xref: /linux/arch/powerpc/kvm/book3s_hv.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <asm/hvcall.h>
48 #include <asm/switch_to.h>
49 #include <linux/gfp.h>
50 #include <linux/vmalloc.h>
51 #include <linux/highmem.h>
52 #include <linux/hugetlb.h>
53 
54 /* #define EXIT_DEBUG */
55 /* #define EXIT_DEBUG_SIMPLE */
56 /* #define EXIT_DEBUG_INT */
57 
58 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
59 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
60 
61 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
62 {
63 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
64 
65 	local_paca->kvm_hstate.kvm_vcpu = vcpu;
66 	local_paca->kvm_hstate.kvm_vcore = vc;
67 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
68 		vc->stolen_tb += mftb() - vc->preempt_tb;
69 }
70 
71 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
72 {
73 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
74 
75 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
76 		vc->preempt_tb = mftb();
77 }
78 
79 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
80 {
81 	vcpu->arch.shregs.msr = msr;
82 	kvmppc_end_cede(vcpu);
83 }
84 
85 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
86 {
87 	vcpu->arch.pvr = pvr;
88 }
89 
90 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
91 {
92 	int r;
93 
94 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
95 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
96 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
97 	for (r = 0; r < 16; ++r)
98 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
99 		       r, kvmppc_get_gpr(vcpu, r),
100 		       r+16, kvmppc_get_gpr(vcpu, r+16));
101 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
102 	       vcpu->arch.ctr, vcpu->arch.lr);
103 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
104 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
105 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
106 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
107 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
108 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
109 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
110 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
111 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
112 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
113 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
114 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
115 	for (r = 0; r < vcpu->arch.slb_max; ++r)
116 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
117 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
118 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
119 	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
120 	       vcpu->arch.last_inst);
121 }
122 
123 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
124 {
125 	int r;
126 	struct kvm_vcpu *v, *ret = NULL;
127 
128 	mutex_lock(&kvm->lock);
129 	kvm_for_each_vcpu(r, v, kvm) {
130 		if (v->vcpu_id == id) {
131 			ret = v;
132 			break;
133 		}
134 	}
135 	mutex_unlock(&kvm->lock);
136 	return ret;
137 }
138 
139 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
140 {
141 	vpa->shared_proc = 1;
142 	vpa->yield_count = 1;
143 }
144 
145 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
146 struct reg_vpa {
147 	u32 dummy;
148 	union {
149 		u16 hword;
150 		u32 word;
151 	} length;
152 };
153 
154 static int vpa_is_registered(struct kvmppc_vpa *vpap)
155 {
156 	if (vpap->update_pending)
157 		return vpap->next_gpa != 0;
158 	return vpap->pinned_addr != NULL;
159 }
160 
161 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
162 				       unsigned long flags,
163 				       unsigned long vcpuid, unsigned long vpa)
164 {
165 	struct kvm *kvm = vcpu->kvm;
166 	unsigned long len, nb;
167 	void *va;
168 	struct kvm_vcpu *tvcpu;
169 	int err;
170 	int subfunc;
171 	struct kvmppc_vpa *vpap;
172 
173 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
174 	if (!tvcpu)
175 		return H_PARAMETER;
176 
177 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
178 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
179 	    subfunc == H_VPA_REG_SLB) {
180 		/* Registering new area - address must be cache-line aligned */
181 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
182 			return H_PARAMETER;
183 
184 		/* convert logical addr to kernel addr and read length */
185 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
186 		if (va == NULL)
187 			return H_PARAMETER;
188 		if (subfunc == H_VPA_REG_VPA)
189 			len = ((struct reg_vpa *)va)->length.hword;
190 		else
191 			len = ((struct reg_vpa *)va)->length.word;
192 		kvmppc_unpin_guest_page(kvm, va);
193 
194 		/* Check length */
195 		if (len > nb || len < sizeof(struct reg_vpa))
196 			return H_PARAMETER;
197 	} else {
198 		vpa = 0;
199 		len = 0;
200 	}
201 
202 	err = H_PARAMETER;
203 	vpap = NULL;
204 	spin_lock(&tvcpu->arch.vpa_update_lock);
205 
206 	switch (subfunc) {
207 	case H_VPA_REG_VPA:		/* register VPA */
208 		if (len < sizeof(struct lppaca))
209 			break;
210 		vpap = &tvcpu->arch.vpa;
211 		err = 0;
212 		break;
213 
214 	case H_VPA_REG_DTL:		/* register DTL */
215 		if (len < sizeof(struct dtl_entry))
216 			break;
217 		len -= len % sizeof(struct dtl_entry);
218 
219 		/* Check that they have previously registered a VPA */
220 		err = H_RESOURCE;
221 		if (!vpa_is_registered(&tvcpu->arch.vpa))
222 			break;
223 
224 		vpap = &tvcpu->arch.dtl;
225 		err = 0;
226 		break;
227 
228 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
229 		/* Check that they have previously registered a VPA */
230 		err = H_RESOURCE;
231 		if (!vpa_is_registered(&tvcpu->arch.vpa))
232 			break;
233 
234 		vpap = &tvcpu->arch.slb_shadow;
235 		err = 0;
236 		break;
237 
238 	case H_VPA_DEREG_VPA:		/* deregister VPA */
239 		/* Check they don't still have a DTL or SLB buf registered */
240 		err = H_RESOURCE;
241 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
242 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
243 			break;
244 
245 		vpap = &tvcpu->arch.vpa;
246 		err = 0;
247 		break;
248 
249 	case H_VPA_DEREG_DTL:		/* deregister DTL */
250 		vpap = &tvcpu->arch.dtl;
251 		err = 0;
252 		break;
253 
254 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
255 		vpap = &tvcpu->arch.slb_shadow;
256 		err = 0;
257 		break;
258 	}
259 
260 	if (vpap) {
261 		vpap->next_gpa = vpa;
262 		vpap->len = len;
263 		vpap->update_pending = 1;
264 	}
265 
266 	spin_unlock(&tvcpu->arch.vpa_update_lock);
267 
268 	return err;
269 }
270 
271 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
272 {
273 	struct kvm *kvm = vcpu->kvm;
274 	void *va;
275 	unsigned long nb;
276 	unsigned long gpa;
277 
278 	/*
279 	 * We need to pin the page pointed to by vpap->next_gpa,
280 	 * but we can't call kvmppc_pin_guest_page under the lock
281 	 * as it does get_user_pages() and down_read().  So we
282 	 * have to drop the lock, pin the page, then get the lock
283 	 * again and check that a new area didn't get registered
284 	 * in the meantime.
