1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 #include <linux/irqdomain.h> 46 #include <linux/smp.h> 47 48 #include <asm/ftrace.h> 49 #include <asm/reg.h> 50 #include <asm/ppc-opcode.h> 51 #include <asm/asm-prototypes.h> 52 #include <asm/archrandom.h> 53 #include <asm/debug.h> 54 #include <asm/disassemble.h> 55 #include <asm/cputable.h> 56 #include <asm/cacheflush.h> 57 #include <linux/uaccess.h> 58 #include <asm/interrupt.h> 59 #include <asm/io.h> 60 #include <asm/kvm_ppc.h> 61 #include <asm/kvm_book3s.h> 62 #include <asm/mmu_context.h> 63 #include <asm/lppaca.h> 64 #include <asm/pmc.h> 65 #include <asm/processor.h> 66 #include <asm/cputhreads.h> 67 #include <asm/page.h> 68 #include <asm/hvcall.h> 69 #include <asm/switch_to.h> 70 #include <asm/smp.h> 71 #include <asm/dbell.h> 72 #include <asm/hmi.h> 73 #include <asm/pnv-pci.h> 74 #include <asm/mmu.h> 75 #include <asm/opal.h> 76 #include <asm/xics.h> 77 #include <asm/xive.h> 78 #include <asm/hw_breakpoint.h> 79 #include <asm/kvm_book3s_uvmem.h> 80 #include <asm/ultravisor.h> 81 #include <asm/dtl.h> 82 #include <asm/plpar_wrappers.h> 83 84 #include <trace/events/ipi.h> 85 86 #include "book3s.h" 87 #include "book3s_hv.h" 88 89 #define CREATE_TRACE_POINTS 90 #include "trace_hv.h" 91 92 /* #define EXIT_DEBUG */ 93 /* #define EXIT_DEBUG_SIMPLE */ 94 /* #define EXIT_DEBUG_INT */ 95 96 /* Used to indicate that a guest page fault needs to be handled */ 97 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 98 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 99 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 100 101 /* Used as a "null" value for timebase values */ 102 #define TB_NIL (~(u64)0) 103 104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 105 106 static int dynamic_mt_modes = 6; 107 module_param(dynamic_mt_modes, int, 0644); 108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 109 static int target_smt_mode; 110 module_param(target_smt_mode, int, 0644); 111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 112 113 static bool one_vm_per_core; 114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 116 117 #ifdef CONFIG_KVM_XICS 118 static const struct kernel_param_ops module_param_ops = { 119 .set = param_set_int, 120 .get = param_get_int, 121 }; 122 123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 125 126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 128 #endif 129 130 /* If set, guests are allowed to create and control nested guests */ 131 static bool nested = true; 132 module_param(nested, bool, S_IRUGO | S_IWUSR); 133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 134 135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 136 137 /* 138 * RWMR values for POWER8. These control the rate at which PURR 139 * and SPURR count and should be set according to the number of 140 * online threads in the vcore being run. 141 */ 142 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 143 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 144 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 146 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 150 151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 152 RWMR_RPA_P8_1THREAD, 153 RWMR_RPA_P8_1THREAD, 154 RWMR_RPA_P8_2THREAD, 155 RWMR_RPA_P8_3THREAD, 156 RWMR_RPA_P8_4THREAD, 157 RWMR_RPA_P8_5THREAD, 158 RWMR_RPA_P8_6THREAD, 159 RWMR_RPA_P8_7THREAD, 160 RWMR_RPA_P8_8THREAD, 161 }; 162 163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 164 int *ip) 165 { 166 int i = *ip; 167 struct kvm_vcpu *vcpu; 168 169 while (++i < MAX_SMT_THREADS) { 170 vcpu = READ_ONCE(vc->runnable_threads[i]); 171 if (vcpu) { 172 *ip = i; 173 return vcpu; 174 } 175 } 176 return NULL; 177 } 178 179 /* Used to traverse the list of runnable threads for a given vcore */ 180 #define for_each_runnable_thread(i, vcpu, vc) \ 181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 182 183 static bool kvmppc_ipi_thread(int cpu) 184 { 185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 186 187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 188 if (kvmhv_on_pseries()) 189 return false; 190 191 /* On POWER9 we can use msgsnd to IPI any cpu */ 192 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 193 msg |= get_hard_smp_processor_id(cpu); 194 smp_mb(); 195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 196 return true; 197 } 198 199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 201 preempt_disable(); 202 if (cpu_first_thread_sibling(cpu) == 203 cpu_first_thread_sibling(smp_processor_id())) { 204 msg |= cpu_thread_in_core(cpu); 205 smp_mb(); 206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 207 preempt_enable(); 208 return true; 209 } 210 preempt_enable(); 211 } 212 213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 214 if (cpu >= 0 && cpu < nr_cpu_ids) { 215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 216 xics_wake_cpu(cpu); 217 return true; 218 } 219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 220 return true; 221 } 222 #endif 223 224 return false; 225 } 226 227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 228 { 229 int cpu; 230 struct rcuwait *waitp; 231 232 /* 233 * rcuwait_wake_up contains smp_mb() which orders prior stores that 234 * create pending work vs below loads of cpu fields. The other side 235 * is the barrier in vcpu run that orders setting the cpu fields vs 236 * testing for pending work. 237 */ 238 239 waitp = kvm_arch_vcpu_get_wait(vcpu); 240 if (rcuwait_wake_up(waitp)) 241 ++vcpu->stat.generic.halt_wakeup; 242 243 cpu = READ_ONCE(vcpu->arch.thread_cpu); 244 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 245 return; 246 247 /* CPU points to the first thread of the core */ 248 cpu = vcpu->cpu; 249 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 250 smp_send_reschedule(cpu); 251 } 252 253 /* 254 * We use the vcpu_load/put functions to measure stolen time. 255 * 256 * Stolen time is counted as time when either the vcpu is able to 257 * run as part of a virtual core, but the task running the vcore 258 * is preempted or sleeping, or when the vcpu needs something done 259 * in the kernel by the task running the vcpu, but that task is 260 * preempted or sleeping. Those two things have to be counted 261 * separately, since one of the vcpu tasks will take on the job 262 * of running the core, and the other vcpu tasks in the vcore will 263 * sleep waiting for it to do that, but that sleep shouldn't count 264 * as stolen time. 265 * 266 * Hence we accumulate stolen time when the vcpu can run as part of 267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 268 * needs its task to do other things in the kernel (for example, 269 * service a page fault) in busy_stolen. We don't accumulate 270 * stolen time for a vcore when it is inactive, or for a vcpu 271 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 272 * a misnomer; it means that the vcpu task is not executing in 273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 274 * the kernel. We don't have any way of dividing up that time 275 * between time that the vcpu is genuinely stopped, time that 276 * the task is actively working on behalf of the vcpu, and time 277 * that the task is preempted, so we don't count any of it as 278 * stolen. 279 * 280 * Updates to busy_stolen are protected by arch.tbacct_lock; 281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 282 * lock. The stolen times are measured in units of timebase ticks. 283 * (Note that the != TB_NIL checks below are purely defensive; 284 * they should never fail.) 285 * 286 * The POWER9 path is simpler, one vcpu per virtual core so the 287 * former case does not exist. If a vcpu is preempted when it is 288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate 289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible 290 * state in the P9 path. 291 */ 292 293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb) 294 { 295 unsigned long flags; 296 297 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 298 299 spin_lock_irqsave(&vc->stoltb_lock, flags); 300 vc->preempt_tb = tb; 301 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 302 } 303 304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb) 305 { 306 unsigned long flags; 307 308 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 309 310 spin_lock_irqsave(&vc->stoltb_lock, flags); 311 if (vc->preempt_tb != TB_NIL) { 312 vc->stolen_tb += tb - vc->preempt_tb; 313 vc->preempt_tb = TB_NIL; 314 } 315 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 316 } 317 318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 319 { 320 struct kvmppc_vcore *vc = vcpu->arch.vcore; 321 unsigned long flags; 322 u64 now; 323 324 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 325 if (vcpu->arch.busy_preempt != TB_NIL) { 326 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST); 327 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt; 328 vcpu->arch.busy_preempt = TB_NIL; 329 } 330 return; 331 } 332 333 now = mftb(); 334 335 /* 336 * We can test vc->runner without taking the vcore lock, 337 * because only this task ever sets vc->runner to this 338 * vcpu, and once it is set to this vcpu, only this task 339 * ever sets it to NULL. 340 */ 341 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 342 kvmppc_core_end_stolen(vc, now); 343 344 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 345 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 346 vcpu->arch.busy_preempt != TB_NIL) { 347 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt; 348 vcpu->arch.busy_preempt = TB_NIL; 349 } 350 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 351 } 352 353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 354 { 355 struct kvmppc_vcore *vc = vcpu->arch.vcore; 356 unsigned long flags; 357 u64 now; 358 359 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 360 /* 361 * In the P9 path, RUNNABLE is not preemptible 362 * (nor takes host interrupts) 363 */ 364 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE); 365 /* 366 * Account stolen time when preempted while the vcpu task is 367 * running in the kernel (but not in qemu, which is INACTIVE). 368 */ 369 if (task_is_running(current) && 370 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 371 vcpu->arch.busy_preempt = mftb(); 372 return; 373 } 374 375 now = mftb(); 376 377 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 378 kvmppc_core_start_stolen(vc, now); 379 380 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 381 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 382 vcpu->arch.busy_preempt = now; 383 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 384 } 385 386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 387 { 388 vcpu->arch.pvr = pvr; 389 } 390 391 /* Dummy value used in computing PCR value below */ 392 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 393 394 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 395 { 396 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0; 397 struct kvmppc_vcore *vc = vcpu->arch.vcore; 398 399 /* We can (emulate) our own architecture version and anything older */ 400 if (cpu_has_feature(CPU_FTR_ARCH_31)) 401 host_pcr_bit = PCR_ARCH_31; 402 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 403 host_pcr_bit = PCR_ARCH_300; 404 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 405 host_pcr_bit = PCR_ARCH_207; 406 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 407 host_pcr_bit = PCR_ARCH_206; 408 else 409 host_pcr_bit = PCR_ARCH_205; 410 411 /* Determine lowest PCR bit needed to run guest in given PVR level */ 412 guest_pcr_bit = host_pcr_bit; 413 if (arch_compat) { 414 switch (arch_compat) { 415 case PVR_ARCH_205: 416 guest_pcr_bit = PCR_ARCH_205; 417 break; 418 case PVR_ARCH_206: 419 case PVR_ARCH_206p: 420 guest_pcr_bit = PCR_ARCH_206; 421 break; 422 case PVR_ARCH_207: 423 guest_pcr_bit = PCR_ARCH_207; 424 break; 425 case PVR_ARCH_300: 426 guest_pcr_bit = PCR_ARCH_300; 427 cap = H_GUEST_CAP_POWER9; 428 break; 429 case PVR_ARCH_31: 430 guest_pcr_bit = PCR_ARCH_31; 431 cap = H_GUEST_CAP_POWER10; 432 break; 433 default: 434 return -EINVAL; 435 } 436 } 437 438 /* Check requested PCR bits don't exceed our capabilities */ 439 if (guest_pcr_bit > host_pcr_bit) 440 return -EINVAL; 441 442 if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) { 443 if (!