xref: /linux/arch/powerpc/kvm/book3s_hv.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpu.h>
31 #include <linux/cpumask.h>
32 #include <linux/spinlock.h>
33 #include <linux/page-flags.h>
34 #include <linux/srcu.h>
35 #include <linux/miscdevice.h>
36 #include <linux/debugfs.h>
37 
38 #include <asm/reg.h>
39 #include <asm/cputable.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/kvm_book3s.h>
46 #include <asm/mmu_context.h>
47 #include <asm/lppaca.h>
48 #include <asm/processor.h>
49 #include <asm/cputhreads.h>
50 #include <asm/page.h>
51 #include <asm/hvcall.h>
52 #include <asm/switch_to.h>
53 #include <asm/smp.h>
54 #include <asm/dbell.h>
55 #include <asm/hmi.h>
56 #include <asm/pnv-pci.h>
57 #include <asm/mmu.h>
58 #include <asm/opal.h>
59 #include <asm/xics.h>
60 #include <linux/gfp.h>
61 #include <linux/vmalloc.h>
62 #include <linux/highmem.h>
63 #include <linux/hugetlb.h>
64 #include <linux/kvm_irqfd.h>
65 #include <linux/irqbypass.h>
66 #include <linux/module.h>
67 #include <linux/compiler.h>
68 #include <linux/of.h>
69 
70 #include "book3s.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include "trace_hv.h"
74 
75 /* #define EXIT_DEBUG */
76 /* #define EXIT_DEBUG_SIMPLE */
77 /* #define EXIT_DEBUG_INT */
78 
79 /* Used to indicate that a guest page fault needs to be handled */
80 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
81 /* Used to indicate that a guest passthrough interrupt needs to be handled */
82 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
83 
84 /* Used as a "null" value for timebase values */
85 #define TB_NIL	(~(u64)0)
86 
87 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
88 
89 static int dynamic_mt_modes = 6;
90 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
92 static int target_smt_mode;
93 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
95 
96 #ifdef CONFIG_KVM_XICS
97 static struct kernel_param_ops module_param_ops = {
98 	.set = param_set_int,
99 	.get = param_get_int,
100 };
101 
102 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
103 							S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
105 
106 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
107 							S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
109 #endif
110 
111 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
112 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
113 
114 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
115 		int *ip)
116 {
117 	int i = *ip;
118 	struct kvm_vcpu *vcpu;
119 
120 	while (++i < MAX_SMT_THREADS) {
121 		vcpu = READ_ONCE(vc->runnable_threads[i]);
122 		if (vcpu) {
123 			*ip = i;
124 			return vcpu;
125 		}
126 	}
127 	return NULL;
128 }
129 
130 /* Used to traverse the list of runnable threads for a given vcore */
131 #define for_each_runnable_thread(i, vcpu, vc) \
132 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
133 
134 static bool kvmppc_ipi_thread(int cpu)
135 {
136 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
137 
138 	/* On POWER9 we can use msgsnd to IPI any cpu */
139 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
140 		msg |= get_hard_smp_processor_id(cpu);
141 		smp_mb();
142 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
143 		return true;
144 	}
145 
146 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
147 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
148 		preempt_disable();
149 		if (cpu_first_thread_sibling(cpu) ==
150 		    cpu_first_thread_sibling(smp_processor_id())) {
151 			msg |= cpu_thread_in_core(cpu);
152 			smp_mb();
153 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154 			preempt_enable();
155 			return true;
156 		}
157 		preempt_enable();
158 	}
159 
160 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
161 	if (cpu >= 0 && cpu < nr_cpu_ids) {
162 		if (paca[cpu].kvm_hstate.xics_phys) {
163 			xics_wake_cpu(cpu);
164 			return true;
165 		}
166 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
167 		return true;
168 	}
169 #endif
170 
171 	return false;
172 }
173 
174 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
175 {
176 	int cpu;
177 	struct swait_queue_head *wqp;
178 
179 	wqp = kvm_arch_vcpu_wq(vcpu);
180 	if (swait_active(wqp)) {
181 		swake_up(wqp);
182 		++vcpu->stat.halt_wakeup;
183 	}
184 
185 	if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
186 		return;
187 
188 	/* CPU points to the first thread of the core */
189 	cpu = vcpu->cpu;
190 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
191 		smp_send_reschedule(cpu);
192 }
193 
194 /*
195  * We use the vcpu_load/put functions to measure stolen time.
196  * Stolen time is counted as time when either the vcpu is able to
197  * run as part of a virtual core, but the task running the vcore
198  * is preempted or sleeping, or when the vcpu needs something done
199  * in the kernel by the task running the vcpu, but that task is
200  * preempted or sleeping.  Those two things have to be counted
201  * separately, since one of the vcpu tasks will take on the job
202  * of running the core, and the other vcpu tasks in the vcore will
203  * sleep waiting for it to do that, but that sleep shouldn't count
204  * as stolen time.
205  *
206  * Hence we accumulate stolen time when the vcpu can run as part of
207  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
208  * needs its task to do other things in the kernel (for example,
209  * service a page fault) in busy_stolen.  We don't accumulate
210  * stolen time for a vcore when it is inactive, or for a vcpu
211  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
212  * a misnomer; it means that the vcpu task is not executing in
213  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
214  * the kernel.  We don't have any way of dividing up that time
215  * between time that the vcpu is genuinely stopped, time that
216  * the task is actively working on behalf of the vcpu, and time
217  * that the task is preempted, so we don't count any of it as
218  * stolen.
219  *
220  * Updates to busy_stolen are protected by arch.tbacct_lock;
221  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
222  * lock.  The stolen times are measured in units of timebase ticks.
223  * (Note that the != TB_NIL checks below are purely defensive;
224  * they should never fail.)
225  */
226 
227 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
228 {
229 	unsigned long flags;
230 
231 	spin_lock_irqsave(&vc->stoltb_lock, flags);
232 	vc->preempt_tb = mftb();
233 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
234 }
235 
236 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
237 {
238 	unsigned long flags;
239 
240 	spin_lock_irqsave(&vc->stoltb_lock, flags);
241 	if (vc->preempt_tb != TB_NIL) {
242 		vc->stolen_tb += mftb() - vc->preempt_tb;
243 		vc->preempt_tb = TB_NIL;
244 	}
245 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246 }
247 
248 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
249 {
250 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
251 	unsigned long flags;
252 
253 	/*
254 	 * We can test vc->runner without taking the vcore lock,
255 	 * because only this task ever sets vc->runner to this
256 	 * vcpu, and once it is set to this vcpu, only this task
257 	 * ever sets it to NULL.
258 	 */
259 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
260 		kvmppc_core_end_stolen(vc);
261 
262 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
263 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
264 	    vcpu->arch.busy_preempt != TB_NIL) {
265 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
266 		vcpu->arch.busy_preempt = TB_NIL;
267 	}
268 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
269 }
270 
271 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
272 {
273 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
274 	unsigned long flags;
275 
276 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
277 		kvmppc_core_start_stolen(vc);
278 
279 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
280 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
281 		vcpu->arch.busy_preempt = mftb();
282 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
283 }
284 
285 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
286 {
287 	/*
288 	 * Check for illegal transactional state bit combination
289 	 * and if we find it, force the TS field to a safe state.
290 	 */
291 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
292 		msr &= ~MSR_TS_MASK;
293 	vcpu->arch.shregs.msr = msr;
294 	kvmppc_end_cede(vcpu);
295 }
296 
297 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
298 {
299 	vcpu->arch.pvr = pvr;
300 }
301 
302 /* Dummy value used in computing PCR value below */
303 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
304 
305 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
306 {
307 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
308 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
309 
310 	/* We can (emulate) our own architecture version and anything older */
311 	if (cpu_has_feature(CPU_FTR_ARCH_300))
312 		host_pcr_bit = PCR_ARCH_300;
313 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
314 		host_pcr_bit = PCR_ARCH_207;
315 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
316 		host_pcr_bit = PCR_ARCH_206;
317 	else
318 		host_pcr_bit = PCR_ARCH_205;
319 
320 	/* Determine lowest PCR bit needed to run guest in given PVR level */
321 	guest_pcr_bit = host_pcr_bit;
322 	if (arch_compat) {
323 		switch (arch_compat) {
324 		case PVR_ARCH_205:
325 			guest_pcr_bit = PCR_ARCH_205;
326 			break;
327 		case PVR_ARCH_206:
328 		case PVR_ARCH_206p:
329 			guest_pcr_bit = PCR_ARCH_206;
330 			break;
331 		case PVR_ARCH_207:
332 			guest_pcr_bit = PCR_ARCH_207;
333 			break;
334 		case PVR_ARCH_300:
335 			guest_pcr_bit = PCR_ARCH_300;
336 			break;
337 		default:
338 			return -EINVAL;
339 		}
340 	}
341 
342 	/* Check requested PCR bits don't exceed our capabilities */
343 	if (guest_pcr_bit > host_pcr_bit)
344 		return -EINVAL;
345 
346 	spin_lock(&vc->lock);
347 	vc->arch_compat = arch_compat;
348 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
349 	vc->pcr = host_pcr_bit - guest_pcr_bit;
350 	spin_unlock(&vc->lock);
351 
352 	return 0;
353 }
354 
355 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
356 {
357 	int r;
358 
359 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
360 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
361 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
362 	for (r = 0; r < 16; ++r)
363 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
364 		       r, kvmppc_get_gpr(vcpu, r),
365 		       r+16, kvmppc_get_gpr(vcpu, r+16));
366 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
367 	       vcpu->arch.ctr, vcpu->arch.lr);
368 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
369 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
370 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
371 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
372 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
373 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
374 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
375 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
376 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
377 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
378 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
379 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
380 	for (r = 0; r < vcpu->arch.slb_max; ++r)
381 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
382 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
383 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
384 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
385 	       vcpu->arch.last_inst);
386 }
387 
388 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
389 {
390 	struct kvm_vcpu *ret;
391 
392 	mutex_lock(&kvm->lock);
393 	ret = kvm_get_vcpu_by_id(kvm, id);
394 	mutex_unlock(&kvm->lock);
395 	return ret;
396 }
397 
398 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
399 {
400 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
401 	vpa->yield_count = cpu_to_be32(1);
402 }
403 
404 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
405 		   unsigned long addr, unsigned long len)
406 {
407 	/* check address is cacheline aligned */
408 	if (addr & (L1_CACHE_BYTES - 1))
409 		return -EINVAL;
410 	spin_lock(&vcpu->arch.vpa_update_lock);
411 	if (v->next_gpa != addr || v->len != len) {
412 		v->next_gpa = addr;
413 		v->len = addr ? len : 0;
414 		v->update_pending = 1;
415 	}
416 	spin_unlock(&vcpu->arch.vpa_update_lock);
417 	return 0;
418 }
419 
420 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
421 struct reg_vpa {
422 	u32 dummy;
423 	union {
424 		__be16 hword;
425 		__be32 word;
426 	} length;
427 };
428 
429 static int vpa_is_registered(struct kvmppc_vpa *vpap)
430 {
431 	if (vpap->update_pending)
432 		return vpap->next_gpa != 0;
433 	return vpap->pinned_addr != NULL;
434 }
435 
436 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
437 				       unsigned long flags,
438 				       unsigned long vcpuid, unsigned long vpa)
439 {
440 	struct kvm *kvm = vcpu->kvm;
441 	unsigned long len, nb;
442 	void *va;
443 	struct kvm_vcpu *tvcpu;
444 	int err;
445 	int subfunc;
446 	struct kvmppc_vpa *vpap;
447 
448 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
449 	if (!tvcpu)
450 		return H_PARAMETER;
451 
452 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
453 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
454 	    subfunc == H_VPA_REG_SLB) {
455 		/* Registering new area - address must be cache-line aligned */
456 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
457 			return H_PARAMETER;
458 
459 		/* convert logical addr to kernel addr and read length */
460 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
461 		if (va == NULL)
462 			return H_PARAMETER;
463 		if (subfunc == H_VPA_REG_VPA)
464 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
465 		else
466 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
467 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
468 
469 		/* Check length */
470 		if (len > nb || len < sizeof(struct reg_vpa))
471 			return H_PARAMETER;
472 	} else {
473 		vpa = 0;
474 		len = 0;
475 	}
476 
477 	err = H_PARAMETER;
478 	vpap = NULL;
479 	spin_lock(&tvcpu->arch.vpa_update_lock);
480 
481 	switch (subfunc) {
482 	case H_VPA_REG_VPA:		/* register VPA */
483 		if (len < sizeof(struct lppaca))
484 			break;
485 		vpap = &tvcpu->arch.vpa;
486 		err = 0;
487 		break;
488 
489 	case H_VPA_REG_DTL:		/* register DTL */
490 		if (len < sizeof(struct dtl_entry))
491 			break;
492 		len -= len % sizeof(struct dtl_entry);
493 
494 		/* Check that they have previously registered a VPA */
495 		err = H_RESOURCE;
496 		if (!vpa_is_registered(&tvcpu->arch.vpa))
497 			break;
498 
499 		vpap = &tvcpu->arch.dtl;
500 		err = 0;
501 		break;
502 
503 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
504 		/* Check that they have previously registered a VPA */
505 		err = H_RESOURCE;
506 		if (!vpa_is_registered(&tvcpu->arch.vpa))
507 			break;
508 
509 		vpap = &tvcpu->arch.slb_shadow;
510 		err = 0;
511 		break;
512 
513 	case H_VPA_DEREG_VPA:		/* deregister VPA */
514 		/* Check they don't still have a DTL or SLB buf registered */
515 		err = H_RESOURCE;
516 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
517 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
518 			break;
519 
520 		vpap = &tvcpu->arch.vpa;
521 		err = 0;
522 		break;
523 
524 	case H_VPA_DEREG_DTL:		/* deregister DTL */
525 		vpap = &tvcpu->arch.dtl;
526 		err = 0;
527 		break;
528 
529 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
530 		vpap = &tvcpu->arch.slb_shadow;
531 		err = 0;
532 		break;
533 	}
534 
535 	if (vpap) {
536 		vpap->next_gpa = vpa;
537 		vpap->len = len;
538 		vpap->update_pending = 1;
539 	}
540 
541 	spin_unlock(&tvcpu->arch.vpa_update_lock);
542 
543 	return err;
544 }
545 
546 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
547 {
548 	struct kvm *kvm = vcpu->kvm;
549 	void *va;
550 	unsigned long nb;
551 	unsigned long gpa;
552 
553 	/*
554 	 * We need to pin the page pointed to by vpap->next_gpa,
555 	 * but we can't call kvmppc_pin_guest_page under the lock
556 	 * as it does get_user_pages() and down_read().  So we
557 	 * have to drop the lock, pin the page, then get the lock
558 	 * again and check that a new area didn't get registered
559 	 * in the meantime.