285 	 */
286 	for (;;) {
287 		gpa = vpap->next_gpa;
288 		spin_unlock(&vcpu->arch.vpa_update_lock);
289 		va = NULL;
290 		nb = 0;
291 		if (gpa)
292 			va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
293 		spin_lock(&vcpu->arch.vpa_update_lock);
294 		if (gpa == vpap->next_gpa)
295 			break;
296 		/* sigh... unpin that one and try again */
297 		if (va)
298 			kvmppc_unpin_guest_page(kvm, va);
299 	}
300 
301 	vpap->update_pending = 0;
302 	if (va && nb < vpap->len) {
303 		/*
304 		 * If it's now too short, it must be that userspace
305 		 * has changed the mappings underlying guest memory,
306 		 * so unregister the region.
307 		 */
308 		kvmppc_unpin_guest_page(kvm, va);
309 		va = NULL;
310 	}
311 	if (vpap->pinned_addr)
312 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
313 	vpap->pinned_addr = va;
314 	if (va)
315 		vpap->pinned_end = va + vpap->len;
316 }
317 
318 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
319 {
320 	spin_lock(&vcpu->arch.vpa_update_lock);
321 	if (vcpu->arch.vpa.update_pending) {
322 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
323 		init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
324 	}
325 	if (vcpu->arch.dtl.update_pending) {
326 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
327 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
328 		vcpu->arch.dtl_index = 0;
329 	}
330 	if (vcpu->arch.slb_shadow.update_pending)
331 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
332 	spin_unlock(&vcpu->arch.vpa_update_lock);
333 }
334 
335 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
336 				    struct kvmppc_vcore *vc)
337 {
338 	struct dtl_entry *dt;
339 	struct lppaca *vpa;
340 	unsigned long old_stolen;
341 
342 	dt = vcpu->arch.dtl_ptr;
343 	vpa = vcpu->arch.vpa.pinned_addr;
344 	old_stolen = vcpu->arch.stolen_logged;
345 	vcpu->arch.stolen_logged = vc->stolen_tb;
346 	if (!dt || !vpa)
347 		return;
348 	memset(dt, 0, sizeof(struct dtl_entry));
349 	dt->dispatch_reason = 7;
350 	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
351 	dt->timebase = mftb();
352 	dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
353 	dt->srr0 = kvmppc_get_pc(vcpu);
354 	dt->srr1 = vcpu->arch.shregs.msr;
355 	++dt;
356 	if (dt == vcpu->arch.dtl.pinned_end)
357 		dt = vcpu->arch.dtl.pinned_addr;
358 	vcpu->arch.dtl_ptr = dt;
359 	/* order writing *dt vs. writing vpa->dtl_idx */
360 	smp_wmb();
361 	vpa->dtl_idx = ++vcpu->arch.dtl_index;
362 }
363 
364 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
365 {
366 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
367 	unsigned long target, ret = H_SUCCESS;
368 	struct kvm_vcpu *tvcpu;
369 
370 	switch (req) {
371 	case H_ENTER:
372 		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
373 					      kvmppc_get_gpr(vcpu, 5),
374 					      kvmppc_get_gpr(vcpu, 6),
375 					      kvmppc_get_gpr(vcpu, 7));
376 		break;
377 	case H_CEDE:
378 		break;
379 	case H_PROD:
380 		target = kvmppc_get_gpr(vcpu, 4);
381 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
382 		if (!tvcpu) {
383 			ret = H_PARAMETER;
384 			break;
385 		}
386 		tvcpu->arch.prodded = 1;
387 		smp_mb();
388 		if (vcpu->arch.ceded) {
389 			if (waitqueue_active(&vcpu->wq)) {
390 				wake_up_interruptible(&vcpu->wq);
391 				vcpu->stat.halt_wakeup++;
392 			}
393 		}
394 		break;
395 	case H_CONFER:
396 		break;
397 	case H_REGISTER_VPA:
398 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
399 					kvmppc_get_gpr(vcpu, 5),
400 					kvmppc_get_gpr(vcpu, 6));
401 		break;
402 	default:
403 		return RESUME_HOST;
404 	}
405 	kvmppc_set_gpr(vcpu, 3, ret);
406 	vcpu->arch.hcall_needed = 0;
407 	return RESUME_GUEST;
408 }
409 
410 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
411 			      struct task_struct *tsk)
412 {
413 	int r = RESUME_HOST;
414 
415 	vcpu->stat.sum_exits++;
416 
417 	run->exit_reason = KVM_EXIT_UNKNOWN;
418 	run->ready_for_interrupt_injection = 1;
419 	switch (vcpu->arch.trap) {
420 	/* We're good on these - the host merely wanted to get our attention */
421 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
422 		vcpu->stat.dec_exits++;
423 		r = RESUME_GUEST;
424 		break;
425 	case BOOK3S_INTERRUPT_EXTERNAL:
426 		vcpu->stat.ext_intr_exits++;
427 		r = RESUME_GUEST;
428 		break;
429 	case BOOK3S_INTERRUPT_PERFMON:
430 		r = RESUME_GUEST;
431 		break;
432 	case BOOK3S_INTERRUPT_PROGRAM:
433 	{
434 		ulong flags;
435 		/*
436 		 * Normally program interrupts are delivered directly
437 		 * to the guest by the hardware, but we can get here
438 		 * as a result of a hypervisor emulation interrupt
439 		 * (e40) getting turned into a 700 by BML RTAS.
