* GR (guest radix) bit in process_table field must match */
5330 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5331 	if (!!(cfg->process_table & PATB_GR) != radix)
5332 		return -EINVAL;
5333 
5334 	/* Process table size field must be reasonable, i.e. <= 24 */
5335 	if ((cfg->process_table & PRTS_MASK) > 24)
5336 		return -EINVAL;
5337 
5338 	/* We can change a guest to/from radix now, if the host is radix */
5339 	if (radix && !radix_enabled())
5340 		return -EINVAL;
5341 
5342 	/* If we're a nested hypervisor, we currently only support radix */
5343 	if (kvmhv_on_pseries() && !radix)
5344 		return -EINVAL;
5345 
5346 	mutex_lock(&kvm->arch.mmu_setup_lock);
5347 	if (radix != kvm_is_radix(kvm)) {
5348 		if (kvm->arch.mmu_ready) {
5349 			kvm->arch.mmu_ready = 0;
5350 			/* order mmu_ready vs. vcpus_running */
5351 			smp_mb();
5352 			if (atomic_read(&kvm->arch.vcpus_running)) {
5353 				kvm->arch.mmu_ready = 1;
5354 				err = -EBUSY;
5355 				goto out_unlock;
5356 			}
5357 		}
5358 		if (radix)
5359 			err = kvmppc_switch_mmu_to_radix(kvm);
5360 		else
5361 			err = kvmppc_switch_mmu_to_hpt(kvm);
5362 		if (err)
5363 			goto out_unlock;
5364 	}
5365 
5366 	kvm->arch.process_table = cfg->process_table;
5367 	kvmppc_setup_partition_table(kvm);
5368 
5369 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5370 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5371 	err = 0;
5372 
5373  out_unlock:
5374 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5375 	return err;
5376 }
5377 
5378 static int kvmhv_enable_nested(struct kvm *kvm)
5379 {
5380 	if (!nested)
5381 		return -EPERM;
5382 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5383 		return -ENODEV;
5384 
5385 	/* kvm == NULL means the caller is testing if the capability exists */
5386 	if (kvm)
5387 		kvm->arch.nested_enable = true;
5388 	return 0;
5389 }
5390 
5391 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5392 				 int size)
5393 {
5394 	int rc = -EINVAL;
5395 
5396 	if (kvmhv_vcpu_is_radix(vcpu)) {
5397 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5398 
5399 		if (rc > 0)
5400 			rc = -EINVAL;
5401 	}
5402 
5403 	/* For now quadrants are the only way to access nested guest memory */
5404 	if (rc && vcpu->arch.nested)
5405 		rc = -EAGAIN;
5406 
5407 	return rc;
5408 }
5409 
5410 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5411 				int size)
5412 {
5413 	int rc = -EINVAL;
5414 
5415 	if (kvmhv_vcpu_is_radix(vcpu)) {
5416 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5417 
5418 		if (rc > 0)
5419 			rc = -EINVAL;
5420 	}
5421 
5422 	/* For now quadrants are the only way to access nested guest memory */
5423 	if (rc && vcpu->arch.nested)
5424 		rc = -EAGAIN;
5425 
5426 	return rc;
5427 }
5428 
5429 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5430 {
5431 	unpin_vpa(kvm, vpa);
5432 	vpa->gpa = 0;
5433 	vpa->pinned_addr = NULL;
5434 	vpa->dirty = false;
5435 	vpa->update_pending = 0;
5436 }
5437 
5438 /*
5439  *  IOCTL handler to turn off secure mode of guest
5440  *
5441  * - Release all device pages
5442  * - Issue ucall to terminate the guest on the UV side
5443  * - Unpin the VPA pages.