(cap & nested_capabilities)) 444 return -EINVAL; 445 } 446 447 spin_lock(&vc->lock); 448 vc->arch_compat = arch_compat; 449 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR); 450 /* 451 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 452 * Also set all reserved PCR bits 453 */ 454 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 455 spin_unlock(&vc->lock); 456 457 return 0; 458 } 459 460 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 461 { 462 int r; 463 464 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 465 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 466 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 467 for (r = 0; r < 16; ++r) 468 pr_err("r%2d = %.16lx r%d = %.16lx\n", 469 r, kvmppc_get_gpr(vcpu, r), 470 r+16, kvmppc_get_gpr(vcpu, r+16)); 471 pr_err("ctr = %.16lx lr = %.16lx\n", 472 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 473 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 474 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 475 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 476 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 477 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 478 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 479 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 480 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 481 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 482 pr_err("fault dar = %.16lx dsisr = %.8x\n", 483 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 484 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 485 for (r = 0; r < vcpu->arch.slb_max; ++r) 486 pr_err(" ESID = %.16llx VSID = %.16llx\n", 487 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 488 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n", 489 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 490 vcpu->arch.last_inst); 491 } 492 493 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 494 { 495 return kvm_get_vcpu_by_id(kvm, id); 496 } 497 498 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 499 { 500 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 501 vpa->yield_count = cpu_to_be32(1); 502 } 503 504 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 505 unsigned long addr, unsigned long len) 506 { 507 /* check address is cacheline aligned */ 508 if (addr & (L1_CACHE_BYTES - 1)) 509 return -EINVAL; 510 spin_lock(&vcpu->arch.vpa_update_lock); 511 if (v->next_gpa != addr || v->len != len) { 512 v->next_gpa = addr; 513 v->len = addr ? len : 0; 514 v->update_pending = 1; 515 } 516 spin_unlock(&vcpu->arch.vpa_update_lock); 517 return 0; 518 } 519 520 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 521 struct reg_vpa { 522 u32 dummy; 523 union { 524 __be16 hword; 525 __be32 word; 526 } length; 527 }; 528 529 static int vpa_is_registered(struct kvmppc_vpa *vpap) 530 { 531 if (vpap->update_pending) 532 return vpap->next_gpa != 0; 533 return vpap->pinned_addr != NULL; 534 } 535 536 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 537 unsigned long flags, 538 unsigned long vcpuid, unsigned long vpa) 539 { 540 struct kvm *kvm = vcpu->kvm; 541 unsigned long len, nb; 542 void *va; 543 struct kvm_vcpu *tvcpu; 544 int err; 545 int subfunc; 546 struct kvmppc_vpa *vpap; 547 548 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 549 if (!tvcpu) 550 return H_PARAMETER; 551 552 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 553 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 554 subfunc == H_VPA_REG_SLB) { 555 /* Registering new area - address must be cache-line aligned */ 556 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 557 return H_PARAMETER; 558 559 /* convert logical addr to kernel addr and read length */ 560 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 561 if (va == NULL) 562 return H_PARAMETER; 563 if (subfunc == H_VPA_REG_VPA) 564 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 565 else 566 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 567 kvmppc_unpin_guest_page(kvm, va, vpa, false); 568 569 /* Check length */ 570 if (len > nb || len < sizeof(struct reg_vpa)) 571 return H_PARAMETER; 572 } else { 573 vpa = 0; 574 len = 0; 575 } 576 577 err = H_PARAMETER; 578 vpap = NULL; 579 spin_lock(&tvcpu->arch.vpa_update_lock); 580 581 switch (subfunc) { 582 case H_VPA_REG_VPA: /* register VPA */ 583 /* 584 * The size of our lppaca is 1kB because of the way we align 585 * it for the guest to avoid crossing a 4kB boundary. We only 586 * use 640 bytes of the structure though, so we should accept 587 * clients that set a size of 640. 588 */ 589 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 590 if (len < sizeof(struct lppaca)) 591 break; 592 vpap = &tvcpu->arch.vpa; 593 err = 0; 594 break; 595 596 case H_VPA_REG_DTL: /* register DTL */ 597 if (len < sizeof(struct dtl_entry)) 598 break; 599 len -= len % sizeof(struct dtl_entry); 600 601 /* Check that they have previously registered a VPA */ 602 err = H_RESOURCE; 603 if (!vpa_is_registered(&tvcpu->arch.vpa)) 604 break; 605 606 vpap = &tvcpu->arch.dtl; 607 err = 0; 608 break; 609 610 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 611 /* Check that they have previously registered a VPA */ 612 err = H_RESOURCE; 613 if (!vpa_is_registered(&tvcpu->arch.vpa)) 614 break; 615 616 vpap = &tvcpu->arch.slb_shadow; 617 err = 0; 618 break; 619 620 case H_VPA_DEREG_VPA: /* deregister VPA */ 621 /* Check they don't still have a DTL or SLB buf registered */ 622 err = H_RESOURCE; 623 if (vpa_is_registered(&tvcpu->arch.dtl) || 624 vpa_is_registered(&tvcpu->arch.slb_shadow)) 625 break; 626 627 vpap = &tvcpu->arch.vpa; 628 err = 0; 629 break; 630 631 case H_VPA_DEREG_DTL: /* deregister DTL */ 632 vpap = &tvcpu->arch.dtl; 633 err = 0; 634 break; 635 636 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 637 vpap = &tvcpu->arch.slb_shadow; 638 err = 0; 639 break; 640 } 641 642 if (vpap) { 643 vpap->next_gpa = vpa; 644 vpap->len = len; 645 vpap->update_pending = 1; 646 } 647 648 spin_unlock(&tvcpu->arch.vpa_update_lock); 649 650 return err; 651 } 652 653 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap, 654 struct kvmppc_vpa *old_vpap) 655 { 656 struct kvm *kvm = vcpu->kvm; 657 void *va; 658 unsigned long nb; 659 unsigned long gpa; 660 661 /* 662 * We need to pin the page pointed to by vpap->next_gpa, 663 * but we can't call kvmppc_pin_guest_page under the lock 664 * as it does get_user_pages() and down_read(). So we 665 * have to drop the lock, pin the page, then get the lock 666 * again and check that a new area didn't get registered 667 * in the meantime. 668 */ 669 for (;;) { 670 gpa = vpap->next_gpa; 671 spin_unlock(&vcpu->arch.vpa_update_lock); 672 va = NULL; 673 nb = 0; 674 if (gpa) 675 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 676 spin_lock(&vcpu->arch.vpa_update_lock); 677 if (gpa == vpap->next_gpa) 678 break; 679 /* sigh... unpin that one and try again */ 680 if (va) 681 kvmppc_unpin_guest_page(kvm, va, gpa, false); 682 } 683 684 vpap->update_pending = 0; 685 if (va && nb < vpap->len) { 686 /* 687 * If it's now too short, it must be that userspace 688 * has changed the mappings underlying guest memory, 689 * so unregister the region. 690 */ 691 kvmppc_unpin_guest_page(kvm, va, gpa, false); 692 va = NULL; 693 } 694 *old_vpap = *vpap; 695 696 vpap->gpa = gpa; 697 vpap->pinned_addr = va; 698 vpap->dirty = false; 699 if (va) 700 vpap->pinned_end = va + vpap->len; 701 } 702 703 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 704 { 705 struct kvm *kvm = vcpu->kvm; 706 struct kvmppc_vpa old_vpa = { 0 }; 707 708 if (!(vcpu->arch.vpa.update_pending || 709 vcpu->arch.slb_shadow.update_pending || 710 vcpu->arch.dtl.update_pending)) 711 return; 712 713 spin_lock(&vcpu->arch.vpa_update_lock); 714 if (vcpu->arch.vpa.update_pending) { 715 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa, &old_vpa); 716 if (old_vpa.pinned_addr) { 717 if (kvmhv_is_nestedv2()) 718 kvmhv_nestedv2_set_vpa(vcpu, ~0ull); 719 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 720 old_vpa.dirty); 721 } 722 if (vcpu->arch.vpa.pinned_addr) { 723 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 724 if (kvmhv_is_nestedv2()) 725 kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr)); 726 } 727 } 728 if (vcpu->arch.dtl.update_pending) { 729 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl, &old_vpa); 730 if (old_vpa.pinned_addr) 731 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 732 old_vpa.dirty); 733 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 734 vcpu->arch.dtl_index = 0; 735 } 736 if (vcpu->arch.slb_shadow.update_pending) { 737 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow, &old_vpa); 738 if (old_vpa.pinned_addr) 739 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 740 old_vpa.dirty); 741 } 742 743 spin_unlock(&vcpu->arch.vpa_update_lock); 744 } 745 746 /* 747 * Return the accumulated stolen time for the vcore up until `now'. 748 * The caller should hold the vcore lock. 749 */ 750 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 751 { 752 u64 p; 753 unsigned long flags; 754 755 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 756 757 spin_lock_irqsave(&vc->stoltb_lock, flags); 758 p = vc->stolen_tb; 759 if (vc->vcore_state != VCORE_INACTIVE && 760 vc->preempt_tb != TB_NIL) 761 p += now - vc->preempt_tb; 762 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 763 return p; 764 } 765 766 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 767 struct lppaca *vpa, 768 unsigned int pcpu, u64 now, 769 unsigned long stolen) 770 { 771 struct dtl_entry *dt; 772 773 dt = vcpu->arch.dtl_ptr; 774 775 if (!dt) 776 return; 777 778 dt->dispatch_reason = 7; 779 dt->preempt_reason = 0; 780 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid); 781 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 782 dt->ready_to_enqueue_time = 0; 783 dt->waiting_to_ready_time = 0; 784 dt->timebase = cpu_to_be64(now); 785 dt->fault_addr = 0; 786 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 787 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 788 789 ++dt; 790 if (dt == vcpu->arch.dtl.pinned_end) 791 dt = vcpu->arch.dtl.pinned_addr; 792 vcpu->arch.dtl_ptr = dt; 793 /* order writing *dt vs. writing vpa->dtl_idx */ 794 smp_wmb(); 795 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 796 797 /* vcpu->arch.dtl.dirty is set by the caller */ 798 } 799 800 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu, 801 struct kvmppc_vcore *vc) 802 { 803 struct lppaca *vpa; 804 unsigned long stolen; 805 unsigned long core_stolen; 806 u64 now; 807 unsigned long flags; 808 809 vpa = vcpu->arch.vpa.pinned_addr; 810 if (!vpa) 811 return; 812 813 now = mftb(); 814 815 core_stolen = vcore_stolen_time(vc, now); 816 stolen = core_stolen - vcpu->arch.stolen_logged; 817 vcpu->arch.stolen_logged = core_stolen; 818 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 819 stolen += vcpu->arch.busy_stolen; 820 vcpu->arch.busy_stolen = 0; 821 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 822 823 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen); 824 825 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen); 826 827 vcpu->arch.vpa.dirty = true; 828 } 829 830 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu, 831 struct kvmppc_vcore *vc, 832 u64 now) 833 { 834 struct lppaca *vpa; 835 unsigned long stolen; 836 unsigned long stolen_delta; 837 838 vpa = vcpu->arch.vpa.pinned_addr; 839 if (!vpa) 840 return; 841 842 stolen = vc->stolen_tb; 843 stolen_delta = stolen - vcpu->arch.stolen_logged; 844 vcpu->arch.stolen_logged = stolen; 845 846 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen); 847 848 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta); 849 850 vcpu->arch.vpa.dirty = true; 851 } 852 853 /* See if there is a doorbell interrupt pending for a vcpu */ 854 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 855 { 856 int thr; 857 struct kvmppc_vcore *vc; 858 859 if (vcpu->arch.doorbell_request) 860 return true; 861 if (cpu_has_feature(CPU_FTR_ARCH_300)) 862 return false; 863 /* 864 * Ensure that the read of vcore->dpdes comes after the read 865 * of vcpu->doorbell_request. This barrier matches the 866 * smp_wmb() in kvmppc_guest_entry_inject(). 867 */ 868 smp_rmb(); 869 vc = vcpu->arch.vcore; 870 thr = vcpu->vcpu_id - vc->first_vcpuid; 871 return !!(vc->dpdes & (1 << thr)); 872 } 873 874 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 875 { 876 if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207) 877 return true; 878 if ((!kvmppc_get_arch_compat(vcpu)) && 879 cpu_has_feature(CPU_FTR_ARCH_207S)) 880 return true; 881 return false; 882 } 883 884 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 885 unsigned long resource, unsigned long value1, 886 unsigned long value2) 887 { 888 switch (resource) { 889 case H_SET_MODE_RESOURCE_SET_CIABR: 890 if (!kvmppc_power8_compatible(vcpu)) 891 return H_P2; 892 if (value2) 893 return H_P4; 894 if (mflags) 895 return H_UNSUPPORTED_FLAG_START; 896 /* Guests can't breakpoint the hypervisor */ 897 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 898 return H_P3; 899 kvmppc_set_ciabr_hv(vcpu, value1); 900 return H_SUCCESS; 901 case H_SET_MODE_RESOURCE_SET_DAWR0: 902 if (!kvmppc_power8_compatible(vcpu)) 903 return H_P2; 904 if (!ppc_breakpoint_available()) 905 return H_P2; 906 if (mflags) 907 return H_UNSUPPORTED_FLAG_START; 908 if (value2 & DABRX_HYP) 909 return H_P4; 910 kvmppc_set_dawr0_hv(vcpu, value1); 911 kvmppc_set_dawrx0_hv(vcpu, value2); 912 return H_SUCCESS; 913 case H_SET_MODE_RESOURCE_SET_DAWR1: 914 if (!kvmppc_power8_compatible(vcpu)) 915 return H_P2; 916 if (!ppc_breakpoint_available()) 917 return H_P2; 918 if (!cpu_has_feature(CPU_FTR_DAWR1)) 919 return H_P2; 920 if (!vcpu->kvm->arch.dawr1_enabled) 921 return H_FUNCTION; 922 if (mflags) 923 return H_UNSUPPORTED_FLAG_START; 924 if (value2 & DABRX_HYP) 925 return H_P4; 926 kvmppc_set_dawr1_hv(vcpu, value1); 927 kvmppc_set_dawrx1_hv(vcpu, value2); 928 return H_SUCCESS; 929 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 930 /* 931 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 932 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 933 */ 934 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 935 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 936 return H_UNSUPPORTED_FLAG_START; 937 return H_TOO_HARD; 938 default: 939 return H_TOO_HARD; 940 } 941 } 942 943 /* Copy guest memory in place - must reside within a single memslot */ 944 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 945 unsigned long len) 946 { 947 struct kvm_memory_slot *to_memslot = NULL; 948 struct kvm_memory_slot *from_memslot = NULL; 949 unsigned long to_addr, from_addr; 950 int r; 951 952 /* Get HPA for from address */ 953 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 954 if (!from_memslot) 955 return -EFAULT; 956 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 957 << PAGE_SHIFT)) 958 return -EINVAL; 959 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 960 if (kvm_is_error_hva(from_addr)) 961 return -EFAULT; 962 from_addr |= (from & (PAGE_SIZE - 1)); 963 964 /* Get HPA for to address */ 965 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 966 if (!to_memslot) 967 return -EFAULT; 968 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 969 << PAGE_SHIFT)) 970 return -EINVAL; 971 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 972 if (kvm_is_error_hva(to_addr)) 973 return -EFAULT; 974 to_addr |= (to & (PAGE_SIZE - 1)); 975 976 /* Perform copy */ 977 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 978 len); 979 if (r) 980 return -EFAULT; 981 mark_page_dirty(kvm, to >> PAGE_SHIFT); 982 return 0; 983 } 984 985 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 986 unsigned long dest, unsigned long src) 987 { 988 u64 pg_sz = SZ_4K; /* 4K page size */ 989 u64 pg_mask = SZ_4K - 1; 990 int ret; 991 992 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 993 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 994 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 995 return H_PARAMETER; 996 997 /* dest (and src if copy_page flag set) must be page aligned */ 998 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 999 return H_PARAMETER; 1000 1001 /* zero and/or copy the page as determined by the flags */ 1002 if (flags & H_COPY_PAGE) { 1003 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 1004 if (ret < 0) 1005 return H_PARAMETER; 1006 } else if (flags & H_ZERO_PAGE) { 1007 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 1008 if (ret < 0) 1009 return H_PARAMETER; 1010 } 1011 1012 /* We can ignore the remaining flags */ 1013 1014 return H_SUCCESS; 1015 } 1016 1017 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 1018 { 1019 struct kvmppc_vcore *vcore = target->arch.vcore; 1020 1021 /* 1022 * We expect to have been called by the real mode handler 1023 * (kvmppc_rm_h_confer()) which would have directly returned 1024 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 1025 * have useful work to do and should not confer) so we don't 1026 * recheck that here. 1027 * 1028 * In the case of the P9 single vcpu per vcore case, the real 1029 * mode handler is not called but no other threads are in the 1030 * source vcore. 