1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/kernel.h> 23 #include <linux/err.h> 24 #include <linux/slab.h> 25 #include <linux/preempt.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/stat.h> 28 #include <linux/delay.h> 29 #include <linux/export.h> 30 #include <linux/fs.h> 31 #include <linux/anon_inodes.h> 32 #include <linux/cpu.h> 33 #include <linux/cpumask.h> 34 #include <linux/spinlock.h> 35 #include <linux/page-flags.h> 36 #include <linux/srcu.h> 37 #include <linux/miscdevice.h> 38 #include <linux/debugfs.h> 39 #include <linux/gfp.h> 40 #include <linux/vmalloc.h> 41 #include <linux/highmem.h> 42 #include <linux/hugetlb.h> 43 #include <linux/kvm_irqfd.h> 44 #include <linux/irqbypass.h> 45 #include <linux/module.h> 46 #include <linux/compiler.h> 47 #include <linux/of.h> 48 49 #include <asm/reg.h> 50 #include <asm/ppc-opcode.h> 51 #include <asm/asm-prototypes.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <asm/tlbflush.h> 56 #include <linux/uaccess.h> 57 #include <asm/io.h> 58 #include <asm/kvm_ppc.h> 59 #include <asm/kvm_book3s.h> 60 #include <asm/mmu_context.h> 61 #include <asm/lppaca.h> 62 #include <asm/processor.h> 63 #include <asm/cputhreads.h> 64 #include <asm/page.h> 65 #include <asm/hvcall.h> 66 #include <asm/switch_to.h> 67 #include <asm/smp.h> 68 #include <asm/dbell.h> 69 #include <asm/hmi.h> 70 #include <asm/pnv-pci.h> 71 #include <asm/mmu.h> 72 #include <asm/opal.h> 73 #include <asm/xics.h> 74 #include <asm/xive.h> 75 76 #include "book3s.h" 77 78 #define CREATE_TRACE_POINTS 79 #include "trace_hv.h" 80 81 /* #define EXIT_DEBUG */ 82 /* #define EXIT_DEBUG_SIMPLE */ 83 /* #define EXIT_DEBUG_INT */ 84 85 /* Used to indicate that a guest page fault needs to be handled */ 86 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 87 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 88 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 89 90 /* Used as a "null" value for timebase values */ 91 #define TB_NIL (~(u64)0) 92 93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 94 95 static int dynamic_mt_modes = 6; 96 module_param(dynamic_mt_modes, int, 0644); 97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 98 static int target_smt_mode; 99 module_param(target_smt_mode, int, 0644); 100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 101 102 static bool indep_threads_mode = true; 103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 105 106 #ifdef CONFIG_KVM_XICS 107 static struct kernel_param_ops module_param_ops = { 108 .set = param_set_int, 109 .get = param_get_int, 110 }; 111 112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 113 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 114 115 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 116 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 117 #endif 118 119 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 120 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 121 122 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 123 int *ip) 124 { 125 int i = *ip; 126 struct kvm_vcpu *vcpu; 127 128 while (++i < MAX_SMT_THREADS) { 129 vcpu = READ_ONCE(vc->runnable_threads[i]); 130 if (vcpu) { 131 *ip = i; 132 return vcpu; 133 } 134 } 135 return NULL; 136 } 137 138 /* Used to traverse the list of runnable threads for a given vcore */ 139 #define for_each_runnable_thread(i, vcpu, vc) \ 140 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 141 142 static bool kvmppc_ipi_thread(int cpu) 143 { 144 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 145 146 /* On POWER9 we can use msgsnd to IPI any cpu */ 147 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 148 msg |= get_hard_smp_processor_id(cpu); 149 smp_mb(); 150 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 151 return true; 152 } 153 154 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 155 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 156 preempt_disable(); 157 if (cpu_first_thread_sibling(cpu) == 158 cpu_first_thread_sibling(smp_processor_id())) { 159 msg |= cpu_thread_in_core(cpu); 160 smp_mb(); 161 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 162 preempt_enable(); 163 return true; 164 } 165 preempt_enable(); 166 } 167 168 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 169 if (cpu >= 0 && cpu < nr_cpu_ids) { 170 if (paca[cpu].kvm_hstate.xics_phys) { 171 xics_wake_cpu(cpu); 172 return true; 173 } 174 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 175 return true; 176 } 177 #endif 178 179 return false; 180 } 181 182 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 183 { 184 int cpu; 185 struct swait_queue_head *wqp; 186 187 wqp = kvm_arch_vcpu_wq(vcpu); 188 if (swq_has_sleeper(wqp)) { 189 swake_up(wqp); 190 ++vcpu->stat.halt_wakeup; 191 } 192 193 cpu = READ_ONCE(vcpu->arch.thread_cpu); 194 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 195 return; 196 197 /* CPU points to the first thread of the core */ 198 cpu = vcpu->cpu; 199 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 200 smp_send_reschedule(cpu); 201 } 202 203 /* 204 * We use the vcpu_load/put functions to measure stolen time. 205 * Stolen time is counted as time when either the vcpu is able to 206 * run as part of a virtual core, but the task running the vcore 207 * is preempted or sleeping, or when the vcpu needs something done 208 * in the kernel by the task running the vcpu, but that task is 209 * preempted or sleeping. Those two things have to be counted 210 * separately, since one of the vcpu tasks will take on the job 211 * of running the core, and the other vcpu tasks in the vcore will 212 * sleep waiting for it to do that, but that sleep shouldn't count 213 * as stolen time. 214 * 215 * Hence we accumulate stolen time when the vcpu can run as part of 216 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 217 * needs its task to do other things in the kernel (for example, 218 * service a page fault) in busy_stolen. We don't accumulate 219 * stolen time for a vcore when it is inactive, or for a vcpu 220 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 221 * a misnomer; it means that the vcpu task is not executing in 222 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 223 * the kernel. We don't have any way of dividing up that time 224 * between time that the vcpu is genuinely stopped, time that 225 * the task is actively working on behalf of the vcpu, and time 226 * that the task is preempted, so we don't count any of it as 227 * stolen. 228 * 229 * Updates to busy_stolen are protected by arch.tbacct_lock; 230 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 231 * lock. The stolen times are measured in units of timebase ticks. 232 * (Note that the != TB_NIL checks below are purely defensive; 233 * they should never fail.) 234 */ 235 236 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 237 { 238 unsigned long flags; 239 240 spin_lock_irqsave(&vc->stoltb_lock, flags); 241 vc->preempt_tb = mftb(); 242 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 243 } 244 245 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 246 { 247 unsigned long flags; 248 249 spin_lock_irqsave(&vc->stoltb_lock, flags); 250 if (vc->preempt_tb != TB_NIL) { 251 vc->stolen_tb += mftb() - vc->preempt_tb; 252 vc->preempt_tb = TB_NIL; 253 } 254 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 255 } 256 257 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 258 { 259 struct kvmppc_vcore *vc = vcpu->arch.vcore; 260 unsigned long flags; 261 262 /* 263 * We can test vc->runner without taking the vcore lock, 264 * because only this task ever sets vc->runner to this 265 * vcpu, and once it is set to this vcpu, only this task 266 * ever sets it to NULL. 267 */ 268 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 269 kvmppc_core_end_stolen(vc); 270 271 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 272 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 273 vcpu->arch.busy_preempt != TB_NIL) { 274 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 275 vcpu->arch.busy_preempt = TB_NIL; 276 } 277 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 278 } 279 280 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 281 { 282 struct kvmppc_vcore *vc = vcpu->arch.vcore; 283 unsigned long flags; 284 285 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 286 kvmppc_core_start_stolen(vc); 287 288 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 289 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 290 vcpu->arch.busy_preempt = mftb(); 291 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 292 } 293 294 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 295 { 296 /* 297 * Check for illegal transactional state bit combination 298 * and if we find it, force the TS field to a safe state. 299 */ 300 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 301 msr &= ~MSR_TS_MASK; 302 vcpu->arch.shregs.msr = msr; 303 kvmppc_end_cede(vcpu); 304 } 305 306 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 307 { 308 vcpu->arch.pvr = pvr; 309 } 310 311 /* Dummy value used in computing PCR value below */ 312 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 313 314 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 315 { 316 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 317 struct kvmppc_vcore *vc = vcpu->arch.vcore; 318 319 /* We can (emulate) our own architecture version and anything older */ 320 if (cpu_has_feature(CPU_FTR_ARCH_300)) 321 host_pcr_bit = PCR_ARCH_300; 322 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 323 host_pcr_bit = PCR_ARCH_207; 324 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 325 host_pcr_bit = PCR_ARCH_206; 326 else 327 host_pcr_bit = PCR_ARCH_205; 328 329 /* Determine lowest PCR bit needed to run guest in given PVR level */ 330 guest_pcr_bit = host_pcr_bit; 331 if (arch_compat) { 332 switch (arch_compat) { 333 case PVR_ARCH_205: 334 guest_pcr_bit = PCR_ARCH_205; 335 break; 336 case PVR_ARCH_206: 337 case PVR_ARCH_206p: 338 guest_pcr_bit = PCR_ARCH_206; 339 break; 340 case PVR_ARCH_207: 341 guest_pcr_bit = PCR_ARCH_207; 342 break; 343 case PVR_ARCH_300: 344 guest_pcr_bit = PCR_ARCH_300; 345 break; 346 default: 347 return -EINVAL; 348 } 349 } 350 351 /* Check requested PCR bits don't exceed our capabilities */ 352 if (guest_pcr_bit > host_pcr_bit) 353 return -EINVAL; 354 355 spin_lock(&vc->lock); 356 vc->arch_compat = arch_compat; 357 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 358 vc->pcr = host_pcr_bit - guest_pcr_bit; 359 spin_unlock(&vc->lock); 360 361 return 0; 362 } 363 364 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 365 { 366 int r; 367 368 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 369 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 370 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 371 for (r = 0; r < 16; ++r) 372 pr_err("r%2d = %.16lx r%d = %.16lx\n", 373 r, kvmppc_get_gpr(vcpu, r), 374 r+16, kvmppc_get_gpr(vcpu, r+16)); 375 pr_err("ctr = %.16lx lr = %.16lx\n", 376 vcpu->arch.ctr, vcpu->arch.lr); 377 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 378 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 379 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 380 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 381 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 382 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 383 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 384 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 385 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 386 pr_err("fault dar = %.16lx dsisr = %.8x\n", 387 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 388 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 389 for (r = 0; r < vcpu->arch.slb_max; ++r) 390 pr_err(" ESID = %.16llx VSID = %.16llx\n", 391 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 392 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 393 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 394 vcpu->arch.last_inst); 395 } 396 397 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 398 { 399 struct kvm_vcpu *ret; 400 401 mutex_lock(&kvm->lock); 402 ret = kvm_get_vcpu_by_id(kvm, id); 403 mutex_unlock(&kvm->lock); 404 return ret; 405 } 406 407 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 408 { 409 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 410 vpa->yield_count = cpu_to_be32(1); 411 } 412 413 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 414 unsigned long addr, unsigned long len) 415 { 416 /* check address is cacheline aligned */ 417 if (addr & (L1_CACHE_BYTES - 1)) 418 return -EINVAL; 419 spin_lock(&vcpu->arch.vpa_update_lock); 420 if (v->next_gpa != addr || v->len != len) { 421 v->next_gpa = addr; 422 v->len = addr ? len : 0; 423 v->update_pending = 1; 424 } 425 spin_unlock(&vcpu->arch.vpa_update_lock); 426 return 0; 427 } 428 429 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 430 struct reg_vpa { 431 u32 dummy; 432 union { 433 __be16 hword; 434 __be32 word; 435 } length; 436 }; 437 438 static int vpa_is_registered(struct kvmppc_vpa *vpap) 439 { 440 if (vpap->update_pending) 441 return vpap->next_gpa != 0; 442 return vpap->pinned_addr != NULL; 443 } 444 445 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 446 unsigned long flags, 447 unsigned long vcpuid, unsigned long vpa) 448 { 449 struct kvm *kvm = vcpu->kvm; 450 unsigned long len, nb; 451 void *va; 452 struct kvm_vcpu *tvcpu; 453 int err; 454 int subfunc; 455 struct kvmppc_vpa *vpap; 456 457 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 458 if (!tvcpu) 459 return H_PARAMETER; 460 461 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 462 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 463 subfunc == H_VPA_REG_SLB) { 464 /* Registering new area - address must be cache-line aligned */ 465 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 466 return H_PARAMETER; 467 468 /* convert logical addr to kernel addr and read length */ 469 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 470 if (va == NULL) 471 return H_PARAMETER; 472 if (subfunc == H_VPA_REG_VPA) 473 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 474 else 475 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 476 kvmppc_unpin_guest_page(kvm, va, vpa, false); 477 478 /* Check length */ 479 if (len > nb || len < sizeof(struct reg_vpa)) 480 return H_PARAMETER; 481 } else { 482 vpa = 0; 483 len = 0; 484 } 485 486 err = H_PARAMETER; 487 vpap = NULL; 488 spin_lock(&tvcpu->arch.vpa_update_lock); 489 490 switch (subfunc) { 491 case H_VPA_REG_VPA: /* register VPA */ 492 /* 493 * The size of our lppaca is 1kB because of the way we align 494 * it for the guest to avoid crossing a 4kB boundary. We only 495 * use 640 bytes of the structure though, so we should accept 496 * clients that set a size of 640. 497 */ 498 if (len < 640) 499 break; 500 vpap = &tvcpu->arch.vpa; 501 err = 0; 502 break; 503 504 case H_VPA_REG_DTL: /* register DTL */ 505 if (len < sizeof(struct dtl_entry)) 506 break; 507 len -= len % sizeof(struct dtl_entry); 508 509 /* Check that they have previously registered a VPA */ 510 err = H_RESOURCE; 511 if (!vpa_is_registered(&tvcpu->arch.vpa)) 512 break; 513 514 vpap = &tvcpu->arch.dtl; 515 err = 0; 516 break; 517 518 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 519 /* Check that they have previously registered a VPA */ 520 err = H_RESOURCE; 521 if (!vpa_is_registered(&tvcpu->arch.vpa)) 522 break; 523 524 vpap = &tvcpu->arch.slb_shadow; 525 err = 0; 526 break; 527 528 case H_VPA_DEREG_VPA: /* deregister VPA */ 529 /* Check they don't still have a DTL or SLB buf registered */ 530 err = H_RESOURCE; 531 if (vpa_is_registered(&tvcpu->arch.dtl) || 532 vpa_is_registered(&tvcpu->arch.slb_shadow)) 533 break; 534 535 vpap = &tvcpu->arch.vpa; 536 err = 0; 537 break; 538 539 case H_VPA_DEREG_DTL: /* deregister DTL */ 540 vpap = &tvcpu->arch.dtl; 541 err = 0; 542 break; 543 544 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 545 vpap = &tvcpu->arch.slb_shadow; 546 err = 0; 547 break; 548 } 549 550 if (vpap) { 551 vpap->next_gpa = vpa; 552 vpap->len = len; 553 vpap->update_pending = 1; 554 } 555 556 spin_unlock(&tvcpu->arch.vpa_update_lock); 557 558 return err; 559 } 560 561 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 562 { 563 struct kvm *kvm = vcpu->kvm; 564 void *va; 565 unsigned long nb; 566 unsigned long gpa; 567 568 /* 569 * We need to pin the page pointed to by vpap->next_gpa, 570 * but we can't call kvmppc_pin_guest_page under the lock 571 * as it does get_user_pages() and down_read(). So we 572 * have to drop the lock, pin the page, then get the lock 573 * again and check that a new area didn't get registered 574 * in the meantime. 