440 		 */
441 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
442 		kvmppc_core_queue_program(vcpu, flags);
443 		r = RESUME_GUEST;
444 		break;
445 	}
446 	case BOOK3S_INTERRUPT_SYSCALL:
447 	{
448 		/* hcall - punt to userspace */
449 		int i;
450 
451 		if (vcpu->arch.shregs.msr & MSR_PR) {
452 			/* sc 1 from userspace - reflect to guest syscall */
453 			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
454 			r = RESUME_GUEST;
455 			break;
456 		}
457 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
458 		for (i = 0; i < 9; ++i)
459 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
460 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
461 		vcpu->arch.hcall_needed = 1;
462 		r = RESUME_HOST;
463 		break;
464 	}
465 	/*
466 	 * We get these next two if the guest accesses a page which it thinks
467 	 * it has mapped but which is not actually present, either because
468 	 * it is for an emulated I/O device or because the corresonding
469 	 * host page has been paged out.  Any other HDSI/HISI interrupts
470 	 * have been handled already.
471 	 */
472 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
473 		r = kvmppc_book3s_hv_page_fault(run, vcpu,
474 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
475 		break;
476 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
477 		r = kvmppc_book3s_hv_page_fault(run, vcpu,
478 				kvmppc_get_pc(vcpu), 0);
479 		break;
480 	/*
481 	 * This occurs if the guest executes an illegal instruction.
482 	 * We just generate a program interrupt to the guest, since
483 	 * we don't emulate any guest instructions at this stage.
484 	 */
485 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
486 		kvmppc_core_queue_program(vcpu, 0x80000);
487 		r = RESUME_GUEST;
488 		break;
489 	default:
490 		kvmppc_dump_regs(vcpu);
491 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
492 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
493 			vcpu->arch.shregs.msr);
494 		r = RESUME_HOST;
495 		BUG();
496 		break;
497 	}
498 
499 	return r;
500 }
501 
502 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
503                                   struct kvm_sregs *sregs)
504 {
505 	int i;
506 
507 	sregs->pvr = vcpu->arch.pvr;
508 
509 	memset(sregs, 0, sizeof(struct kvm_sregs));
510 	for (i = 0; i < vcpu->arch.slb_max; i++) {
511 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
512 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
513 	}
514 
515 	return 0;
516 }
517 
518 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
519                                   struct kvm_sregs *sregs)
520 {
521 	int i, j;
522 
523 	kvmppc_set_pvr(vcpu, sregs->pvr);
524 
525 	j = 0;
526 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
527 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
528 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
529 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
530 			++j;
531 		}
532 	}
533 	vcpu->arch.slb_max = j;
534 
535 	return 0;
536 }
537 
538 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
539 {
540 	int r = -EINVAL;
541 
542 	switch (reg->id) {
543 	case KVM_REG_PPC_HIOR:
544 		r = put_user(0, (u64 __user *)reg->addr);
545 		break;
546 	default:
547 		break;
548 	}
549 
550 	return r;
551 }
552 
553 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
554 {
555 	int r = -EINVAL;
556 
557 	switch (reg->id) {
558 	case KVM_REG_PPC_HIOR:
559 	{
560 		u64 hior;
561 		/* Only allow this to be set to zero */
562 		r = get_user(hior, (u64 __user *)reg->addr);
563 		if (!r && (hior != 0))
564 			r = -EINVAL;
565 		break;
566 	}
567 	default:
568 		break;
569 	}
570 
571 	return r;
572 }
573 
574 int kvmppc_core_check_processor_compat(void)
575 {
576 	if (cpu_has_feature(CPU_FTR_HVMODE))
577 		return 0;
578 	return -EIO;
579 }
580 
581 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
582 {
583 	struct kvm_vcpu *vcpu;
584 	int err = -EINVAL;
585 	int core;
586 	struct kvmppc_vcore *vcore;
587 
588 	core = id / threads_per_core;
589 	if (core >= KVM_MAX_VCORES)
590 		goto out;
591 
592 	err = -ENOMEM;
593 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
594 	if (!vcpu)
595 		goto out;
596 
597 	err = kvm_vcpu_init(vcpu, kvm, id);
598 	if (err)
599 		goto free_vcpu;
600 
601 	vcpu->arch.shared = &vcpu->arch.shregs;
602 	vcpu->arch.last_cpu = -1;
603 	vcpu->arch.mmcr[0] = MMCR0_FC;
604 	vcpu->arch.ctrl = CTRL_RUNLATCH;
605 	/* default to host PVR, since we can't spoof it */
606 	vcpu->arch.pvr = mfspr(SPRN_PVR);
607 	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
608 	spin_lock_init(&vcpu->arch.vpa_update_lock);
609 
610 	kvmppc_mmu_book3s_hv_init(vcpu);
611 
612 	/*
613 	 * We consider the vcpu stopped until we see the first run ioctl for it.
