xref: /linux/arch/powerpc/kvm/book3s_hv.c (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46 #include <linux/smp.h>
47 
48 #include <asm/ftrace.h>
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/archrandom.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/interrupt.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/pmc.h>
65 #include <asm/processor.h>
66 #include <asm/cputhreads.h>
67 #include <asm/page.h>
68 #include <asm/hvcall.h>
69 #include <asm/switch_to.h>
70 #include <asm/smp.h>
71 #include <asm/dbell.h>
72 #include <asm/hmi.h>
73 #include <asm/pnv-pci.h>
74 #include <asm/mmu.h>
75 #include <asm/opal.h>
76 #include <asm/xics.h>
77 #include <asm/xive.h>
78 #include <asm/hw_breakpoint.h>
79 #include <asm/kvm_book3s_uvmem.h>
80 #include <asm/ultravisor.h>
81 #include <asm/dtl.h>
82 #include <asm/plpar_wrappers.h>
83 
84 #include <trace/events/ipi.h>
85 
86 #include "book3s.h"
87 #include "book3s_hv.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace_hv.h"
91 
92 /* #define EXIT_DEBUG */
93 /* #define EXIT_DEBUG_SIMPLE */
94 /* #define EXIT_DEBUG_INT */
95 
96 /* Used to indicate that a guest page fault needs to be handled */
97 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
98 /* Used to indicate that a guest passthrough interrupt needs to be handled */
99 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
100 
101 /* Used as a "null" value for timebase values */
102 #define TB_NIL	(~(u64)0)
103 
104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
105 
106 static int dynamic_mt_modes = 6;
107 module_param(dynamic_mt_modes, int, 0644);
108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109 static int target_smt_mode;
110 module_param(target_smt_mode, int, 0644);
111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
112 
113 static bool one_vm_per_core;
114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
116 
117 #ifdef CONFIG_KVM_XICS
118 static const struct kernel_param_ops module_param_ops = {
119 	.set = param_set_int,
120 	.get = param_get_int,
121 };
122 
123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
125 
126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
128 #endif
129 
130 /* If set, guests are allowed to create and control nested guests */
131 static bool nested = true;
132 module_param(nested, bool, S_IRUGO | S_IWUSR);
133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
134 
135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136 
137 /*
138  * RWMR values for POWER8.  These control the rate at which PURR
139  * and SPURR count and should be set according to the number of
140  * online threads in the vcore being run.
141  */
142 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
143 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
144 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
145 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
146 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
147 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
148 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
149 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
150 
151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152 	RWMR_RPA_P8_1THREAD,
153 	RWMR_RPA_P8_1THREAD,
154 	RWMR_RPA_P8_2THREAD,
155 	RWMR_RPA_P8_3THREAD,
156 	RWMR_RPA_P8_4THREAD,
157 	RWMR_RPA_P8_5THREAD,
158 	RWMR_RPA_P8_6THREAD,
159 	RWMR_RPA_P8_7THREAD,
160 	RWMR_RPA_P8_8THREAD,
161 };
162 
163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164 		int *ip)
165 {
166 	int i = *ip;
167 	struct kvm_vcpu *vcpu;
168 
169 	while (++i < MAX_SMT_THREADS) {
170 		vcpu = READ_ONCE(vc->runnable_threads[i]);
171 		if (vcpu) {
172 			*ip = i;
173 			return vcpu;
174 		}
175 	}
176 	return NULL;
177 }
178 
179 /* Used to traverse the list of runnable threads for a given vcore */
180 #define for_each_runnable_thread(i, vcpu, vc) \
181 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182 
183 static bool kvmppc_ipi_thread(int cpu)
184 {
185 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186 
187 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188 	if (kvmhv_on_pseries())
189 		return false;
190 
191 	/* On POWER9 we can use msgsnd to IPI any cpu */
192 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193 		msg |= get_hard_smp_processor_id(cpu);
194 		smp_mb();
195 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196 		return true;
197 	}
198 
199 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
200 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201 		preempt_disable();
202 		if (cpu_first_thread_sibling(cpu) ==
203 		    cpu_first_thread_sibling(smp_processor_id())) {
204 			msg |= cpu_thread_in_core(cpu);
205 			smp_mb();
206 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207 			preempt_enable();
208 			return true;
209 		}
210 		preempt_enable();
211 	}
212 
213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214 	if (cpu >= 0 && cpu < nr_cpu_ids) {
215 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216 			xics_wake_cpu(cpu);
217 			return true;
218 		}
219 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220 		return true;
221 	}
222 #endif
223 
224 	return false;
225 }
226 
227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228 {
229 	int cpu;
230 	struct rcuwait *waitp;
231 
232 	/*
233 	 * rcuwait_wake_up contains smp_mb() which orders prior stores that
234 	 * create pending work vs below loads of cpu fields. The other side
235 	 * is the barrier in vcpu run that orders setting the cpu fields vs
236 	 * testing for pending work.
237 	 */
238 
239 	waitp = kvm_arch_vcpu_get_wait(vcpu);
240 	if (rcuwait_wake_up(waitp))
241 		++vcpu->stat.generic.halt_wakeup;
242 
243 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
244 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245 		return;
246 
247 	/* CPU points to the first thread of the core */
248 	cpu = vcpu->cpu;
249 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250 		smp_send_reschedule(cpu);
251 }
252 
253 /*
254  * We use the vcpu_load/put functions to measure stolen time.
255  *
256  * Stolen time is counted as time when either the vcpu is able to
257  * run as part of a virtual core, but the task running the vcore
258  * is preempted or sleeping, or when the vcpu needs something done
259  * in the kernel by the task running the vcpu, but that task is
260  * preempted or sleeping.  Those two things have to be counted
261  * separately, since one of the vcpu tasks will take on the job
262  * of running the core, and the other vcpu tasks in the vcore will
263  * sleep waiting for it to do that, but that sleep shouldn't count
264  * as stolen time.
265  *
266  * Hence we accumulate stolen time when the vcpu can run as part of
267  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268  * needs its task to do other things in the kernel (for example,
269  * service a page fault) in busy_stolen.  We don't accumulate
270  * stolen time for a vcore when it is inactive, or for a vcpu
271  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
272  * a misnomer; it means that the vcpu task is not executing in
273  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274  * the kernel.  We don't have any way of dividing up that time
275  * between time that the vcpu is genuinely stopped, time that
276  * the task is actively working on behalf of the vcpu, and time
277  * that the task is preempted, so we don't count any of it as
278  * stolen.
279  *
280  * Updates to busy_stolen are protected by arch.tbacct_lock;
281  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282  * lock.  The stolen times are measured in units of timebase ticks.
283  * (Note that the != TB_NIL checks below are purely defensive;
284  * they should never fail.)
285  *
286  * The POWER9 path is simpler, one vcpu per virtual core so the
287  * former case does not exist. If a vcpu is preempted when it is
288  * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289  * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290  * state in the P9 path.
291  */
292 
293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
294 {
295 	unsigned long flags;
296 
297 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
298 
299 	spin_lock_irqsave(&vc->stoltb_lock, flags);
300 	vc->preempt_tb = tb;
301 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303 
304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
305 {
306 	unsigned long flags;
307 
308 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
309 
310 	spin_lock_irqsave(&vc->stoltb_lock, flags);
311 	if (vc->preempt_tb != TB_NIL) {
312 		vc->stolen_tb += tb - vc->preempt_tb;
313 		vc->preempt_tb = TB_NIL;
314 	}
315 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
316 }
317 
318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
319 {
320 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
321 	unsigned long flags;
322 	u64 now;
323 
324 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325 		if (vcpu->arch.busy_preempt != TB_NIL) {
326 			WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327 			vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328 			vcpu->arch.busy_preempt = TB_NIL;
329 		}
330 		return;
331 	}
332 
333 	now = mftb();
334 
335 	/*
336 	 * We can test vc->runner without taking the vcore lock,
337 	 * because only this task ever sets vc->runner to this
338 	 * vcpu, and once it is set to this vcpu, only this task
339 	 * ever sets it to NULL.
340 	 */
341 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342 		kvmppc_core_end_stolen(vc, now);
343 
344 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346 	    vcpu->arch.busy_preempt != TB_NIL) {
347 		vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348 		vcpu->arch.busy_preempt = TB_NIL;
349 	}
350 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
351 }
352 
353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
354 {
355 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
356 	unsigned long flags;
357 	u64 now;
358 
359 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
360 		/*
361 		 * In the P9 path, RUNNABLE is not preemptible
362 		 * (nor takes host interrupts)
363 		 */
364 		WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
365 		/*
366 		 * Account stolen time when preempted while the vcpu task is
367 		 * running in the kernel (but not in qemu, which is INACTIVE).
368 		 */
369 		if (task_is_running(current) &&
370 				vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371 			vcpu->arch.busy_preempt = mftb();
372 		return;
373 	}
374 
375 	now = mftb();
376 
377 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378 		kvmppc_core_start_stolen(vc, now);
379 
380 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382 		vcpu->arch.busy_preempt = now;
383 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
384 }
385 
386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
387 {
388 	vcpu->arch.pvr = pvr;
389 }
390 
391 /* Dummy value used in computing PCR value below */
392 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
393 
394 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
395 {
396 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0;
397 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
398 
399 	/* We can (emulate) our own architecture version and anything older */
400 	if (cpu_has_feature(CPU_FTR_ARCH_31))
401 		host_pcr_bit = PCR_ARCH_31;
402 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
403 		host_pcr_bit = PCR_ARCH_300;
404 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
405 		host_pcr_bit = PCR_ARCH_207;
406 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
407 		host_pcr_bit = PCR_ARCH_206;
408 	else
409 		host_pcr_bit = PCR_ARCH_205;
410 
411 	/* Determine lowest PCR bit needed to run guest in given PVR level */
412 	guest_pcr_bit = host_pcr_bit;
413 	if (arch_compat) {
414 		switch (arch_compat) {
415 		case PVR_ARCH_205:
416 			guest_pcr_bit = PCR_ARCH_205;
417 			break;
418 		case PVR_ARCH_206:
419 		case PVR_ARCH_206p:
420 			guest_pcr_bit = PCR_ARCH_206;
421 			break;
422 		case PVR_ARCH_207:
423 			guest_pcr_bit = PCR_ARCH_207;
424 			break;
425 		case PVR_ARCH_300:
426 			guest_pcr_bit = PCR_ARCH_300;
427 			cap = H_GUEST_CAP_POWER9;
428 			break;
429 		case PVR_ARCH_31:
430 			guest_pcr_bit = PCR_ARCH_31;
431 			cap = H_GUEST_CAP_POWER10;
432 			break;
433 		default:
434 			return -EINVAL;
435 		}
436 	}
437 
438 	/* Check requested PCR bits don't exceed our capabilities */
439 	if (guest_pcr_bit > host_pcr_bit)
440 		return -EINVAL;
441 
442 	if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) {
443 		if (!(cap & nested_capabilities))
444 			return -EINVAL;
445 	}
446 
447 	spin_lock(&vc->lock);
448 	vc->arch_compat = arch_compat;
449 	kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR);
450 	/*
451 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
452 	 * Also set all reserved PCR bits
453 	 */
454 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
455 	spin_unlock(&vc->lock);
456 
457 	return 0;
458 }
459 
460 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
461 {
462 	int r;
463 
464 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
465 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
466 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
467 	for (r = 0; r < 16; ++r)
468 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
469 		       r, kvmppc_get_gpr(vcpu, r),
470 		       r+16, kvmppc_get_gpr(vcpu, r+16));
471 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
472 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
473 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
474 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
475 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
476 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
477 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
478 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
479 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
480 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
481 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
482 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
483 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
484 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
485 	for (r = 0; r < vcpu->arch.slb_max; ++r)
486 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
487 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
488 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
489 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
490 	       vcpu->arch.last_inst);
491 }
492 
493 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
494 {
495 	return kvm_get_vcpu_by_id(kvm, id);
496 }
497 
498 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
499 {
500 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
501 	vpa->yield_count = cpu_to_be32(1);
502 }
503 
504 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
505 		   unsigned long addr, unsigned long len)
506 {
507 	/* check address is cacheline aligned */
508 	if (addr & (L1_CACHE_BYTES - 1))
509 		return -EINVAL;
510 	spin_lock(&vcpu->arch.vpa_update_lock);
511 	if (v->next_gpa != addr || v->len != len) {
512 		v->next_gpa = addr;
513 		v->len = addr ? len : 0;
514 		v->update_pending = 1;
515 	}
516 	spin_unlock(&vcpu->arch.vpa_update_lock);
517 	return 0;
518 }
519 
520 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
521 struct reg_vpa {
522 	u32 dummy;
523 	union {
524 		__be16 hword;
525 		__be32 word;
526 	} length;
527 };
528 
529 static int vpa_is_registered(struct kvmppc_vpa *vpap)
530 {
531 	if (vpap->update_pending)
532 		return vpap->next_gpa != 0;
533 	return vpap->pinned_addr != NULL;
534 }
535 
536 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
537 				       unsigned long flags,
538 				       unsigned long vcpuid, unsigned long vpa)
539 {
540 	struct kvm *kvm = vcpu->kvm;
541 	unsigned long len, nb;
542 	void *va;
543 	struct kvm_vcpu *tvcpu;
544 	int err;
545 	int subfunc;
546 	struct kvmppc_vpa *vpap;
547 
548 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
549 	if (!tvcpu)
550 		return H_PARAMETER;
551 
552 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
553 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
554 	    subfunc == H_VPA_REG_SLB) {
555 		/* Registering new area - address must be cache-line aligned */
556 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
557 			return H_PARAMETER;
558 
559 		/* convert logical addr to kernel addr and read length */
560 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
561 		if (va == NULL)
562 			return H_PARAMETER;
563 		if (subfunc == H_VPA_REG_VPA)
564 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
565 		else
566 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
567 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
568 
569 		/* Check length */
570 		if (len > nb || len < sizeof(struct reg_vpa))
571 			return H_PARAMETER;
572 	} else {
573 		vpa = 0;
574 		len = 0;
575 	}
576 
577 	err = H_PARAMETER;
578 	vpap = NULL;
579 	spin_lock(&tvcpu->arch.vpa_update_lock);
580 
581 	switch (subfunc) {
582 	case H_VPA_REG_VPA:		/* register VPA */
583 		/*
584 		 * The size of our lppaca is 1kB because of the way we align
585 		 * it for the guest to avoid crossing a 4kB boundary. We only
586 		 * use 640 bytes of the structure though, so we should accept
587 		 * clients that set a size of 640.
588 		 */
589 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
590 		if (len < sizeof(struct lppaca))
591 			break;
592 		vpap = &tvcpu->arch.vpa;
593 		err = 0;
594 		break;
595 
596 	case H_VPA_REG_DTL:		/* register DTL */
597 		if (len < sizeof(struct dtl_entry))
598 			break;
599 		len -= len % sizeof(struct dtl_entry);
600 
601 		/* Check that they have previously registered a VPA */
602 		err = H_RESOURCE;
603 		if (!vpa_is_registered(&tvcpu->arch.vpa))
604 			break;
605 
606 		vpap = &tvcpu->arch.dtl;
607 		err = 0;
608 		break;
609 
610 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
611 		/* Check that they have previously registered a VPA */
612 		err = H_RESOURCE;
613 		if (!vpa_is_registered(&tvcpu->arch.vpa))
614 			break;
615 
616 		vpap = &tvcpu->arch.slb_shadow;
617 		err = 0;
618 		break;
619 
620 	case H_VPA_DEREG_VPA:		/* deregister VPA */
621 		/* Check they don't still have a DTL or SLB buf registered */
622 		err = H_RESOURCE;
623 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
624 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
625 			break;
626 
627 		vpap = &tvcpu->arch.vpa;
628 		err = 0;
629 		break;
630 
631 	case H_VPA_DEREG_DTL:		/* deregister DTL */
632 		vpap = &tvcpu->arch.dtl;
633 		err = 0;
634 		break;
635 
636 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
637 		vpap = &tvcpu->arch.slb_shadow;
638 		err = 0;
639 		break;
640 	}
641 
642 	if (vpap) {
643 		vpap->next_gpa = vpa;
644 		vpap->len = len;
645 		vpap->update_pending = 1;
646 	}
647 
648 	spin_unlock(&tvcpu->arch.vpa_update_lock);
649 
650 	return err;
651 }
652 
653 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
654 {
655 	struct kvm *kvm = vcpu->kvm;
656 	void *va;
657 	unsigned long nb;
658 	unsigned long gpa;
659 
660 	/*
661 	 * We need to pin the page pointed to by vpap->next_gpa,
662 	 * but we can't call kvmppc_pin_guest_page under the lock
663 	 * as it does get_user_pages() and down_read().  So we
664 	 * have to drop the lock, pin the page, then get the lock
665 	 * again and check that a new area didn't get registered
666 	 * in the meantime.
667 	 */
668 	for (;;) {
669 		gpa = vpap->next_gpa;
670 		spin_unlock(&vcpu->arch.vpa_update_lock);
671 		va = NULL;
672 		nb = 0;
673 		if (gpa)
674 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
675 		spin_lock(&vcpu->arch.vpa_update_lock);
676 		if (gpa == vpap->next_gpa)
677 			break;
678 		/* sigh... unpin that one and try again */
679 		if (va)
680 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
681 	}
682 
683 	vpap->update_pending = 0;
684 	if (va && nb < vpap->len) {
685 		/*
686 		 * If it's now too short, it must be that userspace
687 		 * has changed the mappings underlying guest memory,
688 		 * so unregister the region.
689 		 */
690 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
691 		va = NULL;
692 	}
693 	if (vpap->pinned_addr)
694 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
695 					vpap->dirty);
696 	vpap->gpa = gpa;
697 	vpap->pinned_addr = va;
698 	vpap->dirty = false;
699 	if (va)
700 		vpap->pinned_end = va + vpap->len;
701 }
702 
703 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
704 {
705 	if (!(vcpu->arch.vpa.update_pending ||
706 	      vcpu->arch.slb_shadow.update_pending ||
707 	      vcpu->arch.dtl.update_pending))
708 		return;
709 
710 	spin_lock(&vcpu->arch.vpa_update_lock);
711 	if (vcpu->arch.vpa.update_pending) {
712 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
713 		if (vcpu->arch.vpa.pinned_addr)
714 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
715 	}
716 	if (vcpu->arch.dtl.update_pending) {
717 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
718 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
719 		vcpu->arch.dtl_index = 0;
720 	}
721 	if (vcpu->arch.slb_shadow.update_pending)
722 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
723 	spin_unlock(&vcpu->arch.vpa_update_lock);
724 }
725 
726 /*
727  * Return the accumulated stolen time for the vcore up until `now'.
728  * The caller should hold the vcore lock.
729  */
730 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
731 {
732 	u64 p;
733 	unsigned long flags;
734 
735 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
736 
737 	spin_lock_irqsave(&vc->stoltb_lock, flags);
738 	p = vc->stolen_tb;
739 	if (vc->vcore_state != VCORE_INACTIVE &&
740 	    vc->preempt_tb != TB_NIL)
741 		p += now - vc->preempt_tb;
742 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
743 	return p;
744 }
745 
746 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
747 					struct lppaca *vpa,
748 					unsigned int pcpu, u64 now,
749 					unsigned long stolen)
750 {
751 	struct dtl_entry *dt;
752 
753 	dt = vcpu->arch.dtl_ptr;
754 
755 	if (!dt)
756 		return;
757 
758 	dt->dispatch_reason = 7;
759 	dt->preempt_reason = 0;
760 	dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
761 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
762 	dt->ready_to_enqueue_time = 0;
763 	dt->waiting_to_ready_time = 0;
764 	dt->timebase = cpu_to_be64(now);
765 	dt->fault_addr = 0;
766 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
767 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
768 
769 	++dt;
770 	if (dt == vcpu->arch.dtl.pinned_end)
771 		dt = vcpu->arch.dtl.pinned_addr;
772 	vcpu->arch.dtl_ptr = dt;
773 	/* order writing *dt vs. writing vpa->dtl_idx */
774 	smp_wmb();
775 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
776 
777 	/* vcpu->arch.dtl.dirty is set by the caller */
778 }
779 
780 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
781 				       struct kvmppc_vcore *vc)
782 {
783 	struct lppaca *vpa;
784 	unsigned long stolen;
785 	unsigned long core_stolen;
786 	u64 now;
787 	unsigned long flags;
788 
789 	vpa = vcpu->arch.vpa.pinned_addr;
790 	if (!vpa)
791 		return;
792 
793 	now = mftb();
794 
795 	core_stolen = vcore_stolen_time(vc, now);
796 	stolen = core_stolen - vcpu->arch.stolen_logged;
797 	vcpu->arch.stolen_logged = core_stolen;
798 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
799 	stolen += vcpu->arch.busy_stolen;
800 	vcpu->arch.busy_stolen = 0;
801 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
802 
803 	vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
804 
805 	__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen);
806 
807 	vcpu->arch.vpa.dirty = true;
808 }
809 
810 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
811 				       struct kvmppc_vcore *vc,
812 				       u64 now)
813 {
814 	struct lppaca *vpa;
815 	unsigned long stolen;
816 	unsigned long stolen_delta;
817 
818 	vpa = vcpu->arch.vpa.pinned_addr;
819 	if (!vpa)
820 		return;
821 
822 	stolen = vc->stolen_tb;
823 	stolen_delta = stolen - vcpu->arch.stolen_logged;
824 	vcpu->arch.stolen_logged = stolen;
825 
826 	vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
827 
828 	__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
829 
830 	vcpu->arch.vpa.dirty = true;
831 }
832 
833 /* See if there is a doorbell interrupt pending for a vcpu */
834 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
835 {
836 	int thr;
837 	struct kvmppc_vcore *vc;
838 
839 	if (vcpu->arch.doorbell_request)
840 		return true;
841 	if (cpu_has_feature(CPU_FTR_ARCH_300))
842 		return false;
843 	/*
844 	 * Ensure that the read of vcore->dpdes comes after the read
845 	 * of vcpu->doorbell_request.  This barrier matches the
846 	 * smp_wmb() in kvmppc_guest_entry_inject().
847 	 */
848 	smp_rmb();
849 	vc = vcpu->arch.vcore;
850 	thr = vcpu->vcpu_id - vc->first_vcpuid;
851 	return !!(vc->dpdes & (1 << thr));
852 }
853 
854 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
855 {
856 	if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207)
857 		return true;
858 	if ((!kvmppc_get_arch_compat(vcpu)) &&
859 	    cpu_has_feature(CPU_FTR_ARCH_207S))
860 		return true;
861 	return false;
862 }
863 
864 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
865 			     unsigned long resource, unsigned long value1,
866 			     unsigned long value2)
867 {
868 	switch (resource) {
869 	case H_SET_MODE_RESOURCE_SET_CIABR:
870 		if (!kvmppc_power8_compatible(vcpu))
871 			return H_P2;
872 		if (value2)
873 			return H_P4;
874 		if (mflags)
875 			return H_UNSUPPORTED_FLAG_START;
876 		/* Guests can't breakpoint the hypervisor */
877 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
878 			return H_P3;
879 		kvmppc_set_ciabr_hv(vcpu, value1);
880 		return H_SUCCESS;
881 	case H_SET_MODE_RESOURCE_SET_DAWR0:
882 		if (!kvmppc_power8_compatible(vcpu))
883 			return H_P2;
884 		if (!ppc_breakpoint_available())
885 			return H_P2;
886 		if (mflags)
887 			return H_UNSUPPORTED_FLAG_START;
888 		if (value2 & DABRX_HYP)
889 			return H_P4;
890 		kvmppc_set_dawr0_hv(vcpu, value1);
891 		kvmppc_set_dawrx0_hv(vcpu, value2);
892 		return H_SUCCESS;
893 	case H_SET_MODE_RESOURCE_SET_DAWR1:
894 		if (!kvmppc_power8_compatible(vcpu))
895 			return H_P2;
896 		if (!ppc_breakpoint_available())
897 			return H_P2;
898 		if (!cpu_has_feature(CPU_FTR_DAWR1))
899 			return H_P2;
900 		if (!vcpu->kvm->arch.dawr1_enabled)
901 			return H_FUNCTION;
902 		if (mflags)
903 			return H_UNSUPPORTED_FLAG_START;
904 		if (value2 & DABRX_HYP)
905 			return H_P4;
906 		kvmppc_set_dawr1_hv(vcpu, value1);
907 		kvmppc_set_dawrx1_hv(vcpu, value2);
908 		return H_SUCCESS;
909 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
910 		/*
911 		 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
912 		 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
913 		 */
914 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
915 				kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
916 			return H_UNSUPPORTED_FLAG_START;
917 		return H_TOO_HARD;
918 	default:
919 		return H_TOO_HARD;
920 	}
921 }
922 
923 /* Copy guest memory in place - must reside within a single memslot */
924 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
925 				  unsigned long len)
926 {
927 	struct kvm_memory_slot *to_memslot = NULL;
928 	struct kvm_memory_slot *from_memslot = NULL;
929 	unsigned long to_addr, from_addr;
930 	int r;
931 
932 	/* Get HPA for from address */
933 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
934 	if (!from_memslot)
935 		return -EFAULT;
936 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
937 			     << PAGE_SHIFT))
938 		return -EINVAL;
939 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
940 	if (kvm_is_error_hva(from_addr))
941 		return -EFAULT;
942 	from_addr |= (from & (PAGE_SIZE - 1));
943 
944 	/* Get HPA for to address */
945 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
946 	if (!to_memslot)
947 		return -EFAULT;
948 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
949 			   << PAGE_SHIFT))
950 		return -EINVAL;
951 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
952 	if (kvm_is_error_hva(to_addr))
953 		return -EFAULT;
954 	to_addr |= (to & (PAGE_SIZE - 1));
955 
956 	/* Perform copy */
957 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
958 			     len);
959 	if (r)
960 		return -EFAULT;
961 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
962 	return 0;
963 }
964 
965 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
966 			       unsigned long dest, unsigned long src)
967 {
968 	u64 pg_sz = SZ_4K;		/* 4K page size */
969 	u64 pg_mask = SZ_4K - 1;
970 	int ret;
971 
972 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
973 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
974 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
975 		return H_PARAMETER;
976 
977 	/* dest (and src if copy_page flag set) must be page aligned */
978 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
979 		return H_PARAMETER;
980 
981 	/* zero and/or copy the page as determined by the flags */
982 	if (flags & H_COPY_PAGE) {
983 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
984 		if (ret < 0)
985 			return H_PARAMETER;
986 	} else if (flags & H_ZERO_PAGE) {
987 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
988 		if (ret < 0)
989 			return H_PARAMETER;
990 	}
991 
992 	/* We can ignore the remaining flags */
993 
994 	return H_SUCCESS;
995 }
996 
997 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
998 {
999 	struct kvmppc_vcore *vcore = target->arch.vcore;
1000 
1001 	/*
1002 	 * We expect to have been called by the real mode handler
1003 	 * (kvmppc_rm_h_confer()) which would have directly returned
1004 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
1005 	 * have useful work to do and should not confer) so we don't
1006 	 * recheck that here.