575 */ 576 for (;;) { 577 gpa = vpap->next_gpa; 578 spin_unlock(&vcpu->arch.vpa_update_lock); 579 va = NULL; 580 nb = 0; 581 if (gpa) 582 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 583 spin_lock(&vcpu->arch.vpa_update_lock); 584 if (gpa == vpap->next_gpa) 585 break; 586 /* sigh... unpin that one and try again */ 587 if (va) 588 kvmppc_unpin_guest_page(kvm, va, gpa, false); 589 } 590 591 vpap->update_pending = 0; 592 if (va && nb < vpap->len) { 593 /* 594 * If it's now too short, it must be that userspace 595 * has changed the mappings underlying guest memory, 596 * so unregister the region. 597 */ 598 kvmppc_unpin_guest_page(kvm, va, gpa, false); 599 va = NULL; 600 } 601 if (vpap->pinned_addr) 602 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 603 vpap->dirty); 604 vpap->gpa = gpa; 605 vpap->pinned_addr = va; 606 vpap->dirty = false; 607 if (va) 608 vpap->pinned_end = va + vpap->len; 609 } 610 611 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 612 { 613 if (!(vcpu->arch.vpa.update_pending || 614 vcpu->arch.slb_shadow.update_pending || 615 vcpu->arch.dtl.update_pending)) 616 return; 617 618 spin_lock(&vcpu->arch.vpa_update_lock); 619 if (vcpu->arch.vpa.update_pending) { 620 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 621 if (vcpu->arch.vpa.pinned_addr) 622 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 623 } 624 if (vcpu->arch.dtl.update_pending) { 625 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 626 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 627 vcpu->arch.dtl_index = 0; 628 } 629 if (vcpu->arch.slb_shadow.update_pending) 630 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 631 spin_unlock(&vcpu->arch.vpa_update_lock); 632 } 633 634 /* 635 * Return the accumulated stolen time for the vcore up until `now'. 636 * The caller should hold the vcore lock. 637 */ 638 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 639 { 640 u64 p; 641 unsigned long flags; 642 643 spin_lock_irqsave(&vc->stoltb_lock, flags); 644 p = vc->stolen_tb; 645 if (vc->vcore_state != VCORE_INACTIVE && 646 vc->preempt_tb != TB_NIL) 647 p += now - vc->preempt_tb; 648 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 649 return p; 650 } 651 652 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 653 struct kvmppc_vcore *vc) 654 { 655 struct dtl_entry *dt; 656 struct lppaca *vpa; 657 unsigned long stolen; 658 unsigned long core_stolen; 659 u64 now; 660 unsigned long flags; 661 662 dt = vcpu->arch.dtl_ptr; 663 vpa = vcpu->arch.vpa.pinned_addr; 664 now = mftb(); 665 core_stolen = vcore_stolen_time(vc, now); 666 stolen = core_stolen - vcpu->arch.stolen_logged; 667 vcpu->arch.stolen_logged = core_stolen; 668 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 669 stolen += vcpu->arch.busy_stolen; 670 vcpu->arch.busy_stolen = 0; 671 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 672 if (!dt || !vpa) 673 return; 674 memset(dt, 0, sizeof(struct dtl_entry)); 675 dt->dispatch_reason = 7; 676 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 677 dt->timebase = cpu_to_be64(now + vc->tb_offset); 678 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 679 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 680 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 681 ++dt; 682 if (dt == vcpu->arch.dtl.pinned_end) 683 dt = vcpu->arch.dtl.pinned_addr; 684 vcpu->arch.dtl_ptr = dt; 685 /* order writing *dt vs. writing vpa->dtl_idx */ 686 smp_wmb(); 687 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 688 vcpu->arch.dtl.dirty = true; 689 } 690 691 /* See if there is a doorbell interrupt pending for a vcpu */ 692 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 693 { 694 int thr; 695 struct kvmppc_vcore *vc; 696 697 if (vcpu->arch.doorbell_request) 698 return true; 699 /* 700 * Ensure that the read of vcore->dpdes comes after the read 701 * of vcpu->doorbell_request. This barrier matches the 702 * lwsync in book3s_hv_rmhandlers.S just before the 703 * fast_guest_return label. 704 */ 705 smp_rmb(); 706 vc = vcpu->arch.vcore; 707 thr = vcpu->vcpu_id - vc->first_vcpuid; 708 return !!(vc->dpdes & (1 << thr)); 709 } 710 711 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 712 { 713 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 714 return true; 715 if ((!vcpu->arch.vcore->arch_compat) && 716 cpu_has_feature(CPU_FTR_ARCH_207S)) 717 return true; 718 return false; 719 } 720 721 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 722 unsigned long resource, unsigned long value1, 723 unsigned long value2) 724 { 725 switch (resource) { 726 case H_SET_MODE_RESOURCE_SET_CIABR: 727 if (!kvmppc_power8_compatible(vcpu)) 728 return H_P2; 729 if (value2) 730 return H_P4; 731 if (mflags) 732 return H_UNSUPPORTED_FLAG_START; 733 /* Guests can't breakpoint the hypervisor */ 734 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 735 return H_P3; 736 vcpu->arch.ciabr = value1; 737 return H_SUCCESS; 738 case H_SET_MODE_RESOURCE_SET_DAWR: 739 if (!kvmppc_power8_compatible(vcpu)) 740 return H_P2; 741 if (mflags) 742 return H_UNSUPPORTED_FLAG_START; 743 if (value2 & DABRX_HYP) 744 return H_P4; 745 vcpu->arch.dawr = value1; 746 vcpu->arch.dawrx = value2; 747 return H_SUCCESS; 748 default: 749 return H_TOO_HARD; 750 } 751 } 752 753 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 754 { 755 struct kvmppc_vcore *vcore = target->arch.vcore; 756 757 /* 758 * We expect to have been called by the real mode handler 759 * (kvmppc_rm_h_confer()) which would have directly returned 760 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 761 * have useful work to do and should not confer) so we don't 762 * recheck that here. 763 */ 764 765 spin_lock(&vcore->lock); 766 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 767 vcore->vcore_state != VCORE_INACTIVE && 768 vcore->runner) 769 target = vcore->runner; 770 spin_unlock(&vcore->lock); 771 772 return kvm_vcpu_yield_to(target); 773 } 774 775 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 776 { 777 int yield_count = 0; 778 struct lppaca *lppaca; 779 780 spin_lock(&vcpu->arch.vpa_update_lock); 781 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 782 if (lppaca) 783 yield_count = be32_to_cpu(lppaca->yield_count); 784 spin_unlock(&vcpu->arch.vpa_update_lock); 785 return yield_count; 786 } 787 788 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 789 { 790 unsigned long req = kvmppc_get_gpr(vcpu, 3); 791 unsigned long target, ret = H_SUCCESS; 792 int yield_count; 793 struct kvm_vcpu *tvcpu; 794 int idx, rc; 795 796 if (req <= MAX_HCALL_OPCODE && 797 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 798 return RESUME_HOST; 799 800 switch (req) { 801 case H_CEDE: 802 break; 803 case H_PROD: 804 target = kvmppc_get_gpr(vcpu, 4); 805 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 806 if (!tvcpu) { 807 ret = H_PARAMETER; 808 break; 809 } 810 tvcpu->arch.prodded = 1; 811 smp_mb(); 812 if (tvcpu->arch.ceded) 813 kvmppc_fast_vcpu_kick_hv(tvcpu); 814 break; 815 case H_CONFER: 816 target = kvmppc_get_gpr(vcpu, 4); 817 if (target == -1) 818 break; 819 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 820 if (!tvcpu) { 821 ret = H_PARAMETER; 822 break; 823 } 824 yield_count = kvmppc_get_gpr(vcpu, 5); 825 if (kvmppc_get_yield_count(tvcpu) != yield_count) 826 break; 827 kvm_arch_vcpu_yield_to(tvcpu); 828 break; 829 case H_REGISTER_VPA: 830 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 831 kvmppc_get_gpr(vcpu, 5), 832 kvmppc_get_gpr(vcpu, 6)); 833 break; 834 case H_RTAS: 835 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 836 return RESUME_HOST; 837 838 idx = srcu_read_lock(&vcpu->kvm->srcu); 839 rc = kvmppc_rtas_hcall(vcpu); 840 srcu_read_unlock(&vcpu->kvm->srcu, idx); 841 842 if (rc == -ENOENT) 843 return RESUME_HOST; 844 else if (rc == 0) 845 break; 846 847 /* Send the error out to userspace via KVM_RUN */ 848 return rc; 849 case H_LOGICAL_CI_LOAD: 850 ret = kvmppc_h_logical_ci_load(vcpu); 851 if (ret == H_TOO_HARD) 852 return RESUME_HOST; 853 break; 854 case H_LOGICAL_CI_STORE: 855 ret = kvmppc_h_logical_ci_store(vcpu); 856 if (ret == H_TOO_HARD) 857 return RESUME_HOST; 858 break; 859 case H_SET_MODE: 860 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 861 kvmppc_get_gpr(vcpu, 5), 862 kvmppc_get_gpr(vcpu, 6), 863 kvmppc_get_gpr(vcpu, 7)); 864 if (ret == H_TOO_HARD) 865 return RESUME_HOST; 866 break; 867 case H_XIRR: 868 case H_CPPR: 869 case H_EOI: 870 case H_IPI: 871 case H_IPOLL: 872 case H_XIRR_X: 873 if (kvmppc_xics_enabled(vcpu)) { 874 if (xive_enabled()) { 875 ret = H_NOT_AVAILABLE; 876 return RESUME_GUEST; 877 } 878 ret = kvmppc_xics_hcall(vcpu, req); 879 break; 880 } 881 return RESUME_HOST; 882 case H_PUT_TCE: 883 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 884 kvmppc_get_gpr(vcpu, 5), 885 kvmppc_get_gpr(vcpu, 6)); 886 if (ret == H_TOO_HARD) 887 return RESUME_HOST; 888 break; 889 case H_PUT_TCE_INDIRECT: 890 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 891 kvmppc_get_gpr(vcpu, 5), 892 kvmppc_get_gpr(vcpu, 6), 893 kvmppc_get_gpr(vcpu, 7)); 894 if (ret == H_TOO_HARD) 895 return RESUME_HOST; 896 break; 897 case H_STUFF_TCE: 898 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 899 kvmppc_get_gpr(vcpu, 5), 900 kvmppc_get_gpr(vcpu, 6), 901 kvmppc_get_gpr(vcpu, 7)); 902 if (ret == H_TOO_HARD) 903 return RESUME_HOST; 904 break; 905 default: 906 return RESUME_HOST; 907 } 908 kvmppc_set_gpr(vcpu, 3, ret); 909 vcpu->arch.hcall_needed = 0; 910 return RESUME_GUEST; 911 } 912 913 static int kvmppc_hcall_impl_hv(unsigned long cmd) 914 { 915 switch (cmd) { 916 case H_CEDE: 917 case H_PROD: 918 case H_CONFER: 919 case H_REGISTER_VPA: 920 case H_SET_MODE: 921 case H_LOGICAL_CI_LOAD: 922 case H_LOGICAL_CI_STORE: 923 #ifdef CONFIG_KVM_XICS 924 case H_XIRR: 925 case H_CPPR: 926 case H_EOI: 927 case H_IPI: 928 case H_IPOLL: 929 case H_XIRR_X: 930 #endif 931 return 1; 932 } 933 934 /* See if it's in the real-mode table */ 935 return kvmppc_hcall_impl_hv_realmode(cmd); 936 } 937 938 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 939 struct kvm_vcpu *vcpu) 940 { 941 u32 last_inst; 942 943 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 944 EMULATE_DONE) { 945 /* 946 * Fetch failed, so return to guest and 947 * try executing it again. 948 */ 949 return RESUME_GUEST; 950 } 951 952 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 953 run->exit_reason = KVM_EXIT_DEBUG; 954 run->debug.arch.address = kvmppc_get_pc(vcpu); 955 return RESUME_HOST; 956 } else { 957 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 958 return RESUME_GUEST; 959 } 960 } 961 962 static void do_nothing(void *x) 963 { 964 } 965 966 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 967 { 968 int thr, cpu, pcpu, nthreads; 969 struct kvm_vcpu *v; 970 unsigned long dpdes; 971 972 nthreads = vcpu->kvm->arch.emul_smt_mode; 973 dpdes = 0; 974 cpu = vcpu->vcpu_id & ~(nthreads - 1); 975 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 976 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 977 if (!v) 978 continue; 979 /* 980 * If the vcpu is currently running on a physical cpu thread, 981 * interrupt it in order to pull it out of the guest briefly, 982 * which will update its vcore->dpdes value. 983 */ 984 pcpu = READ_ONCE(v->cpu); 985 if (pcpu >= 0) 986 smp_call_function_single(pcpu, do_nothing, NULL, 1); 987 if (kvmppc_doorbell_pending(v)) 988 dpdes |= 1 << thr; 989 } 990 return dpdes; 991 } 992 993 /* 994 * On POWER9, emulate doorbell-related instructions in order to 995 * give the guest the illusion of running on a multi-threaded core. 996 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 997 * and mfspr DPDES. 998 */ 999 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1000 { 1001 u32 inst, rb, thr; 1002 unsigned long arg; 1003 struct kvm *kvm = vcpu->kvm; 1004 struct kvm_vcpu *tvcpu; 1005 1006 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1007 return EMULATE_FAIL; 1008 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1009 return RESUME_GUEST; 1010 if (get_op(inst) != 31) 1011 return EMULATE_FAIL; 1012 rb = get_rb(inst); 1013 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1014 switch (get_xop(inst)) { 1015 case OP_31_XOP_MSGSNDP: 1016 arg = kvmppc_get_gpr(vcpu, rb); 1017 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1018 break; 1019 arg &= 0x3f; 1020 if (arg >= kvm->arch.emul_smt_mode) 1021 break; 1022 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1023 if (!tvcpu) 1024 break; 1025 if (!tvcpu->arch.doorbell_request) { 1026 tvcpu->arch.doorbell_request = 1; 1027 kvmppc_fast_vcpu_kick_hv(tvcpu); 1028 } 1029 break; 1030 case OP_31_XOP_MSGCLRP: 1031 arg = kvmppc_get_gpr(vcpu, rb); 1032 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1033 break; 1034 vcpu->arch.vcore->dpdes = 0; 1035 vcpu->arch.doorbell_request = 0; 1036 break; 1037 case OP_31_XOP_MFSPR: 1038 switch (get_sprn(inst)) { 1039 case SPRN_TIR: 1040 arg = thr; 1041 break; 1042 case SPRN_DPDES: 1043 arg = kvmppc_read_dpdes(vcpu); 1044 break; 1045 default: 1046 return EMULATE_FAIL; 1047 } 1048 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1049 break; 1050 default: 1051 return EMULATE_FAIL; 1052 } 1053 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1054 return RESUME_GUEST; 1055 } 1056 1057 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1058 struct task_struct *tsk) 1059 { 1060 int r = RESUME_HOST; 1061 1062 vcpu->stat.sum_exits++; 1063 1064 /* 1065 * This can happen if an interrupt occurs in the last stages 1066 * of guest entry or the first stages of guest exit (i.e. after 1067 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1068 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1069 * That can happen due to a bug, or due to a machine check 1070 * occurring at just the wrong time. 1071 */ 1072 if (vcpu->arch.shregs.msr & MSR_HV) { 1073 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1074 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1075 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1076 vcpu->arch.shregs.msr); 1077 kvmppc_dump_regs(vcpu); 1078 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1079 run->hw.hardware_exit_reason = vcpu->arch.trap; 1080 return RESUME_HOST; 1081 } 1082 run->exit_reason = KVM_EXIT_UNKNOWN; 1083 run->ready_for_interrupt_injection = 1; 1084 switch (vcpu->arch.trap) { 1085 /* We're good on these - the host merely wanted to get our attention */ 1086 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1087 vcpu->stat.dec_exits++; 1088 r = RESUME_GUEST; 1089 break; 1090 case BOOK3S_INTERRUPT_EXTERNAL: 1091 case BOOK3S_INTERRUPT_H_DOORBELL: 1092 case BOOK3S_INTERRUPT_H_VIRT: 1093 vcpu->stat.ext_intr_exits++; 1094 r = RESUME_GUEST; 1095 break; 1096 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1097 case BOOK3S_INTERRUPT_HMI: 1098 case BOOK3S_INTERRUPT_PERFMON: 1099 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1100 r = RESUME_GUEST; 1101 break; 1102 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1103 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1104 run->exit_reason = KVM_EXIT_NMI; 1105 run->hw.hardware_exit_reason = vcpu->arch.trap; 1106 /* Clear out the old NMI status from run->flags */ 1107 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1108 /* Now set the NMI status */ 1109 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1110 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1111 else 1112 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1113 1114 r = RESUME_HOST; 1115 /* Print the MCE event to host console. */ 1116 machine_check_print_event_info(&vcpu->arch.mce_evt, false); 1117 break; 1118 case BOOK3S_INTERRUPT_PROGRAM: 1119 { 1120 ulong flags; 1121 /* 1122 * Normally program interrupts are delivered directly 1123 * to the guest by the hardware, but we can get here 1124 * as a result of a hypervisor emulation interrupt 1125 * (e40) getting turned into a 700 by BML RTAS. 1126 */ 1127 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1128 kvmppc_core_queue_program(vcpu, flags); 1129 r = RESUME_GUEST; 1130 break; 1131 } 1132 case BOOK3S_INTERRUPT_SYSCALL: 1133 { 1134 /* hcall - punt to userspace */ 1135 int i; 1136 1137 /* hypercall with MSR_PR has already been handled in rmode, 1138 * and never reaches here. 1139 */ 1140 1141 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1142 for (i = 0; i < 9; ++i) 1143 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1144 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1145 vcpu->arch.hcall_needed = 1; 1146 r = RESUME_HOST; 1147 break; 1148 } 1149 /* 1150 * We get these next two if the guest accesses a page which it thinks 1151 * it has mapped but which is not actually present, either because 1152 * it is for an emulated I/O device or because the corresonding 1153 * host page has been paged out. Any other HDSI/HISI interrupts 1154 * have been handled already. 