614 	 */
615 	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
616 
617 	init_waitqueue_head(&vcpu->arch.cpu_run);
618 
619 	mutex_lock(&kvm->lock);
620 	vcore = kvm->arch.vcores[core];
621 	if (!vcore) {
622 		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
623 		if (vcore) {
624 			INIT_LIST_HEAD(&vcore->runnable_threads);
625 			spin_lock_init(&vcore->lock);
626 			init_waitqueue_head(&vcore->wq);
627 			vcore->preempt_tb = mftb();
628 		}
629 		kvm->arch.vcores[core] = vcore;
630 	}
631 	mutex_unlock(&kvm->lock);
632 
633 	if (!vcore)
634 		goto free_vcpu;
635 
636 	spin_lock(&vcore->lock);
637 	++vcore->num_threads;
638 	spin_unlock(&vcore->lock);
639 	vcpu->arch.vcore = vcore;
640 	vcpu->arch.stolen_logged = vcore->stolen_tb;
641 
642 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
643 	kvmppc_sanity_check(vcpu);
644 
645 	return vcpu;
646 
647 free_vcpu:
648 	kmem_cache_free(kvm_vcpu_cache, vcpu);
649 out:
650 	return ERR_PTR(err);
651 }
652 
653 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
654 {
655 	spin_lock(&vcpu->arch.vpa_update_lock);
656 	if (vcpu->arch.dtl.pinned_addr)
657 		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
658 	if (vcpu->arch.slb_shadow.pinned_addr)
659 		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
660 	if (vcpu->arch.vpa.pinned_addr)
661 		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
662 	spin_unlock(&vcpu->arch.vpa_update_lock);
663 	kvm_vcpu_uninit(vcpu);
664 	kmem_cache_free(kvm_vcpu_cache, vcpu);
665 }
666 
667 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
668 {
669 	unsigned long dec_nsec, now;
670 
671 	now = get_tb();
672 	if (now > vcpu->arch.dec_expires) {
673 		/* decrementer has already gone negative */
674 		kvmppc_core_queue_dec(vcpu);
675 		kvmppc_core_prepare_to_enter(vcpu);
676 		return;
677 	}
678 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
679 		   / tb_ticks_per_sec;
680 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
681 		      HRTIMER_MODE_REL);
682 	vcpu->arch.timer_running = 1;
683 }
684 
685 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
686 {
687 	vcpu->arch.ceded = 0;
688 	if (vcpu->arch.timer_running) {
689 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
690 		vcpu->arch.timer_running = 0;
691 	}
692 }
693 
694 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
695 extern void xics_wake_cpu(int cpu);
696 
697 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
698 				   struct kvm_vcpu *vcpu)
699 {
700 	struct kvm_vcpu *v;
701 
702 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
703 		return;
704 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
705 	--vc->n_runnable;
706 	++vc->n_busy;
707 	/* decrement the physical thread id of each following vcpu */
708 	v = vcpu;
709 	list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
710 		--v->arch.ptid;
711 	list_del(&vcpu->arch.run_list);
712 }
713 
714 static int kvmppc_grab_hwthread(int cpu)
715 {
716 	struct paca_struct *tpaca;
717 	long timeout = 1000;
718 
719 	tpaca = &paca[cpu];
720 
721 	/* Ensure the thread won't go into the kernel if it wakes */
722 	tpaca->kvm_hstate.hwthread_req = 1;
723 
724 	/*
725 	 * If the thread is already executing in the kernel (e.g. handling
726 	 * a stray interrupt), wait for it to get back to nap mode.
727 	 * The smp_mb() is to ensure that our setting of hwthread_req
728 	 * is visible before we look at hwthread_state, so if this
729 	 * races with the code at system_reset_pSeries and the thread
730 	 * misses our setting of hwthread_req, we are sure to see its
731 	 * setting of hwthread_state, and vice versa.
732 	 */
733 	smp_mb();
734 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
735 		if (--timeout <= 0) {
736 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
737 			return -EBUSY;
738 		}
739 		udelay(1);
740 	}
741 	return 0;
742 }
743 
744 static void kvmppc_release_hwthread(int cpu)
745 {
746 	struct paca_struct *tpaca;
747 
748 	tpaca = &paca[cpu];
749 	tpaca->kvm_hstate.hwthread_req = 0;
750 	tpaca->kvm_hstate.kvm_vcpu = NULL;
751 }
752 
753 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
754 {
755 	int cpu;
756 	struct paca_struct *tpaca;
757 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
758 
759 	if (vcpu->arch.timer_running) {
760 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
761 		vcpu->arch.timer_running = 0;
762 	}
763 	cpu = vc->pcpu + vcpu->arch.ptid;
764 	tpaca = &paca[cpu];
765 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
766 	tpaca->kvm_hstate.kvm_vcore = vc;
767 	tpaca->kvm_hstate.napping = 0;
768 	vcpu->cpu = vc->pcpu;
769 	smp_wmb();
770 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
771 	if (vcpu->arch.ptid) {
772 		kvmppc_grab_hwthread(cpu);
773 		xics_wake_cpu(cpu);
774 		++vc->n_woken;
775 	}
776 #endif
777 }
778 
779 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
780 {
781 	int i;
782 
783 	HMT_low();
784 	i = 0;
785 	while (vc->nap_count < vc->n_woken) {
786 		if (++i >= 1000000) {
787 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
788 			       vc->nap_count, vc->n_woken);
789 			break;
790 		}
791 		cpu_relax();
792 	}
793 	HMT_medium();
794 }
795 
796 /*
797  * Check that we are on thread 0 and that any other threads in
798  * this core are off-line.
799  */
800 static int on_primary_thread(void)
801 {
802 	int cpu = smp_processor_id();
803 	int thr = cpu_thread_in_core(cpu);
804 
805 	if (thr)
806 		return 0;
807 	while (++thr < threads_per_core)
808 		if (cpu_online(cpu + thr))
809 			return 0;
810 	return 1;
811 }
812 
813 /*
814  * Run a set of guest threads on a physical core.
815  * Called with vc->lock held.
816  */
817 static int kvmppc_run_core(struct kvmppc_vcore *vc)
818 {
819 	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
820 	long ret;
821 	u64 now;
822 	int ptid, i, need_vpa_update;
823 
824 	/* don't start if any threads have a signal pending */
825 	need_vpa_update = 0;
826 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
827 		if (signal_pending(vcpu->arch.run_task))
828 			return 0;
829 		need_vpa_update |= vcpu->arch.vpa.update_pending |
830 			vcpu->arch.slb_shadow.update_pending |
831 			vcpu->arch.dtl.update_pending;
832 	}
833 
834 	/*
835 	 * Initialize *vc, in particular vc->vcore_state, so we can
836 	 * drop the vcore lock if necessary.
837 	 */
838 	vc->n_woken = 0;
839 	vc->nap_count = 0;
840 	vc->entry_exit_count = 0;
841 	vc->vcore_state = VCORE_RUNNING;
842 	vc->in_guest = 0;
843 	vc->napping_threads = 0;
844 
845 	/*
846 	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
847 	 * which can't be called with any spinlocks held.