1031 */ 1032 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1033 spin_lock(&vcore->lock); 1034 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 1035 vcore->vcore_state != VCORE_INACTIVE && 1036 vcore->runner) 1037 target = vcore->runner; 1038 spin_unlock(&vcore->lock); 1039 } 1040 1041 return kvm_vcpu_yield_to(target); 1042 } 1043 1044 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 1045 { 1046 int yield_count = 0; 1047 struct lppaca *lppaca; 1048 1049 spin_lock(&vcpu->arch.vpa_update_lock); 1050 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 1051 if (lppaca) 1052 yield_count = be32_to_cpu(lppaca->yield_count); 1053 spin_unlock(&vcpu->arch.vpa_update_lock); 1054 return yield_count; 1055 } 1056 1057 /* 1058 * H_RPT_INVALIDATE hcall handler for nested guests. 1059 * 1060 * Handles only nested process-scoped invalidation requests in L0. 1061 */ 1062 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) 1063 { 1064 unsigned long type = kvmppc_get_gpr(vcpu, 6); 1065 unsigned long pid, pg_sizes, start, end; 1066 1067 /* 1068 * The partition-scoped invalidations aren't handled here in L0. 1069 */ 1070 if (type & H_RPTI_TYPE_NESTED) 1071 return RESUME_HOST; 1072 1073 pid = kvmppc_get_gpr(vcpu, 4); 1074 pg_sizes = kvmppc_get_gpr(vcpu, 7); 1075 start = kvmppc_get_gpr(vcpu, 8); 1076 end = kvmppc_get_gpr(vcpu, 9); 1077 1078 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, 1079 type, pg_sizes, start, end); 1080 1081 kvmppc_set_gpr(vcpu, 3, H_SUCCESS); 1082 return RESUME_GUEST; 1083 } 1084 1085 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, 1086 unsigned long id, unsigned long target, 1087 unsigned long type, unsigned long pg_sizes, 1088 unsigned long start, unsigned long end) 1089 { 1090 if (!kvm_is_radix(vcpu->kvm)) 1091 return H_UNSUPPORTED; 1092 1093 if (end < start) 1094 return H_P5; 1095 1096 /* 1097 * Partition-scoped invalidation for nested guests. 1098 */ 1099 if (type & H_RPTI_TYPE_NESTED) { 1100 if (!nesting_enabled(vcpu->kvm)) 1101 return H_FUNCTION; 1102 1103 /* Support only cores as target */ 1104 if (target != H_RPTI_TARGET_CMMU) 1105 return H_P2; 1106 1107 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, 1108 start, end); 1109 } 1110 1111 /* 1112 * Process-scoped invalidation for L1 guests. 1113 */ 1114 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, 1115 type, pg_sizes, start, end); 1116 return H_SUCCESS; 1117 } 1118 1119 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 1120 { 1121 struct kvm *kvm = vcpu->kvm; 1122 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1123 unsigned long target, ret = H_SUCCESS; 1124 int yield_count; 1125 struct kvm_vcpu *tvcpu; 1126 int idx, rc; 1127 1128 if (req <= MAX_HCALL_OPCODE && 1129 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 1130 return RESUME_HOST; 1131 1132 switch (req) { 1133 case H_REMOVE: 1134 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 1135 kvmppc_get_gpr(vcpu, 5), 1136 kvmppc_get_gpr(vcpu, 6)); 1137 if (ret == H_TOO_HARD) 1138 return RESUME_HOST; 1139 break; 1140 case H_ENTER: 1141 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 1142 kvmppc_get_gpr(vcpu, 5), 1143 kvmppc_get_gpr(vcpu, 6), 1144 kvmppc_get_gpr(vcpu, 7)); 1145 if (ret == H_TOO_HARD) 1146 return RESUME_HOST; 1147 break; 1148 case H_READ: 1149 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 1150 kvmppc_get_gpr(vcpu, 5)); 1151 if (ret == H_TOO_HARD) 1152 return RESUME_HOST; 1153 break; 1154 case H_CLEAR_MOD: 1155 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 1156 kvmppc_get_gpr(vcpu, 5)); 1157 if (ret == H_TOO_HARD) 1158 return RESUME_HOST; 1159 break; 1160 case H_CLEAR_REF: 1161 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 1162 kvmppc_get_gpr(vcpu, 5)); 1163 if (ret == H_TOO_HARD) 1164 return RESUME_HOST; 1165 break; 1166 case H_PROTECT: 1167 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 1168 kvmppc_get_gpr(vcpu, 5), 1169 kvmppc_get_gpr(vcpu, 6)); 1170 if (ret == H_TOO_HARD) 1171 return RESUME_HOST; 1172 break; 1173 case H_BULK_REMOVE: 1174 ret = kvmppc_h_bulk_remove(vcpu); 1175 if (ret == H_TOO_HARD) 1176 return RESUME_HOST; 1177 break; 1178 1179 case H_CEDE: 1180 break; 1181 case H_PROD: 1182 target = kvmppc_get_gpr(vcpu, 4); 1183 tvcpu = kvmppc_find_vcpu(kvm, target); 1184 if (!tvcpu) { 1185 ret = H_PARAMETER; 1186 break; 1187 } 1188 tvcpu->arch.prodded = 1; 1189 smp_mb(); /* This orders prodded store vs ceded load */ 1190 if (tvcpu->arch.ceded) 1191 kvmppc_fast_vcpu_kick_hv(tvcpu); 1192 break; 1193 case H_CONFER: 1194 target = kvmppc_get_gpr(vcpu, 4); 1195 if (target == -1) 1196 break; 1197 tvcpu = kvmppc_find_vcpu(kvm, target); 1198 if (!tvcpu) { 1199 ret = H_PARAMETER; 1200 break; 1201 } 1202 yield_count = kvmppc_get_gpr(vcpu, 5); 1203 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1204 break; 1205 kvm_arch_vcpu_yield_to(tvcpu); 1206 break; 1207 case H_REGISTER_VPA: 1208 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1209 kvmppc_get_gpr(vcpu, 5), 1210 kvmppc_get_gpr(vcpu, 6)); 1211 break; 1212 case H_RTAS: 1213 if (list_empty(&kvm->arch.rtas_tokens)) 1214 return RESUME_HOST; 1215 1216 idx = srcu_read_lock(&kvm->srcu); 1217 rc = kvmppc_rtas_hcall(vcpu); 1218 srcu_read_unlock(&kvm->srcu, idx); 1219 1220 if (rc == -ENOENT) 1221 return RESUME_HOST; 1222 else if (rc == 0) 1223 break; 1224 1225 /* Send the error out to userspace via KVM_RUN */ 1226 return rc; 1227 case H_LOGICAL_CI_LOAD: 1228 ret = kvmppc_h_logical_ci_load(vcpu); 1229 if (ret == H_TOO_HARD) 1230 return RESUME_HOST; 1231 break; 1232 case H_LOGICAL_CI_STORE: 1233 ret = kvmppc_h_logical_ci_store(vcpu); 1234 if (ret == H_TOO_HARD) 1235 return RESUME_HOST; 1236 break; 1237 case H_SET_MODE: 1238 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1239 kvmppc_get_gpr(vcpu, 5), 1240 kvmppc_get_gpr(vcpu, 6), 1241 kvmppc_get_gpr(vcpu, 7)); 1242 if (ret == H_TOO_HARD) 1243 return RESUME_HOST; 1244 break; 1245 case H_XIRR: 1246 case H_CPPR: 1247 case H_EOI: 1248 case H_IPI: 1249 case H_IPOLL: 1250 case H_XIRR_X: 1251 if (kvmppc_xics_enabled(vcpu)) { 1252 if (xics_on_xive()) { 1253 ret = H_NOT_AVAILABLE; 1254 return RESUME_GUEST; 1255 } 1256 ret = kvmppc_xics_hcall(vcpu, req); 1257 break; 1258 } 1259 return RESUME_HOST; 1260 case H_SET_DABR: 1261 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1262 break; 1263 case H_SET_XDABR: 1264 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1265 kvmppc_get_gpr(vcpu, 5)); 1266 break; 1267 #ifdef CONFIG_SPAPR_TCE_IOMMU 1268 case H_GET_TCE: 1269 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1270 kvmppc_get_gpr(vcpu, 5)); 1271 if (ret == H_TOO_HARD) 1272 return RESUME_HOST; 1273 break; 1274 case H_PUT_TCE: 1275 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1276 kvmppc_get_gpr(vcpu, 5), 1277 kvmppc_get_gpr(vcpu, 6)); 1278 if (ret == H_TOO_HARD) 1279 return RESUME_HOST; 1280 break; 1281 case H_PUT_TCE_INDIRECT: 1282 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1283 kvmppc_get_gpr(vcpu, 5), 1284 kvmppc_get_gpr(vcpu, 6), 1285 kvmppc_get_gpr(vcpu, 7)); 1286 if (ret == H_TOO_HARD) 1287 return RESUME_HOST; 1288 break; 1289 case H_STUFF_TCE: 1290 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1291 kvmppc_get_gpr(vcpu, 5), 1292 kvmppc_get_gpr(vcpu, 6), 1293 kvmppc_get_gpr(vcpu, 7)); 1294 if (ret == H_TOO_HARD) 1295 return RESUME_HOST; 1296 break; 1297 #endif 1298 case H_RANDOM: { 1299 unsigned long rand; 1300 1301 if (!arch_get_random_seed_longs(&rand, 1)) 1302 ret = H_HARDWARE; 1303 kvmppc_set_gpr(vcpu, 4, rand); 1304 break; 1305 } 1306 case H_RPT_INVALIDATE: 1307 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), 1308 kvmppc_get_gpr(vcpu, 5), 1309 kvmppc_get_gpr(vcpu, 6), 1310 kvmppc_get_gpr(vcpu, 7), 1311 kvmppc_get_gpr(vcpu, 8), 1312 kvmppc_get_gpr(vcpu, 9)); 1313 break; 1314 1315 case H_SET_PARTITION_TABLE: 1316 ret = H_FUNCTION; 1317 if (nesting_enabled(kvm)) 1318 ret = kvmhv_set_partition_table(vcpu); 1319 break; 1320 case H_ENTER_NESTED: 1321 ret = H_FUNCTION; 1322 if (!nesting_enabled(kvm)) 1323 break; 1324 ret = kvmhv_enter_nested_guest(vcpu); 1325 if (ret == H_INTERRUPT) { 1326 kvmppc_set_gpr(vcpu, 3, 0); 1327 vcpu->arch.hcall_needed = 0; 1328 return -EINTR; 1329 } else if (ret == H_TOO_HARD) { 1330 kvmppc_set_gpr(vcpu, 3, 0); 1331 vcpu->arch.hcall_needed = 0; 1332 return RESUME_HOST; 1333 } 1334 break; 1335 case H_TLB_INVALIDATE: 1336 ret = H_FUNCTION; 1337 if (nesting_enabled(kvm)) 1338 ret = kvmhv_do_nested_tlbie(vcpu); 1339 break; 1340 case H_COPY_TOFROM_GUEST: 1341 ret = H_FUNCTION; 1342 if (nesting_enabled(kvm)) 1343 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1344 break; 1345 case H_PAGE_INIT: 1346 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1347 kvmppc_get_gpr(vcpu, 5), 1348 kvmppc_get_gpr(vcpu, 6)); 1349 break; 1350 case H_SVM_PAGE_IN: 1351 ret = H_UNSUPPORTED; 1352 if (kvmppc_get_srr1(vcpu) & MSR_S) 1353 ret = kvmppc_h_svm_page_in(kvm, 1354 kvmppc_get_gpr(vcpu, 4), 1355 kvmppc_get_gpr(vcpu, 5), 1356 kvmppc_get_gpr(vcpu, 6)); 1357 break; 1358 case H_SVM_PAGE_OUT: 1359 ret = H_UNSUPPORTED; 1360 if (kvmppc_get_srr1(vcpu) & MSR_S) 1361 ret = kvmppc_h_svm_page_out(kvm, 1362 kvmppc_get_gpr(vcpu, 4), 1363 kvmppc_get_gpr(vcpu, 5), 1364 kvmppc_get_gpr(vcpu, 6)); 1365 break; 1366 case H_SVM_INIT_START: 1367 ret = H_UNSUPPORTED; 1368 if (kvmppc_get_srr1(vcpu) & MSR_S) 1369 ret = kvmppc_h_svm_init_start(kvm); 1370 break; 1371 case H_SVM_INIT_DONE: 1372 ret = H_UNSUPPORTED; 1373 if (kvmppc_get_srr1(vcpu) & MSR_S) 1374 ret = kvmppc_h_svm_init_done(kvm); 1375 break; 1376 case H_SVM_INIT_ABORT: 1377 /* 1378 * Even if that call is made by the Ultravisor, the SSR1 value 1379 * is the guest context one, with the secure bit clear as it has 1380 * not yet been secured. So we can't check it here. 1381 * Instead the kvm->arch.secure_guest flag is checked inside 1382 * kvmppc_h_svm_init_abort(). 1383 */ 1384 ret = kvmppc_h_svm_init_abort(kvm); 1385 break; 1386 1387 default: 1388 return RESUME_HOST; 1389 } 1390 WARN_ON_ONCE(ret == H_TOO_HARD); 1391 kvmppc_set_gpr(vcpu, 3, ret); 1392 vcpu->arch.hcall_needed = 0; 1393 return RESUME_GUEST; 1394 } 1395 1396 /* 1397 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1398 * handlers in book3s_hv_rmhandlers.S. 1399 * 1400 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1401 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1402 */ 1403 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1404 { 1405 __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE); 1406 vcpu->arch.ceded = 1; 1407 smp_mb(); 1408 if (vcpu->arch.prodded) { 1409 vcpu->arch.prodded = 0; 1410 smp_mb(); 1411 vcpu->arch.ceded = 0; 1412 } 1413 } 1414 1415 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1416 { 1417 switch (cmd) { 1418 case H_CEDE: 1419 case H_PROD: 1420 case H_CONFER: 1421 case H_REGISTER_VPA: 1422 case H_SET_MODE: 1423 #ifdef CONFIG_SPAPR_TCE_IOMMU 1424 case H_GET_TCE: 1425 case H_PUT_TCE: 1426 case H_PUT_TCE_INDIRECT: 1427 case H_STUFF_TCE: 1428 #endif 1429 case H_LOGICAL_CI_LOAD: 1430 case H_LOGICAL_CI_STORE: 1431 #ifdef CONFIG_KVM_XICS 1432 case H_XIRR: 1433 case H_CPPR: 1434 case H_EOI: 1435 case H_IPI: 1436 case H_IPOLL: 1437 case H_XIRR_X: 1438 #endif 1439 case H_PAGE_INIT: 1440 case H_RPT_INVALIDATE: 1441 return 1; 1442 } 1443 1444 /* See if it's in the real-mode table */ 1445 return kvmppc_hcall_impl_hv_realmode(cmd); 1446 } 1447 1448 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1449 { 1450 ppc_inst_t last_inst; 1451 1452 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1453 EMULATE_DONE) { 1454 /* 1455 * Fetch failed, so return to guest and 1456 * try executing it again. 1457 */ 1458 return RESUME_GUEST; 1459 } 1460 1461 if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) { 1462 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1463 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1464 return RESUME_HOST; 1465 } else { 1466 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1467 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1468 return RESUME_GUEST; 1469 } 1470 } 1471 1472 static void do_nothing(void *x) 1473 { 1474 } 1475 1476 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1477 { 1478 int thr, cpu, pcpu, nthreads; 1479 struct kvm_vcpu *v; 1480 unsigned long dpdes; 1481 1482 nthreads = vcpu->kvm->arch.emul_smt_mode; 1483 dpdes = 0; 1484 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1485 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1486 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1487 if (!v) 1488 continue; 1489 /* 1490 * If the vcpu is currently running on a physical cpu thread, 1491 * interrupt it in order to pull it out of the guest briefly, 1492 * which will update its vcore->dpdes value. 1493 */ 1494 pcpu = READ_ONCE(v->cpu); 1495 if (pcpu >= 0) 1496 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1497 if (kvmppc_doorbell_pending(v)) 1498 dpdes |= 1 << thr; 1499 } 1500 return dpdes; 1501 } 1502 1503 /* 1504 * On POWER9, emulate doorbell-related instructions in order to 1505 * give the guest the illusion of running on a multi-threaded core. 1506 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1507 * and mfspr DPDES. 