1155 */ 1156 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1157 r = RESUME_PAGE_FAULT; 1158 break; 1159 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1160 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1161 vcpu->arch.fault_dsisr = 0; 1162 r = RESUME_PAGE_FAULT; 1163 break; 1164 /* 1165 * This occurs if the guest executes an illegal instruction. 1166 * If the guest debug is disabled, generate a program interrupt 1167 * to the guest. If guest debug is enabled, we need to check 1168 * whether the instruction is a software breakpoint instruction. 1169 * Accordingly return to Guest or Host. 1170 */ 1171 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1172 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1173 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1174 swab32(vcpu->arch.emul_inst) : 1175 vcpu->arch.emul_inst; 1176 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1177 r = kvmppc_emulate_debug_inst(run, vcpu); 1178 } else { 1179 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1180 r = RESUME_GUEST; 1181 } 1182 break; 1183 /* 1184 * This occurs if the guest (kernel or userspace), does something that 1185 * is prohibited by HFSCR. 1186 * On POWER9, this could be a doorbell instruction that we need 1187 * to emulate. 1188 * Otherwise, we just generate a program interrupt to the guest. 1189 */ 1190 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1191 r = EMULATE_FAIL; 1192 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) 1193 r = kvmppc_emulate_doorbell_instr(vcpu); 1194 if (r == EMULATE_FAIL) { 1195 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1196 r = RESUME_GUEST; 1197 } 1198 break; 1199 case BOOK3S_INTERRUPT_HV_RM_HARD: 1200 r = RESUME_PASSTHROUGH; 1201 break; 1202 default: 1203 kvmppc_dump_regs(vcpu); 1204 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1205 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1206 vcpu->arch.shregs.msr); 1207 run->hw.hardware_exit_reason = vcpu->arch.trap; 1208 r = RESUME_HOST; 1209 break; 1210 } 1211 1212 return r; 1213 } 1214 1215 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1216 struct kvm_sregs *sregs) 1217 { 1218 int i; 1219 1220 memset(sregs, 0, sizeof(struct kvm_sregs)); 1221 sregs->pvr = vcpu->arch.pvr; 1222 for (i = 0; i < vcpu->arch.slb_max; i++) { 1223 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1224 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1225 } 1226 1227 return 0; 1228 } 1229 1230 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1231 struct kvm_sregs *sregs) 1232 { 1233 int i, j; 1234 1235 /* Only accept the same PVR as the host's, since we can't spoof it */ 1236 if (sregs->pvr != vcpu->arch.pvr) 1237 return -EINVAL; 1238 1239 j = 0; 1240 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1241 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1242 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1243 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1244 ++j; 1245 } 1246 } 1247 vcpu->arch.slb_max = j; 1248 1249 return 0; 1250 } 1251 1252 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1253 bool preserve_top32) 1254 { 1255 struct kvm *kvm = vcpu->kvm; 1256 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1257 u64 mask; 1258 1259 mutex_lock(&kvm->lock); 1260 spin_lock(&vc->lock); 1261 /* 1262 * If ILE (interrupt little-endian) has changed, update the 1263 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1264 */ 1265 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1266 struct kvm_vcpu *vcpu; 1267 int i; 1268 1269 kvm_for_each_vcpu(i, vcpu, kvm) { 1270 if (vcpu->arch.vcore != vc) 1271 continue; 1272 if (new_lpcr & LPCR_ILE) 1273 vcpu->arch.intr_msr |= MSR_LE; 1274 else 1275 vcpu->arch.intr_msr &= ~MSR_LE; 1276 } 1277 } 1278 1279 /* 1280 * Userspace can only modify DPFD (default prefetch depth), 1281 * ILE (interrupt little-endian) and TC (translation control). 1282 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1283 */ 1284 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1285 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1286 mask |= LPCR_AIL; 1287 /* 1288 * On POWER9, allow userspace to enable large decrementer for the 1289 * guest, whether or not the host has it enabled. 1290 */ 1291 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1292 mask |= LPCR_LD; 1293 1294 /* Broken 32-bit version of LPCR must not clear top bits */ 1295 if (preserve_top32) 1296 mask &= 0xFFFFFFFF; 1297 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1298 spin_unlock(&vc->lock); 1299 mutex_unlock(&kvm->lock); 1300 } 1301 1302 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1303 union kvmppc_one_reg *val) 1304 { 1305 int r = 0; 1306 long int i; 1307 1308 switch (id) { 1309 case KVM_REG_PPC_DEBUG_INST: 1310 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1311 break; 1312 case KVM_REG_PPC_HIOR: 1313 *val = get_reg_val(id, 0); 1314 break; 1315 case KVM_REG_PPC_DABR: 1316 *val = get_reg_val(id, vcpu->arch.dabr); 1317 break; 1318 case KVM_REG_PPC_DABRX: 1319 *val = get_reg_val(id, vcpu->arch.dabrx); 1320 break; 1321 case KVM_REG_PPC_DSCR: 1322 *val = get_reg_val(id, vcpu->arch.dscr); 1323 break; 1324 case KVM_REG_PPC_PURR: 1325 *val = get_reg_val(id, vcpu->arch.purr); 1326 break; 1327 case KVM_REG_PPC_SPURR: 1328 *val = get_reg_val(id, vcpu->arch.spurr); 1329 break; 1330 case KVM_REG_PPC_AMR: 1331 *val = get_reg_val(id, vcpu->arch.amr); 1332 break; 1333 case KVM_REG_PPC_UAMOR: 1334 *val = get_reg_val(id, vcpu->arch.uamor); 1335 break; 1336 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1337 i = id - KVM_REG_PPC_MMCR0; 1338 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1339 break; 1340 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1341 i = id - KVM_REG_PPC_PMC1; 1342 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1343 break; 1344 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1345 i = id - KVM_REG_PPC_SPMC1; 1346 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1347 break; 1348 case KVM_REG_PPC_SIAR: 1349 *val = get_reg_val(id, vcpu->arch.siar); 1350 break; 1351 case KVM_REG_PPC_SDAR: 1352 *val = get_reg_val(id, vcpu->arch.sdar); 1353 break; 1354 case KVM_REG_PPC_SIER: 1355 *val = get_reg_val(id, vcpu->arch.sier); 1356 break; 1357 case KVM_REG_PPC_IAMR: 1358 *val = get_reg_val(id, vcpu->arch.iamr); 1359 break; 1360 case KVM_REG_PPC_PSPB: 1361 *val = get_reg_val(id, vcpu->arch.pspb); 1362 break; 1363 case KVM_REG_PPC_DPDES: 1364 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1365 break; 1366 case KVM_REG_PPC_VTB: 1367 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1368 break; 1369 case KVM_REG_PPC_DAWR: 1370 *val = get_reg_val(id, vcpu->arch.dawr); 1371 break; 1372 case KVM_REG_PPC_DAWRX: 1373 *val = get_reg_val(id, vcpu->arch.dawrx); 1374 break; 1375 case KVM_REG_PPC_CIABR: 1376 *val = get_reg_val(id, vcpu->arch.ciabr); 1377 break; 1378 case KVM_REG_PPC_CSIGR: 1379 *val = get_reg_val(id, vcpu->arch.csigr); 1380 break; 1381 case KVM_REG_PPC_TACR: 1382 *val = get_reg_val(id, vcpu->arch.tacr); 1383 break; 1384 case KVM_REG_PPC_TCSCR: 1385 *val = get_reg_val(id, vcpu->arch.tcscr); 1386 break; 1387 case KVM_REG_PPC_PID: 1388 *val = get_reg_val(id, vcpu->arch.pid); 1389 break; 1390 case KVM_REG_PPC_ACOP: 1391 *val = get_reg_val(id, vcpu->arch.acop); 1392 break; 1393 case KVM_REG_PPC_WORT: 1394 *val = get_reg_val(id, vcpu->arch.wort); 1395 break; 1396 case KVM_REG_PPC_TIDR: 1397 *val = get_reg_val(id, vcpu->arch.tid); 1398 break; 1399 case KVM_REG_PPC_PSSCR: 1400 *val = get_reg_val(id, vcpu->arch.psscr); 1401 break; 1402 case KVM_REG_PPC_VPA_ADDR: 1403 spin_lock(&vcpu->arch.vpa_update_lock); 1404 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1405 spin_unlock(&vcpu->arch.vpa_update_lock); 1406 break; 1407 case KVM_REG_PPC_VPA_SLB: 1408 spin_lock(&vcpu->arch.vpa_update_lock); 1409 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1410 val->vpaval.length = vcpu->arch.slb_shadow.len; 1411 spin_unlock(&vcpu->arch.vpa_update_lock); 1412 break; 1413 case KVM_REG_PPC_VPA_DTL: 1414 spin_lock(&vcpu->arch.vpa_update_lock); 1415 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1416 val->vpaval.length = vcpu->arch.dtl.len; 1417 spin_unlock(&vcpu->arch.vpa_update_lock); 1418 break; 1419 case KVM_REG_PPC_TB_OFFSET: 1420 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1421 break; 1422 case KVM_REG_PPC_LPCR: 1423 case KVM_REG_PPC_LPCR_64: 1424 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1425 break; 1426 case KVM_REG_PPC_PPR: 1427 *val = get_reg_val(id, vcpu->arch.ppr); 1428 break; 1429 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1430 case KVM_REG_PPC_TFHAR: 1431 *val = get_reg_val(id, vcpu->arch.tfhar); 1432 break; 1433 case KVM_REG_PPC_TFIAR: 1434 *val = get_reg_val(id, vcpu->arch.tfiar); 1435 break; 1436 case KVM_REG_PPC_TEXASR: 1437 *val = get_reg_val(id, vcpu->arch.texasr); 1438 break; 1439 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1440 i = id - KVM_REG_PPC_TM_GPR0; 1441 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1442 break; 1443 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1444 { 1445 int j; 1446 i = id - KVM_REG_PPC_TM_VSR0; 1447 if (i < 32) 1448 for (j = 0; j < TS_FPRWIDTH; j++) 1449 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1450 else { 1451 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1452 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1453 else 1454 r = -ENXIO; 1455 } 1456 break; 1457 } 1458 case KVM_REG_PPC_TM_CR: 1459 *val = get_reg_val(id, vcpu->arch.cr_tm); 1460 break; 1461 case KVM_REG_PPC_TM_XER: 1462 *val = get_reg_val(id, vcpu->arch.xer_tm); 1463 break; 1464 case KVM_REG_PPC_TM_LR: 1465 *val = get_reg_val(id, vcpu->arch.lr_tm); 1466 break; 1467 case KVM_REG_PPC_TM_CTR: 1468 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1469 break; 1470 case KVM_REG_PPC_TM_FPSCR: 1471 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1472 break; 1473 case KVM_REG_PPC_TM_AMR: 1474 *val = get_reg_val(id, vcpu->arch.amr_tm); 1475 break; 1476 case KVM_REG_PPC_TM_PPR: 1477 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1478 break; 1479 case KVM_REG_PPC_TM_VRSAVE: 1480 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1481 break; 1482 case KVM_REG_PPC_TM_VSCR: 1483 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1484 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1485 else 1486 r = -ENXIO; 1487 break; 1488 case KVM_REG_PPC_TM_DSCR: 1489 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1490 break; 1491 case KVM_REG_PPC_TM_TAR: 1492 *val = get_reg_val(id, vcpu->arch.tar_tm); 1493 break; 1494 #endif 1495 case KVM_REG_PPC_ARCH_COMPAT: 1496 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1497 break; 1498 default: 1499 r = -EINVAL; 1500 break; 1501 } 1502 1503 return r; 1504 } 1505 1506 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1507 union kvmppc_one_reg *val) 1508 { 1509 int r = 0; 1510 long int i; 1511 unsigned long addr, len; 1512 1513 switch (id) { 1514 case KVM_REG_PPC_HIOR: 1515 /* Only allow this to be set to zero */ 1516 if (set_reg_val(id, *val)) 1517 r = -EINVAL; 1518 break; 1519 case KVM_REG_PPC_DABR: 1520 vcpu->arch.dabr = set_reg_val(id, *val); 1521 break; 1522 case KVM_REG_PPC_DABRX: 1523 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1524 break; 1525 case KVM_REG_PPC_DSCR: 1526 vcpu->arch.dscr = set_reg_val(id, *val); 1527 break; 1528 case KVM_REG_PPC_PURR: 1529 vcpu->arch.purr = set_reg_val(id, *val); 1530 break; 1531 case KVM_REG_PPC_SPURR: 1532 vcpu->arch.spurr = set_reg_val(id, *val); 1533 break; 1534 case KVM_REG_PPC_AMR: 1535 vcpu->arch.amr = set_reg_val(id, *val); 1536 break; 1537 case KVM_REG_PPC_UAMOR: 1538 vcpu->arch.uamor = set_reg_val(id, *val); 1539 break; 1540 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1541 i = id - KVM_REG_PPC_MMCR0; 1542 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1543 break; 1544 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1545 i = id - KVM_REG_PPC_PMC1; 1546 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1547 break; 1548 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1549 i = id - KVM_REG_PPC_SPMC1; 1550 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1551 break; 1552 case KVM_REG_PPC_SIAR: 1553 vcpu->arch.siar = set_reg_val(id, *val); 1554 break; 1555 case KVM_REG_PPC_SDAR: 1556 vcpu->arch.sdar = set_reg_val(id, *val); 1557 break; 1558 case KVM_REG_PPC_SIER: 1559 vcpu->arch.sier = set_reg_val(id, *val); 1560 break; 1561 case KVM_REG_PPC_IAMR: 1562 vcpu->arch.iamr = set_reg_val(id, *val); 1563 break; 1564 case KVM_REG_PPC_PSPB: 1565 vcpu->arch.pspb = set_reg_val(id, *val); 1566 break; 1567 case KVM_REG_PPC_DPDES: 1568 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1569 break; 1570 case KVM_REG_PPC_VTB: 1571 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1572 break; 1573 case KVM_REG_PPC_DAWR: 1574 vcpu->arch.dawr = set_reg_val(id, *val); 1575 break; 1576 case KVM_REG_PPC_DAWRX: 1577 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1578 break; 1579 case KVM_REG_PPC_CIABR: 1580 vcpu->arch.ciabr = set_reg_val(id, *val); 1581 /* Don't allow setting breakpoints in hypervisor code */ 1582 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1583 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1584 break; 1585 case KVM_REG_PPC_CSIGR: 1586 vcpu->arch.csigr = set_reg_val(id, *val); 1587 break; 1588 case KVM_REG_PPC_TACR: 1589 vcpu->arch.tacr = set_reg_val(id, *val); 1590 break; 1591 case KVM_REG_PPC_TCSCR: 1592 vcpu->arch.tcscr = set_reg_val(id, *val); 1593 break; 1594 case KVM_REG_PPC_PID: 1595 vcpu->arch.pid = set_reg_val(id, *val); 1596 break; 1597 case KVM_REG_PPC_ACOP: 1598 vcpu->arch.acop = set_reg_val(id, *val); 1599 break; 1600 case KVM_REG_PPC_WORT: 1601 vcpu->arch.wort = set_reg_val(id, *val); 1602 break; 1603 case KVM_REG_PPC_TIDR: 1604 vcpu->arch.tid = set_reg_val(id, *val); 1605 break; 1606 case KVM_REG_PPC_PSSCR: 1607 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1608 break; 1609 case KVM_REG_PPC_VPA_ADDR: 1610 addr = set_reg_val(id, *val); 1611 r = -EINVAL; 1612 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1613 vcpu->arch.dtl.next_gpa)) 1614 break; 1615 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1616 break; 1617 case KVM_REG_PPC_VPA_SLB: 1618 addr = val->vpaval.addr; 1619 len = val->vpaval.length; 1620 r = -EINVAL; 1621 if (addr && !vcpu->arch.vpa.next_gpa) 1622 break; 1623 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1624 break; 1625 case KVM_REG_PPC_VPA_DTL: 1626 addr = val->vpaval.addr; 1627 len = val->vpaval.length; 1628 r = -EINVAL; 1629 if (addr && (len < sizeof(struct dtl_entry) || 1630 !vcpu->arch.vpa.next_gpa)) 1631 break; 1632 len -= len % sizeof(struct dtl_entry); 1633 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1634 break; 1635 case KVM_REG_PPC_TB_OFFSET: 1636 /* 1637 * POWER9 DD1 has an erratum where writing TBU40 causes 1638 * the timebase to lose ticks. So we don't let the 1639 * timebase offset be changed on P9 DD1. (It is 1640 * initialized to zero.) 1641 */ 1642 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) 1643 break; 1644 /* round up to multiple of 2^24 */ 1645 vcpu->arch.vcore->tb_offset = 1646 