xref: /linux/arch/powerpc/kvm/book3s_hv.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48 
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75 
76 #include "book3s.h"
77 
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80 
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84 
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
89 
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL	(~(u64)0)
92 
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94 
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101 
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105 
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108 	.set = param_set_int,
109 	.get = param_get_int,
110 };
111 
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
113 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
114 
115 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
116 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
117 #endif
118 
119 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
120 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
121 
122 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
123 		int *ip)
124 {
125 	int i = *ip;
126 	struct kvm_vcpu *vcpu;
127 
128 	while (++i < MAX_SMT_THREADS) {
129 		vcpu = READ_ONCE(vc->runnable_threads[i]);
130 		if (vcpu) {
131 			*ip = i;
132 			return vcpu;
133 		}
134 	}
135 	return NULL;
136 }
137 
138 /* Used to traverse the list of runnable threads for a given vcore */
139 #define for_each_runnable_thread(i, vcpu, vc) \
140 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
141 
142 static bool kvmppc_ipi_thread(int cpu)
143 {
144 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
145 
146 	/* On POWER9 we can use msgsnd to IPI any cpu */
147 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
148 		msg |= get_hard_smp_processor_id(cpu);
149 		smp_mb();
150 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
151 		return true;
152 	}
153 
154 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
155 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
156 		preempt_disable();
157 		if (cpu_first_thread_sibling(cpu) ==
158 		    cpu_first_thread_sibling(smp_processor_id())) {
159 			msg |= cpu_thread_in_core(cpu);
160 			smp_mb();
161 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
162 			preempt_enable();
163 			return true;
164 		}
165 		preempt_enable();
166 	}
167 
168 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
169 	if (cpu >= 0 && cpu < nr_cpu_ids) {
170 		if (paca[cpu].kvm_hstate.xics_phys) {
171 			xics_wake_cpu(cpu);
172 			return true;
173 		}
174 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
175 		return true;
176 	}
177 #endif
178 
179 	return false;
180 }
181 
182 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
183 {
184 	int cpu;
185 	struct swait_queue_head *wqp;
186 
187 	wqp = kvm_arch_vcpu_wq(vcpu);
188 	if (swq_has_sleeper(wqp)) {
189 		swake_up(wqp);
190 		++vcpu->stat.halt_wakeup;
191 	}
192 
193 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
194 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
195 		return;
196 
197 	/* CPU points to the first thread of the core */
198 	cpu = vcpu->cpu;
199 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
200 		smp_send_reschedule(cpu);
201 }
202 
203 /*
204  * We use the vcpu_load/put functions to measure stolen time.
205  * Stolen time is counted as time when either the vcpu is able to
206  * run as part of a virtual core, but the task running the vcore
207  * is preempted or sleeping, or when the vcpu needs something done
208  * in the kernel by the task running the vcpu, but that task is
209  * preempted or sleeping.  Those two things have to be counted
210  * separately, since one of the vcpu tasks will take on the job
211  * of running the core, and the other vcpu tasks in the vcore will
212  * sleep waiting for it to do that, but that sleep shouldn't count
213  * as stolen time.
214  *
215  * Hence we accumulate stolen time when the vcpu can run as part of
216  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
217  * needs its task to do other things in the kernel (for example,
218  * service a page fault) in busy_stolen.  We don't accumulate
219  * stolen time for a vcore when it is inactive, or for a vcpu
220  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
221  * a misnomer; it means that the vcpu task is not executing in
222  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
223  * the kernel.  We don't have any way of dividing up that time
224  * between time that the vcpu is genuinely stopped, time that
225  * the task is actively working on behalf of the vcpu, and time
226  * that the task is preempted, so we don't count any of it as
227  * stolen.
228  *
229  * Updates to busy_stolen are protected by arch.tbacct_lock;
230  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
231  * lock.  The stolen times are measured in units of timebase ticks.
232  * (Note that the != TB_NIL checks below are purely defensive;
233  * they should never fail.)
234  */
235 
236 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
237 {
238 	unsigned long flags;
239 
240 	spin_lock_irqsave(&vc->stoltb_lock, flags);
241 	vc->preempt_tb = mftb();
242 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
243 }
244 
245 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
246 {
247 	unsigned long flags;
248 
249 	spin_lock_irqsave(&vc->stoltb_lock, flags);
250 	if (vc->preempt_tb != TB_NIL) {
251 		vc->stolen_tb += mftb() - vc->preempt_tb;
252 		vc->preempt_tb = TB_NIL;
253 	}
254 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
255 }
256 
257 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
258 {
259 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
260 	unsigned long flags;
261 
262 	/*
263 	 * We can test vc->runner without taking the vcore lock,
264 	 * because only this task ever sets vc->runner to this
265 	 * vcpu, and once it is set to this vcpu, only this task
266 	 * ever sets it to NULL.
267 	 */
268 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
269 		kvmppc_core_end_stolen(vc);
270 
271 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
272 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
273 	    vcpu->arch.busy_preempt != TB_NIL) {
274 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
275 		vcpu->arch.busy_preempt = TB_NIL;
276 	}
277 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
278 }
279 
280 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
281 {
282 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
283 	unsigned long flags;
284 
285 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
286 		kvmppc_core_start_stolen(vc);
287 
288 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
289 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
290 		vcpu->arch.busy_preempt = mftb();
291 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
292 }
293 
294 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
295 {
296 	/*
297 	 * Check for illegal transactional state bit combination
298 	 * and if we find it, force the TS field to a safe state.
299 	 */
300 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
301 		msr &= ~MSR_TS_MASK;
302 	vcpu->arch.shregs.msr = msr;
303 	kvmppc_end_cede(vcpu);
304 }
305 
306 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
307 {
308 	vcpu->arch.pvr = pvr;
309 }
310 
311 /* Dummy value used in computing PCR value below */
312 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
313 
314 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
315 {
316 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
317 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
318 
319 	/* We can (emulate) our own architecture version and anything older */
320 	if (cpu_has_feature(CPU_FTR_ARCH_300))
321 		host_pcr_bit = PCR_ARCH_300;
322 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
323 		host_pcr_bit = PCR_ARCH_207;
324 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
325 		host_pcr_bit = PCR_ARCH_206;
326 	else
327 		host_pcr_bit = PCR_ARCH_205;
328 
329 	/* Determine lowest PCR bit needed to run guest in given PVR level */
330 	guest_pcr_bit = host_pcr_bit;
331 	if (arch_compat) {
332 		switch (arch_compat) {
333 		case PVR_ARCH_205:
334 			guest_pcr_bit = PCR_ARCH_205;
335 			break;
336 		case PVR_ARCH_206:
337 		case PVR_ARCH_206p:
338 			guest_pcr_bit = PCR_ARCH_206;
339 			break;
340 		case PVR_ARCH_207:
341 			guest_pcr_bit = PCR_ARCH_207;
342 			break;
343 		case PVR_ARCH_300:
344 			guest_pcr_bit = PCR_ARCH_300;
345 			break;
346 		default:
347 			return -EINVAL;
348 		}
349 	}
350 
351 	/* Check requested PCR bits don't exceed our capabilities */
352 	if (guest_pcr_bit > host_pcr_bit)
353 		return -EINVAL;
354 
355 	spin_lock(&vc->lock);
356 	vc->arch_compat = arch_compat;
357 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
358 	vc->pcr = host_pcr_bit - guest_pcr_bit;
359 	spin_unlock(&vc->lock);
360 
361 	return 0;
362 }
363 
364 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
365 {
366 	int r;
367 
368 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
369 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
370 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
371 	for (r = 0; r < 16; ++r)
372 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
373 		       r, kvmppc_get_gpr(vcpu, r),
374 		       r+16, kvmppc_get_gpr(vcpu, r+16));
375 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
376 	       vcpu->arch.ctr, vcpu->arch.lr);
377 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
378 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
379 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
380 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
381 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
382 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
383 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
384 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
385 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
386 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
387 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
388 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
389 	for (r = 0; r < vcpu->arch.slb_max; ++r)
390 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
391 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
392 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
393 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
394 	       vcpu->arch.last_inst);
395 }
396 
397 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
398 {
399 	struct kvm_vcpu *ret;
400 
401 	mutex_lock(&kvm->lock);
402 	ret = kvm_get_vcpu_by_id(kvm, id);
403 	mutex_unlock(&kvm->lock);
404 	return ret;
405 }
406 
407 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
408 {
409 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
410 	vpa->yield_count = cpu_to_be32(1);
411 }
412 
413 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
414 		   unsigned long addr, unsigned long len)
415 {
416 	/* check address is cacheline aligned */
417 	if (addr & (L1_CACHE_BYTES - 1))
418 		return -EINVAL;
419 	spin_lock(&vcpu->arch.vpa_update_lock);
420 	if (v->next_gpa != addr || v->len != len) {
421 		v->next_gpa = addr;
422 		v->len = addr ? len : 0;
423 		v->update_pending = 1;
424 	}
425 	spin_unlock(&vcpu->arch.vpa_update_lock);
426 	return 0;
427 }
428 
429 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
430 struct reg_vpa {
431 	u32 dummy;
432 	union {
433 		__be16 hword;
434 		__be32 word;
435 	} length;
436 };
437 
438 static int vpa_is_registered(struct kvmppc_vpa *vpap)
439 {
440 	if (vpap->update_pending)
441 		return vpap->next_gpa != 0;
442 	return vpap->pinned_addr != NULL;
443 }
444 
445 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
446 				       unsigned long flags,
447 				       unsigned long vcpuid, unsigned long vpa)
448 {
449 	struct kvm *kvm = vcpu->kvm;
450 	unsigned long len, nb;
451 	void *va;
452 	struct kvm_vcpu *tvcpu;
453 	int err;
454 	int subfunc;
455 	struct kvmppc_vpa *vpap;
456 
457 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
458 	if (!tvcpu)
459 		return H_PARAMETER;
460 
461 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
462 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
463 	    subfunc == H_VPA_REG_SLB) {
464 		/* Registering new area - address must be cache-line aligned */
465 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
466 			return H_PARAMETER;
467 
468 		/* convert logical addr to kernel addr and read length */
469 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
470 		if (va == NULL)
471 			return H_PARAMETER;
472 		if (subfunc == H_VPA_REG_VPA)
473 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
474 		else
475 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
476 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
477 
478 		/* Check length */
479 		if (len > nb || len < sizeof(struct reg_vpa))
480 			return H_PARAMETER;
481 	} else {
482 		vpa = 0;
483 		len = 0;
484 	}
485 
486 	err = H_PARAMETER;
487 	vpap = NULL;
488 	spin_lock(&tvcpu->arch.vpa_update_lock);
489 
490 	switch (subfunc) {
491 	case H_VPA_REG_VPA:		/* register VPA */
492 		/*
493 		 * The size of our lppaca is 1kB because of the way we align
494 		 * it for the guest to avoid crossing a 4kB boundary. We only
495 		 * use 640 bytes of the structure though, so we should accept
496 		 * clients that set a size of 640.
497 		 */
498 		if (len < 640)
499 			break;
500 		vpap = &tvcpu->arch.vpa;
501 		err = 0;
502 		break;
503 
504 	case H_VPA_REG_DTL:		/* register DTL */
505 		if (len < sizeof(struct dtl_entry))
506 			break;
507 		len -= len % sizeof(struct dtl_entry);
508 
509 		/* Check that they have previously registered a VPA */
510 		err = H_RESOURCE;
511 		if (!vpa_is_registered(&tvcpu->arch.vpa))
512 			break;
513 
514 		vpap = &tvcpu->arch.dtl;
515 		err = 0;
516 		break;
517 
518 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
519 		/* Check that they have previously registered a VPA */
520 		err = H_RESOURCE;
521 		if (!vpa_is_registered(&tvcpu->arch.vpa))
522 			break;
523 
524 		vpap = &tvcpu->arch.slb_shadow;
525 		err = 0;
526 		break;
527 
528 	case H_VPA_DEREG_VPA:		/* deregister VPA */
529 		/* Check they don't still have a DTL or SLB buf registered */
530 		err = H_RESOURCE;
531 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
532 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
533 			break;
534 
535 		vpap = &tvcpu->arch.vpa;
536 		err = 0;
537 		break;
538 
539 	case H_VPA_DEREG_DTL:		/* deregister DTL */
540 		vpap = &tvcpu->arch.dtl;
541 		err = 0;
542 		break;
543 
544 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
545 		vpap = &tvcpu->arch.slb_shadow;
546 		err = 0;
547 		break;
548 	}
549 
550 	if (vpap) {
551 		vpap->next_gpa = vpa;
552 		vpap->len = len;
553 		vpap->update_pending = 1;
554 	}
555 
556 	spin_unlock(&tvcpu->arch.vpa_update_lock);
557 
558 	return err;
559 }
560 
561 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
562 {
563 	struct kvm *kvm = vcpu->kvm;
564 	void *va;
565 	unsigned long nb;
566 	unsigned long gpa;
567 
568 	/*
569 	 * We need to pin the page pointed to by vpap->next_gpa,
570 	 * but we can't call kvmppc_pin_guest_page under the lock
571 	 * as it does get_user_pages() and down_read().  So we
572 	 * have to drop the lock, pin the page, then get the lock
573 	 * again and check that a new area didn't get registered
574 	 * in the meantime.
575 	 */
576 	for (;;) {
577 		gpa = vpap->next_gpa;
578 		spin_unlock(&vcpu->arch.vpa_update_lock);
579 		va = NULL;
580 		nb = 0;
581 		if (gpa)
582 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
583 		spin_lock(&vcpu->arch.vpa_update_lock);
584 		if (gpa == vpap->next_gpa)
585 			break;
586 		/* sigh... unpin that one and try again */
587 		if (va)
588 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
589 	}
590 
591 	vpap->update_pending = 0;
592 	if (va && nb < vpap->len) {
593 		/*
594 		 * If it's now too short, it must be that userspace
595 		 * has changed the mappings underlying guest memory,
596 		 * so unregister the region.
597 		 */
598 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
599 		va = NULL;
600 	}
601 	if (vpap->pinned_addr)
602 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
603 					vpap->dirty);
604 	vpap->gpa = gpa;
605 	vpap->pinned_addr = va;
606 	vpap->dirty = false;
607 	if (va)
608 		vpap->pinned_end = va + vpap->len;
609 }
610 
611 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
612 {
613 	if (!(vcpu->arch.vpa.update_pending ||
614 	      vcpu->arch.slb_shadow.update_pending ||
615 	      vcpu->arch.dtl.update_pending))
616 		return;
617 
618 	spin_lock(&vcpu->arch.vpa_update_lock);
619 	if (vcpu->arch.vpa.update_pending) {
620 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
621 		if (vcpu->arch.vpa.pinned_addr)
622 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
623 	}
624 	if (vcpu->arch.dtl.update_pending) {
625 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
626 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
627 		vcpu->arch.dtl_index = 0;
628 	}
629 	if (vcpu->arch.slb_shadow.update_pending)
630 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
631 	spin_unlock(&vcpu->arch.vpa_update_lock);
632 }
633 
634 /*
635  * Return the accumulated stolen time for the vcore up until `now'.
636  * The caller should hold the vcore lock.
637  */
638 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
639 {
640 	u64 p;
641 	unsigned long flags;
642 
643 	spin_lock_irqsave(&vc->stoltb_lock, flags);
644 	p = vc->stolen_tb;
645 	if (vc->vcore_state != VCORE_INACTIVE &&
646 	    vc->preempt_tb != TB_NIL)
647 		p += now - vc->preempt_tb;
648 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
649 	return p;
650 }
651 
652 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
653 				    struct kvmppc_vcore *vc)
654 {
655 	struct dtl_entry *dt;
656 	struct lppaca *vpa;
657 	unsigned long stolen;
658 	unsigned long core_stolen;
659 	u64 now;
660 	unsigned long flags;
661 
662 	dt = vcpu->arch.dtl_ptr;
663 	vpa = vcpu->arch.vpa.pinned_addr;
664 	now = mftb();
665 	core_stolen = vcore_stolen_time(vc, now);
666 	stolen = core_stolen - vcpu->arch.stolen_logged;
667 	vcpu->arch.stolen_logged = core_stolen;
668 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
669 	stolen += vcpu->arch.busy_stolen;
670 	vcpu->arch.busy_stolen = 0;
671 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
672 	if (!dt || !vpa)
673 		return;
674 	memset(dt, 0, sizeof(struct dtl_entry));
675 	dt->dispatch_reason = 7;
676 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
677 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
678 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
679 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
680 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
681 	++dt;
682 	if (dt == vcpu->arch.dtl.pinned_end)
683 		dt = vcpu->arch.dtl.pinned_addr;
684 	vcpu->arch.dtl_ptr = dt;
685 	/* order writing *dt vs. writing vpa->dtl_idx */
686 	smp_wmb();
687 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
688 	vcpu->arch.dtl.dirty = true;
689 }
690 
691 /* See if there is a doorbell interrupt pending for a vcpu */
692 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
693 {
694 	int thr;
695 	struct kvmppc_vcore *vc;
696 
697 	if (vcpu->arch.doorbell_request)
698 		return true;
699 	/*
700 	 * Ensure that the read of vcore->dpdes comes after the read
701 	 * of vcpu->doorbell_request.  This barrier matches the
702 	 * lwsync in book3s_hv_rmhandlers.S just before the
703 	 * fast_guest_return label.