1007 	 *
1008 	 * In the case of the P9 single vcpu per vcore case, the real
1009 	 * mode handler is not called but no other threads are in the
1010 	 * source vcore.
1011 	 */
1012 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1013 		spin_lock(&vcore->lock);
1014 		if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1015 		    vcore->vcore_state != VCORE_INACTIVE &&
1016 		    vcore->runner)
1017 			target = vcore->runner;
1018 		spin_unlock(&vcore->lock);
1019 	}
1020 
1021 	return kvm_vcpu_yield_to(target);
1022 }
1023 
1024 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1025 {
1026 	int yield_count = 0;
1027 	struct lppaca *lppaca;
1028 
1029 	spin_lock(&vcpu->arch.vpa_update_lock);
1030 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1031 	if (lppaca)
1032 		yield_count = be32_to_cpu(lppaca->yield_count);
1033 	spin_unlock(&vcpu->arch.vpa_update_lock);
1034 	return yield_count;
1035 }
1036 
1037 /*
1038  * H_RPT_INVALIDATE hcall handler for nested guests.
1039  *
1040  * Handles only nested process-scoped invalidation requests in L0.
1041  */
1042 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1043 {
1044 	unsigned long type = kvmppc_get_gpr(vcpu, 6);
1045 	unsigned long pid, pg_sizes, start, end;
1046 
1047 	/*
1048 	 * The partition-scoped invalidations aren't handled here in L0.
1049 	 */
1050 	if (type & H_RPTI_TYPE_NESTED)
1051 		return RESUME_HOST;
1052 
1053 	pid = kvmppc_get_gpr(vcpu, 4);
1054 	pg_sizes = kvmppc_get_gpr(vcpu, 7);
1055 	start = kvmppc_get_gpr(vcpu, 8);
1056 	end = kvmppc_get_gpr(vcpu, 9);
1057 
1058 	do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1059 				type, pg_sizes, start, end);
1060 
1061 	kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1062 	return RESUME_GUEST;
1063 }
1064 
1065 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1066 				    unsigned long id, unsigned long target,
1067 				    unsigned long type, unsigned long pg_sizes,
1068 				    unsigned long start, unsigned long end)
1069 {
1070 	if (!kvm_is_radix(vcpu->kvm))
1071 		return H_UNSUPPORTED;
1072 
1073 	if (end < start)
1074 		return H_P5;
1075 
1076 	/*
1077 	 * Partition-scoped invalidation for nested guests.
1078 	 */
1079 	if (type & H_RPTI_TYPE_NESTED) {
1080 		if (!nesting_enabled(vcpu->kvm))
1081 			return H_FUNCTION;
1082 
1083 		/* Support only cores as target */
1084 		if (target != H_RPTI_TARGET_CMMU)
1085 			return H_P2;
1086 
1087 		return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1088 					       start, end);
1089 	}
1090 
1091 	/*
1092 	 * Process-scoped invalidation for L1 guests.
1093 	 */
1094 	do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1095 				type, pg_sizes, start, end);
1096 	return H_SUCCESS;
1097 }
1098 
1099 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1100 {
1101 	struct kvm *kvm = vcpu->kvm;
1102 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
1103 	unsigned long target, ret = H_SUCCESS;
1104 	int yield_count;
1105 	struct kvm_vcpu *tvcpu;
1106 	int idx, rc;
1107 
1108 	if (req <= MAX_HCALL_OPCODE &&
1109 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1110 		return RESUME_HOST;
1111 
1112 	switch (req) {
1113 	case H_REMOVE:
1114 		ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1115 					kvmppc_get_gpr(vcpu, 5),
1116 					kvmppc_get_gpr(vcpu, 6));
1117 		if (ret == H_TOO_HARD)
1118 			return RESUME_HOST;
1119 		break;
1120 	case H_ENTER:
1121 		ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1122 					kvmppc_get_gpr(vcpu, 5),
1123 					kvmppc_get_gpr(vcpu, 6),
1124 					kvmppc_get_gpr(vcpu, 7));
1125 		if (ret == H_TOO_HARD)
1126 			return RESUME_HOST;
1127 		break;
1128 	case H_READ:
1129 		ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1130 					kvmppc_get_gpr(vcpu, 5));
1131 		if (ret == H_TOO_HARD)
1132 			return RESUME_HOST;
1133 		break;
1134 	case H_CLEAR_MOD:
1135 		ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1136 					kvmppc_get_gpr(vcpu, 5));
1137 		if (ret == H_TOO_HARD)
1138 			return RESUME_HOST;
1139 		break;
1140 	case H_CLEAR_REF:
1141 		ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1142 					kvmppc_get_gpr(vcpu, 5));
1143 		if (ret == H_TOO_HARD)
1144 			return RESUME_HOST;
1145 		break;
1146 	case H_PROTECT:
1147 		ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1148 					kvmppc_get_gpr(vcpu, 5),
1149 					kvmppc_get_gpr(vcpu, 6));
1150 		if (ret == H_TOO_HARD)
1151 			return RESUME_HOST;
1152 		break;
1153 	case H_BULK_REMOVE:
1154 		ret = kvmppc_h_bulk_remove(vcpu);
1155 		if (ret == H_TOO_HARD)
1156 			return RESUME_HOST;
1157 		break;
1158 
1159 	case H_CEDE:
1160 		break;
1161 	case H_PROD:
1162 		target = kvmppc_get_gpr(vcpu, 4);
1163 		tvcpu = kvmppc_find_vcpu(kvm, target);
1164 		if (!tvcpu) {
1165 			ret = H_PARAMETER;
1166 			break;
1167 		}
1168 		tvcpu->arch.prodded = 1;
1169 		smp_mb(); /* This orders prodded store vs ceded load */
1170 		if (tvcpu->arch.ceded)
1171 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1172 		break;
1173 	case H_CONFER:
1174 		target = kvmppc_get_gpr(vcpu, 4);
1175 		if (target == -1)
1176 			break;
1177 		tvcpu = kvmppc_find_vcpu(kvm, target);
1178 		if (!tvcpu) {
1179 			ret = H_PARAMETER;
1180 			break;
1181 		}
1182 		yield_count = kvmppc_get_gpr(vcpu, 5);
1183 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
1184 			break;
1185 		kvm_arch_vcpu_yield_to(tvcpu);
1186 		break;
1187 	case H_REGISTER_VPA:
1188 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1189 					kvmppc_get_gpr(vcpu, 5),
1190 					kvmppc_get_gpr(vcpu, 6));
1191 		break;
1192 	case H_RTAS:
1193 		if (list_empty(&kvm->arch.rtas_tokens))
1194 			return RESUME_HOST;
1195 
1196 		idx = srcu_read_lock(&kvm->srcu);
1197 		rc = kvmppc_rtas_hcall(vcpu);
1198 		srcu_read_unlock(&kvm->srcu, idx);
1199 
1200 		if (rc == -ENOENT)
1201 			return RESUME_HOST;
1202 		else if (rc == 0)
1203 			break;
1204 
1205 		/* Send the error out to userspace via KVM_RUN */
1206 		return rc;
1207 	case H_LOGICAL_CI_LOAD:
1208 		ret = kvmppc_h_logical_ci_load(vcpu);
1209 		if (ret == H_TOO_HARD)
1210 			return RESUME_HOST;
1211 		break;
1212 	case H_LOGICAL_CI_STORE:
1213 		ret = kvmppc_h_logical_ci_store(vcpu);
1214 		if (ret == H_TOO_HARD)
1215 			return RESUME_HOST;
1216 		break;
1217 	case H_SET_MODE:
1218 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1219 					kvmppc_get_gpr(vcpu, 5),
1220 					kvmppc_get_gpr(vcpu, 6),
1221 					kvmppc_get_gpr(vcpu, 7));
1222 		if (ret == H_TOO_HARD)
1223 			return RESUME_HOST;
1224 		break;
1225 	case H_XIRR:
1226 	case H_CPPR:
1227 	case H_EOI:
1228 	case H_IPI:
1229 	case H_IPOLL:
1230 	case H_XIRR_X:
1231 		if (kvmppc_xics_enabled(vcpu)) {
1232 			if (xics_on_xive()) {
1233 				ret = H_NOT_AVAILABLE;
1234 				return RESUME_GUEST;
1235 			}
1236 			ret = kvmppc_xics_hcall(vcpu, req);
1237 			break;
1238 		}
1239 		return RESUME_HOST;
1240 	case H_SET_DABR:
1241 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1242 		break;
1243 	case H_SET_XDABR:
1244 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1245 						kvmppc_get_gpr(vcpu, 5));
1246 		break;
1247 #ifdef CONFIG_SPAPR_TCE_IOMMU
1248 	case H_GET_TCE:
1249 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1250 						kvmppc_get_gpr(vcpu, 5));
1251 		if (ret == H_TOO_HARD)
1252 			return RESUME_HOST;
1253 		break;
1254 	case H_PUT_TCE:
1255 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1256 						kvmppc_get_gpr(vcpu, 5),
1257 						kvmppc_get_gpr(vcpu, 6));
1258 		if (ret == H_TOO_HARD)
1259 			return RESUME_HOST;
1260 		break;
1261 	case H_PUT_TCE_INDIRECT:
1262 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1263 						kvmppc_get_gpr(vcpu, 5),
1264 						kvmppc_get_gpr(vcpu, 6),
1265 						kvmppc_get_gpr(vcpu, 7));
1266 		if (ret == H_TOO_HARD)
1267 			return RESUME_HOST;
1268 		break;
1269 	case H_STUFF_TCE:
1270 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1271 						kvmppc_get_gpr(vcpu, 5),
1272 						kvmppc_get_gpr(vcpu, 6),
1273 						kvmppc_get_gpr(vcpu, 7));
1274 		if (ret == H_TOO_HARD)
1275 			return RESUME_HOST;
1276 		break;
1277 #endif
1278 	case H_RANDOM: {
1279 		unsigned long rand;
1280 
1281 		if (!arch_get_random_seed_longs(&rand, 1))
1282 			ret = H_HARDWARE;
1283 		kvmppc_set_gpr(vcpu, 4, rand);
1284 		break;
1285 	}
1286 	case H_RPT_INVALIDATE:
1287 		ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1288 					      kvmppc_get_gpr(vcpu, 5),
1289 					      kvmppc_get_gpr(vcpu, 6),
1290 					      kvmppc_get_gpr(vcpu, 7),
1291 					      kvmppc_get_gpr(vcpu, 8),
1292 					      kvmppc_get_gpr(vcpu, 9));
1293 		break;
1294 
1295 	case H_SET_PARTITION_TABLE:
1296 		ret = H_FUNCTION;
1297 		if (nesting_enabled(kvm))
1298 			ret = kvmhv_set_partition_table(vcpu);
1299 		break;
1300 	case H_ENTER_NESTED:
1301 		ret = H_FUNCTION;
1302 		if (!nesting_enabled(kvm))
1303 			break;
1304 		ret = kvmhv_enter_nested_guest(vcpu);
1305 		if (ret == H_INTERRUPT) {
1306 			kvmppc_set_gpr(vcpu, 3, 0);
1307 			vcpu->arch.hcall_needed = 0;
1308 			return -EINTR;
1309 		} else if (ret == H_TOO_HARD) {
1310 			kvmppc_set_gpr(vcpu, 3, 0);
1311 			vcpu->arch.hcall_needed = 0;
1312 			return RESUME_HOST;
1313 		}
1314 		break;
1315 	case H_TLB_INVALIDATE:
1316 		ret = H_FUNCTION;
1317 		if (nesting_enabled(kvm))
1318 			ret = kvmhv_do_nested_tlbie(vcpu);
1319 		break;
1320 	case H_COPY_TOFROM_GUEST:
1321 		ret = H_FUNCTION;
1322 		if (nesting_enabled(kvm))
1323 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1324 		break;
1325 	case H_PAGE_INIT:
1326 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1327 					 kvmppc_get_gpr(vcpu, 5),
1328 					 kvmppc_get_gpr(vcpu, 6));
1329 		break;
1330 	case H_SVM_PAGE_IN:
1331 		ret = H_UNSUPPORTED;
1332 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1333 			ret = kvmppc_h_svm_page_in(kvm,
1334 						   kvmppc_get_gpr(vcpu, 4),
1335 						   kvmppc_get_gpr(vcpu, 5),
1336 						   kvmppc_get_gpr(vcpu, 6));
1337 		break;
1338 	case H_SVM_PAGE_OUT:
1339 		ret = H_UNSUPPORTED;
1340 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1341 			ret = kvmppc_h_svm_page_out(kvm,
1342 						    kvmppc_get_gpr(vcpu, 4),
1343 						    kvmppc_get_gpr(vcpu, 5),
1344 						    kvmppc_get_gpr(vcpu, 6));
1345 		break;
1346 	case H_SVM_INIT_START:
1347 		ret = H_UNSUPPORTED;
1348 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1349 			ret = kvmppc_h_svm_init_start(kvm);
1350 		break;
1351 	case H_SVM_INIT_DONE:
1352 		ret = H_UNSUPPORTED;
1353 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1354 			ret = kvmppc_h_svm_init_done(kvm);
1355 		break;
1356 	case H_SVM_INIT_ABORT:
1357 		/*
1358 		 * Even if that call is made by the Ultravisor, the SSR1 value
1359 		 * is the guest context one, with the secure bit clear as it has
1360 		 * not yet been secured. So we can't check it here.
1361 		 * Instead the kvm->arch.secure_guest flag is checked inside
1362 		 * kvmppc_h_svm_init_abort().
1363 		 */
1364 		ret = kvmppc_h_svm_init_abort(kvm);
1365 		break;
1366 
1367 	default:
1368 		return RESUME_HOST;
1369 	}
1370 	WARN_ON_ONCE(ret == H_TOO_HARD);
1371 	kvmppc_set_gpr(vcpu, 3, ret);
1372 	vcpu->arch.hcall_needed = 0;
1373 	return RESUME_GUEST;
1374 }
1375 
1376 /*
1377  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1378  * handlers in book3s_hv_rmhandlers.S.
1379  *
1380  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1381  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1382  */
1383 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1384 {
1385 	__kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
1386 	vcpu->arch.ceded = 1;
1387 	smp_mb();
1388 	if (vcpu->arch.prodded) {
1389 		vcpu->arch.prodded = 0;
1390 		smp_mb();
1391 		vcpu->arch.ceded = 0;
1392 	}
1393 }
1394 
1395 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1396 {
1397 	switch (cmd) {
1398 	case H_CEDE:
1399 	case H_PROD:
1400 	case H_CONFER:
1401 	case H_REGISTER_VPA:
1402 	case H_SET_MODE:
1403 #ifdef CONFIG_SPAPR_TCE_IOMMU
1404 	case H_GET_TCE:
1405 	case H_PUT_TCE:
1406 	case H_PUT_TCE_INDIRECT:
1407 	case H_STUFF_TCE:
1408 #endif
1409 	case H_LOGICAL_CI_LOAD:
1410 	case H_LOGICAL_CI_STORE:
1411 #ifdef CONFIG_KVM_XICS
1412 	case H_XIRR:
1413 	case H_CPPR:
1414 	case H_EOI:
1415 	case H_IPI:
1416 	case H_IPOLL:
1417 	case H_XIRR_X:
1418 #endif
1419 	case H_PAGE_INIT:
1420 	case H_RPT_INVALIDATE:
1421 		return 1;
1422 	}
1423 
1424 	/* See if it's in the real-mode table */
1425 	return kvmppc_hcall_impl_hv_realmode(cmd);
1426 }
1427 
1428 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1429 {
1430 	ppc_inst_t last_inst;
1431 
1432 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1433 					EMULATE_DONE) {
1434 		/*
1435 		 * Fetch failed, so return to guest and
1436 		 * try executing it again.
1437 		 */
1438 		return RESUME_GUEST;
1439 	}
1440 
1441 	if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1442 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1443 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1444 		return RESUME_HOST;
1445 	} else {
1446 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1447 				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1448 		return RESUME_GUEST;
1449 	}
1450 }
1451 
1452 static void do_nothing(void *x)
1453 {
1454 }
1455 
1456 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1457 {
1458 	int thr, cpu, pcpu, nthreads;
1459 	struct kvm_vcpu *v;
1460 	unsigned long dpdes;
1461 
1462 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1463 	dpdes = 0;
1464 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1465 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1466 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1467 		if (!v)
1468 			continue;
1469 		/*
1470 		 * If the vcpu is currently running on a physical cpu thread,
1471 		 * interrupt it in order to pull it out of the guest briefly,
1472 		 * which will update its vcore->dpdes value.
1473 		 */
1474 		pcpu = READ_ONCE(v->cpu);
1475 		if (pcpu >= 0)
1476 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1477 		if (kvmppc_doorbell_pending(v))
1478 			dpdes |= 1 << thr;
1479 	}
1480 	return dpdes;
1481 }
1482 
1483 /*
1484  * On POWER9, emulate doorbell-related instructions in order to
1485  * give the guest the illusion of running on a multi-threaded core.
1486  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1487  * and mfspr DPDES.
1488  */
1489 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1490 {
1491 	u32 inst, rb, thr;
1492 	unsigned long arg;
1493 	struct kvm *kvm = vcpu->kvm;
1494 	struct kvm_vcpu *tvcpu;
1495 	ppc_inst_t pinst;
1496 
1497 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1498 		return RESUME_GUEST;
1499 	inst = ppc_inst_val(pinst);
1500 	if (get_op(inst) != 31)
1501 		return EMULATE_FAIL;
1502 	rb = get_rb(inst);
1503 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1504 	switch (get_xop(inst)) {
1505 	case OP_31_XOP_MSGSNDP:
1506 		arg = kvmppc_get_gpr(vcpu, rb);
1507 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1508 			break;
1509 		arg &= 0x7f;
1510 		if (arg >= kvm->arch.emul_smt_mode)
1511 			break;
1512 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1513 		if (!tvcpu)
1514 			break;
1515 		if (!tvcpu->arch.doorbell_request) {
1516 			tvcpu->arch.doorbell_request = 1;
1517 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1518 		}
1519 		break;
1520 	case OP_31_XOP_MSGCLRP:
1521 		arg = kvmppc_get_gpr(vcpu, rb);
1522 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1523 			break;
1524 		vcpu->arch.vcore->dpdes = 0;
1525 		vcpu->arch.doorbell_request = 0;
1526 		break;
1527 	case OP_31_XOP_MFSPR:
1528 		switch (get_sprn(inst)) {
1529 		case SPRN_TIR:
1530 			arg = thr;
1531 			break;
1532 		case SPRN_DPDES:
1533 			arg = kvmppc_read_dpdes(vcpu);
1534 			break;
1535 		default:
1536 			return EMULATE_FAIL;
1537 		}
1538 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1539 		break;
1540 	default:
1541 		return EMULATE_FAIL;
1542 	}
1543 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1544 	return RESUME_GUEST;
1545 }
1546 
1547 /*
1548  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1549  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1550  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1551  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1552  * allow the guest access to continue.
1553  */
1554 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1555 {
1556 	if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1557 		return EMULATE_FAIL;
1558 
1559 	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
1560 
1561 	return RESUME_GUEST;
1562 }
1563 
1564 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1565 {
1566 	if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1567 		return EMULATE_FAIL;
1568 
1569 	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
1570 
1571 	return RESUME_GUEST;
1572 }
1573 
1574 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1575 {
1576 	if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1577 		return EMULATE_FAIL;
1578 
1579 	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
1580 
1581 	return RESUME_GUEST;
1582 }
1583 
1584 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1585 				 struct task_struct *tsk)
1586 {
1587 	struct kvm_run *run = vcpu->run;
1588 	int r = RESUME_HOST;
1589 
1590 	vcpu->stat.sum_exits++;
1591 
1592 	/*
1593 	 * This can happen if an interrupt occurs in the last stages
1594 	 * of guest entry or the first stages of guest exit (i.e. after
1595 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1596 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1597 	 * That can happen due to a bug, or due to a machine check
1598 	 * occurring at just the wrong time.
1599 	 */
1600 	if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1601 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1602 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1603 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1604 			vcpu->arch.shregs.msr);
1605 		kvmppc_dump_regs(vcpu);
1606 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1607 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1608 		return RESUME_HOST;
1609 	}
1610 	run->exit_reason = KVM_EXIT_UNKNOWN;
1611 	run->ready_for_interrupt_injection = 1;
1612 	switch (vcpu->arch.trap) {
1613 	/* We're good on these - the host merely wanted to get our attention */
1614 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1615 		WARN_ON_ONCE(1); /* Should never happen */
1616 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1617 		fallthrough;
1618 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1619 		vcpu->stat.dec_exits++;
1620 		r = RESUME_GUEST;
1621 		break;
1622 	case BOOK3S_INTERRUPT_EXTERNAL:
1623 	case BOOK3S_INTERRUPT_H_DOORBELL:
1624 	case BOOK3S_INTERRUPT_H_VIRT:
1625 		vcpu->stat.ext_intr_exits++;
1626 		r = RESUME_GUEST;
1627 		break;
1628 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1629 	case BOOK3S_INTERRUPT_HMI:
1630 	case BOOK3S_INTERRUPT_PERFMON:
1631 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1632 		r = RESUME_GUEST;
1633 		break;
1634 	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1635 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1636 					      DEFAULT_RATELIMIT_BURST);
1637 		/*
1638 		 * Print the MCE event to host console. Ratelimit so the guest
1639 		 * can't flood the host log.
1640 		 */
1641 		if (__ratelimit(&rs))
1642 			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1643 
1644 		/*
1645 		 * If the guest can do FWNMI, exit to userspace so it can
1646 		 * deliver a FWNMI to the guest.
1647 		 * Otherwise we synthesize a machine check for the guest
1648 		 * so that it knows that the machine check occurred.
1649 		 */
1650 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1651 			ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
1652 					(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1653 			kvmppc_core_queue_machine_check(vcpu, flags);
1654 			r = RESUME_GUEST;
1655 			break;
1656 		}
1657 
1658 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1659 		run->exit_reason = KVM_EXIT_NMI;
1660 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1661 		/* Clear out the old NMI status from run->flags */
1662 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1663 		/* Now set the NMI status */
1664 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1665 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1666 		else
1667 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1668 
1669 		r = RESUME_HOST;
1670 		break;
1671 	}
1672 	case BOOK3S_INTERRUPT_PROGRAM:
1673 	{
1674 		ulong flags;
1675 		/*
1676 		 * Normally program interrupts are delivered directly
1677 		 * to the guest by the hardware, but we can get here
1678 		 * as a result of a hypervisor emulation interrupt
1679 		 * (e40) getting turned into a 700 by BML RTAS.
1680 		 */
1681 		flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
1682 			(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1683 		kvmppc_core_queue_program(vcpu, flags);
1684 		r = RESUME_GUEST;
1685 		break;
1686 	}
1687 	case BOOK3S_INTERRUPT_SYSCALL:
1688 	{
1689 		int i;
1690 
1691 		if (unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
1692 			/*
1693 			 * Guest userspace executed sc 1. This can only be
1694 			 * reached by the P9 path because the old path
1695 			 * handles this case in realmode hcall handlers.
1696 			 */
1697 			if (!kvmhv_vcpu_is_radix(vcpu)) {
1698 				/*
1699 				 * A guest could be running PR KVM, so this
1700 				 * may be a PR KVM hcall. It must be reflected
1701 				 * to the guest kernel as a sc interrupt.
1702 				 */
1703 				kvmppc_core_queue_syscall(vcpu);
1704 			} else {
1705 				/*
1706 				 * Radix guests can not run PR KVM or nested HV
1707 				 * hash guests which might run PR KVM, so this
1708 				 * is always a privilege fault. Send a program
1709 				 * check to guest kernel.
1710 				 */
1711 				kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1712 			}
1713 			r = RESUME_GUEST;
1714 			break;
1715 		}
1716 
1717 		/*
1718 		 * hcall - gather args and set exit_reason. This will next be
1719 		 * handled by kvmppc_pseries_do_hcall which may be able to deal
1720 		 * with it and resume guest, or may punt to userspace.
1721 		 */
1722 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1723 		for (i = 0; i < 9; ++i)
1724 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1725 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1726 		vcpu->arch.hcall_needed = 1;
1727 		r = RESUME_HOST;
1728 		break;
1729 	}
1730 	/*
1731 	 * We get these next two if the guest accesses a page which it thinks
1732 	 * it has mapped but which is not actually present, either because
1733 	 * it is for an emulated I/O device or because the corresonding
1734 	 * host page has been paged out.