848 	 */
849 	if (need_vpa_update) {
850 		spin_unlock(&vc->lock);
851 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
852 			kvmppc_update_vpas(vcpu);
853 		spin_lock(&vc->lock);
854 	}
855 
856 	/*
857 	 * Make sure we are running on thread 0, and that
858 	 * secondary threads are offline.
859 	 * XXX we should also block attempts to bring any
860 	 * secondary threads online.
861 	 */
862 	if (threads_per_core > 1 && !on_primary_thread()) {
863 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
864 			vcpu->arch.ret = -EBUSY;
865 		goto out;
866 	}
867 
868 	/*
869 	 * Assign physical thread IDs, first to non-ceded vcpus
870 	 * and then to ceded ones.
871 	 */
872 	ptid = 0;
873 	vcpu0 = NULL;
874 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
875 		if (!vcpu->arch.ceded) {
876 			if (!ptid)
877 				vcpu0 = vcpu;
878 			vcpu->arch.ptid = ptid++;
879 		}
880 	}
881 	if (!vcpu0)
882 		return 0;		/* nothing to run */
883 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
884 		if (vcpu->arch.ceded)
885 			vcpu->arch.ptid = ptid++;
886 
887 	vc->stolen_tb += mftb() - vc->preempt_tb;
888 	vc->pcpu = smp_processor_id();
889 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
890 		kvmppc_start_thread(vcpu);
891 		kvmppc_create_dtl_entry(vcpu, vc);
892 	}
893 	/* Grab any remaining hw threads so they can't go into the kernel */
894 	for (i = ptid; i < threads_per_core; ++i)
895 		kvmppc_grab_hwthread(vc->pcpu + i);
896 
897 	preempt_disable();
898 	spin_unlock(&vc->lock);
899 
900 	kvm_guest_enter();
901 	__kvmppc_vcore_entry(NULL, vcpu0);
902 	for (i = 0; i < threads_per_core; ++i)
903 		kvmppc_release_hwthread(vc->pcpu + i);
904 
905 	spin_lock(&vc->lock);
906 	/* disable sending of IPIs on virtual external irqs */
907 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
908 		vcpu->cpu = -1;
909 	/* wait for secondary threads to finish writing their state to memory */
910 	if (vc->nap_count < vc->n_woken)
911 		kvmppc_wait_for_nap(vc);
912 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
913 	vc->vcore_state = VCORE_EXITING;
914 	spin_unlock(&vc->lock);
915 
916 	/* make sure updates to secondary vcpu structs are visible now */
917 	smp_mb();
918 	kvm_guest_exit();
919 
920 	preempt_enable();
921 	kvm_resched(vcpu);
922 
923 	now = get_tb();
924 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
925 		/* cancel pending dec exception if dec is positive */
926 		if (now < vcpu->arch.dec_expires &&
927 		    kvmppc_core_pending_dec(vcpu))
928 			kvmppc_core_dequeue_dec(vcpu);
929 
930 		ret = RESUME_GUEST;
931 		if (vcpu->arch.trap)
932 			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
933 						 vcpu->arch.run_task);
934 
935 		vcpu->arch.ret = ret;
936 		vcpu->arch.trap = 0;
937 
938 		if (vcpu->arch.ceded) {
939 			if (ret != RESUME_GUEST)
940 				kvmppc_end_cede(vcpu);
941 			else
942 				kvmppc_set_timer(vcpu);
943 		}
944 	}
945 
946 	spin_lock(&vc->lock);
947  out:
948 	vc->vcore_state = VCORE_INACTIVE;
949 	vc->preempt_tb = mftb();
950 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
951 				 arch.run_list) {
952 		if (vcpu->arch.ret != RESUME_GUEST) {
953 			kvmppc_remove_runnable(vc, vcpu);
954 			wake_up(&vcpu->arch.cpu_run);
955 		}
956 	}
957 
958 	return 1;
959 }
960 
961 /*
962  * Wait for some other vcpu thread to execute us, and
963  * wake us up when we need to handle something in the host.
964  */
965 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
966 {
967 	DEFINE_WAIT(wait);
968 
969 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
970 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
971 		schedule();
972 	finish_wait(&vcpu->arch.cpu_run, &wait);
973 }
974 
975 /*
976  * All the vcpus in this vcore are idle, so wait for a decrementer
977  * or external interrupt to one of the vcpus.  vc->lock is held.
978  */
979 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
980 {
981 	DEFINE_WAIT(wait);
982 	struct kvm_vcpu *v;
983 	int all_idle = 1;
984 
985 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
986 	vc->vcore_state = VCORE_SLEEPING;
987 	spin_unlock(&vc->lock);
988 	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
989 		if (!v->arch.ceded || v->arch.pending_exceptions) {
990 			all_idle = 0;
991 			break;
992 		}
993 	}
994 	if (all_idle)
995 		schedule();
996 	finish_wait(&vc->wq, &wait);
997 	spin_lock(&vc->lock);
998 	vc->vcore_state = VCORE_INACTIVE;
999 }
1000 
1001 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1002 {
1003 	int n_ceded;
1004 	int prev_state;
1005 	struct kvmppc_vcore *vc;
1006 	struct kvm_vcpu *v, *vn;
1007 
1008 	kvm_run->exit_reason = 0;
1009 	vcpu->arch.ret = RESUME_GUEST;
1010 	vcpu->arch.trap = 0;
1011 
1012 	/*
1013 	 * Synchronize with other threads in this virtual core
1014 	 */
1015 	vc = vcpu->arch.vcore;
1016 	spin_lock(&vc->lock);
1017 	vcpu->arch.ceded = 0;
1018 	vcpu->arch.run_task = current;
1019 	vcpu->arch.kvm_run = kvm_run;
1020 	prev_state = vcpu->arch.state;
1021 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1022 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1023 	++vc->n_runnable;
1024 
1025 	/*
1026 	 * This happens the first time this is called for a vcpu.