704 	 */
705 	smp_rmb();
706 	vc = vcpu->arch.vcore;
707 	thr = vcpu->vcpu_id - vc->first_vcpuid;
708 	return !!(vc->dpdes & (1 << thr));
709 }
710 
711 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
712 {
713 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
714 		return true;
715 	if ((!vcpu->arch.vcore->arch_compat) &&
716 	    cpu_has_feature(CPU_FTR_ARCH_207S))
717 		return true;
718 	return false;
719 }
720 
721 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
722 			     unsigned long resource, unsigned long value1,
723 			     unsigned long value2)
724 {
725 	switch (resource) {
726 	case H_SET_MODE_RESOURCE_SET_CIABR:
727 		if (!kvmppc_power8_compatible(vcpu))
728 			return H_P2;
729 		if (value2)
730 			return H_P4;
731 		if (mflags)
732 			return H_UNSUPPORTED_FLAG_START;
733 		/* Guests can't breakpoint the hypervisor */
734 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
735 			return H_P3;
736 		vcpu->arch.ciabr  = value1;
737 		return H_SUCCESS;
738 	case H_SET_MODE_RESOURCE_SET_DAWR:
739 		if (!kvmppc_power8_compatible(vcpu))
740 			return H_P2;
741 		if (mflags)
742 			return H_UNSUPPORTED_FLAG_START;
743 		if (value2 & DABRX_HYP)
744 			return H_P4;
745 		vcpu->arch.dawr  = value1;
746 		vcpu->arch.dawrx = value2;
747 		return H_SUCCESS;
748 	default:
749 		return H_TOO_HARD;
750 	}
751 }
752 
753 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
754 {
755 	struct kvmppc_vcore *vcore = target->arch.vcore;
756 
757 	/*
758 	 * We expect to have been called by the real mode handler
759 	 * (kvmppc_rm_h_confer()) which would have directly returned
760 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
761 	 * have useful work to do and should not confer) so we don't
762 	 * recheck that here.
763 	 */
764 
765 	spin_lock(&vcore->lock);
766 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
767 	    vcore->vcore_state != VCORE_INACTIVE &&
768 	    vcore->runner)
769 		target = vcore->runner;
770 	spin_unlock(&vcore->lock);
771 
772 	return kvm_vcpu_yield_to(target);
773 }
774 
775 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
776 {
777 	int yield_count = 0;
778 	struct lppaca *lppaca;
779 
780 	spin_lock(&vcpu->arch.vpa_update_lock);
781 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
782 	if (lppaca)
783 		yield_count = be32_to_cpu(lppaca->yield_count);
784 	spin_unlock(&vcpu->arch.vpa_update_lock);
785 	return yield_count;
786 }
787 
788 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
789 {
790 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
791 	unsigned long target, ret = H_SUCCESS;
792 	int yield_count;
793 	struct kvm_vcpu *tvcpu;
794 	int idx, rc;
795 
796 	if (req <= MAX_HCALL_OPCODE &&
797 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
798 		return RESUME_HOST;
799 
800 	switch (req) {
801 	case H_CEDE:
802 		break;
803 	case H_PROD:
804 		target = kvmppc_get_gpr(vcpu, 4);
805 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
806 		if (!tvcpu) {
807 			ret = H_PARAMETER;
808 			break;
809 		}
810 		tvcpu->arch.prodded = 1;
811 		smp_mb();
812 		if (tvcpu->arch.ceded)
813 			kvmppc_fast_vcpu_kick_hv(tvcpu);
814 		break;
815 	case H_CONFER:
816 		target = kvmppc_get_gpr(vcpu, 4);
817 		if (target == -1)
818 			break;
819 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
820 		if (!tvcpu) {
821 			ret = H_PARAMETER;
822 			break;
823 		}
824 		yield_count = kvmppc_get_gpr(vcpu, 5);
825 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
826 			break;
827 		kvm_arch_vcpu_yield_to(tvcpu);
828 		break;
829 	case H_REGISTER_VPA:
830 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
831 					kvmppc_get_gpr(vcpu, 5),
832 					kvmppc_get_gpr(vcpu, 6));
833 		break;
834 	case H_RTAS:
835 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
836 			return RESUME_HOST;
837 
838 		idx = srcu_read_lock(&vcpu->kvm->srcu);
839 		rc = kvmppc_rtas_hcall(vcpu);
840 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
841 
842 		if (rc == -ENOENT)
843 			return RESUME_HOST;
844 		else if (rc == 0)
845 			break;
846 
847 		/* Send the error out to userspace via KVM_RUN */
848 		return rc;
849 	case H_LOGICAL_CI_LOAD:
850 		ret = kvmppc_h_logical_ci_load(vcpu);
851 		if (ret == H_TOO_HARD)
852 			return RESUME_HOST;
853 		break;
854 	case H_LOGICAL_CI_STORE:
855 		ret = kvmppc_h_logical_ci_store(vcpu);
856 		if (ret == H_TOO_HARD)
857 			return RESUME_HOST;
858 		break;
859 	case H_SET_MODE:
860 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
861 					kvmppc_get_gpr(vcpu, 5),
862 					kvmppc_get_gpr(vcpu, 6),
863 					kvmppc_get_gpr(vcpu, 7));
864 		if (ret == H_TOO_HARD)
865 			return RESUME_HOST;
866 		break;
867 	case H_XIRR:
868 	case H_CPPR:
869 	case H_EOI:
870 	case H_IPI:
871 	case H_IPOLL:
872 	case H_XIRR_X:
873 		if (kvmppc_xics_enabled(vcpu)) {
874 			if (xive_enabled()) {
875 				ret = H_NOT_AVAILABLE;
876 				return RESUME_GUEST;
877 			}
878 			ret = kvmppc_xics_hcall(vcpu, req);
879 			break;
880 		}
881 		return RESUME_HOST;
882 	case H_PUT_TCE:
883 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
884 						kvmppc_get_gpr(vcpu, 5),
885 						kvmppc_get_gpr(vcpu, 6));
886 		if (ret == H_TOO_HARD)
887 			return RESUME_HOST;
888 		break;
889 	case H_PUT_TCE_INDIRECT:
890 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
891 						kvmppc_get_gpr(vcpu, 5),
892 						kvmppc_get_gpr(vcpu, 6),
893 						kvmppc_get_gpr(vcpu, 7));
894 		if (ret == H_TOO_HARD)
895 			return RESUME_HOST;
896 		break;
897 	case H_STUFF_TCE:
898 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
899 						kvmppc_get_gpr(vcpu, 5),
900 						kvmppc_get_gpr(vcpu, 6),
901 						kvmppc_get_gpr(vcpu, 7));
902 		if (ret == H_TOO_HARD)
903 			return RESUME_HOST;
904 		break;
905 	default:
906 		return RESUME_HOST;
907 	}
908 	kvmppc_set_gpr(vcpu, 3, ret);
909 	vcpu->arch.hcall_needed = 0;
910 	return RESUME_GUEST;
911 }
912 
913 static int kvmppc_hcall_impl_hv(unsigned long cmd)
914 {
915 	switch (cmd) {
916 	case H_CEDE:
917 	case H_PROD:
918 	case H_CONFER:
919 	case H_REGISTER_VPA:
920 	case H_SET_MODE:
921 	case H_LOGICAL_CI_LOAD:
922 	case H_LOGICAL_CI_STORE:
923 #ifdef CONFIG_KVM_XICS
924 	case H_XIRR:
925 	case H_CPPR:
926 	case H_EOI:
927 	case H_IPI:
928 	case H_IPOLL:
929 	case H_XIRR_X:
930 #endif
931 		return 1;
932 	}
933 
934 	/* See if it's in the real-mode table */
935 	return kvmppc_hcall_impl_hv_realmode(cmd);
936 }
937 
938 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
939 					struct kvm_vcpu *vcpu)
940 {
941 	u32 last_inst;
942 
943 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
944 					EMULATE_DONE) {
945 		/*
946 		 * Fetch failed, so return to guest and
947 		 * try executing it again.
948 		 */
949 		return RESUME_GUEST;
950 	}
951 
952 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
953 		run->exit_reason = KVM_EXIT_DEBUG;
954 		run->debug.arch.address = kvmppc_get_pc(vcpu);
955 		return RESUME_HOST;
956 	} else {
957 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
958 		return RESUME_GUEST;
959 	}
960 }
961 
962 static void do_nothing(void *x)
963 {
964 }
965 
966 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
967 {
968 	int thr, cpu, pcpu, nthreads;
969 	struct kvm_vcpu *v;
970 	unsigned long dpdes;
971 
972 	nthreads = vcpu->kvm->arch.emul_smt_mode;
973 	dpdes = 0;
974 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
975 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
976 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
977 		if (!v)
978 			continue;
979 		/*
980 		 * If the vcpu is currently running on a physical cpu thread,
981 		 * interrupt it in order to pull it out of the guest briefly,
982 		 * which will update its vcore->dpdes value.
983 		 */
984 		pcpu = READ_ONCE(v->cpu);
985 		if (pcpu >= 0)
986 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
987 		if (kvmppc_doorbell_pending(v))
988 			dpdes |= 1 << thr;
989 	}
990 	return dpdes;
991 }
992 
993 /*
994  * On POWER9, emulate doorbell-related instructions in order to
995  * give the guest the illusion of running on a multi-threaded core.
996  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
997  * and mfspr DPDES.
998  */
999 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1000 {
1001 	u32 inst, rb, thr;
1002 	unsigned long arg;
1003 	struct kvm *kvm = vcpu->kvm;
1004 	struct kvm_vcpu *tvcpu;
1005 
1006 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1007 		return EMULATE_FAIL;
1008 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1009 		return RESUME_GUEST;
1010 	if (get_op(inst) != 31)
1011 		return EMULATE_FAIL;
1012 	rb = get_rb(inst);
1013 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1014 	switch (get_xop(inst)) {
1015 	case OP_31_XOP_MSGSNDP:
1016 		arg = kvmppc_get_gpr(vcpu, rb);
1017 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1018 			break;
1019 		arg &= 0x3f;
1020 		if (arg >= kvm->arch.emul_smt_mode)
1021 			break;
1022 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1023 		if (!tvcpu)
1024 			break;
1025 		if (!tvcpu->arch.doorbell_request) {
1026 			tvcpu->arch.doorbell_request = 1;
1027 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1028 		}
1029 		break;
1030 	case OP_31_XOP_MSGCLRP:
1031 		arg = kvmppc_get_gpr(vcpu, rb);
1032 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1033 			break;
1034 		vcpu->arch.vcore->dpdes = 0;
1035 		vcpu->arch.doorbell_request = 0;
1036 		break;
1037 	case OP_31_XOP_MFSPR:
1038 		switch (get_sprn(inst)) {
1039 		case SPRN_TIR:
1040 			arg = thr;
1041 			break;
1042 		case SPRN_DPDES:
1043 			arg = kvmppc_read_dpdes(vcpu);
1044 			break;
1045 		default:
1046 			return EMULATE_FAIL;
1047 		}
1048 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1049 		break;
1050 	default:
1051 		return EMULATE_FAIL;
1052 	}
1053 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1054 	return RESUME_GUEST;
1055 }
1056 
1057 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1058 				 struct task_struct *tsk)
1059 {
1060 	int r = RESUME_HOST;
1061 
1062 	vcpu->stat.sum_exits++;
1063 
1064 	/*
1065 	 * This can happen if an interrupt occurs in the last stages
1066 	 * of guest entry or the first stages of guest exit (i.e. after
1067 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1068 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1069 	 * That can happen due to a bug, or due to a machine check
1070 	 * occurring at just the wrong time.
1071 	 */
1072 	if (vcpu->arch.shregs.msr & MSR_HV) {
1073 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1074 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1075 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1076 			vcpu->arch.shregs.msr);
1077 		kvmppc_dump_regs(vcpu);
1078 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1079 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1080 		return RESUME_HOST;
1081 	}
1082 	run->exit_reason = KVM_EXIT_UNKNOWN;
1083 	run->ready_for_interrupt_injection = 1;
1084 	switch (vcpu->arch.trap) {
1085 	/* We're good on these - the host merely wanted to get our attention */
1086 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1087 		vcpu->stat.dec_exits++;
1088 		r = RESUME_GUEST;
1089 		break;
1090 	case BOOK3S_INTERRUPT_EXTERNAL:
1091 	case BOOK3S_INTERRUPT_H_DOORBELL:
1092 	case BOOK3S_INTERRUPT_H_VIRT:
1093 		vcpu->stat.ext_intr_exits++;
1094 		r = RESUME_GUEST;
1095 		break;
1096 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1097 	case BOOK3S_INTERRUPT_HMI:
1098 	case BOOK3S_INTERRUPT_PERFMON:
1099 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1100 		r = RESUME_GUEST;
1101 		break;
1102 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1103 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1104 		run->exit_reason = KVM_EXIT_NMI;
1105 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1106 		/* Clear out the old NMI status from run->flags */
1107 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1108 		/* Now set the NMI status */
1109 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1110 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1111 		else
1112 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1113 
1114 		r = RESUME_HOST;
1115 		/* Print the MCE event to host console. */
1116 		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1117 		break;
1118 	case BOOK3S_INTERRUPT_PROGRAM:
1119 	{
1120 		ulong flags;
1121 		/*
1122 		 * Normally program interrupts are delivered directly
1123 		 * to the guest by the hardware, but we can get here
1124 		 * as a result of a hypervisor emulation interrupt
1125 		 * (e40) getting turned into a 700 by BML RTAS.
1126 		 */
1127 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1128 		kvmppc_core_queue_program(vcpu, flags);
1129 		r = RESUME_GUEST;
1130 		break;
1131 	}
1132 	case BOOK3S_INTERRUPT_SYSCALL:
1133 	{
1134 		/* hcall - punt to userspace */
1135 		int i;
1136 
1137 		/* hypercall with MSR_PR has already been handled in rmode,
1138 		 * and never reaches here.
1139 		 */
1140 
1141 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1142 		for (i = 0; i < 9; ++i)
1143 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1144 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1145 		vcpu->arch.hcall_needed = 1;
1146 		r = RESUME_HOST;
1147 		break;
1148 	}
1149 	/*
1150 	 * We get these next two if the guest accesses a page which it thinks
1151 	 * it has mapped but which is not actually present, either because
1152 	 * it is for an emulated I/O device or because the corresonding
1153 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1154 	 * have been handled already.
1155 	 */
1156 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1157 		r = RESUME_PAGE_FAULT;
1158 		break;
1159 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1160 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1161 		vcpu->arch.fault_dsisr = 0;
1162 		r = RESUME_PAGE_FAULT;
1163 		break;
1164 	/*
1165 	 * This occurs if the guest executes an illegal instruction.
1166 	 * If the guest debug is disabled, generate a program interrupt
1167 	 * to the guest. If guest debug is enabled, we need to check
1168 	 * whether the instruction is a software breakpoint instruction.
1169 	 * Accordingly return to Guest or Host.
1170 	 */
1171 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1172 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1173 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1174 				swab32(vcpu->arch.emul_inst) :
1175 				vcpu->arch.emul_inst;
1176 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1177 			r = kvmppc_emulate_debug_inst(run, vcpu);
1178 		} else {
1179 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1180 			r = RESUME_GUEST;
1181 		}
1182 		break;
1183 	/*
1184 	 * This occurs if the guest (kernel or userspace), does something that
1185 	 * is prohibited by HFSCR.
1186 	 * On POWER9, this could be a doorbell instruction that we need
1187 	 * to emulate.
1188 	 * Otherwise, we just generate a program interrupt to the guest.
1189 	 */
1190 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1191 		r = EMULATE_FAIL;
1192 		if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1193 			r = kvmppc_emulate_doorbell_instr(vcpu);
1194 		if (r == EMULATE_FAIL) {
1195 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1196 			r = RESUME_GUEST;
1197 		}
1198 		break;
1199 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1200 		r = RESUME_PASSTHROUGH;
1201 		break;
1202 	default:
1203 		kvmppc_dump_regs(vcpu);
1204 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1205 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1206 			vcpu->arch.shregs.msr);
1207 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1208 		r = RESUME_HOST;
1209 		break;
1210 	}
1211 
1212 	return r;
1213 }
1214 
1215 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1216 					    struct kvm_sregs *sregs)
1217 {
1218 	int i;
1219 
1220 	memset(sregs, 0, sizeof(struct kvm_sregs));
1221 	sregs->pvr = vcpu->arch.pvr;
1222 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1223 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1224 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1231 					    struct kvm_sregs *sregs)
1232 {
1233 	int i, j;
1234 
1235 	/* Only accept the same PVR as the host's, since we can't spoof it */
1236 	if (sregs->pvr != vcpu->arch.pvr)
1237 		return -EINVAL;
1238 
1239 	j = 0;
1240 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1241 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1242 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1243 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1244 			++j;
1245 		}
1246 	}
1247 	vcpu->arch.slb_max = j;
1248 
1249 	return 0;
1250 }
1251 
1252 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1253 		bool preserve_top32)
1254 {
1255 	struct kvm *kvm = vcpu->kvm;
1256 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1257 	u64 mask;
1258 
1259 	mutex_lock(&kvm->lock);
1260 	spin_lock(&vc->lock);
1261 	/*
1262 	 * If ILE (interrupt little-endian) has changed, update the
1263 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1264 	 */
1265 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1266 		struct kvm_vcpu *vcpu;
1267 		int i;
1268 
1269 		kvm_for_each_vcpu(i, vcpu, kvm) {
1270 			if (vcpu->arch.vcore != vc)
1271 				continue;
1272 			if (new_lpcr & LPCR_ILE)
1273 				vcpu->arch.intr_msr |= MSR_LE;
1274 			else
1275 				vcpu->arch.intr_msr &= ~MSR_LE;
1276 		}
1277 	}
1278 
1279 	/*
1280 	 * Userspace can only modify DPFD (default prefetch depth),
1281 	 * ILE (interrupt little-endian) and TC (translation control).