1735 	 *
1736 	 * Any other HDSI/HISI interrupts have been handled already for P7/8
1737 	 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1738 	 * fault handling is done here.
1739 	 */
1740 	case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1741 		unsigned long vsid;
1742 		long err;
1743 
1744 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1745 		    unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1746 			r = RESUME_GUEST; /* Just retry if it's the canary */
1747 			break;
1748 		}
1749 
1750 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1751 			/*
1752 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1753 			 * already attempted to handle this in rmhandlers. The
1754 			 * hash fault handling below is v3 only (it uses ASDR
1755 			 * via fault_gpa).
1756 			 */
1757 			r = RESUME_PAGE_FAULT;
1758 			break;
1759 		}
1760 
1761 		if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1762 			kvmppc_core_queue_data_storage(vcpu,
1763 				kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1764 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1765 			r = RESUME_GUEST;
1766 			break;
1767 		}
1768 
1769 		if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
1770 			vsid = vcpu->kvm->arch.vrma_slb_v;
1771 		else
1772 			vsid = vcpu->arch.fault_gpa;
1773 
1774 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1775 				vsid, vcpu->arch.fault_dsisr, true);
1776 		if (err == 0) {
1777 			r = RESUME_GUEST;
1778 		} else if (err == -1 || err == -2) {
1779 			r = RESUME_PAGE_FAULT;
1780 		} else {
1781 			kvmppc_core_queue_data_storage(vcpu,
1782 				kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1783 				vcpu->arch.fault_dar, err);
1784 			r = RESUME_GUEST;
1785 		}
1786 		break;
1787 	}
1788 	case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1789 		unsigned long vsid;
1790 		long err;
1791 
1792 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1793 		vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
1794 			DSISR_SRR1_MATCH_64S;
1795 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1796 			/*
1797 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1798 			 * already attempted to handle this in rmhandlers. The
1799 			 * hash fault handling below is v3 only (it uses ASDR
1800 			 * via fault_gpa).
1801 			 */
1802 			if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1803 				vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1804 			r = RESUME_PAGE_FAULT;
1805 			break;
1806 		}
1807 
1808 		if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1809 			kvmppc_core_queue_inst_storage(vcpu,
1810 				vcpu->arch.fault_dsisr |
1811 				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1812 			r = RESUME_GUEST;
1813 			break;
1814 		}
1815 
1816 		if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
1817 			vsid = vcpu->kvm->arch.vrma_slb_v;
1818 		else
1819 			vsid = vcpu->arch.fault_gpa;
1820 
1821 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1822 				vsid, vcpu->arch.fault_dsisr, false);
1823 		if (err == 0) {
1824 			r = RESUME_GUEST;
1825 		} else if (err == -1) {
1826 			r = RESUME_PAGE_FAULT;
1827 		} else {
1828 			kvmppc_core_queue_inst_storage(vcpu,
1829 				err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1830 			r = RESUME_GUEST;
1831 		}
1832 		break;
1833 	}
1834 
1835 	/*
1836 	 * This occurs if the guest executes an illegal instruction.
1837 	 * If the guest debug is disabled, generate a program interrupt
1838 	 * to the guest. If guest debug is enabled, we need to check
1839 	 * whether the instruction is a software breakpoint instruction.
1840 	 * Accordingly return to Guest or Host.
1841 	 */
1842 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1843 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1844 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1845 				swab32(vcpu->arch.emul_inst) :
1846 				vcpu->arch.emul_inst;
1847 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1848 			r = kvmppc_emulate_debug_inst(vcpu);
1849 		} else {
1850 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1851 				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1852 			r = RESUME_GUEST;
1853 		}
1854 		break;
1855 
1856 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1857 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1858 		/*
1859 		 * This occurs for various TM-related instructions that
1860 		 * we need to emulate on POWER9 DD2.2.  We have already
1861 		 * handled the cases where the guest was in real-suspend
1862 		 * mode and was transitioning to transactional state.
1863 		 */
1864 		r = kvmhv_p9_tm_emulation(vcpu);
1865 		if (r != -1)
1866 			break;
1867 		fallthrough; /* go to facility unavailable handler */
1868 #endif
1869 
1870 	/*
1871 	 * This occurs if the guest (kernel or userspace), does something that
1872 	 * is prohibited by HFSCR.
1873 	 * On POWER9, this could be a doorbell instruction that we need
1874 	 * to emulate.
1875 	 * Otherwise, we just generate a program interrupt to the guest.
1876 	 */
1877 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1878 		u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
1879 
1880 		r = EMULATE_FAIL;
1881 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1882 			if (cause == FSCR_MSGP_LG)
1883 				r = kvmppc_emulate_doorbell_instr(vcpu);
1884 			if (cause == FSCR_PM_LG)
1885 				r = kvmppc_pmu_unavailable(vcpu);
1886 			if (cause == FSCR_EBB_LG)
1887 				r = kvmppc_ebb_unavailable(vcpu);
1888 			if (cause == FSCR_TM_LG)
1889 				r = kvmppc_tm_unavailable(vcpu);
1890 		}
1891 		if (r == EMULATE_FAIL) {
1892 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1893 				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1894 			r = RESUME_GUEST;
1895 		}
1896 		break;
1897 	}
1898 
1899 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1900 		r = RESUME_PASSTHROUGH;
1901 		break;
1902 	default:
1903 		kvmppc_dump_regs(vcpu);
1904 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1905 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1906 			__kvmppc_get_msr_hv(vcpu));
1907 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1908 		r = RESUME_HOST;
1909 		break;
1910 	}
1911 
1912 	return r;
1913 }
1914 
1915 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1916 {
1917 	int r;
1918 	int srcu_idx;
1919 
1920 	vcpu->stat.sum_exits++;
1921 
1922 	/*
1923 	 * This can happen if an interrupt occurs in the last stages
1924 	 * of guest entry or the first stages of guest exit (i.e. after
1925 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1926 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1927 	 * That can happen due to a bug, or due to a machine check
1928 	 * occurring at just the wrong time.
1929 	 */
1930 	if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1931 		pr_emerg("KVM trap in HV mode while nested!\n");
1932 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1933 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1934 			 __kvmppc_get_msr_hv(vcpu));
1935 		kvmppc_dump_regs(vcpu);
1936 		return RESUME_HOST;
1937 	}
1938 	switch (vcpu->arch.trap) {
1939 	/* We're good on these - the host merely wanted to get our attention */
1940 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1941 		vcpu->stat.dec_exits++;
1942 		r = RESUME_GUEST;
1943 		break;
1944 	case BOOK3S_INTERRUPT_EXTERNAL:
1945 		vcpu->stat.ext_intr_exits++;
1946 		r = RESUME_HOST;
1947 		break;
1948 	case BOOK3S_INTERRUPT_H_DOORBELL:
1949 	case BOOK3S_INTERRUPT_H_VIRT:
1950 		vcpu->stat.ext_intr_exits++;
1951 		r = RESUME_GUEST;
1952 		break;
1953 	/* These need to go to the nested HV */
1954 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1955 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1956 		vcpu->stat.dec_exits++;
1957 		r = RESUME_HOST;
1958 		break;
1959 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1960 	case BOOK3S_INTERRUPT_HMI:
1961 	case BOOK3S_INTERRUPT_PERFMON:
1962 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1963 		r = RESUME_GUEST;
1964 		break;
1965 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1966 	{
1967 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1968 					      DEFAULT_RATELIMIT_BURST);
1969 		/* Pass the machine check to the L1 guest */
1970 		r = RESUME_HOST;
1971 		/* Print the MCE event to host console. */
1972 		if (__ratelimit(&rs))
1973 			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1974 		break;
1975 	}
1976 	/*
1977 	 * We get these next two if the guest accesses a page which it thinks
1978 	 * it has mapped but which is not actually present, either because
1979 	 * it is for an emulated I/O device or because the corresonding
1980 	 * host page has been paged out.
1981 	 */
1982 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1983 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1984 		r = kvmhv_nested_page_fault(vcpu);
1985 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1986 		break;
1987 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1988 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1989 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1990 					 DSISR_SRR1_MATCH_64S;
1991 		if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1992 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1993 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1994 		r = kvmhv_nested_page_fault(vcpu);
1995 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1996 		break;
1997 
1998 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1999 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
2000 		/*
2001 		 * This occurs for various TM-related instructions that
2002 		 * we need to emulate on POWER9 DD2.2.  We have already
2003 		 * handled the cases where the guest was in real-suspend
2004 		 * mode and was transitioning to transactional state.
2005 		 */
2006 		r = kvmhv_p9_tm_emulation(vcpu);
2007 		if (r != -1)
2008 			break;
2009 		fallthrough; /* go to facility unavailable handler */
2010 #endif
2011 
2012 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
2013 		u64 cause = vcpu->arch.hfscr >> 56;
2014 
2015 		/*
2016 		 * Only pass HFU interrupts to the L1 if the facility is
2017 		 * permitted but disabled by the L1's HFSCR, otherwise
2018 		 * the interrupt does not make sense to the L1 so turn
2019 		 * it into a HEAI.
2020 		 */
2021 		if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
2022 				(vcpu->arch.nested_hfscr & (1UL << cause))) {
2023 			ppc_inst_t pinst;
2024 			vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2025 
2026 			/*
2027 			 * If the fetch failed, return to guest and
2028 			 * try executing it again.
2029 			 */
2030 			r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
2031 			vcpu->arch.emul_inst = ppc_inst_val(pinst);
2032 			if (r != EMULATE_DONE)
2033 				r = RESUME_GUEST;
2034 			else
2035 				r = RESUME_HOST;
2036 		} else {
2037 			r = RESUME_HOST;
2038 		}
2039 
2040 		break;
2041 	}
2042 
2043 	case BOOK3S_INTERRUPT_HV_RM_HARD:
2044 		vcpu->arch.trap = 0;
2045 		r = RESUME_GUEST;
2046 		if (!xics_on_xive())
2047 			kvmppc_xics_rm_complete(vcpu, 0);
2048 		break;
2049 	case BOOK3S_INTERRUPT_SYSCALL:
2050 	{
2051 		unsigned long req = kvmppc_get_gpr(vcpu, 3);
2052 
2053 		/*
2054 		 * The H_RPT_INVALIDATE hcalls issued by nested
2055 		 * guests for process-scoped invalidations when
2056 		 * GTSE=0, are handled here in L0.
2057 		 */
2058 		if (req == H_RPT_INVALIDATE) {
2059 			r = kvmppc_nested_h_rpt_invalidate(vcpu);
2060 			break;
2061 		}
2062 
2063 		r = RESUME_HOST;
2064 		break;
2065 	}
2066 	default:
2067 		r = RESUME_HOST;
2068 		break;
2069 	}
2070 
2071 	return r;
2072 }
2073 
2074 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2075 					    struct kvm_sregs *sregs)
2076 {
2077 	int i;
2078 
2079 	memset(sregs, 0, sizeof(struct kvm_sregs));
2080 	sregs->pvr = vcpu->arch.pvr;
2081 	for (i = 0; i < vcpu->arch.slb_max; i++) {
2082 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2083 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2084 	}
2085 
2086 	return 0;
2087 }
2088 
2089 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2090 					    struct kvm_sregs *sregs)
2091 {
2092 	int i, j;
2093 
2094 	/* Only accept the same PVR as the host's, since we can't spoof it */
2095 	if (sregs->pvr != vcpu->arch.pvr)
2096 		return -EINVAL;
2097 
2098 	j = 0;
2099 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
2100 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2101 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2102 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2103 			++j;
2104 		}
2105 	}
2106 	vcpu->arch.slb_max = j;
2107 
2108 	return 0;
2109 }
2110 
2111 /*
2112  * Enforce limits on guest LPCR values based on hardware availability,
2113  * guest configuration, and possibly hypervisor support and security
2114  * concerns.
2115  */
2116 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2117 {
2118 	/* LPCR_TC only applies to HPT guests */
2119 	if (kvm_is_radix(kvm))
2120 		lpcr &= ~LPCR_TC;
2121 
2122 	/* On POWER8 and above, userspace can modify AIL */
2123 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2124 		lpcr &= ~LPCR_AIL;
2125 	if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2126 		lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2127 	/*
2128 	 * On some POWER9s we force AIL off for radix guests to prevent
2129 	 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2130 	 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2131 	 * be cached, which the host TLB management does not expect.
2132 	 */
2133 	if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2134 		lpcr &= ~LPCR_AIL;
2135 
2136 	/*
2137 	 * On POWER9, allow userspace to enable large decrementer for the
2138 	 * guest, whether or not the host has it enabled.
2139 	 */
2140 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
2141 		lpcr &= ~LPCR_LD;
2142 
2143 	return lpcr;
2144 }
2145 
2146 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2147 {
2148 	if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2149 		WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2150 			  lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2151 	}
2152 }
2153 
2154 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2155 		bool preserve_top32)
2156 {
2157 	struct kvm *kvm = vcpu->kvm;
2158 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2159 	u64 mask;
2160 
2161 	spin_lock(&vc->lock);
2162 
2163 	/*
2164 	 * Userspace can only modify
2165 	 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2166 	 * TC (translation control), AIL (alternate interrupt location),
2167 	 * LD (large decrementer).
2168 	 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2169 	 */
2170 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2171 
2172 	/* Broken 32-bit version of LPCR must not clear top bits */
2173 	if (preserve_top32)
2174 		mask &= 0xFFFFFFFF;
2175 
2176 	new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2177 			(vc->lpcr & ~mask) | (new_lpcr & mask));
2178 
2179 	/*
2180 	 * If ILE (interrupt little-endian) has changed, update the
2181 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2182 	 */
2183 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2184 		struct kvm_vcpu *vcpu;
2185 		unsigned long i;
2186 
2187 		kvm_for_each_vcpu(i, vcpu, kvm) {
2188 			if (vcpu->arch.vcore != vc)
2189 				continue;
2190 			if (new_lpcr & LPCR_ILE)
2191 				vcpu->arch.intr_msr |= MSR_LE;
2192 			else
2193 				vcpu->arch.intr_msr &= ~MSR_LE;
2194 		}
2195 	}
2196 
2197 	vc->lpcr = new_lpcr;
2198 	kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
2199 
2200 	spin_unlock(&vc->lock);
2201 }
2202 
2203 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2204 				 union kvmppc_one_reg *val)
2205 {
2206 	int r = 0;
2207 	long int i;
2208 
2209 	switch (id) {
2210 	case KVM_REG_PPC_DEBUG_INST:
2211 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2212 		break;
2213 	case KVM_REG_PPC_HIOR:
2214 		*val = get_reg_val(id, 0);
2215 		break;
2216 	case KVM_REG_PPC_DABR:
2217 		*val = get_reg_val(id, vcpu->arch.dabr);
2218 		break;
2219 	case KVM_REG_PPC_DABRX:
2220 		*val = get_reg_val(id, vcpu->arch.dabrx);
2221 		break;
2222 	case KVM_REG_PPC_DSCR:
2223 		*val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
2224 		break;
2225 	case KVM_REG_PPC_PURR:
2226 		*val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
2227 		break;
2228 	case KVM_REG_PPC_SPURR:
2229 		*val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
2230 		break;
2231 	case KVM_REG_PPC_AMR:
2232 		*val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
2233 		break;
2234 	case KVM_REG_PPC_UAMOR:
2235 		*val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
2236 		break;
2237 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2238 		i = id - KVM_REG_PPC_MMCR0;
2239 		*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
2240 		break;
2241 	case KVM_REG_PPC_MMCR2:
2242 		*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
2243 		break;
2244 	case KVM_REG_PPC_MMCRA:
2245 		*val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
2246 		break;
2247 	case KVM_REG_PPC_MMCRS:
2248 		*val = get_reg_val(id, vcpu->arch.mmcrs);
2249 		break;
2250 	case KVM_REG_PPC_MMCR3:
2251 		*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
2252 		break;
2253 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2254 		i = id - KVM_REG_PPC_PMC1;
2255 		*val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
2256 		break;
2257 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2258 		i = id - KVM_REG_PPC_SPMC1;
2259 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
2260 		break;
2261 	case KVM_REG_PPC_SIAR:
2262 		*val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2263 		break;
2264 	case KVM_REG_PPC_SDAR:
2265 		*val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2266 		break;
2267 	case KVM_REG_PPC_SIER:
2268 		*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
2269 		break;
2270 	case KVM_REG_PPC_SIER2:
2271 		*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
2272 		break;
2273 	case KVM_REG_PPC_SIER3:
2274 		*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
2275 		break;
2276 	case KVM_REG_PPC_IAMR:
2277 		*val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
2278 		break;
2279 	case KVM_REG_PPC_PSPB:
2280 		*val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
2281 		break;
2282 	case KVM_REG_PPC_DPDES:
2283 		/*
2284 		 * On POWER9, where we are emulating msgsndp etc.,
2285 		 * we return 1 bit for each vcpu, which can come from
2286 		 * either vcore->dpdes or doorbell_request.
2287 		 * On POWER8, doorbell_request is 0.
2288 		 */
2289 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2290 			*val = get_reg_val(id, vcpu->arch.doorbell_request);
2291 		else
2292 			*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2293 		break;
2294 	case KVM_REG_PPC_VTB:
2295 		*val = get_reg_val(id, kvmppc_get_vtb(vcpu));
2296 		break;
2297 	case KVM_REG_PPC_DAWR:
2298 		*val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
2299 		break;
2300 	case KVM_REG_PPC_DAWRX:
2301 		*val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
2302 		break;
2303 	case KVM_REG_PPC_DAWR1:
2304 		*val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
2305 		break;
2306 	case KVM_REG_PPC_DAWRX1:
2307 		*val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
2308 		break;
2309 	case KVM_REG_PPC_CIABR:
2310 		*val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
2311 		break;
2312 	case KVM_REG_PPC_CSIGR:
2313 		*val = get_reg_val(id, vcpu->arch.csigr);
2314 		break;
2315 	case KVM_REG_PPC_TACR:
2316 		*val = get_reg_val(id, vcpu->arch.tacr);
2317 		break;
2318 	case KVM_REG_PPC_TCSCR:
2319 		*val = get_reg_val(id, vcpu->arch.tcscr);
2320 		break;
2321 	case KVM_REG_PPC_PID:
2322 		*val = get_reg_val(id, kvmppc_get_pid(vcpu));
2323 		break;
2324 	case KVM_REG_PPC_ACOP:
2325 		*val = get_reg_val(id, vcpu->arch.acop);
2326 		break;
2327 	case KVM_REG_PPC_WORT:
2328 		*val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
2329 		break;
2330 	case KVM_REG_PPC_TIDR:
2331 		*val = get_reg_val(id, vcpu->arch.tid);
2332 		break;
2333 	case KVM_REG_PPC_PSSCR:
2334 		*val = get_reg_val(id, vcpu->arch.psscr);
2335 		break;
2336 	case KVM_REG_PPC_VPA_ADDR:
2337 		spin_lock(&vcpu->arch.vpa_update_lock);
2338 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2339 		spin_unlock(&vcpu->arch.vpa_update_lock);
2340 		break;
2341 	case KVM_REG_PPC_VPA_SLB:
2342 		spin_lock(&vcpu->arch.vpa_update_lock);
2343 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2344 		val->vpaval.length = vcpu->arch.slb_shadow.len;
2345 		spin_unlock(&vcpu->arch.vpa_update_lock);
2346 		break;
2347 	case KVM_REG_PPC_VPA_DTL:
2348 		spin_lock(&vcpu->arch.vpa_update_lock);
2349 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2350 		val->vpaval.length = vcpu->arch.dtl.len;
2351 		spin_unlock(&vcpu->arch.vpa_update_lock);
2352 		break;
2353 	case KVM_REG_PPC_TB_OFFSET:
2354 		*val = get_reg_val(id, kvmppc_get_tb_offset(vcpu));
2355 		break;
2356 	case KVM_REG_PPC_LPCR:
2357 	case KVM_REG_PPC_LPCR_64:
2358 		*val = get_reg_val(id, kvmppc_get_lpcr(vcpu));
2359 		break;
2360 	case KVM_REG_PPC_PPR:
2361 		*val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
2362 		break;
2363 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2364 	case KVM_REG_PPC_TFHAR:
2365 		*val = get_reg_val(id, vcpu->arch.tfhar);
2366 		break;
2367 	case KVM_REG_PPC_TFIAR:
2368 		*val = get_reg_val(id, vcpu->arch.tfiar);
2369 		break;
2370 	case KVM_REG_PPC_TEXASR:
2371 		*val = get_reg_val(id, vcpu->arch.texasr);
2372 		break;
2373 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2374 		i = id - KVM_REG_PPC_TM_GPR0;
2375 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2376 		break;
2377 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2378 	{
2379 		int j;
2380 		i = id - KVM_REG_PPC_TM_VSR0;
2381 		if (i < 32)
2382 			for (j = 0; j < TS_FPRWIDTH; j++)
2383 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2384 		else {
2385 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2386 				val->vval = vcpu->arch.vr_tm.vr[i-32];
2387 			else
2388 				r = -ENXIO;
2389 		}
2390 		break;
2391 	}
2392 	case KVM_REG_PPC_TM_CR:
2393 		*val = get_reg_val(id, vcpu->arch.cr_tm);
2394 		break;
2395 	case KVM_REG_PPC_TM_XER:
2396 		*val = get_reg_val(id, vcpu->arch.xer_tm);
2397 		break;
2398 	case KVM_REG_PPC_TM_LR:
2399 		*val = get_reg_val(id, vcpu->arch.lr_tm);
2400 		break;
2401 	case KVM_REG_PPC_TM_CTR:
2402 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
2403 		break;
2404 	case KVM_REG_PPC_TM_FPSCR:
2405 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2406 		break;
2407 	case KVM_REG_PPC_TM_AMR:
2408 		*val = get_reg_val(id, vcpu->arch.amr_tm);
2409 		break;
2410 	case KVM_REG_PPC_TM_PPR:
2411 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
2412 		break;
2413 	case KVM_REG_PPC_TM_VRSAVE:
2414 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
2415 		break;
2416 	case KVM_REG_PPC_TM_VSCR:
2417 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2418 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2419 		else
2420 			r = -ENXIO;
2421 		break;
2422 	case KVM_REG_PPC_TM_DSCR:
2423 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
2424 		break;
2425 	case KVM_REG_PPC_TM_TAR:
2426 		*val = get_reg_val(id, vcpu->arch.tar_tm);
2427 		break;
2428 #endif
2429 	case KVM_REG_PPC_ARCH_COMPAT:
2430 		*val = get_reg_val(id, kvmppc_get_arch_compat(vcpu));
2431 		break;
2432 	case KVM_REG_PPC_DEC_EXPIRY:
2433 		*val = get_reg_val(id, kvmppc_get_dec_expires(vcpu));
2434 		break;
2435 	case KVM_REG_PPC_ONLINE:
2436 		*val = get_reg_val(id, vcpu->arch.online);
2437 		break;
2438 	case KVM_REG_PPC_PTCR:
2439 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2440 		break;
2441 	case KVM_REG_PPC_FSCR:
2442 		*val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
2443 		break;
2444 	default:
2445 		r = -EINVAL;
2446 		break;
2447 	}
2448 
2449 	return r;
2450 }
2451 
2452 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2453 				 union kvmppc_one_reg *val)
2454 {
2455 	int r = 0;
2456 	long int i;
2457 	unsigned long addr, len;
2458 
2459 	switch (id) {
2460 	case KVM_REG_PPC_HIOR:
2461 		/* Only allow this to be set to zero */
2462 		if (set_reg_val(id, *val))
2463 			r = -EINVAL;
2464 		break;
2465 	case KVM_REG_PPC_DABR:
2466 		vcpu->arch.dabr = set_reg_val(id, *val);
2467 		break;
2468 	case KVM_REG_PPC_DABRX:
2469 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2470 		break;
2471 	case KVM_REG_PPC_DSCR:
2472 		kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
2473 		break;
2474 	case KVM_REG_PPC_PURR:
2475 		kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
2476 		break;
2477 	case KVM_REG_PPC_SPURR:
2478 		kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
2479 		break;
2480 	case KVM_REG_PPC_AMR:
2481 		kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
2482 		break;
2483 	case KVM_REG_PPC_UAMOR:
2484 		kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
2485 		break;
2486 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2487 		i = id - KVM_REG_PPC_MMCR0;
2488 		kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
2489 		break;
2490 	case KVM_REG_PPC_MMCR2:
2491 		kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
2492 		break;
2493 	case KVM_REG_PPC_MMCRA:
2494 		kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
2495 		break;
2496 	case KVM_REG_PPC_MMCRS:
2497 		vcpu->arch.mmcrs = set_reg_val(id, *val);
2498 		break;
2499 	case KVM_REG_PPC_MMCR3:
2500 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2501 		break;
2502 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2503 		i = id - KVM_REG_PPC_PMC1;
2504 		kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
2505 		break;
2506 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2507 		i = id - KVM_REG_PPC_SPMC1;
2508 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
2509 		break;
2510 	case KVM_REG_PPC_SIAR:
2511 		kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
2512 		break;
2513 	case KVM_REG_PPC_SDAR:
2514 		kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
2515 		break;
2516 	case KVM_REG_PPC_SIER:
2517 		kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
2518 		break;
2519 	case KVM_REG_PPC_SIER2:
2520 		kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
2521 		break;
2522 	case KVM_REG_PPC_SIER3:
2523 		kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
2524 		break;
2525 	case KVM_REG_PPC_IAMR:
2526 		kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
2527 		break;
2528 	case KVM_REG_PPC_PSPB:
2529 		kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
2530 		break;
2531 	case KVM_REG_PPC_DPDES:
2532 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2533 			vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2534 		else
2535 			vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2536 		break;
2537 	case KVM_REG_PPC_VTB:
2538 		kvmppc_set_vtb(vcpu, set_reg_val(id, *val));
2539 		break;
2540 	case KVM_REG_PPC_DAWR:
2541 		kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
2542 		break;
2543 	case KVM_REG_PPC_DAWRX:
2544 		kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2545 		break;
2546 	case KVM_REG_PPC_DAWR1:
2547 		kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
2548 		break;
2549 	case KVM_REG_PPC_DAWRX1:
2550 		kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2551 		break;
2552 	case KVM_REG_PPC_CIABR:
2553 		kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
2554 		/* Don't allow setting breakpoints in hypervisor code */
2555 		if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
2556 			kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
2557 		break;
2558 	case KVM_REG_PPC_CSIGR:
2559 		vcpu->arch.csigr = set_reg_val(id, *val);
2560 		break;
2561 	case KVM_REG_PPC_TACR:
2562 		vcpu->arch.tacr = set_reg_val(id, *val);
2563 		break;
2564 	case KVM_REG_PPC_TCSCR:
2565 		vcpu->arch.tcscr = set_reg_val(id, *val);
2566 		break;
2567 	case KVM_REG_PPC_PID:
2568 		kvmppc_set_pid(vcpu, set_reg_val(id, *val));
2569 		break;
2570 	case KVM_REG_PPC_ACOP:
2571 		vcpu->arch.acop = set_reg_val(id, *val);
2572 		break;
2573 	case KVM_REG_PPC_WORT:
2574 		kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
2575 		break;
2576 	case KVM_REG_PPC_TIDR:
2577 		vcpu->arch.tid = set_reg_val(id, *val);
2578 		break;
2579 	case KVM_REG_PPC_PSSCR:
2580 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2581 		break;
2582 	case KVM_REG_PPC_VPA_ADDR:
2583 		addr = set_reg_val(id, *val);
2584 		r = -EINVAL;
2585 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2586 			      vcpu->arch.dtl.next_gpa))
2587 			break;
2588 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2589 		break;
2590 	case KVM_REG_PPC_VPA_SLB:
2591 		addr = val->vpaval.addr;
2592 		len = val->vpaval.length;
2593 		r = -EINVAL;
2594 		if (addr && !vcpu->arch.vpa.next_gpa)
2595 			break;
2596 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2597 		break;
2598 	case KVM_REG_PPC_VPA_DTL:
2599 		addr = val->vpaval.addr;
2600 		len = val->vpaval.length;
2601 		r = -EINVAL;
2602 		if (addr && (len < sizeof(struct dtl_entry) ||
2603 			     !vcpu->arch.vpa.next_gpa))
2604 			break;
2605 		len -= len % sizeof(struct dtl_entry);
2606 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2607 		break;
2608 	case KVM_REG_PPC_TB_OFFSET:
2609 	{
2610 		/* round up to multiple of 2^24 */
2611 		u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2612 
2613 		/*
2614 		 * Now that we know the timebase offset, update the
2615 		 * decrementer expiry with a guest timebase value. If
2616 		 * the userspace does not set DEC_EXPIRY, this ensures
2617 		 * a migrated vcpu at least starts with an expired
2618 		 * decrementer, which is better than a large one that
2619 		 * causes a hang.