5444  * - Reinit the partition scoped page tables
5445  */
5446 static int kvmhv_svm_off(struct kvm *kvm)
5447 {
5448 	struct kvm_vcpu *vcpu;
5449 	int mmu_was_ready;
5450 	int srcu_idx;
5451 	int ret = 0;
5452 	int i;
5453 
5454 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5455 		return ret;
5456 
5457 	mutex_lock(&kvm->arch.mmu_setup_lock);
5458 	mmu_was_ready = kvm->arch.mmu_ready;
5459 	if (kvm->arch.mmu_ready) {
5460 		kvm->arch.mmu_ready = 0;
5461 		/* order mmu_ready vs. vcpus_running */
5462 		smp_mb();
5463 		if (atomic_read(&kvm->arch.vcpus_running)) {
5464 			kvm->arch.mmu_ready = 1;
5465 			ret = -EBUSY;
5466 			goto out;
5467 		}
5468 	}
5469 
5470 	srcu_idx = srcu_read_lock(&kvm->srcu);
5471 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5472 		struct kvm_memory_slot *memslot;
5473 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5474 
5475 		if (!slots)
5476 			continue;
5477 
5478 		kvm_for_each_memslot(memslot, slots) {
5479 			kvmppc_uvmem_drop_pages(memslot, kvm);
5480 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5481 		}
5482 	}
5483 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5484 
5485 	ret = uv_svm_terminate(kvm->arch.lpid);
5486 	if (ret != U_SUCCESS) {
5487 		ret = -EINVAL;
5488 		goto out;
5489 	}
5490 
5491 	/*
5492 	 * When secure guest is reset, all the guest pages are sent
5493 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5494 	 * chance to run and unpin their VPA pages. Unpinning of all
5495 	 * VPA pages is done here explicitly so that VPA pages
5496 	 * can be migrated to the secure side.
5497 	 *
5498 	 * This is required to for the secure SMP guest to reboot
5499 	 * correctly.
5500 	 */
5501 	kvm_for_each_vcpu(i, vcpu, kvm) {
5502 		spin_lock(&vcpu->arch.vpa_update_lock);
5503 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5504 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5505 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5506 		spin_unlock(&vcpu->arch.vpa_update_lock);
5507 	}
5508 
5509 	kvmppc_setup_partition_table(kvm);
5510 	kvm->arch.secure_guest = 0;
5511 	kvm->arch.mmu_ready = mmu_was_ready;
5512 out:
5513 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5514 	return ret;
5515 }
5516 
5517 static struct kvmppc_ops kvm_ops_hv = {
5518 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5519 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5520 	.get_one_reg = kvmppc_get_one_reg_hv,
5521 	.set_one_reg = kvmppc_set_one_reg_hv,
5522 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5523 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5524 	.inject_interrupt = kvmppc_inject_interrupt_hv,
5525 	.set_msr     = kvmppc_set_msr_hv,
5526 	.vcpu_run    = kvmppc_vcpu_run_hv,
5527 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5528 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5529 	.check_requests = kvmppc_core_check_requests_hv,
5530 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5531 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5532 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5533 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5534 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5535 	.age_hva  = kvm_age_hva_hv,
5536 	.test_age_hva = kvm_test_age_hva_hv,
5537 	.set_spte_hva = kvm_set_spte_hva_hv,
5538 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
5539 	.free_memslot = kvmppc_core_free_memslot_hv,
5540 	.create_memslot = kvmppc_core_create_memslot_hv,
5541 	.init_vm =  kvmppc_core_init_vm_hv,
5542 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5543 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5544 	.emulate_op = kvmppc_core_emulate_op_hv,
5545 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5546 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5547 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5548 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5549 	.hcall_implemented = kvmppc_hcall_impl_hv,