1027 	 * If the vcore is already running, we may be able to start
1028 	 * this thread straight away and have it join in.
1029 	 */
1030 	if (prev_state == KVMPPC_VCPU_STOPPED) {
1031 		if (vc->vcore_state == VCORE_RUNNING &&
1032 		    VCORE_EXIT_COUNT(vc) == 0) {
1033 			vcpu->arch.ptid = vc->n_runnable - 1;
1034 			kvmppc_start_thread(vcpu);
1035 		}
1036 
1037 	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
1038 		--vc->n_busy;
1039 
1040 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1041 	       !signal_pending(current)) {
1042 		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
1043 			spin_unlock(&vc->lock);
1044 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1045 			spin_lock(&vc->lock);
1046 			continue;
1047 		}
1048 		vc->runner = vcpu;
1049 		n_ceded = 0;
1050 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1051 			n_ceded += v->arch.ceded;
1052 		if (n_ceded == vc->n_runnable)
1053 			kvmppc_vcore_blocked(vc);
1054 		else
1055 			kvmppc_run_core(vc);
1056 
1057 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1058 					 arch.run_list) {
1059 			kvmppc_core_prepare_to_enter(v);
1060 			if (signal_pending(v->arch.run_task)) {
1061 				kvmppc_remove_runnable(vc, v);
1062 				v->stat.signal_exits++;
1063 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1064 				v->arch.ret = -EINTR;
1065 				wake_up(&v->arch.cpu_run);
1066 			}
1067 		}
1068 		vc->runner = NULL;
1069 	}
1070 
1071 	if (signal_pending(current)) {
1072 		if (vc->vcore_state == VCORE_RUNNING ||
1073 		    vc->vcore_state == VCORE_EXITING) {
1074 			spin_unlock(&vc->lock);
1075 			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1076 			spin_lock(&vc->lock);
1077 		}
1078 		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1079 			kvmppc_remove_runnable(vc, vcpu);
1080 			vcpu->stat.signal_exits++;
1081 			kvm_run->exit_reason = KVM_EXIT_INTR;
1082 			vcpu->arch.ret = -EINTR;
1083 		}
1084 	}
1085 
1086 	spin_unlock(&vc->lock);
1087 	return vcpu->arch.ret;
1088 }
1089 
1090 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1091 {
1092 	int r;
1093 
1094 	if (!vcpu->arch.sane) {
1095 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1096 		return -EINVAL;
1097 	}
1098 
1099 	kvmppc_core_prepare_to_enter(vcpu);
1100 
1101 	/* No need to go into the guest when all we'll do is come back out */
1102 	if (signal_pending(current)) {
1103 		run->exit_reason = KVM_EXIT_INTR;
1104 		return -EINTR;
1105 	}
1106 
1107 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
1108 	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1109 	smp_mb();
1110 
1111 	/* On the first time here, set up HTAB and VRMA or RMA */
1112 	if (!vcpu->kvm->arch.rma_setup_done) {
1113 		r = kvmppc_hv_setup_htab_rma(vcpu);
1114 		if (r)
1115 			goto out;
1116 	}
1117 
1118 	flush_fp_to_thread(current);
1119 	flush_altivec_to_thread(current);
1120 	flush_vsx_to_thread(current);
1121 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1122 	vcpu->arch.pgdir = current->mm->pgd;
1123 
1124 	do {
1125 		r = kvmppc_run_vcpu(run, vcpu);
1126 
1127 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1128 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
1129 			r = kvmppc_pseries_do_hcall(vcpu);
1130 			kvmppc_core_prepare_to_enter(vcpu);
1131 		}
1132 	} while (r == RESUME_GUEST);
1133 
1134  out:
1135 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1136 	return r;
1137 }
1138 
1139 
1140 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1141    Assumes POWER7 or PPC970. */
1142 static inline int lpcr_rmls(unsigned long rma_size)
1143 {
1144 	switch (rma_size) {
1145 	case 32ul << 20:	/* 32 MB */
1146 		if (cpu_has_feature(CPU_FTR_ARCH_206))
1147 			return 8;	/* only supported on POWER7 */
1148 		return -1;
1149 	case 64ul << 20:	/* 64 MB */
1150 		return 3;
1151 	case 128ul << 20:	/* 128 MB */
1152 		return 7;
1153 	case 256ul << 20:	/* 256 MB */
1154 		return 4;
1155 	case 1ul << 30:		/* 1 GB */
1156 		return 2;
1157 	case 16ul << 30:	/* 16 GB */
1158 		return 1;
1159 	case 256ul << 30:	/* 256 GB */
1160 		return 0;
1161 	default:
1162 		return -1;
1163 	}
1164 }
1165 
1166 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1167 {
1168 	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1169 	struct page *page;
1170 
1171 	if (vmf->pgoff >= ri->npages)
1172 		return VM_FAULT_SIGBUS;
1173 
1174 	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1175 	get_page(page);
1176 	vmf->page = page;
1177 	return 0;
1178 }
1179 
1180 static const struct vm_operations_struct kvm_rma_vm_ops = {
1181 	.fault = kvm_rma_fault,
1182 };
1183 
1184 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1185 {
1186 	vma->vm_flags |= VM_RESERVED;
1187 	vma->vm_ops = &kvm_rma_vm_ops;
1188 	return 0;
1189 }
1190 
1191 static int kvm_rma_release(struct inode *inode, struct file *filp)
1192 {
1193 	struct kvmppc_linear_info *ri = filp->private_data;
1194 
1195 	kvm_release_rma(ri);
1196 	return 0;
1197 }
1198 
1199 static struct file_operations kvm_rma_fops = {
1200 	.mmap           = kvm_rma_mmap,
1201 	.release	= kvm_rma_release,
1202 };
1203 
1204 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1205 {
1206 	struct kvmppc_linear_info *ri;
1207 	long fd;
1208 
1209 	ri = kvm_alloc_rma();
1210 	if (!ri)
1211 		return -ENOMEM;
1212 
1213 	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1214 	if (fd < 0)
1215 		kvm_release_rma(ri);
1216 
1217 	ret->rma_size = ri->npages << PAGE_SHIFT;
1218 	return fd;
1219 }
1220 
1221 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1222 				     int linux_psize)
1223 {
1224 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1225 
1226 	if (!def->shift)
1227 		return;
1228 	(*sps)->page_shift = def->shift;
1229 	(*sps)->slb_enc = def->sllp;
1230 	(*sps)->enc[0].page_shift = def->shift;
1231 	(*sps)->enc[0].pte_enc = def->penc;
1232 	(*sps)++;
1233 }
1234 
1235 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1236 {
1237 	struct kvm_ppc_one_seg_page_size *sps;
1238 
1239 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
1240 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1241 		info->flags |= KVM_PPC_1T_SEGMENTS;
1242 	info->slb_size = mmu_slb_size;
1243 
1244 	/* We only support these sizes for now, and no muti-size segments */
1245 	sps = &info->sps[0];
1246 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1247 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1248 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1249 
1250 	return 0;
1251 }
1252 
1253 /*
1254  * Get (and clear) the dirty memory log for a memory slot.