1282 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1283 	 */
1284 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1285 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1286 		mask |= LPCR_AIL;
1287 	/*
1288 	 * On POWER9, allow userspace to enable large decrementer for the
1289 	 * guest, whether or not the host has it enabled.
1290 	 */
1291 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1292 		mask |= LPCR_LD;
1293 
1294 	/* Broken 32-bit version of LPCR must not clear top bits */
1295 	if (preserve_top32)
1296 		mask &= 0xFFFFFFFF;
1297 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1298 	spin_unlock(&vc->lock);
1299 	mutex_unlock(&kvm->lock);
1300 }
1301 
1302 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1303 				 union kvmppc_one_reg *val)
1304 {
1305 	int r = 0;
1306 	long int i;
1307 
1308 	switch (id) {
1309 	case KVM_REG_PPC_DEBUG_INST:
1310 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1311 		break;
1312 	case KVM_REG_PPC_HIOR:
1313 		*val = get_reg_val(id, 0);
1314 		break;
1315 	case KVM_REG_PPC_DABR:
1316 		*val = get_reg_val(id, vcpu->arch.dabr);
1317 		break;
1318 	case KVM_REG_PPC_DABRX:
1319 		*val = get_reg_val(id, vcpu->arch.dabrx);
1320 		break;
1321 	case KVM_REG_PPC_DSCR:
1322 		*val = get_reg_val(id, vcpu->arch.dscr);
1323 		break;
1324 	case KVM_REG_PPC_PURR:
1325 		*val = get_reg_val(id, vcpu->arch.purr);
1326 		break;
1327 	case KVM_REG_PPC_SPURR:
1328 		*val = get_reg_val(id, vcpu->arch.spurr);
1329 		break;
1330 	case KVM_REG_PPC_AMR:
1331 		*val = get_reg_val(id, vcpu->arch.amr);
1332 		break;
1333 	case KVM_REG_PPC_UAMOR:
1334 		*val = get_reg_val(id, vcpu->arch.uamor);
1335 		break;
1336 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1337 		i = id - KVM_REG_PPC_MMCR0;
1338 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1339 		break;
1340 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1341 		i = id - KVM_REG_PPC_PMC1;
1342 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1343 		break;
1344 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1345 		i = id - KVM_REG_PPC_SPMC1;
1346 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1347 		break;
1348 	case KVM_REG_PPC_SIAR:
1349 		*val = get_reg_val(id, vcpu->arch.siar);
1350 		break;
1351 	case KVM_REG_PPC_SDAR:
1352 		*val = get_reg_val(id, vcpu->arch.sdar);
1353 		break;
1354 	case KVM_REG_PPC_SIER:
1355 		*val = get_reg_val(id, vcpu->arch.sier);
1356 		break;
1357 	case KVM_REG_PPC_IAMR:
1358 		*val = get_reg_val(id, vcpu->arch.iamr);
1359 		break;
1360 	case KVM_REG_PPC_PSPB:
1361 		*val = get_reg_val(id, vcpu->arch.pspb);
1362 		break;
1363 	case KVM_REG_PPC_DPDES:
1364 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1365 		break;
1366 	case KVM_REG_PPC_VTB:
1367 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1368 		break;
1369 	case KVM_REG_PPC_DAWR:
1370 		*val = get_reg_val(id, vcpu->arch.dawr);
1371 		break;
1372 	case KVM_REG_PPC_DAWRX:
1373 		*val = get_reg_val(id, vcpu->arch.dawrx);
1374 		break;
1375 	case KVM_REG_PPC_CIABR:
1376 		*val = get_reg_val(id, vcpu->arch.ciabr);
1377 		break;
1378 	case KVM_REG_PPC_CSIGR:
1379 		*val = get_reg_val(id, vcpu->arch.csigr);
1380 		break;
1381 	case KVM_REG_PPC_TACR:
1382 		*val = get_reg_val(id, vcpu->arch.tacr);
1383 		break;
1384 	case KVM_REG_PPC_TCSCR:
1385 		*val = get_reg_val(id, vcpu->arch.tcscr);
1386 		break;
1387 	case KVM_REG_PPC_PID:
1388 		*val = get_reg_val(id, vcpu->arch.pid);
1389 		break;
1390 	case KVM_REG_PPC_ACOP:
1391 		*val = get_reg_val(id, vcpu->arch.acop);
1392 		break;
1393 	case KVM_REG_PPC_WORT:
1394 		*val = get_reg_val(id, vcpu->arch.wort);
1395 		break;
1396 	case KVM_REG_PPC_TIDR:
1397 		*val = get_reg_val(id, vcpu->arch.tid);
1398 		break;
1399 	case KVM_REG_PPC_PSSCR:
1400 		*val = get_reg_val(id, vcpu->arch.psscr);
1401 		break;
1402 	case KVM_REG_PPC_VPA_ADDR:
1403 		spin_lock(&vcpu->arch.vpa_update_lock);
1404 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1405 		spin_unlock(&vcpu->arch.vpa_update_lock);
1406 		break;
1407 	case KVM_REG_PPC_VPA_SLB:
1408 		spin_lock(&vcpu->arch.vpa_update_lock);
1409 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1410 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1411 		spin_unlock(&vcpu->arch.vpa_update_lock);
1412 		break;
1413 	case KVM_REG_PPC_VPA_DTL:
1414 		spin_lock(&vcpu->arch.vpa_update_lock);
1415 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1416 		val->vpaval.length = vcpu->arch.dtl.len;
1417 		spin_unlock(&vcpu->arch.vpa_update_lock);
1418 		break;
1419 	case KVM_REG_PPC_TB_OFFSET:
1420 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1421 		break;
1422 	case KVM_REG_PPC_LPCR:
1423 	case KVM_REG_PPC_LPCR_64:
1424 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1425 		break;
1426 	case KVM_REG_PPC_PPR:
1427 		*val = get_reg_val(id, vcpu->arch.ppr);
1428 		break;
1429 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1430 	case KVM_REG_PPC_TFHAR:
1431 		*val = get_reg_val(id, vcpu->arch.tfhar);
1432 		break;
1433 	case KVM_REG_PPC_TFIAR:
1434 		*val = get_reg_val(id, vcpu->arch.tfiar);
1435 		break;
1436 	case KVM_REG_PPC_TEXASR:
1437 		*val = get_reg_val(id, vcpu->arch.texasr);
1438 		break;
1439 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1440 		i = id - KVM_REG_PPC_TM_GPR0;
1441 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1442 		break;
1443 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1444 	{
1445 		int j;
1446 		i = id - KVM_REG_PPC_TM_VSR0;
1447 		if (i < 32)
1448 			for (j = 0; j < TS_FPRWIDTH; j++)
1449 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1450 		else {
1451 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1452 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1453 			else
1454 				r = -ENXIO;
1455 		}
1456 		break;
1457 	}
1458 	case KVM_REG_PPC_TM_CR:
1459 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1460 		break;
1461 	case KVM_REG_PPC_TM_XER:
1462 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1463 		break;
1464 	case KVM_REG_PPC_TM_LR:
1465 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1466 		break;
1467 	case KVM_REG_PPC_TM_CTR:
1468 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1469 		break;
1470 	case KVM_REG_PPC_TM_FPSCR:
1471 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1472 		break;
1473 	case KVM_REG_PPC_TM_AMR:
1474 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1475 		break;
1476 	case KVM_REG_PPC_TM_PPR:
1477 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1478 		break;
1479 	case KVM_REG_PPC_TM_VRSAVE:
1480 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1481 		break;
1482 	case KVM_REG_PPC_TM_VSCR:
1483 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1484 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1485 		else
1486 			r = -ENXIO;
1487 		break;
1488 	case KVM_REG_PPC_TM_DSCR:
1489 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1490 		break;
1491 	case KVM_REG_PPC_TM_TAR:
1492 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1493 		break;
1494 #endif
1495 	case KVM_REG_PPC_ARCH_COMPAT:
1496 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1497 		break;
1498 	default:
1499 		r = -EINVAL;
1500 		break;
1501 	}
1502 
1503 	return r;
1504 }
1505 
1506 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1507 				 union kvmppc_one_reg *val)
1508 {
1509 	int r = 0;
1510 	long int i;
1511 	unsigned long addr, len;
1512 
1513 	switch (id) {
1514 	case KVM_REG_PPC_HIOR:
1515 		/* Only allow this to be set to zero */
1516 		if (set_reg_val(id, *val))
1517 			r = -EINVAL;
1518 		break;
1519 	case KVM_REG_PPC_DABR:
1520 		vcpu->arch.dabr = set_reg_val(id, *val);
1521 		break;
1522 	case KVM_REG_PPC_DABRX:
1523 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1524 		break;
1525 	case KVM_REG_PPC_DSCR:
1526 		vcpu->arch.dscr = set_reg_val(id, *val);
1527 		break;
1528 	case KVM_REG_PPC_PURR:
1529 		vcpu->arch.purr = set_reg_val(id, *val);
1530 		break;
1531 	case KVM_REG_PPC_SPURR:
1532 		vcpu->arch.spurr = set_reg_val(id, *val);
1533 		break;
1534 	case KVM_REG_PPC_AMR:
1535 		vcpu->arch.amr = set_reg_val(id, *val);
1536 		break;
1537 	case KVM_REG_PPC_UAMOR:
1538 		vcpu->arch.uamor = set_reg_val(id, *val);
1539 		break;
1540 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1541 		i = id - KVM_REG_PPC_MMCR0;
1542 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1543 		break;
1544 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1545 		i = id - KVM_REG_PPC_PMC1;
1546 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1547 		break;
1548 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1549 		i = id - KVM_REG_PPC_SPMC1;
1550 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1551 		break;
1552 	case KVM_REG_PPC_SIAR:
1553 		vcpu->arch.siar = set_reg_val(id, *val);
1554 		break;
1555 	case KVM_REG_PPC_SDAR:
1556 		vcpu->arch.sdar = set_reg_val(id, *val);
1557 		break;
1558 	case KVM_REG_PPC_SIER:
1559 		vcpu->arch.sier = set_reg_val(id, *val);
1560 		break;
1561 	case KVM_REG_PPC_IAMR:
1562 		vcpu->arch.iamr = set_reg_val(id, *val);
1563 		break;
1564 	case KVM_REG_PPC_PSPB:
1565 		vcpu->arch.pspb = set_reg_val(id, *val);
1566 		break;
1567 	case KVM_REG_PPC_DPDES:
1568 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1569 		break;
1570 	case KVM_REG_PPC_VTB:
1571 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1572 		break;
1573 	case KVM_REG_PPC_DAWR:
1574 		vcpu->arch.dawr = set_reg_val(id, *val);
1575 		break;
1576 	case KVM_REG_PPC_DAWRX:
1577 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1578 		break;
1579 	case KVM_REG_PPC_CIABR:
1580 		vcpu->arch.ciabr = set_reg_val(id, *val);
1581 		/* Don't allow setting breakpoints in hypervisor code */
1582 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1583 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1584 		break;
1585 	case KVM_REG_PPC_CSIGR:
1586 		vcpu->arch.csigr = set_reg_val(id, *val);
1587 		break;
1588 	case KVM_REG_PPC_TACR:
1589 		vcpu->arch.tacr = set_reg_val(id, *val);
1590 		break;
1591 	case KVM_REG_PPC_TCSCR:
1592 		vcpu->arch.tcscr = set_reg_val(id, *val);
1593 		break;
1594 	case KVM_REG_PPC_PID:
1595 		vcpu->arch.pid = set_reg_val(id, *val);
1596 		break;
1597 	case KVM_REG_PPC_ACOP:
1598 		vcpu->arch.acop = set_reg_val(id, *val);
1599 		break;
1600 	case KVM_REG_PPC_WORT:
1601 		vcpu->arch.wort = set_reg_val(id, *val);
1602 		break;
1603 	case KVM_REG_PPC_TIDR:
1604 		vcpu->arch.tid = set_reg_val(id, *val);
1605 		break;
1606 	case KVM_REG_PPC_PSSCR:
1607 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1608 		break;
1609 	case KVM_REG_PPC_VPA_ADDR:
1610 		addr = set_reg_val(id, *val);
1611 		r = -EINVAL;
1612 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1613 			      vcpu->arch.dtl.next_gpa))
1614 			break;
1615 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1616 		break;
1617 	case KVM_REG_PPC_VPA_SLB:
1618 		addr = val->vpaval.addr;
1619 		len = val->vpaval.length;
1620 		r = -EINVAL;
1621 		if (addr && !vcpu->arch.vpa.next_gpa)
1622 			break;
1623 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1624 		break;
1625 	case KVM_REG_PPC_VPA_DTL:
1626 		addr = val->vpaval.addr;
1627 		len = val->vpaval.length;
1628 		r = -EINVAL;
1629 		if (addr && (len < sizeof(struct dtl_entry) ||
1630 			     !vcpu->arch.vpa.next_gpa))
1631 			break;
1632 		len -= len % sizeof(struct dtl_entry);
1633 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1634 		break;
1635 	case KVM_REG_PPC_TB_OFFSET:
1636 		/*
1637 		 * POWER9 DD1 has an erratum where writing TBU40 causes
1638 		 * the timebase to lose ticks.  So we don't let the
1639 		 * timebase offset be changed on P9 DD1.  (It is
1640 		 * initialized to zero.)
1641 		 */
1642 		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1643 			break;
1644 		/* round up to multiple of 2^24 */
1645 		vcpu->arch.vcore->tb_offset =
1646 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1647 		break;
1648 	case KVM_REG_PPC_LPCR:
1649 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1650 		break;
1651 	case KVM_REG_PPC_LPCR_64:
1652 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1653 		break;
1654 	case KVM_REG_PPC_PPR:
1655 		vcpu->arch.ppr = set_reg_val(id, *val);
1656 		break;
1657 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1658 	case KVM_REG_PPC_TFHAR:
1659 		vcpu->arch.tfhar = set_reg_val(id, *val);
1660 		break;
1661 	case KVM_REG_PPC_TFIAR:
1662 		vcpu->arch.tfiar = set_reg_val(id, *val);
1663 		break;
1664 	case KVM_REG_PPC_TEXASR:
1665 		vcpu->arch.texasr = set_reg_val(id, *val);
1666 		break;
1667 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1668 		i = id - KVM_REG_PPC_TM_GPR0;
1669 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1670 		break;
1671 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1672 	{
1673 		int j;
1674 		i = id - KVM_REG_PPC_TM_VSR0;
1675 		if (i < 32)
1676 			for (j = 0; j < TS_FPRWIDTH; j++)
1677 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1678 		else
1679 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1680 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1681 			else
1682 				r = -ENXIO;
1683 		break;
1684 	}
1685 	case KVM_REG_PPC_TM_CR:
1686 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1687 		break;
1688 	case KVM_REG_PPC_TM_XER:
1689 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1690 		break;
1691 	case KVM_REG_PPC_TM_LR:
1692 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1693 		break;
1694 	case KVM_REG_PPC_TM_CTR:
1695 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1696 		break;
1697 	case KVM_REG_PPC_TM_FPSCR:
1698 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1699 		break;
1700 	case KVM_REG_PPC_TM_AMR:
1701 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1702 		break;
1703 	case KVM_REG_PPC_TM_PPR:
1704 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1705 		break;
1706 	case KVM_REG_PPC_TM_VRSAVE:
1707 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1708 		break;
1709 	case KVM_REG_PPC_TM_VSCR:
1710 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1711 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1712 		else
1713 			r = - ENXIO;
1714 		break;
1715 	case KVM_REG_PPC_TM_DSCR:
1716 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1717 		break;
1718 	case KVM_REG_PPC_TM_TAR:
1719 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1720 		break;
1721 #endif
1722 	case KVM_REG_PPC_ARCH_COMPAT:
1723 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1724 		break;
1725 	default:
1726 		r = -EINVAL;
1727 		break;
1728 	}
1729 
1730 	return r;
1731 }
1732 
1733 /*
1734  * On POWER9, threads are independent and can be in different partitions.
1735  * Therefore we consider each thread to be a subcore.
1736  * There is a restriction that all threads have to be in the same
1737  * MMU mode (radix or HPT), unfortunately, but since we only support
1738  * HPT guests on a HPT host so far, that isn't an impediment yet.