560 	 */
561 	for (;;) {
562 		gpa = vpap->next_gpa;
563 		spin_unlock(&vcpu->arch.vpa_update_lock);
564 		va = NULL;
565 		nb = 0;
566 		if (gpa)
567 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
568 		spin_lock(&vcpu->arch.vpa_update_lock);
569 		if (gpa == vpap->next_gpa)
570 			break;
571 		/* sigh... unpin that one and try again */
572 		if (va)
573 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
574 	}
575 
576 	vpap->update_pending = 0;
577 	if (va && nb < vpap->len) {
578 		/*
579 		 * If it's now too short, it must be that userspace
580 		 * has changed the mappings underlying guest memory,
581 		 * so unregister the region.
582 		 */
583 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
584 		va = NULL;
585 	}
586 	if (vpap->pinned_addr)
587 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
588 					vpap->dirty);
589 	vpap->gpa = gpa;
590 	vpap->pinned_addr = va;
591 	vpap->dirty = false;
592 	if (va)
593 		vpap->pinned_end = va + vpap->len;
594 }
595 
596 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
597 {
598 	if (!(vcpu->arch.vpa.update_pending ||
599 	      vcpu->arch.slb_shadow.update_pending ||
600 	      vcpu->arch.dtl.update_pending))
601 		return;
602 
603 	spin_lock(&vcpu->arch.vpa_update_lock);
604 	if (vcpu->arch.vpa.update_pending) {
605 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
606 		if (vcpu->arch.vpa.pinned_addr)
607 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
608 	}
609 	if (vcpu->arch.dtl.update_pending) {
610 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
611 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
612 		vcpu->arch.dtl_index = 0;
613 	}
614 	if (vcpu->arch.slb_shadow.update_pending)
615 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
616 	spin_unlock(&vcpu->arch.vpa_update_lock);
617 }
618 
619 /*
620  * Return the accumulated stolen time for the vcore up until `now'.
621  * The caller should hold the vcore lock.
622  */
623 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
624 {
625 	u64 p;
626 	unsigned long flags;
627 
628 	spin_lock_irqsave(&vc->stoltb_lock, flags);
629 	p = vc->stolen_tb;
630 	if (vc->vcore_state != VCORE_INACTIVE &&
631 	    vc->preempt_tb != TB_NIL)
632 		p += now - vc->preempt_tb;
633 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
634 	return p;
635 }
636 
637 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
638 				    struct kvmppc_vcore *vc)
639 {
640 	struct dtl_entry *dt;
641 	struct lppaca *vpa;
642 	unsigned long stolen;
643 	unsigned long core_stolen;
644 	u64 now;
645 
646 	dt = vcpu->arch.dtl_ptr;
647 	vpa = vcpu->arch.vpa.pinned_addr;
648 	now = mftb();
649 	core_stolen = vcore_stolen_time(vc, now);
650 	stolen = core_stolen - vcpu->arch.stolen_logged;
651 	vcpu->arch.stolen_logged = core_stolen;
652 	spin_lock_irq(&vcpu->arch.tbacct_lock);
653 	stolen += vcpu->arch.busy_stolen;
654 	vcpu->arch.busy_stolen = 0;
655 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
656 	if (!dt || !vpa)
657 		return;
658 	memset(dt, 0, sizeof(struct dtl_entry));
659 	dt->dispatch_reason = 7;
660 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
661 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
662 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
663 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
664 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
665 	++dt;
666 	if (dt == vcpu->arch.dtl.pinned_end)
667 		dt = vcpu->arch.dtl.pinned_addr;
668 	vcpu->arch.dtl_ptr = dt;
669 	/* order writing *dt vs. writing vpa->dtl_idx */
670 	smp_wmb();
671 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
672 	vcpu->arch.dtl.dirty = true;
673 }
674 
675 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
676 {
677 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
678 		return true;
679 	if ((!vcpu->arch.vcore->arch_compat) &&
680 	    cpu_has_feature(CPU_FTR_ARCH_207S))
681 		return true;
682 	return false;
683 }
684 
685 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
686 			     unsigned long resource, unsigned long value1,
687 			     unsigned long value2)
688 {
689 	switch (resource) {
690 	case H_SET_MODE_RESOURCE_SET_CIABR:
691 		if (!kvmppc_power8_compatible(vcpu))
692 			return H_P2;
693 		if (value2)
694 			return H_P4;
695 		if (mflags)
696 			return H_UNSUPPORTED_FLAG_START;
697 		/* Guests can't breakpoint the hypervisor */
698 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
699 			return H_P3;
700 		vcpu->arch.ciabr  = value1;
701 		return H_SUCCESS;
702 	case H_SET_MODE_RESOURCE_SET_DAWR:
703 		if (!kvmppc_power8_compatible(vcpu))
704 			return H_P2;
705 		if (mflags)
706 			return H_UNSUPPORTED_FLAG_START;
707 		if (value2 & DABRX_HYP)
708 			return H_P4;
709 		vcpu->arch.dawr  = value1;
710 		vcpu->arch.dawrx = value2;
711 		return H_SUCCESS;
712 	default:
713 		return H_TOO_HARD;
714 	}
715 }
716 
717 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
718 {
719 	struct kvmppc_vcore *vcore = target->arch.vcore;
720 
721 	/*
722 	 * We expect to have been called by the real mode handler
723 	 * (kvmppc_rm_h_confer()) which would have directly returned
724 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
725 	 * have useful work to do and should not confer) so we don't
726 	 * recheck that here.
727 	 */
728 
729 	spin_lock(&vcore->lock);
730 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
731 	    vcore->vcore_state != VCORE_INACTIVE &&
732 	    vcore->runner)
733 		target = vcore->runner;
734 	spin_unlock(&vcore->lock);
735 
736 	return kvm_vcpu_yield_to(target);
737 }
738 
739 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
740 {
741 	int yield_count = 0;
742 	struct lppaca *lppaca;
743 
744 	spin_lock(&vcpu->arch.vpa_update_lock);
745 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
746 	if (lppaca)
747 		yield_count = be32_to_cpu(lppaca->yield_count);
748 	spin_unlock(&vcpu->arch.vpa_update_lock);
749 	return yield_count;
750 }
751 
752 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
753 {
754 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
755 	unsigned long target, ret = H_SUCCESS;
756 	int yield_count;
757 	struct kvm_vcpu *tvcpu;
758 	int idx, rc;
759 
760 	if (req <= MAX_HCALL_OPCODE &&
761 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
762 		return RESUME_HOST;
763 
764 	switch (req) {
765 	case H_CEDE:
766 		break;
767 	case H_PROD:
768 		target = kvmppc_get_gpr(vcpu, 4);
769 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
770 		if (!tvcpu) {
771 			ret = H_PARAMETER;
772 			break;
773 		}
774 		tvcpu->arch.prodded = 1;
775 		smp_mb();
776 		if (vcpu->arch.ceded) {
777 			if (swait_active(&vcpu->wq)) {
778 				swake_up(&vcpu->wq);
779 				vcpu->stat.halt_wakeup++;
780 			}
781 		}
782 		break;
783 	case H_CONFER:
784 		target = kvmppc_get_gpr(vcpu, 4);
785 		if (target == -1)
786 			break;
787 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
788 		if (!tvcpu) {
789 			ret = H_PARAMETER;
790 			break;
791 		}
792 		yield_count = kvmppc_get_gpr(vcpu, 5);
793 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
794 			break;
795 		kvm_arch_vcpu_yield_to(tvcpu);
796 		break;
797 	case H_REGISTER_VPA:
798 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
799 					kvmppc_get_gpr(vcpu, 5),
800 					kvmppc_get_gpr(vcpu, 6));
801 		break;
802 	case H_RTAS:
803 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
804 			return RESUME_HOST;
805 
806 		idx = srcu_read_lock(&vcpu->kvm->srcu);
807 		rc = kvmppc_rtas_hcall(vcpu);
808 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
809 
810 		if (rc == -ENOENT)
811 			return RESUME_HOST;
812 		else if (rc == 0)
813 			break;
814 
815 		/* Send the error out to userspace via KVM_RUN */
816 		return rc;
817 	case H_LOGICAL_CI_LOAD:
818 		ret = kvmppc_h_logical_ci_load(vcpu);
819 		if (ret == H_TOO_HARD)
820 			return RESUME_HOST;
821 		break;
822 	case H_LOGICAL_CI_STORE:
823 		ret = kvmppc_h_logical_ci_store(vcpu);
824 		if (ret == H_TOO_HARD)
825 			return RESUME_HOST;
826 		break;
827 	case H_SET_MODE:
828 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
829 					kvmppc_get_gpr(vcpu, 5),
830 					kvmppc_get_gpr(vcpu, 6),
831 					kvmppc_get_gpr(vcpu, 7));
832 		if (ret == H_TOO_HARD)
833 			return RESUME_HOST;
834 		break;
835 	case H_XIRR:
836 	case H_CPPR:
837 	case H_EOI:
838 	case H_IPI:
839 	case H_IPOLL:
840 	case H_XIRR_X:
841 		if (kvmppc_xics_enabled(vcpu)) {
842 			ret = kvmppc_xics_hcall(vcpu, req);
843 			break;
844 		}
845 		return RESUME_HOST;
846 	case H_PUT_TCE:
847 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
848 						kvmppc_get_gpr(vcpu, 5),
849 						kvmppc_get_gpr(vcpu, 6));
850 		if (ret == H_TOO_HARD)
851 			return RESUME_HOST;
852 		break;
853 	case H_PUT_TCE_INDIRECT:
854 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
855 						kvmppc_get_gpr(vcpu, 5),
856 						kvmppc_get_gpr(vcpu, 6),
857 						kvmppc_get_gpr(vcpu, 7));
858 		if (ret == H_TOO_HARD)
859 			return RESUME_HOST;
860 		break;
861 	case H_STUFF_TCE:
862 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
863 						kvmppc_get_gpr(vcpu, 5),
864 						kvmppc_get_gpr(vcpu, 6),
865 						kvmppc_get_gpr(vcpu, 7));
866 		if (ret == H_TOO_HARD)
867 			return RESUME_HOST;
868 		break;
869 	default:
870 		return RESUME_HOST;
871 	}
872 	kvmppc_set_gpr(vcpu, 3, ret);
873 	vcpu->arch.hcall_needed = 0;
874 	return RESUME_GUEST;
875 }
876 
877 static int kvmppc_hcall_impl_hv(unsigned long cmd)
878 {
879 	switch (cmd) {
880 	case H_CEDE:
881 	case H_PROD:
882 	case H_CONFER:
883 	case H_REGISTER_VPA:
884 	case H_SET_MODE:
885 	case H_LOGICAL_CI_LOAD:
886 	case H_LOGICAL_CI_STORE:
887 #ifdef CONFIG_KVM_XICS
888 	case H_XIRR:
889 	case H_CPPR:
890 	case H_EOI:
891 	case H_IPI:
892 	case H_IPOLL:
893 	case H_XIRR_X:
894 #endif
895 		return 1;
896 	}
897 
898 	/* See if it's in the real-mode table */
899 	return kvmppc_hcall_impl_hv_realmode(cmd);
900 }
901 
902 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
903 					struct kvm_vcpu *vcpu)
904 {
905 	u32 last_inst;
906 
907 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
908 					EMULATE_DONE) {
909 		/*
910 		 * Fetch failed, so return to guest and
911 		 * try executing it again.
912 		 */
913 		return RESUME_GUEST;
914 	}
915 
916 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
917 		run->exit_reason = KVM_EXIT_DEBUG;
918 		run->debug.arch.address = kvmppc_get_pc(vcpu);
919 		return RESUME_HOST;
920 	} else {
921 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
922 		return RESUME_GUEST;
923 	}
924 }
925 
926 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
927 				 struct task_struct *tsk)
928 {
929 	int r = RESUME_HOST;
930 
931 	vcpu->stat.sum_exits++;
932 
933 	/*
934 	 * This can happen if an interrupt occurs in the last stages
935 	 * of guest entry or the first stages of guest exit (i.e. after
936 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
937 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
938 	 * That can happen due to a bug, or due to a machine check
939 	 * occurring at just the wrong time.
940 	 */
941 	if (vcpu->arch.shregs.msr & MSR_HV) {
942 		printk(KERN_EMERG "KVM trap in HV mode!\n");
943 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
944 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
945 			vcpu->arch.shregs.msr);
946 		kvmppc_dump_regs(vcpu);
947 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
948 		run->hw.hardware_exit_reason = vcpu->arch.trap;
949 		return RESUME_HOST;
950 	}
951 	run->exit_reason = KVM_EXIT_UNKNOWN;
952 	run->ready_for_interrupt_injection = 1;
953 	switch (vcpu->arch.trap) {
954 	/* We're good on these - the host merely wanted to get our attention */
955 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
956 		vcpu->stat.dec_exits++;
957 		r = RESUME_GUEST;
958 		break;
959 	case BOOK3S_INTERRUPT_EXTERNAL:
960 	case BOOK3S_INTERRUPT_H_DOORBELL:
961 	case BOOK3S_INTERRUPT_H_VIRT:
962 		vcpu->stat.ext_intr_exits++;
963 		r = RESUME_GUEST;
964 		break;
965 	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
966 	case BOOK3S_INTERRUPT_HMI:
967 	case BOOK3S_INTERRUPT_PERFMON:
968 		r = RESUME_GUEST;
969 		break;
970 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
971 		/*
972 		 * Deliver a machine check interrupt to the guest.
973 		 * We have to do this, even if the host has handled the
974 		 * machine check, because machine checks use SRR0/1 and
975 		 * the interrupt might have trashed guest state in them.
976 		 */
977 		kvmppc_book3s_queue_irqprio(vcpu,
978 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
979 		r = RESUME_GUEST;
980 		break;
981 	case BOOK3S_INTERRUPT_PROGRAM:
982 	{
983 		ulong flags;
984 		/*
985 		 * Normally program interrupts are delivered directly
986 		 * to the guest by the hardware, but we can get here
987 		 * as a result of a hypervisor emulation interrupt
988 		 * (e40) getting turned into a 700 by BML RTAS.
989 		 */
990 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
991 		kvmppc_core_queue_program(vcpu, flags);
992 		r = RESUME_GUEST;
993 		break;
994 	}
995 	case BOOK3S_INTERRUPT_SYSCALL:
996 	{
997 		/* hcall - punt to userspace */
998 		int i;
999 
1000 		/* hypercall with MSR_PR has already been handled in rmode,
1001 		 * and never reaches here.
1002 		 */
1003 
1004 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1005 		for (i = 0; i < 9; ++i)
1006 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1007 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1008 		vcpu->arch.hcall_needed = 1;
1009 		r = RESUME_HOST;
1010 		break;
1011 	}
1012 	/*
1013 	 * We get these next two if the guest accesses a page which it thinks
1014 	 * it has mapped but which is not actually present, either because
1015 	 * it is for an emulated I/O device or because the corresonding
1016 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1017 	 * have been handled already.