5550 #ifdef CONFIG_KVM_XICS
5551 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5552 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5553 #endif
5554 	.configure_mmu = kvmhv_configure_mmu,
5555 	.get_rmmu_info = kvmhv_get_rmmu_info,
5556 	.set_smt_mode = kvmhv_set_smt_mode,
5557 	.enable_nested = kvmhv_enable_nested,
5558 	.load_from_eaddr = kvmhv_load_from_eaddr,
5559 	.store_to_eaddr = kvmhv_store_to_eaddr,
5560 	.svm_off = kvmhv_svm_off,
5561 };
5562 
5563 static int kvm_init_subcore_bitmap(void)
5564 {
5565 	int i, j;
5566 	int nr_cores = cpu_nr_cores();
5567 	struct sibling_subcore_state *sibling_subcore_state;
5568 
5569 	for (i = 0; i < nr_cores; i++) {
5570 		int first_cpu = i * threads_per_core;
5571 		int node = cpu_to_node(first_cpu);
5572 
5573 		/* Ignore if it is already allocated. */
5574 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5575 			continue;
5576 
5577 		sibling_subcore_state =
5578 			kzalloc_node(sizeof(struct sibling_subcore_state),
5579 							GFP_KERNEL, node);
5580 		if (!sibling_subcore_state)
5581 			return -ENOMEM;
5582 
5583 
5584 		for (j = 0; j < threads_per_core; j++) {
5585 			int cpu = first_cpu + j;
5586 
5587 			paca_ptrs[cpu]->sibling_subcore_state =
5588 						sibling_subcore_state;
5589 		}
5590 	}
5591 	return 0;
5592 }
5593 
5594 static int kvmppc_radix_possible(void)
5595 {
5596 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5597 }
5598 
5599 static int kvmppc_book3s_init_hv(void)
5600 {
5601 	int r;
5602 
5603 	if (!tlbie_capable) {
5604 		pr_err("KVM-HV: Host does not support TLBIE\n");
5605 		return -ENODEV;
5606 	}
5607 
5608 	/*
5609 	 * FIXME!! Do we need to check on all cpus ?
5610 	 */
5611 	r = kvmppc_core_check_processor_compat_hv();
5612 	if (r < 0)
5613 		return -ENODEV;
5614 
5615 	r = kvmhv_nested_init();
5616 	if (r)
5617 		return r;
5618 
5619 	r = kvm_init_subcore_bitmap();
5620 	if (r)
5621 		return r;
5622 
5623 	/*
5624 	 * We need a way of accessing the XICS interrupt controller,
5625 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5626 	 * indirectly, via OPAL.
5627 	 */
5628 #ifdef CONFIG_SMP
5629 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5630 	    !local_paca->kvm_hstate.xics_phys) {
5631 		struct device_node *np;
5632 
5633 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5634 		if (!np) {
5635 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5636 			return -ENODEV;
5637 		}
5638 		/* presence of intc confirmed - node can be dropped again */
5639 		of_node_put(np);
5640 	}
5641 #endif
5642 
5643 	kvm_ops_hv.owner = THIS_MODULE;
5644 	kvmppc_hv_ops = &kvm_ops_hv;
5645 
5646 	init_default_hcalls();
5647 
5648 	init_vcore_lists();
5649 
5650 	r = kvmppc_mmu_hv_init();
5651 	if (r)
5652 		return r;
5653 
5654 	if (kvmppc_radix_possible())
5655 		r = kvmppc_radix_init();
5656 
5657 	/*
5658 	 * POWER9 chips before version 2.02 can't have some threads in
5659 	 * HPT mode and some in radix mode on the same core.
5660 	 */
5661 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5662 		unsigned int pvr = mfspr(SPRN_PVR);
5663 		if ((pvr >> 16) == PVR_POWER9 &&
5664 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5665 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5666 			no_mixing_hpt_and_radix = true;
5667 	}
5668 
5669 	r = kvmppc_uvmem_init();
5670 	if (r < 0)
5671 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5672 
5673 	return r;
5674 }
5675 
5676 static void kvmppc_book3s_exit_hv(void)
5677 {
5678 	kvmppc_uvmem_free();
5679 	kvmppc_free_host_rm_ops();
5680 	if (kvmppc_radix_possible())
5681 		kvmppc_radix_exit();
5682 	kvmppc_hv_ops = NULL;
5683 	kvmhv_nested_exit();
5684 }
5685 
5686 module_init(kvmppc_book3s_init_hv);
5687 module_exit(kvmppc_book3s_exit_hv);
5688 MODULE_LICENSE("GPL");
5689 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5690 MODULE_ALIAS("devname:kvm");
5691