2620 		 */
2621 		kvmppc_set_tb_offset(vcpu, tb_offset);
2622 		if (!kvmppc_get_dec_expires(vcpu) && tb_offset)
2623 			kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset);
2624 
2625 		kvmppc_set_tb_offset(vcpu, tb_offset);
2626 		break;
2627 	}
2628 	case KVM_REG_PPC_LPCR:
2629 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2630 		break;
2631 	case KVM_REG_PPC_LPCR_64:
2632 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2633 		break;
2634 	case KVM_REG_PPC_PPR:
2635 		kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
2636 		break;
2637 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2638 	case KVM_REG_PPC_TFHAR:
2639 		vcpu->arch.tfhar = set_reg_val(id, *val);
2640 		break;
2641 	case KVM_REG_PPC_TFIAR:
2642 		vcpu->arch.tfiar = set_reg_val(id, *val);
2643 		break;
2644 	case KVM_REG_PPC_TEXASR:
2645 		vcpu->arch.texasr = set_reg_val(id, *val);
2646 		break;
2647 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2648 		i = id - KVM_REG_PPC_TM_GPR0;
2649 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2650 		break;
2651 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2652 	{
2653 		int j;
2654 		i = id - KVM_REG_PPC_TM_VSR0;
2655 		if (i < 32)
2656 			for (j = 0; j < TS_FPRWIDTH; j++)
2657 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2658 		else
2659 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2660 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2661 			else
2662 				r = -ENXIO;
2663 		break;
2664 	}
2665 	case KVM_REG_PPC_TM_CR:
2666 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2667 		break;
2668 	case KVM_REG_PPC_TM_XER:
2669 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2670 		break;
2671 	case KVM_REG_PPC_TM_LR:
2672 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2673 		break;
2674 	case KVM_REG_PPC_TM_CTR:
2675 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2676 		break;
2677 	case KVM_REG_PPC_TM_FPSCR:
2678 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2679 		break;
2680 	case KVM_REG_PPC_TM_AMR:
2681 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2682 		break;
2683 	case KVM_REG_PPC_TM_PPR:
2684 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2685 		break;
2686 	case KVM_REG_PPC_TM_VRSAVE:
2687 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2688 		break;
2689 	case KVM_REG_PPC_TM_VSCR:
2690 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2691 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2692 		else
2693 			r = - ENXIO;
2694 		break;
2695 	case KVM_REG_PPC_TM_DSCR:
2696 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2697 		break;
2698 	case KVM_REG_PPC_TM_TAR:
2699 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2700 		break;
2701 #endif
2702 	case KVM_REG_PPC_ARCH_COMPAT:
2703 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2704 		break;
2705 	case KVM_REG_PPC_DEC_EXPIRY:
2706 		kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val));
2707 		break;
2708 	case KVM_REG_PPC_ONLINE:
2709 		i = set_reg_val(id, *val);
2710 		if (i && !vcpu->arch.online)
2711 			atomic_inc(&vcpu->arch.vcore->online_count);
2712 		else if (!i && vcpu->arch.online)
2713 			atomic_dec(&vcpu->arch.vcore->online_count);
2714 		vcpu->arch.online = i;
2715 		break;
2716 	case KVM_REG_PPC_PTCR:
2717 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2718 		break;
2719 	case KVM_REG_PPC_FSCR:
2720 		kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
2721 		break;
2722 	default:
2723 		r = -EINVAL;
2724 		break;
2725 	}
2726 
2727 	return r;
2728 }
2729 
2730 /*
2731  * On POWER9, threads are independent and can be in different partitions.
2732  * Therefore we consider each thread to be a subcore.
2733  * There is a restriction that all threads have to be in the same
2734  * MMU mode (radix or HPT), unfortunately, but since we only support
2735  * HPT guests on a HPT host so far, that isn't an impediment yet.
2736  */
2737 static int threads_per_vcore(struct kvm *kvm)
2738 {
2739 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2740 		return 1;
2741 	return threads_per_subcore;
2742 }
2743 
2744 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2745 {
2746 	struct kvmppc_vcore *vcore;
2747 
2748 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2749 
2750 	if (vcore == NULL)
2751 		return NULL;
2752 
2753 	spin_lock_init(&vcore->lock);
2754 	spin_lock_init(&vcore->stoltb_lock);
2755 	rcuwait_init(&vcore->wait);
2756 	vcore->preempt_tb = TB_NIL;
2757 	vcore->lpcr = kvm->arch.lpcr;
2758 	vcore->first_vcpuid = id;
2759 	vcore->kvm = kvm;
2760 	INIT_LIST_HEAD(&vcore->preempt_list);
2761 
2762 	return vcore;
2763 }
2764 
2765 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2766 static struct debugfs_timings_element {
2767 	const char *name;
2768 	size_t offset;
2769 } timings[] = {
2770 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2771 	{"vcpu_entry",	offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2772 	{"guest_entry",	offsetof(struct kvm_vcpu, arch.guest_entry)},
2773 	{"in_guest",	offsetof(struct kvm_vcpu, arch.in_guest)},
2774 	{"guest_exit",	offsetof(struct kvm_vcpu, arch.guest_exit)},
2775 	{"vcpu_exit",	offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2776 	{"hypercall",	offsetof(struct kvm_vcpu, arch.hcall)},
2777 	{"page_fault",	offsetof(struct kvm_vcpu, arch.pg_fault)},
2778 #else
2779 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2780 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2781 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2782 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2783 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2784 #endif
2785 };
2786 
2787 #define N_TIMINGS	(ARRAY_SIZE(timings))
2788 
2789 struct debugfs_timings_state {
2790 	struct kvm_vcpu	*vcpu;
2791 	unsigned int	buflen;
2792 	char		buf[N_TIMINGS * 100];
2793 };
2794 
2795 static int debugfs_timings_open(struct inode *inode, struct file *file)
2796 {
2797 	struct kvm_vcpu *vcpu = inode->i_private;
2798 	struct debugfs_timings_state *p;
2799 
2800 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2801 	if (!p)
2802 		return -ENOMEM;
2803 
2804 	kvm_get_kvm(vcpu->kvm);
2805 	p->vcpu = vcpu;
2806 	file->private_data = p;
2807 
2808 	return nonseekable_open(inode, file);
2809 }
2810 
2811 static int debugfs_timings_release(struct inode *inode, struct file *file)
2812 {
2813 	struct debugfs_timings_state *p = file->private_data;
2814 
2815 	kvm_put_kvm(p->vcpu->kvm);
2816 	kfree(p);
2817 	return 0;
2818 }
2819 
2820 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2821 				    size_t len, loff_t *ppos)
2822 {
2823 	struct debugfs_timings_state *p = file->private_data;
2824 	struct kvm_vcpu *vcpu = p->vcpu;
2825 	char *s, *buf_end;
2826 	struct kvmhv_tb_accumulator tb;
2827 	u64 count;
2828 	loff_t pos;
2829 	ssize_t n;
2830 	int i, loops;
2831 	bool ok;
2832 
2833 	if (!p->buflen) {
2834 		s = p->buf;
2835 		buf_end = s + sizeof(p->buf);
2836 		for (i = 0; i < N_TIMINGS; ++i) {
2837 			struct kvmhv_tb_accumulator *acc;
2838 
2839 			acc = (struct kvmhv_tb_accumulator *)
2840 				((unsigned long)vcpu + timings[i].offset);
2841 			ok = false;
2842 			for (loops = 0; loops < 1000; ++loops) {
2843 				count = acc->seqcount;
2844 				if (!(count & 1)) {
2845 					smp_rmb();
2846 					tb = *acc;
2847 					smp_rmb();
2848 					if (count == acc->seqcount) {
2849 						ok = true;
2850 						break;
2851 					}
2852 				}
2853 				udelay(1);
2854 			}
2855 			if (!ok)
2856 				snprintf(s, buf_end - s, "%s: stuck\n",
2857 					timings[i].name);
2858 			else
2859 				snprintf(s, buf_end - s,
2860 					"%s: %llu %llu %llu %llu\n",
2861 					timings[i].name, count / 2,
2862 					tb_to_ns(tb.tb_total),
2863 					tb_to_ns(tb.tb_min),
2864 					tb_to_ns(tb.tb_max));
2865 			s += strlen(s);
2866 		}
2867 		p->buflen = s - p->buf;
2868 	}
2869 
2870 	pos = *ppos;
2871 	if (pos >= p->buflen)
2872 		return 0;
2873 	if (len > p->buflen - pos)
2874 		len = p->buflen - pos;
2875 	n = copy_to_user(buf, p->buf + pos, len);
2876 	if (n) {
2877 		if (n == len)
2878 			return -EFAULT;
2879 		len -= n;
2880 	}
2881 	*ppos = pos + len;
2882 	return len;
2883 }
2884 
2885 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2886 				     size_t len, loff_t *ppos)
2887 {
2888 	return -EACCES;
2889 }
2890 
2891 static const struct file_operations debugfs_timings_ops = {
2892 	.owner	 = THIS_MODULE,
2893 	.open	 = debugfs_timings_open,
2894 	.release = debugfs_timings_release,
2895 	.read	 = debugfs_timings_read,
2896 	.write	 = debugfs_timings_write,
2897 	.llseek	 = generic_file_llseek,
2898 };
2899 
2900 /* Create a debugfs directory for the vcpu */
2901 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2902 {
2903 	if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2904 		debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2905 				    &debugfs_timings_ops);
2906 	return 0;
2907 }
2908 
2909 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2910 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2911 {
2912 	return 0;
2913 }
2914 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2915 
2916 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2917 {
2918 	int err;
2919 	int core;
2920 	struct kvmppc_vcore *vcore;
2921 	struct kvm *kvm;
2922 	unsigned int id;
2923 
2924 	kvm = vcpu->kvm;
2925 	id = vcpu->vcpu_id;
2926 
2927 	vcpu->arch.shared = &vcpu->arch.shregs;
2928 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2929 	/*
2930 	 * The shared struct is never shared on HV,
2931 	 * so we can always use host endianness
2932 	 */
2933 #ifdef __BIG_ENDIAN__
2934 	vcpu->arch.shared_big_endian = true;
2935 #else
2936 	vcpu->arch.shared_big_endian = false;
2937 #endif
2938 #endif
2939 
2940 	if (kvmhv_is_nestedv2()) {
2941 		err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io);
2942 		if (err < 0)
2943 			return err;
2944 	}
2945 
2946 	kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
2947 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2948 		kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
2949 		kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
2950 	}
2951 
2952 	kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
2953 	/* default to host PVR, since we can't spoof it */
2954 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2955 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2956 	spin_lock_init(&vcpu->arch.tbacct_lock);
2957 	vcpu->arch.busy_preempt = TB_NIL;
2958 	__kvmppc_set_msr_hv(vcpu, MSR_ME);
2959 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2960 
2961 	/*
2962 	 * Set the default HFSCR for the guest from the host value.
2963 	 * This value is only used on POWER9 and later.
2964 	 * On >= POWER9, we want to virtualize the doorbell facility, so we
2965 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2966 	 * to trap and then we emulate them.
2967 	 */
2968 	kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2969 			    HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
2970 
2971 	/* On POWER10 and later, allow prefixed instructions */
2972 	if (cpu_has_feature(CPU_FTR_ARCH_31))
2973 		kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
2974 
2975 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2976 		kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
2977 
2978 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2979 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2980 			kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
2981 #endif
2982 	}
2983 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2984 		vcpu->arch.hfscr |= HFSCR_TM;
2985 
2986 	vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
2987 
2988 	/*
2989 	 * PM, EBB, TM are demand-faulted so start with it clear.
2990 	 */
2991 	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
2992 
2993 	kvmppc_mmu_book3s_hv_init(vcpu);
2994 
2995 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2996 
2997 	init_waitqueue_head(&vcpu->arch.cpu_run);
2998 
2999 	mutex_lock(&kvm->lock);
3000 	vcore = NULL;
3001 	err = -EINVAL;
3002 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3003 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
3004 			pr_devel("KVM: VCPU ID too high\n");
3005 			core = KVM_MAX_VCORES;
3006 		} else {
3007 			BUG_ON(kvm->arch.smt_mode != 1);
3008 			core = kvmppc_pack_vcpu_id(kvm, id);
3009 		}
3010 	} else {
3011 		core = id / kvm->arch.smt_mode;
3012 	}
3013 	if (core < KVM_MAX_VCORES) {
3014 		vcore = kvm->arch.vcores[core];
3015 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
3016 			pr_devel("KVM: collision on id %u", id);
3017 			vcore = NULL;
3018 		} else if (!vcore) {
3019 			/*
3020 			 * Take mmu_setup_lock for mutual exclusion
3021 			 * with kvmppc_update_lpcr().
3022 			 */
3023 			err = -ENOMEM;
3024 			vcore = kvmppc_vcore_create(kvm,
3025 					id & ~(kvm->arch.smt_mode - 1));
3026 			mutex_lock(&kvm->arch.mmu_setup_lock);
3027 			kvm->arch.vcores[core] = vcore;
3028 			kvm->arch.online_vcores++;
3029 			mutex_unlock(&kvm->arch.mmu_setup_lock);
3030 		}
3031 	}
3032 	mutex_unlock(&kvm->lock);
3033 
3034 	if (!vcore)
3035 		return err;
3036 
3037 	spin_lock(&vcore->lock);
3038 	++vcore->num_threads;
3039 	spin_unlock(&vcore->lock);
3040 	vcpu->arch.vcore = vcore;
3041 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3042 	vcpu->arch.thread_cpu = -1;
3043 	vcpu->arch.prev_cpu = -1;
3044 
3045 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
3046 	kvmppc_sanity_check(vcpu);
3047 
3048 	return 0;
3049 }
3050 
3051 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3052 			      unsigned long flags)
3053 {
3054 	int err;
3055 	int esmt = 0;
3056 
3057 	if (flags)
3058 		return -EINVAL;
3059 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3060 		return -EINVAL;
3061 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3062 		/*
3063 		 * On POWER8 (or POWER7), the threading mode is "strict",
3064 		 * so we pack smt_mode vcpus per vcore.
3065 		 */
3066 		if (smt_mode > threads_per_subcore)
3067 			return -EINVAL;
3068 	} else {
3069 		/*
3070 		 * On POWER9, the threading mode is "loose",
3071 		 * so each vcpu gets its own vcore.
3072 		 */
3073 		esmt = smt_mode;
3074 		smt_mode = 1;
3075 	}
3076 	mutex_lock(&kvm->lock);
3077 	err = -EBUSY;
3078 	if (!kvm->arch.online_vcores) {
3079 		kvm->arch.smt_mode = smt_mode;
3080 		kvm->arch.emul_smt_mode = esmt;
3081 		err = 0;
3082 	}
3083 	mutex_unlock(&kvm->lock);
3084 
3085 	return err;
3086 }
3087 
3088 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3089 {
3090 	if (vpa->pinned_addr)
3091 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3092 					vpa->dirty);
3093 }
3094 
3095 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3096 {
3097 	spin_lock(&vcpu->arch.vpa_update_lock);
3098 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3099 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3100 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3101 	spin_unlock(&vcpu->arch.vpa_update_lock);
3102 	if (kvmhv_is_nestedv2())
3103 		kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io);
3104 }
3105 
3106 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3107 {
3108 	/* Indicate we want to get back into the guest */
3109 	return 1;
3110 }
3111 
3112 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3113 {
3114 	unsigned long dec_nsec, now;
3115 
3116 	now = get_tb();
3117 	if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3118 		/* decrementer has already gone negative */
3119 		kvmppc_core_queue_dec(vcpu);
3120 		kvmppc_core_prepare_to_enter(vcpu);
3121 		return;
3122 	}
3123 	dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3124 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3125 	vcpu->arch.timer_running = 1;
3126 }
3127 
3128 extern int __kvmppc_vcore_entry(void);
3129 
3130 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3131 				   struct kvm_vcpu *vcpu, u64 tb)
3132 {
3133 	u64 now;
3134 
3135 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3136 		return;
3137 	spin_lock_irq(&vcpu->arch.tbacct_lock);
3138 	now = tb;
3139 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3140 		vcpu->arch.stolen_logged;
3141 	vcpu->arch.busy_preempt = now;
3142 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3143 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
3144 	--vc->n_runnable;
3145 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3146 }
3147 
3148 static int kvmppc_grab_hwthread(int cpu)
3149 {
3150 	struct paca_struct *tpaca;
3151 	long timeout = 10000;
3152 
3153 	tpaca = paca_ptrs[cpu];
3154 
3155 	/* Ensure the thread won't go into the kernel if it wakes */
3156 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3157 	tpaca->kvm_hstate.kvm_vcore = NULL;
3158 	tpaca->kvm_hstate.napping = 0;
3159 	smp_wmb();
3160 	tpaca->kvm_hstate.hwthread_req = 1;
3161 
3162 	/*
3163 	 * If the thread is already executing in the kernel (e.g. handling
3164 	 * a stray interrupt), wait for it to get back to nap mode.
3165 	 * The smp_mb() is to ensure that our setting of hwthread_req
3166 	 * is visible before we look at hwthread_state, so if this
3167 	 * races with the code at system_reset_pSeries and the thread
3168 	 * misses our setting of hwthread_req, we are sure to see its
3169 	 * setting of hwthread_state, and vice versa.
3170 	 */
3171 	smp_mb();
3172 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3173 		if (--timeout <= 0) {
3174 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
3175 			return -EBUSY;
3176 		}
3177 		udelay(1);
3178 	}
3179 	return 0;
3180 }
3181 
3182 static void kvmppc_release_hwthread(int cpu)
3183 {
3184 	struct paca_struct *tpaca;
3185 
3186 	tpaca = paca_ptrs[cpu];
3187 	tpaca->kvm_hstate.hwthread_req = 0;
3188 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3189 	tpaca->kvm_hstate.kvm_vcore = NULL;
3190 	tpaca->kvm_hstate.kvm_split_mode = NULL;
3191 }
3192 
3193 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3194 
3195 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3196 {
3197 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3198 	cpumask_t *need_tlb_flush;
3199 	int i;
3200 
3201 	if (nested)
3202 		need_tlb_flush = &nested->need_tlb_flush;
3203 	else
3204 		need_tlb_flush = &kvm->arch.need_tlb_flush;
3205 
3206 	cpu = cpu_first_tlb_thread_sibling(cpu);
3207 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3208 					i += cpu_tlb_thread_sibling_step())
3209 		cpumask_set_cpu(i, need_tlb_flush);
3210 
3211 	/*
3212 	 * Make sure setting of bit in need_tlb_flush precedes testing of
3213 	 * cpu_in_guest. The matching barrier on the other side is hwsync
3214 	 * when switching to guest MMU mode, which happens between
3215 	 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3216 	 * being tested.
3217 	 */
3218 	smp_mb();
3219 
3220 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3221 					i += cpu_tlb_thread_sibling_step()) {
3222 		struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3223 
3224 		if (running == kvm)
3225 			smp_call_function_single(i, do_nothing, NULL, 1);
3226 	}
3227 }
3228 
3229 static void do_migrate_away_vcpu(void *arg)
3230 {
3231 	struct kvm_vcpu *vcpu = arg;
3232 	struct kvm *kvm = vcpu->kvm;
3233 
3234 	/*
3235 	 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3236 	 * ptesync sequence on the old CPU before migrating to a new one, in
3237 	 * case we interrupted the guest between a tlbie ; eieio ;
3238 	 * tlbsync; ptesync sequence.
3239 	 *
3240 	 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3241 	 */
3242 	if (kvm->arch.lpcr & LPCR_GTSE)
3243 		asm volatile("eieio; tlbsync; ptesync");
3244 	else
3245 		asm volatile("ptesync");
3246 }
3247 
3248 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3249 {
3250 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3251 	struct kvm *kvm = vcpu->kvm;
3252 	int prev_cpu;
3253 
3254 	if (!cpu_has_feature(CPU_FTR_HVMODE))
3255 		return;
3256 
3257 	if (nested)
3258 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3259 	else
3260 		prev_cpu = vcpu->arch.prev_cpu;
3261 
3262 	/*
3263 	 * With radix, the guest can do TLB invalidations itself,
3264 	 * and it could choose to use the local form (tlbiel) if
3265 	 * it is invalidating a translation that has only ever been
3266 	 * used on one vcpu.  However, that doesn't mean it has
3267 	 * only ever been used on one physical cpu, since vcpus
3268 	 * can move around between pcpus.  To cope with this, when
3269 	 * a vcpu moves from one pcpu to another, we need to tell
3270 	 * any vcpus running on the same core as this vcpu previously
3271 	 * ran to flush the TLB.
3272 	 */
3273 	if (prev_cpu != pcpu) {
3274 		if (prev_cpu >= 0) {
3275 			if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3276 			    cpu_first_tlb_thread_sibling(pcpu))
3277 				radix_flush_cpu(kvm, prev_cpu, vcpu);
3278 
3279 			smp_call_function_single(prev_cpu,
3280 					do_migrate_away_vcpu, vcpu, 1);
3281 		}
3282 		if (nested)
3283 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3284 		else
3285 			vcpu->arch.prev_cpu = pcpu;
3286 	}
3287 }
3288 
3289 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3290 {
3291 	int cpu;
3292 	struct paca_struct *tpaca;
3293 
3294 	cpu = vc->pcpu;
3295 	if (vcpu) {
3296 		if (vcpu->arch.timer_running) {
3297 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3298 			vcpu->arch.timer_running = 0;
3299 		}
3300 		cpu += vcpu->arch.ptid;
3301 		vcpu->cpu = vc->pcpu;
3302 		vcpu->arch.thread_cpu = cpu;
3303 	}
3304 	tpaca = paca_ptrs[cpu];
3305 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
3306 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3307 	tpaca->kvm_hstate.fake_suspend = 0;
3308 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3309 	smp_wmb();
3310 	tpaca->kvm_hstate.kvm_vcore = vc;
3311 	if (cpu != smp_processor_id())
3312 		kvmppc_ipi_thread(cpu);
3313 }
3314 
3315 static void kvmppc_wait_for_nap(int n_threads)
3316 {
3317 	int cpu = smp_processor_id();
3318 	int i, loops;
3319 
3320 	if (n_threads <= 1)
3321 		return;
3322 	for (loops = 0; loops < 1000000; ++loops) {
3323 		/*
3324 		 * Check if all threads are finished.