1018 	 */
1019 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1020 		r = RESUME_PAGE_FAULT;
1021 		break;
1022 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1023 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1024 		vcpu->arch.fault_dsisr = 0;
1025 		r = RESUME_PAGE_FAULT;
1026 		break;
1027 	/*
1028 	 * This occurs if the guest executes an illegal instruction.
1029 	 * If the guest debug is disabled, generate a program interrupt
1030 	 * to the guest. If guest debug is enabled, we need to check
1031 	 * whether the instruction is a software breakpoint instruction.
1032 	 * Accordingly return to Guest or Host.
1033 	 */
1034 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1035 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1036 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1037 				swab32(vcpu->arch.emul_inst) :
1038 				vcpu->arch.emul_inst;
1039 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1040 			r = kvmppc_emulate_debug_inst(run, vcpu);
1041 		} else {
1042 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1043 			r = RESUME_GUEST;
1044 		}
1045 		break;
1046 	/*
1047 	 * This occurs if the guest (kernel or userspace), does something that
1048 	 * is prohibited by HFSCR.  We just generate a program interrupt to
1049 	 * the guest.
1050 	 */
1051 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1052 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1053 		r = RESUME_GUEST;
1054 		break;
1055 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1056 		r = RESUME_PASSTHROUGH;
1057 		break;
1058 	default:
1059 		kvmppc_dump_regs(vcpu);
1060 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1061 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1062 			vcpu->arch.shregs.msr);
1063 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1064 		r = RESUME_HOST;
1065 		break;
1066 	}
1067 
1068 	return r;
1069 }
1070 
1071 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1072 					    struct kvm_sregs *sregs)
1073 {
1074 	int i;
1075 
1076 	memset(sregs, 0, sizeof(struct kvm_sregs));
1077 	sregs->pvr = vcpu->arch.pvr;
1078 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1079 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1080 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1087 					    struct kvm_sregs *sregs)
1088 {
1089 	int i, j;
1090 
1091 	/* Only accept the same PVR as the host's, since we can't spoof it */
1092 	if (sregs->pvr != vcpu->arch.pvr)
1093 		return -EINVAL;
1094 
1095 	j = 0;
1096 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1097 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1098 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1099 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1100 			++j;
1101 		}
1102 	}
1103 	vcpu->arch.slb_max = j;
1104 
1105 	return 0;
1106 }
1107 
1108 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1109 		bool preserve_top32)
1110 {
1111 	struct kvm *kvm = vcpu->kvm;
1112 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1113 	u64 mask;
1114 
1115 	mutex_lock(&kvm->lock);
1116 	spin_lock(&vc->lock);
1117 	/*
1118 	 * If ILE (interrupt little-endian) has changed, update the
1119 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1120 	 */
1121 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1122 		struct kvm_vcpu *vcpu;
1123 		int i;
1124 
1125 		kvm_for_each_vcpu(i, vcpu, kvm) {
1126 			if (vcpu->arch.vcore != vc)
1127 				continue;
1128 			if (new_lpcr & LPCR_ILE)
1129 				vcpu->arch.intr_msr |= MSR_LE;
1130 			else
1131 				vcpu->arch.intr_msr &= ~MSR_LE;
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * Userspace can only modify DPFD (default prefetch depth),
1137 	 * ILE (interrupt little-endian) and TC (translation control).
1138 	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1139 	 */
1140 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1141 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1142 		mask |= LPCR_AIL;
1143 
1144 	/* Broken 32-bit version of LPCR must not clear top bits */
1145 	if (preserve_top32)
1146 		mask &= 0xFFFFFFFF;
1147 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1148 	spin_unlock(&vc->lock);
1149 	mutex_unlock(&kvm->lock);
1150 }
1151 
1152 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1153 				 union kvmppc_one_reg *val)
1154 {
1155 	int r = 0;
1156 	long int i;
1157 
1158 	switch (id) {
1159 	case KVM_REG_PPC_DEBUG_INST:
1160 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1161 		break;
1162 	case KVM_REG_PPC_HIOR:
1163 		*val = get_reg_val(id, 0);
1164 		break;
1165 	case KVM_REG_PPC_DABR:
1166 		*val = get_reg_val(id, vcpu->arch.dabr);
1167 		break;
1168 	case KVM_REG_PPC_DABRX:
1169 		*val = get_reg_val(id, vcpu->arch.dabrx);
1170 		break;
1171 	case KVM_REG_PPC_DSCR:
1172 		*val = get_reg_val(id, vcpu->arch.dscr);
1173 		break;
1174 	case KVM_REG_PPC_PURR:
1175 		*val = get_reg_val(id, vcpu->arch.purr);
1176 		break;
1177 	case KVM_REG_PPC_SPURR:
1178 		*val = get_reg_val(id, vcpu->arch.spurr);
1179 		break;
1180 	case KVM_REG_PPC_AMR:
1181 		*val = get_reg_val(id, vcpu->arch.amr);
1182 		break;
1183 	case KVM_REG_PPC_UAMOR:
1184 		*val = get_reg_val(id, vcpu->arch.uamor);
1185 		break;
1186 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1187 		i = id - KVM_REG_PPC_MMCR0;
1188 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1189 		break;
1190 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1191 		i = id - KVM_REG_PPC_PMC1;
1192 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1193 		break;
1194 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1195 		i = id - KVM_REG_PPC_SPMC1;
1196 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1197 		break;
1198 	case KVM_REG_PPC_SIAR:
1199 		*val = get_reg_val(id, vcpu->arch.siar);
1200 		break;
1201 	case KVM_REG_PPC_SDAR:
1202 		*val = get_reg_val(id, vcpu->arch.sdar);
1203 		break;
1204 	case KVM_REG_PPC_SIER:
1205 		*val = get_reg_val(id, vcpu->arch.sier);
1206 		break;
1207 	case KVM_REG_PPC_IAMR:
1208 		*val = get_reg_val(id, vcpu->arch.iamr);
1209 		break;
1210 	case KVM_REG_PPC_PSPB:
1211 		*val = get_reg_val(id, vcpu->arch.pspb);
1212 		break;
1213 	case KVM_REG_PPC_DPDES:
1214 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1215 		break;
1216 	case KVM_REG_PPC_VTB:
1217 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1218 		break;
1219 	case KVM_REG_PPC_DAWR:
1220 		*val = get_reg_val(id, vcpu->arch.dawr);
1221 		break;
1222 	case KVM_REG_PPC_DAWRX:
1223 		*val = get_reg_val(id, vcpu->arch.dawrx);
1224 		break;
1225 	case KVM_REG_PPC_CIABR:
1226 		*val = get_reg_val(id, vcpu->arch.ciabr);
1227 		break;
1228 	case KVM_REG_PPC_CSIGR:
1229 		*val = get_reg_val(id, vcpu->arch.csigr);
1230 		break;
1231 	case KVM_REG_PPC_TACR:
1232 		*val = get_reg_val(id, vcpu->arch.tacr);
1233 		break;
1234 	case KVM_REG_PPC_TCSCR:
1235 		*val = get_reg_val(id, vcpu->arch.tcscr);
1236 		break;
1237 	case KVM_REG_PPC_PID:
1238 		*val = get_reg_val(id, vcpu->arch.pid);
1239 		break;
1240 	case KVM_REG_PPC_ACOP:
1241 		*val = get_reg_val(id, vcpu->arch.acop);
1242 		break;
1243 	case KVM_REG_PPC_WORT:
1244 		*val = get_reg_val(id, vcpu->arch.wort);
1245 		break;
1246 	case KVM_REG_PPC_TIDR:
1247 		*val = get_reg_val(id, vcpu->arch.tid);
1248 		break;
1249 	case KVM_REG_PPC_PSSCR:
1250 		*val = get_reg_val(id, vcpu->arch.psscr);
1251 		break;
1252 	case KVM_REG_PPC_VPA_ADDR:
1253 		spin_lock(&vcpu->arch.vpa_update_lock);
1254 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1255 		spin_unlock(&vcpu->arch.vpa_update_lock);
1256 		break;
1257 	case KVM_REG_PPC_VPA_SLB:
1258 		spin_lock(&vcpu->arch.vpa_update_lock);
1259 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1260 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1261 		spin_unlock(&vcpu->arch.vpa_update_lock);
1262 		break;
1263 	case KVM_REG_PPC_VPA_DTL:
1264 		spin_lock(&vcpu->arch.vpa_update_lock);
1265 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1266 		val->vpaval.length = vcpu->arch.dtl.len;
1267 		spin_unlock(&vcpu->arch.vpa_update_lock);
1268 		break;
1269 	case KVM_REG_PPC_TB_OFFSET:
1270 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1271 		break;
1272 	case KVM_REG_PPC_LPCR:
1273 	case KVM_REG_PPC_LPCR_64:
1274 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1275 		break;
1276 	case KVM_REG_PPC_PPR:
1277 		*val = get_reg_val(id, vcpu->arch.ppr);
1278 		break;
1279 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1280 	case KVM_REG_PPC_TFHAR:
1281 		*val = get_reg_val(id, vcpu->arch.tfhar);
1282 		break;
1283 	case KVM_REG_PPC_TFIAR:
1284 		*val = get_reg_val(id, vcpu->arch.tfiar);
1285 		break;
1286 	case KVM_REG_PPC_TEXASR:
1287 		*val = get_reg_val(id, vcpu->arch.texasr);
1288 		break;
1289 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1290 		i = id - KVM_REG_PPC_TM_GPR0;
1291 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1292 		break;
1293 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1294 	{
1295 		int j;
1296 		i = id - KVM_REG_PPC_TM_VSR0;
1297 		if (i < 32)
1298 			for (j = 0; j < TS_FPRWIDTH; j++)
1299 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1300 		else {
1301 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1302 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1303 			else
1304 				r = -ENXIO;
1305 		}
1306 		break;
1307 	}
1308 	case KVM_REG_PPC_TM_CR:
1309 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1310 		break;
1311 	case KVM_REG_PPC_TM_XER:
1312 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1313 		break;
1314 	case KVM_REG_PPC_TM_LR:
1315 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1316 		break;
1317 	case KVM_REG_PPC_TM_CTR:
1318 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1319 		break;
1320 	case KVM_REG_PPC_TM_FPSCR:
1321 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1322 		break;
1323 	case KVM_REG_PPC_TM_AMR:
1324 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1325 		break;
1326 	case KVM_REG_PPC_TM_PPR:
1327 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1328 		break;
1329 	case KVM_REG_PPC_TM_VRSAVE:
1330 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1331 		break;
1332 	case KVM_REG_PPC_TM_VSCR:
1333 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1334 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1335 		else
1336 			r = -ENXIO;
1337 		break;
1338 	case KVM_REG_PPC_TM_DSCR:
1339 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1340 		break;
1341 	case KVM_REG_PPC_TM_TAR:
1342 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1343 		break;
1344 #endif
1345 	case KVM_REG_PPC_ARCH_COMPAT:
1346 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1347 		break;
1348 	default:
1349 		r = -EINVAL;
1350 		break;
1351 	}
1352 
1353 	return r;
1354 }
1355 
1356 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1357 				 union kvmppc_one_reg *val)
1358 {
1359 	int r = 0;
1360 	long int i;
1361 	unsigned long addr, len;
1362 
1363 	switch (id) {
1364 	case KVM_REG_PPC_HIOR:
1365 		/* Only allow this to be set to zero */
1366 		if (set_reg_val(id, *val))
1367 			r = -EINVAL;
1368 		break;
1369 	case KVM_REG_PPC_DABR:
1370 		vcpu->arch.dabr = set_reg_val(id, *val);
1371 		break;
1372 	case KVM_REG_PPC_DABRX:
1373 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1374 		break;
1375 	case KVM_REG_PPC_DSCR:
1376 		vcpu->arch.dscr = set_reg_val(id, *val);
1377 		break;
1378 	case KVM_REG_PPC_PURR:
1379 		vcpu->arch.purr = set_reg_val(id, *val);
1380 		break;
1381 	case KVM_REG_PPC_SPURR:
1382 		vcpu->arch.spurr = set_reg_val(id, *val);
1383 		break;
1384 	case KVM_REG_PPC_AMR:
1385 		vcpu->arch.amr = set_reg_val(id, *val);
1386 		break;
1387 	case KVM_REG_PPC_UAMOR:
1388 		vcpu->arch.uamor = set_reg_val(id, *val);
1389 		break;
1390 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1391 		i = id - KVM_REG_PPC_MMCR0;
1392 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1393 		break;
1394 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1395 		i = id - KVM_REG_PPC_PMC1;
1396 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1397 		break;
1398 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1399 		i = id - KVM_REG_PPC_SPMC1;
1400 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1401 		break;
1402 	case KVM_REG_PPC_SIAR:
1403 		vcpu->arch.siar = set_reg_val(id, *val);
1404 		break;
1405 	case KVM_REG_PPC_SDAR:
1406 		vcpu->arch.sdar = set_reg_val(id, *val);
1407 		break;
1408 	case KVM_REG_PPC_SIER:
1409 		vcpu->arch.sier = set_reg_val(id, *val);
1410 		break;
1411 	case KVM_REG_PPC_IAMR:
1412 		vcpu->arch.iamr = set_reg_val(id, *val);
1413 		break;
1414 	case KVM_REG_PPC_PSPB:
1415 		vcpu->arch.pspb = set_reg_val(id, *val);
1416 		break;
1417 	case KVM_REG_PPC_DPDES:
1418 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1419 		break;
1420 	case KVM_REG_PPC_VTB:
1421 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1422 		break;
1423 	case KVM_REG_PPC_DAWR:
1424 		vcpu->arch.dawr = set_reg_val(id, *val);
1425 		break;
1426 	case KVM_REG_PPC_DAWRX:
1427 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1428 		break;
1429 	case KVM_REG_PPC_CIABR:
1430 		vcpu->arch.ciabr = set_reg_val(id, *val);
1431 		/* Don't allow setting breakpoints in hypervisor code */
1432 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1433 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1434 		break;
1435 	case KVM_REG_PPC_CSIGR:
1436 		vcpu->arch.csigr = set_reg_val(id, *val);
1437 		break;
1438 	case KVM_REG_PPC_TACR:
1439 		vcpu->arch.tacr = set_reg_val(id, *val);
1440 		break;
1441 	case KVM_REG_PPC_TCSCR:
1442 		vcpu->arch.tcscr = set_reg_val(id, *val);
1443 		break;
1444 	case KVM_REG_PPC_PID:
1445 		vcpu->arch.pid = set_reg_val(id, *val);
1446 		break;
1447 	case KVM_REG_PPC_ACOP:
1448 		vcpu->arch.acop = set_reg_val(id, *val);
1449 		break;
1450 	case KVM_REG_PPC_WORT:
1451 		vcpu->arch.wort = set_reg_val(id, *val);
1452 		break;
1453 	case KVM_REG_PPC_TIDR:
1454 		vcpu->arch.tid = set_reg_val(id, *val);
1455 		break;
1456 	case KVM_REG_PPC_PSSCR:
1457 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1458 		break;
1459 	case KVM_REG_PPC_VPA_ADDR:
1460 		addr = set_reg_val(id, *val);
1461 		r = -EINVAL;
1462 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1463 			      vcpu->arch.dtl.next_gpa))
1464 			break;
1465 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1466 		break;
1467 	case KVM_REG_PPC_VPA_SLB:
1468 		addr = val->vpaval.addr;
1469 		len = val->vpaval.length;
1470 		r = -EINVAL;
1471 		if (addr && !vcpu->arch.vpa.next_gpa)
1472 			break;
1473 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1474 		break;
1475 	case KVM_REG_PPC_VPA_DTL:
1476 		addr = val->vpaval.addr;
1477 		len = val->vpaval.length;
1478 		r = -EINVAL;
1479 		if (addr && (len < sizeof(struct dtl_entry) ||
1480 			     !vcpu->arch.vpa.next_gpa))
1481 			break;
1482 		len -= len % sizeof(struct dtl_entry);
1483 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1484 		break;
1485 	case KVM_REG_PPC_TB_OFFSET:
1486 		/* round up to multiple of 2^24 */
1487 		vcpu->arch.vcore->tb_offset =
1488 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1489 		break;
1490 	case KVM_REG_PPC_LPCR:
1491 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1492 		break;
1493 	case KVM_REG_PPC_LPCR_64:
1494 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1495 		break;
1496 	case KVM_REG_PPC_PPR:
1497 		vcpu->arch.ppr = set_reg_val(id, *val);
1498 		break;
1499 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1500 	case KVM_REG_PPC_TFHAR:
1501 		vcpu->arch.tfhar = set_reg_val(id, *val);
1502 		break;
1503 	case KVM_REG_PPC_TFIAR:
1504 		vcpu->arch.tfiar = set_reg_val(id, *val);
1505 		break;
1506 	case KVM_REG_PPC_TEXASR:
1507 		vcpu->arch.texasr = set_reg_val(id, *val);
1508 		break;
1509 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1510 		i = id - KVM_REG_PPC_TM_GPR0;
1511 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1512 		break;
1513 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1514 	{
1515 		int j;
1516 		i = id - KVM_REG_PPC_TM_VSR0;
1517 		if (i < 32)
1518 			for (j = 0; j < TS_FPRWIDTH; j++)
1519 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1520 		else
1521 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1522 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1523 			else
1524 				r = -ENXIO;
1525 		break;
1526 	}
1527 	case KVM_REG_PPC_TM_CR:
1528 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1529 		break;
1530 	case KVM_REG_PPC_TM_XER:
1531 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1532 		break;
1533 	case KVM_REG_PPC_TM_LR:
1534 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1535 		break;
1536 	case KVM_REG_PPC_TM_CTR:
1537 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1538 		break;
1539 	case KVM_REG_PPC_TM_FPSCR:
1540 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1541 		break;
1542 	case KVM_REG_PPC_TM_AMR:
1543 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1544 		break;
1545 	case KVM_REG_PPC_TM_PPR:
1546 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1547 		break;
1548 	case KVM_REG_PPC_TM_VRSAVE:
1549 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1550 		break;
1551 	case KVM_REG_PPC_TM_VSCR:
1552 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1553 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1554 		else
1555 			r = - ENXIO;
1556 		break;
1557 	case KVM_REG_PPC_TM_DSCR:
1558 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1559 		break;
1560 	case KVM_REG_PPC_TM_TAR:
1561 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1562 		break;
1563 #endif
1564 	case KVM_REG_PPC_ARCH_COMPAT:
1565 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1566 		break;
1567 	default:
1568 		r = -EINVAL;
1569 		break;
1570 	}
1571 
1572 	return r;
1573 }
1574 
1575 /*
1576  * On POWER9, threads are independent and can be in different partitions.