1739  */
1740 static int threads_per_vcore(struct kvm *kvm)
1741 {
1742 	if (kvm->arch.threads_indep)
1743 		return 1;
1744 	return threads_per_subcore;
1745 }
1746 
1747 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1748 {
1749 	struct kvmppc_vcore *vcore;
1750 
1751 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1752 
1753 	if (vcore == NULL)
1754 		return NULL;
1755 
1756 	spin_lock_init(&vcore->lock);
1757 	spin_lock_init(&vcore->stoltb_lock);
1758 	init_swait_queue_head(&vcore->wq);
1759 	vcore->preempt_tb = TB_NIL;
1760 	vcore->lpcr = kvm->arch.lpcr;
1761 	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1762 	vcore->kvm = kvm;
1763 	INIT_LIST_HEAD(&vcore->preempt_list);
1764 
1765 	return vcore;
1766 }
1767 
1768 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1769 static struct debugfs_timings_element {
1770 	const char *name;
1771 	size_t offset;
1772 } timings[] = {
1773 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1774 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1775 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1776 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1777 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1778 };
1779 
1780 #define N_TIMINGS	(ARRAY_SIZE(timings))
1781 
1782 struct debugfs_timings_state {
1783 	struct kvm_vcpu	*vcpu;
1784 	unsigned int	buflen;
1785 	char		buf[N_TIMINGS * 100];
1786 };
1787 
1788 static int debugfs_timings_open(struct inode *inode, struct file *file)
1789 {
1790 	struct kvm_vcpu *vcpu = inode->i_private;
1791 	struct debugfs_timings_state *p;
1792 
1793 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1794 	if (!p)
1795 		return -ENOMEM;
1796 
1797 	kvm_get_kvm(vcpu->kvm);
1798 	p->vcpu = vcpu;
1799 	file->private_data = p;
1800 
1801 	return nonseekable_open(inode, file);
1802 }
1803 
1804 static int debugfs_timings_release(struct inode *inode, struct file *file)
1805 {
1806 	struct debugfs_timings_state *p = file->private_data;
1807 
1808 	kvm_put_kvm(p->vcpu->kvm);
1809 	kfree(p);
1810 	return 0;
1811 }
1812 
1813 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1814 				    size_t len, loff_t *ppos)
1815 {
1816 	struct debugfs_timings_state *p = file->private_data;
1817 	struct kvm_vcpu *vcpu = p->vcpu;
1818 	char *s, *buf_end;
1819 	struct kvmhv_tb_accumulator tb;
1820 	u64 count;
1821 	loff_t pos;
1822 	ssize_t n;
1823 	int i, loops;
1824 	bool ok;
1825 
1826 	if (!p->buflen) {
1827 		s = p->buf;
1828 		buf_end = s + sizeof(p->buf);
1829 		for (i = 0; i < N_TIMINGS; ++i) {
1830 			struct kvmhv_tb_accumulator *acc;
1831 
1832 			acc = (struct kvmhv_tb_accumulator *)
1833 				((unsigned long)vcpu + timings[i].offset);
1834 			ok = false;
1835 			for (loops = 0; loops < 1000; ++loops) {
1836 				count = acc->seqcount;
1837 				if (!(count & 1)) {
1838 					smp_rmb();
1839 					tb = *acc;
1840 					smp_rmb();
1841 					if (count == acc->seqcount) {
1842 						ok = true;
1843 						break;
1844 					}
1845 				}
1846 				udelay(1);
1847 			}
1848 			if (!ok)
1849 				snprintf(s, buf_end - s, "%s: stuck\n",
1850 					timings[i].name);
1851 			else
1852 				snprintf(s, buf_end - s,
1853 					"%s: %llu %llu %llu %llu\n",
1854 					timings[i].name, count / 2,
1855 					tb_to_ns(tb.tb_total),
1856 					tb_to_ns(tb.tb_min),
1857 					tb_to_ns(tb.tb_max));
1858 			s += strlen(s);
1859 		}
1860 		p->buflen = s - p->buf;
1861 	}
1862 
1863 	pos = *ppos;
1864 	if (pos >= p->buflen)
1865 		return 0;
1866 	if (len > p->buflen - pos)
1867 		len = p->buflen - pos;
1868 	n = copy_to_user(buf, p->buf + pos, len);
1869 	if (n) {
1870 		if (n == len)
1871 			return -EFAULT;
1872 		len -= n;
1873 	}
1874 	*ppos = pos + len;
1875 	return len;
1876 }
1877 
1878 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1879 				     size_t len, loff_t *ppos)
1880 {
1881 	return -EACCES;
1882 }
1883 
1884 static const struct file_operations debugfs_timings_ops = {
1885 	.owner	 = THIS_MODULE,
1886 	.open	 = debugfs_timings_open,
1887 	.release = debugfs_timings_release,
1888 	.read	 = debugfs_timings_read,
1889 	.write	 = debugfs_timings_write,
1890 	.llseek	 = generic_file_llseek,
1891 };
1892 
1893 /* Create a debugfs directory for the vcpu */
1894 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1895 {
1896 	char buf[16];
1897 	struct kvm *kvm = vcpu->kvm;
1898 
1899 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1900 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1901 		return;
1902 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1903 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1904 		return;
1905 	vcpu->arch.debugfs_timings =
1906 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1907 				    vcpu, &debugfs_timings_ops);
1908 }
1909 
1910 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1911 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1912 {
1913 }
1914 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1915 
1916 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1917 						   unsigned int id)
1918 {
1919 	struct kvm_vcpu *vcpu;
1920 	int err;
1921 	int core;
1922 	struct kvmppc_vcore *vcore;
1923 
1924 	err = -ENOMEM;
1925 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1926 	if (!vcpu)
1927 		goto out;
1928 
1929 	err = kvm_vcpu_init(vcpu, kvm, id);
1930 	if (err)
1931 		goto free_vcpu;
1932 
1933 	vcpu->arch.shared = &vcpu->arch.shregs;
1934 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1935 	/*
1936 	 * The shared struct is never shared on HV,
1937 	 * so we can always use host endianness
1938 	 */
1939 #ifdef __BIG_ENDIAN__
1940 	vcpu->arch.shared_big_endian = true;
1941 #else
1942 	vcpu->arch.shared_big_endian = false;
1943 #endif
1944 #endif
1945 	vcpu->arch.mmcr[0] = MMCR0_FC;
1946 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1947 	/* default to host PVR, since we can't spoof it */
1948 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1949 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1950 	spin_lock_init(&vcpu->arch.tbacct_lock);
1951 	vcpu->arch.busy_preempt = TB_NIL;
1952 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1953 
1954 	/*
1955 	 * Set the default HFSCR for the guest from the host value.
1956 	 * This value is only used on POWER9.
1957 	 * On POWER9 DD1, TM doesn't work, so we make sure to
1958 	 * prevent the guest from using it.
1959 	 * On POWER9, we want to virtualize the doorbell facility, so we
1960 	 * turn off the HFSCR bit, which causes those instructions to trap.
1961 	 */
1962 	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1963 	if (!cpu_has_feature(CPU_FTR_TM))
1964 		vcpu->arch.hfscr &= ~HFSCR_TM;
1965 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1966 		vcpu->arch.hfscr &= ~HFSCR_MSGP;
1967 
1968 	kvmppc_mmu_book3s_hv_init(vcpu);
1969 
1970 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1971 
1972 	init_waitqueue_head(&vcpu->arch.cpu_run);
1973 
1974 	mutex_lock(&kvm->lock);
1975 	vcore = NULL;
1976 	err = -EINVAL;
1977 	core = id / kvm->arch.smt_mode;
1978 	if (core < KVM_MAX_VCORES) {
1979 		vcore = kvm->arch.vcores[core];
1980 		if (!vcore) {
1981 			err = -ENOMEM;
1982 			vcore = kvmppc_vcore_create(kvm, core);
1983 			kvm->arch.vcores[core] = vcore;
1984 			kvm->arch.online_vcores++;
1985 		}
1986 	}
1987 	mutex_unlock(&kvm->lock);
1988 
1989 	if (!vcore)
1990 		goto free_vcpu;
1991 
1992 	spin_lock(&vcore->lock);
1993 	++vcore->num_threads;
1994 	spin_unlock(&vcore->lock);
1995 	vcpu->arch.vcore = vcore;
1996 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1997 	vcpu->arch.thread_cpu = -1;
1998 	vcpu->arch.prev_cpu = -1;
1999 
2000 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2001 	kvmppc_sanity_check(vcpu);
2002 
2003 	debugfs_vcpu_init(vcpu, id);
2004 
2005 	return vcpu;
2006 
2007 free_vcpu:
2008 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2009 out:
2010 	return ERR_PTR(err);
2011 }
2012 
2013 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2014 			      unsigned long flags)
2015 {
2016 	int err;
2017 	int esmt = 0;
2018 
2019 	if (flags)
2020 		return -EINVAL;
2021 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2022 		return -EINVAL;
2023 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2024 		/*
2025 		 * On POWER8 (or POWER7), the threading mode is "strict",
2026 		 * so we pack smt_mode vcpus per vcore.
2027 		 */
2028 		if (smt_mode > threads_per_subcore)
2029 			return -EINVAL;
2030 	} else {
2031 		/*
2032 		 * On POWER9, the threading mode is "loose",
2033 		 * so each vcpu gets its own vcore.
2034 		 */
2035 		esmt = smt_mode;
2036 		smt_mode = 1;
2037 	}
2038 	mutex_lock(&kvm->lock);
2039 	err = -EBUSY;
2040 	if (!kvm->arch.online_vcores) {
2041 		kvm->arch.smt_mode = smt_mode;
2042 		kvm->arch.emul_smt_mode = esmt;
2043 		err = 0;
2044 	}
2045 	mutex_unlock(&kvm->lock);
2046 
2047 	return err;
2048 }
2049 
2050 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2051 {
2052 	if (vpa->pinned_addr)
2053 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2054 					vpa->dirty);
2055 }
2056 
2057 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2058 {
2059 	spin_lock(&vcpu->arch.vpa_update_lock);
2060 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2061 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2062 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2063 	spin_unlock(&vcpu->arch.vpa_update_lock);
2064 	kvm_vcpu_uninit(vcpu);
2065 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2066 }
2067 
2068 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2069 {
2070 	/* Indicate we want to get back into the guest */
2071 	return 1;
2072 }
2073 
2074 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2075 {
2076 	unsigned long dec_nsec, now;
2077 
2078 	now = get_tb();
2079 	if (now > vcpu->arch.dec_expires) {
2080 		/* decrementer has already gone negative */
2081 		kvmppc_core_queue_dec(vcpu);
2082 		kvmppc_core_prepare_to_enter(vcpu);
2083 		return;
2084 	}
2085 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2086 		   / tb_ticks_per_sec;
2087 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2088 	vcpu->arch.timer_running = 1;
2089 }
2090 
2091 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2092 {
2093 	vcpu->arch.ceded = 0;
2094 	if (vcpu->arch.timer_running) {
2095 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2096 		vcpu->arch.timer_running = 0;
2097 	}
2098 }
2099 
2100 extern int __kvmppc_vcore_entry(void);
2101 
2102 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2103 				   struct kvm_vcpu *vcpu)
2104 {
2105 	u64 now;
2106 
2107 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2108 		return;
2109 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2110 	now = mftb();
2111 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2112 		vcpu->arch.stolen_logged;
2113 	vcpu->arch.busy_preempt = now;
2114 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2115 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2116 	--vc->n_runnable;
2117 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2118 }
2119 
2120 static int kvmppc_grab_hwthread(int cpu)
2121 {
2122 	struct paca_struct *tpaca;
2123 	long timeout = 10000;
2124 
2125 	tpaca = &paca[cpu];
2126 
2127 	/* Ensure the thread won't go into the kernel if it wakes */
2128 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2129 	tpaca->kvm_hstate.kvm_vcore = NULL;
2130 	tpaca->kvm_hstate.napping = 0;
2131 	smp_wmb();
2132 	tpaca->kvm_hstate.hwthread_req = 1;
2133 
2134 	/*
2135 	 * If the thread is already executing in the kernel (e.g. handling
2136 	 * a stray interrupt), wait for it to get back to nap mode.
2137 	 * The smp_mb() is to ensure that our setting of hwthread_req
2138 	 * is visible before we look at hwthread_state, so if this
2139 	 * races with the code at system_reset_pSeries and the thread
2140 	 * misses our setting of hwthread_req, we are sure to see its
2141 	 * setting of hwthread_state, and vice versa.
2142 	 */
2143 	smp_mb();
2144 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2145 		if (--timeout <= 0) {
2146 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2147 			return -EBUSY;
2148 		}
2149 		udelay(1);
2150 	}
2151 	return 0;
2152 }
2153 
2154 static void kvmppc_release_hwthread(int cpu)
2155 {
2156 	struct paca_struct *tpaca;
2157 
2158 	tpaca = &paca[cpu];
2159 	tpaca->kvm_hstate.hwthread_req = 0;
2160 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2161 	tpaca->kvm_hstate.kvm_vcore = NULL;
2162 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2163 }
2164 
2165 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2166 {
2167 	int i;
2168 
2169 	cpu = cpu_first_thread_sibling(cpu);
2170 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2171 	/*
2172 	 * Make sure setting of bit in need_tlb_flush precedes
2173 	 * testing of cpu_in_guest bits.  The matching barrier on
2174 	 * the other side is the first smp_mb() in kvmppc_run_core().
2175 	 */
2176 	smp_mb();
2177 	for (i = 0; i < threads_per_core; ++i)
2178 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2179 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2180 }
2181 
2182 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2183 {
2184 	struct kvm *kvm = vcpu->kvm;
2185 
2186 	/*
2187 	 * With radix, the guest can do TLB invalidations itself,
2188 	 * and it could choose to use the local form (tlbiel) if
2189 	 * it is invalidating a translation that has only ever been
2190 	 * used on one vcpu.  However, that doesn't mean it has
2191 	 * only ever been used on one physical cpu, since vcpus
2192 	 * can move around between pcpus.  To cope with this, when
2193 	 * a vcpu moves from one pcpu to another, we need to tell
2194 	 * any vcpus running on the same core as this vcpu previously
2195 	 * ran to flush the TLB.  The TLB is shared between threads,
2196 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2197 	 */
2198 	if (vcpu->arch.prev_cpu != pcpu) {
2199 		if (vcpu->arch.prev_cpu >= 0 &&
2200 		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2201 		    cpu_first_thread_sibling(pcpu))
2202 			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2203 		vcpu->arch.prev_cpu = pcpu;
2204 	}
2205 }
2206 
2207 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2208 {
2209 	int cpu;
2210 	struct paca_struct *tpaca;
2211 	struct kvm *kvm = vc->kvm;
2212 
2213 	cpu = vc->pcpu;
2214 	if (vcpu) {
2215 		if (vcpu->arch.timer_running) {
2216 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2217 			vcpu->arch.timer_running = 0;
2218 		}
2219 		cpu += vcpu->arch.ptid;
2220 		vcpu->cpu = vc->pcpu;
2221 		vcpu->arch.thread_cpu = cpu;
2222 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2223 	}
2224 	tpaca = &paca[cpu];
2225 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2226 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2227 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2228 	smp_wmb();
2229 	tpaca->kvm_hstate.kvm_vcore = vc;
2230 	if (cpu != smp_processor_id())
2231 		kvmppc_ipi_thread(cpu);
2232 }
2233 
2234 static void kvmppc_wait_for_nap(int n_threads)
2235 {
2236 	int cpu = smp_processor_id();
2237 	int i, loops;
2238 
2239 	if (n_threads <= 1)
2240 		return;
2241 	for (loops = 0; loops < 1000000; ++loops) {
2242 		/*
2243 		 * Check if all threads are finished.
2244 		 * We set the vcore pointer when starting a thread
2245 		 * and the thread clears it when finished, so we look
2246 		 * for any threads that still have a non-NULL vcore ptr.
2247 		 */
2248 		for (i = 1; i < n_threads; ++i)
2249 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2250 				break;
2251 		if (i == n_threads) {
2252 			HMT_medium();
2253 			return;
2254 		}
2255 		HMT_low();
2256 	}
2257 	HMT_medium();
2258 	for (i = 1; i < n_threads; ++i)
2259 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2260 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2261 }
2262 
2263 /*
2264  * Check that we are on thread 0 and that any other threads in
2265  * this core are off-line.  Then grab the threads so they can't
2266  * enter the kernel.
2267  */
2268 static int on_primary_thread(void)
2269 {
2270 	int cpu = smp_processor_id();
2271 	int thr;
2272 
2273 	/* Are we on a primary subcore? */
2274 	if (cpu_thread_in_subcore(cpu))
2275 		return 0;
2276 
2277 	thr = 0;
2278 	while (++thr < threads_per_subcore)
2279 		if (cpu_online(cpu + thr))
2280 			return 0;
2281 
2282 	/* Grab all hw threads so they can't go into the kernel */
2283 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2284 		if (kvmppc_grab_hwthread(cpu + thr)) {
2285 			/* Couldn't grab one; let the others go */
2286 			do {
2287 				kvmppc_release_hwthread(cpu + thr);
2288 			} while (--thr > 0);
2289 			return 0;
2290 		}
2291 	}
2292 	return 1;
2293 }
2294 
2295 /*
2296  * A list of virtual cores for each physical CPU.
2297  * These are vcores that could run but their runner VCPU tasks are
2298  * (or may be) preempted.