ALIGN(set_reg_val(id, *val), 1UL << 24); 1647 break; 1648 case KVM_REG_PPC_LPCR: 1649 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1650 break; 1651 case KVM_REG_PPC_LPCR_64: 1652 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1653 break; 1654 case KVM_REG_PPC_PPR: 1655 vcpu->arch.ppr = set_reg_val(id, *val); 1656 break; 1657 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1658 case KVM_REG_PPC_TFHAR: 1659 vcpu->arch.tfhar = set_reg_val(id, *val); 1660 break; 1661 case KVM_REG_PPC_TFIAR: 1662 vcpu->arch.tfiar = set_reg_val(id, *val); 1663 break; 1664 case KVM_REG_PPC_TEXASR: 1665 vcpu->arch.texasr = set_reg_val(id, *val); 1666 break; 1667 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1668 i = id - KVM_REG_PPC_TM_GPR0; 1669 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1670 break; 1671 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1672 { 1673 int j; 1674 i = id - KVM_REG_PPC_TM_VSR0; 1675 if (i < 32) 1676 for (j = 0; j < TS_FPRWIDTH; j++) 1677 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1678 else 1679 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1680 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1681 else 1682 r = -ENXIO; 1683 break; 1684 } 1685 case KVM_REG_PPC_TM_CR: 1686 vcpu->arch.cr_tm = set_reg_val(id, *val); 1687 break; 1688 case KVM_REG_PPC_TM_XER: 1689 vcpu->arch.xer_tm = set_reg_val(id, *val); 1690 break; 1691 case KVM_REG_PPC_TM_LR: 1692 vcpu->arch.lr_tm = set_reg_val(id, *val); 1693 break; 1694 case KVM_REG_PPC_TM_CTR: 1695 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1696 break; 1697 case KVM_REG_PPC_TM_FPSCR: 1698 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1699 break; 1700 case KVM_REG_PPC_TM_AMR: 1701 vcpu->arch.amr_tm = set_reg_val(id, *val); 1702 break; 1703 case KVM_REG_PPC_TM_PPR: 1704 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1705 break; 1706 case KVM_REG_PPC_TM_VRSAVE: 1707 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1708 break; 1709 case KVM_REG_PPC_TM_VSCR: 1710 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1711 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1712 else 1713 r = - ENXIO; 1714 break; 1715 case KVM_REG_PPC_TM_DSCR: 1716 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1717 break; 1718 case KVM_REG_PPC_TM_TAR: 1719 vcpu->arch.tar_tm = set_reg_val(id, *val); 1720 break; 1721 #endif 1722 case KVM_REG_PPC_ARCH_COMPAT: 1723 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1724 break; 1725 default: 1726 r = -EINVAL; 1727 break; 1728 } 1729 1730 return r; 1731 } 1732 1733 /* 1734 * On POWER9, threads are independent and can be in different partitions. 1735 * Therefore we consider each thread to be a subcore. 1736 * There is a restriction that all threads have to be in the same 1737 * MMU mode (radix or HPT), unfortunately, but since we only support 1738 * HPT guests on a HPT host so far, that isn't an impediment yet. 1739 */ 1740 static int threads_per_vcore(struct kvm *kvm) 1741 { 1742 if (kvm->arch.threads_indep) 1743 return 1; 1744 return threads_per_subcore; 1745 } 1746 1747 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1748 { 1749 struct kvmppc_vcore *vcore; 1750 1751 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1752 1753 if (vcore == NULL) 1754 return NULL; 1755 1756 spin_lock_init(&vcore->lock); 1757 spin_lock_init(&vcore->stoltb_lock); 1758 init_swait_queue_head(&vcore->wq); 1759 vcore->preempt_tb = TB_NIL; 1760 vcore->lpcr = kvm->arch.lpcr; 1761 vcore->first_vcpuid = core * kvm->arch.smt_mode; 1762 vcore->kvm = kvm; 1763 INIT_LIST_HEAD(&vcore->preempt_list); 1764 1765 return vcore; 1766 } 1767 1768 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1769 static struct debugfs_timings_element { 1770 const char *name; 1771 size_t offset; 1772 } timings[] = { 1773 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1774 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1775 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1776 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1777 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1778 }; 1779 1780 #define N_TIMINGS (ARRAY_SIZE(timings)) 1781 1782 struct debugfs_timings_state { 1783 struct kvm_vcpu *vcpu; 1784 unsigned int buflen; 1785 char buf[N_TIMINGS * 100]; 1786 }; 1787 1788 static int debugfs_timings_open(struct inode *inode, struct file *file) 1789 { 1790 struct kvm_vcpu *vcpu = inode->i_private; 1791 struct debugfs_timings_state *p; 1792 1793 p = kzalloc(sizeof(*p), GFP_KERNEL); 1794 if (!p) 1795 return -ENOMEM; 1796 1797 kvm_get_kvm(vcpu->kvm); 1798 p->vcpu = vcpu; 1799 file->private_data = p; 1800 1801 return nonseekable_open(inode, file); 1802 } 1803 1804 static int debugfs_timings_release(struct inode *inode, struct file *file) 1805 { 1806 struct debugfs_timings_state *p = file->private_data; 1807 1808 kvm_put_kvm(p->vcpu->kvm); 1809 kfree(p); 1810 return 0; 1811 } 1812 1813 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1814 size_t len, loff_t *ppos) 1815 { 1816 struct debugfs_timings_state *p = file->private_data; 1817 struct kvm_vcpu *vcpu = p->vcpu; 1818 char *s, *buf_end; 1819 struct kvmhv_tb_accumulator tb; 1820 u64 count; 1821 loff_t pos; 1822 ssize_t n; 1823 int i, loops; 1824 bool ok; 1825 1826 if (!p->buflen) { 1827 s = p->buf; 1828 buf_end = s + sizeof(p->buf); 1829 for (i = 0; i < N_TIMINGS; ++i) { 1830 struct kvmhv_tb_accumulator *acc; 1831 1832 acc = (struct kvmhv_tb_accumulator *) 1833 ((unsigned long)vcpu + timings[i].offset); 1834 ok = false; 1835 for (loops = 0; loops < 1000; ++loops) { 1836 count = acc->seqcount; 1837 if (!(count & 1)) { 1838 smp_rmb(); 1839 tb = *acc; 1840 smp_rmb(); 1841 if (count == acc->seqcount) { 1842 ok = true; 1843 break; 1844 } 1845 } 1846 udelay(1); 1847 } 1848 if (!ok) 1849 snprintf(s, buf_end - s, "%s: stuck\n", 1850 timings[i].name); 1851 else 1852 snprintf(s, buf_end - s, 1853 "%s: %llu %llu %llu %llu\n", 1854 timings[i].name, count / 2, 1855 tb_to_ns(tb.tb_total), 1856 tb_to_ns(tb.tb_min), 1857 tb_to_ns(tb.tb_max)); 1858 s += strlen(s); 1859 } 1860 p->buflen = s - p->buf; 1861 } 1862 1863 pos = *ppos; 1864 if (pos >= p->buflen) 1865 return 0; 1866 if (len > p->buflen - pos) 1867 len = p->buflen - pos; 1868 n = copy_to_user(buf, p->buf + pos, len); 1869 if (n) { 1870 if (n == len) 1871 return -EFAULT; 1872 len -= n; 1873 } 1874 *ppos = pos + len; 1875 return len; 1876 } 1877 1878 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1879 size_t len, loff_t *ppos) 1880 { 1881 return -EACCES; 1882 } 1883 1884 static const struct file_operations debugfs_timings_ops = { 1885 .owner = THIS_MODULE, 1886 .open = debugfs_timings_open, 1887 .release = debugfs_timings_release, 1888 .read = debugfs_timings_read, 1889 .write = debugfs_timings_write, 1890 .llseek = generic_file_llseek, 1891 }; 1892 1893 /* Create a debugfs directory for the vcpu */ 1894 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1895 { 1896 char buf[16]; 1897 struct kvm *kvm = vcpu->kvm; 1898 1899 snprintf(buf, sizeof(buf), "vcpu%u", id); 1900 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1901 return; 1902 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1903 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1904 return; 1905 vcpu->arch.debugfs_timings = 1906 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1907 vcpu, &debugfs_timings_ops); 1908 } 1909 1910 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1911 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1912 { 1913 } 1914 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1915 1916 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1917 unsigned int id) 1918 { 1919 struct kvm_vcpu *vcpu; 1920 int err; 1921 int core; 1922 struct kvmppc_vcore *vcore; 1923 1924 err = -ENOMEM; 1925 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1926 if (!vcpu) 1927 goto out; 1928 1929 err = kvm_vcpu_init(vcpu, kvm, id); 1930 if (err) 1931 goto free_vcpu; 1932 1933 vcpu->arch.shared = &vcpu->arch.shregs; 1934 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1935 /* 1936 * The shared struct is never shared on HV, 1937 * so we can always use host endianness 1938 */ 1939 #ifdef __BIG_ENDIAN__ 1940 vcpu->arch.shared_big_endian = true; 1941 #else 1942 vcpu->arch.shared_big_endian = false; 1943 #endif 1944 #endif 1945 vcpu->arch.mmcr[0] = MMCR0_FC; 1946 vcpu->arch.ctrl = CTRL_RUNLATCH; 1947 /* default to host PVR, since we can't spoof it */ 1948 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1949 spin_lock_init(&vcpu->arch.vpa_update_lock); 1950 spin_lock_init(&vcpu->arch.tbacct_lock); 1951 vcpu->arch.busy_preempt = TB_NIL; 1952 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1953 1954 /* 1955 * Set the default HFSCR for the guest from the host value. 1956 * This value is only used on POWER9. 1957 * On POWER9 DD1, TM doesn't work, so we make sure to 1958 * prevent the guest from using it. 1959 * On POWER9, we want to virtualize the doorbell facility, so we 1960 * turn off the HFSCR bit, which causes those instructions to trap. 1961 */ 1962 vcpu->arch.hfscr = mfspr(SPRN_HFSCR); 1963 if (!cpu_has_feature(CPU_FTR_TM)) 1964 vcpu->arch.hfscr &= ~HFSCR_TM; 1965 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1966 vcpu->arch.hfscr &= ~HFSCR_MSGP; 1967 1968 kvmppc_mmu_book3s_hv_init(vcpu); 1969 1970 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1971 1972 init_waitqueue_head(&vcpu->arch.cpu_run); 1973 1974 mutex_lock(&kvm->lock); 1975 vcore = NULL; 1976 err = -EINVAL; 1977 core = id / kvm->arch.smt_mode; 1978 if (core < KVM_MAX_VCORES) { 1979 vcore = kvm->arch.vcores[core]; 1980 if (!vcore) { 1981 err = -ENOMEM; 1982 vcore = kvmppc_vcore_create(kvm, core); 1983 kvm->arch.vcores[core] = vcore; 1984 kvm->arch.online_vcores++; 1985 } 1986 } 1987 mutex_unlock(&kvm->lock); 1988 1989 if (!vcore) 1990 goto free_vcpu; 1991 1992 spin_lock(&vcore->lock); 1993 ++vcore->num_threads; 1994 spin_unlock(&vcore->lock); 1995 vcpu->arch.vcore = vcore; 1996 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1997 vcpu->arch.thread_cpu = -1; 1998 vcpu->arch.prev_cpu = -1; 1999 2000 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2001 kvmppc_sanity_check(vcpu); 2002 2003 debugfs_vcpu_init(vcpu, id); 2004 2005 return vcpu; 2006 2007 free_vcpu: 2008 kmem_cache_free(kvm_vcpu_cache, vcpu); 2009 out: 2010 return ERR_PTR(err); 2011 } 2012 2013 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2014 unsigned long flags) 2015 { 2016 int err; 2017 int esmt = 0; 2018 2019 if (flags) 2020 return -EINVAL; 2021 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2022 return -EINVAL; 2023 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2024 /* 2025 * On POWER8 (or POWER7), the threading mode is "strict", 2026 * so we pack smt_mode vcpus per vcore. 2027 */ 2028 if (smt_mode > threads_per_subcore) 2029 return -EINVAL; 2030 } else { 2031 /* 2032 * On POWER9, the threading mode is "loose", 2033 * so each vcpu gets its own vcore. 2034 */ 2035 esmt = smt_mode; 2036 smt_mode = 1; 2037 } 2038 mutex_lock(&kvm->lock); 2039 err = -EBUSY; 2040 if (!kvm->arch.online_vcores) { 2041 kvm->arch.smt_mode = smt_mode; 2042 kvm->arch.emul_smt_mode = esmt; 2043 err = 0; 2044 } 2045 mutex_unlock(&kvm->lock); 2046 2047 return err; 2048 } 2049 2050 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2051 { 2052 if (vpa->pinned_addr) 2053 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2054 vpa->dirty); 2055 } 2056 2057 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2058 { 2059 spin_lock(&vcpu->arch.vpa_update_lock); 2060 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2061 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2062 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2063 spin_unlock(&vcpu->arch.vpa_update_lock); 2064 kvm_vcpu_uninit(vcpu); 2065 kmem_cache_free(kvm_vcpu_cache, vcpu); 2066 } 2067 2068 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2069 { 2070 /* Indicate we want to get back into the guest */ 2071 return 1; 2072 } 2073 2074 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2075 { 2076 unsigned long dec_nsec, now; 2077 2078 now = get_tb(); 2079 if (now > vcpu->arch.dec_expires) { 2080 /* decrementer has already gone negative */ 2081 kvmppc_core_queue_dec(vcpu); 2082 kvmppc_core_prepare_to_enter(vcpu); 2083 return; 2084 } 2085 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 2086 / tb_ticks_per_sec; 2087 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2088 vcpu->arch.timer_running = 1; 2089 } 2090 2091 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 2092 { 2093 vcpu->arch.ceded = 0; 2094 if (vcpu->arch.timer_running) { 2095 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2096 vcpu->arch.timer_running = 0; 2097 } 2098 } 2099 2100 extern int __kvmppc_vcore_entry(void); 2101 2102 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2103 struct kvm_vcpu *vcpu) 2104 { 2105 u64 now; 2106 2107 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2108 return; 2109 spin_lock_irq(&vcpu->arch.tbacct_lock); 2110 now = mftb(); 2111 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2112 vcpu->arch.stolen_logged; 2113 vcpu->arch.busy_preempt = now; 2114 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2115 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2116 --vc->n_runnable; 2117 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2118 } 2119 2120 static int kvmppc_grab_hwthread(int cpu) 2121 { 2122 struct paca_struct *tpaca; 2123 long timeout = 10000; 2124 2125 tpaca = &paca[cpu]; 2126 2127 /* Ensure the thread won't go into the kernel if it wakes */ 2128 tpaca->kvm_hstate.kvm_vcpu = NULL; 2129 tpaca->kvm_hstate.kvm_vcore = NULL; 2130 tpaca->kvm_hstate.napping = 0; 2131 smp_wmb(); 2132 tpaca->kvm_hstate.hwthread_req = 1; 2133 2134 /* 2135 * If the thread is already executing in the kernel (e.g. handling 2136 * a stray interrupt), wait for it to get back to nap mode. 2137 * The smp_mb() is to ensure that our setting of hwthread_req 2138 * is visible before we look at hwthread_state, so if this 2139 * races with the code at system_reset_pSeries and the thread 2140 * misses our setting of hwthread_req, we are sure to see its 2141 * setting of hwthread_state, and vice versa. 2142 */ 2143 smp_mb(); 2144 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2145 if (--timeout <= 0) { 2146 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2147 return -EBUSY; 2148 } 2149 udelay(1); 2150 } 2151 return 0; 2152 } 2153 2154 static void kvmppc_release_hwthread(int cpu) 2155 { 2156 struct paca_struct *tpaca; 2157 2158 tpaca = &paca[cpu]; 2159 tpaca->kvm_hstate.hwthread_req = 0; 2160 tpaca->kvm_hstate.kvm_vcpu = NULL; 2161 tpaca->kvm_hstate.kvm_vcore = NULL; 2162 tpaca->kvm_hstate.kvm_split_mode = NULL; 2163 } 2164 2165 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2166 { 2167 int i; 2168 2169 cpu = cpu_first_thread_sibling(cpu); 2170 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2171 /* 2172 * Make sure setting of bit in need_tlb_flush precedes 2173 * testing of cpu_in_guest bits. The matching barrier on 2174 * the other side is the first smp_mb() in kvmppc_run_core(). 2175 */ 2176 smp_mb(); 2177 for (i = 0; i < threads_per_core; ++i) 2178 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) 2179 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2180 } 2181 2182 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2183 { 2184 struct kvm *kvm = vcpu->kvm; 2185 2186 /* 2187 * With radix, the guest can do TLB invalidations itself, 2188 * and it could choose to use the local form (tlbiel) if 2189 * it is invalidating a translation that has only ever been 2190 * used on one vcpu. However, that doesn't mean it has 2191 * only ever been used on one physical cpu, since vcpus 2192 * can move around between pcpus. To cope with this, when 2193 * a vcpu moves from one pcpu to another, we need to tell 2194 * any vcpus running on the same core as this vcpu previously 2195 * ran to flush the TLB. The TLB is shared between threads, 2196 * so we use a single bit in .need_tlb_flush for all 4 threads. 