1577  * Therefore we consider each thread to be a subcore.
1578  * There is a restriction that all threads have to be in the same
1579  * MMU mode (radix or HPT), unfortunately, but since we only support
1580  * HPT guests on a HPT host so far, that isn't an impediment yet.
1581  */
1582 static int threads_per_vcore(void)
1583 {
1584 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1585 		return 1;
1586 	return threads_per_subcore;
1587 }
1588 
1589 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1590 {
1591 	struct kvmppc_vcore *vcore;
1592 
1593 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1594 
1595 	if (vcore == NULL)
1596 		return NULL;
1597 
1598 	spin_lock_init(&vcore->lock);
1599 	spin_lock_init(&vcore->stoltb_lock);
1600 	init_swait_queue_head(&vcore->wq);
1601 	vcore->preempt_tb = TB_NIL;
1602 	vcore->lpcr = kvm->arch.lpcr;
1603 	vcore->first_vcpuid = core * threads_per_vcore();
1604 	vcore->kvm = kvm;
1605 	INIT_LIST_HEAD(&vcore->preempt_list);
1606 
1607 	return vcore;
1608 }
1609 
1610 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1611 static struct debugfs_timings_element {
1612 	const char *name;
1613 	size_t offset;
1614 } timings[] = {
1615 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1616 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1617 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1618 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1619 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1620 };
1621 
1622 #define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))
1623 
1624 struct debugfs_timings_state {
1625 	struct kvm_vcpu	*vcpu;
1626 	unsigned int	buflen;
1627 	char		buf[N_TIMINGS * 100];
1628 };
1629 
1630 static int debugfs_timings_open(struct inode *inode, struct file *file)
1631 {
1632 	struct kvm_vcpu *vcpu = inode->i_private;
1633 	struct debugfs_timings_state *p;
1634 
1635 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1636 	if (!p)
1637 		return -ENOMEM;
1638 
1639 	kvm_get_kvm(vcpu->kvm);
1640 	p->vcpu = vcpu;
1641 	file->private_data = p;
1642 
1643 	return nonseekable_open(inode, file);
1644 }
1645 
1646 static int debugfs_timings_release(struct inode *inode, struct file *file)
1647 {
1648 	struct debugfs_timings_state *p = file->private_data;
1649 
1650 	kvm_put_kvm(p->vcpu->kvm);
1651 	kfree(p);
1652 	return 0;
1653 }
1654 
1655 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1656 				    size_t len, loff_t *ppos)
1657 {
1658 	struct debugfs_timings_state *p = file->private_data;
1659 	struct kvm_vcpu *vcpu = p->vcpu;
1660 	char *s, *buf_end;
1661 	struct kvmhv_tb_accumulator tb;
1662 	u64 count;
1663 	loff_t pos;
1664 	ssize_t n;
1665 	int i, loops;
1666 	bool ok;
1667 
1668 	if (!p->buflen) {
1669 		s = p->buf;
1670 		buf_end = s + sizeof(p->buf);
1671 		for (i = 0; i < N_TIMINGS; ++i) {
1672 			struct kvmhv_tb_accumulator *acc;
1673 
1674 			acc = (struct kvmhv_tb_accumulator *)
1675 				((unsigned long)vcpu + timings[i].offset);
1676 			ok = false;
1677 			for (loops = 0; loops < 1000; ++loops) {
1678 				count = acc->seqcount;
1679 				if (!(count & 1)) {
1680 					smp_rmb();
1681 					tb = *acc;
1682 					smp_rmb();
1683 					if (count == acc->seqcount) {
1684 						ok = true;
1685 						break;
1686 					}
1687 				}
1688 				udelay(1);
1689 			}
1690 			if (!ok)
1691 				snprintf(s, buf_end - s, "%s: stuck\n",
1692 					timings[i].name);
1693 			else
1694 				snprintf(s, buf_end - s,
1695 					"%s: %llu %llu %llu %llu\n",
1696 					timings[i].name, count / 2,
1697 					tb_to_ns(tb.tb_total),
1698 					tb_to_ns(tb.tb_min),
1699 					tb_to_ns(tb.tb_max));
1700 			s += strlen(s);
1701 		}
1702 		p->buflen = s - p->buf;
1703 	}
1704 
1705 	pos = *ppos;
1706 	if (pos >= p->buflen)
1707 		return 0;
1708 	if (len > p->buflen - pos)
1709 		len = p->buflen - pos;
1710 	n = copy_to_user(buf, p->buf + pos, len);
1711 	if (n) {
1712 		if (n == len)
1713 			return -EFAULT;
1714 		len -= n;
1715 	}
1716 	*ppos = pos + len;
1717 	return len;
1718 }
1719 
1720 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1721 				     size_t len, loff_t *ppos)
1722 {
1723 	return -EACCES;
1724 }
1725 
1726 static const struct file_operations debugfs_timings_ops = {
1727 	.owner	 = THIS_MODULE,
1728 	.open	 = debugfs_timings_open,
1729 	.release = debugfs_timings_release,
1730 	.read	 = debugfs_timings_read,
1731 	.write	 = debugfs_timings_write,
1732 	.llseek	 = generic_file_llseek,
1733 };
1734 
1735 /* Create a debugfs directory for the vcpu */
1736 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1737 {
1738 	char buf[16];
1739 	struct kvm *kvm = vcpu->kvm;
1740 
1741 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1742 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1743 		return;
1744 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1745 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1746 		return;
1747 	vcpu->arch.debugfs_timings =
1748 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1749 				    vcpu, &debugfs_timings_ops);
1750 }
1751 
1752 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1753 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1754 {
1755 }
1756 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1757 
1758 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1759 						   unsigned int id)
1760 {
1761 	struct kvm_vcpu *vcpu;
1762 	int err = -EINVAL;
1763 	int core;
1764 	struct kvmppc_vcore *vcore;
1765 
1766 	core = id / threads_per_vcore();
1767 	if (core >= KVM_MAX_VCORES)
1768 		goto out;
1769 
1770 	err = -ENOMEM;
1771 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1772 	if (!vcpu)
1773 		goto out;
1774 
1775 	err = kvm_vcpu_init(vcpu, kvm, id);
1776 	if (err)
1777 		goto free_vcpu;
1778 
1779 	vcpu->arch.shared = &vcpu->arch.shregs;
1780 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1781 	/*
1782 	 * The shared struct is never shared on HV,
1783 	 * so we can always use host endianness
1784 	 */
1785 #ifdef __BIG_ENDIAN__
1786 	vcpu->arch.shared_big_endian = true;
1787 #else
1788 	vcpu->arch.shared_big_endian = false;
1789 #endif
1790 #endif
1791 	vcpu->arch.mmcr[0] = MMCR0_FC;
1792 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1793 	/* default to host PVR, since we can't spoof it */
1794 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1795 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1796 	spin_lock_init(&vcpu->arch.tbacct_lock);
1797 	vcpu->arch.busy_preempt = TB_NIL;
1798 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1799 
1800 	kvmppc_mmu_book3s_hv_init(vcpu);
1801 
1802 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1803 
1804 	init_waitqueue_head(&vcpu->arch.cpu_run);
1805 
1806 	mutex_lock(&kvm->lock);
1807 	vcore = kvm->arch.vcores[core];
1808 	if (!vcore) {
1809 		vcore = kvmppc_vcore_create(kvm, core);
1810 		kvm->arch.vcores[core] = vcore;
1811 		kvm->arch.online_vcores++;
1812 	}
1813 	mutex_unlock(&kvm->lock);
1814 
1815 	if (!vcore)
1816 		goto free_vcpu;
1817 
1818 	spin_lock(&vcore->lock);
1819 	++vcore->num_threads;
1820 	spin_unlock(&vcore->lock);
1821 	vcpu->arch.vcore = vcore;
1822 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1823 	vcpu->arch.thread_cpu = -1;
1824 
1825 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1826 	kvmppc_sanity_check(vcpu);
1827 
1828 	debugfs_vcpu_init(vcpu, id);
1829 
1830 	return vcpu;
1831 
1832 free_vcpu:
1833 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1834 out:
1835 	return ERR_PTR(err);
1836 }
1837 
1838 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1839 {
1840 	if (vpa->pinned_addr)
1841 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1842 					vpa->dirty);
1843 }
1844 
1845 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1846 {
1847 	spin_lock(&vcpu->arch.vpa_update_lock);
1848 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1849 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1850 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1851 	spin_unlock(&vcpu->arch.vpa_update_lock);
1852 	kvm_vcpu_uninit(vcpu);
1853 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1854 }
1855 
1856 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1857 {
1858 	/* Indicate we want to get back into the guest */
1859 	return 1;
1860 }
1861 
1862 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1863 {
1864 	unsigned long dec_nsec, now;
1865 
1866 	now = get_tb();
1867 	if (now > vcpu->arch.dec_expires) {
1868 		/* decrementer has already gone negative */
1869 		kvmppc_core_queue_dec(vcpu);
1870 		kvmppc_core_prepare_to_enter(vcpu);
1871 		return;
1872 	}
1873 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1874 		   / tb_ticks_per_sec;
1875 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1876 		      HRTIMER_MODE_REL);
1877 	vcpu->arch.timer_running = 1;
1878 }
1879 
1880 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1881 {
1882 	vcpu->arch.ceded = 0;
1883 	if (vcpu->arch.timer_running) {
1884 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1885 		vcpu->arch.timer_running = 0;
1886 	}
1887 }
1888 
1889 extern void __kvmppc_vcore_entry(void);
1890 
1891 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1892 				   struct kvm_vcpu *vcpu)
1893 {
1894 	u64 now;
1895 
1896 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1897 		return;
1898 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1899 	now = mftb();
1900 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1901 		vcpu->arch.stolen_logged;
1902 	vcpu->arch.busy_preempt = now;
1903 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1904 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1905 	--vc->n_runnable;
1906 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1907 }
1908 
1909 static int kvmppc_grab_hwthread(int cpu)
1910 {
1911 	struct paca_struct *tpaca;
1912 	long timeout = 10000;
1913 
1914 	tpaca = &paca[cpu];
1915 
1916 	/* Ensure the thread won't go into the kernel if it wakes */
1917 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1918 	tpaca->kvm_hstate.kvm_vcore = NULL;
1919 	tpaca->kvm_hstate.napping = 0;
1920 	smp_wmb();
1921 	tpaca->kvm_hstate.hwthread_req = 1;
1922 
1923 	/*
1924 	 * If the thread is already executing in the kernel (e.g. handling
1925 	 * a stray interrupt), wait for it to get back to nap mode.
1926 	 * The smp_mb() is to ensure that our setting of hwthread_req
1927 	 * is visible before we look at hwthread_state, so if this
1928 	 * races with the code at system_reset_pSeries and the thread
1929 	 * misses our setting of hwthread_req, we are sure to see its
1930 	 * setting of hwthread_state, and vice versa.