2299  */
2300 struct preempted_vcore_list {
2301 	struct list_head	list;
2302 	spinlock_t		lock;
2303 };
2304 
2305 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2306 
2307 static void init_vcore_lists(void)
2308 {
2309 	int cpu;
2310 
2311 	for_each_possible_cpu(cpu) {
2312 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2313 		spin_lock_init(&lp->lock);
2314 		INIT_LIST_HEAD(&lp->list);
2315 	}
2316 }
2317 
2318 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2319 {
2320 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2321 
2322 	vc->vcore_state = VCORE_PREEMPT;
2323 	vc->pcpu = smp_processor_id();
2324 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2325 		spin_lock(&lp->lock);
2326 		list_add_tail(&vc->preempt_list, &lp->list);
2327 		spin_unlock(&lp->lock);
2328 	}
2329 
2330 	/* Start accumulating stolen time */
2331 	kvmppc_core_start_stolen(vc);
2332 }
2333 
2334 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2335 {
2336 	struct preempted_vcore_list *lp;
2337 
2338 	kvmppc_core_end_stolen(vc);
2339 	if (!list_empty(&vc->preempt_list)) {
2340 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2341 		spin_lock(&lp->lock);
2342 		list_del_init(&vc->preempt_list);
2343 		spin_unlock(&lp->lock);
2344 	}
2345 	vc->vcore_state = VCORE_INACTIVE;
2346 }
2347 
2348 /*
2349  * This stores information about the virtual cores currently
2350  * assigned to a physical core.
2351  */
2352 struct core_info {
2353 	int		n_subcores;
2354 	int		max_subcore_threads;
2355 	int		total_threads;
2356 	int		subcore_threads[MAX_SUBCORES];
2357 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2358 };
2359 
2360 /*
2361  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2362  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2363  */
2364 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2365 
2366 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2367 {
2368 	memset(cip, 0, sizeof(*cip));
2369 	cip->n_subcores = 1;
2370 	cip->max_subcore_threads = vc->num_threads;
2371 	cip->total_threads = vc->num_threads;
2372 	cip->subcore_threads[0] = vc->num_threads;
2373 	cip->vc[0] = vc;
2374 }
2375 
2376 static bool subcore_config_ok(int n_subcores, int n_threads)
2377 {
2378 	/*
2379 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way split-core
2380 	 * mode, with one thread per subcore.
2381 	 */
2382 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2383 		return n_subcores <= 4 && n_threads == 1;
2384 
2385 	/* On POWER8, can only dynamically split if unsplit to begin with */
2386 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2387 		return false;
2388 	if (n_subcores > MAX_SUBCORES)
2389 		return false;
2390 	if (n_subcores > 1) {
2391 		if (!(dynamic_mt_modes & 2))
2392 			n_subcores = 4;
2393 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2394 			return false;
2395 	}
2396 
2397 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2398 }
2399 
2400 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2401 {
2402 	vc->entry_exit_map = 0;
2403 	vc->in_guest = 0;
2404 	vc->napping_threads = 0;
2405 	vc->conferring_threads = 0;
2406 }
2407 
2408 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2409 {
2410 	int n_threads = vc->num_threads;
2411 	int sub;
2412 
2413 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2414 		return false;
2415 
2416 	/* POWER9 currently requires all threads to be in the same MMU mode */
2417 	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
2418 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2419 		return false;
2420 
2421 	if (n_threads < cip->max_subcore_threads)
2422 		n_threads = cip->max_subcore_threads;
2423 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2424 		return false;
2425 	cip->max_subcore_threads = n_threads;
2426 
2427 	sub = cip->n_subcores;
2428 	++cip->n_subcores;
2429 	cip->total_threads += vc->num_threads;
2430 	cip->subcore_threads[sub] = vc->num_threads;
2431 	cip->vc[sub] = vc;
2432 	init_vcore_to_run(vc);
2433 	list_del_init(&vc->preempt_list);
2434 
2435 	return true;
2436 }
2437 
2438 /*
2439  * Work out whether it is possible to piggyback the execution of
2440  * vcore *pvc onto the execution of the other vcores described in *cip.
2441  */
2442 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2443 			  int target_threads)
2444 {
2445 	if (cip->total_threads + pvc->num_threads > target_threads)
2446 		return false;
2447 
2448 	return can_dynamic_split(pvc, cip);
2449 }
2450 
2451 static void prepare_threads(struct kvmppc_vcore *vc)
2452 {
2453 	int i;
2454 	struct kvm_vcpu *vcpu;
2455 
2456 	for_each_runnable_thread(i, vcpu, vc) {
2457 		if (signal_pending(vcpu->arch.run_task))
2458 			vcpu->arch.ret = -EINTR;
2459 		else if (vcpu->arch.vpa.update_pending ||
2460 			 vcpu->arch.slb_shadow.update_pending ||
2461 			 vcpu->arch.dtl.update_pending)
2462 			vcpu->arch.ret = RESUME_GUEST;
2463 		else
2464 			continue;
2465 		kvmppc_remove_runnable(vc, vcpu);
2466 		wake_up(&vcpu->arch.cpu_run);
2467 	}
2468 }
2469 
2470 static void collect_piggybacks(struct core_info *cip, int target_threads)
2471 {
2472 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2473 	struct kvmppc_vcore *pvc, *vcnext;
2474 
2475 	spin_lock(&lp->lock);
2476 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2477 		if (!spin_trylock(&pvc->lock))
2478 			continue;
2479 		prepare_threads(pvc);
2480 		if (!pvc->n_runnable) {
2481 			list_del_init(&pvc->preempt_list);
2482 			if (pvc->runner == NULL) {
2483 				pvc->vcore_state = VCORE_INACTIVE;
2484 				kvmppc_core_end_stolen(pvc);
2485 			}
2486 			spin_unlock(&pvc->lock);
2487 			continue;
2488 		}
2489 		if (!can_piggyback(pvc, cip, target_threads)) {
2490 			spin_unlock(&pvc->lock);
2491 			continue;
2492 		}
2493 		kvmppc_core_end_stolen(pvc);
2494 		pvc->vcore_state = VCORE_PIGGYBACK;
2495 		if (cip->total_threads >= target_threads)
2496 			break;
2497 	}
2498 	spin_unlock(&lp->lock);
2499 }
2500 
2501 static bool recheck_signals(struct core_info *cip)
2502 {
2503 	int sub, i;
2504 	struct kvm_vcpu *vcpu;
2505 
2506 	for (sub = 0; sub < cip->n_subcores; ++sub)
2507 		for_each_runnable_thread(i, vcpu, cip->vc[sub])
2508 			if (signal_pending(vcpu->arch.run_task))
2509 				return true;
2510 	return false;
2511 }
2512 
2513 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2514 {
2515 	int still_running = 0, i;
2516 	u64 now;
2517 	long ret;
2518 	struct kvm_vcpu *vcpu;
2519 
2520 	spin_lock(&vc->lock);
2521 	now = get_tb();
2522 	for_each_runnable_thread(i, vcpu, vc) {
2523 		/* cancel pending dec exception if dec is positive */
2524 		if (now < vcpu->arch.dec_expires &&
2525 		    kvmppc_core_pending_dec(vcpu))
2526 			kvmppc_core_dequeue_dec(vcpu);
2527 
2528 		trace_kvm_guest_exit(vcpu);
2529 
2530 		ret = RESUME_GUEST;
2531 		if (vcpu->arch.trap)
2532 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2533 						    vcpu->arch.run_task);
2534 
2535 		vcpu->arch.ret = ret;
2536 		vcpu->arch.trap = 0;
2537 
2538 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2539 			if (vcpu->arch.pending_exceptions)
2540 				kvmppc_core_prepare_to_enter(vcpu);
2541 			if (vcpu->arch.ceded)
2542 				kvmppc_set_timer(vcpu);
2543 			else
2544 				++still_running;
2545 		} else {
2546 			kvmppc_remove_runnable(vc, vcpu);
2547 			wake_up(&vcpu->arch.cpu_run);
2548 		}
2549 	}
2550 	if (!is_master) {
2551 		if (still_running > 0) {
2552 			kvmppc_vcore_preempt(vc);
2553 		} else if (vc->runner) {
2554 			vc->vcore_state = VCORE_PREEMPT;
2555 			kvmppc_core_start_stolen(vc);
2556 		} else {
2557 			vc->vcore_state = VCORE_INACTIVE;
2558 		}
2559 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2560 			/* make sure there's a candidate runner awake */
2561 			i = -1;
2562 			vcpu = next_runnable_thread(vc, &i);
2563 			wake_up(&vcpu->arch.cpu_run);
2564 		}
2565 	}
2566 	spin_unlock(&vc->lock);
2567 }
2568 
2569 /*
2570  * Clear core from the list of active host cores as we are about to
2571  * enter the guest. Only do this if it is the primary thread of the
2572  * core (not if a subcore) that is entering the guest.
2573  */
2574 static inline int kvmppc_clear_host_core(unsigned int cpu)
2575 {
2576 	int core;
2577 
2578 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2579 		return 0;
2580 	/*
2581 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2582 	 * later in kvmppc_start_thread and we need ensure that state is
2583 	 * visible to other CPUs only after we enter guest.
2584 	 */
2585 	core = cpu >> threads_shift;
2586 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2587 	return 0;
2588 }
2589 
2590 /*
2591  * Advertise this core as an active host core since we exited the guest
2592  * Only need to do this if it is the primary thread of the core that is
2593  * exiting.
2594  */
2595 static inline int kvmppc_set_host_core(unsigned int cpu)
2596 {
2597 	int core;
2598 
2599 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2600 		return 0;
2601 
2602 	/*
2603 	 * Memory barrier can be omitted here because we do a spin_unlock
2604 	 * immediately after this which provides the memory barrier.
2605 	 */
2606 	core = cpu >> threads_shift;
2607 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2608 	return 0;
2609 }
2610 
2611 static void set_irq_happened(int trap)
2612 {
2613 	switch (trap) {
2614 	case BOOK3S_INTERRUPT_EXTERNAL:
2615 		local_paca->irq_happened |= PACA_IRQ_EE;
2616 		break;
2617 	case BOOK3S_INTERRUPT_H_DOORBELL:
2618 		local_paca->irq_happened |= PACA_IRQ_DBELL;
2619 		break;
2620 	case BOOK3S_INTERRUPT_HMI:
2621 		local_paca->irq_happened |= PACA_IRQ_HMI;
2622 		break;
2623 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
2624 		replay_system_reset();
2625 		break;
2626 	}
2627 }
2628 
2629 /*
2630  * Run a set of guest threads on a physical core.
2631  * Called with vc->lock held.
2632  */
2633 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2634 {
2635 	struct kvm_vcpu *vcpu;
2636 	int i;
2637 	int srcu_idx;
2638 	struct core_info core_info;
2639 	struct kvmppc_vcore *pvc;
2640 	struct kvm_split_mode split_info, *sip;
2641 	int split, subcore_size, active;
2642 	int sub;
2643 	bool thr0_done;
2644 	unsigned long cmd_bit, stat_bit;
2645 	int pcpu, thr;
2646 	int target_threads;
2647 	int controlled_threads;
2648 	int trap;
2649 	bool is_power8;
2650 	bool hpt_on_radix;
2651 
2652 	/*
2653 	 * Remove from the list any threads that have a signal pending
2654 	 * or need a VPA update done
2655 	 */
2656 	prepare_threads(vc);
2657 
2658 	/* if the runner is no longer runnable, let the caller pick a new one */
2659 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2660 		return;
2661 
2662 	/*
2663 	 * Initialize *vc.
2664 	 */
2665 	init_vcore_to_run(vc);
2666 	vc->preempt_tb = TB_NIL;
2667 
2668 	/*
2669 	 * Number of threads that we will be controlling: the same as
2670 	 * the number of threads per subcore, except on POWER9,
2671 	 * where it's 1 because the threads are (mostly) independent.
2672 	 */
2673 	controlled_threads = threads_per_vcore(vc->kvm);
2674 
2675 	/*
2676 	 * Make sure we are running on primary threads, and that secondary
2677 	 * threads are offline.  Also check if the number of threads in this
2678 	 * guest are greater than the current system threads per guest.
2679 	 * On POWER9, we need to be not in independent-threads mode if
2680 	 * this is a HPT guest on a radix host.
2681 	 */
2682 	hpt_on_radix = radix_enabled() && !kvm_is_radix(vc->kvm);
2683 	if (((controlled_threads > 1) &&
2684 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2685 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2686 		for_each_runnable_thread(i, vcpu, vc) {
2687 			vcpu->arch.ret = -EBUSY;
2688 			kvmppc_remove_runnable(vc, vcpu);
2689 			wake_up(&vcpu->arch.cpu_run);
2690 		}
2691 		goto out;
2692 	}
2693 
2694 	/*
2695 	 * See if we could run any other vcores on the physical core
2696 	 * along with this one.
2697 	 */
2698 	init_core_info(&core_info, vc);
2699 	pcpu = smp_processor_id();
2700 	target_threads = controlled_threads;
2701 	if (target_smt_mode && target_smt_mode < target_threads)
2702 		target_threads = target_smt_mode;
2703 	if (vc->num_threads < target_threads)
2704 		collect_piggybacks(&core_info, target_threads);
2705 
2706 	/*
2707 	 * On radix, arrange for TLB flushing if necessary.
2708 	 * This has to be done before disabling interrupts since
2709 	 * it uses smp_call_function().
2710 	 */
2711 	pcpu = smp_processor_id();
2712 	if (kvm_is_radix(vc->kvm)) {
2713 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2714 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2715 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2716 	}
2717 
2718 	/*
2719 	 * Hard-disable interrupts, and check resched flag and signals.
2720 	 * If we need to reschedule or deliver a signal, clean up
2721 	 * and return without going into the guest(s).
2722 	 * If the mmu_ready flag has been cleared, don't go into the
2723 	 * guest because that means a HPT resize operation is in progress.
2724 	 */
2725 	local_irq_disable();
2726 	hard_irq_disable();
2727 	if (lazy_irq_pending() || need_resched() ||
2728 	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2729 		local_irq_enable();
2730 		vc->vcore_state = VCORE_INACTIVE;
2731 		/* Unlock all except the primary vcore */
2732 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
2733 			pvc = core_info.vc[sub];
2734 			/* Put back on to the preempted vcores list */
2735 			kvmppc_vcore_preempt(pvc);
2736 			spin_unlock(&pvc->lock);
2737 		}
2738 		for (i = 0; i < controlled_threads; ++i)
2739 			kvmppc_release_hwthread(pcpu + i);
2740 		return;
2741 	}
2742 
2743 	kvmppc_clear_host_core(pcpu);
2744 
2745 	/* Decide on micro-threading (split-core) mode */
2746 	subcore_size = threads_per_subcore;
2747 	cmd_bit = stat_bit = 0;
2748 	split = core_info.n_subcores;
2749 	sip = NULL;
2750 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2751 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
2752 
2753 	if (split > 1 || hpt_on_radix) {
2754 		sip = &split_info;
2755 		memset(&split_info, 0, sizeof(split_info));
2756 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2757 			split_info.vc[sub] = core_info.vc[sub];
2758 
2759 		if (is_power8) {
2760 			if (split == 2 && (dynamic_mt_modes & 2)) {
2761 				cmd_bit = HID0_POWER8_1TO2LPAR;
2762 				stat_bit = HID0_POWER8_2LPARMODE;
2763 			} else {
2764 				split = 4;
2765 				cmd_bit = HID0_POWER8_1TO4LPAR;
2766 				stat_bit = HID0_POWER8_4LPARMODE;
2767 			}
2768 			subcore_size = MAX_SMT_THREADS / split;
2769 			split_info.rpr = mfspr(SPRN_RPR);
2770 			split_info.pmmar = mfspr(SPRN_PMMAR);
2771 			split_info.ldbar = mfspr(SPRN_LDBAR);
2772 			split_info.subcore_size = subcore_size;
2773 		} else {
2774 			split_info.subcore_size = 1;
2775 			if (hpt_on_radix) {
2776 				/* Use the split_info for LPCR/LPIDR changes */
2777 				split_info.lpcr_req = vc->lpcr;
2778 				split_info.lpidr_req = vc->kvm->arch.lpid;
2779 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2780 				split_info.do_set = 1;
2781 			}
2782 		}
2783 
2784 		/* order writes to split_info before kvm_split_mode pointer */
2785 		smp_wmb();
2786 	}
2787 
2788 	for (thr = 0; thr < controlled_threads; ++thr) {
2789 		paca[pcpu + thr].kvm_hstate.tid = thr;
2790 		paca[pcpu + thr].kvm_hstate.napping = 0;
2791 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2792 	}
2793 
2794 	/* Initiate micro-threading (split-core) on POWER8 if required */
2795 	if (cmd_bit) {
2796 		unsigned long hid0 = mfspr(SPRN_HID0);
2797 
2798 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2799 		mb();
2800 		mtspr(SPRN_HID0, hid0);
2801 		isync();
2802 		for (;;) {
2803 			hid0 = mfspr(SPRN_HID0);
2804 			if (hid0 & stat_bit)
2805 				break;
2806 			cpu_relax();
2807 		}
2808 	}
2809 
2810 	/* Start all the threads */
2811 	active = 0;
2812 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2813 		thr = is_power8 ? subcore_thread_map[sub] : sub;
2814 		thr0_done = false;
2815 		active |= 1 << thr;
2816 		pvc = core_info.vc[sub];
2817 		pvc->pcpu = pcpu + thr;
2818 		for_each_runnable_thread(i, vcpu, pvc) {
2819 			kvmppc_start_thread(vcpu, pvc);
2820 			kvmppc_create_dtl_entry(vcpu, pvc);
2821 			trace_kvm_guest_enter(vcpu);
2822 			if (!vcpu->arch.ptid)
2823 				thr0_done = true;
2824 			active |= 1 << (thr + vcpu->arch.ptid);
2825 		}
2826 		/*
2827 		 * We need to start the first thread of each subcore
2828 		 * even if it doesn't have a vcpu.