3325 		 * We set the vcore pointer when starting a thread
3326 		 * and the thread clears it when finished, so we look
3327 		 * for any threads that still have a non-NULL vcore ptr.
3328 		 */
3329 		for (i = 1; i < n_threads; ++i)
3330 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3331 				break;
3332 		if (i == n_threads) {
3333 			HMT_medium();
3334 			return;
3335 		}
3336 		HMT_low();
3337 	}
3338 	HMT_medium();
3339 	for (i = 1; i < n_threads; ++i)
3340 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3341 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3342 }
3343 
3344 /*
3345  * Check that we are on thread 0 and that any other threads in
3346  * this core are off-line.  Then grab the threads so they can't
3347  * enter the kernel.
3348  */
3349 static int on_primary_thread(void)
3350 {
3351 	int cpu = smp_processor_id();
3352 	int thr;
3353 
3354 	/* Are we on a primary subcore? */
3355 	if (cpu_thread_in_subcore(cpu))
3356 		return 0;
3357 
3358 	thr = 0;
3359 	while (++thr < threads_per_subcore)
3360 		if (cpu_online(cpu + thr))
3361 			return 0;
3362 
3363 	/* Grab all hw threads so they can't go into the kernel */
3364 	for (thr = 1; thr < threads_per_subcore; ++thr) {
3365 		if (kvmppc_grab_hwthread(cpu + thr)) {
3366 			/* Couldn't grab one; let the others go */
3367 			do {
3368 				kvmppc_release_hwthread(cpu + thr);
3369 			} while (--thr > 0);
3370 			return 0;
3371 		}
3372 	}
3373 	return 1;
3374 }
3375 
3376 /*
3377  * A list of virtual cores for each physical CPU.
3378  * These are vcores that could run but their runner VCPU tasks are
3379  * (or may be) preempted.
3380  */
3381 struct preempted_vcore_list {
3382 	struct list_head	list;
3383 	spinlock_t		lock;
3384 };
3385 
3386 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3387 
3388 static void init_vcore_lists(void)
3389 {
3390 	int cpu;
3391 
3392 	for_each_possible_cpu(cpu) {
3393 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3394 		spin_lock_init(&lp->lock);
3395 		INIT_LIST_HEAD(&lp->list);
3396 	}
3397 }
3398 
3399 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3400 {
3401 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3402 
3403 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3404 
3405 	vc->vcore_state = VCORE_PREEMPT;
3406 	vc->pcpu = smp_processor_id();
3407 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3408 		spin_lock(&lp->lock);
3409 		list_add_tail(&vc->preempt_list, &lp->list);
3410 		spin_unlock(&lp->lock);
3411 	}
3412 
3413 	/* Start accumulating stolen time */
3414 	kvmppc_core_start_stolen(vc, mftb());
3415 }
3416 
3417 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3418 {
3419 	struct preempted_vcore_list *lp;
3420 
3421 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3422 
3423 	kvmppc_core_end_stolen(vc, mftb());
3424 	if (!list_empty(&vc->preempt_list)) {
3425 		lp = &per_cpu(preempted_vcores, vc->pcpu);
3426 		spin_lock(&lp->lock);
3427 		list_del_init(&vc->preempt_list);
3428 		spin_unlock(&lp->lock);
3429 	}
3430 	vc->vcore_state = VCORE_INACTIVE;
3431 }
3432 
3433 /*
3434  * This stores information about the virtual cores currently
3435  * assigned to a physical core.
3436  */
3437 struct core_info {
3438 	int		n_subcores;
3439 	int		max_subcore_threads;
3440 	int		total_threads;
3441 	int		subcore_threads[MAX_SUBCORES];
3442 	struct kvmppc_vcore *vc[MAX_SUBCORES];
3443 };
3444 
3445 /*
3446  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3447  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3448  */
3449 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3450 
3451 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3452 {
3453 	memset(cip, 0, sizeof(*cip));
3454 	cip->n_subcores = 1;
3455 	cip->max_subcore_threads = vc->num_threads;
3456 	cip->total_threads = vc->num_threads;
3457 	cip->subcore_threads[0] = vc->num_threads;
3458 	cip->vc[0] = vc;
3459 }
3460 
3461 static bool subcore_config_ok(int n_subcores, int n_threads)
3462 {
3463 	/*
3464 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3465 	 * split-core mode, with one thread per subcore.
3466 	 */
3467 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3468 		return n_subcores <= 4 && n_threads == 1;
3469 
3470 	/* On POWER8, can only dynamically split if unsplit to begin with */
3471 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3472 		return false;
3473 	if (n_subcores > MAX_SUBCORES)
3474 		return false;
3475 	if (n_subcores > 1) {
3476 		if (!(dynamic_mt_modes & 2))
3477 			n_subcores = 4;
3478 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3479 			return false;
3480 	}
3481 
3482 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3483 }
3484 
3485 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3486 {
3487 	vc->entry_exit_map = 0;
3488 	vc->in_guest = 0;
3489 	vc->napping_threads = 0;
3490 	vc->conferring_threads = 0;
3491 	vc->tb_offset_applied = 0;
3492 }
3493 
3494 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3495 {
3496 	int n_threads = vc->num_threads;
3497 	int sub;
3498 
3499 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3500 		return false;
3501 
3502 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
3503 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3504 		return false;
3505 
3506 	if (n_threads < cip->max_subcore_threads)
3507 		n_threads = cip->max_subcore_threads;
3508 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3509 		return false;
3510 	cip->max_subcore_threads = n_threads;
3511 
3512 	sub = cip->n_subcores;
3513 	++cip->n_subcores;
3514 	cip->total_threads += vc->num_threads;
3515 	cip->subcore_threads[sub] = vc->num_threads;
3516 	cip->vc[sub] = vc;
3517 	init_vcore_to_run(vc);
3518 	list_del_init(&vc->preempt_list);
3519 
3520 	return true;
3521 }
3522 
3523 /*
3524  * Work out whether it is possible to piggyback the execution of
3525  * vcore *pvc onto the execution of the other vcores described in *cip.
3526  */
3527 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3528 			  int target_threads)
3529 {
3530 	if (cip->total_threads + pvc->num_threads > target_threads)
3531 		return false;
3532 
3533 	return can_dynamic_split(pvc, cip);
3534 }
3535 
3536 static void prepare_threads(struct kvmppc_vcore *vc)
3537 {
3538 	int i;
3539 	struct kvm_vcpu *vcpu;
3540 
3541 	for_each_runnable_thread(i, vcpu, vc) {
3542 		if (signal_pending(vcpu->arch.run_task))
3543 			vcpu->arch.ret = -EINTR;
3544 		else if (vcpu->arch.vpa.update_pending ||
3545 			 vcpu->arch.slb_shadow.update_pending ||
3546 			 vcpu->arch.dtl.update_pending)
3547 			vcpu->arch.ret = RESUME_GUEST;
3548 		else
3549 			continue;
3550 		kvmppc_remove_runnable(vc, vcpu, mftb());
3551 		wake_up(&vcpu->arch.cpu_run);
3552 	}
3553 }
3554 
3555 static void collect_piggybacks(struct core_info *cip, int target_threads)
3556 {
3557 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3558 	struct kvmppc_vcore *pvc, *vcnext;
3559 
3560 	spin_lock(&lp->lock);
3561 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3562 		if (!spin_trylock(&pvc->lock))
3563 			continue;
3564 		prepare_threads(pvc);
3565 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3566 			list_del_init(&pvc->preempt_list);
3567 			if (pvc->runner == NULL) {
3568 				pvc->vcore_state = VCORE_INACTIVE;
3569 				kvmppc_core_end_stolen(pvc, mftb());
3570 			}
3571 			spin_unlock(&pvc->lock);
3572 			continue;
3573 		}
3574 		if (!can_piggyback(pvc, cip, target_threads)) {
3575 			spin_unlock(&pvc->lock);
3576 			continue;
3577 		}
3578 		kvmppc_core_end_stolen(pvc, mftb());
3579 		pvc->vcore_state = VCORE_PIGGYBACK;
3580 		if (cip->total_threads >= target_threads)
3581 			break;
3582 	}
3583 	spin_unlock(&lp->lock);
3584 }
3585 
3586 static bool recheck_signals_and_mmu(struct core_info *cip)
3587 {
3588 	int sub, i;
3589 	struct kvm_vcpu *vcpu;
3590 	struct kvmppc_vcore *vc;
3591 
3592 	for (sub = 0; sub < cip->n_subcores; ++sub) {
3593 		vc = cip->vc[sub];
3594 		if (!vc->kvm->arch.mmu_ready)
3595 			return true;
3596 		for_each_runnable_thread(i, vcpu, vc)
3597 			if (signal_pending(vcpu->arch.run_task))
3598 				return true;
3599 	}
3600 	return false;
3601 }
3602 
3603 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3604 {
3605 	int still_running = 0, i;
3606 	u64 now;
3607 	long ret;
3608 	struct kvm_vcpu *vcpu;
3609 
3610 	spin_lock(&vc->lock);
3611 	now = get_tb();
3612 	for_each_runnable_thread(i, vcpu, vc) {
3613 		/*
3614 		 * It's safe to unlock the vcore in the loop here, because
3615 		 * for_each_runnable_thread() is safe against removal of
3616 		 * the vcpu, and the vcore state is VCORE_EXITING here,
3617 		 * so any vcpus becoming runnable will have their arch.trap
3618 		 * set to zero and can't actually run in the guest.
3619 		 */
3620 		spin_unlock(&vc->lock);
3621 		/* cancel pending dec exception if dec is positive */
3622 		if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3623 		    kvmppc_core_pending_dec(vcpu))
3624 			kvmppc_core_dequeue_dec(vcpu);
3625 
3626 		trace_kvm_guest_exit(vcpu);
3627 
3628 		ret = RESUME_GUEST;
3629 		if (vcpu->arch.trap)
3630 			ret = kvmppc_handle_exit_hv(vcpu,
3631 						    vcpu->arch.run_task);
3632 
3633 		vcpu->arch.ret = ret;
3634 		vcpu->arch.trap = 0;
3635 
3636 		spin_lock(&vc->lock);
3637 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3638 			if (vcpu->arch.pending_exceptions)
3639 				kvmppc_core_prepare_to_enter(vcpu);
3640 			if (vcpu->arch.ceded)
3641 				kvmppc_set_timer(vcpu);
3642 			else
3643 				++still_running;
3644 		} else {
3645 			kvmppc_remove_runnable(vc, vcpu, mftb());
3646 			wake_up(&vcpu->arch.cpu_run);
3647 		}
3648 	}
3649 	if (!is_master) {
3650 		if (still_running > 0) {
3651 			kvmppc_vcore_preempt(vc);
3652 		} else if (vc->runner) {
3653 			vc->vcore_state = VCORE_PREEMPT;
3654 			kvmppc_core_start_stolen(vc, mftb());
3655 		} else {
3656 			vc->vcore_state = VCORE_INACTIVE;
3657 		}
3658 		if (vc->n_runnable > 0 && vc->runner == NULL) {
3659 			/* make sure there's a candidate runner awake */
3660 			i = -1;
3661 			vcpu = next_runnable_thread(vc, &i);
3662 			wake_up(&vcpu->arch.cpu_run);
3663 		}
3664 	}
3665 	spin_unlock(&vc->lock);
3666 }
3667 
3668 /*
3669  * Clear core from the list of active host cores as we are about to
3670  * enter the guest. Only do this if it is the primary thread of the
3671  * core (not if a subcore) that is entering the guest.
3672  */
3673 static inline int kvmppc_clear_host_core(unsigned int cpu)
3674 {
3675 	int core;
3676 
3677 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3678 		return 0;
3679 	/*
3680 	 * Memory barrier can be omitted here as we will do a smp_wmb()
3681 	 * later in kvmppc_start_thread and we need ensure that state is
3682 	 * visible to other CPUs only after we enter guest.
3683 	 */
3684 	core = cpu >> threads_shift;
3685 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3686 	return 0;
3687 }
3688 
3689 /*
3690  * Advertise this core as an active host core since we exited the guest
3691  * Only need to do this if it is the primary thread of the core that is
3692  * exiting.
3693  */
3694 static inline int kvmppc_set_host_core(unsigned int cpu)
3695 {
3696 	int core;
3697 
3698 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3699 		return 0;
3700 
3701 	/*
3702 	 * Memory barrier can be omitted here because we do a spin_unlock
3703 	 * immediately after this which provides the memory barrier.
3704 	 */
3705 	core = cpu >> threads_shift;
3706 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3707 	return 0;
3708 }
3709 
3710 static void set_irq_happened(int trap)
3711 {
3712 	switch (trap) {
3713 	case BOOK3S_INTERRUPT_EXTERNAL:
3714 		local_paca->irq_happened |= PACA_IRQ_EE;
3715 		break;
3716 	case BOOK3S_INTERRUPT_H_DOORBELL:
3717 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3718 		break;
3719 	case BOOK3S_INTERRUPT_HMI:
3720 		local_paca->irq_happened |= PACA_IRQ_HMI;
3721 		break;
3722 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3723 		replay_system_reset();
3724 		break;
3725 	}
3726 }
3727 
3728 /*
3729  * Run a set of guest threads on a physical core.
3730  * Called with vc->lock held.
3731  */
3732 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3733 {
3734 	struct kvm_vcpu *vcpu;
3735 	int i;
3736 	int srcu_idx;
3737 	struct core_info core_info;
3738 	struct kvmppc_vcore *pvc;
3739 	struct kvm_split_mode split_info, *sip;
3740 	int split, subcore_size, active;
3741 	int sub;
3742 	bool thr0_done;
3743 	unsigned long cmd_bit, stat_bit;
3744 	int pcpu, thr;
3745 	int target_threads;
3746 	int controlled_threads;
3747 	int trap;
3748 	bool is_power8;
3749 
3750 	if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3751 		return;
3752 
3753 	/*
3754 	 * Remove from the list any threads that have a signal pending
3755 	 * or need a VPA update done
3756 	 */
3757 	prepare_threads(vc);
3758 
3759 	/* if the runner is no longer runnable, let the caller pick a new one */
3760 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3761 		return;
3762 
3763 	/*
3764 	 * Initialize *vc.
3765 	 */
3766 	init_vcore_to_run(vc);
3767 	vc->preempt_tb = TB_NIL;
3768 
3769 	/*
3770 	 * Number of threads that we will be controlling: the same as
3771 	 * the number of threads per subcore, except on POWER9,
3772 	 * where it's 1 because the threads are (mostly) independent.
3773 	 */
3774 	controlled_threads = threads_per_vcore(vc->kvm);
3775 
3776 	/*
3777 	 * Make sure we are running on primary threads, and that secondary
3778 	 * threads are offline.  Also check if the number of threads in this
3779 	 * guest are greater than the current system threads per guest.
3780 	 */
3781 	if ((controlled_threads > 1) &&
3782 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3783 		for_each_runnable_thread(i, vcpu, vc) {
3784 			vcpu->arch.ret = -EBUSY;
3785 			kvmppc_remove_runnable(vc, vcpu, mftb());
3786 			wake_up(&vcpu->arch.cpu_run);
3787 		}
3788 		goto out;
3789 	}
3790 
3791 	/*
3792 	 * See if we could run any other vcores on the physical core
3793 	 * along with this one.
3794 	 */
3795 	init_core_info(&core_info, vc);
3796 	pcpu = smp_processor_id();
3797 	target_threads = controlled_threads;
3798 	if (target_smt_mode && target_smt_mode < target_threads)
3799 		target_threads = target_smt_mode;
3800 	if (vc->num_threads < target_threads)
3801 		collect_piggybacks(&core_info, target_threads);
3802 
3803 	/*
3804 	 * Hard-disable interrupts, and check resched flag and signals.
3805 	 * If we need to reschedule or deliver a signal, clean up
3806 	 * and return without going into the guest(s).
3807 	 * If the mmu_ready flag has been cleared, don't go into the
3808 	 * guest because that means a HPT resize operation is in progress.
3809 	 */
3810 	local_irq_disable();
3811 	hard_irq_disable();
3812 	if (lazy_irq_pending() || need_resched() ||
3813 	    recheck_signals_and_mmu(&core_info)) {
3814 		local_irq_enable();
3815 		vc->vcore_state = VCORE_INACTIVE;
3816 		/* Unlock all except the primary vcore */
3817 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3818 			pvc = core_info.vc[sub];
3819 			/* Put back on to the preempted vcores list */
3820 			kvmppc_vcore_preempt(pvc);
3821 			spin_unlock(&pvc->lock);
3822 		}
3823 		for (i = 0; i < controlled_threads; ++i)
3824 			kvmppc_release_hwthread(pcpu + i);
3825 		return;
3826 	}
3827 
3828 	kvmppc_clear_host_core(pcpu);
3829 
3830 	/* Decide on micro-threading (split-core) mode */
3831 	subcore_size = threads_per_subcore;
3832 	cmd_bit = stat_bit = 0;
3833 	split = core_info.n_subcores;
3834 	sip = NULL;
3835 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3836 
3837 	if (split > 1) {
3838 		sip = &split_info;
3839 		memset(&split_info, 0, sizeof(split_info));
3840 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3841 			split_info.vc[sub] = core_info.vc[sub];
3842 
3843 		if (is_power8) {
3844 			if (split == 2 && (dynamic_mt_modes & 2)) {
3845 				cmd_bit = HID0_POWER8_1TO2LPAR;
3846 				stat_bit = HID0_POWER8_2LPARMODE;
3847 			} else {
3848 				split = 4;
3849 				cmd_bit = HID0_POWER8_1TO4LPAR;
3850 				stat_bit = HID0_POWER8_4LPARMODE;
3851 			}
3852 			subcore_size = MAX_SMT_THREADS / split;
3853 			split_info.rpr = mfspr(SPRN_RPR);
3854 			split_info.pmmar = mfspr(SPRN_PMMAR);
3855 			split_info.ldbar = mfspr(SPRN_LDBAR);
3856 			split_info.subcore_size = subcore_size;
3857 		} else {
3858 			split_info.subcore_size = 1;
3859 		}
3860 
3861 		/* order writes to split_info before kvm_split_mode pointer */
3862 		smp_wmb();
3863 	}
3864 
3865 	for (thr = 0; thr < controlled_threads; ++thr) {
3866 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3867 
3868 		paca->kvm_hstate.napping = 0;
3869 		paca->kvm_hstate.kvm_split_mode = sip;
3870 	}
3871 
3872 	/* Initiate micro-threading (split-core) on POWER8 if required */
3873 	if (cmd_bit) {
3874 		unsigned long hid0 = mfspr(SPRN_HID0);
3875 
3876 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3877 		mb();
3878 		mtspr(SPRN_HID0, hid0);
3879 		isync();
3880 		for (;;) {
3881 			hid0 = mfspr(SPRN_HID0);
3882 			if (hid0 & stat_bit)
3883 				break;
3884 			cpu_relax();
3885 		}
3886 	}
3887 
3888 	/*
3889 	 * On POWER8, set RWMR register.
3890 	 * Since it only affects PURR and SPURR, it doesn't affect
3891 	 * the host, so we don't save/restore the host value.
3892 	 */
3893 	if (is_power8) {
3894 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3895 		int n_online = atomic_read(&vc->online_count);
3896 
3897 		/*
3898 		 * Use the 8-thread value if we're doing split-core
3899 		 * or if the vcore's online count looks bogus.
3900 		 */
3901 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3902 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3903 			rwmr_val = p8_rwmr_values[n_online];
3904 		mtspr(SPRN_RWMR, rwmr_val);
3905 	}
3906 
3907 	/* Start all the threads */
3908 	active = 0;
3909 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3910 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3911 		thr0_done = false;
3912 		active |= 1 << thr;
3913 		pvc = core_info.vc[sub];
3914 		pvc->pcpu = pcpu + thr;
3915 		for_each_runnable_thread(i, vcpu, pvc) {
3916 			/*
3917 			 * XXX: is kvmppc_start_thread called too late here?
3918 			 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3919 			 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3920 			 * kick is called after new exceptions become available
3921 			 * and exceptions are checked earlier than here, by
3922 			 * kvmppc_core_prepare_to_enter.
3923 			 */
3924 			kvmppc_start_thread(vcpu, pvc);
3925 			kvmppc_update_vpa_dispatch(vcpu, pvc);
3926 			trace_kvm_guest_enter(vcpu);
3927 			if (!vcpu->arch.ptid)
3928 				thr0_done = true;
3929 			active |= 1 << (thr + vcpu->arch.ptid);
3930 		}
3931 		/*
3932 		 * We need to start the first thread of each subcore
3933 		 * even if it doesn't have a vcpu.
3934 		 */
3935 		if (!thr0_done)
3936 			kvmppc_start_thread(NULL, pvc);
3937 	}
3938 
3939 	/*
3940 	 * Ensure that split_info.do_nap is set after setting
3941 	 * the vcore pointer in the PACA of the secondaries.
3942 	 */
3943 	smp_mb();
3944 
3945 	/*
3946 	 * When doing micro-threading, poke the inactive threads as well.
3947 	 * This gets them to the nap instruction after kvm_do_nap,
3948 	 * which reduces the time taken to unsplit later.
3949 	 */
3950 	if (cmd_bit) {
3951 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3952 		for (thr = 1; thr < threads_per_subcore; ++thr)
3953 			if (!(active & (1 << thr)))
3954 				kvmppc_ipi_thread(pcpu + thr);
3955 	}
3956 
3957 	vc->vcore_state = VCORE_RUNNING;
3958 	preempt_disable();
3959 
3960 	trace_kvmppc_run_core(vc, 0);
3961 
3962 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3963 		spin_unlock(&core_info.vc[sub]->lock);
3964 
3965 	guest_timing_enter_irqoff();
3966 
3967 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3968 
3969 	guest_state_enter_irqoff();
3970 	this_cpu_disable_ftrace();
3971 
3972 	trap = __kvmppc_vcore_entry();
3973 
3974 	this_cpu_enable_ftrace();
3975 	guest_state_exit_irqoff();
3976 
3977 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3978 
3979 	set_irq_happened(trap);
3980 
3981 	spin_lock(&vc->lock);
3982 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3983 	vc->vcore_state = VCORE_EXITING;
3984 
3985 	/* wait for secondary threads to finish writing their state to memory */
3986 	kvmppc_wait_for_nap(controlled_threads);
3987 
3988 	/* Return to whole-core mode if we split the core earlier */
3989 	if (cmd_bit) {
3990 		unsigned long hid0 = mfspr(SPRN_HID0);
3991 		unsigned long loops = 0;
3992 
3993 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3994 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3995 		mb();
3996 		mtspr(SPRN_HID0, hid0);
3997 		isync();
3998 		for (;;) {
3999 			hid0 = mfspr(SPRN_HID0);
4000 			if (!(hid0 & stat_bit))
4001 				break;
4002 			cpu_relax();
4003 			++loops;
4004 		}
4005 		split_info.do_nap = 0;
4006 	}
4007 
4008 	kvmppc_set_host_core(pcpu);
4009 
4010 	if (!vtime_accounting_enabled_this_cpu()) {
4011 		local_irq_enable();
4012 		/*
4013 		 * Service IRQs here before guest_timing_exit_irqoff() so any
4014 		 * ticks that occurred while running the guest are accounted to
4015 		 * the guest. If vtime accounting is enabled, accounting uses
4016 		 * TB rather than ticks, so it can be done without enabling
4017 		 * interrupts here, which has the problem that it accounts
4018 		 * interrupt processing overhead to the host.