1931 	 */
1932 	smp_mb();
1933 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1934 		if (--timeout <= 0) {
1935 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1936 			return -EBUSY;
1937 		}
1938 		udelay(1);
1939 	}
1940 	return 0;
1941 }
1942 
1943 static void kvmppc_release_hwthread(int cpu)
1944 {
1945 	struct paca_struct *tpaca;
1946 
1947 	tpaca = &paca[cpu];
1948 	tpaca->kvm_hstate.hwthread_req = 0;
1949 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1950 	tpaca->kvm_hstate.kvm_vcore = NULL;
1951 	tpaca->kvm_hstate.kvm_split_mode = NULL;
1952 }
1953 
1954 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1955 {
1956 	int cpu;
1957 	struct paca_struct *tpaca;
1958 	struct kvmppc_vcore *mvc = vc->master_vcore;
1959 
1960 	cpu = vc->pcpu;
1961 	if (vcpu) {
1962 		if (vcpu->arch.timer_running) {
1963 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1964 			vcpu->arch.timer_running = 0;
1965 		}
1966 		cpu += vcpu->arch.ptid;
1967 		vcpu->cpu = mvc->pcpu;
1968 		vcpu->arch.thread_cpu = cpu;
1969 	}
1970 	tpaca = &paca[cpu];
1971 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1972 	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1973 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1974 	smp_wmb();
1975 	tpaca->kvm_hstate.kvm_vcore = mvc;
1976 	if (cpu != smp_processor_id())
1977 		kvmppc_ipi_thread(cpu);
1978 }
1979 
1980 static void kvmppc_wait_for_nap(void)
1981 {
1982 	int cpu = smp_processor_id();
1983 	int i, loops;
1984 	int n_threads = threads_per_vcore();
1985 
1986 	if (n_threads <= 1)
1987 		return;
1988 	for (loops = 0; loops < 1000000; ++loops) {
1989 		/*
1990 		 * Check if all threads are finished.
1991 		 * We set the vcore pointer when starting a thread
1992 		 * and the thread clears it when finished, so we look
1993 		 * for any threads that still have a non-NULL vcore ptr.
1994 		 */
1995 		for (i = 1; i < n_threads; ++i)
1996 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
1997 				break;
1998 		if (i == n_threads) {
1999 			HMT_medium();
2000 			return;
2001 		}
2002 		HMT_low();
2003 	}
2004 	HMT_medium();
2005 	for (i = 1; i < n_threads; ++i)
2006 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2007 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2008 }
2009 
2010 /*
2011  * Check that we are on thread 0 and that any other threads in
2012  * this core are off-line.  Then grab the threads so they can't
2013  * enter the kernel.
2014  */
2015 static int on_primary_thread(void)
2016 {
2017 	int cpu = smp_processor_id();
2018 	int thr;
2019 
2020 	/* Are we on a primary subcore? */
2021 	if (cpu_thread_in_subcore(cpu))
2022 		return 0;
2023 
2024 	thr = 0;
2025 	while (++thr < threads_per_subcore)
2026 		if (cpu_online(cpu + thr))
2027 			return 0;
2028 
2029 	/* Grab all hw threads so they can't go into the kernel */
2030 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2031 		if (kvmppc_grab_hwthread(cpu + thr)) {
2032 			/* Couldn't grab one; let the others go */
2033 			do {
2034 				kvmppc_release_hwthread(cpu + thr);
2035 			} while (--thr > 0);
2036 			return 0;
2037 		}
2038 	}
2039 	return 1;
2040 }
2041 
2042 /*
2043  * A list of virtual cores for each physical CPU.
2044  * These are vcores that could run but their runner VCPU tasks are
2045  * (or may be) preempted.
2046  */
2047 struct preempted_vcore_list {
2048 	struct list_head	list;
2049 	spinlock_t		lock;
2050 };
2051 
2052 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2053 
2054 static void init_vcore_lists(void)
2055 {
2056 	int cpu;
2057 
2058 	for_each_possible_cpu(cpu) {
2059 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2060 		spin_lock_init(&lp->lock);
2061 		INIT_LIST_HEAD(&lp->list);
2062 	}
2063 }
2064 
2065 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2066 {
2067 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2068 
2069 	vc->vcore_state = VCORE_PREEMPT;
2070 	vc->pcpu = smp_processor_id();
2071 	if (vc->num_threads < threads_per_vcore()) {
2072 		spin_lock(&lp->lock);
2073 		list_add_tail(&vc->preempt_list, &lp->list);
2074 		spin_unlock(&lp->lock);
2075 	}
2076 
2077 	/* Start accumulating stolen time */
2078 	kvmppc_core_start_stolen(vc);
2079 }
2080 
2081 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2082 {
2083 	struct preempted_vcore_list *lp;
2084 
2085 	kvmppc_core_end_stolen(vc);
2086 	if (!list_empty(&vc->preempt_list)) {
2087 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2088 		spin_lock(&lp->lock);
2089 		list_del_init(&vc->preempt_list);
2090 		spin_unlock(&lp->lock);
2091 	}
2092 	vc->vcore_state = VCORE_INACTIVE;
2093 }
2094 
2095 /*
2096  * This stores information about the virtual cores currently
2097  * assigned to a physical core.
2098  */
2099 struct core_info {
2100 	int		n_subcores;
2101 	int		max_subcore_threads;
2102 	int		total_threads;
2103 	int		subcore_threads[MAX_SUBCORES];
2104 	struct kvm	*subcore_vm[MAX_SUBCORES];
2105 	struct list_head vcs[MAX_SUBCORES];
2106 };
2107 
2108 /*
2109  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2110  * respectively in 2-way micro-threading (split-core) mode.
2111  */
2112 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2113 
2114 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2115 {
2116 	int sub;
2117 
2118 	memset(cip, 0, sizeof(*cip));
2119 	cip->n_subcores = 1;
2120 	cip->max_subcore_threads = vc->num_threads;
2121 	cip->total_threads = vc->num_threads;
2122 	cip->subcore_threads[0] = vc->num_threads;
2123 	cip->subcore_vm[0] = vc->kvm;
2124 	for (sub = 0; sub < MAX_SUBCORES; ++sub)
2125 		INIT_LIST_HEAD(&cip->vcs[sub]);
2126 	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2127 }
2128 
2129 static bool subcore_config_ok(int n_subcores, int n_threads)
2130 {
2131 	/* Can only dynamically split if unsplit to begin with */
2132 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2133 		return false;
2134 	if (n_subcores > MAX_SUBCORES)
2135 		return false;
2136 	if (n_subcores > 1) {
2137 		if (!(dynamic_mt_modes & 2))
2138 			n_subcores = 4;
2139 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2140 			return false;
2141 	}
2142 
2143 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2144 }
2145 
2146 static void init_master_vcore(struct kvmppc_vcore *vc)
2147 {
2148 	vc->master_vcore = vc;
2149 	vc->entry_exit_map = 0;
2150 	vc->in_guest = 0;
2151 	vc->napping_threads = 0;
2152 	vc->conferring_threads = 0;
2153 }
2154 
2155 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2156 {
2157 	int n_threads = vc->num_threads;
2158 	int sub;
2159 
2160 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2161 		return false;
2162 
2163 	if (n_threads < cip->max_subcore_threads)
2164 		n_threads = cip->max_subcore_threads;
2165 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2166 		return false;
2167 	cip->max_subcore_threads = n_threads;
2168 
2169 	sub = cip->n_subcores;
2170 	++cip->n_subcores;
2171 	cip->total_threads += vc->num_threads;
2172 	cip->subcore_threads[sub] = vc->num_threads;
2173 	cip->subcore_vm[sub] = vc->kvm;
2174 	init_master_vcore(vc);
2175 	list_move_tail(&vc->preempt_list, &cip->vcs[sub]);
2176 
2177 	return true;
2178 }
2179 
2180 /*
2181  * Work out whether it is possible to piggyback the execution of
2182  * vcore *pvc onto the execution of the other vcores described in *cip.
2183  */
2184 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2185 			  int target_threads)
2186 {
2187 	if (cip->total_threads + pvc->num_threads > target_threads)
2188 		return false;
2189 
2190 	return can_dynamic_split(pvc, cip);
2191 }
2192 
2193 static void prepare_threads(struct kvmppc_vcore *vc)
2194 {
2195 	int i;
2196 	struct kvm_vcpu *vcpu;
2197 
2198 	for_each_runnable_thread(i, vcpu, vc) {
2199 		if (signal_pending(vcpu->arch.run_task))
2200 			vcpu->arch.ret = -EINTR;
2201 		else if (vcpu->arch.vpa.update_pending ||
2202 			 vcpu->arch.slb_shadow.update_pending ||
2203 			 vcpu->arch.dtl.update_pending)
2204 			vcpu->arch.ret = RESUME_GUEST;
2205 		else
2206 			continue;
2207 		kvmppc_remove_runnable(vc, vcpu);
2208 		wake_up(&vcpu->arch.cpu_run);
2209 	}
2210 }
2211 
2212 static void collect_piggybacks(struct core_info *cip, int target_threads)
2213 {
2214 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2215 	struct kvmppc_vcore *pvc, *vcnext;
2216 
2217 	spin_lock(&lp->lock);
2218 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2219 		if (!spin_trylock(&pvc->lock))
2220 			continue;
2221 		prepare_threads(pvc);
2222 		if (!pvc->n_runnable) {
2223 			list_del_init(&pvc->preempt_list);
2224 			if (pvc->runner == NULL) {
2225 				pvc->vcore_state = VCORE_INACTIVE;
2226 				kvmppc_core_end_stolen(pvc);
2227 			}
2228 			spin_unlock(&pvc->lock);
2229 			continue;
2230 		}
2231 		if (!can_piggyback(pvc, cip, target_threads)) {
2232 			spin_unlock(&pvc->lock);
2233 			continue;
2234 		}
2235 		kvmppc_core_end_stolen(pvc);
2236 		pvc->vcore_state = VCORE_PIGGYBACK;
2237 		if (cip->total_threads >= target_threads)
2238 			break;
2239 	}
2240 	spin_unlock(&lp->lock);
2241 }
2242 
2243 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2244 {
2245 	int still_running = 0, i;
2246 	u64 now;
2247 	long ret;
2248 	struct kvm_vcpu *vcpu;
2249 
2250 	spin_lock(&vc->lock);
2251 	now = get_tb();
2252 	for_each_runnable_thread(i, vcpu, vc) {
2253 		/* cancel pending dec exception if dec is positive */
2254 		if (now < vcpu->arch.dec_expires &&
2255 		    kvmppc_core_pending_dec(vcpu))
2256 			kvmppc_core_dequeue_dec(vcpu);
2257 
2258 		trace_kvm_guest_exit(vcpu);
2259 
2260 		ret = RESUME_GUEST;
2261 		if (vcpu->arch.trap)
2262 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2263 						    vcpu->arch.run_task);
2264 
2265 		vcpu->arch.ret = ret;
2266 		vcpu->arch.trap = 0;
2267 
2268 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2269 			if (vcpu->arch.pending_exceptions)
2270 				kvmppc_core_prepare_to_enter(vcpu);
2271 			if (vcpu->arch.ceded)
2272 				kvmppc_set_timer(vcpu);
2273 			else
2274 				++still_running;
2275 		} else {
2276 			kvmppc_remove_runnable(vc, vcpu);
2277 			wake_up(&vcpu->arch.cpu_run);
2278 		}
2279 	}
2280 	list_del_init(&vc->preempt_list);
2281 	if (!is_master) {
2282 		if (still_running > 0) {
2283 			kvmppc_vcore_preempt(vc);
2284 		} else if (vc->runner) {
2285 			vc->vcore_state = VCORE_PREEMPT;
2286 			kvmppc_core_start_stolen(vc);
2287 		} else {
2288 			vc->vcore_state = VCORE_INACTIVE;
2289 		}
2290 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2291 			/* make sure there's a candidate runner awake */
2292 			i = -1;
2293 			vcpu = next_runnable_thread(vc, &i);
2294 			wake_up(&vcpu->arch.cpu_run);
2295 		}
2296 	}
2297 	spin_unlock(&vc->lock);
2298 }
2299 
2300 /*
2301  * Clear core from the list of active host cores as we are about to
2302  * enter the guest. Only do this if it is the primary thread of the
2303  * core (not if a subcore) that is entering the guest.
2304  */
2305 static inline int kvmppc_clear_host_core(unsigned int cpu)
2306 {
2307 	int core;
2308 
2309 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2310 		return 0;
2311 	/*
2312 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2313 	 * later in kvmppc_start_thread and we need ensure that state is
2314 	 * visible to other CPUs only after we enter guest.
2315 	 */
2316 	core = cpu >> threads_shift;
2317 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2318 	return 0;
2319 }
2320 
2321 /*
2322  * Advertise this core as an active host core since we exited the guest
2323  * Only need to do this if it is the primary thread of the core that is
2324  * exiting.
2325  */
2326 static inline int kvmppc_set_host_core(unsigned int cpu)
2327 {
2328 	int core;
2329 
2330 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2331 		return 0;
2332 
2333 	/*
2334 	 * Memory barrier can be omitted here because we do a spin_unlock
2335 	 * immediately after this which provides the memory barrier.
2336 	 */
2337 	core = cpu >> threads_shift;
2338 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2339 	return 0;
2340 }
2341 
2342 /*
2343  * Run a set of guest threads on a physical core.
2344  * Called with vc->lock held.
2345  */
2346 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2347 {
2348 	struct kvm_vcpu *vcpu;
2349 	int i;
2350 	int srcu_idx;
2351 	struct core_info core_info;
2352 	struct kvmppc_vcore *pvc, *vcnext;
2353 	struct kvm_split_mode split_info, *sip;
2354 	int split, subcore_size, active;
2355 	int sub;
2356 	bool thr0_done;
2357 	unsigned long cmd_bit, stat_bit;
2358 	int pcpu, thr;
2359 	int target_threads;
2360 	int controlled_threads;
2361 
2362 	/*
2363 	 * Remove from the list any threads that have a signal pending
2364 	 * or need a VPA update done
2365 	 */
2366 	prepare_threads(vc);
2367 
2368 	/* if the runner is no longer runnable, let the caller pick a new one */
2369 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2370 		return;
2371 
2372 	/*
2373 	 * Initialize *vc.
2374 	 */
2375 	init_master_vcore(vc);
2376 	vc->preempt_tb = TB_NIL;
2377 
2378 	/*
2379 	 * Number of threads that we will be controlling: the same as
2380 	 * the number of threads per subcore, except on POWER9,
2381 	 * where it's 1 because the threads are (mostly) independent.