2197 */ 2198 if (vcpu->arch.prev_cpu != pcpu) { 2199 if (vcpu->arch.prev_cpu >= 0 && 2200 cpu_first_thread_sibling(vcpu->arch.prev_cpu) != 2201 cpu_first_thread_sibling(pcpu)) 2202 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); 2203 vcpu->arch.prev_cpu = pcpu; 2204 } 2205 } 2206 2207 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2208 { 2209 int cpu; 2210 struct paca_struct *tpaca; 2211 struct kvm *kvm = vc->kvm; 2212 2213 cpu = vc->pcpu; 2214 if (vcpu) { 2215 if (vcpu->arch.timer_running) { 2216 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2217 vcpu->arch.timer_running = 0; 2218 } 2219 cpu += vcpu->arch.ptid; 2220 vcpu->cpu = vc->pcpu; 2221 vcpu->arch.thread_cpu = cpu; 2222 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2223 } 2224 tpaca = &paca[cpu]; 2225 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2226 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2227 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2228 smp_wmb(); 2229 tpaca->kvm_hstate.kvm_vcore = vc; 2230 if (cpu != smp_processor_id()) 2231 kvmppc_ipi_thread(cpu); 2232 } 2233 2234 static void kvmppc_wait_for_nap(int n_threads) 2235 { 2236 int cpu = smp_processor_id(); 2237 int i, loops; 2238 2239 if (n_threads <= 1) 2240 return; 2241 for (loops = 0; loops < 1000000; ++loops) { 2242 /* 2243 * Check if all threads are finished. 2244 * We set the vcore pointer when starting a thread 2245 * and the thread clears it when finished, so we look 2246 * for any threads that still have a non-NULL vcore ptr. 2247 */ 2248 for (i = 1; i < n_threads; ++i) 2249 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2250 break; 2251 if (i == n_threads) { 2252 HMT_medium(); 2253 return; 2254 } 2255 HMT_low(); 2256 } 2257 HMT_medium(); 2258 for (i = 1; i < n_threads; ++i) 2259 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2260 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2261 } 2262 2263 /* 2264 * Check that we are on thread 0 and that any other threads in 2265 * this core are off-line. Then grab the threads so they can't 2266 * enter the kernel. 2267 */ 2268 static int on_primary_thread(void) 2269 { 2270 int cpu = smp_processor_id(); 2271 int thr; 2272 2273 /* Are we on a primary subcore? */ 2274 if (cpu_thread_in_subcore(cpu)) 2275 return 0; 2276 2277 thr = 0; 2278 while (++thr < threads_per_subcore) 2279 if (cpu_online(cpu + thr)) 2280 return 0; 2281 2282 /* Grab all hw threads so they can't go into the kernel */ 2283 for (thr = 1; thr < threads_per_subcore; ++thr) { 2284 if (kvmppc_grab_hwthread(cpu + thr)) { 2285 /* Couldn't grab one; let the others go */ 2286 do { 2287 kvmppc_release_hwthread(cpu + thr); 2288 } while (--thr > 0); 2289 return 0; 2290 } 2291 } 2292 return 1; 2293 } 2294 2295 /* 2296 * A list of virtual cores for each physical CPU. 2297 * These are vcores that could run but their runner VCPU tasks are 2298 * (or may be) preempted. 2299 */ 2300 struct preempted_vcore_list { 2301 struct list_head list; 2302 spinlock_t lock; 2303 }; 2304 2305 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2306 2307 static void init_vcore_lists(void) 2308 { 2309 int cpu; 2310 2311 for_each_possible_cpu(cpu) { 2312 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2313 spin_lock_init(&lp->lock); 2314 INIT_LIST_HEAD(&lp->list); 2315 } 2316 } 2317 2318 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2319 { 2320 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2321 2322 vc->vcore_state = VCORE_PREEMPT; 2323 vc->pcpu = smp_processor_id(); 2324 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2325 spin_lock(&lp->lock); 2326 list_add_tail(&vc->preempt_list, &lp->list); 2327 spin_unlock(&lp->lock); 2328 } 2329 2330 /* Start accumulating stolen time */ 2331 kvmppc_core_start_stolen(vc); 2332 } 2333 2334 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2335 { 2336 struct preempted_vcore_list *lp; 2337 2338 kvmppc_core_end_stolen(vc); 2339 if (!list_empty(&vc->preempt_list)) { 2340 lp = &per_cpu(preempted_vcores, vc->pcpu); 2341 spin_lock(&lp->lock); 2342 list_del_init(&vc->preempt_list); 2343 spin_unlock(&lp->lock); 2344 } 2345 vc->vcore_state = VCORE_INACTIVE; 2346 } 2347 2348 /* 2349 * This stores information about the virtual cores currently 2350 * assigned to a physical core. 2351 */ 2352 struct core_info { 2353 int n_subcores; 2354 int max_subcore_threads; 2355 int total_threads; 2356 int subcore_threads[MAX_SUBCORES]; 2357 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2358 }; 2359 2360 /* 2361 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2362 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2363 */ 2364 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2365 2366 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2367 { 2368 memset(cip, 0, sizeof(*cip)); 2369 cip->n_subcores = 1; 2370 cip->max_subcore_threads = vc->num_threads; 2371 cip->total_threads = vc->num_threads; 2372 cip->subcore_threads[0] = vc->num_threads; 2373 cip->vc[0] = vc; 2374 } 2375 2376 static bool subcore_config_ok(int n_subcores, int n_threads) 2377 { 2378 /* 2379 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way split-core 2380 * mode, with one thread per subcore. 2381 */ 2382 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2383 return n_subcores <= 4 && n_threads == 1; 2384 2385 /* On POWER8, can only dynamically split if unsplit to begin with */ 2386 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2387 return false; 2388 if (n_subcores > MAX_SUBCORES) 2389 return false; 2390 if (n_subcores > 1) { 2391 if (!(dynamic_mt_modes & 2)) 2392 n_subcores = 4; 2393 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2394 return false; 2395 } 2396 2397 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2398 } 2399 2400 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2401 { 2402 vc->entry_exit_map = 0; 2403 vc->in_guest = 0; 2404 vc->napping_threads = 0; 2405 vc->conferring_threads = 0; 2406 } 2407 2408 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2409 { 2410 int n_threads = vc->num_threads; 2411 int sub; 2412 2413 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2414 return false; 2415 2416 /* POWER9 currently requires all threads to be in the same MMU mode */ 2417 if (cpu_has_feature(CPU_FTR_ARCH_300) && 2418 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2419 return false; 2420 2421 if (n_threads < cip->max_subcore_threads) 2422 n_threads = cip->max_subcore_threads; 2423 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2424 return false; 2425 cip->max_subcore_threads = n_threads; 2426 2427 sub = cip->n_subcores; 2428 ++cip->n_subcores; 2429 cip->total_threads += vc->num_threads; 2430 cip->subcore_threads[sub] = vc->num_threads; 2431 cip->vc[sub] = vc; 2432 init_vcore_to_run(vc); 2433 list_del_init(&vc->preempt_list); 2434 2435 return true; 2436 } 2437 2438 /* 2439 * Work out whether it is possible to piggyback the execution of 2440 * vcore *pvc onto the execution of the other vcores described in *cip. 2441 */ 2442 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2443 int target_threads) 2444 { 2445 if (cip->total_threads + pvc->num_threads > target_threads) 2446 return false; 2447 2448 return can_dynamic_split(pvc, cip); 2449 } 2450 2451 static void prepare_threads(struct kvmppc_vcore *vc) 2452 { 2453 int i; 2454 struct kvm_vcpu *vcpu; 2455 2456 for_each_runnable_thread(i, vcpu, vc) { 2457 if (signal_pending(vcpu->arch.run_task)) 2458 vcpu->arch.ret = -EINTR; 2459 else if (vcpu->arch.vpa.update_pending || 2460 vcpu->arch.slb_shadow.update_pending || 2461 vcpu->arch.dtl.update_pending) 2462 vcpu->arch.ret = RESUME_GUEST; 2463 else 2464 continue; 2465 kvmppc_remove_runnable(vc, vcpu); 2466 wake_up(&vcpu->arch.cpu_run); 2467 } 2468 } 2469 2470 static void collect_piggybacks(struct core_info *cip, int target_threads) 2471 { 2472 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2473 struct kvmppc_vcore *pvc, *vcnext; 2474 2475 spin_lock(&lp->lock); 2476 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2477 if (!spin_trylock(&pvc->lock)) 2478 continue; 2479 prepare_threads(pvc); 2480 if (!pvc->n_runnable) { 2481 list_del_init(&pvc->preempt_list); 2482 if (pvc->runner == NULL) { 2483 pvc->vcore_state = VCORE_INACTIVE; 2484 kvmppc_core_end_stolen(pvc); 2485 } 2486 spin_unlock(&pvc->lock); 2487 continue; 2488 } 2489 if (!can_piggyback(pvc, cip, target_threads)) { 2490 spin_unlock(&pvc->lock); 2491 continue; 2492 } 2493 kvmppc_core_end_stolen(pvc); 2494 pvc->vcore_state = VCORE_PIGGYBACK; 2495 if (cip->total_threads >= target_threads) 2496 break; 2497 } 2498 spin_unlock(&lp->lock); 2499 } 2500 2501 static bool recheck_signals(struct core_info *cip) 2502 { 2503 int sub, i; 2504 struct kvm_vcpu *vcpu; 2505 2506 for (sub = 0; sub < cip->n_subcores; ++sub) 2507 for_each_runnable_thread(i, vcpu, cip->vc[sub]) 2508 if (signal_pending(vcpu->arch.run_task)) 2509 return true; 2510 return false; 2511 } 2512 2513 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2514 { 2515 int still_running = 0, i; 2516 u64 now; 2517 long ret; 2518 struct kvm_vcpu *vcpu; 2519 2520 spin_lock(&vc->lock); 2521 now = get_tb(); 2522 for_each_runnable_thread(i, vcpu, vc) { 2523 /* cancel pending dec exception if dec is positive */ 2524 if (now < vcpu->arch.dec_expires && 2525 kvmppc_core_pending_dec(vcpu)) 2526 kvmppc_core_dequeue_dec(vcpu); 2527 2528 trace_kvm_guest_exit(vcpu); 2529 2530 ret = RESUME_GUEST; 2531 if (vcpu->arch.trap) 2532 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2533 vcpu->arch.run_task); 2534 2535 vcpu->arch.ret = ret; 2536 vcpu->arch.trap = 0; 2537 2538 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2539 if (vcpu->arch.pending_exceptions) 2540 kvmppc_core_prepare_to_enter(vcpu); 2541 if (vcpu->arch.ceded) 2542 kvmppc_set_timer(vcpu); 2543 else 2544 ++still_running; 2545 } else { 2546 kvmppc_remove_runnable(vc, vcpu); 2547 wake_up(&vcpu->arch.cpu_run); 2548 } 2549 } 2550 if (!is_master) { 2551 if (still_running > 0) { 2552 kvmppc_vcore_preempt(vc); 2553 } else if (vc->runner) { 2554 vc->vcore_state = VCORE_PREEMPT; 2555 kvmppc_core_start_stolen(vc); 2556 } else { 2557 vc->vcore_state = VCORE_INACTIVE; 2558 } 2559 if (vc->n_runnable > 0 && vc->runner == NULL) { 2560 /* make sure there's a candidate runner awake */ 2561 i = -1; 2562 vcpu = next_runnable_thread(vc, &i); 2563 wake_up(&vcpu->arch.cpu_run); 2564 } 2565 } 2566 spin_unlock(&vc->lock); 2567 } 2568 2569 /* 2570 * Clear core from the list of active host cores as we are about to 2571 * enter the guest. Only do this if it is the primary thread of the 2572 * core (not if a subcore) that is entering the guest. 2573 */ 2574 static inline int kvmppc_clear_host_core(unsigned int cpu) 2575 { 2576 int core; 2577 2578 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2579 return 0; 2580 /* 2581 * Memory barrier can be omitted here as we will do a smp_wmb() 2582 * later in kvmppc_start_thread and we need ensure that state is 2583 * visible to other CPUs only after we enter guest. 2584 */ 2585 core = cpu >> threads_shift; 2586 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2587 return 0; 2588 } 2589 2590 /* 2591 * Advertise this core as an active host core since we exited the guest 2592 * Only need to do this if it is the primary thread of the core that is 2593 * exiting. 2594 */ 2595 static inline int kvmppc_set_host_core(unsigned int cpu) 2596 { 2597 int core; 2598 2599 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2600 return 0; 2601 2602 /* 2603 * Memory barrier can be omitted here because we do a spin_unlock 2604 * immediately after this which provides the memory barrier. 2605 */ 2606 core = cpu >> threads_shift; 2607 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2608 return 0; 2609 } 2610 2611 static void set_irq_happened(int trap) 2612 { 2613 switch (trap) { 2614 case BOOK3S_INTERRUPT_EXTERNAL: 2615 local_paca->irq_happened |= PACA_IRQ_EE; 2616 break; 2617 case BOOK3S_INTERRUPT_H_DOORBELL: 2618 local_paca->irq_happened |= PACA_IRQ_DBELL; 2619 break; 2620 case BOOK3S_INTERRUPT_HMI: 2621 local_paca->irq_happened |= PACA_IRQ_HMI; 2622 break; 2623 case BOOK3S_INTERRUPT_SYSTEM_RESET: 2624 replay_system_reset(); 2625 break; 2626 } 2627 } 2628 2629 /* 2630 * Run a set of guest threads on a physical core. 2631 * Called with vc->lock held. 2632 */ 2633 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2634 { 2635 struct kvm_vcpu *vcpu; 2636 int i; 2637 int srcu_idx; 2638 struct core_info core_info; 2639 struct kvmppc_vcore *pvc; 2640 struct kvm_split_mode split_info, *sip; 2641 int split, subcore_size, active; 2642 int sub; 2643 bool thr0_done; 2644 unsigned long cmd_bit, stat_bit; 2645 int pcpu, thr; 2646 int target_threads; 2647 int controlled_threads; 2648 int trap; 2649 bool is_power8; 2650 bool hpt_on_radix; 2651 2652 /* 2653 * Remove from the list any threads that have a signal pending 2654 * or need a VPA update done 2655 */ 2656 prepare_threads(vc); 2657 2658 /* if the runner is no longer runnable, let the caller pick a new one */ 2659 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2660 return; 2661 2662 /* 2663 * Initialize *vc. 2664 */ 2665 init_vcore_to_run(vc); 2666 vc->preempt_tb = TB_NIL; 2667 2668 /* 2669 * Number of threads that we will be controlling: the same as 2670 * the number of threads per subcore, except on POWER9, 2671 * where it's 1 because the threads are (mostly) independent. 2672 */ 2673 controlled_threads = threads_per_vcore(vc->kvm); 2674 2675 /* 2676 * Make sure we are running on primary threads, and that secondary 2677 * threads are offline. Also check if the number of threads in this 2678 * guest are greater than the current system threads per guest. 2679 * On POWER9, we need to be not in independent-threads mode if 2680 * this is a HPT guest on a radix host. 2681 */ 2682 hpt_on_radix = radix_enabled() && !kvm_is_radix(vc->kvm); 2683 if (((controlled_threads > 1) && 2684 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 2685 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 2686 for_each_runnable_thread(i, vcpu, vc) { 2687 vcpu->arch.ret = -EBUSY; 2688 kvmppc_remove_runnable(vc, vcpu); 2689 wake_up(&vcpu->arch.cpu_run); 2690 } 2691 goto out; 2692 } 2693 2694 /* 2695 * See if we could run any other vcores on the physical core 2696 * along with this one. 2697 */ 2698 init_core_info(&core_info, vc); 2699 pcpu = smp_processor_id(); 2700 target_threads = controlled_threads; 2701 if (target_smt_mode && target_smt_mode < target_threads) 2702 target_threads = target_smt_mode; 2703 if (vc->num_threads < target_threads) 2704 collect_piggybacks(&core_info, target_threads); 2705 2706 /* 2707 * On radix, arrange for TLB flushing if necessary. 2708 * This has to be done before disabling interrupts since 2709 * it uses smp_call_function(). 2710 */ 2711 pcpu = smp_processor_id(); 2712 if (kvm_is_radix(vc->kvm)) { 2713 for (sub = 0; sub < core_info.n_subcores; ++sub) 2714 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 2715 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 2716 } 2717 2718 /* 2719 * Hard-disable interrupts, and check resched flag and signals. 2720 * If we need to reschedule or deliver a signal, clean up 2721 * and return without going into the guest(s). 2722 * If the mmu_ready flag has been cleared, don't go into the 2723 * guest because that means a HPT resize operation is in progress. 