2829 		 */
2830 		if (!thr0_done)
2831 			kvmppc_start_thread(NULL, pvc);
2832 		thr += pvc->num_threads;
2833 	}
2834 
2835 	/*
2836 	 * Ensure that split_info.do_nap is set after setting
2837 	 * the vcore pointer in the PACA of the secondaries.
2838 	 */
2839 	smp_mb();
2840 
2841 	/*
2842 	 * When doing micro-threading, poke the inactive threads as well.
2843 	 * This gets them to the nap instruction after kvm_do_nap,
2844 	 * which reduces the time taken to unsplit later.
2845 	 * For POWER9 HPT guest on radix host, we need all the secondary
2846 	 * threads woken up so they can do the LPCR/LPIDR change.
2847 	 */
2848 	if (cmd_bit || hpt_on_radix) {
2849 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2850 		for (thr = 1; thr < threads_per_subcore; ++thr)
2851 			if (!(active & (1 << thr)))
2852 				kvmppc_ipi_thread(pcpu + thr);
2853 	}
2854 
2855 	vc->vcore_state = VCORE_RUNNING;
2856 	preempt_disable();
2857 
2858 	trace_kvmppc_run_core(vc, 0);
2859 
2860 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2861 		spin_unlock(&core_info.vc[sub]->lock);
2862 
2863 	/*
2864 	 * Interrupts will be enabled once we get into the guest,
2865 	 * so tell lockdep that we're about to enable interrupts.
2866 	 */
2867 	trace_hardirqs_on();
2868 
2869 	guest_enter();
2870 
2871 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2872 
2873 	trap = __kvmppc_vcore_entry();
2874 
2875 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2876 
2877 	guest_exit();
2878 
2879 	trace_hardirqs_off();
2880 	set_irq_happened(trap);
2881 
2882 	spin_lock(&vc->lock);
2883 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2884 	vc->vcore_state = VCORE_EXITING;
2885 
2886 	/* wait for secondary threads to finish writing their state to memory */
2887 	kvmppc_wait_for_nap(controlled_threads);
2888 
2889 	/* Return to whole-core mode if we split the core earlier */
2890 	if (cmd_bit) {
2891 		unsigned long hid0 = mfspr(SPRN_HID0);
2892 		unsigned long loops = 0;
2893 
2894 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2895 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2896 		mb();
2897 		mtspr(SPRN_HID0, hid0);
2898 		isync();
2899 		for (;;) {
2900 			hid0 = mfspr(SPRN_HID0);
2901 			if (!(hid0 & stat_bit))
2902 				break;
2903 			cpu_relax();
2904 			++loops;
2905 		}
2906 	} else if (hpt_on_radix) {
2907 		/* Wait for all threads to have seen final sync */
2908 		for (thr = 1; thr < controlled_threads; ++thr) {
2909 			while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2910 				HMT_low();
2911 				barrier();
2912 			}
2913 			HMT_medium();
2914 		}
2915 	}
2916 	split_info.do_nap = 0;
2917 
2918 	kvmppc_set_host_core(pcpu);
2919 
2920 	local_irq_enable();
2921 
2922 	/* Let secondaries go back to the offline loop */
2923 	for (i = 0; i < controlled_threads; ++i) {
2924 		kvmppc_release_hwthread(pcpu + i);
2925 		if (sip && sip->napped[i])
2926 			kvmppc_ipi_thread(pcpu + i);
2927 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2928 	}
2929 
2930 	spin_unlock(&vc->lock);
2931 
2932 	/* make sure updates to secondary vcpu structs are visible now */
2933 	smp_mb();
2934 
2935 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2936 		pvc = core_info.vc[sub];
2937 		post_guest_process(pvc, pvc == vc);
2938 	}
2939 
2940 	spin_lock(&vc->lock);
2941 	preempt_enable();
2942 
2943  out:
2944 	vc->vcore_state = VCORE_INACTIVE;
2945 	trace_kvmppc_run_core(vc, 1);
2946 }
2947 
2948 /*
2949  * Wait for some other vcpu thread to execute us, and
2950  * wake us up when we need to handle something in the host.
2951  */
2952 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2953 				 struct kvm_vcpu *vcpu, int wait_state)
2954 {
2955 	DEFINE_WAIT(wait);
2956 
2957 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2958 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2959 		spin_unlock(&vc->lock);
2960 		schedule();
2961 		spin_lock(&vc->lock);
2962 	}
2963 	finish_wait(&vcpu->arch.cpu_run, &wait);
2964 }
2965 
2966 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2967 {
2968 	/* 10us base */
2969 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2970 		vc->halt_poll_ns = 10000;
2971 	else
2972 		vc->halt_poll_ns *= halt_poll_ns_grow;
2973 }
2974 
2975 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2976 {
2977 	if (halt_poll_ns_shrink == 0)
2978 		vc->halt_poll_ns = 0;
2979 	else
2980 		vc->halt_poll_ns /= halt_poll_ns_shrink;
2981 }
2982 
2983 #ifdef CONFIG_KVM_XICS
2984 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2985 {
2986 	if (!xive_enabled())
2987 		return false;
2988 	return vcpu->arch.xive_saved_state.pipr <
2989 		vcpu->arch.xive_saved_state.cppr;
2990 }
2991 #else
2992 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2993 {
2994 	return false;
2995 }
2996 #endif /* CONFIG_KVM_XICS */
2997 
2998 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
2999 {
3000 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3001 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3002 		return true;
3003 
3004 	return false;
3005 }
3006 
3007 /*
3008  * Check to see if any of the runnable vcpus on the vcore have pending
3009  * exceptions or are no longer ceded
3010  */
3011 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3012 {
3013 	struct kvm_vcpu *vcpu;
3014 	int i;
3015 
3016 	for_each_runnable_thread(i, vcpu, vc) {
3017 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3018 			return 1;
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 /*
3025  * All the vcpus in this vcore are idle, so wait for a decrementer
3026  * or external interrupt to one of the vcpus.  vc->lock is held.
3027  */
3028 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3029 {
3030 	ktime_t cur, start_poll, start_wait;
3031 	int do_sleep = 1;
3032 	u64 block_ns;
3033 	DECLARE_SWAITQUEUE(wait);
3034 
3035 	/* Poll for pending exceptions and ceded state */
3036 	cur = start_poll = ktime_get();
3037 	if (vc->halt_poll_ns) {
3038 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3039 		++vc->runner->stat.halt_attempted_poll;
3040 
3041 		vc->vcore_state = VCORE_POLLING;
3042 		spin_unlock(&vc->lock);
3043 
3044 		do {
3045 			if (kvmppc_vcore_check_block(vc)) {
3046 				do_sleep = 0;
3047 				break;
3048 			}
3049 			cur = ktime_get();
3050 		} while (single_task_running() && ktime_before(cur, stop));
3051 
3052 		spin_lock(&vc->lock);
3053 		vc->vcore_state = VCORE_INACTIVE;
3054 
3055 		if (!do_sleep) {
3056 			++vc->runner->stat.halt_successful_poll;
3057 			goto out;
3058 		}
3059 	}
3060 
3061 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3062 
3063 	if (kvmppc_vcore_check_block(vc)) {
3064 		finish_swait(&vc->wq, &wait);
3065 		do_sleep = 0;
3066 		/* If we polled, count this as a successful poll */
3067 		if (vc->halt_poll_ns)
3068 			++vc->runner->stat.halt_successful_poll;
3069 		goto out;
3070 	}
3071 
3072 	start_wait = ktime_get();
3073 
3074 	vc->vcore_state = VCORE_SLEEPING;
3075 	trace_kvmppc_vcore_blocked(vc, 0);
3076 	spin_unlock(&vc->lock);
3077 	schedule();
3078 	finish_swait(&vc->wq, &wait);
3079 	spin_lock(&vc->lock);
3080 	vc->vcore_state = VCORE_INACTIVE;
3081 	trace_kvmppc_vcore_blocked(vc, 1);
3082 	++vc->runner->stat.halt_successful_wait;
3083 
3084 	cur = ktime_get();
3085 
3086 out:
3087 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3088 
3089 	/* Attribute wait time */
3090 	if (do_sleep) {
3091 		vc->runner->stat.halt_wait_ns +=
3092 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3093 		/* Attribute failed poll time */
3094 		if (vc->halt_poll_ns)
3095 			vc->runner->stat.halt_poll_fail_ns +=
3096 				ktime_to_ns(start_wait) -
3097 				ktime_to_ns(start_poll);
3098 	} else {
3099 		/* Attribute successful poll time */
3100 		if (vc->halt_poll_ns)
3101 			vc->runner->stat.halt_poll_success_ns +=
3102 				ktime_to_ns(cur) -
3103 				ktime_to_ns(start_poll);
3104 	}
3105 
3106 	/* Adjust poll time */
3107 	if (halt_poll_ns) {
3108 		if (block_ns <= vc->halt_poll_ns)
3109 			;
3110 		/* We slept and blocked for longer than the max halt time */
3111 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3112 			shrink_halt_poll_ns(vc);
3113 		/* We slept and our poll time is too small */
3114 		else if (vc->halt_poll_ns < halt_poll_ns &&
3115 				block_ns < halt_poll_ns)
3116 			grow_halt_poll_ns(vc);
3117 		if (vc->halt_poll_ns > halt_poll_ns)
3118 			vc->halt_poll_ns = halt_poll_ns;
3119 	} else
3120 		vc->halt_poll_ns = 0;
3121 
3122 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3123 }
3124 
3125 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3126 {
3127 	int r = 0;
3128 	struct kvm *kvm = vcpu->kvm;
3129 
3130 	mutex_lock(&kvm->lock);
3131 	if (!kvm->arch.mmu_ready) {
3132 		if (!kvm_is_radix(kvm))
3133 			r = kvmppc_hv_setup_htab_rma(vcpu);
3134 		if (!r) {
3135 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3136 				kvmppc_setup_partition_table(kvm);
3137 			kvm->arch.mmu_ready = 1;
3138 		}
3139 	}
3140 	mutex_unlock(&kvm->lock);
3141 	return r;
3142 }
3143 
3144 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3145 {
3146 	int n_ceded, i, r;
3147 	struct kvmppc_vcore *vc;
3148 	struct kvm_vcpu *v;
3149 
3150 	trace_kvmppc_run_vcpu_enter(vcpu);
3151 
3152 	kvm_run->exit_reason = 0;
3153 	vcpu->arch.ret = RESUME_GUEST;
3154 	vcpu->arch.trap = 0;
3155 	kvmppc_update_vpas(vcpu);
3156 
3157 	/*
3158 	 * Synchronize with other threads in this virtual core
3159 	 */
3160 	vc = vcpu->arch.vcore;
3161 	spin_lock(&vc->lock);
3162 	vcpu->arch.ceded = 0;
3163 	vcpu->arch.run_task = current;
3164 	vcpu->arch.kvm_run = kvm_run;
3165 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3166 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3167 	vcpu->arch.busy_preempt = TB_NIL;
3168 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3169 	++vc->n_runnable;
3170 
3171 	/*
3172 	 * This happens the first time this is called for a vcpu.
3173 	 * If the vcore is already running, we may be able to start
3174 	 * this thread straight away and have it join in.
3175 	 */
3176 	if (!signal_pending(current)) {
3177 		if (vc->vcore_state == VCORE_PIGGYBACK) {
3178 			if (spin_trylock(&vc->lock)) {
3179 				if (vc->vcore_state == VCORE_RUNNING &&
3180 				    !VCORE_IS_EXITING(vc)) {
3181 					kvmppc_create_dtl_entry(vcpu, vc);
3182 					kvmppc_start_thread(vcpu, vc);
3183 					trace_kvm_guest_enter(vcpu);
3184 				}
3185 				spin_unlock(&vc->lock);
3186 			}
3187 		} else if (vc->vcore_state == VCORE_RUNNING &&
3188 			   !VCORE_IS_EXITING(vc)) {
3189 			kvmppc_create_dtl_entry(vcpu, vc);
3190 			kvmppc_start_thread(vcpu, vc);
3191 			trace_kvm_guest_enter(vcpu);
3192 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3193 			swake_up(&vc->wq);
3194 		}
3195 
3196 	}
3197 
3198 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3199 	       !signal_pending(current)) {
3200 		/* See if the MMU is ready to go */
3201 		if (!vcpu->kvm->arch.mmu_ready) {
3202 			spin_unlock(&vc->lock);
3203 			r = kvmhv_setup_mmu(vcpu);
3204 			spin_lock(&vc->lock);
3205 			if (r) {
3206 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3207 				kvm_run->fail_entry.
3208 					hardware_entry_failure_reason = 0;
3209 				vcpu->arch.ret = r;
3210 				break;
3211 			}
3212 		}
3213 
3214 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3215 			kvmppc_vcore_end_preempt(vc);
3216 
3217 		if (vc->vcore_state != VCORE_INACTIVE) {
3218 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3219 			continue;
3220 		}
3221 		for_each_runnable_thread(i, v, vc) {
3222 			kvmppc_core_prepare_to_enter(v);
3223 			if (signal_pending(v->arch.run_task)) {
3224 				kvmppc_remove_runnable(vc, v);
3225 				v->stat.signal_exits++;
3226 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3227 				v->arch.ret = -EINTR;
3228 				wake_up(&v->arch.cpu_run);
3229 			}
3230 		}
3231 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3232 			break;
3233 		n_ceded = 0;
3234 		for_each_runnable_thread(i, v, vc) {
3235 			if (!kvmppc_vcpu_woken(v))
3236 				n_ceded += v->arch.ceded;
3237 			else
3238 				v->arch.ceded = 0;
3239 		}
3240 		vc->runner = vcpu;
3241 		if (n_ceded == vc->n_runnable) {
3242 			kvmppc_vcore_blocked(vc);
3243 		} else if (need_resched()) {
3244 			kvmppc_vcore_preempt(vc);
3245 			/* Let something else run */
3246 			cond_resched_lock(&vc->lock);
3247 			if (vc->vcore_state == VCORE_PREEMPT)
3248 				kvmppc_vcore_end_preempt(vc);
3249 		} else {
3250 			kvmppc_run_core(vc);
3251 		}
3252 		vc->runner = NULL;
3253 	}
3254 
3255 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3256 	       (vc->vcore_state == VCORE_RUNNING ||
3257 		vc->vcore_state == VCORE_EXITING ||
3258 		vc->vcore_state == VCORE_PIGGYBACK))
3259 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3260 
3261 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3262 		kvmppc_vcore_end_preempt(vc);
3263 
3264 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3265 		kvmppc_remove_runnable(vc, vcpu);
3266 		vcpu->stat.signal_exits++;
3267 		kvm_run->exit_reason = KVM_EXIT_INTR;
3268 		vcpu->arch.ret = -EINTR;
3269 	}
3270 
3271 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3272 		/* Wake up some vcpu to run the core */
3273 		i = -1;
3274 		v = next_runnable_thread(vc, &i);
3275 		wake_up(&v->arch.cpu_run);
3276 	}
3277 
3278 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3279 	spin_unlock(&vc->lock);
3280 	return vcpu->arch.ret;
3281 }
3282 
3283 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3284 {
3285 	int r;
3286 	int srcu_idx;
3287 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3288 	unsigned long user_tar = 0;
3289 	unsigned int user_vrsave;
3290 	struct kvm *kvm;
3291 
3292 	if (!vcpu->arch.sane) {
3293 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3294 		return -EINVAL;
3295 	}
3296 
3297 	/*
3298 	 * Don't allow entry with a suspended transaction, because
3299 	 * the guest entry/exit code will lose it.
3300 	 * If the guest has TM enabled, save away their TM-related SPRs
3301 	 * (they will get restored by the TM unavailable interrupt).