2382 	 */
2383 	controlled_threads = threads_per_vcore();
2384 
2385 	/*
2386 	 * Make sure we are running on primary threads, and that secondary
2387 	 * threads are offline.  Also check if the number of threads in this
2388 	 * guest are greater than the current system threads per guest.
2389 	 */
2390 	if ((controlled_threads > 1) &&
2391 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2392 		for_each_runnable_thread(i, vcpu, vc) {
2393 			vcpu->arch.ret = -EBUSY;
2394 			kvmppc_remove_runnable(vc, vcpu);
2395 			wake_up(&vcpu->arch.cpu_run);
2396 		}
2397 		goto out;
2398 	}
2399 
2400 	/*
2401 	 * See if we could run any other vcores on the physical core
2402 	 * along with this one.
2403 	 */
2404 	init_core_info(&core_info, vc);
2405 	pcpu = smp_processor_id();
2406 	target_threads = controlled_threads;
2407 	if (target_smt_mode && target_smt_mode < target_threads)
2408 		target_threads = target_smt_mode;
2409 	if (vc->num_threads < target_threads)
2410 		collect_piggybacks(&core_info, target_threads);
2411 
2412 	/* Decide on micro-threading (split-core) mode */
2413 	subcore_size = threads_per_subcore;
2414 	cmd_bit = stat_bit = 0;
2415 	split = core_info.n_subcores;
2416 	sip = NULL;
2417 	if (split > 1) {
2418 		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2419 		if (split == 2 && (dynamic_mt_modes & 2)) {
2420 			cmd_bit = HID0_POWER8_1TO2LPAR;
2421 			stat_bit = HID0_POWER8_2LPARMODE;
2422 		} else {
2423 			split = 4;
2424 			cmd_bit = HID0_POWER8_1TO4LPAR;
2425 			stat_bit = HID0_POWER8_4LPARMODE;
2426 		}
2427 		subcore_size = MAX_SMT_THREADS / split;
2428 		sip = &split_info;
2429 		memset(&split_info, 0, sizeof(split_info));
2430 		split_info.rpr = mfspr(SPRN_RPR);
2431 		split_info.pmmar = mfspr(SPRN_PMMAR);
2432 		split_info.ldbar = mfspr(SPRN_LDBAR);
2433 		split_info.subcore_size = subcore_size;
2434 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2435 			split_info.master_vcs[sub] =
2436 				list_first_entry(&core_info.vcs[sub],
2437 					struct kvmppc_vcore, preempt_list);
2438 		/* order writes to split_info before kvm_split_mode pointer */
2439 		smp_wmb();
2440 	}
2441 	pcpu = smp_processor_id();
2442 	for (thr = 0; thr < controlled_threads; ++thr)
2443 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2444 
2445 	/* Initiate micro-threading (split-core) if required */
2446 	if (cmd_bit) {
2447 		unsigned long hid0 = mfspr(SPRN_HID0);
2448 
2449 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2450 		mb();
2451 		mtspr(SPRN_HID0, hid0);
2452 		isync();
2453 		for (;;) {
2454 			hid0 = mfspr(SPRN_HID0);
2455 			if (hid0 & stat_bit)
2456 				break;
2457 			cpu_relax();
2458 		}
2459 	}
2460 
2461 	kvmppc_clear_host_core(pcpu);
2462 
2463 	/* Start all the threads */
2464 	active = 0;
2465 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2466 		thr = subcore_thread_map[sub];
2467 		thr0_done = false;
2468 		active |= 1 << thr;
2469 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2470 			pvc->pcpu = pcpu + thr;
2471 			for_each_runnable_thread(i, vcpu, pvc) {
2472 				kvmppc_start_thread(vcpu, pvc);
2473 				kvmppc_create_dtl_entry(vcpu, pvc);
2474 				trace_kvm_guest_enter(vcpu);
2475 				if (!vcpu->arch.ptid)
2476 					thr0_done = true;
2477 				active |= 1 << (thr + vcpu->arch.ptid);
2478 			}
2479 			/*
2480 			 * We need to start the first thread of each subcore
2481 			 * even if it doesn't have a vcpu.
2482 			 */
2483 			if (pvc->master_vcore == pvc && !thr0_done)
2484 				kvmppc_start_thread(NULL, pvc);
2485 			thr += pvc->num_threads;
2486 		}
2487 	}
2488 
2489 	/*
2490 	 * Ensure that split_info.do_nap is set after setting
2491 	 * the vcore pointer in the PACA of the secondaries.
2492 	 */
2493 	smp_mb();
2494 	if (cmd_bit)
2495 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2496 
2497 	/*
2498 	 * When doing micro-threading, poke the inactive threads as well.
2499 	 * This gets them to the nap instruction after kvm_do_nap,
2500 	 * which reduces the time taken to unsplit later.
2501 	 */
2502 	if (split > 1)
2503 		for (thr = 1; thr < threads_per_subcore; ++thr)
2504 			if (!(active & (1 << thr)))
2505 				kvmppc_ipi_thread(pcpu + thr);
2506 
2507 	vc->vcore_state = VCORE_RUNNING;
2508 	preempt_disable();
2509 
2510 	trace_kvmppc_run_core(vc, 0);
2511 
2512 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2513 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2514 			spin_unlock(&pvc->lock);
2515 
2516 	guest_enter();
2517 
2518 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2519 
2520 	__kvmppc_vcore_entry();
2521 
2522 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2523 
2524 	spin_lock(&vc->lock);
2525 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2526 	vc->vcore_state = VCORE_EXITING;
2527 
2528 	/* wait for secondary threads to finish writing their state to memory */
2529 	kvmppc_wait_for_nap();
2530 
2531 	/* Return to whole-core mode if we split the core earlier */
2532 	if (split > 1) {
2533 		unsigned long hid0 = mfspr(SPRN_HID0);
2534 		unsigned long loops = 0;
2535 
2536 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2537 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2538 		mb();
2539 		mtspr(SPRN_HID0, hid0);
2540 		isync();
2541 		for (;;) {
2542 			hid0 = mfspr(SPRN_HID0);
2543 			if (!(hid0 & stat_bit))
2544 				break;
2545 			cpu_relax();
2546 			++loops;
2547 		}
2548 		split_info.do_nap = 0;
2549 	}
2550 
2551 	/* Let secondaries go back to the offline loop */
2552 	for (i = 0; i < controlled_threads; ++i) {
2553 		kvmppc_release_hwthread(pcpu + i);
2554 		if (sip && sip->napped[i])
2555 			kvmppc_ipi_thread(pcpu + i);
2556 	}
2557 
2558 	kvmppc_set_host_core(pcpu);
2559 
2560 	spin_unlock(&vc->lock);
2561 
2562 	/* make sure updates to secondary vcpu structs are visible now */
2563 	smp_mb();
2564 	guest_exit();
2565 
2566 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2567 		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2568 					 preempt_list)
2569 			post_guest_process(pvc, pvc == vc);
2570 
2571 	spin_lock(&vc->lock);
2572 	preempt_enable();
2573 
2574  out:
2575 	vc->vcore_state = VCORE_INACTIVE;
2576 	trace_kvmppc_run_core(vc, 1);
2577 }
2578 
2579 /*
2580  * Wait for some other vcpu thread to execute us, and
2581  * wake us up when we need to handle something in the host.
2582  */
2583 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2584 				 struct kvm_vcpu *vcpu, int wait_state)
2585 {
2586 	DEFINE_WAIT(wait);
2587 
2588 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2589 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2590 		spin_unlock(&vc->lock);
2591 		schedule();
2592 		spin_lock(&vc->lock);
2593 	}
2594 	finish_wait(&vcpu->arch.cpu_run, &wait);
2595 }
2596 
2597 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2598 {
2599 	/* 10us base */
2600 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2601 		vc->halt_poll_ns = 10000;
2602 	else
2603 		vc->halt_poll_ns *= halt_poll_ns_grow;
2604 }
2605 
2606 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2607 {
2608 	if (halt_poll_ns_shrink == 0)
2609 		vc->halt_poll_ns = 0;
2610 	else
2611 		vc->halt_poll_ns /= halt_poll_ns_shrink;
2612 }
2613 
2614 /*
2615  * Check to see if any of the runnable vcpus on the vcore have pending
2616  * exceptions or are no longer ceded
2617  */
2618 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2619 {
2620 	struct kvm_vcpu *vcpu;
2621 	int i;
2622 
2623 	for_each_runnable_thread(i, vcpu, vc) {
2624 		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded)
2625 			return 1;
2626 	}
2627 
2628 	return 0;
2629 }
2630 
2631 /*
2632  * All the vcpus in this vcore are idle, so wait for a decrementer
2633  * or external interrupt to one of the vcpus.  vc->lock is held.
2634  */
2635 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2636 {
2637 	ktime_t cur, start_poll, start_wait;
2638 	int do_sleep = 1;
2639 	u64 block_ns;
2640 	DECLARE_SWAITQUEUE(wait);
2641 
2642 	/* Poll for pending exceptions and ceded state */
2643 	cur = start_poll = ktime_get();
2644 	if (vc->halt_poll_ns) {
2645 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2646 		++vc->runner->stat.halt_attempted_poll;
2647 
2648 		vc->vcore_state = VCORE_POLLING;
2649 		spin_unlock(&vc->lock);
2650 
2651 		do {
2652 			if (kvmppc_vcore_check_block(vc)) {
2653 				do_sleep = 0;
2654 				break;
2655 			}
2656 			cur = ktime_get();
2657 		} while (single_task_running() && ktime_before(cur, stop));
2658 
2659 		spin_lock(&vc->lock);
2660 		vc->vcore_state = VCORE_INACTIVE;
2661 
2662 		if (!do_sleep) {
2663 			++vc->runner->stat.halt_successful_poll;
2664 			goto out;
2665 		}
2666 	}
2667 
2668 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2669 
2670 	if (kvmppc_vcore_check_block(vc)) {
2671 		finish_swait(&vc->wq, &wait);
2672 		do_sleep = 0;
2673 		/* If we polled, count this as a successful poll */
2674 		if (vc->halt_poll_ns)
2675 			++vc->runner->stat.halt_successful_poll;
2676 		goto out;
2677 	}
2678 
2679 	start_wait = ktime_get();
2680 
2681 	vc->vcore_state = VCORE_SLEEPING;
2682 	trace_kvmppc_vcore_blocked(vc, 0);
2683 	spin_unlock(&vc->lock);
2684 	schedule();
2685 	finish_swait(&vc->wq, &wait);
2686 	spin_lock(&vc->lock);
2687 	vc->vcore_state = VCORE_INACTIVE;
2688 	trace_kvmppc_vcore_blocked(vc, 1);
2689 	++vc->runner->stat.halt_successful_wait;
2690 
2691 	cur = ktime_get();
2692 
2693 out:
2694 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
2695 
2696 	/* Attribute wait time */
2697 	if (do_sleep) {
2698 		vc->runner->stat.halt_wait_ns +=
2699 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
2700 		/* Attribute failed poll time */
2701 		if (vc->halt_poll_ns)
2702 			vc->runner->stat.halt_poll_fail_ns +=
2703 				ktime_to_ns(start_wait) -
2704 				ktime_to_ns(start_poll);
2705 	} else {
2706 		/* Attribute successful poll time */
2707 		if (vc->halt_poll_ns)
2708 			vc->runner->stat.halt_poll_success_ns +=
2709 				ktime_to_ns(cur) -
2710 				ktime_to_ns(start_poll);
2711 	}
2712 
2713 	/* Adjust poll time */
2714 	if (halt_poll_ns) {
2715 		if (block_ns <= vc->halt_poll_ns)
2716 			;
2717 		/* We slept and blocked for longer than the max halt time */
2718 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
2719 			shrink_halt_poll_ns(vc);
2720 		/* We slept and our poll time is too small */
2721 		else if (vc->halt_poll_ns < halt_poll_ns &&
2722 				block_ns < halt_poll_ns)
2723 			grow_halt_poll_ns(vc);
2724 		if (vc->halt_poll_ns > halt_poll_ns)
2725 			vc->halt_poll_ns = halt_poll_ns;
2726 	} else
2727 		vc->halt_poll_ns = 0;
2728 
2729 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
2730 }
2731 
2732 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2733 {
2734 	int n_ceded, i;
2735 	struct kvmppc_vcore *vc;
2736 	struct kvm_vcpu *v;
2737 
2738 	trace_kvmppc_run_vcpu_enter(vcpu);
2739 
2740 	kvm_run->exit_reason = 0;
2741 	vcpu->arch.ret = RESUME_GUEST;
2742 	vcpu->arch.trap = 0;
2743 	kvmppc_update_vpas(vcpu);
2744 
2745 	/*
2746 	 * Synchronize with other threads in this virtual core
2747 	 */
2748 	vc = vcpu->arch.vcore;
2749 	spin_lock(&vc->lock);
2750 	vcpu->arch.ceded = 0;
2751 	vcpu->arch.run_task = current;
2752 	vcpu->arch.kvm_run = kvm_run;
2753 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2754 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2755 	vcpu->arch.busy_preempt = TB_NIL;
2756 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2757 	++vc->n_runnable;
2758 
2759 	/*
2760 	 * This happens the first time this is called for a vcpu.
2761 	 * If the vcore is already running, we may be able to start
2762 	 * this thread straight away and have it join in.