2724 */ 2725 local_irq_disable(); 2726 hard_irq_disable(); 2727 if (lazy_irq_pending() || need_resched() || 2728 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) { 2729 local_irq_enable(); 2730 vc->vcore_state = VCORE_INACTIVE; 2731 /* Unlock all except the primary vcore */ 2732 for (sub = 1; sub < core_info.n_subcores; ++sub) { 2733 pvc = core_info.vc[sub]; 2734 /* Put back on to the preempted vcores list */ 2735 kvmppc_vcore_preempt(pvc); 2736 spin_unlock(&pvc->lock); 2737 } 2738 for (i = 0; i < controlled_threads; ++i) 2739 kvmppc_release_hwthread(pcpu + i); 2740 return; 2741 } 2742 2743 kvmppc_clear_host_core(pcpu); 2744 2745 /* Decide on micro-threading (split-core) mode */ 2746 subcore_size = threads_per_subcore; 2747 cmd_bit = stat_bit = 0; 2748 split = core_info.n_subcores; 2749 sip = NULL; 2750 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 2751 && !cpu_has_feature(CPU_FTR_ARCH_300); 2752 2753 if (split > 1 || hpt_on_radix) { 2754 sip = &split_info; 2755 memset(&split_info, 0, sizeof(split_info)); 2756 for (sub = 0; sub < core_info.n_subcores; ++sub) 2757 split_info.vc[sub] = core_info.vc[sub]; 2758 2759 if (is_power8) { 2760 if (split == 2 && (dynamic_mt_modes & 2)) { 2761 cmd_bit = HID0_POWER8_1TO2LPAR; 2762 stat_bit = HID0_POWER8_2LPARMODE; 2763 } else { 2764 split = 4; 2765 cmd_bit = HID0_POWER8_1TO4LPAR; 2766 stat_bit = HID0_POWER8_4LPARMODE; 2767 } 2768 subcore_size = MAX_SMT_THREADS / split; 2769 split_info.rpr = mfspr(SPRN_RPR); 2770 split_info.pmmar = mfspr(SPRN_PMMAR); 2771 split_info.ldbar = mfspr(SPRN_LDBAR); 2772 split_info.subcore_size = subcore_size; 2773 } else { 2774 split_info.subcore_size = 1; 2775 if (hpt_on_radix) { 2776 /* Use the split_info for LPCR/LPIDR changes */ 2777 split_info.lpcr_req = vc->lpcr; 2778 split_info.lpidr_req = vc->kvm->arch.lpid; 2779 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 2780 split_info.do_set = 1; 2781 } 2782 } 2783 2784 /* order writes to split_info before kvm_split_mode pointer */ 2785 smp_wmb(); 2786 } 2787 2788 for (thr = 0; thr < controlled_threads; ++thr) { 2789 paca[pcpu + thr].kvm_hstate.tid = thr; 2790 paca[pcpu + thr].kvm_hstate.napping = 0; 2791 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2792 } 2793 2794 /* Initiate micro-threading (split-core) on POWER8 if required */ 2795 if (cmd_bit) { 2796 unsigned long hid0 = mfspr(SPRN_HID0); 2797 2798 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2799 mb(); 2800 mtspr(SPRN_HID0, hid0); 2801 isync(); 2802 for (;;) { 2803 hid0 = mfspr(SPRN_HID0); 2804 if (hid0 & stat_bit) 2805 break; 2806 cpu_relax(); 2807 } 2808 } 2809 2810 /* Start all the threads */ 2811 active = 0; 2812 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2813 thr = is_power8 ? subcore_thread_map[sub] : sub; 2814 thr0_done = false; 2815 active |= 1 << thr; 2816 pvc = core_info.vc[sub]; 2817 pvc->pcpu = pcpu + thr; 2818 for_each_runnable_thread(i, vcpu, pvc) { 2819 kvmppc_start_thread(vcpu, pvc); 2820 kvmppc_create_dtl_entry(vcpu, pvc); 2821 trace_kvm_guest_enter(vcpu); 2822 if (!vcpu->arch.ptid) 2823 thr0_done = true; 2824 active |= 1 << (thr + vcpu->arch.ptid); 2825 } 2826 /* 2827 * We need to start the first thread of each subcore 2828 * even if it doesn't have a vcpu. 2829 */ 2830 if (!thr0_done) 2831 kvmppc_start_thread(NULL, pvc); 2832 thr += pvc->num_threads; 2833 } 2834 2835 /* 2836 * Ensure that split_info.do_nap is set after setting 2837 * the vcore pointer in the PACA of the secondaries. 2838 */ 2839 smp_mb(); 2840 2841 /* 2842 * When doing micro-threading, poke the inactive threads as well. 2843 * This gets them to the nap instruction after kvm_do_nap, 2844 * which reduces the time taken to unsplit later. 2845 * For POWER9 HPT guest on radix host, we need all the secondary 2846 * threads woken up so they can do the LPCR/LPIDR change. 2847 */ 2848 if (cmd_bit || hpt_on_radix) { 2849 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2850 for (thr = 1; thr < threads_per_subcore; ++thr) 2851 if (!(active & (1 << thr))) 2852 kvmppc_ipi_thread(pcpu + thr); 2853 } 2854 2855 vc->vcore_state = VCORE_RUNNING; 2856 preempt_disable(); 2857 2858 trace_kvmppc_run_core(vc, 0); 2859 2860 for (sub = 0; sub < core_info.n_subcores; ++sub) 2861 spin_unlock(&core_info.vc[sub]->lock); 2862 2863 /* 2864 * Interrupts will be enabled once we get into the guest, 2865 * so tell lockdep that we're about to enable interrupts. 2866 */ 2867 trace_hardirqs_on(); 2868 2869 guest_enter(); 2870 2871 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2872 2873 trap = __kvmppc_vcore_entry(); 2874 2875 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2876 2877 guest_exit(); 2878 2879 trace_hardirqs_off(); 2880 set_irq_happened(trap); 2881 2882 spin_lock(&vc->lock); 2883 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2884 vc->vcore_state = VCORE_EXITING; 2885 2886 /* wait for secondary threads to finish writing their state to memory */ 2887 kvmppc_wait_for_nap(controlled_threads); 2888 2889 /* Return to whole-core mode if we split the core earlier */ 2890 if (cmd_bit) { 2891 unsigned long hid0 = mfspr(SPRN_HID0); 2892 unsigned long loops = 0; 2893 2894 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2895 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2896 mb(); 2897 mtspr(SPRN_HID0, hid0); 2898 isync(); 2899 for (;;) { 2900 hid0 = mfspr(SPRN_HID0); 2901 if (!(hid0 & stat_bit)) 2902 break; 2903 cpu_relax(); 2904 ++loops; 2905 } 2906 } else if (hpt_on_radix) { 2907 /* Wait for all threads to have seen final sync */ 2908 for (thr = 1; thr < controlled_threads; ++thr) { 2909 while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) { 2910 HMT_low(); 2911 barrier(); 2912 } 2913 HMT_medium(); 2914 } 2915 } 2916 split_info.do_nap = 0; 2917 2918 kvmppc_set_host_core(pcpu); 2919 2920 local_irq_enable(); 2921 2922 /* Let secondaries go back to the offline loop */ 2923 for (i = 0; i < controlled_threads; ++i) { 2924 kvmppc_release_hwthread(pcpu + i); 2925 if (sip && sip->napped[i]) 2926 kvmppc_ipi_thread(pcpu + i); 2927 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 2928 } 2929 2930 spin_unlock(&vc->lock); 2931 2932 /* make sure updates to secondary vcpu structs are visible now */ 2933 smp_mb(); 2934 2935 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2936 pvc = core_info.vc[sub]; 2937 post_guest_process(pvc, pvc == vc); 2938 } 2939 2940 spin_lock(&vc->lock); 2941 preempt_enable(); 2942 2943 out: 2944 vc->vcore_state = VCORE_INACTIVE; 2945 trace_kvmppc_run_core(vc, 1); 2946 } 2947 2948 /* 2949 * Wait for some other vcpu thread to execute us, and 2950 * wake us up when we need to handle something in the host. 2951 */ 2952 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2953 struct kvm_vcpu *vcpu, int wait_state) 2954 { 2955 DEFINE_WAIT(wait); 2956 2957 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2958 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2959 spin_unlock(&vc->lock); 2960 schedule(); 2961 spin_lock(&vc->lock); 2962 } 2963 finish_wait(&vcpu->arch.cpu_run, &wait); 2964 } 2965 2966 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 2967 { 2968 /* 10us base */ 2969 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) 2970 vc->halt_poll_ns = 10000; 2971 else 2972 vc->halt_poll_ns *= halt_poll_ns_grow; 2973 } 2974 2975 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 2976 { 2977 if (halt_poll_ns_shrink == 0) 2978 vc->halt_poll_ns = 0; 2979 else 2980 vc->halt_poll_ns /= halt_poll_ns_shrink; 2981 } 2982 2983 #ifdef CONFIG_KVM_XICS 2984 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 2985 { 2986 if (!xive_enabled()) 2987 return false; 2988 return vcpu->arch.xive_saved_state.pipr < 2989 vcpu->arch.xive_saved_state.cppr; 2990 } 2991 #else 2992 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 2993 { 2994 return false; 2995 } 2996 #endif /* CONFIG_KVM_XICS */ 2997 2998 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 2999 { 3000 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3001 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3002 return true; 3003 3004 return false; 3005 } 3006 3007 /* 3008 * Check to see if any of the runnable vcpus on the vcore have pending 3009 * exceptions or are no longer ceded 3010 */ 3011 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3012 { 3013 struct kvm_vcpu *vcpu; 3014 int i; 3015 3016 for_each_runnable_thread(i, vcpu, vc) { 3017 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3018 return 1; 3019 } 3020 3021 return 0; 3022 } 3023 3024 /* 3025 * All the vcpus in this vcore are idle, so wait for a decrementer 3026 * or external interrupt to one of the vcpus. vc->lock is held. 3027 */ 3028 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3029 { 3030 ktime_t cur, start_poll, start_wait; 3031 int do_sleep = 1; 3032 u64 block_ns; 3033 DECLARE_SWAITQUEUE(wait); 3034 3035 /* Poll for pending exceptions and ceded state */ 3036 cur = start_poll = ktime_get(); 3037 if (vc->halt_poll_ns) { 3038 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3039 ++vc->runner->stat.halt_attempted_poll; 3040 3041 vc->vcore_state = VCORE_POLLING; 3042 spin_unlock(&vc->lock); 3043 3044 do { 3045 if (kvmppc_vcore_check_block(vc)) { 3046 do_sleep = 0; 3047 break; 3048 } 3049 cur = ktime_get(); 3050 } while (single_task_running() && ktime_before(cur, stop)); 3051 3052 spin_lock(&vc->lock); 3053 vc->vcore_state = VCORE_INACTIVE; 3054 3055 if (!do_sleep) { 3056 ++vc->runner->stat.halt_successful_poll; 3057 goto out; 3058 } 3059 } 3060 3061 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3062 3063 if (kvmppc_vcore_check_block(vc)) { 3064 finish_swait(&vc->wq, &wait); 3065 do_sleep = 0; 3066 /* If we polled, count this as a successful poll */ 3067 if (vc->halt_poll_ns) 3068 ++vc->runner->stat.halt_successful_poll; 3069 goto out; 3070 } 3071 3072 start_wait = ktime_get(); 3073 3074 vc->vcore_state = VCORE_SLEEPING; 3075 trace_kvmppc_vcore_blocked(vc, 0); 3076 spin_unlock(&vc->lock); 3077 schedule(); 3078 finish_swait(&vc->wq, &wait); 3079 spin_lock(&vc->lock); 3080 vc->vcore_state = VCORE_INACTIVE; 3081 trace_kvmppc_vcore_blocked(vc, 1); 3082 ++vc->runner->stat.halt_successful_wait; 3083 3084 cur = ktime_get(); 3085 3086 out: 3087 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3088 3089 /* Attribute wait time */ 3090 if (do_sleep) { 3091 vc->runner->stat.halt_wait_ns += 3092 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3093 /* Attribute failed poll time */ 3094 if (vc->halt_poll_ns) 3095 vc->runner->stat.halt_poll_fail_ns += 3096 ktime_to_ns(start_wait) - 3097 ktime_to_ns(start_poll); 3098 } else { 3099 /* Attribute successful poll time */ 3100 if (vc->halt_poll_ns) 3101 vc->runner->stat.halt_poll_success_ns += 3102 ktime_to_ns(cur) - 3103 ktime_to_ns(start_poll); 3104 } 3105 3106 /* Adjust poll time */ 3107 if (halt_poll_ns) { 3108 if (block_ns <= vc->halt_poll_ns) 3109 ; 3110 /* We slept and blocked for longer than the max halt time */ 3111 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3112 shrink_halt_poll_ns(vc); 3113 /* We slept and our poll time is too small */ 3114 else if (vc->halt_poll_ns < halt_poll_ns && 3115 block_ns < halt_poll_ns) 3116 grow_halt_poll_ns(vc); 3117 if (vc->halt_poll_ns > halt_poll_ns) 3118 vc->halt_poll_ns = halt_poll_ns; 3119 } else 3120 vc->halt_poll_ns = 0; 3121 3122 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3123 } 3124 3125 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3126 { 3127 int r = 0; 3128 struct kvm *kvm = vcpu->kvm; 3129 3130 mutex_lock(&kvm->lock); 3131 if (!kvm->arch.mmu_ready) { 3132 if (!kvm_is_radix(kvm)) 3133 r = kvmppc_hv_setup_htab_rma(vcpu); 3134 if (!r) { 3135 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3136 kvmppc_setup_partition_table(kvm); 3137 kvm->arch.mmu_ready = 1; 3138 } 3139 } 3140 mutex_unlock(&kvm->lock); 3141 return r; 3142 } 3143 3144 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3145 { 3146 int n_ceded, i, r; 3147 struct kvmppc_vcore *vc; 3148 struct kvm_vcpu *v; 3149 3150 trace_kvmppc_run_vcpu_enter(vcpu); 3151 3152 kvm_run->exit_reason = 0; 3153 vcpu->arch.ret = RESUME_GUEST; 3154 vcpu->arch.trap = 0; 3155 kvmppc_update_vpas(vcpu); 3156 3157 /* 3158 * Synchronize with other threads in this virtual core 3159 */ 3160 vc = vcpu->arch.vcore; 3161 spin_lock(&vc->lock); 3162 vcpu->arch.ceded = 0; 3163 vcpu->arch.run_task = current; 3164 vcpu->arch.kvm_run = kvm_run; 3165 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3166 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3167 vcpu->arch.busy_preempt = TB_NIL; 3168 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3169 ++vc->n_runnable; 3170 3171 /* 3172 * This happens the first time this is called for a vcpu. 3173 * If the vcore is already running, we may be able to start 3174 * this thread straight away and have it join in. 3175 */ 3176 if (!signal_pending(current)) { 3177 if (vc->vcore_state == VCORE_PIGGYBACK) { 3178 if (spin_trylock(&vc->lock)) { 3179 if (vc->vcore_state == VCORE_RUNNING && 3180 !VCORE_IS_EXITING(vc)) { 3181 kvmppc_create_dtl_entry(vcpu, vc); 3182 kvmppc_start_thread(vcpu, vc); 3183 trace_kvm_guest_enter(vcpu); 3184 } 3185 spin_unlock(&vc->lock); 3186 } 3187 } else if (vc->vcore_state == VCORE_RUNNING && 3188 !VCORE_IS_EXITING(vc)) { 3189 kvmppc_create_dtl_entry(vcpu, vc); 3190 kvmppc_start_thread(vcpu, vc); 3191 trace_kvm_guest_enter(vcpu); 3192 } else if (vc->vcore_state == VCORE_SLEEPING) { 3193 swake_up(&vc->wq); 3194 } 3195 3196 } 3197 3198 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3199 !signal_pending(current)) { 3200 /* See if the MMU is ready to go */ 3201 if (!vcpu->kvm->arch.mmu_ready) { 3202 spin_unlock(&vc->lock); 3203 r = kvmhv_setup_mmu(vcpu); 3204 spin_lock(&vc->lock); 3205 if (r) { 3206 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3207 kvm_run->fail_entry. 3208 hardware_entry_failure_reason = 0; 3209 vcpu->arch.ret = r; 3210 break; 3211 } 3212 } 3213 3214 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3215 kvmppc_vcore_end_preempt(vc); 3216 3217 if (vc->vcore_state != VCORE_INACTIVE) { 3218 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3219 continue; 3220 } 3221 for_each_runnable_thread(i, v, vc) { 3222 kvmppc_core_prepare_to_enter(v); 3223 if (signal_pending(v->arch.run_task)) { 3224 kvmppc_remove_runnable(vc, v); 3225 v->stat.signal_exits++; 3226 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3227 v->arch.ret = -EINTR; 3228 wake_up(&v->arch.cpu_run); 3229 } 3230 } 3231 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3232 break; 3233 n_ceded = 0; 3234 for_each_runnable_thread(i, v, vc) { 3235 if (!kvmppc_vcpu_woken(v)) 3236 n_ceded += v->arch.ceded; 3237 else 3238 v->arch.ceded = 0; 3239 } 3240 vc->runner = vcpu; 3241 if (n_ceded == vc->n_runnable) { 3242 kvmppc_vcore_blocked(vc); 3243 } else if (need_resched()) { 3244 kvmppc_vcore_preempt(vc); 3245 /* Let something else run */ 3246 cond_resched_lock(&vc->lock); 3247 if (vc->vcore_state == VCORE_PREEMPT) 3248 kvmppc_vcore_end_preempt(vc); 3249 } else { 3250 kvmppc_run_core(vc); 3251 } 3252 vc->runner = NULL; 3253 } 3254 3255 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3256 (vc->vcore_state == VCORE_RUNNING || 3257 vc->vcore_state == VCORE_EXITING || 3258 vc->vcore_state == VCORE_PIGGYBACK)) 3259 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 3260 3261 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3262 kvmppc_vcore_end_preempt(vc); 3263 3264 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3265 kvmppc_remove_runnable(vc, vcpu); 3266 vcpu->stat.signal_exits++; 3267 kvm_run->exit_reason = KVM_EXIT_INTR; 3268 vcpu->arch.ret = -EINTR; 3269 } 3270 3271 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 3272 /* Wake up some vcpu to run the core */ 3273 i = -1; 3274 v = next_runnable_thread(vc, &i); 3275 wake_up(&v->arch.cpu_run); 3276 } 3277 3278 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 3279 spin_unlock(&vc->lock); 3280 return vcpu->arch.ret; 3281 } 3282 3283 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 3284 { 3285 int r; 3286 int srcu_idx; 3287 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 3288 unsigned long user_tar = 0; 3289 unsigned int user_vrsave; 3290 struct kvm *kvm; 3291 3292 if (!vcpu->arch.sane) { 3293 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3294 return -EINVAL; 3295 } 3296 3297 /* 3298 * Don't allow entry with a suspended transaction, because 3299 * the guest entry/exit code will lose it. 3300 * If the guest has TM enabled, save away their TM-related SPRs 3301 * (they will get restored by the TM unavailable interrupt). 