4019 		 */
4020 		local_irq_disable();
4021 	}
4022 	guest_timing_exit_irqoff();
4023 
4024 	local_irq_enable();
4025 
4026 	/* Let secondaries go back to the offline loop */
4027 	for (i = 0; i < controlled_threads; ++i) {
4028 		kvmppc_release_hwthread(pcpu + i);
4029 		if (sip && sip->napped[i])
4030 			kvmppc_ipi_thread(pcpu + i);
4031 	}
4032 
4033 	spin_unlock(&vc->lock);
4034 
4035 	/* make sure updates to secondary vcpu structs are visible now */
4036 	smp_mb();
4037 
4038 	preempt_enable();
4039 
4040 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
4041 		pvc = core_info.vc[sub];
4042 		post_guest_process(pvc, pvc == vc);
4043 	}
4044 
4045 	spin_lock(&vc->lock);
4046 
4047  out:
4048 	vc->vcore_state = VCORE_INACTIVE;
4049 	trace_kvmppc_run_core(vc, 1);
4050 }
4051 
4052 static inline bool hcall_is_xics(unsigned long req)
4053 {
4054 	return req == H_EOI || req == H_CPPR || req == H_IPI ||
4055 		req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4056 }
4057 
4058 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4059 {
4060 	struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4061 	if (lp) {
4062 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4063 		lp->yield_count = cpu_to_be32(yield_count);
4064 		vcpu->arch.vpa.dirty = 1;
4065 	}
4066 }
4067 
4068 static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit,
4069 				     unsigned long lpcr, u64 *tb)
4070 {
4071 	struct kvmhv_nestedv2_io *io;
4072 	unsigned long msr, i;
4073 	int trap;
4074 	long rc;
4075 
4076 	io = &vcpu->arch.nestedv2_io;
4077 
4078 	msr = mfmsr();
4079 	kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4080 	if (lazy_irq_pending())
4081 		return 0;
4082 
4083 	rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit);
4084 	if (rc < 0)
4085 		return -EINVAL;
4086 
4087 	accumulate_time(vcpu, &vcpu->arch.in_guest);
4088 	rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id,
4089 				  &trap, &i);
4090 
4091 	if (rc != H_SUCCESS) {
4092 		pr_err("KVM Guest Run VCPU hcall failed\n");
4093 		if (rc == H_INVALID_ELEMENT_ID)
4094 			pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i);
4095 		else if (rc == H_INVALID_ELEMENT_SIZE)
4096 			pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i);
4097 		else if (rc == H_INVALID_ELEMENT_VALUE)
4098 			pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i);
4099 		return -EINVAL;
4100 	}
4101 	accumulate_time(vcpu, &vcpu->arch.guest_exit);
4102 
4103 	*tb = mftb();
4104 	kvmppc_gsm_reset(io->vcpu_message);
4105 	kvmppc_gsm_reset(io->vcore_message);
4106 	kvmppc_gsbm_zero(&io->valids);
4107 
4108 	rc = kvmhv_nestedv2_parse_output(vcpu);
4109 	if (rc < 0)
4110 		return -EINVAL;
4111 
4112 	timer_rearm_host_dec(*tb);
4113 
4114 	return trap;
4115 }
4116 
4117 /* call our hypervisor to load up HV regs and go */
4118 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4119 {
4120 	unsigned long host_psscr;
4121 	unsigned long msr;
4122 	struct hv_guest_state hvregs;
4123 	struct p9_host_os_sprs host_os_sprs;
4124 	s64 dec;
4125 	int trap;
4126 
4127 	msr = mfmsr();
4128 
4129 	save_p9_host_os_sprs(&host_os_sprs);
4130 
4131 	/*
4132 	 * We need to save and restore the guest visible part of the
4133 	 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4134 	 * doesn't do this for us. Note only required if pseries since
4135 	 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4136 	 */
4137 	host_psscr = mfspr(SPRN_PSSCR_PR);
4138 
4139 	kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4140 	if (lazy_irq_pending())
4141 		return 0;
4142 
4143 	if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4144 		msr = mfmsr(); /* TM restore can update msr */
4145 
4146 	if (vcpu->arch.psscr != host_psscr)
4147 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4148 
4149 	kvmhv_save_hv_regs(vcpu, &hvregs);
4150 	hvregs.lpcr = lpcr;
4151 	hvregs.amor = ~0;
4152 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4153 	hvregs.version = HV_GUEST_STATE_VERSION;
4154 	if (vcpu->arch.nested) {
4155 		hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4156 		hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4157 	} else {
4158 		hvregs.lpid = vcpu->kvm->arch.lpid;
4159 		hvregs.vcpu_token = vcpu->vcpu_id;
4160 	}
4161 	hvregs.hdec_expiry = time_limit;
4162 
4163 	/*
4164 	 * When setting DEC, we must always deal with irq_work_raise
4165 	 * via NMI vs setting DEC. The problem occurs right as we
4166 	 * switch into guest mode if a NMI hits and sets pending work
4167 	 * and sets DEC, then that will apply to the guest and not
4168 	 * bring us back to the host.
4169 	 *
4170 	 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4171 	 * for example) and set HDEC to 1? That wouldn't solve the
4172 	 * nested hv case which needs to abort the hcall or zero the
4173 	 * time limit.
4174 	 *
4175 	 * XXX: Another day's problem.
4176 	 */
4177 	mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4178 
4179 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4180 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4181 	switch_pmu_to_guest(vcpu, &host_os_sprs);
4182 	accumulate_time(vcpu, &vcpu->arch.in_guest);
4183 	trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4184 				  __pa(&vcpu->arch.regs));
4185 	accumulate_time(vcpu, &vcpu->arch.guest_exit);
4186 	kvmhv_restore_hv_return_state(vcpu, &hvregs);
4187 	switch_pmu_to_host(vcpu, &host_os_sprs);
4188 	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4189 	vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4190 	vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4191 	vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4192 
4193 	store_vcpu_state(vcpu);
4194 
4195 	dec = mfspr(SPRN_DEC);
4196 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4197 		dec = (s32) dec;
4198 	*tb = mftb();
4199 	vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu));
4200 
4201 	timer_rearm_host_dec(*tb);
4202 
4203 	restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4204 	if (vcpu->arch.psscr != host_psscr)
4205 		mtspr(SPRN_PSSCR_PR, host_psscr);
4206 
4207 	return trap;
4208 }
4209 
4210 /*
4211  * Guest entry for POWER9 and later CPUs.
4212  */
4213 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4214 			 unsigned long lpcr, u64 *tb)
4215 {
4216 	struct kvm *kvm = vcpu->kvm;
4217 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4218 	u64 next_timer;
4219 	int trap;
4220 
4221 	next_timer = timer_get_next_tb();
4222 	if (*tb >= next_timer)
4223 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
4224 	if (next_timer < time_limit)
4225 		time_limit = next_timer;
4226 	else if (*tb >= time_limit) /* nested time limit */
4227 		return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4228 
4229 	vcpu->arch.ceded = 0;
4230 
4231 	vcpu_vpa_increment_dispatch(vcpu);
4232 
4233 	if (kvmhv_on_pseries()) {
4234 		if (kvmhv_is_nestedv1())
4235 			trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4236 		else
4237 			trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb);
4238 
4239 		/* H_CEDE has to be handled now, not later */
4240 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4241 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4242 			kvmppc_cede(vcpu);
4243 			kvmppc_set_gpr(vcpu, 3, 0);
4244 			trap = 0;
4245 		}
4246 
4247 	} else if (nested) {
4248 		__this_cpu_write(cpu_in_guest, kvm);
4249 		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4250 		__this_cpu_write(cpu_in_guest, NULL);
4251 
4252 	} else {
4253 		kvmppc_xive_push_vcpu(vcpu);
4254 
4255 		__this_cpu_write(cpu_in_guest, kvm);
4256 		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4257 		__this_cpu_write(cpu_in_guest, NULL);
4258 
4259 		if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4260 		    !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4261 			unsigned long req = kvmppc_get_gpr(vcpu, 3);
4262 
4263 			/*
4264 			 * XIVE rearm and XICS hcalls must be handled
4265 			 * before xive context is pulled (is this
4266 			 * true?)
4267 			 */
4268 			if (req == H_CEDE) {
4269 				/* H_CEDE has to be handled now */
4270 				kvmppc_cede(vcpu);
4271 				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4272 					/*
4273 					 * Pending escalation so abort
4274 					 * the cede.
4275 					 */
4276 					vcpu->arch.ceded = 0;
4277 				}
4278 				kvmppc_set_gpr(vcpu, 3, 0);
4279 				trap = 0;
4280 
4281 			} else if (req == H_ENTER_NESTED) {
4282 				/*
4283 				 * L2 should not run with the L1
4284 				 * context so rearm and pull it.
4285 				 */
4286 				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4287 					/*
4288 					 * Pending escalation so abort
4289 					 * H_ENTER_NESTED.
4290 					 */
4291 					kvmppc_set_gpr(vcpu, 3, 0);
4292 					trap = 0;
4293 				}
4294 
4295 			} else if (hcall_is_xics(req)) {
4296 				int ret;
4297 
4298 				ret = kvmppc_xive_xics_hcall(vcpu, req);
4299 				if (ret != H_TOO_HARD) {
4300 					kvmppc_set_gpr(vcpu, 3, ret);
4301 					trap = 0;
4302 				}
4303 			}
4304 		}
4305 		kvmppc_xive_pull_vcpu(vcpu);
4306 
4307 		if (kvm_is_radix(kvm))
4308 			vcpu->arch.slb_max = 0;
4309 	}
4310 
4311 	vcpu_vpa_increment_dispatch(vcpu);
4312 
4313 	return trap;
4314 }
4315 
4316 /*
4317  * Wait for some other vcpu thread to execute us, and
4318  * wake us up when we need to handle something in the host.
4319  */
4320 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4321 				 struct kvm_vcpu *vcpu, int wait_state)
4322 {
4323 	DEFINE_WAIT(wait);
4324 
4325 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4326 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4327 		spin_unlock(&vc->lock);
4328 		schedule();
4329 		spin_lock(&vc->lock);
4330 	}
4331 	finish_wait(&vcpu->arch.cpu_run, &wait);
4332 }
4333 
4334 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4335 {
4336 	if (!halt_poll_ns_grow)
4337 		return;
4338 
4339 	vc->halt_poll_ns *= halt_poll_ns_grow;
4340 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4341 		vc->halt_poll_ns = halt_poll_ns_grow_start;
4342 }
4343 
4344 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4345 {
4346 	if (halt_poll_ns_shrink == 0)
4347 		vc->halt_poll_ns = 0;
4348 	else
4349 		vc->halt_poll_ns /= halt_poll_ns_shrink;
4350 }
4351 
4352 #ifdef CONFIG_KVM_XICS
4353 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4354 {
4355 	if (!xics_on_xive())
4356 		return false;
4357 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4358 		vcpu->arch.xive_saved_state.cppr;
4359 }
4360 #else
4361 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4362 {
4363 	return false;
4364 }
4365 #endif /* CONFIG_KVM_XICS */
4366 
4367 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4368 {
4369 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4370 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4371 		return true;
4372 
4373 	return false;
4374 }
4375 
4376 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4377 {
4378 	if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4379 		return true;
4380 	return false;
4381 }
4382 
4383 /*
4384  * Check to see if any of the runnable vcpus on the vcore have pending
4385  * exceptions or are no longer ceded
4386  */
4387 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4388 {
4389 	struct kvm_vcpu *vcpu;
4390 	int i;
4391 
4392 	for_each_runnable_thread(i, vcpu, vc) {
4393 		if (kvmppc_vcpu_check_block(vcpu))
4394 			return 1;
4395 	}
4396 
4397 	return 0;
4398 }
4399 
4400 /*
4401  * All the vcpus in this vcore are idle, so wait for a decrementer
4402  * or external interrupt to one of the vcpus.  vc->lock is held.
4403  */
4404 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4405 {
4406 	ktime_t cur, start_poll, start_wait;
4407 	int do_sleep = 1;
4408 	u64 block_ns;
4409 
4410 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4411 
4412 	/* Poll for pending exceptions and ceded state */
4413 	cur = start_poll = ktime_get();
4414 	if (vc->halt_poll_ns) {
4415 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4416 		++vc->runner->stat.generic.halt_attempted_poll;
4417 
4418 		vc->vcore_state = VCORE_POLLING;
4419 		spin_unlock(&vc->lock);
4420 
4421 		do {
4422 			if (kvmppc_vcore_check_block(vc)) {
4423 				do_sleep = 0;
4424 				break;
4425 			}
4426 			cur = ktime_get();
4427 		} while (kvm_vcpu_can_poll(cur, stop));
4428 
4429 		spin_lock(&vc->lock);
4430 		vc->vcore_state = VCORE_INACTIVE;
4431 
4432 		if (!do_sleep) {
4433 			++vc->runner->stat.generic.halt_successful_poll;
4434 			goto out;
4435 		}
4436 	}
4437 
4438 	prepare_to_rcuwait(&vc->wait);
4439 	set_current_state(TASK_INTERRUPTIBLE);
4440 	if (kvmppc_vcore_check_block(vc)) {
4441 		finish_rcuwait(&vc->wait);
4442 		do_sleep = 0;
4443 		/* If we polled, count this as a successful poll */
4444 		if (vc->halt_poll_ns)
4445 			++vc->runner->stat.generic.halt_successful_poll;
4446 		goto out;
4447 	}
4448 
4449 	start_wait = ktime_get();
4450 
4451 	vc->vcore_state = VCORE_SLEEPING;
4452 	trace_kvmppc_vcore_blocked(vc->runner, 0);
4453 	spin_unlock(&vc->lock);
4454 	schedule();
4455 	finish_rcuwait(&vc->wait);
4456 	spin_lock(&vc->lock);
4457 	vc->vcore_state = VCORE_INACTIVE;
4458 	trace_kvmppc_vcore_blocked(vc->runner, 1);
4459 	++vc->runner->stat.halt_successful_wait;
4460 
4461 	cur = ktime_get();
4462 
4463 out:
4464 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4465 
4466 	/* Attribute wait time */
4467 	if (do_sleep) {
4468 		vc->runner->stat.generic.halt_wait_ns +=
4469 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
4470 		KVM_STATS_LOG_HIST_UPDATE(
4471 				vc->runner->stat.generic.halt_wait_hist,
4472 				ktime_to_ns(cur) - ktime_to_ns(start_wait));
4473 		/* Attribute failed poll time */
4474 		if (vc->halt_poll_ns) {
4475 			vc->runner->stat.generic.halt_poll_fail_ns +=
4476 				ktime_to_ns(start_wait) -
4477 				ktime_to_ns(start_poll);
4478 			KVM_STATS_LOG_HIST_UPDATE(
4479 				vc->runner->stat.generic.halt_poll_fail_hist,
4480 				ktime_to_ns(start_wait) -
4481 				ktime_to_ns(start_poll));
4482 		}
4483 	} else {
4484 		/* Attribute successful poll time */
4485 		if (vc->halt_poll_ns) {
4486 			vc->runner->stat.generic.halt_poll_success_ns +=
4487 				ktime_to_ns(cur) -
4488 				ktime_to_ns(start_poll);
4489 			KVM_STATS_LOG_HIST_UPDATE(
4490 				vc->runner->stat.generic.halt_poll_success_hist,
4491 				ktime_to_ns(cur) - ktime_to_ns(start_poll));
4492 		}
4493 	}
4494 
4495 	/* Adjust poll time */
4496 	if (halt_poll_ns) {
4497 		if (block_ns <= vc->halt_poll_ns)
4498 			;
4499 		/* We slept and blocked for longer than the max halt time */
4500 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4501 			shrink_halt_poll_ns(vc);
4502 		/* We slept and our poll time is too small */
4503 		else if (vc->halt_poll_ns < halt_poll_ns &&
4504 				block_ns < halt_poll_ns)
4505 			grow_halt_poll_ns(vc);
4506 		if (vc->halt_poll_ns > halt_poll_ns)
4507 			vc->halt_poll_ns = halt_poll_ns;
4508 	} else
4509 		vc->halt_poll_ns = 0;
4510 
4511 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4512 }
4513 
4514 /*
4515  * This never fails for a radix guest, as none of the operations it does
4516  * for a radix guest can fail or have a way to report failure.
4517  */
4518 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4519 {
4520 	int r = 0;
4521 	struct kvm *kvm = vcpu->kvm;
4522 
4523 	mutex_lock(&kvm->arch.mmu_setup_lock);
4524 	if (!kvm->arch.mmu_ready) {
4525 		if (!kvm_is_radix(kvm))
4526 			r = kvmppc_hv_setup_htab_rma(vcpu);
4527 		if (!r) {
4528 			if (cpu_has_feature(CPU_FTR_ARCH_300))
4529 				kvmppc_setup_partition_table(kvm);
4530 			kvm->arch.mmu_ready = 1;
4531 		}
4532 	}
4533 	mutex_unlock(&kvm->arch.mmu_setup_lock);
4534 	return r;
4535 }
4536 
4537 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4538 {
4539 	struct kvm_run *run = vcpu->run;
4540 	int n_ceded, i, r;
4541 	struct kvmppc_vcore *vc;
4542 	struct kvm_vcpu *v;
4543 
4544 	trace_kvmppc_run_vcpu_enter(vcpu);
4545 
4546 	run->exit_reason = 0;
4547 	vcpu->arch.ret = RESUME_GUEST;
4548 	vcpu->arch.trap = 0;
4549 	kvmppc_update_vpas(vcpu);
4550 
4551 	/*
4552 	 * Synchronize with other threads in this virtual core
4553 	 */
4554 	vc = vcpu->arch.vcore;
4555 	spin_lock(&vc->lock);
4556 	vcpu->arch.ceded = 0;
4557 	vcpu->arch.run_task = current;
4558 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4559 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4560 	vcpu->arch.busy_preempt = TB_NIL;
4561 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4562 	++vc->n_runnable;
4563 
4564 	/*
4565 	 * This happens the first time this is called for a vcpu.
4566 	 * If the vcore is already running, we may be able to start
4567 	 * this thread straight away and have it join in.
4568 	 */
4569 	if (!signal_pending(current)) {
4570 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4571 		     vc->vcore_state == VCORE_RUNNING) &&
4572 			   !VCORE_IS_EXITING(vc)) {
4573 			kvmppc_update_vpa_dispatch(vcpu, vc);
4574 			kvmppc_start_thread(vcpu, vc);
4575 			trace_kvm_guest_enter(vcpu);
4576 		} else if (vc->vcore_state == VCORE_SLEEPING) {
4577 		        rcuwait_wake_up(&vc->wait);
4578 		}
4579 
4580 	}
4581 
4582 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4583 	       !signal_pending(current)) {
4584 		/* See if the MMU is ready to go */
4585 		if (!vcpu->kvm->arch.mmu_ready) {
4586 			spin_unlock(&vc->lock);
4587 			r = kvmhv_setup_mmu(vcpu);
4588 			spin_lock(&vc->lock);
4589 			if (r) {
4590 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4591 				run->fail_entry.
4592 					hardware_entry_failure_reason = 0;
4593 				vcpu->arch.ret = r;
4594 				break;
4595 			}
4596 		}
4597 
4598 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4599 			kvmppc_vcore_end_preempt(vc);
4600 
4601 		if (vc->vcore_state != VCORE_INACTIVE) {
4602 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4603 			continue;
4604 		}
4605 		for_each_runnable_thread(i, v, vc) {
4606 			kvmppc_core_prepare_to_enter(v);
4607 			if (signal_pending(v->arch.run_task)) {
4608 				kvmppc_remove_runnable(vc, v, mftb());
4609 				v->stat.signal_exits++;
4610 				v->run->exit_reason = KVM_EXIT_INTR;
4611 				v->arch.ret = -EINTR;
4612 				wake_up(&v->arch.cpu_run);
4613 			}
4614 		}
4615 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4616 			break;
4617 		n_ceded = 0;
4618 		for_each_runnable_thread(i, v, vc) {
4619 			if (!kvmppc_vcpu_woken(v))
4620 				n_ceded += v->arch.ceded;
4621 			else
4622 				v->arch.ceded = 0;
4623 		}
4624 		vc->runner = vcpu;
4625 		if (n_ceded == vc->n_runnable) {
4626 			kvmppc_vcore_blocked(vc);
4627 		} else if (need_resched()) {
4628 			kvmppc_vcore_preempt(vc);
4629 			/* Let something else run */
4630 			cond_resched_lock(&vc->lock);
4631 			if (vc->vcore_state == VCORE_PREEMPT)
4632 				kvmppc_vcore_end_preempt(vc);
4633 		} else {
4634 			kvmppc_run_core(vc);
4635 		}
4636 		vc->runner = NULL;
4637 	}
4638 
4639 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4640 	       (vc->vcore_state == VCORE_RUNNING ||
4641 		vc->vcore_state == VCORE_EXITING ||
4642 		vc->vcore_state == VCORE_PIGGYBACK))
4643 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4644 
4645 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4646 		kvmppc_vcore_end_preempt(vc);
4647 
4648 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4649 		kvmppc_remove_runnable(vc, vcpu, mftb());
4650 		vcpu->stat.signal_exits++;
4651 		run->exit_reason = KVM_EXIT_INTR;
4652 		vcpu->arch.ret = -EINTR;
4653 	}
4654 
4655 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4656 		/* Wake up some vcpu to run the core */
4657 		i = -1;
4658 		v = next_runnable_thread(vc, &i);
4659 		wake_up(&v->arch.cpu_run);
4660 	}
4661 
4662 	trace_kvmppc_run_vcpu_exit(vcpu);
4663 	spin_unlock(&vc->lock);
4664 	return vcpu->arch.ret;
4665 }
4666 
4667 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4668 			  unsigned long lpcr)
4669 {
4670 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4671 	struct kvm_run *run = vcpu->run;
4672 	int trap, r, pcpu;
4673 	int srcu_idx;
4674 	struct kvmppc_vcore *vc;
4675 	struct kvm *kvm = vcpu->kvm;
4676 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4677 	unsigned long flags;
4678 	u64 tb;
4679 
4680 	trace_kvmppc_run_vcpu_enter(vcpu);
4681 
4682 	run->exit_reason = 0;
4683 	vcpu->arch.ret = RESUME_GUEST;
4684 	vcpu->arch.trap = 0;
4685 
4686 	vc = vcpu->arch.vcore;
4687 	vcpu->arch.ceded = 0;
4688 	vcpu->arch.run_task = current;
4689 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4690 
4691 	/* See if the MMU is ready to go */
4692 	if (unlikely(!kvm->arch.mmu_ready)) {
4693 		r = kvmhv_setup_mmu(vcpu);
4694 		if (r) {
4695 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4696 			run->fail_entry.hardware_entry_failure_reason = 0;
4697 			vcpu->arch.ret = r;
4698 			return r;
4699 		}
4700 	}
4701 
4702 	if (need_resched())
4703 		cond_resched();
4704 
4705 	kvmppc_update_vpas(vcpu);
4706 
4707 	preempt_disable();
4708 	pcpu = smp_processor_id();
4709 	if (kvm_is_radix(kvm))
4710 		kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4711 
4712 	/* flags save not required, but irq_pmu has no disable/enable API */
4713 	powerpc_local_irq_pmu_save(flags);
4714 
4715 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4716 
4717 	if (signal_pending(current))
4718 		goto sigpend;
4719 	if (need_resched() || !kvm->arch.mmu_ready)
4720 		goto out;
4721 
4722 	vcpu->cpu = pcpu;
4723 	vcpu->arch.thread_cpu = pcpu;
4724 	vc->pcpu = pcpu;
4725 	local_paca->kvm_hstate.kvm_vcpu = vcpu;
4726 	local_paca->kvm_hstate.ptid = 0;
4727 	local_paca->kvm_hstate.fake_suspend = 0;
4728 
4729 	/*
4730 	 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4731 	 * doorbells below. The other side is when these fields are set vs
4732 	 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4733 	 * kick a vCPU to notice the pending interrupt.
4734 	 */
4735 	smp_mb();
4736 
4737 	if (!nested) {
4738 		kvmppc_core_prepare_to_enter(vcpu);
4739 		if (__kvmppc_get_msr_hv(vcpu) & MSR_EE) {
4740 			if (xive_interrupt_pending(vcpu))
4741 				kvmppc_inject_interrupt_hv(vcpu,
4742 						BOOK3S_INTERRUPT_EXTERNAL, 0);
4743 		} else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4744 			     &vcpu->arch.pending_exceptions)) {
4745 			lpcr |= LPCR_MER;
4746 		}
4747 	} else if (vcpu->arch.pending_exceptions ||
4748 		   vcpu->arch.doorbell_request ||
4749 		   xive_interrupt_pending(vcpu)) {
4750 		vcpu->arch.ret = RESUME_HOST;
4751 		goto out;
4752 	}
4753 
4754 	if (vcpu->arch.timer_running) {
4755 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4756 		vcpu->arch.timer_running = 0;
4757 	}
4758 
4759 	tb = mftb();
4760 
4761 	kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu));
4762 
4763 	trace_kvm_guest_enter(vcpu);
4764 
4765 	guest_timing_enter_irqoff();
4766 
4767 	srcu_idx = srcu_read_lock(&kvm->srcu);
4768 
4769 	guest_state_enter_irqoff();
4770 	this_cpu_disable_ftrace();
4771 
4772 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4773 	vcpu->arch.trap = trap;
4774 
4775 	this_cpu_enable_ftrace();
4776 	guest_state_exit_irqoff();
4777 
4778 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4779 
4780 	set_irq_happened(trap);
4781 
4782 	vcpu->cpu = -1;
4783 	vcpu->arch.thread_cpu = -1;
4784 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4785 
4786 	if (!vtime_accounting_enabled_this_cpu()) {
4787 		powerpc_local_irq_pmu_restore(flags);
4788 		/*
4789 		 * Service IRQs here before guest_timing_exit_irqoff() so any
4790 		 * ticks that occurred while running the guest are accounted to
4791 		 * the guest. If vtime accounting is enabled, accounting uses
4792 		 * TB rather than ticks, so it can be done without enabling
4793 		 * interrupts here, which has the problem that it accounts
4794 		 * interrupt processing overhead to the host.
4795 		 */
4796 		powerpc_local_irq_pmu_save(flags);
4797 	}
4798 	guest_timing_exit_irqoff();
4799 
4800 	powerpc_local_irq_pmu_restore(flags);
4801 
4802 	preempt_enable();
4803 
4804 	/*
4805 	 * cancel pending decrementer exception if DEC is now positive, or if
4806 	 * entering a nested guest in which case the decrementer is now owned
4807 	 * by L2 and the L1 decrementer is provided in hdec_expires
4808 	 */
4809 	if (kvmppc_core_pending_dec(vcpu) &&
4810 			((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4811 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4812 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4813 		kvmppc_core_dequeue_dec(vcpu);
4814 
4815 	trace_kvm_guest_exit(vcpu);
4816 	r = RESUME_GUEST;
4817 	if (trap) {
4818 		if (!nested)
4819 			r = kvmppc_handle_exit_hv(vcpu, current);
4820 		else
4821 			r = kvmppc_handle_nested_exit(vcpu);
4822 	}
4823 	vcpu->arch.ret = r;
4824 
4825 	if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4826 		kvmppc_set_timer(vcpu);
4827 
4828 		prepare_to_rcuwait(wait);
4829 		for (;;) {
4830 			set_current_state(TASK_INTERRUPTIBLE);
4831 			if (signal_pending(current)) {
4832 				vcpu->stat.signal_exits++;
4833 				run->exit_reason = KVM_EXIT_INTR;
4834 				vcpu->arch.ret = -EINTR;
4835 				break;
4836 			}
4837 
4838 			if (kvmppc_vcpu_check_block(vcpu))
4839 				break;
4840 
4841 			trace_kvmppc_vcore_blocked(vcpu, 0);
4842 			schedule();
4843 			trace_kvmppc_vcore_blocked(vcpu, 1);
4844 		}
4845 		finish_rcuwait(wait);
4846 	}
4847 	vcpu->arch.ceded = 0;
4848 
4849  done:
4850 	trace_kvmppc_run_vcpu_exit(vcpu);
4851 
4852 	return vcpu->arch.ret;
4853 
4854  sigpend:
4855 	vcpu->stat.signal_exits++;
4856 	run->exit_reason = KVM_EXIT_INTR;
4857 	vcpu->arch.ret = -EINTR;
4858  out:
4859 	vcpu->cpu = -1;
4860 	vcpu->arch.thread_cpu = -1;
4861 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4862 	powerpc_local_irq_pmu_restore(flags);
4863 	preempt_enable();
4864 	goto done;
4865 }
4866 
4867 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4868 {
4869 	struct kvm_run *run = vcpu->run;
4870 	int r;
4871 	int srcu_idx;
4872 	struct kvm *kvm;
4873 	unsigned long msr;
4874 
4875 	start_timing(vcpu, &vcpu->arch.vcpu_entry);
4876 
4877 	if (!vcpu->arch.sane) {
4878 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4879 		return -EINVAL;
4880 	}
4881 
4882 	/* No need to go into the guest when all we'll do is come back out */
4883 	if (signal_pending(current)) {
4884 		run->exit_reason = KVM_EXIT_INTR;
4885 		return -EINTR;
4886 	}
4887 
4888 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4889 	/*
4890 	 * Don't allow entry with a suspended transaction, because
4891 	 * the guest entry/exit code will lose it.