1508 */ 1509 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1510 { 1511 u32 inst, rb, thr; 1512 unsigned long arg; 1513 struct kvm *kvm = vcpu->kvm; 1514 struct kvm_vcpu *tvcpu; 1515 ppc_inst_t pinst; 1516 1517 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE) 1518 return RESUME_GUEST; 1519 inst = ppc_inst_val(pinst); 1520 if (get_op(inst) != 31) 1521 return EMULATE_FAIL; 1522 rb = get_rb(inst); 1523 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1524 switch (get_xop(inst)) { 1525 case OP_31_XOP_MSGSNDP: 1526 arg = kvmppc_get_gpr(vcpu, rb); 1527 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1528 break; 1529 arg &= 0x7f; 1530 if (arg >= kvm->arch.emul_smt_mode) 1531 break; 1532 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1533 if (!tvcpu) 1534 break; 1535 if (!tvcpu->arch.doorbell_request) { 1536 tvcpu->arch.doorbell_request = 1; 1537 kvmppc_fast_vcpu_kick_hv(tvcpu); 1538 } 1539 break; 1540 case OP_31_XOP_MSGCLRP: 1541 arg = kvmppc_get_gpr(vcpu, rb); 1542 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1543 break; 1544 vcpu->arch.vcore->dpdes = 0; 1545 vcpu->arch.doorbell_request = 0; 1546 break; 1547 case OP_31_XOP_MFSPR: 1548 switch (get_sprn(inst)) { 1549 case SPRN_TIR: 1550 arg = thr; 1551 break; 1552 case SPRN_DPDES: 1553 arg = kvmppc_read_dpdes(vcpu); 1554 break; 1555 default: 1556 return EMULATE_FAIL; 1557 } 1558 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1559 break; 1560 default: 1561 return EMULATE_FAIL; 1562 } 1563 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1564 return RESUME_GUEST; 1565 } 1566 1567 /* 1568 * If the lppaca had pmcregs_in_use clear when we exited the guest, then 1569 * HFSCR_PM is cleared for next entry. If the guest then tries to access 1570 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM 1571 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and 1572 * allow the guest access to continue. 1573 */ 1574 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu) 1575 { 1576 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM)) 1577 return EMULATE_FAIL; 1578 1579 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM); 1580 1581 return RESUME_GUEST; 1582 } 1583 1584 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu) 1585 { 1586 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB)) 1587 return EMULATE_FAIL; 1588 1589 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB); 1590 1591 return RESUME_GUEST; 1592 } 1593 1594 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu) 1595 { 1596 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM)) 1597 return EMULATE_FAIL; 1598 1599 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM); 1600 1601 return RESUME_GUEST; 1602 } 1603 1604 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1605 struct task_struct *tsk) 1606 { 1607 struct kvm_run *run = vcpu->run; 1608 int r = RESUME_HOST; 1609 1610 vcpu->stat.sum_exits++; 1611 1612 /* 1613 * This can happen if an interrupt occurs in the last stages 1614 * of guest entry or the first stages of guest exit (i.e. after 1615 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1616 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1617 * That can happen due to a bug, or due to a machine check 1618 * occurring at just the wrong time. 1619 */ 1620 if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) { 1621 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1622 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1623 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1624 vcpu->arch.shregs.msr); 1625 kvmppc_dump_regs(vcpu); 1626 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1627 run->hw.hardware_exit_reason = vcpu->arch.trap; 1628 return RESUME_HOST; 1629 } 1630 run->exit_reason = KVM_EXIT_UNKNOWN; 1631 run->ready_for_interrupt_injection = 1; 1632 switch (vcpu->arch.trap) { 1633 /* We're good on these - the host merely wanted to get our attention */ 1634 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1635 WARN_ON_ONCE(1); /* Should never happen */ 1636 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1637 fallthrough; 1638 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1639 vcpu->stat.dec_exits++; 1640 r = RESUME_GUEST; 1641 break; 1642 case BOOK3S_INTERRUPT_EXTERNAL: 1643 case BOOK3S_INTERRUPT_H_DOORBELL: 1644 case BOOK3S_INTERRUPT_H_VIRT: 1645 vcpu->stat.ext_intr_exits++; 1646 r = RESUME_GUEST; 1647 break; 1648 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1649 case BOOK3S_INTERRUPT_HMI: 1650 case BOOK3S_INTERRUPT_PERFMON: 1651 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1652 r = RESUME_GUEST; 1653 break; 1654 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1655 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1656 DEFAULT_RATELIMIT_BURST); 1657 /* 1658 * Print the MCE event to host console. Ratelimit so the guest 1659 * can't flood the host log. 1660 */ 1661 if (__ratelimit(&rs)) 1662 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1663 1664 /* 1665 * If the guest can do FWNMI, exit to userspace so it can 1666 * deliver a FWNMI to the guest. 1667 * Otherwise we synthesize a machine check for the guest 1668 * so that it knows that the machine check occurred. 1669 */ 1670 if (!vcpu->kvm->arch.fwnmi_enabled) { 1671 ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) | 1672 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1673 kvmppc_core_queue_machine_check(vcpu, flags); 1674 r = RESUME_GUEST; 1675 break; 1676 } 1677 1678 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1679 run->exit_reason = KVM_EXIT_NMI; 1680 run->hw.hardware_exit_reason = vcpu->arch.trap; 1681 /* Clear out the old NMI status from run->flags */ 1682 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1683 /* Now set the NMI status */ 1684 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1685 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1686 else 1687 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1688 1689 r = RESUME_HOST; 1690 break; 1691 } 1692 case BOOK3S_INTERRUPT_PROGRAM: 1693 { 1694 ulong flags; 1695 /* 1696 * Normally program interrupts are delivered directly 1697 * to the guest by the hardware, but we can get here 1698 * as a result of a hypervisor emulation interrupt 1699 * (e40) getting turned into a 700 by BML RTAS. 1700 */ 1701 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) | 1702 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1703 kvmppc_core_queue_program(vcpu, flags); 1704 r = RESUME_GUEST; 1705 break; 1706 } 1707 case BOOK3S_INTERRUPT_SYSCALL: 1708 { 1709 int i; 1710 1711 if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 1712 /* 1713 * Guest userspace executed sc 1. This can only be 1714 * reached by the P9 path because the old path 1715 * handles this case in realmode hcall handlers. 1716 */ 1717 if (!kvmhv_vcpu_is_radix(vcpu)) { 1718 /* 1719 * A guest could be running PR KVM, so this 1720 * may be a PR KVM hcall. It must be reflected 1721 * to the guest kernel as a sc interrupt. 1722 */ 1723 kvmppc_core_queue_syscall(vcpu); 1724 } else { 1725 /* 1726 * Radix guests can not run PR KVM or nested HV 1727 * hash guests which might run PR KVM, so this 1728 * is always a privilege fault. Send a program 1729 * check to guest kernel. 1730 */ 1731 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1732 } 1733 r = RESUME_GUEST; 1734 break; 1735 } 1736 1737 /* 1738 * hcall - gather args and set exit_reason. This will next be 1739 * handled by kvmppc_pseries_do_hcall which may be able to deal 1740 * with it and resume guest, or may punt to userspace. 1741 */ 1742 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1743 for (i = 0; i < 9; ++i) 1744 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1745 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1746 vcpu->arch.hcall_needed = 1; 1747 r = RESUME_HOST; 1748 break; 1749 } 1750 /* 1751 * We get these next two if the guest accesses a page which it thinks 1752 * it has mapped but which is not actually present, either because 1753 * it is for an emulated I/O device or because the corresonding 1754 * host page has been paged out. 1755 * 1756 * Any other HDSI/HISI interrupts have been handled already for P7/8 1757 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1758 * fault handling is done here. 1759 */ 1760 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1761 unsigned long vsid; 1762 long err; 1763 1764 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 1765 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) { 1766 r = RESUME_GUEST; /* Just retry if it's the canary */ 1767 break; 1768 } 1769 1770 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1771 /* 1772 * Radix doesn't require anything, and pre-ISAv3.0 hash 1773 * already attempted to handle this in rmhandlers. The 1774 * hash fault handling below is v3 only (it uses ASDR 1775 * via fault_gpa). 1776 */ 1777 r = RESUME_PAGE_FAULT; 1778 break; 1779 } 1780 1781 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1782 kvmppc_core_queue_data_storage(vcpu, 1783 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1784 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1785 r = RESUME_GUEST; 1786 break; 1787 } 1788 1789 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR)) 1790 vsid = vcpu->kvm->arch.vrma_slb_v; 1791 else 1792 vsid = vcpu->arch.fault_gpa; 1793 1794 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1795 vsid, vcpu->arch.fault_dsisr, true); 1796 if (err == 0) { 1797 r = RESUME_GUEST; 1798 } else if (err == -1 || err == -2) { 1799 r = RESUME_PAGE_FAULT; 1800 } else { 1801 kvmppc_core_queue_data_storage(vcpu, 1802 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1803 vcpu->arch.fault_dar, err); 1804 r = RESUME_GUEST; 1805 } 1806 break; 1807 } 1808 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1809 unsigned long vsid; 1810 long err; 1811 1812 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1813 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) & 1814 DSISR_SRR1_MATCH_64S; 1815 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1816 /* 1817 * Radix doesn't require anything, and pre-ISAv3.0 hash 1818 * already attempted to handle this in rmhandlers. The 1819 * hash fault handling below is v3 only (it uses ASDR 1820 * via fault_gpa). 1821 */ 1822 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE) 1823 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1824 r = RESUME_PAGE_FAULT; 1825 break; 1826 } 1827 1828 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1829 kvmppc_core_queue_inst_storage(vcpu, 1830 vcpu->arch.fault_dsisr | 1831 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1832 r = RESUME_GUEST; 1833 break; 1834 } 1835 1836 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR)) 1837 vsid = vcpu->kvm->arch.vrma_slb_v; 1838 else 1839 vsid = vcpu->arch.fault_gpa; 1840 1841 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1842 vsid, vcpu->arch.fault_dsisr, false); 1843 if (err == 0) { 1844 r = RESUME_GUEST; 1845 } else if (err == -1) { 1846 r = RESUME_PAGE_FAULT; 1847 } else { 1848 kvmppc_core_queue_inst_storage(vcpu, 1849 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1850 r = RESUME_GUEST; 1851 } 1852 break; 1853 } 1854 1855 /* 1856 * This occurs if the guest executes an illegal instruction. 1857 * If the guest debug is disabled, generate a program interrupt 1858 * to the guest. If guest debug is enabled, we need to check 1859 * whether the instruction is a software breakpoint instruction. 1860 * Accordingly return to Guest or Host. 1861 */ 1862 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1863 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1864 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1865 swab32(vcpu->arch.emul_inst) : 1866 vcpu->arch.emul_inst; 1867 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1868 r = kvmppc_emulate_debug_inst(vcpu); 1869 } else { 1870 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1871 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1872 r = RESUME_GUEST; 1873 } 1874 break; 1875 1876 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1877 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1878 /* 1879 * This occurs for various TM-related instructions that 1880 * we need to emulate on POWER9 DD2.2. We have already 1881 * handled the cases where the guest was in real-suspend 1882 * mode and was transitioning to transactional state. 1883 */ 1884 r = kvmhv_p9_tm_emulation(vcpu); 1885 if (r != -1) 1886 break; 1887 fallthrough; /* go to facility unavailable handler */ 1888 #endif 1889 1890 /* 1891 * This occurs if the guest (kernel or userspace), does something that 1892 * is prohibited by HFSCR. 1893 * On POWER9, this could be a doorbell instruction that we need 1894 * to emulate. 1895 * Otherwise, we just generate a program interrupt to the guest. 1896 */ 1897 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1898 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56; 1899 1900 r = EMULATE_FAIL; 1901 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1902 if (cause == FSCR_MSGP_LG) 1903 r = kvmppc_emulate_doorbell_instr(vcpu); 1904 if (cause == FSCR_PM_LG) 1905 r = kvmppc_pmu_unavailable(vcpu); 1906 if (cause == FSCR_EBB_LG) 1907 r = kvmppc_ebb_unavailable(vcpu); 1908 if (cause == FSCR_TM_LG) 1909 r = kvmppc_tm_unavailable(vcpu); 1910 } 1911 if (r == EMULATE_FAIL) { 1912 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1913 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1914 r = RESUME_GUEST; 1915 } 1916 break; 1917 } 1918 1919 case BOOK3S_INTERRUPT_HV_RM_HARD: 1920 r = RESUME_PASSTHROUGH; 1921 break; 1922 default: 1923 kvmppc_dump_regs(vcpu); 1924 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1925 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1926 __kvmppc_get_msr_hv(vcpu)); 1927 run->hw.hardware_exit_reason = vcpu->arch.trap; 1928 r = RESUME_HOST; 1929 break; 1930 } 1931 1932 return r; 1933 } 1934 1935 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1936 { 1937 int r; 1938 int srcu_idx; 1939 1940 vcpu->stat.sum_exits++; 1941 1942 /* 1943 * This can happen if an interrupt occurs in the last stages 1944 * of guest entry or the first stages of guest exit (i.e. after 1945 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1946 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1947 * That can happen due to a bug, or due to a machine check 1948 * occurring at just the wrong time. 1949 */ 1950 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) { 1951 pr_emerg("KVM trap in HV mode while nested!