2763 	 */
2764 	if (!signal_pending(current)) {
2765 		if (vc->vcore_state == VCORE_PIGGYBACK) {
2766 			struct kvmppc_vcore *mvc = vc->master_vcore;
2767 			if (spin_trylock(&mvc->lock)) {
2768 				if (mvc->vcore_state == VCORE_RUNNING &&
2769 				    !VCORE_IS_EXITING(mvc)) {
2770 					kvmppc_create_dtl_entry(vcpu, vc);
2771 					kvmppc_start_thread(vcpu, vc);
2772 					trace_kvm_guest_enter(vcpu);
2773 				}
2774 				spin_unlock(&mvc->lock);
2775 			}
2776 		} else if (vc->vcore_state == VCORE_RUNNING &&
2777 			   !VCORE_IS_EXITING(vc)) {
2778 			kvmppc_create_dtl_entry(vcpu, vc);
2779 			kvmppc_start_thread(vcpu, vc);
2780 			trace_kvm_guest_enter(vcpu);
2781 		} else if (vc->vcore_state == VCORE_SLEEPING) {
2782 			swake_up(&vc->wq);
2783 		}
2784 
2785 	}
2786 
2787 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2788 	       !signal_pending(current)) {
2789 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2790 			kvmppc_vcore_end_preempt(vc);
2791 
2792 		if (vc->vcore_state != VCORE_INACTIVE) {
2793 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2794 			continue;
2795 		}
2796 		for_each_runnable_thread(i, v, vc) {
2797 			kvmppc_core_prepare_to_enter(v);
2798 			if (signal_pending(v->arch.run_task)) {
2799 				kvmppc_remove_runnable(vc, v);
2800 				v->stat.signal_exits++;
2801 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2802 				v->arch.ret = -EINTR;
2803 				wake_up(&v->arch.cpu_run);
2804 			}
2805 		}
2806 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2807 			break;
2808 		n_ceded = 0;
2809 		for_each_runnable_thread(i, v, vc) {
2810 			if (!v->arch.pending_exceptions)
2811 				n_ceded += v->arch.ceded;
2812 			else
2813 				v->arch.ceded = 0;
2814 		}
2815 		vc->runner = vcpu;
2816 		if (n_ceded == vc->n_runnable) {
2817 			kvmppc_vcore_blocked(vc);
2818 		} else if (need_resched()) {
2819 			kvmppc_vcore_preempt(vc);
2820 			/* Let something else run */
2821 			cond_resched_lock(&vc->lock);
2822 			if (vc->vcore_state == VCORE_PREEMPT)
2823 				kvmppc_vcore_end_preempt(vc);
2824 		} else {
2825 			kvmppc_run_core(vc);
2826 		}
2827 		vc->runner = NULL;
2828 	}
2829 
2830 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2831 	       (vc->vcore_state == VCORE_RUNNING ||
2832 		vc->vcore_state == VCORE_EXITING ||
2833 		vc->vcore_state == VCORE_PIGGYBACK))
2834 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2835 
2836 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2837 		kvmppc_vcore_end_preempt(vc);
2838 
2839 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2840 		kvmppc_remove_runnable(vc, vcpu);
2841 		vcpu->stat.signal_exits++;
2842 		kvm_run->exit_reason = KVM_EXIT_INTR;
2843 		vcpu->arch.ret = -EINTR;
2844 	}
2845 
2846 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2847 		/* Wake up some vcpu to run the core */
2848 		i = -1;
2849 		v = next_runnable_thread(vc, &i);
2850 		wake_up(&v->arch.cpu_run);
2851 	}
2852 
2853 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2854 	spin_unlock(&vc->lock);
2855 	return vcpu->arch.ret;
2856 }
2857 
2858 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2859 {
2860 	int r;
2861 	int srcu_idx;
2862 
2863 	if (!vcpu->arch.sane) {
2864 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2865 		return -EINVAL;
2866 	}
2867 
2868 	kvmppc_core_prepare_to_enter(vcpu);
2869 
2870 	/* No need to go into the guest when all we'll do is come back out */
2871 	if (signal_pending(current)) {
2872 		run->exit_reason = KVM_EXIT_INTR;
2873 		return -EINTR;
2874 	}
2875 
2876 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2877 	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2878 	smp_mb();
2879 
2880 	/* On the first time here, set up HTAB and VRMA */
2881 	if (!vcpu->kvm->arch.hpte_setup_done) {
2882 		r = kvmppc_hv_setup_htab_rma(vcpu);
2883 		if (r)
2884 			goto out;
2885 	}
2886 
2887 	flush_all_to_thread(current);
2888 
2889 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2890 	vcpu->arch.pgdir = current->mm->pgd;
2891 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2892 
2893 	do {
2894 		r = kvmppc_run_vcpu(run, vcpu);
2895 
2896 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2897 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2898 			trace_kvm_hcall_enter(vcpu);
2899 			r = kvmppc_pseries_do_hcall(vcpu);
2900 			trace_kvm_hcall_exit(vcpu, r);
2901 			kvmppc_core_prepare_to_enter(vcpu);
2902 		} else if (r == RESUME_PAGE_FAULT) {
2903 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2904 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
2905 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2906 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2907 		} else if (r == RESUME_PASSTHROUGH)
2908 			r = kvmppc_xics_rm_complete(vcpu, 0);
2909 	} while (is_kvmppc_resume_guest(r));
2910 
2911  out:
2912 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2913 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2914 	return r;
2915 }
2916 
2917 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2918 				     int linux_psize)
2919 {
2920 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2921 
2922 	if (!def->shift)
2923 		return;
2924 	(*sps)->page_shift = def->shift;
2925 	(*sps)->slb_enc = def->sllp;
2926 	(*sps)->enc[0].page_shift = def->shift;
2927 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2928 	/*
2929 	 * Add 16MB MPSS support if host supports it
2930 	 */
2931 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2932 		(*sps)->enc[1].page_shift = 24;
2933 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2934 	}
2935 	(*sps)++;
2936 }
2937 
2938 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2939 					 struct kvm_ppc_smmu_info *info)
2940 {
2941 	struct kvm_ppc_one_seg_page_size *sps;
2942 
2943 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
2944 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2945 		info->flags |= KVM_PPC_1T_SEGMENTS;
2946 	info->slb_size = mmu_slb_size;
2947 
2948 	/* We only support these sizes for now, and no muti-size segments */
2949 	sps = &info->sps[0];
2950 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2951 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2952 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2953 
2954 	return 0;
2955 }
2956 
2957 /*
2958  * Get (and clear) the dirty memory log for a memory slot.
2959  */
2960 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2961 					 struct kvm_dirty_log *log)
2962 {
2963 	struct kvm_memslots *slots;
2964 	struct kvm_memory_slot *memslot;
2965 	int r;
2966 	unsigned long n;
2967 
2968 	mutex_lock(&kvm->slots_lock);
2969 
2970 	r = -EINVAL;
2971 	if (log->slot >= KVM_USER_MEM_SLOTS)
2972 		goto out;
2973 
2974 	slots = kvm_memslots(kvm);
2975 	memslot = id_to_memslot(slots, log->slot);
2976 	r = -ENOENT;
2977 	if (!memslot->dirty_bitmap)
2978 		goto out;
2979 
2980 	n = kvm_dirty_bitmap_bytes(memslot);
2981 	memset(memslot->dirty_bitmap, 0, n);
2982 
2983 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2984 	if (r)
2985 		goto out;
2986 
2987 	r = -EFAULT;
2988 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2989 		goto out;
2990 
2991 	r = 0;
2992 out:
2993 	mutex_unlock(&kvm->slots_lock);
2994 	return r;
2995 }
2996 
2997 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2998 					struct kvm_memory_slot *dont)
2999 {
3000 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3001 		vfree(free->arch.rmap);
3002 		free->arch.rmap = NULL;
3003 	}
3004 }
3005 
3006 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3007 					 unsigned long npages)
3008 {
3009 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3010 	if (!slot->arch.rmap)
3011 		return -ENOMEM;
3012 
3013 	return 0;
3014 }
3015 
3016 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3017 					struct kvm_memory_slot *memslot,
3018 					const struct kvm_userspace_memory_region *mem)
3019 {
3020 	return 0;
3021 }
3022 
3023 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3024 				const struct kvm_userspace_memory_region *mem,
3025 				const struct kvm_memory_slot *old,
3026 				const struct kvm_memory_slot *new)
3027 {
3028 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3029 	struct kvm_memslots *slots;
3030 	struct kvm_memory_slot *memslot;
3031 
3032 	/*
3033 	 * If we are making a new memslot, it might make
3034 	 * some address that was previously cached as emulated
3035 	 * MMIO be no longer emulated MMIO, so invalidate
3036 	 * all the caches of emulated MMIO translations.
3037 	 */
3038 	if (npages)
3039 		atomic64_inc(&kvm->arch.mmio_update);
3040 
3041 	if (npages && old->npages) {
3042 		/*
3043 		 * If modifying a memslot, reset all the rmap dirty bits.
3044 		 * If this is a new memslot, we don't need to do anything
3045 		 * since the rmap array starts out as all zeroes,
3046 		 * i.e. no pages are dirty.
3047 		 */
3048 		slots = kvm_memslots(kvm);
3049 		memslot = id_to_memslot(slots, mem->slot);
3050 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
3051 	}
3052 }
3053 
3054 /*
3055  * Update LPCR values in kvm->arch and in vcores.
3056  * Caller must hold kvm->lock.
3057  */
3058 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3059 {
3060 	long int i;
3061 	u32 cores_done = 0;
3062 
3063 	if ((kvm->arch.lpcr & mask) == lpcr)
3064 		return;
3065 
3066 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3067 
3068 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3069 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3070 		if (!vc)
3071 			continue;
3072 		spin_lock(&vc->lock);
3073 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3074 		spin_unlock(&vc->lock);
3075 		if (++cores_done >= kvm->arch.online_vcores)
3076 			break;
3077 	}
3078 }
3079 
3080 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3081 {
3082 	return;
3083 }
3084 
3085 static void kvmppc_setup_partition_table(struct kvm *kvm)
3086 {
3087 	unsigned long dw0, dw1;
3088 
3089 	/* PS field - page size for VRMA */
3090 	dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3091 		((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3092 	/* HTABSIZE and HTABORG fields */
3093 	dw0 |= kvm->arch.sdr1;
3094 
3095 	/* Second dword has GR=0; other fields are unused since UPRT=0 */
3096 	dw1 = 0;
3097 
3098 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3099 }
3100 
3101 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3102 {
3103 	int err = 0;
3104 	struct kvm *kvm = vcpu->kvm;
3105 	unsigned long hva;
3106 	struct kvm_memory_slot *memslot;
3107 	struct vm_area_struct *vma;
3108 	unsigned long lpcr = 0, senc;
3109 	unsigned long psize, porder;
3110 	int srcu_idx;
3111 
3112 	mutex_lock(&kvm->lock);
3113 	if (kvm->arch.hpte_setup_done)
3114 		goto out;	/* another vcpu beat us to it */
3115 
3116 	/* Allocate hashed page table (if not done already) and reset it */
3117 	if (!kvm->arch.hpt_virt) {
3118 		err = kvmppc_alloc_hpt(kvm, NULL);
3119 		if (err) {
3120 			pr_err("KVM: Couldn't alloc HPT\n");
3121 			goto out;
3122 		}
3123 	}
3124 
3125 	/* Look up the memslot for guest physical address 0 */
3126 	srcu_idx = srcu_read_lock(&kvm->srcu);
3127 	memslot = gfn_to_memslot(kvm, 0);
3128 
3129 	/* We must have some memory at 0 by now */
3130 	err = -EINVAL;
3131 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3132 		goto out_srcu;
3133 
3134 	/* Look up the VMA for the start of this memory slot */
3135 	hva = memslot->userspace_addr;
3136 	down_read(&current->mm->mmap_sem);
3137 	vma = find_vma(current->mm, hva);
3138 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3139 		goto up_out;
3140 
3141 	psize = vma_kernel_pagesize(vma);
3142 	porder = __ilog2(psize);
3143 
3144 	up_read(&current->mm->mmap_sem);
3145 
3146 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3147 	err = -EINVAL;
3148 	if (!(psize == 0x1000 || psize == 0x10000 ||
3149 	      psize == 0x1000000))
3150 		goto out_srcu;
3151 
3152 	senc = slb_pgsize_encoding(psize);
3153 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3154 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3155 	/* Create HPTEs in the hash page table for the VRMA */
3156 	kvmppc_map_vrma(vcpu, memslot, porder);
3157 
3158 	/* Update VRMASD field in the LPCR */
3159 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3160 		/* the -4 is to account for senc values starting at 0x10 */
3161 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3162 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3163 	} else {
3164 		kvmppc_setup_partition_table(kvm);
3165 	}
3166 
3167 	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3168 	smp_wmb();
3169 	kvm->arch.hpte_setup_done = 1;
3170 	err = 0;
3171  out_srcu:
3172 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3173  out:
3174 	mutex_unlock(&kvm->lock);
3175 	return err;
3176 
3177  up_out:
3178 	up_read(&current->mm->mmap_sem);
3179 	goto out_srcu;
3180 }
3181 
3182 #ifdef CONFIG_KVM_XICS
3183 /*
3184  * Allocate a per-core structure for managing state about which cores are
3185  * running in the host versus the guest and for exchanging data between
3186  * real mode KVM and CPU running in the host.
3187  * This is only done for the first VM.
3188  * The allocated structure stays even if all VMs have stopped.
3189  * It is only freed when the kvm-hv module is unloaded.
3190  * It's OK for this routine to fail, we just don't support host
3191  * core operations like redirecting H_IPI wakeups.
3192  */
3193 void kvmppc_alloc_host_rm_ops(void)
3194 {
3195 	struct kvmppc_host_rm_ops *ops;
3196 	unsigned long l_ops;
3197 	int cpu, core;
3198 	int size;
3199 
3200 	/* Not the first time here ? */
3201 	if (kvmppc_host_rm_ops_hv != NULL)
3202 		return;
3203 
3204 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3205 	if (!ops)
3206 		return;
3207 
3208 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3209 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3210 
3211 	if (!ops->rm_core) {
3212 		kfree(ops);
3213 		return;
3214 	}
3215 
3216 	get_online_cpus();
3217 
3218 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3219 		if (!cpu_online(cpu))
3220 			continue;
3221 
3222 		core = cpu >> threads_shift;
3223 		ops->rm_core[core].rm_state.in_host = 1;
3224 	}
3225 
3226 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3227 
3228 	/*
3229 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3230 	 * to other CPUs before we assign it to the global variable.
3231 	 * Do an atomic assignment (no locks used here), but if someone
3232 	 * beats us to it, just free our copy and return.
3233 	 */
3234 	smp_wmb();
3235 	l_ops = (unsigned long) ops;
3236 
3237 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3238 		put_online_cpus();
3239 		kfree(ops->rm_core);
3240 		kfree(ops);
3241 		return;
3242 	}
3243 
3244 	cpuhp_setup_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3245 				  "ppc/kvm_book3s:prepare",
3246 				  kvmppc_set_host_core,
3247 				  kvmppc_clear_host_core);
3248 	put_online_cpus();
3249 }
3250 
3251 void kvmppc_free_host_rm_ops(void)
3252 {
3253 	if (kvmppc_host_rm_ops_hv) {
3254 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3255 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3256 		kfree(kvmppc_host_rm_ops_hv);
3257 		kvmppc_host_rm_ops_hv = NULL;
3258 	}
3259 }
3260 #endif
3261 
3262 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3263 {
3264 	unsigned long lpcr, lpid;
3265 	char buf[32];
3266 
3267 	/* Allocate the guest's logical partition ID */
3268 
3269 	lpid = kvmppc_alloc_lpid();
3270 	if ((long)lpid < 0)
3271 		return -ENOMEM;
3272 	kvm->arch.lpid = lpid;
3273 
3274 	kvmppc_alloc_host_rm_ops();
3275 
3276 	/*
3277 	 * Since we don't flush the TLB when tearing down a VM,
3278 	 * and this lpid might have previously been used,
3279 	 * make sure we flush on each core before running the new VM.
3280 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3281 	 * does this flush for us.