3302 */ 3303 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 3304 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 3305 (current->thread.regs->msr & MSR_TM)) { 3306 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 3307 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3308 run->fail_entry.hardware_entry_failure_reason = 0; 3309 return -EINVAL; 3310 } 3311 /* Enable TM so we can read the TM SPRs */ 3312 mtmsr(mfmsr() | MSR_TM); 3313 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 3314 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 3315 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 3316 current->thread.regs->msr &= ~MSR_TM; 3317 } 3318 #endif 3319 3320 kvmppc_core_prepare_to_enter(vcpu); 3321 3322 /* No need to go into the guest when all we'll do is come back out */ 3323 if (signal_pending(current)) { 3324 run->exit_reason = KVM_EXIT_INTR; 3325 return -EINTR; 3326 } 3327 3328 kvm = vcpu->kvm; 3329 atomic_inc(&kvm->arch.vcpus_running); 3330 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 3331 smp_mb(); 3332 3333 flush_all_to_thread(current); 3334 3335 /* Save userspace EBB and other register values */ 3336 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3337 ebb_regs[0] = mfspr(SPRN_EBBHR); 3338 ebb_regs[1] = mfspr(SPRN_EBBRR); 3339 ebb_regs[2] = mfspr(SPRN_BESCR); 3340 user_tar = mfspr(SPRN_TAR); 3341 } 3342 user_vrsave = mfspr(SPRN_VRSAVE); 3343 3344 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 3345 vcpu->arch.pgdir = current->mm->pgd; 3346 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3347 3348 do { 3349 r = kvmppc_run_vcpu(run, vcpu); 3350 3351 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 3352 !(vcpu->arch.shregs.msr & MSR_PR)) { 3353 trace_kvm_hcall_enter(vcpu); 3354 r = kvmppc_pseries_do_hcall(vcpu); 3355 trace_kvm_hcall_exit(vcpu, r); 3356 kvmppc_core_prepare_to_enter(vcpu); 3357 } else if (r == RESUME_PAGE_FAULT) { 3358 srcu_idx = srcu_read_lock(&kvm->srcu); 3359 r = kvmppc_book3s_hv_page_fault(run, vcpu, 3360 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 3361 srcu_read_unlock(&kvm->srcu, srcu_idx); 3362 } else if (r == RESUME_PASSTHROUGH) { 3363 if (WARN_ON(xive_enabled())) 3364 r = H_SUCCESS; 3365 else 3366 r = kvmppc_xics_rm_complete(vcpu, 0); 3367 } 3368 } while (is_kvmppc_resume_guest(r)); 3369 3370 /* Restore userspace EBB and other register values */ 3371 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3372 mtspr(SPRN_EBBHR, ebb_regs[0]); 3373 mtspr(SPRN_EBBRR, ebb_regs[1]); 3374 mtspr(SPRN_BESCR, ebb_regs[2]); 3375 mtspr(SPRN_TAR, user_tar); 3376 mtspr(SPRN_FSCR, current->thread.fscr); 3377 } 3378 mtspr(SPRN_VRSAVE, user_vrsave); 3379 3380 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3381 atomic_dec(&kvm->arch.vcpus_running); 3382 return r; 3383 } 3384 3385 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 3386 int shift, int sllp) 3387 { 3388 (*sps)->page_shift = shift; 3389 (*sps)->slb_enc = sllp; 3390 (*sps)->enc[0].page_shift = shift; 3391 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 3392 /* 3393 * Add 16MB MPSS support (may get filtered out by userspace) 3394 */ 3395 if (shift != 24) { 3396 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 3397 if (penc != -1) { 3398 (*sps)->enc[1].page_shift = 24; 3399 (*sps)->enc[1].pte_enc = penc; 3400 } 3401 } 3402 (*sps)++; 3403 } 3404 3405 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 3406 struct kvm_ppc_smmu_info *info) 3407 { 3408 struct kvm_ppc_one_seg_page_size *sps; 3409 3410 /* 3411 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 3412 * POWER7 doesn't support keys for instruction accesses, 3413 * POWER8 and POWER9 do. 3414 */ 3415 info->data_keys = 32; 3416 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 3417 3418 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 3419 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 3420 info->slb_size = 32; 3421 3422 /* We only support these sizes for now, and no muti-size segments */ 3423 sps = &info->sps[0]; 3424 kvmppc_add_seg_page_size(&sps, 12, 0); 3425 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 3426 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 3427 3428 return 0; 3429 } 3430 3431 /* 3432 * Get (and clear) the dirty memory log for a memory slot. 3433 */ 3434 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 3435 struct kvm_dirty_log *log) 3436 { 3437 struct kvm_memslots *slots; 3438 struct kvm_memory_slot *memslot; 3439 int i, r; 3440 unsigned long n; 3441 unsigned long *buf, *p; 3442 struct kvm_vcpu *vcpu; 3443 3444 mutex_lock(&kvm->slots_lock); 3445 3446 r = -EINVAL; 3447 if (log->slot >= KVM_USER_MEM_SLOTS) 3448 goto out; 3449 3450 slots = kvm_memslots(kvm); 3451 memslot = id_to_memslot(slots, log->slot); 3452 r = -ENOENT; 3453 if (!memslot->dirty_bitmap) 3454 goto out; 3455 3456 /* 3457 * Use second half of bitmap area because both HPT and radix 3458 * accumulate bits in the first half. 3459 */ 3460 n = kvm_dirty_bitmap_bytes(memslot); 3461 buf = memslot->dirty_bitmap + n / sizeof(long); 3462 memset(buf, 0, n); 3463 3464 if (kvm_is_radix(kvm)) 3465 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 3466 else 3467 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 3468 if (r) 3469 goto out; 3470 3471 /* 3472 * We accumulate dirty bits in the first half of the 3473 * memslot's dirty_bitmap area, for when pages are paged 3474 * out or modified by the host directly. Pick up these 3475 * bits and add them to the map. 3476 */ 3477 p = memslot->dirty_bitmap; 3478 for (i = 0; i < n / sizeof(long); ++i) 3479 buf[i] |= xchg(&p[i], 0); 3480 3481 /* Harvest dirty bits from VPA and DTL updates */ 3482 /* Note: we never modify the SLB shadow buffer areas */ 3483 kvm_for_each_vcpu(i, vcpu, kvm) { 3484 spin_lock(&vcpu->arch.vpa_update_lock); 3485 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 3486 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 3487 spin_unlock(&vcpu->arch.vpa_update_lock); 3488 } 3489 3490 r = -EFAULT; 3491 if (copy_to_user(log->dirty_bitmap, buf, n)) 3492 goto out; 3493 3494 r = 0; 3495 out: 3496 mutex_unlock(&kvm->slots_lock); 3497 return r; 3498 } 3499 3500 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 3501 struct kvm_memory_slot *dont) 3502 { 3503 if (!dont || free->arch.rmap != dont->arch.rmap) { 3504 vfree(free->arch.rmap); 3505 free->arch.rmap = NULL; 3506 } 3507 } 3508 3509 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 3510 unsigned long npages) 3511 { 3512 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 3513 if (!slot->arch.rmap) 3514 return -ENOMEM; 3515 3516 return 0; 3517 } 3518 3519 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 3520 struct kvm_memory_slot *memslot, 3521 const struct kvm_userspace_memory_region *mem) 3522 { 3523 return 0; 3524 } 3525 3526 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 3527 const struct kvm_userspace_memory_region *mem, 3528 const struct kvm_memory_slot *old, 3529 const struct kvm_memory_slot *new) 3530 { 3531 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 3532 3533 /* 3534 * If we are making a new memslot, it might make 3535 * some address that was previously cached as emulated 3536 * MMIO be no longer emulated MMIO, so invalidate 3537 * all the caches of emulated MMIO translations. 3538 */ 3539 if (npages) 3540 atomic64_inc(&kvm->arch.mmio_update); 3541 } 3542 3543 /* 3544 * Update LPCR values in kvm->arch and in vcores. 3545 * Caller must hold kvm->lock. 3546 */ 3547 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 3548 { 3549 long int i; 3550 u32 cores_done = 0; 3551 3552 if ((kvm->arch.lpcr & mask) == lpcr) 3553 return; 3554 3555 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 3556 3557 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3558 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3559 if (!vc) 3560 continue; 3561 spin_lock(&vc->lock); 3562 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 3563 spin_unlock(&vc->lock); 3564 if (++cores_done >= kvm->arch.online_vcores) 3565 break; 3566 } 3567 } 3568 3569 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 3570 { 3571 return; 3572 } 3573 3574 void kvmppc_setup_partition_table(struct kvm *kvm) 3575 { 3576 unsigned long dw0, dw1; 3577 3578 if (!kvm_is_radix(kvm)) { 3579 /* PS field - page size for VRMA */ 3580 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 3581 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 3582 /* HTABSIZE and HTABORG fields */ 3583 dw0 |= kvm->arch.sdr1; 3584 3585 /* Second dword as set by userspace */ 3586 dw1 = kvm->arch.process_table; 3587 } else { 3588 dw0 = PATB_HR | radix__get_tree_size() | 3589 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 3590 dw1 = PATB_GR | kvm->arch.process_table; 3591 } 3592 3593 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); 3594 } 3595 3596 /* 3597 * Set up HPT (hashed page table) and RMA (real-mode area). 3598 * Must be called with kvm->lock held. 3599 */ 3600 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 3601 { 3602 int err = 0; 3603 struct kvm *kvm = vcpu->kvm; 3604 unsigned long hva; 3605 struct kvm_memory_slot *memslot; 3606 struct vm_area_struct *vma; 3607 unsigned long lpcr = 0, senc; 3608 unsigned long psize, porder; 3609 int srcu_idx; 3610 3611 /* Allocate hashed page table (if not done already) and reset it */ 3612 if (!kvm->arch.hpt.virt) { 3613 int order = KVM_DEFAULT_HPT_ORDER; 3614 struct kvm_hpt_info info; 3615 3616 err = kvmppc_allocate_hpt(&info, order); 3617 /* If we get here, it means userspace didn't specify a 3618 * size explicitly. So, try successively smaller 3619 * sizes if the default failed. */ 3620 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 3621 err = kvmppc_allocate_hpt(&info, order); 3622 3623 if (err < 0) { 3624 pr_err("KVM: Couldn't alloc HPT\n"); 3625 goto out; 3626 } 3627 3628 kvmppc_set_hpt(kvm, &info); 3629 } 3630 3631 /* Look up the memslot for guest physical address 0 */ 3632 srcu_idx = srcu_read_lock(&kvm->srcu); 3633 memslot = gfn_to_memslot(kvm, 0); 3634 3635 /* We must have some memory at 0 by now */ 3636 err = -EINVAL; 3637 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3638 goto out_srcu; 3639 3640 /* Look up the VMA for the start of this memory slot */ 3641 hva = memslot->userspace_addr; 3642 down_read(¤t->mm->mmap_sem); 3643 vma = find_vma(current->mm, hva); 3644 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3645 goto up_out; 3646 3647 psize = vma_kernel_pagesize(vma); 3648 porder = __ilog2(psize); 3649 3650 up_read(¤t->mm->mmap_sem); 3651 3652 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3653 err = -EINVAL; 3654 if (!(psize == 0x1000 || psize == 0x10000 || 3655 psize == 0x1000000)) 3656 goto out_srcu; 3657 3658 senc = slb_pgsize_encoding(psize); 3659 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3660 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3661 /* Create HPTEs in the hash page table for the VRMA */ 3662 kvmppc_map_vrma(vcpu, memslot, porder); 3663 3664 /* Update VRMASD field in the LPCR */ 3665 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3666 /* the -4 is to account for senc values starting at 0x10 */ 3667 lpcr = senc << (LPCR_VRMASD_SH - 4); 3668 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3669 } 3670 3671 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 3672 smp_wmb(); 3673 err = 0; 3674 out_srcu: 3675 srcu_read_unlock(&kvm->srcu, srcu_idx); 3676 out: 3677 return err; 3678 3679 up_out: 3680 up_read(¤t->mm->mmap_sem); 3681 goto out_srcu; 3682 } 3683 3684 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3685 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 3686 { 3687 kvmppc_free_radix(kvm); 3688 kvmppc_update_lpcr(kvm, LPCR_VPM1, 3689 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3690 kvmppc_rmap_reset(kvm); 3691 kvm->arch.radix = 0; 3692 kvm->arch.process_table = 0; 3693 return 0; 3694 } 3695 3696 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3697 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 3698 { 3699 int err; 3700 3701 err = kvmppc_init_vm_radix(kvm); 3702 if (err) 3703 return err; 3704 3705 kvmppc_free_hpt(&kvm->arch.hpt); 3706 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 3707 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3708 kvm->arch.radix = 1; 3709 return 0; 3710 } 3711 3712 #ifdef CONFIG_KVM_XICS 3713 /* 3714 * Allocate a per-core structure for managing state about which cores are 3715 * running in the host versus the guest and for exchanging data between 3716 * real mode KVM and CPU running in the host. 3717 * This is only done for the first VM. 3718 * The allocated structure stays even if all VMs have stopped. 3719 * It is only freed when the kvm-hv module is unloaded. 3720 * It's OK for this routine to fail, we just don't support host 3721 * core operations like redirecting H_IPI wakeups. 3722 */ 3723 void kvmppc_alloc_host_rm_ops(void) 3724 { 3725 struct kvmppc_host_rm_ops *ops; 3726 unsigned long l_ops; 3727 int cpu, core; 3728 int size; 3729 3730 /* Not the first time here ? */ 3731 if (kvmppc_host_rm_ops_hv != NULL) 3732 return; 3733 3734 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3735 if (!ops) 3736 return; 3737 3738 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3739 ops->rm_core = kzalloc(size, GFP_KERNEL); 3740 3741 if (!ops->rm_core) { 3742 kfree(ops); 3743 return; 3744 } 3745 3746 cpus_read_lock(); 3747 3748 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3749 if (!cpu_online(cpu)) 3750 continue; 3751 3752 core = cpu >> threads_shift; 3753 ops->rm_core[core].rm_state.in_host = 1; 3754 } 3755 3756 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3757 3758 /* 3759 * Make the contents of the kvmppc_host_rm_ops structure visible 3760 * to other CPUs before we assign it to the global variable. 3761 * Do an atomic assignment (no locks used here), but if someone 3762 * beats us to it, just free our copy and return. 3763 */ 3764 smp_wmb(); 3765 l_ops = (unsigned long) ops; 3766 3767 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3768 cpus_read_unlock(); 3769 kfree(ops->rm_core); 3770 kfree(ops); 3771 return; 3772 } 3773 3774 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 3775 "ppc/kvm_book3s:prepare", 3776 kvmppc_set_host_core, 3777 kvmppc_clear_host_core); 3778 cpus_read_unlock(); 3779 } 3780 3781 void kvmppc_free_host_rm_ops(void) 3782 { 3783 if (kvmppc_host_rm_ops_hv) { 3784 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 3785 kfree(kvmppc_host_rm_ops_hv->rm_core); 3786 kfree(kvmppc_host_rm_ops_hv); 3787 kvmppc_host_rm_ops_hv = NULL; 3788 } 3789 } 3790 #endif 3791 3792 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3793 { 3794 unsigned long lpcr, lpid; 3795 char buf[32]; 3796 int ret; 3797 3798 /* Allocate the guest's logical partition ID */ 3799 3800 lpid = kvmppc_alloc_lpid(); 3801 if ((long)lpid < 0) 3802 return -ENOMEM; 3803 kvm->arch.lpid = lpid; 3804 3805 kvmppc_alloc_host_rm_ops(); 3806 3807 /* 3808 * Since we don't flush the TLB when tearing down a VM, 3809 * and this lpid might have previously been used, 3810 * make sure we flush on each core before running the new VM. 3811 * On POWER9, the tlbie in mmu_partition_table_set_entry() 3812 * does this flush for us. 3813 */ 3814 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3815 cpumask_setall(&kvm->arch.need_tlb_flush); 3816 3817 /* Start out with the default set of hcalls enabled */ 3818 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3819 sizeof(kvm->arch.enabled_hcalls)); 3820 3821 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3822 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3823 3824 /* Init LPCR for virtual RMA mode */ 3825 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3826 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3827 lpcr &= LPCR_PECE | LPCR_LPES; 3828 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3829 LPCR_VPM0 | LPCR_VPM1; 3830 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3831 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3832 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3833 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3834 lpcr |= LPCR_ONL; 3835 /* 3836 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 3837 * Set HVICE bit to enable hypervisor virtualization interrupts. 3838 * Set HEIC to prevent OS interrupts to go to hypervisor (should 3839 * be unnecessary but better safe than sorry in case we re-enable 3840 * EE in HV mode with this LPCR still set) 3841 */ 3842 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3843 lpcr &= ~LPCR_VPM0; 3844 lpcr |= LPCR_HVICE | LPCR_HEIC; 3845 3846 /* 3847 * If xive is enabled, we route 0x500 interrupts directly 3848 * to the guest. 3849 */ 3850 if (xive_enabled()) 3851 lpcr |= LPCR_LPES; 3852 } 3853 3854 /* 3855 * If the host uses radix, the guest starts out as radix. 