\n"); 1952 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1953 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1954 __kvmppc_get_msr_hv(vcpu)); 1955 kvmppc_dump_regs(vcpu); 1956 return RESUME_HOST; 1957 } 1958 switch (vcpu->arch.trap) { 1959 /* We're good on these - the host merely wanted to get our attention */ 1960 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1961 vcpu->stat.dec_exits++; 1962 r = RESUME_GUEST; 1963 break; 1964 case BOOK3S_INTERRUPT_EXTERNAL: 1965 vcpu->stat.ext_intr_exits++; 1966 r = RESUME_HOST; 1967 break; 1968 case BOOK3S_INTERRUPT_H_DOORBELL: 1969 case BOOK3S_INTERRUPT_H_VIRT: 1970 vcpu->stat.ext_intr_exits++; 1971 r = RESUME_GUEST; 1972 break; 1973 /* These need to go to the nested HV */ 1974 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1975 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1976 vcpu->stat.dec_exits++; 1977 r = RESUME_HOST; 1978 break; 1979 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1980 case BOOK3S_INTERRUPT_HMI: 1981 case BOOK3S_INTERRUPT_PERFMON: 1982 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1983 r = RESUME_GUEST; 1984 break; 1985 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1986 { 1987 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1988 DEFAULT_RATELIMIT_BURST); 1989 /* Pass the machine check to the L1 guest */ 1990 r = RESUME_HOST; 1991 /* Print the MCE event to host console. */ 1992 if (__ratelimit(&rs)) 1993 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1994 break; 1995 } 1996 /* 1997 * We get these next two if the guest accesses a page which it thinks 1998 * it has mapped but which is not actually present, either because 1999 * it is for an emulated I/O device or because the corresonding 2000 * host page has been paged out. 2001 */ 2002 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 2003 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2004 r = kvmhv_nested_page_fault(vcpu); 2005 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2006 break; 2007 case BOOK3S_INTERRUPT_H_INST_STORAGE: 2008 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 2009 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 2010 DSISR_SRR1_MATCH_64S; 2011 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE) 2012 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 2013 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2014 r = kvmhv_nested_page_fault(vcpu); 2015 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2016 break; 2017 2018 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2019 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 2020 /* 2021 * This occurs for various TM-related instructions that 2022 * we need to emulate on POWER9 DD2.2. We have already 2023 * handled the cases where the guest was in real-suspend 2024 * mode and was transitioning to transactional state. 2025 */ 2026 r = kvmhv_p9_tm_emulation(vcpu); 2027 if (r != -1) 2028 break; 2029 fallthrough; /* go to facility unavailable handler */ 2030 #endif 2031 2032 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 2033 u64 cause = vcpu->arch.hfscr >> 56; 2034 2035 /* 2036 * Only pass HFU interrupts to the L1 if the facility is 2037 * permitted but disabled by the L1's HFSCR, otherwise 2038 * the interrupt does not make sense to the L1 so turn 2039 * it into a HEAI. 2040 */ 2041 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || 2042 (vcpu->arch.nested_hfscr & (1UL << cause))) { 2043 ppc_inst_t pinst; 2044 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; 2045 2046 /* 2047 * If the fetch failed, return to guest and 2048 * try executing it again. 2049 */ 2050 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst); 2051 vcpu->arch.emul_inst = ppc_inst_val(pinst); 2052 if (r != EMULATE_DONE) 2053 r = RESUME_GUEST; 2054 else 2055 r = RESUME_HOST; 2056 } else { 2057 r = RESUME_HOST; 2058 } 2059 2060 break; 2061 } 2062 2063 case BOOK3S_INTERRUPT_HV_RM_HARD: 2064 vcpu->arch.trap = 0; 2065 r = RESUME_GUEST; 2066 if (!xics_on_xive()) 2067 kvmppc_xics_rm_complete(vcpu, 0); 2068 break; 2069 case BOOK3S_INTERRUPT_SYSCALL: 2070 { 2071 unsigned long req = kvmppc_get_gpr(vcpu, 3); 2072 2073 /* 2074 * The H_RPT_INVALIDATE hcalls issued by nested 2075 * guests for process-scoped invalidations when 2076 * GTSE=0, are handled here in L0. 2077 */ 2078 if (req == H_RPT_INVALIDATE) { 2079 r = kvmppc_nested_h_rpt_invalidate(vcpu); 2080 break; 2081 } 2082 2083 r = RESUME_HOST; 2084 break; 2085 } 2086 default: 2087 r = RESUME_HOST; 2088 break; 2089 } 2090 2091 return r; 2092 } 2093 2094 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 2095 struct kvm_sregs *sregs) 2096 { 2097 int i; 2098 2099 memset(sregs, 0, sizeof(struct kvm_sregs)); 2100 sregs->pvr = vcpu->arch.pvr; 2101 for (i = 0; i < vcpu->arch.slb_max; i++) { 2102 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 2103 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 2104 } 2105 2106 return 0; 2107 } 2108 2109 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 2110 struct kvm_sregs *sregs) 2111 { 2112 int i, j; 2113 2114 /* Only accept the same PVR as the host's, since we can't spoof it */ 2115 if (sregs->pvr != vcpu->arch.pvr) 2116 return -EINVAL; 2117 2118 j = 0; 2119 for (i = 0; i < vcpu->arch.slb_nr; i++) { 2120 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 2121 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 2122 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 2123 ++j; 2124 } 2125 } 2126 vcpu->arch.slb_max = j; 2127 2128 return 0; 2129 } 2130 2131 /* 2132 * Enforce limits on guest LPCR values based on hardware availability, 2133 * guest configuration, and possibly hypervisor support and security 2134 * concerns. 2135 */ 2136 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 2137 { 2138 /* LPCR_TC only applies to HPT guests */ 2139 if (kvm_is_radix(kvm)) 2140 lpcr &= ~LPCR_TC; 2141 2142 /* On POWER8 and above, userspace can modify AIL */ 2143 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2144 lpcr &= ~LPCR_AIL; 2145 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 2146 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 2147 /* 2148 * On some POWER9s we force AIL off for radix guests to prevent 2149 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 2150 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 2151 * be cached, which the host TLB management does not expect. 2152 */ 2153 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 2154 lpcr &= ~LPCR_AIL; 2155 2156 /* 2157 * On POWER9, allow userspace to enable large decrementer for the 2158 * guest, whether or not the host has it enabled. 2159 */ 2160 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2161 lpcr &= ~LPCR_LD; 2162 2163 return lpcr; 2164 } 2165 2166 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 2167 { 2168 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 2169 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 2170 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 2171 } 2172 } 2173 2174 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 2175 bool preserve_top32) 2176 { 2177 struct kvm *kvm = vcpu->kvm; 2178 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2179 u64 mask; 2180 2181 spin_lock(&vc->lock); 2182 2183 /* 2184 * Userspace can only modify 2185 * DPFD (default prefetch depth), ILE (interrupt little-endian), 2186 * TC (translation control), AIL (alternate interrupt location), 2187 * LD (large decrementer). 2188 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 2189 */ 2190 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 2191 2192 /* Broken 32-bit version of LPCR must not clear top bits */ 2193 if (preserve_top32) 2194 mask &= 0xFFFFFFFF; 2195 2196 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 2197 (vc->lpcr & ~mask) | (new_lpcr & mask)); 2198 2199 /* 2200 * If ILE (interrupt little-endian) has changed, update the 2201 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 2202 */ 2203 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 2204 struct kvm_vcpu *vcpu; 2205 unsigned long i; 2206 2207 kvm_for_each_vcpu(i, vcpu, kvm) { 2208 if (vcpu->arch.vcore != vc) 2209 continue; 2210 if (new_lpcr & LPCR_ILE) 2211 vcpu->arch.intr_msr |= MSR_LE; 2212 else 2213 vcpu->arch.intr_msr &= ~MSR_LE; 2214 } 2215 } 2216 2217 vc->lpcr = new_lpcr; 2218 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR); 2219 2220 spin_unlock(&vc->lock); 2221 } 2222 2223 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2224 union kvmppc_one_reg *val) 2225 { 2226 int r = 0; 2227 long int i; 2228 2229 switch (id) { 2230 case KVM_REG_PPC_DEBUG_INST: 2231 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 2232 break; 2233 case KVM_REG_PPC_HIOR: 2234 *val = get_reg_val(id, 0); 2235 break; 2236 case KVM_REG_PPC_DABR: 2237 *val = get_reg_val(id, vcpu->arch.dabr); 2238 break; 2239 case KVM_REG_PPC_DABRX: 2240 *val = get_reg_val(id, vcpu->arch.dabrx); 2241 break; 2242 case KVM_REG_PPC_DSCR: 2243 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu)); 2244 break; 2245 case KVM_REG_PPC_PURR: 2246 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu)); 2247 break; 2248 case KVM_REG_PPC_SPURR: 2249 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu)); 2250 break; 2251 case KVM_REG_PPC_AMR: 2252 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu)); 2253 break; 2254 case KVM_REG_PPC_UAMOR: 2255 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu)); 2256 break; 2257 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2258 i = id - KVM_REG_PPC_MMCR0; 2259 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i)); 2260 break; 2261 case KVM_REG_PPC_MMCR2: 2262 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2)); 2263 break; 2264 case KVM_REG_PPC_MMCRA: 2265 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu)); 2266 break; 2267 case KVM_REG_PPC_MMCRS: 2268 *val = get_reg_val(id, vcpu->arch.mmcrs); 2269 break; 2270 case KVM_REG_PPC_MMCR3: 2271 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3)); 2272 break; 2273 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2274 i = id - KVM_REG_PPC_PMC1; 2275 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i)); 2276 break; 2277 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2278 i = id - KVM_REG_PPC_SPMC1; 2279 *val = get_reg_val(id, vcpu->arch.spmc[i]); 2280 break; 2281 case KVM_REG_PPC_SIAR: 2282 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu)); 2283 break; 2284 case KVM_REG_PPC_SDAR: 2285 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu)); 2286 break; 2287 case KVM_REG_PPC_SIER: 2288 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0)); 2289 break; 2290 case KVM_REG_PPC_SIER2: 2291 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1)); 2292 break; 2293 case KVM_REG_PPC_SIER3: 2294 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2)); 2295 break; 2296 case KVM_REG_PPC_IAMR: 2297 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu)); 2298 break; 2299 case KVM_REG_PPC_PSPB: 2300 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu)); 2301 break; 2302 case KVM_REG_PPC_DPDES: 2303 /* 2304 * On POWER9, where we are emulating msgsndp etc., 2305 * we return 1 bit for each vcpu, which can come from 2306 * either vcore->dpdes or doorbell_request. 2307 * On POWER8, doorbell_request is 0. 2308 */ 2309 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2310 *val = get_reg_val(id, vcpu->arch.doorbell_request); 2311 else 2312 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 2313 break; 2314 case KVM_REG_PPC_VTB: 2315 *val = get_reg_val(id, kvmppc_get_vtb(vcpu)); 2316 break; 2317 case KVM_REG_PPC_DAWR: 2318 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu)); 2319 break; 2320 case KVM_REG_PPC_DAWRX: 2321 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu)); 2322 break; 2323 case KVM_REG_PPC_DAWR1: 2324 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu)); 2325 break; 2326 case KVM_REG_PPC_DAWRX1: 2327 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu)); 2328 break; 2329 case KVM_REG_PPC_CIABR: 2330 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu)); 2331 break; 2332 case KVM_REG_PPC_CSIGR: 2333 *val = get_reg_val(id, vcpu->arch.csigr); 2334 break; 2335 case KVM_REG_PPC_TACR: 2336 *val = get_reg_val(id, vcpu->arch.tacr); 2337 break; 2338 case KVM_REG_PPC_TCSCR: 2339 *val = get_reg_val(id, vcpu->arch.tcscr); 2340 break; 2341 case KVM_REG_PPC_PID: 2342 *val = get_reg_val(id, kvmppc_get_pid(vcpu)); 2343 break; 2344 case KVM_REG_PPC_ACOP: 2345 *val = get_reg_val(id, vcpu->arch.acop); 2346 break; 2347 case KVM_REG_PPC_WORT: 2348 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu)); 2349 break; 2350 case KVM_REG_PPC_TIDR: 2351 *val = get_reg_val(id, vcpu->arch.tid); 2352 break; 2353 case KVM_REG_PPC_PSSCR: 2354 *val = get_reg_val(id, vcpu->arch.psscr); 2355 break; 2356 case KVM_REG_PPC_VPA_ADDR: 2357 spin_lock(&vcpu->arch.vpa_update_lock); 2358 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2359 spin_unlock(&vcpu->arch.vpa_update_lock); 2360 break; 2361 case KVM_REG_PPC_VPA_SLB: 2362 spin_lock(&vcpu->arch.vpa_update_lock); 2363 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2364 val->vpaval.length = vcpu->arch.slb_shadow.len; 2365 spin_unlock(&vcpu->arch.vpa_update_lock); 2366 break; 2367 case KVM_REG_PPC_VPA_DTL: 2368 spin_lock(&vcpu->arch.vpa_update_lock); 2369 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2370 val->vpaval.length = vcpu->arch.dtl.len; 2371 spin_unlock(&vcpu->arch.vpa_update_lock); 2372 break; 2373 case KVM_REG_PPC_TB_OFFSET: 2374 *val = get_reg_val(id, kvmppc_get_tb_offset(vcpu)); 2375 break; 2376 case KVM_REG_PPC_LPCR: 2377 case KVM_REG_PPC_LPCR_64: 2378 *val = get_reg_val(id, kvmppc_get_lpcr(vcpu)); 2379 break; 2380 case KVM_REG_PPC_PPR: 2381 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu)); 2382 break; 2383 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2384 case KVM_REG_PPC_TFHAR: 2385 *val = get_reg_val(id, vcpu->arch.tfhar); 2386 break; 2387 case KVM_REG_PPC_TFIAR: 2388 *val = get_reg_val(id, vcpu->arch.tfiar); 2389 break; 2390 case KVM_REG_PPC_TEXASR: 2391 *val = get_reg_val(id, vcpu->arch.texasr); 2392 break; 2393 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2394 i = id - KVM_REG_PPC_TM_GPR0; 2395 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2396 break; 2397 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2398 { 2399 int j; 2400 i = id - KVM_REG_PPC_TM_VSR0; 2401 if (i < 32) 2402 for (j = 0; j < TS_FPRWIDTH; j++) 2403 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2404 else { 2405 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2406 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2407 else 2408 r = -ENXIO; 2409 } 2410 break; 2411 } 2412 case KVM_REG_PPC_TM_CR: 2413 *val = get_reg_val(id, vcpu->arch.cr_tm); 2414 break; 2415 case KVM_REG_PPC_TM_XER: 2416 *val = get_reg_val(id, vcpu->arch.xer_tm); 2417 break; 2418 case KVM_REG_PPC_TM_LR: 2419 *val = get_reg_val(id, vcpu->arch.lr_tm); 2420 break; 2421 case KVM_REG_PPC_TM_CTR: 2422 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2423 break; 2424 case KVM_REG_PPC_TM_FPSCR: 2425 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2426 break; 2427 case KVM_REG_PPC_TM_AMR: 2428 *val = get_reg_val(id, vcpu->arch.amr_tm); 2429 break; 2430 case KVM_REG_PPC_TM_PPR: 2431 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2432 break; 2433 case KVM_REG_PPC_TM_VRSAVE: 2434 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2435 break; 2436 case KVM_REG_PPC_TM_VSCR: 2437 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2438 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2439 else 2440 r = -ENXIO; 2441 break; 2442 case KVM_REG_PPC_TM_DSCR: 2443 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2444 break; 2445 case KVM_REG_PPC_TM_TAR: 2446 *val = get_reg_val(id, vcpu->arch.tar_tm); 2447 break; 2448 #endif 2449 case KVM_REG_PPC_ARCH_COMPAT: 2450 *val = get_reg_val(id, kvmppc_get_arch_compat(vcpu)); 2451 break; 2452 case KVM_REG_PPC_DEC_EXPIRY: 2453 *val = get_reg_val(id, kvmppc_get_dec_expires(vcpu)); 2454 break; 2455 case KVM_REG_PPC_ONLINE: 2456 *val = get_reg_val(id, vcpu->arch.online); 2457 break; 2458 case KVM_REG_PPC_PTCR: 2459 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2460 break; 2461 case KVM_REG_PPC_FSCR: 2462 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu)); 2463 break; 2464 default: 2465 r = -EINVAL; 2466 break; 2467 } 2468 2469 return r; 2470 } 2471 2472 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2473 union kvmppc_one_reg *val) 2474 { 2475 int r = 0; 2476 long int i; 2477 unsigned long addr, len; 2478 2479 switch (id) { 2480 case KVM_REG_PPC_HIOR: 2481 /* Only allow this to be set to zero */ 2482 if (set_reg_val(id, *val)) 2483 r = -EINVAL; 2484 break; 2485 case KVM_REG_PPC_DABR: 2486 vcpu->arch.dabr = set_reg_val(id, *val); 2487 break; 2488 case KVM_REG_PPC_DABRX: 2489 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2490 break; 2491 case KVM_REG_PPC_DSCR: 2492 kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val)); 2493 break; 2494 case KVM_REG_PPC_PURR: 2495 kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val)); 2496 break; 2497 case KVM_REG_PPC_SPURR: 2498 kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val)); 2499 break; 2500 case KVM_REG_PPC_AMR: 2501 kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val)); 2502 break; 2503 case KVM_REG_PPC_UAMOR: 2504 kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val)); 2505 break; 2506 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2507 i = id - KVM_REG_PPC_MMCR0; 2508 kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val)); 2509 break; 2510 case KVM_REG_PPC_MMCR2: 2511 kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val)); 2512 break; 2513 case KVM_REG_PPC_MMCRA: 2514 kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val)); 2515 break; 2516 case KVM_REG_PPC_MMCRS: 2517 vcpu->arch.mmcrs = set_reg_val(id, *val); 2518 break; 2519 case KVM_REG_PPC_MMCR3: 2520 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2521 break; 2522 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2523 i = id - KVM_REG_PPC_PMC1; 2524 kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val)); 2525 break; 2526 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2527 i = id - KVM_REG_PPC_SPMC1; 2528 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2529 break; 2530 case KVM_REG_PPC_SIAR: 2531 kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val)); 2532 break; 2533 case KVM_REG_PPC_SDAR: 2534 kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val)); 2535 break; 2536 case KVM_REG_PPC_SIER: 2537 kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val)); 2538 break; 2539 case KVM_REG_PPC_SIER2: 2540 kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val)); 2541 break; 2542 case KVM_REG_PPC_SIER3: 2543 kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val)); 2544 break; 2545 case KVM_REG_PPC_IAMR: 2546 kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val)); 2547 break; 2548 case KVM_REG_PPC_PSPB: 2549 kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val)); 2550 break; 2551 case KVM_REG_PPC_DPDES: 2552 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2553 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1; 2554 else 2555 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2556 break; 2557 case KVM_REG_PPC_VTB: 2558 kvmppc_set_vtb(vcpu, set_reg_val(id, *val)); 2559 break; 2560 case KVM_REG_PPC_DAWR: 2561 kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val)); 2562 break; 2563 case KVM_REG_PPC_DAWRX: 2564 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP); 2565 break; 2566 case KVM_REG_PPC_DAWR1: 2567 kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val)); 2568 break; 2569 case KVM_REG_PPC_DAWRX1: 2570 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP); 2571 break; 2572 case KVM_REG_PPC_CIABR: 2573 kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val)); 2574 /* Don't allow setting breakpoints in hypervisor code */ 2575 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER) 2576 kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV); 2577 break; 2578 case KVM_REG_PPC_CSIGR: 2579 vcpu->arch.csigr = set_reg_val(id, *val); 2580 break; 2581 case KVM_REG_PPC_TACR: 2582 vcpu->arch.tacr = set_reg_val(id, *val); 2583 break; 2584 case KVM_REG_PPC_TCSCR: 2585 vcpu->arch.tcscr = set_reg_val(id, *val); 2586 break; 2587 case KVM_REG_PPC_PID: 2588 kvmppc_set_pid(vcpu, set_reg_val(id, *val)); 2589 break; 2590 case KVM_REG_PPC_ACOP: 2591 vcpu->arch.acop = set_reg_val(id, *val); 2592 break; 2593 case KVM_REG_PPC_WORT: 2594 kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val)); 2595 break; 2596 case KVM_REG_PPC_TIDR: 2597 vcpu->arch.tid = set_reg_val(id, *val); 2598 break; 2599 case KVM_REG_PPC_PSSCR: 2600 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2601 break; 2602 case KVM_REG_PPC_VPA_ADDR: 2603 addr = set_reg_val(id, *val); 2604 r = -EINVAL; 2605 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2606 vcpu->arch.dtl.next_gpa)) 2607 break; 2608 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2609 break; 2610 case KVM_REG_PPC_VPA_SLB: 2611 addr = val->vpaval.addr; 2612 len = val->vpaval.length; 2613 r = -EINVAL; 2614 if (addr && !vcpu->arch.vpa.next_gpa) 2615 break; 2616 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2617 break; 2618 case KVM_REG_PPC_VPA_DTL: 2619 addr = val->vpaval.addr; 2620 len = val->vpaval.length; 2621 r = -EINVAL; 2622 if (addr && (len < sizeof(struct dtl_entry) || 2623 !vcpu->arch.vpa.next_gpa)) 2624 break; 2625 len -= len % sizeof(struct dtl_entry); 2626 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2627 break; 2628 case KVM_REG_PPC_TB_OFFSET: 2629 { 2630 /* round up to multiple of 2^24 */ 2631 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24); 2632 2633 /* 2634 * Now that we know the timebase offset, update the 2635 * decrementer expiry with a guest timebase value. If 2636 * the userspace does not set DEC_EXPIRY, this ensures 2637 * a migrated vcpu at least starts with an expired 2638 * decrementer, which is better than a large one that 2639 * causes a hang. 2640 */ 2641 kvmppc_set_tb_offset(vcpu, tb_offset); 2642 if (!kvmppc_get_dec_expires(vcpu) && tb_offset) 2643 kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset); 2644 2645 kvmppc_set_tb_offset(vcpu, tb_offset); 2646 break; 2647 } 2648 case KVM_REG_PPC_LPCR: 2649 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2650 break; 2651 case KVM_REG_PPC_LPCR_64: 2652 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2653 break; 2654 case KVM_REG_PPC_PPR: 2655 kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val)); 2656 break; 2657 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2658 case KVM_REG_PPC_TFHAR: 2659 vcpu->arch.tfhar = set_reg_val(id, *val); 2660 break; 2661 case KVM_REG_PPC_TFIAR: 2662 vcpu->arch.tfiar = set_reg_val(id, *val); 2663 break; 2664 case KVM_REG_PPC_TEXASR: 2665 vcpu->arch.texasr = set_reg_val(id, *val); 2666 break; 2667 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2668 i = id - KVM_REG_PPC_TM_GPR0; 2669 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2670 break; 2671 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2672 { 2673 int j; 2674 i = id - KVM_REG_PPC_TM_VSR0; 2675 if (i < 32) 2676 for (j = 0; j < TS_FPRWIDTH; j++) 2677 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2678 else 2679 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2680 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2681 else 2682 r = -ENXIO; 2683 break; 2684 } 2685 case KVM_REG_PPC_TM_CR: 2686 vcpu->arch.cr_tm = set_reg_val(id, *val); 2687 break; 2688 case KVM_REG_PPC_TM_XER: 2689 vcpu->arch.xer_tm = set_reg_val(id, *val); 2690 break; 2691 case KVM_REG_PPC_TM_LR: 2692 vcpu->arch.lr_tm = set_reg_val(id, *val); 2693 break; 2694 case KVM_REG_PPC_TM_CTR: 2695 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2696 break; 2697 case KVM_REG_PPC_TM_FPSCR: 2698 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2699 break; 2700 case KVM_REG_PPC_TM_AMR: 2701 vcpu->arch.amr_tm = set_reg_val(id, *val); 2702 break; 2703 case KVM_REG_PPC_TM_PPR: 2704 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2705 break; 2706 case KVM_REG_PPC_TM_VRSAVE: 2707 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2708 break; 2709 case KVM_REG_PPC_TM_VSCR: 2710 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2711 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2712 else 2713 r = - ENXIO; 2714 break; 2715 case KVM_REG_PPC_TM_DSCR: 2716 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2717 break; 2718 case KVM_REG_PPC_TM_TAR: 2719 vcpu->arch.tar_tm = set_reg_val(id, *val); 2720 break; 2721 #endif 2722 case KVM_REG_PPC_ARCH_COMPAT: 2723 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2724 break; 2725 case KVM_REG_PPC_DEC_EXPIRY: 2726 kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val)); 2727 break; 2728 case KVM_REG_PPC_ONLINE: 2729 i = set_reg_val(id, *val); 2730 if (i && !vcpu->arch.online) 2731 atomic_inc(&vcpu->arch.vcore->online_count); 2732 else if (!i && vcpu->arch.online) 2733 atomic_dec(&vcpu->arch.vcore->online_count); 2734 vcpu->arch.online = i; 2735 break; 2736 case KVM_REG_PPC_PTCR: 2737 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2738 break; 2739 case KVM_REG_PPC_FSCR: 2740 kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val)); 2741 break; 2742 default: 2743 r = -EINVAL; 2744 break; 2745 } 2746 2747 return r; 2748 } 2749 2750 /* 2751 * On POWER9, threads are independent and can be in different partitions. 2752 * Therefore we consider each thread to be a subcore. 2753 * There is a restriction that all threads have to be in the same 2754 * MMU mode (radix or HPT), unfortunately, but since we only support 2755 * HPT guests on a HPT host so far, that isn't an impediment yet. 2756 */ 2757 static int threads_per_vcore(struct kvm *kvm) 2758 { 2759 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2760 return 1; 2761 return threads_per_subcore; 2762 } 2763 2764 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2765 { 2766 struct kvmppc_vcore *vcore; 2767 2768 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2769 2770 if (vcore == NULL) 2771 return NULL; 2772 2773 spin_lock_init(&vcore->lock); 2774 spin_lock_init(&vcore->stoltb_lock); 2775 rcuwait_init(&vcore->wait); 2776 vcore->preempt_tb = TB_NIL; 2777 vcore->lpcr = kvm->arch.lpcr; 2778 vcore->first_vcpuid = id; 2779 vcore->kvm = kvm; 2780 INIT_LIST_HEAD(&vcore->preempt_list); 2781 2782 return vcore; 2783 } 2784 2785 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2786 static struct debugfs_timings_element { 2787 const char *name; 2788 size_t offset; 2789 } timings[] = { 2790 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING 2791 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)}, 2792 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)}, 2793 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)}, 2794 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)}, 2795 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)}, 2796 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)}, 2797 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)}, 2798 #else 2799 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2800 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2801 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2802 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2803 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2804 #endif 2805 }; 2806 2807 #define N_TIMINGS (ARRAY_SIZE(timings)) 2808 2809 struct debugfs_timings_state { 2810 struct kvm_vcpu *vcpu; 2811 unsigned int buflen; 2812 char buf[N_TIMINGS * 100]; 2813 }; 2814 2815 static int debugfs_timings_open(struct inode *inode, struct file *file) 2816 { 2817 struct kvm_vcpu *vcpu = inode->i_private; 2818 struct debugfs_timings_state *p; 2819 2820 p = kzalloc(sizeof(*p), GFP_KERNEL); 2821 if (!p) 2822 return -ENOMEM; 2823 2824 kvm_get_kvm(vcpu->kvm); 2825 p->vcpu = vcpu; 2826 file->private_data = p; 2827 2828 return nonseekable_open(inode, file); 2829 } 2830 2831 static int debugfs_timings_release(struct inode *inode, struct file *file) 2832 { 2833 struct debugfs_timings_state *p = file->private_data; 2834 2835 kvm_put_kvm(p->vcpu->kvm); 2836 kfree(p); 2837 return 0; 2838 } 2839 2840 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2841 size_t len, loff_t *ppos) 2842 { 2843 struct debugfs_timings_state *p = file->private_data; 2844 struct kvm_vcpu *vcpu = p->vcpu; 2845 char *s, *buf_end; 2846 struct kvmhv_tb_accumulator tb; 2847 u64 count; 2848 loff_t pos; 2849 ssize_t n; 2850 int i, loops; 2851 bool ok; 2852 2853 if (!p->buflen) { 2854 s = p->buf; 2855 buf_end = s + sizeof(p->buf); 2856 for (i = 0; i < N_TIMINGS; ++i) { 2857 struct kvmhv_tb_accumulator *acc; 2858 2859 acc = (struct kvmhv_tb_accumulator *) 2860 ((unsigned long)vcpu + timings[i].offset); 2861 ok = false; 2862 for (loops = 0; loops < 1000; ++loops) { 2863 count = acc->seqcount; 2864 if (!