1255  */
1256 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1257 {
1258 	struct kvm_memory_slot *memslot;
1259 	int r;
1260 	unsigned long n;
1261 
1262 	mutex_lock(&kvm->slots_lock);
1263 
1264 	r = -EINVAL;
1265 	if (log->slot >= KVM_MEMORY_SLOTS)
1266 		goto out;
1267 
1268 	memslot = id_to_memslot(kvm->memslots, log->slot);
1269 	r = -ENOENT;
1270 	if (!memslot->dirty_bitmap)
1271 		goto out;
1272 
1273 	n = kvm_dirty_bitmap_bytes(memslot);
1274 	memset(memslot->dirty_bitmap, 0, n);
1275 
1276 	r = kvmppc_hv_get_dirty_log(kvm, memslot);
1277 	if (r)
1278 		goto out;
1279 
1280 	r = -EFAULT;
1281 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1282 		goto out;
1283 
1284 	r = 0;
1285 out:
1286 	mutex_unlock(&kvm->slots_lock);
1287 	return r;
1288 }
1289 
1290 static unsigned long slb_pgsize_encoding(unsigned long psize)
1291 {
1292 	unsigned long senc = 0;
1293 
1294 	if (psize > 0x1000) {
1295 		senc = SLB_VSID_L;
1296 		if (psize == 0x10000)
1297 			senc |= SLB_VSID_LP_01;
1298 	}
1299 	return senc;
1300 }
1301 
1302 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1303 				struct kvm_userspace_memory_region *mem)
1304 {
1305 	unsigned long npages;
1306 	unsigned long *phys;
1307 
1308 	/* Allocate a slot_phys array */
1309 	phys = kvm->arch.slot_phys[mem->slot];
1310 	if (!kvm->arch.using_mmu_notifiers && !phys) {
1311 		npages = mem->memory_size >> PAGE_SHIFT;
1312 		phys = vzalloc(npages * sizeof(unsigned long));
1313 		if (!phys)
1314 			return -ENOMEM;
1315 		kvm->arch.slot_phys[mem->slot] = phys;
1316 		kvm->arch.slot_npages[mem->slot] = npages;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static void unpin_slot(struct kvm *kvm, int slot_id)
1323 {
1324 	unsigned long *physp;
1325 	unsigned long j, npages, pfn;
1326 	struct page *page;
1327 
1328 	physp = kvm->arch.slot_phys[slot_id];
1329 	npages = kvm->arch.slot_npages[slot_id];
1330 	if (physp) {
1331 		spin_lock(&kvm->arch.slot_phys_lock);
1332 		for (j = 0; j < npages; j++) {
1333 			if (!(physp[j] & KVMPPC_GOT_PAGE))
1334 				continue;
1335 			pfn = physp[j] >> PAGE_SHIFT;
1336 			page = pfn_to_page(pfn);
1337 			SetPageDirty(page);
1338 			put_page(page);
1339 		}
1340 		kvm->arch.slot_phys[slot_id] = NULL;
1341 		spin_unlock(&kvm->arch.slot_phys_lock);
1342 		vfree(physp);
1343 	}
1344 }
1345 
1346 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1347 				struct kvm_userspace_memory_region *mem)
1348 {
1349 }
1350 
1351 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1352 {
1353 	int err = 0;
1354 	struct kvm *kvm = vcpu->kvm;
1355 	struct kvmppc_linear_info *ri = NULL;
1356 	unsigned long hva;
1357 	struct kvm_memory_slot *memslot;
1358 	struct vm_area_struct *vma;
1359 	unsigned long lpcr, senc;
1360 	unsigned long psize, porder;
1361 	unsigned long rma_size;
1362 	unsigned long rmls;
1363 	unsigned long *physp;
1364 	unsigned long i, npages;
1365 
1366 	mutex_lock(&kvm->lock);
1367 	if (kvm->arch.rma_setup_done)
1368 		goto out;	/* another vcpu beat us to it */
1369 
1370 	/* Allocate hashed page table (if not done already) and reset it */
1371 	if (!kvm->arch.hpt_virt) {
1372 		err = kvmppc_alloc_hpt(kvm, NULL);
1373 		if (err) {
1374 			pr_err("KVM: Couldn't alloc HPT\n");
1375 			goto out;
1376 		}
1377 	}
1378 
1379 	/* Look up the memslot for guest physical address 0 */
1380 	memslot = gfn_to_memslot(kvm, 0);
1381 
1382 	/* We must have some memory at 0 by now */
1383 	err = -EINVAL;
1384 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1385 		goto out;
1386 
1387 	/* Look up the VMA for the start of this memory slot */
1388 	hva = memslot->userspace_addr;
1389 	down_read(&current->mm->mmap_sem);
1390 	vma = find_vma(current->mm, hva);
1391 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1392 		goto up_out;
1393 
1394 	psize = vma_kernel_pagesize(vma);
1395 	porder = __ilog2(psize);
1396 
1397 	/* Is this one of our preallocated RMAs? */
1398 	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1399 	    hva == vma->vm_start)
1400 		ri = vma->vm_file->private_data;
1401 
1402 	up_read(&current->mm->mmap_sem);
1403 
1404 	if (!ri) {
1405 		/* On POWER7, use VRMA; on PPC970, give up */
1406 		err = -EPERM;
1407 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1408 			pr_err("KVM: CPU requires an RMO\n");
1409 			goto out;
1410 		}
1411 
1412 		/* We can handle 4k, 64k or 16M pages in the VRMA */
1413 		err = -EINVAL;
1414 		if (!(psize == 0x1000 || psize == 0x10000 ||
1415 		      psize == 0x1000000))
1416 			goto out;
1417 
1418 		/* Update VRMASD field in the LPCR */
1419 		senc = slb_pgsize_encoding(psize);
1420 		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1421 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1422 		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1423 		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1424 		kvm->arch.lpcr = lpcr;