3856 */ 3857 if (radix_enabled()) { 3858 kvm->arch.radix = 1; 3859 kvm->arch.mmu_ready = 1; 3860 lpcr &= ~LPCR_VPM1; 3861 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 3862 ret = kvmppc_init_vm_radix(kvm); 3863 if (ret) { 3864 kvmppc_free_lpid(kvm->arch.lpid); 3865 return ret; 3866 } 3867 kvmppc_setup_partition_table(kvm); 3868 } 3869 3870 kvm->arch.lpcr = lpcr; 3871 3872 /* Initialization for future HPT resizes */ 3873 kvm->arch.resize_hpt = NULL; 3874 3875 /* 3876 * Work out how many sets the TLB has, for the use of 3877 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 3878 */ 3879 if (radix_enabled()) 3880 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 3881 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 3882 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 3883 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3884 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 3885 else 3886 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 3887 3888 /* 3889 * Track that we now have a HV mode VM active. This blocks secondary 3890 * CPU threads from coming online. 3891 * On POWER9, we only need to do this if the "indep_threads_mode" 3892 * module parameter has been set to N. 3893 */ 3894 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3895 kvm->arch.threads_indep = indep_threads_mode; 3896 if (!kvm->arch.threads_indep) 3897 kvm_hv_vm_activated(); 3898 3899 /* 3900 * Initialize smt_mode depending on processor. 3901 * POWER8 and earlier have to use "strict" threading, where 3902 * all vCPUs in a vcore have to run on the same (sub)core, 3903 * whereas on POWER9 the threads can each run a different 3904 * guest. 3905 */ 3906 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3907 kvm->arch.smt_mode = threads_per_subcore; 3908 else 3909 kvm->arch.smt_mode = 1; 3910 kvm->arch.emul_smt_mode = 1; 3911 3912 /* 3913 * Create a debugfs directory for the VM 3914 */ 3915 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3916 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3917 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3918 kvmppc_mmu_debugfs_init(kvm); 3919 3920 return 0; 3921 } 3922 3923 static void kvmppc_free_vcores(struct kvm *kvm) 3924 { 3925 long int i; 3926 3927 for (i = 0; i < KVM_MAX_VCORES; ++i) 3928 kfree(kvm->arch.vcores[i]); 3929 kvm->arch.online_vcores = 0; 3930 } 3931 3932 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3933 { 3934 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3935 3936 if (!kvm->arch.threads_indep) 3937 kvm_hv_vm_deactivated(); 3938 3939 kvmppc_free_vcores(kvm); 3940 3941 kvmppc_free_lpid(kvm->arch.lpid); 3942 3943 if (kvm_is_radix(kvm)) 3944 kvmppc_free_radix(kvm); 3945 else 3946 kvmppc_free_hpt(&kvm->arch.hpt); 3947 3948 kvmppc_free_pimap(kvm); 3949 } 3950 3951 /* We don't need to emulate any privileged instructions or dcbz */ 3952 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3953 unsigned int inst, int *advance) 3954 { 3955 return EMULATE_FAIL; 3956 } 3957 3958 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3959 ulong spr_val) 3960 { 3961 return EMULATE_FAIL; 3962 } 3963 3964 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3965 ulong *spr_val) 3966 { 3967 return EMULATE_FAIL; 3968 } 3969 3970 static int kvmppc_core_check_processor_compat_hv(void) 3971 { 3972 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3973 !cpu_has_feature(CPU_FTR_ARCH_206)) 3974 return -EIO; 3975 3976 return 0; 3977 } 3978 3979 #ifdef CONFIG_KVM_XICS 3980 3981 void kvmppc_free_pimap(struct kvm *kvm) 3982 { 3983 kfree(kvm->arch.pimap); 3984 } 3985 3986 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 3987 { 3988 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 3989 } 3990 3991 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 3992 { 3993 struct irq_desc *desc; 3994 struct kvmppc_irq_map *irq_map; 3995 struct kvmppc_passthru_irqmap *pimap; 3996 struct irq_chip *chip; 3997 int i, rc = 0; 3998 3999 if (!kvm_irq_bypass) 4000 return 1; 4001 4002 desc = irq_to_desc(host_irq); 4003 if (!desc) 4004 return -EIO; 4005 4006 mutex_lock(&kvm->lock); 4007 4008 pimap = kvm->arch.pimap; 4009 if (pimap == NULL) { 4010 /* First call, allocate structure to hold IRQ map */ 4011 pimap = kvmppc_alloc_pimap(); 4012 if (pimap == NULL) { 4013 mutex_unlock(&kvm->lock); 4014 return -ENOMEM; 4015 } 4016 kvm->arch.pimap = pimap; 4017 } 4018 4019 /* 4020 * For now, we only support interrupts for which the EOI operation 4021 * is an OPAL call followed by a write to XIRR, since that's 4022 * what our real-mode EOI code does, or a XIVE interrupt 4023 */ 4024 chip = irq_data_get_irq_chip(&desc->irq_data); 4025 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 4026 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 4027 host_irq, guest_gsi); 4028 mutex_unlock(&kvm->lock); 4029 return -ENOENT; 4030 } 4031 4032 /* 4033 * See if we already have an entry for this guest IRQ number. 4034 * If it's mapped to a hardware IRQ number, that's an error, 4035 * otherwise re-use this entry. 4036 */ 4037 for (i = 0; i < pimap->n_mapped; i++) { 4038 if (guest_gsi == pimap->mapped[i].v_hwirq) { 4039 if (pimap->mapped[i].r_hwirq) { 4040 mutex_unlock(&kvm->lock); 4041 return -EINVAL; 4042 } 4043 break; 4044 } 4045 } 4046 4047 if (i == KVMPPC_PIRQ_MAPPED) { 4048 mutex_unlock(&kvm->lock); 4049 return -EAGAIN; /* table is full */ 4050 } 4051 4052 irq_map = &pimap->mapped[i]; 4053 4054 irq_map->v_hwirq = guest_gsi; 4055 irq_map->desc = desc; 4056 4057 /* 4058 * Order the above two stores before the next to serialize with 4059 * the KVM real mode handler. 4060 */ 4061 smp_wmb(); 4062 irq_map->r_hwirq = desc->irq_data.hwirq; 4063 4064 if (i == pimap->n_mapped) 4065 pimap->n_mapped++; 4066 4067 if (xive_enabled()) 4068 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 4069 else 4070 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 4071 if (rc) 4072 irq_map->r_hwirq = 0; 4073 4074 mutex_unlock(&kvm->lock); 4075 4076 return 0; 4077 } 4078 4079 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4080 { 4081 struct irq_desc *desc; 4082 struct kvmppc_passthru_irqmap *pimap; 4083 int i, rc = 0; 4084 4085 if (!kvm_irq_bypass) 4086 return 0; 4087 4088 desc = irq_to_desc(host_irq); 4089 if (!desc) 4090 return -EIO; 4091 4092 mutex_lock(&kvm->lock); 4093 if (!kvm->arch.pimap) 4094 goto unlock; 4095 4096 pimap = kvm->arch.pimap; 4097 4098 for (i = 0; i < pimap->n_mapped; i++) { 4099 if (guest_gsi == pimap->mapped[i].v_hwirq) 4100 break; 4101 } 4102 4103 if (i == pimap->n_mapped) { 4104 mutex_unlock(&kvm->lock); 4105 return -ENODEV; 4106 } 4107 4108 if (xive_enabled()) 4109 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 4110 else 4111 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 4112 4113 /* invalidate the entry (what do do on error from the above ?) */ 4114 pimap->mapped[i].r_hwirq = 0; 4115 4116 /* 4117 * We don't free this structure even when the count goes to 4118 * zero. The structure is freed when we destroy the VM. 4119 */ 4120 unlock: 4121 mutex_unlock(&kvm->lock); 4122 return rc; 4123 } 4124 4125 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 4126 struct irq_bypass_producer *prod) 4127 { 4128 int ret = 0; 4129 struct kvm_kernel_irqfd *irqfd = 4130 container_of(cons, struct kvm_kernel_irqfd, consumer); 4131 4132 irqfd->producer = prod; 4133 4134 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4135 if (ret) 4136 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 4137 prod->irq, irqfd->gsi, ret); 4138 4139 return ret; 4140 } 4141 4142 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 4143 struct irq_bypass_producer *prod) 4144 { 4145 int ret; 4146 struct kvm_kernel_irqfd *irqfd = 4147 container_of(cons, struct kvm_kernel_irqfd, consumer); 4148 4149 irqfd->producer = NULL; 4150 4151 /* 4152 * When producer of consumer is unregistered, we change back to 4153 * default external interrupt handling mode - KVM real mode 4154 * will switch back to host. 4155 */ 4156 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4157 if (ret) 4158 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 4159 prod->irq, irqfd->gsi, ret); 4160 } 4161 #endif 4162 4163 static long kvm_arch_vm_ioctl_hv(struct file *filp, 4164 unsigned int ioctl, unsigned long arg) 4165 { 4166 struct kvm *kvm __maybe_unused = filp->private_data; 4167 void __user *argp = (void __user *)arg; 4168 long r; 4169 4170 switch (ioctl) { 4171 4172 case KVM_PPC_ALLOCATE_HTAB: { 4173 u32 htab_order; 4174 4175 r = -EFAULT; 4176 if (get_user(htab_order, (u32 __user *)argp)) 4177 break; 4178 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 4179 if (r) 4180 break; 4181 r = 0; 4182 break; 4183 } 4184 4185 case KVM_PPC_GET_HTAB_FD: { 4186 struct kvm_get_htab_fd ghf; 4187 4188 r = -EFAULT; 4189 if (copy_from_user(&ghf, argp, sizeof(ghf))) 4190 break; 4191 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 4192 break; 4193 } 4194 4195 case KVM_PPC_RESIZE_HPT_PREPARE: { 4196 struct kvm_ppc_resize_hpt rhpt; 4197 4198 r = -EFAULT; 4199 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4200 break; 4201 4202 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 4203 break; 4204 } 4205 4206 case KVM_PPC_RESIZE_HPT_COMMIT: { 4207 struct kvm_ppc_resize_hpt rhpt; 4208 4209 r = -EFAULT; 4210 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4211 break; 4212 4213 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 4214 break; 4215 } 4216 4217 default: 4218 r = -ENOTTY; 4219 } 4220 4221 return r; 4222 } 4223 4224 /* 4225 * List of hcall numbers to enable by default. 4226 * For compatibility with old userspace, we enable by default 4227 * all hcalls that were implemented before the hcall-enabling 4228 * facility was added. Note this list should not include H_RTAS. 4229 */ 4230 static unsigned int default_hcall_list[] = { 4231 H_REMOVE, 4232 H_ENTER, 4233 H_READ, 4234 H_PROTECT, 4235 H_BULK_REMOVE, 4236 H_GET_TCE, 4237 H_PUT_TCE, 4238 H_SET_DABR, 4239 H_SET_XDABR, 4240 H_CEDE, 4241 H_PROD, 4242 H_CONFER, 4243 H_REGISTER_VPA, 4244 #ifdef CONFIG_KVM_XICS 4245 H_EOI, 4246 H_CPPR, 4247 H_IPI, 4248 H_IPOLL, 4249 H_XIRR, 4250 H_XIRR_X, 4251 #endif 4252 0 4253 }; 4254 4255 static void init_default_hcalls(void) 4256 { 4257 int i; 4258 unsigned int hcall; 4259 4260 for (i = 0; default_hcall_list[i]; ++i) { 4261 hcall = default_hcall_list[i]; 4262 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 4263 __set_bit(hcall / 4, default_enabled_hcalls); 4264 } 4265 } 4266 4267 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 4268 { 4269 unsigned long lpcr; 4270 int radix; 4271 int err; 4272 4273 /* If not on a POWER9, reject it */ 4274 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4275 return -ENODEV; 4276 4277 /* If any unknown flags set, reject it */ 4278 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 4279 return -EINVAL; 4280 4281 /* GR (guest radix) bit in process_table field must match */ 4282 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 4283 if (!!(cfg->process_table & PATB_GR) != radix) 4284 return -EINVAL; 4285 4286 /* Process table size field must be reasonable, i.e. <= 24 */ 4287 if ((cfg->process_table & PRTS_MASK) > 24) 4288 return -EINVAL; 4289 4290 /* We can change a guest to/from radix now, if the host is radix */ 4291 if (radix && !radix_enabled()) 4292 return -EINVAL; 4293 4294 mutex_lock(&kvm->lock); 4295 if (radix != kvm_is_radix(kvm)) { 4296 if (kvm->arch.mmu_ready) { 4297 kvm->arch.mmu_ready = 0; 4298 /* order mmu_ready vs. vcpus_running */ 4299 smp_mb(); 4300 if (atomic_read(&kvm->arch.vcpus_running)) { 4301 kvm->arch.mmu_ready = 1; 4302 err = -EBUSY; 4303 goto out_unlock; 4304 } 4305 } 4306 if (radix) 4307 err = kvmppc_switch_mmu_to_radix(kvm); 4308 else 4309 err = kvmppc_switch_mmu_to_hpt(kvm); 4310 if (err) 4311 goto out_unlock; 4312 } 4313 4314 kvm->arch.process_table = cfg->process_table; 4315 kvmppc_setup_partition_table(kvm); 4316 4317 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 4318 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 4319 err = 0; 4320 4321 out_unlock: 4322 mutex_unlock(&kvm->lock); 4323 return err; 4324 } 4325 4326 static struct kvmppc_ops kvm_ops_hv = { 4327 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 4328 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 4329 .get_one_reg = kvmppc_get_one_reg_hv, 4330 .set_one_reg = kvmppc_set_one_reg_hv, 4331 .vcpu_load = kvmppc_core_vcpu_load_hv, 4332 .vcpu_put = kvmppc_core_vcpu_put_hv, 4333 .set_msr = kvmppc_set_msr_hv, 4334 .vcpu_run = kvmppc_vcpu_run_hv, 4335 .vcpu_create = kvmppc_core_vcpu_create_hv, 4336 .vcpu_free = kvmppc_core_vcpu_free_hv, 4337 .check_requests = kvmppc_core_check_requests_hv, 4338 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 4339 .flush_memslot = kvmppc_core_flush_memslot_hv, 4340 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 4341 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 4342 .unmap_hva = kvm_unmap_hva_hv, 4343 .unmap_hva_range = kvm_unmap_hva_range_hv, 4344 .age_hva = kvm_age_hva_hv, 4345 .test_age_hva = kvm_test_age_hva_hv, 4346 .set_spte_hva = kvm_set_spte_hva_hv, 4347 .mmu_destroy = kvmppc_mmu_destroy_hv, 4348 .free_memslot = kvmppc_core_free_memslot_hv, 4349 .create_memslot = kvmppc_core_create_memslot_hv, 4350 .init_vm = kvmppc_core_init_vm_hv, 4351 .destroy_vm = kvmppc_core_destroy_vm_hv, 4352 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 4353 .emulate_op = kvmppc_core_emulate_op_hv, 4354 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 4355 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 4356 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 4357 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 4358 .hcall_implemented = kvmppc_hcall_impl_hv, 4359 #ifdef CONFIG_KVM_XICS 4360 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 4361 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 4362 #endif 4363 .configure_mmu = kvmhv_configure_mmu, 4364 .get_rmmu_info = kvmhv_get_rmmu_info, 4365 .set_smt_mode = kvmhv_set_smt_mode, 4366 }; 4367 4368 static int kvm_init_subcore_bitmap(void) 4369 { 4370 int i, j; 4371 int nr_cores = cpu_nr_cores(); 4372 struct sibling_subcore_state *sibling_subcore_state; 4373 4374 for (i = 0; i < nr_cores; i++) { 4375 int first_cpu = i * threads_per_core; 4376 int node = cpu_to_node(first_cpu); 4377 4378 /* Ignore if it is already allocated. */ 4379 if (paca[first_cpu].sibling_subcore_state) 4380 continue; 4381 4382 sibling_subcore_state = 4383 kmalloc_node(sizeof(struct sibling_subcore_state), 4384 GFP_KERNEL, node); 4385 if (!sibling_subcore_state) 4386 return -ENOMEM; 4387 4388 memset(sibling_subcore_state, 0, 4389 sizeof(struct sibling_subcore_state)); 4390 4391 for (j = 0; j < threads_per_core; j++) { 4392 int cpu = first_cpu + j; 4393 4394 paca[cpu].sibling_subcore_state = sibling_subcore_state; 4395 } 4396 } 4397 return 0; 4398 } 4399 4400 static int kvmppc_radix_possible(void) 4401 { 4402 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 4403 } 4404 4405 static int kvmppc_book3s_init_hv(void) 4406 { 4407 int r; 4408 /* 4409 * FIXME!! Do we need to check on all cpus ? 4410 */ 4411 r = kvmppc_core_check_processor_compat_hv(); 4412 if (r < 0) 4413 return -ENODEV; 4414 4415 r = kvm_init_subcore_bitmap(); 4416 if (r) 4417 return r; 4418 4419 /* 4420 * We need a way of accessing the XICS interrupt controller, 4421 * either directly, via paca[cpu].kvm_hstate.xics_phys, or 4422 * indirectly, via OPAL. 4423 */ 4424 #ifdef CONFIG_SMP 4425 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { 4426 struct device_node *np; 4427 4428 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 4429 if (!np) { 4430 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 4431 return -ENODEV; 4432 } 4433 } 4434 #endif 4435 4436 kvm_ops_hv.owner = THIS_MODULE; 4437 kvmppc_hv_ops = &kvm_ops_hv; 4438 4439 init_default_hcalls(); 4440 4441 init_vcore_lists(); 4442 4443 r = kvmppc_mmu_hv_init(); 4444 if (r) 4445 return r; 4446 4447 if (kvmppc_radix_possible()) 4448 r = kvmppc_radix_init(); 4449 return r; 4450 } 4451 4452 static void kvmppc_book3s_exit_hv(void) 4453 { 4454 kvmppc_free_host_rm_ops(); 4455 if (kvmppc_radix_possible()) 4456 kvmppc_radix_exit(); 4457 kvmppc_hv_ops = NULL; 4458 } 4459 4460 module_init(kvmppc_book3s_init_hv); 4461 module_exit(kvmppc_book3s_exit_hv); 4462 MODULE_LICENSE("GPL"); 4463 MODULE_ALIAS_MISCDEV(KVM_MINOR); 4464 MODULE_ALIAS("devname:kvm"); 4465