(count & 1)) { 2865 smp_rmb(); 2866 tb = *acc; 2867 smp_rmb(); 2868 if (count == acc->seqcount) { 2869 ok = true; 2870 break; 2871 } 2872 } 2873 udelay(1); 2874 } 2875 if (!ok) 2876 snprintf(s, buf_end - s, "%s: stuck\n", 2877 timings[i].name); 2878 else 2879 snprintf(s, buf_end - s, 2880 "%s: %llu %llu %llu %llu\n", 2881 timings[i].name, count / 2, 2882 tb_to_ns(tb.tb_total), 2883 tb_to_ns(tb.tb_min), 2884 tb_to_ns(tb.tb_max)); 2885 s += strlen(s); 2886 } 2887 p->buflen = s - p->buf; 2888 } 2889 2890 pos = *ppos; 2891 if (pos >= p->buflen) 2892 return 0; 2893 if (len > p->buflen - pos) 2894 len = p->buflen - pos; 2895 n = copy_to_user(buf, p->buf + pos, len); 2896 if (n) { 2897 if (n == len) 2898 return -EFAULT; 2899 len -= n; 2900 } 2901 *ppos = pos + len; 2902 return len; 2903 } 2904 2905 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2906 size_t len, loff_t *ppos) 2907 { 2908 return -EACCES; 2909 } 2910 2911 static const struct file_operations debugfs_timings_ops = { 2912 .owner = THIS_MODULE, 2913 .open = debugfs_timings_open, 2914 .release = debugfs_timings_release, 2915 .read = debugfs_timings_read, 2916 .write = debugfs_timings_write, 2917 .llseek = generic_file_llseek, 2918 }; 2919 2920 /* Create a debugfs directory for the vcpu */ 2921 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2922 { 2923 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING)) 2924 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu, 2925 &debugfs_timings_ops); 2926 return 0; 2927 } 2928 2929 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2930 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2931 { 2932 return 0; 2933 } 2934 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2935 2936 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2937 { 2938 int err; 2939 int core; 2940 struct kvmppc_vcore *vcore; 2941 struct kvm *kvm; 2942 unsigned int id; 2943 2944 kvm = vcpu->kvm; 2945 id = vcpu->vcpu_id; 2946 2947 vcpu->arch.shared = &vcpu->arch.shregs; 2948 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2949 /* 2950 * The shared struct is never shared on HV, 2951 * so we can always use host endianness 2952 */ 2953 #ifdef __BIG_ENDIAN__ 2954 vcpu->arch.shared_big_endian = true; 2955 #else 2956 vcpu->arch.shared_big_endian = false; 2957 #endif 2958 #endif 2959 2960 if (kvmhv_is_nestedv2()) { 2961 err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io); 2962 if (err < 0) 2963 return err; 2964 } 2965 2966 kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC); 2967 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 2968 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT); 2969 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE); 2970 } 2971 2972 kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH); 2973 /* default to host PVR, since we can't spoof it */ 2974 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2975 spin_lock_init(&vcpu->arch.vpa_update_lock); 2976 spin_lock_init(&vcpu->arch.tbacct_lock); 2977 vcpu->arch.busy_preempt = TB_NIL; 2978 __kvmppc_set_msr_hv(vcpu, MSR_ME); 2979 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2980 2981 /* 2982 * Set the default HFSCR for the guest from the host value. 2983 * This value is only used on POWER9 and later. 2984 * On >= POWER9, we want to virtualize the doorbell facility, so we 2985 * don't set the HFSCR_MSGP bit, and that causes those instructions 2986 * to trap and then we emulate them. 2987 */ 2988 kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2989 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP); 2990 2991 /* On POWER10 and later, allow prefixed instructions */ 2992 if (cpu_has_feature(CPU_FTR_ARCH_31)) 2993 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX); 2994 2995 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2996 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR)); 2997 2998 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2999 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3000 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM); 3001 #endif 3002 } 3003 if (cpu_has_feature(CPU_FTR_TM_COMP)) 3004 vcpu->arch.hfscr |= HFSCR_TM; 3005 3006 vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu); 3007 3008 /* 3009 * PM, EBB, TM are demand-faulted so start with it clear. 3010 */ 3011 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM)); 3012 3013 kvmppc_mmu_book3s_hv_init(vcpu); 3014 3015 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3016 3017 init_waitqueue_head(&vcpu->arch.cpu_run); 3018 3019 mutex_lock(&kvm->lock); 3020 vcore = NULL; 3021 err = -EINVAL; 3022 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3023 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 3024 pr_devel("KVM: VCPU ID too high\n"); 3025 core = KVM_MAX_VCORES; 3026 } else { 3027 BUG_ON(kvm->arch.smt_mode != 1); 3028 core = kvmppc_pack_vcpu_id(kvm, id); 3029 } 3030 } else { 3031 core = id / kvm->arch.smt_mode; 3032 } 3033 if (core < KVM_MAX_VCORES) { 3034 vcore = kvm->arch.vcores[core]; 3035 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 3036 pr_devel("KVM: collision on id %u", id); 3037 vcore = NULL; 3038 } else if (!vcore) { 3039 /* 3040 * Take mmu_setup_lock for mutual exclusion 3041 * with kvmppc_update_lpcr(). 3042 */ 3043 err = -ENOMEM; 3044 vcore = kvmppc_vcore_create(kvm, 3045 id & ~(kvm->arch.smt_mode - 1)); 3046 mutex_lock(&kvm->arch.mmu_setup_lock); 3047 kvm->arch.vcores[core] = vcore; 3048 kvm->arch.online_vcores++; 3049 mutex_unlock(&kvm->arch.mmu_setup_lock); 3050 } 3051 } 3052 mutex_unlock(&kvm->lock); 3053 3054 if (!vcore) 3055 return err; 3056 3057 spin_lock(&vcore->lock); 3058 ++vcore->num_threads; 3059 spin_unlock(&vcore->lock); 3060 vcpu->arch.vcore = vcore; 3061 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 3062 vcpu->arch.thread_cpu = -1; 3063 vcpu->arch.prev_cpu = -1; 3064 3065 vcpu->arch.cpu_type = KVM_CPU_3S_64; 3066 kvmppc_sanity_check(vcpu); 3067 3068 return 0; 3069 } 3070 3071 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 3072 unsigned long flags) 3073 { 3074 int err; 3075 int esmt = 0; 3076 3077 if (flags) 3078 return -EINVAL; 3079 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 3080 return -EINVAL; 3081 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3082 /* 3083 * On POWER8 (or POWER7), the threading mode is "strict", 3084 * so we pack smt_mode vcpus per vcore. 3085 */ 3086 if (smt_mode > threads_per_subcore) 3087 return -EINVAL; 3088 } else { 3089 /* 3090 * On POWER9, the threading mode is "loose", 3091 * so each vcpu gets its own vcore. 3092 */ 3093 esmt = smt_mode; 3094 smt_mode = 1; 3095 } 3096 mutex_lock(&kvm->lock); 3097 err = -EBUSY; 3098 if (!kvm->arch.online_vcores) { 3099 kvm->arch.smt_mode = smt_mode; 3100 kvm->arch.emul_smt_mode = esmt; 3101 err = 0; 3102 } 3103 mutex_unlock(&kvm->lock); 3104 3105 return err; 3106 } 3107 3108 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 3109 { 3110 if (vpa->pinned_addr) 3111 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 3112 vpa->dirty); 3113 } 3114 3115 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 3116 { 3117 spin_lock(&vcpu->arch.vpa_update_lock); 3118 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 3119 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 3120 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 3121 spin_unlock(&vcpu->arch.vpa_update_lock); 3122 if (kvmhv_is_nestedv2()) 3123 kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io); 3124 } 3125 3126 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 3127 { 3128 /* Indicate we want to get back into the guest */ 3129 return 1; 3130 } 3131 3132 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 3133 { 3134 unsigned long dec_nsec, now; 3135 3136 now = get_tb(); 3137 if (now > kvmppc_dec_expires_host_tb(vcpu)) { 3138 /* decrementer has already gone negative */ 3139 kvmppc_core_queue_dec(vcpu); 3140 kvmppc_core_prepare_to_enter(vcpu); 3141 return; 3142 } 3143 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now); 3144 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 3145 vcpu->arch.timer_running = 1; 3146 } 3147 3148 extern int __kvmppc_vcore_entry(void); 3149 3150 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 3151 struct kvm_vcpu *vcpu, u64 tb) 3152 { 3153 u64 now; 3154 3155 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3156 return; 3157 spin_lock_irq(&vcpu->arch.tbacct_lock); 3158 now = tb; 3159 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 3160 vcpu->arch.stolen_logged; 3161 vcpu->arch.busy_preempt = now; 3162 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3163 spin_unlock_irq(&vcpu->arch.tbacct_lock); 3164 --vc->n_runnable; 3165 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 3166 } 3167 3168 static int kvmppc_grab_hwthread(int cpu) 3169 { 3170 struct paca_struct *tpaca; 3171 long timeout = 10000; 3172 3173 tpaca = paca_ptrs[cpu]; 3174 3175 /* Ensure the thread won't go into the kernel if it wakes */ 3176 tpaca->kvm_hstate.kvm_vcpu = NULL; 3177 tpaca->kvm_hstate.kvm_vcore = NULL; 3178 tpaca->kvm_hstate.napping = 0; 3179 smp_wmb(); 3180 tpaca->kvm_hstate.hwthread_req = 1; 3181 3182 /* 3183 * If the thread is already executing in the kernel (e.g. handling 3184 * a stray interrupt), wait for it to get back to nap mode. 3185 * The smp_mb() is to ensure that our setting of hwthread_req 3186 * is visible before we look at hwthread_state, so if this 3187 * races with the code at system_reset_pSeries and the thread 3188 * misses our setting of hwthread_req, we are sure to see its 3189 * setting of hwthread_state, and vice versa. 3190 */ 3191 smp_mb(); 3192 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 3193 if (--timeout <= 0) { 3194 pr_err("KVM: couldn't grab cpu %d\n", cpu); 3195 return -EBUSY; 3196 } 3197 udelay(1); 3198 } 3199 return 0; 3200 } 3201 3202 static void kvmppc_release_hwthread(int cpu) 3203 { 3204 struct paca_struct *tpaca; 3205 3206 tpaca = paca_ptrs[cpu]; 3207 tpaca->kvm_hstate.hwthread_req = 0; 3208 tpaca->kvm_hstate.kvm_vcpu = NULL; 3209 tpaca->kvm_hstate.kvm_vcore = NULL; 3210 tpaca->kvm_hstate.kvm_split_mode = NULL; 3211 } 3212 3213 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest); 3214 3215 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 3216 { 3217 struct kvm_nested_guest *nested = vcpu->arch.nested; 3218 cpumask_t *need_tlb_flush; 3219 int i; 3220 3221 if (nested) 3222 need_tlb_flush = &nested->need_tlb_flush; 3223 else 3224 need_tlb_flush = &kvm->arch.need_tlb_flush; 3225 3226 cpu = cpu_first_tlb_thread_sibling(cpu); 3227 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3228 i += cpu_tlb_thread_sibling_step()) 3229 cpumask_set_cpu(i, need_tlb_flush); 3230 3231 /* 3232 * Make sure setting of bit in need_tlb_flush precedes testing of 3233 * cpu_in_guest. The matching barrier on the other side is hwsync 3234 * when switching to guest MMU mode, which happens between 3235 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit 3236 * being tested. 3237 */ 3238 smp_mb(); 3239 3240 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3241 i += cpu_tlb_thread_sibling_step()) { 3242 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i); 3243 3244 if (running == kvm) 3245 smp_call_function_single(i, do_nothing, NULL, 1); 3246 } 3247 } 3248 3249 static void do_migrate_away_vcpu(void *arg) 3250 { 3251 struct kvm_vcpu *vcpu = arg; 3252 struct kvm *kvm = vcpu->kvm; 3253 3254 /* 3255 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync; 3256 * ptesync sequence on the old CPU before migrating to a new one, in 3257 * case we interrupted the guest between a tlbie ; eieio ; 3258 * tlbsync; ptesync sequence. 3259 * 3260 * Otherwise, ptesync is sufficient for ordering tlbiel sequences. 3261 */ 3262 if (kvm->arch.lpcr & LPCR_GTSE) 3263 asm volatile("eieio; tlbsync; ptesync"); 3264 else 3265 asm volatile("ptesync"); 3266 } 3267 3268 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 3269 { 3270 struct kvm_nested_guest *nested = vcpu->arch.nested; 3271 struct kvm *kvm = vcpu->kvm; 3272 int prev_cpu; 3273 3274 if (!cpu_has_feature(CPU_FTR_HVMODE)) 3275 return; 3276 3277 if (nested) 3278 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 3279 else 3280 prev_cpu = vcpu->arch.prev_cpu; 3281 3282 /* 3283 * With radix, the guest can do TLB invalidations itself, 3284 * and it could choose to use the local form (tlbiel) if 3285 * it is invalidating a translation that has only ever been 3286 * used on one vcpu. However, that doesn't mean it has 3287 * only ever been used on one physical cpu, since vcpus 3288 * can move around between pcpus. To cope with this, when 3289 * a vcpu moves from one pcpu to another, we need to tell 3290 * any vcpus running on the same core as this vcpu previously 3291 * ran to flush the TLB. 3292 */ 3293 if (prev_cpu != pcpu) { 3294 if (prev_cpu >= 0) { 3295 if (cpu_first_tlb_thread_sibling(prev_cpu) != 3296 cpu_first_tlb_thread_sibling(pcpu)) 3297 radix_flush_cpu(kvm, prev_cpu, vcpu); 3298 3299 smp_call_function_single(prev_cpu, 3300 do_migrate_away_vcpu, vcpu, 1); 3301 } 3302 if (nested) 3303 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 3304 else 3305 vcpu->arch.prev_cpu = pcpu; 3306 } 3307 } 3308 3309 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 3310 { 3311 int cpu; 3312 struct paca_struct *tpaca; 3313 3314 cpu = vc->pcpu; 3315 if (vcpu) { 3316 if (vcpu->arch.timer_running) { 3317 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 3318 vcpu->arch.timer_running = 0; 3319 } 3320 cpu += vcpu->arch.ptid; 3321 vcpu->cpu = vc->pcpu; 3322 vcpu->arch.thread_cpu = cpu; 3323 } 3324 tpaca = paca_ptrs[cpu]; 3325 tpaca->kvm_hstate.kvm_vcpu = vcpu; 3326 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 3327 tpaca->kvm_hstate.fake_suspend = 0; 3328 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 3329 smp_wmb(); 3330 tpaca->kvm_hstate.kvm_vcore = vc; 3331 if (cpu != smp_processor_id()) 3332 kvmppc_ipi_thread(cpu); 3333 } 3334 3335 static void kvmppc_wait_for_nap(int n_threads) 3336 { 3337 int cpu = smp_processor_id(); 3338 int i, loops; 3339 3340 if (n_threads <= 1) 3341 return; 3342 for (loops = 0; loops < 1000000; ++loops) { 3343 /* 3344 * Check if all threads are finished. 