4892 	 */
4893 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4894 	    (current->thread.regs->msr & MSR_TM)) {
4895 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4896 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4897 			run->fail_entry.hardware_entry_failure_reason = 0;
4898 			return -EINVAL;
4899 		}
4900 	}
4901 #endif
4902 
4903 	/*
4904 	 * Force online to 1 for the sake of old userspace which doesn't
4905 	 * set it.
4906 	 */
4907 	if (!vcpu->arch.online) {
4908 		atomic_inc(&vcpu->arch.vcore->online_count);
4909 		vcpu->arch.online = 1;
4910 	}
4911 
4912 	kvmppc_core_prepare_to_enter(vcpu);
4913 
4914 	kvm = vcpu->kvm;
4915 	atomic_inc(&kvm->arch.vcpus_running);
4916 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4917 	smp_mb();
4918 
4919 	msr = 0;
4920 	if (IS_ENABLED(CONFIG_PPC_FPU))
4921 		msr |= MSR_FP;
4922 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
4923 		msr |= MSR_VEC;
4924 	if (cpu_has_feature(CPU_FTR_VSX))
4925 		msr |= MSR_VSX;
4926 	if ((cpu_has_feature(CPU_FTR_TM) ||
4927 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4928 			(kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
4929 		msr |= MSR_TM;
4930 	msr = msr_check_and_set(msr);
4931 
4932 	kvmppc_save_user_regs();
4933 
4934 	kvmppc_save_current_sprs();
4935 
4936 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4937 		vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4938 	vcpu->arch.pgdir = kvm->mm->pgd;
4939 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4940 
4941 	do {
4942 		accumulate_time(vcpu, &vcpu->arch.guest_entry);
4943 		if (cpu_has_feature(CPU_FTR_ARCH_300))
4944 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4945 						  vcpu->arch.vcore->lpcr);
4946 		else
4947 			r = kvmppc_run_vcpu(vcpu);
4948 
4949 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4950 			accumulate_time(vcpu, &vcpu->arch.hcall);
4951 
4952 			if (WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4953 				/*
4954 				 * These should have been caught reflected
4955 				 * into the guest by now. Final sanity check:
4956 				 * don't allow userspace to execute hcalls in
4957 				 * the hypervisor.
4958 				 */
4959 				r = RESUME_GUEST;
4960 				continue;
4961 			}
4962 			trace_kvm_hcall_enter(vcpu);
4963 			r = kvmppc_pseries_do_hcall(vcpu);
4964 			trace_kvm_hcall_exit(vcpu, r);
4965 			kvmppc_core_prepare_to_enter(vcpu);
4966 		} else if (r == RESUME_PAGE_FAULT) {
4967 			accumulate_time(vcpu, &vcpu->arch.pg_fault);
4968 			srcu_idx = srcu_read_lock(&kvm->srcu);
4969 			r = kvmppc_book3s_hv_page_fault(vcpu,
4970 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4971 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4972 		} else if (r == RESUME_PASSTHROUGH) {
4973 			if (WARN_ON(xics_on_xive()))
4974 				r = H_SUCCESS;
4975 			else
4976 				r = kvmppc_xics_rm_complete(vcpu, 0);
4977 		}
4978 	} while (is_kvmppc_resume_guest(r));
4979 	accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
4980 
4981 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4982 	atomic_dec(&kvm->arch.vcpus_running);
4983 
4984 	srr_regs_clobbered();
4985 
4986 	end_timing(vcpu);
4987 
4988 	return r;
4989 }
4990 
4991 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4992 				     int shift, int sllp)
4993 {
4994 	(*sps)->page_shift = shift;
4995 	(*sps)->slb_enc = sllp;
4996 	(*sps)->enc[0].page_shift = shift;
4997 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4998 	/*
4999 	 * Add 16MB MPSS support (may get filtered out by userspace)
5000 	 */
5001 	if (shift != 24) {
5002 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
5003 		if (penc != -1) {
5004 			(*sps)->enc[1].page_shift = 24;
5005 			(*sps)->enc[1].pte_enc = penc;
5006 		}
5007 	}
5008 	(*sps)++;
5009 }
5010 
5011 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
5012 					 struct kvm_ppc_smmu_info *info)
5013 {
5014 	struct kvm_ppc_one_seg_page_size *sps;
5015 
5016 	/*
5017 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
5018 	 * POWER7 doesn't support keys for instruction accesses,
5019 	 * POWER8 and POWER9 do.
5020 	 */
5021 	info->data_keys = 32;
5022 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
5023 
5024 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
5025 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
5026 	info->slb_size = 32;
5027 
5028 	/* We only support these sizes for now, and no muti-size segments */
5029 	sps = &info->sps[0];
5030 	kvmppc_add_seg_page_size(&sps, 12, 0);
5031 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
5032 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
5033 
5034 	/* If running as a nested hypervisor, we don't support HPT guests */
5035 	if (kvmhv_on_pseries())
5036 		info->flags |= KVM_PPC_NO_HASH;
5037 
5038 	return 0;
5039 }
5040 
5041 /*
5042  * Get (and clear) the dirty memory log for a memory slot.
5043  */
5044 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
5045 					 struct kvm_dirty_log *log)
5046 {
5047 	struct kvm_memslots *slots;
5048 	struct kvm_memory_slot *memslot;
5049 	int r;
5050 	unsigned long n, i;
5051 	unsigned long *buf, *p;
5052 	struct kvm_vcpu *vcpu;
5053 
5054 	mutex_lock(&kvm->slots_lock);
5055 
5056 	r = -EINVAL;
5057 	if (log->slot >= KVM_USER_MEM_SLOTS)
5058 		goto out;
5059 
5060 	slots = kvm_memslots(kvm);
5061 	memslot = id_to_memslot(slots, log->slot);
5062 	r = -ENOENT;
5063 	if (!memslot || !memslot->dirty_bitmap)
5064 		goto out;
5065 
5066 	/*
5067 	 * Use second half of bitmap area because both HPT and radix
5068 	 * accumulate bits in the first half.
5069 	 */
5070 	n = kvm_dirty_bitmap_bytes(memslot);
5071 	buf = memslot->dirty_bitmap + n / sizeof(long);
5072 	memset(buf, 0, n);
5073 
5074 	if (kvm_is_radix(kvm))
5075 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
5076 	else
5077 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
5078 	if (r)
5079 		goto out;
5080 
5081 	/*
5082 	 * We accumulate dirty bits in the first half of the
5083 	 * memslot's dirty_bitmap area, for when pages are paged
5084 	 * out or modified by the host directly.  Pick up these
5085 	 * bits and add them to the map.
5086 	 */
5087 	p = memslot->dirty_bitmap;
5088 	for (i = 0; i < n / sizeof(long); ++i)
5089 		buf[i] |= xchg(&p[i], 0);
5090 
5091 	/* Harvest dirty bits from VPA and DTL updates */
5092 	/* Note: we never modify the SLB shadow buffer areas */
5093 	kvm_for_each_vcpu(i, vcpu, kvm) {
5094 		spin_lock(&vcpu->arch.vpa_update_lock);
5095 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5096 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5097 		spin_unlock(&vcpu->arch.vpa_update_lock);
5098 	}
5099 
5100 	r = -EFAULT;
5101 	if (copy_to_user(log->dirty_bitmap, buf, n))
5102 		goto out;
5103 
5104 	r = 0;
5105 out:
5106 	mutex_unlock(&kvm->slots_lock);
5107 	return r;
5108 }
5109 
5110 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5111 {
5112 	vfree(slot->arch.rmap);
5113 	slot->arch.rmap = NULL;
5114 }
5115 
5116 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5117 				const struct kvm_memory_slot *old,
5118 				struct kvm_memory_slot *new,
5119 				enum kvm_mr_change change)
5120 {
5121 	if (change == KVM_MR_CREATE) {
5122 		unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5123 
5124 		if ((size >> PAGE_SHIFT) > totalram_pages())
5125 			return -ENOMEM;
5126 
5127 		new->arch.rmap = vzalloc(size);
5128 		if (!new->arch.rmap)
5129 			return -ENOMEM;
5130 	} else if (change != KVM_MR_DELETE) {
5131 		new->arch.rmap = old->arch.rmap;
5132 	}
5133 
5134 	return 0;
5135 }
5136 
5137 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5138 				struct kvm_memory_slot *old,
5139 				const struct kvm_memory_slot *new,
5140 				enum kvm_mr_change change)
5141 {
5142 	/*
5143 	 * If we are creating or modifying a memslot, it might make
5144 	 * some address that was previously cached as emulated
5145 	 * MMIO be no longer emulated MMIO, so invalidate
5146 	 * all the caches of emulated MMIO translations.
5147 	 */
5148 	if (change != KVM_MR_DELETE)
5149 		atomic64_inc(&kvm->arch.mmio_update);
5150 
5151 	/*
5152 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5153 	 * have already called kvm_arch_flush_shadow_memslot() to
5154 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
5155 	 * previous mappings.  So the only case to handle is
5156 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5157 	 * has been changed.
5158 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5159 	 * to get rid of any THP PTEs in the partition-scoped page tables
5160 	 * so we can track dirtiness at the page level; we flush when
5161 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5162 	 * using THP PTEs.
5163 	 */
5164 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5165 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5166 		kvmppc_radix_flush_memslot(kvm, old);
5167 	/*
5168 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5169 	 */
5170 	if (!kvm->arch.secure_guest)
5171 		return;
5172 
5173 	switch (change) {
5174 	case KVM_MR_CREATE:
5175 		/*
5176 		 * @TODO kvmppc_uvmem_memslot_create() can fail and
5177 		 * return error. Fix this.
5178 		 */
5179 		kvmppc_uvmem_memslot_create(kvm, new);
5180 		break;
5181 	case KVM_MR_DELETE:
5182 		kvmppc_uvmem_memslot_delete(kvm, old);
5183 		break;
5184 	default:
5185 		/* TODO: Handle KVM_MR_MOVE */
5186 		break;
5187 	}
5188 }
5189 
5190 /*
5191  * Update LPCR values in kvm->arch and in vcores.
5192  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5193  * of kvm->arch.lpcr update).
5194  */
5195 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5196 {
5197 	long int i;
5198 	u32 cores_done = 0;
5199 
5200 	if ((kvm->arch.lpcr & mask) == lpcr)
5201 		return;
5202 
5203 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5204 
5205 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
5206 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5207 		if (!vc)
5208 			continue;
5209 
5210 		spin_lock(&vc->lock);
5211 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5212 		verify_lpcr(kvm, vc->lpcr);
5213 		spin_unlock(&vc->lock);
5214 		if (++cores_done >= kvm->arch.online_vcores)
5215 			break;
5216 	}
5217 
5218 	if (kvmhv_is_nestedv2()) {
5219 		struct kvm_vcpu *vcpu;
5220 
5221 		kvm_for_each_vcpu(i, vcpu, kvm) {
5222 			kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
5223 		}
5224 	}
5225 }
5226 
5227 void kvmppc_setup_partition_table(struct kvm *kvm)
5228 {
5229 	unsigned long dw0, dw1;
5230 
5231 	if (!kvm_is_radix(kvm)) {
5232 		/* PS field - page size for VRMA */
5233 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5234 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5235 		/* HTABSIZE and HTABORG fields */
5236 		dw0 |= kvm->arch.sdr1;
5237 
5238 		/* Second dword as set by userspace */
5239 		dw1 = kvm->arch.process_table;
5240 	} else {
5241 		dw0 = PATB_HR | radix__get_tree_size() |
5242 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5243 		dw1 = PATB_GR | kvm->arch.process_table;
5244 	}
5245 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5246 }
5247 
5248 /*
5249  * Set up HPT (hashed page table) and RMA (real-mode area).
5250  * Must be called with kvm->arch.mmu_setup_lock held.
5251  */
5252 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5253 {
5254 	int err = 0;
5255 	struct kvm *kvm = vcpu->kvm;
5256 	unsigned long hva;
5257 	struct kvm_memory_slot *memslot;
5258 	struct vm_area_struct *vma;
5259 	unsigned long lpcr = 0, senc;
5260 	unsigned long psize, porder;
5261 	int srcu_idx;
5262 
5263 	/* Allocate hashed page table (if not done already) and reset it */
5264 	if (!kvm->arch.hpt.virt) {
5265 		int order = KVM_DEFAULT_HPT_ORDER;
5266 		struct kvm_hpt_info info;
5267 
5268 		err = kvmppc_allocate_hpt(&info, order);
5269 		/* If we get here, it means userspace didn't specify a
5270 		 * size explicitly.  So, try successively smaller
5271 		 * sizes if the default failed. */
5272 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5273 			err  = kvmppc_allocate_hpt(&info, order);
5274 
5275 		if (err < 0) {
5276 			pr_err("KVM: Couldn't alloc HPT\n");
5277 			goto out;
5278 		}
5279 
5280 		kvmppc_set_hpt(kvm, &info);
5281 	}
5282 
5283 	/* Look up the memslot for guest physical address 0 */
5284 	srcu_idx = srcu_read_lock(&kvm->srcu);
5285 	memslot = gfn_to_memslot(kvm, 0);
5286 
5287 	/* We must have some memory at 0 by now */
5288 	err = -EINVAL;
5289 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5290 		goto out_srcu;
5291 
5292 	/* Look up the VMA for the start of this memory slot */
5293 	hva = memslot->userspace_addr;
5294 	mmap_read_lock(kvm->mm);
5295 	vma = vma_lookup(kvm->mm, hva);
5296 	if (!vma || (vma->vm_flags & VM_IO))
5297 		goto up_out;
5298 
5299 	psize = vma_kernel_pagesize(vma);
5300 
5301 	mmap_read_unlock(kvm->mm);
5302 
5303 	/* We can handle 4k, 64k or 16M pages in the VRMA */
5304 	if (psize >= 0x1000000)
5305 		psize = 0x1000000;
5306 	else if (psize >= 0x10000)
5307 		psize = 0x10000;
5308 	else
5309 		psize = 0x1000;
5310 	porder = __ilog2(psize);
5311 
5312 	senc = slb_pgsize_encoding(psize);
5313 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5314 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5315 	/* Create HPTEs in the hash page table for the VRMA */
5316 	kvmppc_map_vrma(vcpu, memslot, porder);
5317 
5318 	/* Update VRMASD field in the LPCR */
5319 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5320 		/* the -4 is to account for senc values starting at 0x10 */
5321 		lpcr = senc << (LPCR_VRMASD_SH - 4);
5322 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5323 	}
5324 
5325 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5326 	smp_wmb();
5327 	err = 0;
5328  out_srcu:
5329 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5330  out:
5331 	return err;
5332 
5333  up_out:
5334 	mmap_read_unlock(kvm->mm);
5335 	goto out_srcu;
5336 }
5337 
5338 /*
5339  * Must be called with kvm->arch.mmu_setup_lock held and
5340  * mmu_ready = 0 and no vcpus running.
5341  */
5342 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5343 {
5344 	unsigned long lpcr, lpcr_mask;
5345 
5346 	if (nesting_enabled(kvm))
5347 		kvmhv_release_all_nested(kvm);
5348 	kvmppc_rmap_reset(kvm);
5349 	kvm->arch.process_table = 0;
5350 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5351 	spin_lock(&kvm->mmu_lock);
5352 	kvm->arch.radix = 0;
5353 	spin_unlock(&kvm->mmu_lock);
5354 	kvmppc_free_radix(kvm);
5355 
5356 	lpcr = LPCR_VPM1;
5357 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5358 	if (cpu_has_feature(CPU_FTR_ARCH_31))
5359 		lpcr_mask |= LPCR_HAIL;
5360 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5361 
5362 	return 0;
5363 }
5364 
5365 /*
5366  * Must be called with kvm->arch.mmu_setup_lock held and
5367  * mmu_ready = 0 and no vcpus running.
5368  */
5369 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5370 {
5371 	unsigned long lpcr, lpcr_mask;
5372 	int err;
5373 
5374 	err = kvmppc_init_vm_radix(kvm);
5375 	if (err)
5376 		return err;
5377 	kvmppc_rmap_reset(kvm);
5378 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5379 	spin_lock(&kvm->mmu_lock);
5380 	kvm->arch.radix = 1;
5381 	spin_unlock(&kvm->mmu_lock);
5382 	kvmppc_free_hpt(&kvm->arch.hpt);
5383 
5384 	lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5385 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5386 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5387 		lpcr_mask |= LPCR_HAIL;
5388 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5389 				(kvm->arch.host_lpcr & LPCR_HAIL))
5390 			lpcr |= LPCR_HAIL;
5391 	}
5392 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5393 
5394 	return 0;
5395 }
5396 
5397 #ifdef CONFIG_KVM_XICS
5398 /*
5399  * Allocate a per-core structure for managing state about which cores are
5400  * running in the host versus the guest and for exchanging data between
5401  * real mode KVM and CPU running in the host.
5402  * This is only done for the first VM.
5403  * The allocated structure stays even if all VMs have stopped.
5404  * It is only freed when the kvm-hv module is unloaded.
5405  * It's OK for this routine to fail, we just don't support host
5406  * core operations like redirecting H_IPI wakeups.
5407  */
5408 void kvmppc_alloc_host_rm_ops(void)
5409 {
5410 	struct kvmppc_host_rm_ops *ops;
5411 	unsigned long l_ops;
5412 	int cpu, core;
5413 	int size;
5414 
5415 	if (cpu_has_feature(CPU_FTR_ARCH_300))
5416 		return;
5417 
5418 	/* Not the first time here ? */
5419 	if (kvmppc_host_rm_ops_hv != NULL)
5420 		return;
5421 
5422 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5423 	if (!ops)
5424 		return;
5425 
5426 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5427 	ops->rm_core = kzalloc(size, GFP_KERNEL);
5428 
5429 	if (!ops->rm_core) {
5430 		kfree(ops);
5431 		return;
5432 	}
5433 
5434 	cpus_read_lock();
5435 
5436 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5437 		if (!cpu_online(cpu))
5438 			continue;
5439 
5440 		core = cpu >> threads_shift;
5441 		ops->rm_core[core].rm_state.in_host = 1;
5442 	}
5443 
5444 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5445 
5446 	/*
5447 	 * Make the contents of the kvmppc_host_rm_ops structure visible
5448 	 * to other CPUs before we assign it to the global variable.
5449 	 * Do an atomic assignment (no locks used here), but if someone
5450 	 * beats us to it, just free our copy and return.
5451 	 */
5452 	smp_wmb();
5453 	l_ops = (unsigned long) ops;
5454 
5455 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5456 		cpus_read_unlock();
5457 		kfree(ops->rm_core);
5458 		kfree(ops);
5459 		return;
5460 	}
5461 
5462 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5463 					     "ppc/kvm_book3s:prepare",
5464 					     kvmppc_set_host_core,
5465 					     kvmppc_clear_host_core);
5466 	cpus_read_unlock();
5467 }
5468 
5469 void kvmppc_free_host_rm_ops(void)
5470 {
5471 	if (kvmppc_host_rm_ops_hv) {
5472 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5473 		kfree(kvmppc_host_rm_ops_hv->rm_core);
5474 		kfree(kvmppc_host_rm_ops_hv);
5475 		kvmppc_host_rm_ops_hv = NULL;
5476 	}
5477 }
5478 #endif
5479 
5480 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5481 {
5482 	unsigned long lpcr, lpid;
5483 	int ret;
5484 
5485 	mutex_init(&kvm->arch.uvmem_lock);
5486 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5487 	mutex_init(&kvm->arch.mmu_setup_lock);
5488 
5489 	/* Allocate the guest's logical partition ID */
5490 
5491 	if (!kvmhv_is_nestedv2()) {
5492 		lpid = kvmppc_alloc_lpid();
5493 		if ((long)lpid < 0)
5494 			return -ENOMEM;
5495 		kvm->arch.lpid = lpid;
5496 	}
5497 
5498 	kvmppc_alloc_host_rm_ops();
5499 
5500 	kvmhv_vm_nested_init(kvm);
5501 
5502 	if (kvmhv_is_nestedv2()) {
5503 		long rc;
5504 		unsigned long guest_id;
5505 
5506 		rc = plpar_guest_create(0, &guest_id);
5507 
5508 		if (rc != H_SUCCESS)
5509 			pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc);
5510 
5511 		switch (rc) {
5512 		case H_PARAMETER:
5513 		case H_FUNCTION:
5514 		case H_STATE:
5515 			return -EINVAL;
5516 		case H_NOT_ENOUGH_RESOURCES:
5517 		case H_ABORTED:
5518 			return -ENOMEM;
5519 		case H_AUTHORITY:
5520 			return -EPERM;
5521 		case H_NOT_AVAILABLE:
5522 			return -EBUSY;
5523 		}
5524 		kvm->arch.lpid = guest_id;
5525 	}
5526 
5527 
5528 	/*
5529 	 * Since we don't flush the TLB when tearing down a VM,
5530 	 * and this lpid might have previously been used,
5531 	 * make sure we flush on each core before running the new VM.
5532 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5533 	 * does this flush for us.
5534 	 */
5535 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5536 		cpumask_setall(&kvm->arch.need_tlb_flush);
5537 
5538 	/* Start out with the default set of hcalls enabled */
5539 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5540 	       sizeof(kvm->arch.enabled_hcalls));
5541 
5542 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5543 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5544 
5545 	/* Init LPCR for virtual RMA mode */
5546 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
5547 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
5548 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5549 		lpcr &= LPCR_PECE | LPCR_LPES;
5550 	} else {
5551 		/*
5552 		 * The L2 LPES mode will be set by the L0 according to whether
5553 		 * or not it needs to take external interrupts in HV mode.
5554 		 */
5555 		lpcr = 0;
5556 	}
5557 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5558 		LPCR_VPM0 | LPCR_VPM1;
5559 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5560 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5561 	/* On POWER8 turn on online bit to enable PURR/SPURR */
5562 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
5563 		lpcr |= LPCR_ONL;
5564 	/*
5565 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5566 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
5567 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5568 	 * be unnecessary but better safe than sorry in case we re-enable
5569 	 * EE in HV mode with this LPCR still set)
5570 	 */
5571 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5572 		lpcr &= ~LPCR_VPM0;
5573 		lpcr |= LPCR_HVICE | LPCR_HEIC;
5574 
5575 		/*
5576 		 * If xive is enabled, we route 0x500 interrupts directly
5577 		 * to the guest.
5578 		 */
5579 		if (xics_on_xive())
5580 			lpcr |= LPCR_LPES;
5581 	}
5582 
5583 	/*
5584 	 * If the host uses radix, the guest starts out as radix.
5585 	 */
5586 	if (radix_enabled()) {
5587 		kvm->arch.radix = 1;
5588 		kvm->arch.mmu_ready = 1;
5589 		lpcr &= ~LPCR_VPM1;
5590 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5591 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5592 		    cpu_has_feature(CPU_FTR_ARCH_31) &&
5593 		    (kvm->arch.host_lpcr & LPCR_HAIL))
5594 			lpcr |= LPCR_HAIL;
5595 		ret = kvmppc_init_vm_radix(kvm);
5596 		if (ret) {
5597 			if (kvmhv_is_nestedv2())
5598 				plpar_guest_delete(0, kvm->arch.lpid);
5599 			else
5600 				kvmppc_free_lpid(kvm->arch.lpid);
5601 			return ret;
5602 		}
5603 		kvmppc_setup_partition_table(kvm);
5604 	}
5605 
5606 	verify_lpcr(kvm, lpcr);
5607 	kvm->arch.lpcr = lpcr;
5608 
5609 	/* Initialization for future HPT resizes */
5610 	kvm->arch.resize_hpt = NULL;
5611 
5612 	/*
5613 	 * Work out how many sets the TLB has, for the use of
5614 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5615 	 */
5616 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5617 		/*
5618 		 * P10 will flush all the congruence class with a single tlbiel
5619 		 */
5620 		kvm->arch.tlb_sets = 1;
5621 	} else if (radix_enabled())
5622 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
5623 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
5624 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
5625 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5626 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
5627 	else
5628 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
5629 
5630 	/*
5631 	 * Track that we now have a HV mode VM active. This blocks secondary
5632 	 * CPU threads from coming online.
5633 	 */
5634 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5635 		kvm_hv_vm_activated();
5636 
5637 	/*
5638 	 * Initialize smt_mode depending on processor.