3302 	 */
3303 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3304 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3305 	    (current->thread.regs->msr & MSR_TM)) {
3306 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3307 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3308 			run->fail_entry.hardware_entry_failure_reason = 0;
3309 			return -EINVAL;
3310 		}
3311 		/* Enable TM so we can read the TM SPRs */
3312 		mtmsr(mfmsr() | MSR_TM);
3313 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3314 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3315 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3316 		current->thread.regs->msr &= ~MSR_TM;
3317 	}
3318 #endif
3319 
3320 	kvmppc_core_prepare_to_enter(vcpu);
3321 
3322 	/* No need to go into the guest when all we'll do is come back out */
3323 	if (signal_pending(current)) {
3324 		run->exit_reason = KVM_EXIT_INTR;
3325 		return -EINTR;
3326 	}
3327 
3328 	kvm = vcpu->kvm;
3329 	atomic_inc(&kvm->arch.vcpus_running);
3330 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3331 	smp_mb();
3332 
3333 	flush_all_to_thread(current);
3334 
3335 	/* Save userspace EBB and other register values */
3336 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3337 		ebb_regs[0] = mfspr(SPRN_EBBHR);
3338 		ebb_regs[1] = mfspr(SPRN_EBBRR);
3339 		ebb_regs[2] = mfspr(SPRN_BESCR);
3340 		user_tar = mfspr(SPRN_TAR);
3341 	}
3342 	user_vrsave = mfspr(SPRN_VRSAVE);
3343 
3344 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3345 	vcpu->arch.pgdir = current->mm->pgd;
3346 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3347 
3348 	do {
3349 		r = kvmppc_run_vcpu(run, vcpu);
3350 
3351 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3352 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3353 			trace_kvm_hcall_enter(vcpu);
3354 			r = kvmppc_pseries_do_hcall(vcpu);
3355 			trace_kvm_hcall_exit(vcpu, r);
3356 			kvmppc_core_prepare_to_enter(vcpu);
3357 		} else if (r == RESUME_PAGE_FAULT) {
3358 			srcu_idx = srcu_read_lock(&kvm->srcu);
3359 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
3360 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3361 			srcu_read_unlock(&kvm->srcu, srcu_idx);
3362 		} else if (r == RESUME_PASSTHROUGH) {
3363 			if (WARN_ON(xive_enabled()))
3364 				r = H_SUCCESS;
3365 			else
3366 				r = kvmppc_xics_rm_complete(vcpu, 0);
3367 		}
3368 	} while (is_kvmppc_resume_guest(r));
3369 
3370 	/* Restore userspace EBB and other register values */
3371 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3372 		mtspr(SPRN_EBBHR, ebb_regs[0]);
3373 		mtspr(SPRN_EBBRR, ebb_regs[1]);
3374 		mtspr(SPRN_BESCR, ebb_regs[2]);
3375 		mtspr(SPRN_TAR, user_tar);
3376 		mtspr(SPRN_FSCR, current->thread.fscr);
3377 	}
3378 	mtspr(SPRN_VRSAVE, user_vrsave);
3379 
3380 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3381 	atomic_dec(&kvm->arch.vcpus_running);
3382 	return r;
3383 }
3384 
3385 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3386 				     int shift, int sllp)
3387 {
3388 	(*sps)->page_shift = shift;
3389 	(*sps)->slb_enc = sllp;
3390 	(*sps)->enc[0].page_shift = shift;
3391 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3392 	/*
3393 	 * Add 16MB MPSS support (may get filtered out by userspace)
3394 	 */
3395 	if (shift != 24) {
3396 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3397 		if (penc != -1) {
3398 			(*sps)->enc[1].page_shift = 24;
3399 			(*sps)->enc[1].pte_enc = penc;
3400 		}
3401 	}
3402 	(*sps)++;
3403 }
3404 
3405 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3406 					 struct kvm_ppc_smmu_info *info)
3407 {
3408 	struct kvm_ppc_one_seg_page_size *sps;
3409 
3410 	/*
3411 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3412 	 * POWER7 doesn't support keys for instruction accesses,
3413 	 * POWER8 and POWER9 do.
3414 	 */
3415 	info->data_keys = 32;
3416 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3417 
3418 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3419 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3420 	info->slb_size = 32;
3421 
3422 	/* We only support these sizes for now, and no muti-size segments */
3423 	sps = &info->sps[0];
3424 	kvmppc_add_seg_page_size(&sps, 12, 0);
3425 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3426 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3427 
3428 	return 0;
3429 }
3430 
3431 /*
3432  * Get (and clear) the dirty memory log for a memory slot.
3433  */
3434 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3435 					 struct kvm_dirty_log *log)
3436 {
3437 	struct kvm_memslots *slots;
3438 	struct kvm_memory_slot *memslot;
3439 	int i, r;
3440 	unsigned long n;
3441 	unsigned long *buf, *p;
3442 	struct kvm_vcpu *vcpu;
3443 
3444 	mutex_lock(&kvm->slots_lock);
3445 
3446 	r = -EINVAL;
3447 	if (log->slot >= KVM_USER_MEM_SLOTS)
3448 		goto out;
3449 
3450 	slots = kvm_memslots(kvm);
3451 	memslot = id_to_memslot(slots, log->slot);
3452 	r = -ENOENT;
3453 	if (!memslot->dirty_bitmap)
3454 		goto out;
3455 
3456 	/*
3457 	 * Use second half of bitmap area because both HPT and radix
3458 	 * accumulate bits in the first half.
3459 	 */
3460 	n = kvm_dirty_bitmap_bytes(memslot);
3461 	buf = memslot->dirty_bitmap + n / sizeof(long);
3462 	memset(buf, 0, n);
3463 
3464 	if (kvm_is_radix(kvm))
3465 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3466 	else
3467 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3468 	if (r)
3469 		goto out;
3470 
3471 	/*
3472 	 * We accumulate dirty bits in the first half of the
3473 	 * memslot's dirty_bitmap area, for when pages are paged
3474 	 * out or modified by the host directly.  Pick up these
3475 	 * bits and add them to the map.
3476 	 */
3477 	p = memslot->dirty_bitmap;
3478 	for (i = 0; i < n / sizeof(long); ++i)
3479 		buf[i] |= xchg(&p[i], 0);
3480 
3481 	/* Harvest dirty bits from VPA and DTL updates */
3482 	/* Note: we never modify the SLB shadow buffer areas */
3483 	kvm_for_each_vcpu(i, vcpu, kvm) {
3484 		spin_lock(&vcpu->arch.vpa_update_lock);
3485 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3486 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3487 		spin_unlock(&vcpu->arch.vpa_update_lock);
3488 	}
3489 
3490 	r = -EFAULT;
3491 	if (copy_to_user(log->dirty_bitmap, buf, n))
3492 		goto out;
3493 
3494 	r = 0;
3495 out:
3496 	mutex_unlock(&kvm->slots_lock);
3497 	return r;
3498 }
3499 
3500 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3501 					struct kvm_memory_slot *dont)
3502 {
3503 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3504 		vfree(free->arch.rmap);
3505 		free->arch.rmap = NULL;
3506 	}
3507 }
3508 
3509 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3510 					 unsigned long npages)
3511 {
3512 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3513 	if (!slot->arch.rmap)
3514 		return -ENOMEM;
3515 
3516 	return 0;
3517 }
3518 
3519 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3520 					struct kvm_memory_slot *memslot,
3521 					const struct kvm_userspace_memory_region *mem)
3522 {
3523 	return 0;
3524 }
3525 
3526 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3527 				const struct kvm_userspace_memory_region *mem,
3528 				const struct kvm_memory_slot *old,
3529 				const struct kvm_memory_slot *new)
3530 {
3531 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3532 
3533 	/*
3534 	 * If we are making a new memslot, it might make
3535 	 * some address that was previously cached as emulated
3536 	 * MMIO be no longer emulated MMIO, so invalidate
3537 	 * all the caches of emulated MMIO translations.
3538 	 */
3539 	if (npages)
3540 		atomic64_inc(&kvm->arch.mmio_update);
3541 }
3542 
3543 /*
3544  * Update LPCR values in kvm->arch and in vcores.
3545  * Caller must hold kvm->lock.
3546  */
3547 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3548 {
3549 	long int i;
3550 	u32 cores_done = 0;
3551 
3552 	if ((kvm->arch.lpcr & mask) == lpcr)
3553 		return;
3554 
3555 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3556 
3557 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3558 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3559 		if (!vc)
3560 			continue;
3561 		spin_lock(&vc->lock);
3562 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3563 		spin_unlock(&vc->lock);
3564 		if (++cores_done >= kvm->arch.online_vcores)
3565 			break;
3566 	}
3567 }
3568 
3569 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3570 {
3571 	return;
3572 }
3573 
3574 void kvmppc_setup_partition_table(struct kvm *kvm)
3575 {
3576 	unsigned long dw0, dw1;
3577 
3578 	if (!kvm_is_radix(kvm)) {
3579 		/* PS field - page size for VRMA */
3580 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3581 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3582 		/* HTABSIZE and HTABORG fields */
3583 		dw0 |= kvm->arch.sdr1;
3584 
3585 		/* Second dword as set by userspace */
3586 		dw1 = kvm->arch.process_table;
3587 	} else {
3588 		dw0 = PATB_HR | radix__get_tree_size() |
3589 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3590 		dw1 = PATB_GR | kvm->arch.process_table;
3591 	}
3592 
3593 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3594 }
3595 
3596 /*
3597  * Set up HPT (hashed page table) and RMA (real-mode area).
3598  * Must be called with kvm->lock held.
3599  */
3600 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3601 {
3602 	int err = 0;
3603 	struct kvm *kvm = vcpu->kvm;
3604 	unsigned long hva;
3605 	struct kvm_memory_slot *memslot;
3606 	struct vm_area_struct *vma;
3607 	unsigned long lpcr = 0, senc;
3608 	unsigned long psize, porder;
3609 	int srcu_idx;
3610 
3611 	/* Allocate hashed page table (if not done already) and reset it */
3612 	if (!kvm->arch.hpt.virt) {
3613 		int order = KVM_DEFAULT_HPT_ORDER;
3614 		struct kvm_hpt_info info;
3615 
3616 		err = kvmppc_allocate_hpt(&info, order);
3617 		/* If we get here, it means userspace didn't specify a
3618 		 * size explicitly.  So, try successively smaller
3619 		 * sizes if the default failed. */
3620 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3621 			err  = kvmppc_allocate_hpt(&info, order);
3622 
3623 		if (err < 0) {
3624 			pr_err("KVM: Couldn't alloc HPT\n");
3625 			goto out;
3626 		}
3627 
3628 		kvmppc_set_hpt(kvm, &info);
3629 	}
3630 
3631 	/* Look up the memslot for guest physical address 0 */
3632 	srcu_idx = srcu_read_lock(&kvm->srcu);
3633 	memslot = gfn_to_memslot(kvm, 0);
3634 
3635 	/* We must have some memory at 0 by now */
3636 	err = -EINVAL;
3637 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3638 		goto out_srcu;
3639 
3640 	/* Look up the VMA for the start of this memory slot */
3641 	hva = memslot->userspace_addr;
3642 	down_read(&current->mm->mmap_sem);
3643 	vma = find_vma(current->mm, hva);
3644 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3645 		goto up_out;
3646 
3647 	psize = vma_kernel_pagesize(vma);
3648 	porder = __ilog2(psize);
3649 
3650 	up_read(&current->mm->mmap_sem);
3651 
3652 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3653 	err = -EINVAL;
3654 	if (!(psize == 0x1000 || psize == 0x10000 ||
3655 	      psize == 0x1000000))
3656 		goto out_srcu;
3657 
3658 	senc = slb_pgsize_encoding(psize);
3659 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3660 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3661 	/* Create HPTEs in the hash page table for the VRMA */
3662 	kvmppc_map_vrma(vcpu, memslot, porder);
3663 
3664 	/* Update VRMASD field in the LPCR */
3665 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3666 		/* the -4 is to account for senc values starting at 0x10 */
3667 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3668 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3669 	}
3670 
3671 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3672 	smp_wmb();
3673 	err = 0;
3674  out_srcu:
3675 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3676  out:
3677 	return err;
3678 
3679  up_out:
3680 	up_read(&current->mm->mmap_sem);
3681 	goto out_srcu;
3682 }
3683 
3684 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3685 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3686 {
3687 	kvmppc_free_radix(kvm);
3688 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
3689 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3690 	kvmppc_rmap_reset(kvm);
3691 	kvm->arch.radix = 0;
3692 	kvm->arch.process_table = 0;
3693 	return 0;
3694 }
3695 
3696 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3697 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3698 {
3699 	int err;
3700 
3701 	err = kvmppc_init_vm_radix(kvm);
3702 	if (err)
3703 		return err;
3704 
3705 	kvmppc_free_hpt(&kvm->arch.hpt);
3706 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3707 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3708 	kvm->arch.radix = 1;
3709 	return 0;
3710 }
3711 
3712 #ifdef CONFIG_KVM_XICS
3713 /*
3714  * Allocate a per-core structure for managing state about which cores are
3715  * running in the host versus the guest and for exchanging data between
3716  * real mode KVM and CPU running in the host.
3717  * This is only done for the first VM.
3718  * The allocated structure stays even if all VMs have stopped.
3719  * It is only freed when the kvm-hv module is unloaded.
3720  * It's OK for this routine to fail, we just don't support host
3721  * core operations like redirecting H_IPI wakeups.
3722  */
3723 void kvmppc_alloc_host_rm_ops(void)
3724 {
3725 	struct kvmppc_host_rm_ops *ops;
3726 	unsigned long l_ops;
3727 	int cpu, core;
3728 	int size;
3729 
3730 	/* Not the first time here ? */
3731 	if (kvmppc_host_rm_ops_hv != NULL)
3732 		return;
3733 
3734 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3735 	if (!ops)
3736 		return;
3737 
3738 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3739 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3740 
3741 	if (!ops->rm_core) {
3742 		kfree(ops);
3743 		return;
3744 	}
3745 
3746 	cpus_read_lock();
3747 
3748 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3749 		if (!cpu_online(cpu))
3750 			continue;
3751 
3752 		core = cpu >> threads_shift;
3753 		ops->rm_core[core].rm_state.in_host = 1;
3754 	}
3755 
3756 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3757 
3758 	/*
3759 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3760 	 * to other CPUs before we assign it to the global variable.
3761 	 * Do an atomic assignment (no locks used here), but if someone
3762 	 * beats us to it, just free our copy and return.
3763 	 */
3764 	smp_wmb();
3765 	l_ops = (unsigned long) ops;
3766 
3767 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3768 		cpus_read_unlock();
3769 		kfree(ops->rm_core);
3770 		kfree(ops);
3771 		return;
3772 	}
3773 
3774 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3775 					     "ppc/kvm_book3s:prepare",
3776 					     kvmppc_set_host_core,
3777 					     kvmppc_clear_host_core);
3778 	cpus_read_unlock();
3779 }
3780 
3781 void kvmppc_free_host_rm_ops(void)
3782 {
3783 	if (kvmppc_host_rm_ops_hv) {
3784 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3785 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3786 		kfree(kvmppc_host_rm_ops_hv);
3787 		kvmppc_host_rm_ops_hv = NULL;
3788 	}
3789 }
3790 #endif
3791 
3792 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3793 {
3794 	unsigned long lpcr, lpid;
3795 	char buf[32];
3796 	int ret;
3797 
3798 	/* Allocate the guest's logical partition ID */
3799 
3800 	lpid = kvmppc_alloc_lpid();
3801 	if ((long)lpid < 0)
3802 		return -ENOMEM;
3803 	kvm->arch.lpid = lpid;
3804 
3805 	kvmppc_alloc_host_rm_ops();
3806 
3807 	/*
3808 	 * Since we don't flush the TLB when tearing down a VM,
3809 	 * and this lpid might have previously been used,
3810 	 * make sure we flush on each core before running the new VM.
3811 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3812 	 * does this flush for us.
3813 	 */
3814 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3815 		cpumask_setall(&kvm->arch.need_tlb_flush);
3816 
3817 	/* Start out with the default set of hcalls enabled */
3818 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3819 	       sizeof(kvm->arch.enabled_hcalls));
3820 
3821 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3822 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3823 
3824 	/* Init LPCR for virtual RMA mode */
3825 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3826 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3827 	lpcr &= LPCR_PECE | LPCR_LPES;
3828 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3829 		LPCR_VPM0 | LPCR_VPM1;
3830 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3831 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3832 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3833 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3834 		lpcr |= LPCR_ONL;
3835 	/*
3836 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3837 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3838 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3839 	 * be unnecessary but better safe than sorry in case we re-enable
3840 	 * EE in HV mode with this LPCR still set)
3841 	 */
3842 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3843 		lpcr &= ~LPCR_VPM0;
3844 		lpcr |= LPCR_HVICE | LPCR_HEIC;
3845 
3846 		/*
3847 		 * If xive is enabled, we route 0x500 interrupts directly
3848 		 * to the guest.
3849 		 */
3850 		if (xive_enabled())
3851 			lpcr |= LPCR_LPES;
3852 	}
3853 
3854 	/*
3855 	 * If the host uses radix, the guest starts out as radix.
3856 	 */
3857 	if (radix_enabled()) {
3858 		kvm->arch.radix = 1;
3859 		kvm->arch.mmu_ready = 1;
3860 		lpcr &= ~LPCR_VPM1;
3861 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3862 		ret = kvmppc_init_vm_radix(kvm);
3863 		if (ret) {
3864 			kvmppc_free_lpid(kvm->arch.lpid);
3865 			return ret;
3866 		}
3867 		kvmppc_setup_partition_table(kvm);
3868 	}
3869 
3870 	kvm->arch.lpcr = lpcr;
3871 
3872 	/* Initialization for future HPT resizes */
3873 	kvm->arch.resize_hpt = NULL;
3874 
3875 	/*
3876 	 * Work out how many sets the TLB has, for the use of
3877 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3878 	 */
3879 	if (radix_enabled())
3880 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
3881 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3882 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
3883 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3884 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
3885 	else
3886 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
3887 
3888 	/*
3889 	 * Track that we now have a HV mode VM active. This blocks secondary
3890 	 * CPU threads from coming online.
3891 	 * On POWER9, we only need to do this if the "indep_threads_mode"
3892 	 * module parameter has been set to N.