3282 	 */
3283 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3284 		cpumask_setall(&kvm->arch.need_tlb_flush);
3285 
3286 	/* Start out with the default set of hcalls enabled */
3287 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3288 	       sizeof(kvm->arch.enabled_hcalls));
3289 
3290 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3291 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3292 
3293 	/* Init LPCR for virtual RMA mode */
3294 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3295 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3296 	lpcr &= LPCR_PECE | LPCR_LPES;
3297 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3298 		LPCR_VPM0 | LPCR_VPM1;
3299 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3300 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3301 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3302 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3303 		lpcr |= LPCR_ONL;
3304 	/*
3305 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3306 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3307 	 */
3308 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3309 		lpcr &= ~LPCR_VPM0;
3310 		lpcr |= LPCR_HVICE;
3311 	}
3312 
3313 	kvm->arch.lpcr = lpcr;
3314 
3315 	/*
3316 	 * Work out how many sets the TLB has, for the use of
3317 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3318 	 */
3319 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3320 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
3321 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3322 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
3323 	else
3324 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
3325 
3326 	/*
3327 	 * Track that we now have a HV mode VM active. This blocks secondary
3328 	 * CPU threads from coming online.
3329 	 */
3330 	kvm_hv_vm_activated();
3331 
3332 	/*
3333 	 * Create a debugfs directory for the VM
3334 	 */
3335 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3336 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3337 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3338 		kvmppc_mmu_debugfs_init(kvm);
3339 
3340 	return 0;
3341 }
3342 
3343 static void kvmppc_free_vcores(struct kvm *kvm)
3344 {
3345 	long int i;
3346 
3347 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3348 		kfree(kvm->arch.vcores[i]);
3349 	kvm->arch.online_vcores = 0;
3350 }
3351 
3352 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3353 {
3354 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3355 
3356 	kvm_hv_vm_deactivated();
3357 
3358 	kvmppc_free_vcores(kvm);
3359 
3360 	kvmppc_free_hpt(kvm);
3361 
3362 	kvmppc_free_pimap(kvm);
3363 }
3364 
3365 /* We don't need to emulate any privileged instructions or dcbz */
3366 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3367 				     unsigned int inst, int *advance)
3368 {
3369 	return EMULATE_FAIL;
3370 }
3371 
3372 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3373 					ulong spr_val)
3374 {
3375 	return EMULATE_FAIL;
3376 }
3377 
3378 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3379 					ulong *spr_val)
3380 {
3381 	return EMULATE_FAIL;
3382 }
3383 
3384 static int kvmppc_core_check_processor_compat_hv(void)
3385 {
3386 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3387 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3388 		return -EIO;
3389 	/*
3390 	 * Disable KVM for Power9 in radix mode.
3391 	 */
3392 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
3393 		return -EIO;
3394 
3395 	return 0;
3396 }
3397 
3398 #ifdef CONFIG_KVM_XICS
3399 
3400 void kvmppc_free_pimap(struct kvm *kvm)
3401 {
3402 	kfree(kvm->arch.pimap);
3403 }
3404 
3405 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3406 {
3407 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3408 }
3409 
3410 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3411 {
3412 	struct irq_desc *desc;
3413 	struct kvmppc_irq_map *irq_map;
3414 	struct kvmppc_passthru_irqmap *pimap;
3415 	struct irq_chip *chip;
3416 	int i;
3417 
3418 	if (!kvm_irq_bypass)
3419 		return 1;
3420 
3421 	desc = irq_to_desc(host_irq);
3422 	if (!desc)
3423 		return -EIO;
3424 
3425 	mutex_lock(&kvm->lock);
3426 
3427 	pimap = kvm->arch.pimap;
3428 	if (pimap == NULL) {
3429 		/* First call, allocate structure to hold IRQ map */
3430 		pimap = kvmppc_alloc_pimap();
3431 		if (pimap == NULL) {
3432 			mutex_unlock(&kvm->lock);
3433 			return -ENOMEM;
3434 		}
3435 		kvm->arch.pimap = pimap;
3436 	}
3437 
3438 	/*
3439 	 * For now, we only support interrupts for which the EOI operation
3440 	 * is an OPAL call followed by a write to XIRR, since that's
3441 	 * what our real-mode EOI code does.
3442 	 */
3443 	chip = irq_data_get_irq_chip(&desc->irq_data);
3444 	if (!chip || !is_pnv_opal_msi(chip)) {
3445 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3446 			host_irq, guest_gsi);
3447 		mutex_unlock(&kvm->lock);
3448 		return -ENOENT;
3449 	}
3450 
3451 	/*
3452 	 * See if we already have an entry for this guest IRQ number.
3453 	 * If it's mapped to a hardware IRQ number, that's an error,
3454 	 * otherwise re-use this entry.
3455 	 */
3456 	for (i = 0; i < pimap->n_mapped; i++) {
3457 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
3458 			if (pimap->mapped[i].r_hwirq) {
3459 				mutex_unlock(&kvm->lock);
3460 				return -EINVAL;
3461 			}
3462 			break;
3463 		}
3464 	}
3465 
3466 	if (i == KVMPPC_PIRQ_MAPPED) {
3467 		mutex_unlock(&kvm->lock);
3468 		return -EAGAIN;		/* table is full */
3469 	}
3470 
3471 	irq_map = &pimap->mapped[i];
3472 
3473 	irq_map->v_hwirq = guest_gsi;
3474 	irq_map->desc = desc;
3475 
3476 	/*
3477 	 * Order the above two stores before the next to serialize with
3478 	 * the KVM real mode handler.
3479 	 */
3480 	smp_wmb();
3481 	irq_map->r_hwirq = desc->irq_data.hwirq;
3482 
3483 	if (i == pimap->n_mapped)
3484 		pimap->n_mapped++;
3485 
3486 	kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3487 
3488 	mutex_unlock(&kvm->lock);
3489 
3490 	return 0;
3491 }
3492 
3493 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3494 {
3495 	struct irq_desc *desc;
3496 	struct kvmppc_passthru_irqmap *pimap;
3497 	int i;
3498 
3499 	if (!kvm_irq_bypass)
3500 		return 0;
3501 
3502 	desc = irq_to_desc(host_irq);
3503 	if (!desc)
3504 		return -EIO;
3505 
3506 	mutex_lock(&kvm->lock);
3507 
3508 	if (kvm->arch.pimap == NULL) {
3509 		mutex_unlock(&kvm->lock);
3510 		return 0;
3511 	}
3512 	pimap = kvm->arch.pimap;
3513 
3514 	for (i = 0; i < pimap->n_mapped; i++) {
3515 		if (guest_gsi == pimap->mapped[i].v_hwirq)
3516 			break;
3517 	}
3518 
3519 	if (i == pimap->n_mapped) {
3520 		mutex_unlock(&kvm->lock);
3521 		return -ENODEV;
3522 	}
3523 
3524 	kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
3525 
3526 	/* invalidate the entry */
3527 	pimap->mapped[i].r_hwirq = 0;
3528 
3529 	/*
3530 	 * We don't free this structure even when the count goes to
3531 	 * zero. The structure is freed when we destroy the VM.
3532 	 */
3533 
3534 	mutex_unlock(&kvm->lock);
3535 	return 0;
3536 }
3537 
3538 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
3539 					     struct irq_bypass_producer *prod)
3540 {
3541 	int ret = 0;
3542 	struct kvm_kernel_irqfd *irqfd =
3543 		container_of(cons, struct kvm_kernel_irqfd, consumer);
3544 
3545 	irqfd->producer = prod;
3546 
3547 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3548 	if (ret)
3549 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
3550 			prod->irq, irqfd->gsi, ret);
3551 
3552 	return ret;
3553 }
3554 
3555 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
3556 					      struct irq_bypass_producer *prod)
3557 {
3558 	int ret;
3559 	struct kvm_kernel_irqfd *irqfd =
3560 		container_of(cons, struct kvm_kernel_irqfd, consumer);
3561 
3562 	irqfd->producer = NULL;
3563 
3564 	/*
3565 	 * When producer of consumer is unregistered, we change back to
3566 	 * default external interrupt handling mode - KVM real mode
3567 	 * will switch back to host.
3568 	 */
3569 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3570 	if (ret)
3571 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
3572 			prod->irq, irqfd->gsi, ret);
3573 }
3574 #endif
3575 
3576 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3577 				 unsigned int ioctl, unsigned long arg)
3578 {
3579 	struct kvm *kvm __maybe_unused = filp->private_data;
3580 	void __user *argp = (void __user *)arg;
3581 	long r;
3582 
3583 	switch (ioctl) {
3584 
3585 	case KVM_PPC_ALLOCATE_HTAB: {
3586 		u32 htab_order;
3587 
3588 		r = -EFAULT;
3589 		if (get_user(htab_order, (u32 __user *)argp))
3590 			break;
3591 		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3592 		if (r)
3593 			break;
3594 		r = -EFAULT;
3595 		if (put_user(htab_order, (u32 __user *)argp))
3596 			break;
3597 		r = 0;
3598 		break;
3599 	}
3600 
3601 	case KVM_PPC_GET_HTAB_FD: {
3602 		struct kvm_get_htab_fd ghf;
3603 
3604 		r = -EFAULT;
3605 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
3606 			break;
3607 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3608 		break;
3609 	}
3610 
3611 	default:
3612 		r = -ENOTTY;
3613 	}
3614 
3615 	return r;
3616 }
3617 
3618 /*
3619  * List of hcall numbers to enable by default.
3620  * For compatibility with old userspace, we enable by default
3621  * all hcalls that were implemented before the hcall-enabling
3622  * facility was added.  Note this list should not include H_RTAS.
3623  */
3624 static unsigned int default_hcall_list[] = {
3625 	H_REMOVE,
3626 	H_ENTER,
3627 	H_READ,
3628 	H_PROTECT,
3629 	H_BULK_REMOVE,
3630 	H_GET_TCE,
3631 	H_PUT_TCE,
3632 	H_SET_DABR,
3633 	H_SET_XDABR,
3634 	H_CEDE,
3635 	H_PROD,
3636 	H_CONFER,
3637 	H_REGISTER_VPA,
3638 #ifdef CONFIG_KVM_XICS
3639 	H_EOI,
3640 	H_CPPR,
3641 	H_IPI,
3642 	H_IPOLL,
3643 	H_XIRR,
3644 	H_XIRR_X,
3645 #endif
3646 	0
3647 };
3648 
3649 static void init_default_hcalls(void)
3650 {
3651 	int i;
3652 	unsigned int hcall;
3653 
3654 	for (i = 0; default_hcall_list[i]; ++i) {
3655 		hcall = default_hcall_list[i];
3656 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3657 		__set_bit(hcall / 4, default_enabled_hcalls);
3658 	}
3659 }
3660 
3661 static struct kvmppc_ops kvm_ops_hv = {
3662 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3663 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3664 	.get_one_reg = kvmppc_get_one_reg_hv,
3665 	.set_one_reg = kvmppc_set_one_reg_hv,
3666 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
3667 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
3668 	.set_msr     = kvmppc_set_msr_hv,
3669 	.vcpu_run    = kvmppc_vcpu_run_hv,
3670 	.vcpu_create = kvmppc_core_vcpu_create_hv,
3671 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
3672 	.check_requests = kvmppc_core_check_requests_hv,
3673 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3674 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
3675 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3676 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3677 	.unmap_hva = kvm_unmap_hva_hv,
3678 	.unmap_hva_range = kvm_unmap_hva_range_hv,
3679 	.age_hva  = kvm_age_hva_hv,
3680 	.test_age_hva = kvm_test_age_hva_hv,
3681 	.set_spte_hva = kvm_set_spte_hva_hv,
3682 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
3683 	.free_memslot = kvmppc_core_free_memslot_hv,
3684 	.create_memslot = kvmppc_core_create_memslot_hv,
3685 	.init_vm =  kvmppc_core_init_vm_hv,
3686 	.destroy_vm = kvmppc_core_destroy_vm_hv,
3687 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3688 	.emulate_op = kvmppc_core_emulate_op_hv,
3689 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3690 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3691 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3692 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3693 	.hcall_implemented = kvmppc_hcall_impl_hv,
3694 #ifdef CONFIG_KVM_XICS
3695 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
3696 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
3697 #endif
3698 };
3699 
3700 static int kvm_init_subcore_bitmap(void)
3701 {
3702 	int i, j;
3703 	int nr_cores = cpu_nr_cores();
3704 	struct sibling_subcore_state *sibling_subcore_state;
3705 
3706 	for (i = 0; i < nr_cores; i++) {
3707 		int first_cpu = i * threads_per_core;
3708 		int node = cpu_to_node(first_cpu);
3709 
3710 		/* Ignore if it is already allocated. */
3711 		if (paca[first_cpu].sibling_subcore_state)
3712 			continue;
3713 
3714 		sibling_subcore_state =
3715 			kmalloc_node(sizeof(struct sibling_subcore_state),
3716 							GFP_KERNEL, node);
3717 		if (!sibling_subcore_state)
3718 			return -ENOMEM;
3719 
3720 		memset(sibling_subcore_state, 0,
3721 				sizeof(struct sibling_subcore_state));
3722 
3723 		for (j = 0; j < threads_per_core; j++) {
3724 			int cpu = first_cpu + j;
3725 
3726 			paca[cpu].sibling_subcore_state = sibling_subcore_state;
3727 		}
3728 	}
3729 	return 0;
3730 }
3731 
3732 static int kvmppc_book3s_init_hv(void)
3733 {
3734 	int r;
3735 	/*
3736 	 * FIXME!! Do we need to check on all cpus ?
3737 	 */
3738 	r = kvmppc_core_check_processor_compat_hv();
3739 	if (r < 0)
3740 		return -ENODEV;
3741 
3742 	r = kvm_init_subcore_bitmap();
3743 	if (r)
3744 		return r;
3745 
3746 	/*
3747 	 * We need a way of accessing the XICS interrupt controller,
3748 	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
3749 	 * indirectly, via OPAL.
3750 	 */
3751 #ifdef CONFIG_SMP
3752 	if (!get_paca()->kvm_hstate.xics_phys) {
3753 		struct device_node *np;
3754 
3755 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
3756 		if (!np) {
3757 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
3758 			return -ENODEV;
3759 		}
3760 	}
3761 #endif
3762 
3763 	kvm_ops_hv.owner = THIS_MODULE;
3764 	kvmppc_hv_ops = &kvm_ops_hv;
3765 
3766 	init_default_hcalls();
3767 
3768 	init_vcore_lists();
3769 
3770 	r = kvmppc_mmu_hv_init();
3771 	return r;
3772 }
3773 
3774 static void kvmppc_book3s_exit_hv(void)
3775 {
3776 	kvmppc_free_host_rm_ops();
3777 	kvmppc_hv_ops = NULL;
3778 }
3779 
3780 module_init(kvmppc_book3s_init_hv);
3781 module_exit(kvmppc_book3s_exit_hv);
3782 MODULE_LICENSE("GPL");
3783 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3784 MODULE_ALIAS("devname:kvm");
3785 
3786