5639 	 * POWER8 and earlier have to use "strict" threading, where
5640 	 * all vCPUs in a vcore have to run on the same (sub)core,
5641 	 * whereas on POWER9 the threads can each run a different
5642 	 * guest.
5643 	 */
5644 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5645 		kvm->arch.smt_mode = threads_per_subcore;
5646 	else
5647 		kvm->arch.smt_mode = 1;
5648 	kvm->arch.emul_smt_mode = 1;
5649 
5650 	return 0;
5651 }
5652 
5653 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5654 {
5655 	kvmppc_mmu_debugfs_init(kvm);
5656 	if (radix_enabled())
5657 		kvmhv_radix_debugfs_init(kvm);
5658 	return 0;
5659 }
5660 
5661 static void kvmppc_free_vcores(struct kvm *kvm)
5662 {
5663 	long int i;
5664 
5665 	for (i = 0; i < KVM_MAX_VCORES; ++i)
5666 		kfree(kvm->arch.vcores[i]);
5667 	kvm->arch.online_vcores = 0;
5668 }
5669 
5670 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5671 {
5672 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5673 		kvm_hv_vm_deactivated();
5674 
5675 	kvmppc_free_vcores(kvm);
5676 
5677 
5678 	if (kvm_is_radix(kvm))
5679 		kvmppc_free_radix(kvm);
5680 	else
5681 		kvmppc_free_hpt(&kvm->arch.hpt);
5682 
5683 	/* Perform global invalidation and return lpid to the pool */
5684 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5685 		if (nesting_enabled(kvm))
5686 			kvmhv_release_all_nested(kvm);
5687 		kvm->arch.process_table = 0;
5688 		if (kvm->arch.secure_guest)
5689 			uv_svm_terminate(kvm->arch.lpid);
5690 		if (!kvmhv_is_nestedv2())
5691 			kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5692 	}
5693 
5694 	if (kvmhv_is_nestedv2())
5695 		plpar_guest_delete(0, kvm->arch.lpid);
5696 	else
5697 		kvmppc_free_lpid(kvm->arch.lpid);
5698 
5699 	kvmppc_free_pimap(kvm);
5700 }
5701 
5702 /* We don't need to emulate any privileged instructions or dcbz */
5703 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5704 				     unsigned int inst, int *advance)
5705 {
5706 	return EMULATE_FAIL;
5707 }
5708 
5709 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5710 					ulong spr_val)
5711 {
5712 	return EMULATE_FAIL;
5713 }
5714 
5715 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5716 					ulong *spr_val)
5717 {
5718 	return EMULATE_FAIL;
5719 }
5720 
5721 static int kvmppc_core_check_processor_compat_hv(void)
5722 {
5723 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5724 	    cpu_has_feature(CPU_FTR_ARCH_206))
5725 		return 0;
5726 
5727 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5728 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5729 		return 0;
5730 
5731 	return -EIO;
5732 }
5733 
5734 #ifdef CONFIG_KVM_XICS
5735 
5736 void kvmppc_free_pimap(struct kvm *kvm)
5737 {
5738 	kfree(kvm->arch.pimap);
5739 }
5740 
5741 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5742 {
5743 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5744 }
5745 
5746 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5747 {
5748 	struct irq_desc *desc;
5749 	struct kvmppc_irq_map *irq_map;
5750 	struct kvmppc_passthru_irqmap *pimap;
5751 	struct irq_chip *chip;
5752 	int i, rc = 0;
5753 	struct irq_data *host_data;
5754 
5755 	if (!kvm_irq_bypass)
5756 		return 1;
5757 
5758 	desc = irq_to_desc(host_irq);
5759 	if (!desc)
5760 		return -EIO;
5761 
5762 	mutex_lock(&kvm->lock);
5763 
5764 	pimap = kvm->arch.pimap;
5765 	if (pimap == NULL) {
5766 		/* First call, allocate structure to hold IRQ map */
5767 		pimap = kvmppc_alloc_pimap();
5768 		if (pimap == NULL) {
5769 			mutex_unlock(&kvm->lock);
5770 			return -ENOMEM;
5771 		}
5772 		kvm->arch.pimap = pimap;
5773 	}
5774 
5775 	/*
5776 	 * For now, we only support interrupts for which the EOI operation
5777 	 * is an OPAL call followed by a write to XIRR, since that's
5778 	 * what our real-mode EOI code does, or a XIVE interrupt
5779 	 */
5780 	chip = irq_data_get_irq_chip(&desc->irq_data);
5781 	if (!chip || !is_pnv_opal_msi(chip)) {
5782 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5783 			host_irq, guest_gsi);
5784 		mutex_unlock(&kvm->lock);
5785 		return -ENOENT;
5786 	}
5787 
5788 	/*
5789 	 * See if we already have an entry for this guest IRQ number.
5790 	 * If it's mapped to a hardware IRQ number, that's an error,
5791 	 * otherwise re-use this entry.
5792 	 */
5793 	for (i = 0; i < pimap->n_mapped; i++) {
5794 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5795 			if (pimap->mapped[i].r_hwirq) {
5796 				mutex_unlock(&kvm->lock);
5797 				return -EINVAL;
5798 			}
5799 			break;
5800 		}
5801 	}
5802 
5803 	if (i == KVMPPC_PIRQ_MAPPED) {
5804 		mutex_unlock(&kvm->lock);
5805 		return -EAGAIN;		/* table is full */
5806 	}
5807 
5808 	irq_map = &pimap->mapped[i];
5809 
5810 	irq_map->v_hwirq = guest_gsi;
5811 	irq_map->desc = desc;
5812 
5813 	/*
5814 	 * Order the above two stores before the next to serialize with
5815 	 * the KVM real mode handler.
5816 	 */
5817 	smp_wmb();
5818 
5819 	/*
5820 	 * The 'host_irq' number is mapped in the PCI-MSI domain but
5821 	 * the underlying calls, which will EOI the interrupt in real
5822 	 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5823 	 */
5824 	host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5825 	irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5826 
5827 	if (i == pimap->n_mapped)
5828 		pimap->n_mapped++;
5829 
5830 	if (xics_on_xive())
5831 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5832 	else
5833 		kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5834 	if (rc)
5835 		irq_map->r_hwirq = 0;
5836 
5837 	mutex_unlock(&kvm->lock);
5838 
5839 	return 0;
5840 }
5841 
5842 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5843 {
5844 	struct irq_desc *desc;
5845 	struct kvmppc_passthru_irqmap *pimap;
5846 	int i, rc = 0;
5847 
5848 	if (!kvm_irq_bypass)
5849 		return 0;
5850 
5851 	desc = irq_to_desc(host_irq);
5852 	if (!desc)
5853 		return -EIO;
5854 
5855 	mutex_lock(&kvm->lock);
5856 	if (!kvm->arch.pimap)
5857 		goto unlock;
5858 
5859 	pimap = kvm->arch.pimap;
5860 
5861 	for (i = 0; i < pimap->n_mapped; i++) {
5862 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5863 			break;
5864 	}
5865 
5866 	if (i == pimap->n_mapped) {
5867 		mutex_unlock(&kvm->lock);
5868 		return -ENODEV;
5869 	}
5870 
5871 	if (xics_on_xive())
5872 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5873 	else
5874 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5875 
5876 	/* invalidate the entry (what to do on error from the above ?) */
5877 	pimap->mapped[i].r_hwirq = 0;
5878 
5879 	/*
5880 	 * We don't free this structure even when the count goes to
5881 	 * zero. The structure is freed when we destroy the VM.
5882 	 */
5883  unlock:
5884 	mutex_unlock(&kvm->lock);
5885 	return rc;
5886 }
5887 
5888 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5889 					     struct irq_bypass_producer *prod)
5890 {
5891 	int ret = 0;
5892 	struct kvm_kernel_irqfd *irqfd =
5893 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5894 
5895 	irqfd->producer = prod;
5896 
5897 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5898 	if (ret)
5899 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5900 			prod->irq, irqfd->gsi, ret);
5901 
5902 	return ret;
5903 }
5904 
5905 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5906 					      struct irq_bypass_producer *prod)
5907 {
5908 	int ret;
5909 	struct kvm_kernel_irqfd *irqfd =
5910 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5911 
5912 	irqfd->producer = NULL;
5913 
5914 	/*
5915 	 * When producer of consumer is unregistered, we change back to
5916 	 * default external interrupt handling mode - KVM real mode
5917 	 * will switch back to host.
5918 	 */
5919 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5920 	if (ret)
5921 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5922 			prod->irq, irqfd->gsi, ret);
5923 }
5924 #endif
5925 
5926 static int kvm_arch_vm_ioctl_hv(struct file *filp,
5927 				unsigned int ioctl, unsigned long arg)
5928 {
5929 	struct kvm *kvm __maybe_unused = filp->private_data;
5930 	void __user *argp = (void __user *)arg;
5931 	int r;
5932 
5933 	switch (ioctl) {
5934 
5935 	case KVM_PPC_ALLOCATE_HTAB: {
5936 		u32 htab_order;
5937 
5938 		/* If we're a nested hypervisor, we currently only support radix */
5939 		if (kvmhv_on_pseries()) {
5940 			r = -EOPNOTSUPP;
5941 			break;
5942 		}
5943 
5944 		r = -EFAULT;
5945 		if (get_user(htab_order, (u32 __user *)argp))
5946 			break;
5947 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5948 		if (r)
5949 			break;
5950 		r = 0;
5951 		break;
5952 	}
5953 
5954 	case KVM_PPC_GET_HTAB_FD: {
5955 		struct kvm_get_htab_fd ghf;
5956 
5957 		r = -EFAULT;
5958 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5959 			break;
5960 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5961 		break;
5962 	}
5963 
5964 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5965 		struct kvm_ppc_resize_hpt rhpt;
5966 
5967 		r = -EFAULT;
5968 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5969 			break;
5970 
5971 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5972 		break;
5973 	}
5974 
5975 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5976 		struct kvm_ppc_resize_hpt rhpt;
5977 
5978 		r = -EFAULT;
5979 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5980 			break;
5981 
5982 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5983 		break;
5984 	}
5985 
5986 	default:
5987 		r = -ENOTTY;
5988 	}
5989 
5990 	return r;
5991 }
5992 
5993 /*
5994  * List of hcall numbers to enable by default.
5995  * For compatibility with old userspace, we enable by default
5996  * all hcalls that were implemented before the hcall-enabling
5997  * facility was added.  Note this list should not include H_RTAS.
5998  */
5999 static unsigned int default_hcall_list[] = {
6000 	H_REMOVE,
6001 	H_ENTER,
6002 	H_READ,
6003 	H_PROTECT,
6004 	H_BULK_REMOVE,
6005 #ifdef CONFIG_SPAPR_TCE_IOMMU
6006 	H_GET_TCE,
6007 	H_PUT_TCE,
6008 #endif
6009 	H_SET_DABR,
6010 	H_SET_XDABR,
6011 	H_CEDE,
6012 	H_PROD,
6013 	H_CONFER,
6014 	H_REGISTER_VPA,
6015 #ifdef CONFIG_KVM_XICS
6016 	H_EOI,
6017 	H_CPPR,
6018 	H_IPI,
6019 	H_IPOLL,
6020 	H_XIRR,
6021 	H_XIRR_X,
6022 #endif
6023 	0
6024 };
6025 
6026 static void init_default_hcalls(void)
6027 {
6028 	int i;
6029 	unsigned int hcall;
6030 
6031 	for (i = 0; default_hcall_list[i]; ++i) {
6032 		hcall = default_hcall_list[i];
6033 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
6034 		__set_bit(hcall / 4, default_enabled_hcalls);
6035 	}
6036 }
6037 
6038 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
6039 {
6040 	unsigned long lpcr;
6041 	int radix;
6042 	int err;
6043 
6044 	/* If not on a POWER9, reject it */
6045 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
6046 		return -ENODEV;
6047 
6048 	/* If any unknown flags set, reject it */
6049 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
6050 		return -EINVAL;
6051 
6052 	/* GR (guest radix) bit in process_table field must match */
6053 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
6054 	if (!!(cfg->process_table & PATB_GR) != radix)
6055 		return -EINVAL;
6056 
6057 	/* Process table size field must be reasonable, i.e. <= 24 */
6058 	if ((cfg->process_table & PRTS_MASK) > 24)
6059 		return -EINVAL;
6060 
6061 	/* We can change a guest to/from radix now, if the host is radix */
6062 	if (radix && !radix_enabled())
6063 		return -EINVAL;
6064 
6065 	/* If we're a nested hypervisor, we currently only support radix */
6066 	if (kvmhv_on_pseries() && !radix)
6067 		return -EINVAL;
6068 
6069 	mutex_lock(&kvm->arch.mmu_setup_lock);
6070 	if (radix != kvm_is_radix(kvm)) {
6071 		if (kvm->arch.mmu_ready) {
6072 			kvm->arch.mmu_ready = 0;
6073 			/* order mmu_ready vs. vcpus_running */
6074 			smp_mb();
6075 			if (atomic_read(&kvm->arch.vcpus_running)) {
6076 				kvm->arch.mmu_ready = 1;
6077 				err = -EBUSY;
6078 				goto out_unlock;
6079 			}
6080 		}
6081 		if (radix)
6082 			err = kvmppc_switch_mmu_to_radix(kvm);
6083 		else
6084 			err = kvmppc_switch_mmu_to_hpt(kvm);
6085 		if (err)
6086 			goto out_unlock;
6087 	}
6088 
6089 	kvm->arch.process_table = cfg->process_table;
6090 	kvmppc_setup_partition_table(kvm);
6091 
6092 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
6093 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
6094 	err = 0;
6095 
6096  out_unlock:
6097 	mutex_unlock(&kvm->arch.mmu_setup_lock);
6098 	return err;
6099 }
6100 
6101 static int kvmhv_enable_nested(struct kvm *kvm)
6102 {
6103 	if (!nested)
6104 		return -EPERM;
6105 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
6106 		return -ENODEV;
6107 	if (!radix_enabled())
6108 		return -ENODEV;
6109 	if (kvmhv_is_nestedv2())
6110 		return -ENODEV;
6111 
6112 	/* kvm == NULL means the caller is testing if the capability exists */
6113 	if (kvm)
6114 		kvm->arch.nested_enable = true;
6115 	return 0;
6116 }
6117 
6118 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6119 				 int size)
6120 {
6121 	int rc = -EINVAL;
6122 
6123 	if (kvmhv_vcpu_is_radix(vcpu)) {
6124 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
6125 
6126 		if (rc > 0)
6127 			rc = -EINVAL;
6128 	}
6129 
6130 	/* For now quadrants are the only way to access nested guest memory */
6131 	if (rc && vcpu->arch.nested)
6132 		rc = -EAGAIN;
6133 
6134 	return rc;
6135 }
6136 
6137 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6138 				int size)
6139 {
6140 	int rc = -EINVAL;
6141 
6142 	if (kvmhv_vcpu_is_radix(vcpu)) {
6143 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6144 
6145 		if (rc > 0)
6146 			rc = -EINVAL;
6147 	}
6148 
6149 	/* For now quadrants are the only way to access nested guest memory */
6150 	if (rc && vcpu->arch.nested)
6151 		rc = -EAGAIN;
6152 
6153 	return rc;
6154 }
6155 
6156 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6157 {
6158 	unpin_vpa(kvm, vpa);
6159 	vpa->gpa = 0;
6160 	vpa->pinned_addr = NULL;
6161 	vpa->dirty = false;
6162 	vpa->update_pending = 0;
6163 }
6164 
6165 /*
6166  * Enable a guest to become a secure VM, or test whether
6167  * that could be enabled.
6168  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6169  * tested (kvm == NULL) or enabled (kvm != NULL).
6170  */
6171 static int kvmhv_enable_svm(struct kvm *kvm)
6172 {
6173 	if (!kvmppc_uvmem_available())
6174 		return -EINVAL;
6175 	if (kvm)
6176 		kvm->arch.svm_enabled = 1;
6177 	return 0;
6178 }
6179 
6180 /*
6181  *  IOCTL handler to turn off secure mode of guest
6182  *
6183  * - Release all device pages
6184  * - Issue ucall to terminate the guest on the UV side
6185  * - Unpin the VPA pages.
6186  * - Reinit the partition scoped page tables
6187  */
6188 static int kvmhv_svm_off(struct kvm *kvm)
6189 {
6190 	struct kvm_vcpu *vcpu;
6191 	int mmu_was_ready;
6192 	int srcu_idx;
6193 	int ret = 0;
6194 	unsigned long i;
6195 
6196 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6197 		return ret;
6198 
6199 	mutex_lock(&kvm->arch.mmu_setup_lock);
6200 	mmu_was_ready = kvm->arch.mmu_ready;
6201 	if (kvm->arch.mmu_ready) {
6202 		kvm->arch.mmu_ready = 0;
6203 		/* order mmu_ready vs. vcpus_running */
6204 		smp_mb();
6205 		if (atomic_read(&kvm->arch.vcpus_running)) {
6206 			kvm->arch.mmu_ready = 1;
6207 			ret = -EBUSY;
6208 			goto out;
6209 		}
6210 	}
6211 
6212 	srcu_idx = srcu_read_lock(&kvm->srcu);
6213 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6214 		struct kvm_memory_slot *memslot;
6215 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6216 		int bkt;
6217 
6218 		if (!slots)
6219 			continue;
6220 
6221 		kvm_for_each_memslot(memslot, bkt, slots) {
6222 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
6223 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6224 		}
6225 	}
6226 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6227 
6228 	ret = uv_svm_terminate(kvm->arch.lpid);
6229 	if (ret != U_SUCCESS) {
6230 		ret = -EINVAL;
6231 		goto out;
6232 	}
6233 
6234 	/*
6235 	 * When secure guest is reset, all the guest pages are sent
6236 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6237 	 * chance to run and unpin their VPA pages. Unpinning of all
6238 	 * VPA pages is done here explicitly so that VPA pages
6239 	 * can be migrated to the secure side.
6240 	 *
6241 	 * This is required to for the secure SMP guest to reboot
6242 	 * correctly.
6243 	 */
6244 	kvm_for_each_vcpu(i, vcpu, kvm) {
6245 		spin_lock(&vcpu->arch.vpa_update_lock);
6246 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6247 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6248 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6249 		spin_unlock(&vcpu->arch.vpa_update_lock);
6250 	}
6251 
6252 	kvmppc_setup_partition_table(kvm);
6253 	kvm->arch.secure_guest = 0;
6254 	kvm->arch.mmu_ready = mmu_was_ready;
6255 out:
6256 	mutex_unlock(&kvm->arch.mmu_setup_lock);
6257 	return ret;
6258 }
6259 
6260 static int kvmhv_enable_dawr1(struct kvm *kvm)
6261 {
6262 	if (!cpu_has_feature(CPU_FTR_DAWR1))
6263 		return -ENODEV;
6264 
6265 	/* kvm == NULL means the caller is testing if the capability exists */
6266 	if (kvm)
6267 		kvm->arch.dawr1_enabled = true;
6268 	return 0;
6269 }
6270 
6271 static bool kvmppc_hash_v3_possible(void)
6272 {
6273 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
6274 		return false;
6275 
6276 	if (!cpu_has_feature(CPU_FTR_HVMODE))
6277 		return false;
6278 
6279 	/*
6280 	 * POWER9 chips before version 2.02 can't have some threads in
6281 	 * HPT mode and some in radix mode on the same core.
6282 	 */
6283 	if (radix_enabled()) {
6284 		unsigned int pvr = mfspr(SPRN_PVR);
6285 		if ((pvr >> 16) == PVR_POWER9 &&
6286 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6287 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6288 			return false;
6289 	}
6290 
6291 	return true;
6292 }
6293 
6294 static struct kvmppc_ops kvm_ops_hv = {
6295 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6296 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6297 	.get_one_reg = kvmppc_get_one_reg_hv,
6298 	.set_one_reg = kvmppc_set_one_reg_hv,
6299 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
6300 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
6301 	.inject_interrupt = kvmppc_inject_interrupt_hv,
6302 	.set_msr     = kvmppc_set_msr_hv,
6303 	.vcpu_run    = kvmppc_vcpu_run_hv,
6304 	.vcpu_create = kvmppc_core_vcpu_create_hv,
6305 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
6306 	.check_requests = kvmppc_core_check_requests_hv,
6307 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6308 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
6309 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6310 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6311 	.unmap_gfn_range = kvm_unmap_gfn_range_hv,
6312 	.age_gfn = kvm_age_gfn_hv,
6313 	.test_age_gfn = kvm_test_age_gfn_hv,
6314 	.set_spte_gfn = kvm_set_spte_gfn_hv,
6315 	.free_memslot = kvmppc_core_free_memslot_hv,
6316 	.init_vm =  kvmppc_core_init_vm_hv,
6317 	.destroy_vm = kvmppc_core_destroy_vm_hv,
6318 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6319 	.emulate_op = kvmppc_core_emulate_op_hv,
6320 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6321 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6322 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6323 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6324 	.hcall_implemented = kvmppc_hcall_impl_hv,
6325 #ifdef CONFIG_KVM_XICS
6326 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6327 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6328 #endif
6329 	.configure_mmu = kvmhv_configure_mmu,
6330 	.get_rmmu_info = kvmhv_get_rmmu_info,
6331 	.set_smt_mode = kvmhv_set_smt_mode,
6332 	.enable_nested = kvmhv_enable_nested,
6333 	.load_from_eaddr = kvmhv_load_from_eaddr,
6334 	.store_to_eaddr = kvmhv_store_to_eaddr,
6335 	.enable_svm = kvmhv_enable_svm,
6336 	.svm_off = kvmhv_svm_off,
6337 	.enable_dawr1 = kvmhv_enable_dawr1,
6338 	.hash_v3_possible = kvmppc_hash_v3_possible,
6339 	.create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6340 	.create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6341 };
6342 
6343 static int kvm_init_subcore_bitmap(void)
6344 {
6345 	int i, j;
6346 	int nr_cores = cpu_nr_cores();
6347 	struct sibling_subcore_state *sibling_subcore_state;
6348 
6349 	for (i = 0; i < nr_cores; i++) {
6350 		int first_cpu = i * threads_per_core;
6351 		int node = cpu_to_node(first_cpu);
6352 
6353 		/* Ignore if it is already allocated. */
6354 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
6355 			continue;
6356 
6357 		sibling_subcore_state =
6358 			kzalloc_node(sizeof(struct sibling_subcore_state),
6359 							GFP_KERNEL, node);
6360 		if (!sibling_subcore_state)
6361 			return -ENOMEM;
6362 
6363 
6364 		for (j = 0; j < threads_per_core; j++) {
6365 			int cpu = first_cpu + j;
6366 
6367 			paca_ptrs[cpu]->sibling_subcore_state =
6368 						sibling_subcore_state;
6369 		}
6370 	}
6371 	return 0;
6372 }
6373 
6374 static int kvmppc_radix_possible(void)
6375 {
6376 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6377 }
6378 
6379 static int kvmppc_book3s_init_hv(void)
6380 {
6381 	int r;
6382 
6383 	if (!tlbie_capable) {
6384 		pr_err("KVM-HV: Host does not support TLBIE\n");
6385 		return -ENODEV;
6386 	}
6387 
6388 	/*
6389 	 * FIXME!! Do we need to check on all cpus ?
6390 	 */
6391 	r = kvmppc_core_check_processor_compat_hv();
6392 	if (r < 0)
6393 		return -ENODEV;
6394 
6395 	r = kvmhv_nested_init();
6396 	if (r)
6397 		return r;
6398 
6399 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6400 		r = kvm_init_subcore_bitmap();
6401 		if (r)
6402 			goto err;
6403 	}
6404 
6405 	/*
6406 	 * We need a way of accessing the XICS interrupt controller,
6407 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6408 	 * indirectly, via OPAL.
6409 	 */
6410 #ifdef CONFIG_SMP
6411 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
6412 	    !local_paca->kvm_hstate.xics_phys) {
6413 		struct device_node *np;
6414 
6415 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6416 		if (!np) {
6417 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6418 			r = -ENODEV;
6419 			goto err;
6420 		}
6421 		/* presence of intc confirmed - node can be dropped again */
6422 		of_node_put(np);
6423 	}
6424 #endif
6425 
6426 	init_default_hcalls();
6427 
6428 	init_vcore_lists();
6429 
6430 	r = kvmppc_mmu_hv_init();
6431 	if (r)
6432 		goto err;
6433 
6434 	if (kvmppc_radix_possible()) {
6435 		r = kvmppc_radix_init();
6436 		if (r)
6437 			goto err;
6438 	}
6439 
6440 	r = kvmppc_uvmem_init();
6441 	if (r < 0) {
6442 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6443 		return r;
6444 	}
6445 
6446 	kvm_ops_hv.owner = THIS_MODULE;
6447 	kvmppc_hv_ops = &kvm_ops_hv;
6448 
6449 	return 0;
6450 
6451 err:
6452 	kvmhv_nested_exit();
6453 	kvmppc_radix_exit();
6454 
6455 	return r;
6456 }
6457 
6458 static void kvmppc_book3s_exit_hv(void)
6459 {
6460 	kvmppc_uvmem_free();
6461 	kvmppc_free_host_rm_ops();
6462 	if (kvmppc_radix_possible())
6463 		kvmppc_radix_exit();
6464 	kvmppc_hv_ops = NULL;
6465 	kvmhv_nested_exit();
6466 }
6467 
6468 module_init(kvmppc_book3s_init_hv);
6469 module_exit(kvmppc_book3s_exit_hv);
6470 MODULE_LICENSE("GPL");
6471 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6472 MODULE_ALIAS("devname:kvm");
6473