3893 	 */
3894 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3895 		kvm->arch.threads_indep = indep_threads_mode;
3896 	if (!kvm->arch.threads_indep)
3897 		kvm_hv_vm_activated();
3898 
3899 	/*
3900 	 * Initialize smt_mode depending on processor.
3901 	 * POWER8 and earlier have to use "strict" threading, where
3902 	 * all vCPUs in a vcore have to run on the same (sub)core,
3903 	 * whereas on POWER9 the threads can each run a different
3904 	 * guest.
3905 	 */
3906 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3907 		kvm->arch.smt_mode = threads_per_subcore;
3908 	else
3909 		kvm->arch.smt_mode = 1;
3910 	kvm->arch.emul_smt_mode = 1;
3911 
3912 	/*
3913 	 * Create a debugfs directory for the VM
3914 	 */
3915 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3916 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3917 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3918 		kvmppc_mmu_debugfs_init(kvm);
3919 
3920 	return 0;
3921 }
3922 
3923 static void kvmppc_free_vcores(struct kvm *kvm)
3924 {
3925 	long int i;
3926 
3927 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3928 		kfree(kvm->arch.vcores[i]);
3929 	kvm->arch.online_vcores = 0;
3930 }
3931 
3932 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3933 {
3934 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3935 
3936 	if (!kvm->arch.threads_indep)
3937 		kvm_hv_vm_deactivated();
3938 
3939 	kvmppc_free_vcores(kvm);
3940 
3941 	kvmppc_free_lpid(kvm->arch.lpid);
3942 
3943 	if (kvm_is_radix(kvm))
3944 		kvmppc_free_radix(kvm);
3945 	else
3946 		kvmppc_free_hpt(&kvm->arch.hpt);
3947 
3948 	kvmppc_free_pimap(kvm);
3949 }
3950 
3951 /* We don't need to emulate any privileged instructions or dcbz */
3952 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3953 				     unsigned int inst, int *advance)
3954 {
3955 	return EMULATE_FAIL;
3956 }
3957 
3958 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3959 					ulong spr_val)
3960 {
3961 	return EMULATE_FAIL;
3962 }
3963 
3964 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3965 					ulong *spr_val)
3966 {
3967 	return EMULATE_FAIL;
3968 }
3969 
3970 static int kvmppc_core_check_processor_compat_hv(void)
3971 {
3972 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3973 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3974 		return -EIO;
3975 
3976 	return 0;
3977 }
3978 
3979 #ifdef CONFIG_KVM_XICS
3980 
3981 void kvmppc_free_pimap(struct kvm *kvm)
3982 {
3983 	kfree(kvm->arch.pimap);
3984 }
3985 
3986 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3987 {
3988 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3989 }
3990 
3991 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3992 {
3993 	struct irq_desc *desc;
3994 	struct kvmppc_irq_map *irq_map;
3995 	struct kvmppc_passthru_irqmap *pimap;
3996 	struct irq_chip *chip;
3997 	int i, rc = 0;
3998 
3999 	if (!kvm_irq_bypass)
4000 		return 1;
4001 
4002 	desc = irq_to_desc(host_irq);
4003 	if (!desc)
4004 		return -EIO;
4005 
4006 	mutex_lock(&kvm->lock);
4007 
4008 	pimap = kvm->arch.pimap;
4009 	if (pimap == NULL) {
4010 		/* First call, allocate structure to hold IRQ map */
4011 		pimap = kvmppc_alloc_pimap();
4012 		if (pimap == NULL) {
4013 			mutex_unlock(&kvm->lock);
4014 			return -ENOMEM;
4015 		}
4016 		kvm->arch.pimap = pimap;
4017 	}
4018 
4019 	/*
4020 	 * For now, we only support interrupts for which the EOI operation
4021 	 * is an OPAL call followed by a write to XIRR, since that's
4022 	 * what our real-mode EOI code does, or a XIVE interrupt
4023 	 */
4024 	chip = irq_data_get_irq_chip(&desc->irq_data);
4025 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4026 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4027 			host_irq, guest_gsi);
4028 		mutex_unlock(&kvm->lock);
4029 		return -ENOENT;
4030 	}
4031 
4032 	/*
4033 	 * See if we already have an entry for this guest IRQ number.
4034 	 * If it's mapped to a hardware IRQ number, that's an error,
4035 	 * otherwise re-use this entry.
4036 	 */
4037 	for (i = 0; i < pimap->n_mapped; i++) {
4038 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
4039 			if (pimap->mapped[i].r_hwirq) {
4040 				mutex_unlock(&kvm->lock);
4041 				return -EINVAL;
4042 			}
4043 			break;
4044 		}
4045 	}
4046 
4047 	if (i == KVMPPC_PIRQ_MAPPED) {
4048 		mutex_unlock(&kvm->lock);
4049 		return -EAGAIN;		/* table is full */
4050 	}
4051 
4052 	irq_map = &pimap->mapped[i];
4053 
4054 	irq_map->v_hwirq = guest_gsi;
4055 	irq_map->desc = desc;
4056 
4057 	/*
4058 	 * Order the above two stores before the next to serialize with
4059 	 * the KVM real mode handler.
4060 	 */
4061 	smp_wmb();
4062 	irq_map->r_hwirq = desc->irq_data.hwirq;
4063 
4064 	if (i == pimap->n_mapped)
4065 		pimap->n_mapped++;
4066 
4067 	if (xive_enabled())
4068 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4069 	else
4070 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4071 	if (rc)
4072 		irq_map->r_hwirq = 0;
4073 
4074 	mutex_unlock(&kvm->lock);
4075 
4076 	return 0;
4077 }
4078 
4079 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4080 {
4081 	struct irq_desc *desc;
4082 	struct kvmppc_passthru_irqmap *pimap;
4083 	int i, rc = 0;
4084 
4085 	if (!kvm_irq_bypass)
4086 		return 0;
4087 
4088 	desc = irq_to_desc(host_irq);
4089 	if (!desc)
4090 		return -EIO;
4091 
4092 	mutex_lock(&kvm->lock);
4093 	if (!kvm->arch.pimap)
4094 		goto unlock;
4095 
4096 	pimap = kvm->arch.pimap;
4097 
4098 	for (i = 0; i < pimap->n_mapped; i++) {
4099 		if (guest_gsi == pimap->mapped[i].v_hwirq)
4100 			break;
4101 	}
4102 
4103 	if (i == pimap->n_mapped) {
4104 		mutex_unlock(&kvm->lock);
4105 		return -ENODEV;
4106 	}
4107 
4108 	if (xive_enabled())
4109 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4110 	else
4111 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4112 
4113 	/* invalidate the entry (what do do on error from the above ?) */
4114 	pimap->mapped[i].r_hwirq = 0;
4115 
4116 	/*
4117 	 * We don't free this structure even when the count goes to
4118 	 * zero. The structure is freed when we destroy the VM.
4119 	 */
4120  unlock:
4121 	mutex_unlock(&kvm->lock);
4122 	return rc;
4123 }
4124 
4125 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4126 					     struct irq_bypass_producer *prod)
4127 {
4128 	int ret = 0;
4129 	struct kvm_kernel_irqfd *irqfd =
4130 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4131 
4132 	irqfd->producer = prod;
4133 
4134 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4135 	if (ret)
4136 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4137 			prod->irq, irqfd->gsi, ret);
4138 
4139 	return ret;
4140 }
4141 
4142 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4143 					      struct irq_bypass_producer *prod)
4144 {
4145 	int ret;
4146 	struct kvm_kernel_irqfd *irqfd =
4147 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4148 
4149 	irqfd->producer = NULL;
4150 
4151 	/*
4152 	 * When producer of consumer is unregistered, we change back to
4153 	 * default external interrupt handling mode - KVM real mode
4154 	 * will switch back to host.
4155 	 */
4156 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4157 	if (ret)
4158 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4159 			prod->irq, irqfd->gsi, ret);
4160 }
4161 #endif
4162 
4163 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4164 				 unsigned int ioctl, unsigned long arg)
4165 {
4166 	struct kvm *kvm __maybe_unused = filp->private_data;
4167 	void __user *argp = (void __user *)arg;
4168 	long r;
4169 
4170 	switch (ioctl) {
4171 
4172 	case KVM_PPC_ALLOCATE_HTAB: {
4173 		u32 htab_order;
4174 
4175 		r = -EFAULT;
4176 		if (get_user(htab_order, (u32 __user *)argp))
4177 			break;
4178 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4179 		if (r)
4180 			break;
4181 		r = 0;
4182 		break;
4183 	}
4184 
4185 	case KVM_PPC_GET_HTAB_FD: {
4186 		struct kvm_get_htab_fd ghf;
4187 
4188 		r = -EFAULT;
4189 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
4190 			break;
4191 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4192 		break;
4193 	}
4194 
4195 	case KVM_PPC_RESIZE_HPT_PREPARE: {
4196 		struct kvm_ppc_resize_hpt rhpt;
4197 
4198 		r = -EFAULT;
4199 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4200 			break;
4201 
4202 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4203 		break;
4204 	}
4205 
4206 	case KVM_PPC_RESIZE_HPT_COMMIT: {
4207 		struct kvm_ppc_resize_hpt rhpt;
4208 
4209 		r = -EFAULT;
4210 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4211 			break;
4212 
4213 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4214 		break;
4215 	}
4216 
4217 	default:
4218 		r = -ENOTTY;
4219 	}
4220 
4221 	return r;
4222 }
4223 
4224 /*
4225  * List of hcall numbers to enable by default.
4226  * For compatibility with old userspace, we enable by default
4227  * all hcalls that were implemented before the hcall-enabling
4228  * facility was added.  Note this list should not include H_RTAS.
4229  */
4230 static unsigned int default_hcall_list[] = {
4231 	H_REMOVE,
4232 	H_ENTER,
4233 	H_READ,
4234 	H_PROTECT,
4235 	H_BULK_REMOVE,
4236 	H_GET_TCE,
4237 	H_PUT_TCE,
4238 	H_SET_DABR,
4239 	H_SET_XDABR,
4240 	H_CEDE,
4241 	H_PROD,
4242 	H_CONFER,
4243 	H_REGISTER_VPA,
4244 #ifdef CONFIG_KVM_XICS
4245 	H_EOI,
4246 	H_CPPR,
4247 	H_IPI,
4248 	H_IPOLL,
4249 	H_XIRR,
4250 	H_XIRR_X,
4251 #endif
4252 	0
4253 };
4254 
4255 static void init_default_hcalls(void)
4256 {
4257 	int i;
4258 	unsigned int hcall;
4259 
4260 	for (i = 0; default_hcall_list[i]; ++i) {
4261 		hcall = default_hcall_list[i];
4262 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4263 		__set_bit(hcall / 4, default_enabled_hcalls);
4264 	}
4265 }
4266 
4267 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4268 {
4269 	unsigned long lpcr;
4270 	int radix;
4271 	int err;
4272 
4273 	/* If not on a POWER9, reject it */
4274 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4275 		return -ENODEV;
4276 
4277 	/* If any unknown flags set, reject it */
4278 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4279 		return -EINVAL;
4280 
4281 	/* GR (guest radix) bit in process_table field must match */
4282 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4283 	if (!!(cfg->process_table & PATB_GR) != radix)
4284 		return -EINVAL;
4285 
4286 	/* Process table size field must be reasonable, i.e. <= 24 */
4287 	if ((cfg->process_table & PRTS_MASK) > 24)
4288 		return -EINVAL;
4289 
4290 	/* We can change a guest to/from radix now, if the host is radix */
4291 	if (radix && !radix_enabled())
4292 		return -EINVAL;
4293 
4294 	mutex_lock(&kvm->lock);
4295 	if (radix != kvm_is_radix(kvm)) {
4296 		if (kvm->arch.mmu_ready) {
4297 			kvm->arch.mmu_ready = 0;
4298 			/* order mmu_ready vs. vcpus_running */
4299 			smp_mb();
4300 			if (atomic_read(&kvm->arch.vcpus_running)) {
4301 				kvm->arch.mmu_ready = 1;
4302 				err = -EBUSY;
4303 				goto out_unlock;
4304 			}
4305 		}
4306 		if (radix)
4307 			err = kvmppc_switch_mmu_to_radix(kvm);
4308 		else
4309 			err = kvmppc_switch_mmu_to_hpt(kvm);
4310 		if (err)
4311 			goto out_unlock;
4312 	}
4313 
4314 	kvm->arch.process_table = cfg->process_table;
4315 	kvmppc_setup_partition_table(kvm);
4316 
4317 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4318 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4319 	err = 0;
4320 
4321  out_unlock:
4322 	mutex_unlock(&kvm->lock);
4323 	return err;
4324 }
4325 
4326 static struct kvmppc_ops kvm_ops_hv = {
4327 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4328 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4329 	.get_one_reg = kvmppc_get_one_reg_hv,
4330 	.set_one_reg = kvmppc_set_one_reg_hv,
4331 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
4332 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
4333 	.set_msr     = kvmppc_set_msr_hv,
4334 	.vcpu_run    = kvmppc_vcpu_run_hv,
4335 	.vcpu_create = kvmppc_core_vcpu_create_hv,
4336 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
4337 	.check_requests = kvmppc_core_check_requests_hv,
4338 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4339 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
4340 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4341 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4342 	.unmap_hva = kvm_unmap_hva_hv,
4343 	.unmap_hva_range = kvm_unmap_hva_range_hv,
4344 	.age_hva  = kvm_age_hva_hv,
4345 	.test_age_hva = kvm_test_age_hva_hv,
4346 	.set_spte_hva = kvm_set_spte_hva_hv,
4347 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
4348 	.free_memslot = kvmppc_core_free_memslot_hv,
4349 	.create_memslot = kvmppc_core_create_memslot_hv,
4350 	.init_vm =  kvmppc_core_init_vm_hv,
4351 	.destroy_vm = kvmppc_core_destroy_vm_hv,
4352 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4353 	.emulate_op = kvmppc_core_emulate_op_hv,
4354 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4355 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4356 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4357 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4358 	.hcall_implemented = kvmppc_hcall_impl_hv,
4359 #ifdef CONFIG_KVM_XICS
4360 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4361 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4362 #endif
4363 	.configure_mmu = kvmhv_configure_mmu,
4364 	.get_rmmu_info = kvmhv_get_rmmu_info,
4365 	.set_smt_mode = kvmhv_set_smt_mode,
4366 };
4367 
4368 static int kvm_init_subcore_bitmap(void)
4369 {
4370 	int i, j;
4371 	int nr_cores = cpu_nr_cores();
4372 	struct sibling_subcore_state *sibling_subcore_state;
4373 
4374 	for (i = 0; i < nr_cores; i++) {
4375 		int first_cpu = i * threads_per_core;
4376 		int node = cpu_to_node(first_cpu);
4377 
4378 		/* Ignore if it is already allocated. */
4379 		if (paca[first_cpu].sibling_subcore_state)
4380 			continue;
4381 
4382 		sibling_subcore_state =
4383 			kmalloc_node(sizeof(struct sibling_subcore_state),
4384 							GFP_KERNEL, node);
4385 		if (!sibling_subcore_state)
4386 			return -ENOMEM;
4387 
4388 		memset(sibling_subcore_state, 0,
4389 				sizeof(struct sibling_subcore_state));
4390 
4391 		for (j = 0; j < threads_per_core; j++) {
4392 			int cpu = first_cpu + j;
4393 
4394 			paca[cpu].sibling_subcore_state = sibling_subcore_state;
4395 		}
4396 	}
4397 	return 0;
4398 }
4399 
4400 static int kvmppc_radix_possible(void)
4401 {
4402 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4403 }
4404 
4405 static int kvmppc_book3s_init_hv(void)
4406 {
4407 	int r;
4408 	/*
4409 	 * FIXME!! Do we need to check on all cpus ?
4410 	 */
4411 	r = kvmppc_core_check_processor_compat_hv();
4412 	if (r < 0)
4413 		return -ENODEV;
4414 
4415 	r = kvm_init_subcore_bitmap();
4416 	if (r)
4417 		return r;
4418 
4419 	/*
4420 	 * We need a way of accessing the XICS interrupt controller,
4421 	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4422 	 * indirectly, via OPAL.
4423 	 */
4424 #ifdef CONFIG_SMP
4425 	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4426 		struct device_node *np;
4427 
4428 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4429 		if (!np) {
4430 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4431 			return -ENODEV;
4432 		}
4433 	}
4434 #endif
4435 
4436 	kvm_ops_hv.owner = THIS_MODULE;
4437 	kvmppc_hv_ops = &kvm_ops_hv;
4438 
4439 	init_default_hcalls();
4440 
4441 	init_vcore_lists();
4442 
4443 	r = kvmppc_mmu_hv_init();
4444 	if (r)
4445 		return r;
4446 
4447 	if (kvmppc_radix_possible())
4448 		r = kvmppc_radix_init();
4449 	return r;
4450 }
4451 
4452 static void kvmppc_book3s_exit_hv(void)
4453 {
4454 	kvmppc_free_host_rm_ops();
4455 	if (kvmppc_radix_possible())
4456 		kvmppc_radix_exit();
4457 	kvmppc_hv_ops = NULL;
4458 }
4459 
4460 module_init(kvmppc_book3s_init_hv);
4461 module_exit(kvmppc_book3s_exit_hv);
4462 MODULE_LICENSE("GPL");
4463 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4464 MODULE_ALIAS("devname:kvm");
4465