1425 
1426 		/* Create HPTEs in the hash page table for the VRMA */
1427 		kvmppc_map_vrma(vcpu, memslot, porder);
1428 
1429 	} else {
1430 		/* Set up to use an RMO region */
1431 		rma_size = ri->npages;
1432 		if (rma_size > memslot->npages)
1433 			rma_size = memslot->npages;
1434 		rma_size <<= PAGE_SHIFT;
1435 		rmls = lpcr_rmls(rma_size);
1436 		err = -EINVAL;
1437 		if (rmls < 0) {
1438 			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1439 			goto out;
1440 		}
1441 		atomic_inc(&ri->use_count);
1442 		kvm->arch.rma = ri;
1443 
1444 		/* Update LPCR and RMOR */
1445 		lpcr = kvm->arch.lpcr;
1446 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1447 			/* PPC970; insert RMLS value (split field) in HID4 */
1448 			lpcr &= ~((1ul << HID4_RMLS0_SH) |
1449 				  (3ul << HID4_RMLS2_SH));
1450 			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1451 				((rmls & 3) << HID4_RMLS2_SH);
1452 			/* RMOR is also in HID4 */
1453 			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1454 				<< HID4_RMOR_SH;
1455 		} else {
1456 			/* POWER7 */
1457 			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1458 			lpcr |= rmls << LPCR_RMLS_SH;
1459 			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1460 		}
1461 		kvm->arch.lpcr = lpcr;
1462 		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1463 			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1464 
1465 		/* Initialize phys addrs of pages in RMO */
1466 		npages = ri->npages;
1467 		porder = __ilog2(npages);
1468 		physp = kvm->arch.slot_phys[memslot->id];
1469 		spin_lock(&kvm->arch.slot_phys_lock);
1470 		for (i = 0; i < npages; ++i)
1471 			physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1472 		spin_unlock(&kvm->arch.slot_phys_lock);
1473 	}
1474 
1475 	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1476 	smp_wmb();
1477 	kvm->arch.rma_setup_done = 1;
1478 	err = 0;
1479  out:
1480 	mutex_unlock(&kvm->lock);
1481 	return err;
1482 
1483  up_out:
1484 	up_read(&current->mm->mmap_sem);
1485 	goto out;
1486 }
1487 
1488 int kvmppc_core_init_vm(struct kvm *kvm)
1489 {
1490 	unsigned long lpcr, lpid;
1491 
1492 	/* Allocate the guest's logical partition ID */
1493 
1494 	lpid = kvmppc_alloc_lpid();
1495 	if (lpid < 0)
1496 		return -ENOMEM;
1497 	kvm->arch.lpid = lpid;
1498 
1499 	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1500 
1501 	kvm->arch.rma = NULL;
1502 
1503 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1504 
1505 	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1506 		/* PPC970; HID4 is effectively the LPCR */
1507 		kvm->arch.host_lpid = 0;
1508 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1509 		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1510 		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1511 			((lpid & 0xf) << HID4_LPID5_SH);
1512 	} else {
1513 		/* POWER7; init LPCR for virtual RMA mode */
1514 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
1515 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1516 		lpcr &= LPCR_PECE | LPCR_LPES;
1517 		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1518 			LPCR_VPM0 | LPCR_VPM1;
1519 		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1520 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1521 	}
1522 	kvm->arch.lpcr = lpcr;
1523 
1524 	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1525 	spin_lock_init(&kvm->arch.slot_phys_lock);
1526 	return 0;
1527 }
1528 
1529 void kvmppc_core_destroy_vm(struct kvm *kvm)
1530 {
1531 	unsigned long i;
1532 
1533 	if (!kvm->arch.using_mmu_notifiers)
1534 		for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
1535 			unpin_slot(kvm, i);
1536 
1537 	if (kvm->arch.rma) {
1538 		kvm_release_rma(kvm->arch.rma);
1539 		kvm->arch.rma = NULL;
1540 	}
1541 
1542 	kvmppc_free_hpt(kvm);
1543 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1544 }
1545 
1546 /* These are stubs for now */
1547 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1548 {
1549 }
1550 
1551 /* We don't need to emulate any privileged instructions or dcbz */
1552 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1553                            unsigned int inst, int *advance)
1554 {
1555 	return EMULATE_FAIL;
1556 }
1557 
1558 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1559 {
1560 	return EMULATE_FAIL;
1561 }
1562 
1563 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1564 {
1565 	return EMULATE_FAIL;
1566 }
1567 
1568 static int kvmppc_book3s_hv_init(void)
1569 {
1570 	int r;
1571 
1572 	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1573 
1574 	if (r)
1575 		return r;
1576 
1577 	r = kvmppc_mmu_hv_init();
1578 
1579 	return r;
1580 }
1581 
1582 static void kvmppc_book3s_hv_exit(void)
1583 {
1584 	kvm_exit();
1585 }
1586 
1587 module_init(kvmppc_book3s_hv_init);
1588 module_exit(kvmppc_book3s_hv_exit);
1589