3345 * We set the vcore pointer when starting a thread 3346 * and the thread clears it when finished, so we look 3347 * for any threads that still have a non-NULL vcore ptr. 3348 */ 3349 for (i = 1; i < n_threads; ++i) 3350 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3351 break; 3352 if (i == n_threads) { 3353 HMT_medium(); 3354 return; 3355 } 3356 HMT_low(); 3357 } 3358 HMT_medium(); 3359 for (i = 1; i < n_threads; ++i) 3360 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3361 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 3362 } 3363 3364 /* 3365 * Check that we are on thread 0 and that any other threads in 3366 * this core are off-line. Then grab the threads so they can't 3367 * enter the kernel. 3368 */ 3369 static int on_primary_thread(void) 3370 { 3371 int cpu = smp_processor_id(); 3372 int thr; 3373 3374 /* Are we on a primary subcore? */ 3375 if (cpu_thread_in_subcore(cpu)) 3376 return 0; 3377 3378 thr = 0; 3379 while (++thr < threads_per_subcore) 3380 if (cpu_online(cpu + thr)) 3381 return 0; 3382 3383 /* Grab all hw threads so they can't go into the kernel */ 3384 for (thr = 1; thr < threads_per_subcore; ++thr) { 3385 if (kvmppc_grab_hwthread(cpu + thr)) { 3386 /* Couldn't grab one; let the others go */ 3387 do { 3388 kvmppc_release_hwthread(cpu + thr); 3389 } while (--thr > 0); 3390 return 0; 3391 } 3392 } 3393 return 1; 3394 } 3395 3396 /* 3397 * A list of virtual cores for each physical CPU. 3398 * These are vcores that could run but their runner VCPU tasks are 3399 * (or may be) preempted. 3400 */ 3401 struct preempted_vcore_list { 3402 struct list_head list; 3403 spinlock_t lock; 3404 }; 3405 3406 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 3407 3408 static void init_vcore_lists(void) 3409 { 3410 int cpu; 3411 3412 for_each_possible_cpu(cpu) { 3413 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 3414 spin_lock_init(&lp->lock); 3415 INIT_LIST_HEAD(&lp->list); 3416 } 3417 } 3418 3419 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 3420 { 3421 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3422 3423 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3424 3425 vc->vcore_state = VCORE_PREEMPT; 3426 vc->pcpu = smp_processor_id(); 3427 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 3428 spin_lock(&lp->lock); 3429 list_add_tail(&vc->preempt_list, &lp->list); 3430 spin_unlock(&lp->lock); 3431 } 3432 3433 /* Start accumulating stolen time */ 3434 kvmppc_core_start_stolen(vc, mftb()); 3435 } 3436 3437 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3438 { 3439 struct preempted_vcore_list *lp; 3440 3441 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3442 3443 kvmppc_core_end_stolen(vc, mftb()); 3444 if (!list_empty(&vc->preempt_list)) { 3445 lp = &per_cpu(preempted_vcores, vc->pcpu); 3446 spin_lock(&lp->lock); 3447 list_del_init(&vc->preempt_list); 3448 spin_unlock(&lp->lock); 3449 } 3450 vc->vcore_state = VCORE_INACTIVE; 3451 } 3452 3453 /* 3454 * This stores information about the virtual cores currently 3455 * assigned to a physical core. 3456 */ 3457 struct core_info { 3458 int n_subcores; 3459 int max_subcore_threads; 3460 int total_threads; 3461 int subcore_threads[MAX_SUBCORES]; 3462 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3463 }; 3464 3465 /* 3466 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3467 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3468 */ 3469 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3470 3471 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3472 { 3473 memset(cip, 0, sizeof(*cip)); 3474 cip->n_subcores = 1; 3475 cip->max_subcore_threads = vc->num_threads; 3476 cip->total_threads = vc->num_threads; 3477 cip->subcore_threads[0] = vc->num_threads; 3478 cip->vc[0] = vc; 3479 } 3480 3481 static bool subcore_config_ok(int n_subcores, int n_threads) 3482 { 3483 /* 3484 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3485 * split-core mode, with one thread per subcore. 3486 */ 3487 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3488 return n_subcores <= 4 && n_threads == 1; 3489 3490 /* On POWER8, can only dynamically split if unsplit to begin with */ 3491 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3492 return false; 3493 if (n_subcores > MAX_SUBCORES) 3494 return false; 3495 if (n_subcores > 1) { 3496 if (!(dynamic_mt_modes & 2)) 3497 n_subcores = 4; 3498 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3499 return false; 3500 } 3501 3502 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3503 } 3504 3505 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3506 { 3507 vc->entry_exit_map = 0; 3508 vc->in_guest = 0; 3509 vc->napping_threads = 0; 3510 vc->conferring_threads = 0; 3511 vc->tb_offset_applied = 0; 3512 } 3513 3514 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3515 { 3516 int n_threads = vc->num_threads; 3517 int sub; 3518 3519 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3520 return false; 3521 3522 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3523 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3524 return false; 3525 3526 if (n_threads < cip->max_subcore_threads) 3527 n_threads = cip->max_subcore_threads; 3528 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3529 return false; 3530 cip->max_subcore_threads = n_threads; 3531 3532 sub = cip->n_subcores; 3533 ++cip->n_subcores; 3534 cip->total_threads += vc->num_threads; 3535 cip->subcore_threads[sub] = vc->num_threads; 3536 cip->vc[sub] = vc; 3537 init_vcore_to_run(vc); 3538 list_del_init(&vc->preempt_list); 3539 3540 return true; 3541 } 3542 3543 /* 3544 * Work out whether it is possible to piggyback the execution of 3545 * vcore *pvc onto the execution of the other vcores described in *cip. 3546 */ 3547 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3548 int target_threads) 3549 { 3550 if (cip->total_threads + pvc->num_threads > target_threads) 3551 return false; 3552 3553 return can_dynamic_split(pvc, cip); 3554 } 3555 3556 static void prepare_threads(struct kvmppc_vcore *vc) 3557 { 3558 int i; 3559 struct kvm_vcpu *vcpu; 3560 3561 for_each_runnable_thread(i, vcpu, vc) { 3562 if (signal_pending(vcpu->arch.run_task)) 3563 vcpu->arch.ret = -EINTR; 3564 else if (vcpu->arch.vpa.update_pending || 3565 vcpu->arch.slb_shadow.update_pending || 3566 vcpu->arch.dtl.update_pending) 3567 vcpu->arch.ret = RESUME_GUEST; 3568 else 3569 continue; 3570 kvmppc_remove_runnable(vc, vcpu, mftb()); 3571 wake_up(&vcpu->arch.cpu_run); 3572 } 3573 } 3574 3575 static void collect_piggybacks(struct core_info *cip, int target_threads) 3576 { 3577 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3578 struct kvmppc_vcore *pvc, *vcnext; 3579 3580 spin_lock(&lp->lock); 3581 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3582 if (!spin_trylock(&pvc->lock)) 3583 continue; 3584 prepare_threads(pvc); 3585 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3586 list_del_init(&pvc->preempt_list); 3587 if (pvc->runner == NULL) { 3588 pvc->vcore_state = VCORE_INACTIVE; 3589 kvmppc_core_end_stolen(pvc, mftb()); 3590 } 3591 spin_unlock(&pvc->lock); 3592 continue; 3593 } 3594 if (!can_piggyback(pvc, cip, target_threads)) { 3595 spin_unlock(&pvc->lock); 3596 continue; 3597 } 3598 kvmppc_core_end_stolen(pvc, mftb()); 3599 pvc->vcore_state = VCORE_PIGGYBACK; 3600 if (cip->total_threads >= target_threads) 3601 break; 3602 } 3603 spin_unlock(&lp->lock); 3604 } 3605 3606 static bool recheck_signals_and_mmu(struct core_info *cip) 3607 { 3608 int sub, i; 3609 struct kvm_vcpu *vcpu; 3610 struct kvmppc_vcore *vc; 3611 3612 for (sub = 0; sub < cip->n_subcores; ++sub) { 3613 vc = cip->vc[sub]; 3614 if (!vc->kvm->arch.mmu_ready) 3615 return true; 3616 for_each_runnable_thread(i, vcpu, vc) 3617 if (signal_pending(vcpu->arch.run_task)) 3618 return true; 3619 } 3620 return false; 3621 } 3622 3623 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3624 { 3625 int still_running = 0, i; 3626 u64 now; 3627 long ret; 3628 struct kvm_vcpu *vcpu; 3629 3630 spin_lock(&vc->lock); 3631 now = get_tb(); 3632 for_each_runnable_thread(i, vcpu, vc) { 3633 /* 3634 * It's safe to unlock the vcore in the loop here, because 3635 * for_each_runnable_thread() is safe against removal of 3636 * the vcpu, and the vcore state is VCORE_EXITING here, 3637 * so any vcpus becoming runnable will have their arch.trap 3638 * set to zero and can't actually run in the guest. 3639 */ 3640 spin_unlock(&vc->lock); 3641 /* cancel pending dec exception if dec is positive */ 3642 if (now < kvmppc_dec_expires_host_tb(vcpu) && 3643 kvmppc_core_pending_dec(vcpu)) 3644 kvmppc_core_dequeue_dec(vcpu); 3645 3646 trace_kvm_guest_exit(vcpu); 3647 3648 ret = RESUME_GUEST; 3649 if (vcpu->arch.trap) 3650 ret = kvmppc_handle_exit_hv(vcpu, 3651 vcpu->arch.run_task); 3652 3653 vcpu->arch.ret = ret; 3654 vcpu->arch.trap = 0; 3655 3656 spin_lock(&vc->lock); 3657 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3658 if (vcpu->arch.pending_exceptions) 3659 kvmppc_core_prepare_to_enter(vcpu); 3660 if (vcpu->arch.ceded) 3661 kvmppc_set_timer(vcpu); 3662 else 3663 ++still_running; 3664 } else { 3665 kvmppc_remove_runnable(vc, vcpu, mftb()); 3666 wake_up(&vcpu->arch.cpu_run); 3667 } 3668 } 3669 if (!is_master) { 3670 if (still_running > 0) { 3671 kvmppc_vcore_preempt(vc); 3672 } else if (vc->runner) { 3673 vc->vcore_state = VCORE_PREEMPT; 3674 kvmppc_core_start_stolen(vc, mftb()); 3675 } else { 3676 vc->vcore_state = VCORE_INACTIVE; 3677 } 3678 if (vc->n_runnable > 0 && vc->runner == NULL) { 3679 /* make sure there's a candidate runner awake */ 3680 i = -1; 3681 vcpu = next_runnable_thread(vc, &i); 3682 wake_up(&vcpu->arch.cpu_run); 3683 } 3684 } 3685 spin_unlock(&vc->lock); 3686 } 3687 3688 /* 3689 * Clear core from the list of active host cores as we are about to 3690 * enter the guest. Only do this if it is the primary thread of the 3691 * core (not if a subcore) that is entering the guest. 3692 */ 3693 static inline int kvmppc_clear_host_core(unsigned int cpu) 3694 { 3695 int core; 3696 3697 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3698 return 0; 3699 /* 3700 * Memory barrier can be omitted here as we will do a smp_wmb() 3701 * later in kvmppc_start_thread and we need ensure that state is 3702 * visible to other CPUs only after we enter guest. 3703 */ 3704 core = cpu >> threads_shift; 3705 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3706 return 0; 3707 } 3708 3709 /* 3710 * Advertise this core as an active host core since we exited the guest 3711 * Only need to do this if it is the primary thread of the core that is 3712 * exiting. 3713 */ 3714 static inline int kvmppc_set_host_core(unsigned int cpu) 3715 { 3716 int core; 3717 3718 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3719 return 0; 3720 3721 /* 3722 * Memory barrier can be omitted here because we do a spin_unlock 3723 * immediately after this which provides the memory barrier. 3724 */ 3725 core = cpu >> threads_shift; 3726 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3727 return 0; 3728 } 3729 3730 static void set_irq_happened(int trap) 3731 { 3732 switch (trap) { 3733 case BOOK3S_INTERRUPT_EXTERNAL: 3734 local_paca->irq_happened |= PACA_IRQ_EE; 3735 break; 3736 case BOOK3S_INTERRUPT_H_DOORBELL: 3737 local_paca->irq_happened |= PACA_IRQ_DBELL; 3738 break; 3739 case BOOK3S_INTERRUPT_HMI: 3740 local_paca->irq_happened |= PACA_IRQ_HMI; 3741 break; 3742 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3743 replay_system_reset(); 3744 break; 3745 } 3746 } 3747 3748 /* 3749 * Run a set of guest threads on a physical core. 3750 * Called with vc->lock held. 3751 */ 3752 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3753 { 3754 struct kvm_vcpu *vcpu; 3755 int i; 3756 int srcu_idx; 3757 struct core_info core_info; 3758 struct kvmppc_vcore *pvc; 3759 struct kvm_split_mode split_info, *sip; 3760 int split, subcore_size, active; 3761 int sub; 3762 bool thr0_done; 3763 unsigned long cmd_bit, stat_bit; 3764 int pcpu, thr; 3765 int target_threads; 3766 int controlled_threads; 3767 int trap; 3768 bool is_power8; 3769 3770 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3771 return; 3772 3773 /* 3774 * Remove from the list any threads that have a signal pending 3775 * or need a VPA update done 3776 */ 3777 prepare_threads(vc); 3778 3779 /* if the runner is no longer runnable, let the caller pick a new one */ 3780 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3781 return; 3782 3783 /* 3784 * Initialize *vc. 3785 */ 3786 init_vcore_to_run(vc); 3787 vc->preempt_tb = TB_NIL; 3788 3789 /* 3790 * Number of threads that we will be controlling: the same as 3791 * the number of threads per subcore, except on POWER9, 3792 * where it's 1 because the threads are (mostly) independent. 3793 */ 3794 controlled_threads = threads_per_vcore(vc->kvm); 3795 3796 /* 3797 * Make sure we are running on primary threads, and that secondary 3798 * threads are offline. Also check if the number of threads in this 3799 * guest are greater than the current system threads per guest. 3800 */ 3801 if ((controlled_threads > 1) && 3802 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3803 for_each_runnable_thread(i, vcpu, vc) { 3804 vcpu->arch.ret = -EBUSY; 3805 kvmppc_remove_runnable(vc, vcpu, mftb()); 3806 wake_up(&vcpu->arch.cpu_run); 3807 } 3808 goto out; 3809 } 3810 3811 /* 3812 * See if we could run any other vcores on the physical core 3813 * along with this one. 3814 */ 3815 init_core_info(&core_info, vc); 3816 pcpu = smp_processor_id(); 3817 target_threads = controlled_threads; 3818 if (target_smt_mode && target_smt_mode < target_threads) 3819 target_threads = target_smt_mode; 3820 if (vc->num_threads < target_threads) 3821 collect_piggybacks(&core_info, target_threads); 3822 3823 /* 3824 * Hard-disable interrupts, and check resched flag and signals. 3825 * If we need to reschedule or deliver a signal, clean up 3826 * and return without going into the guest(s). 3827 * If the mmu_ready flag has been cleared, don't go into the 3828 * guest because that means a HPT resize operation is in progress. 3829 */ 3830 local_irq_disable(); 3831 hard_irq_disable(); 3832 if (lazy_irq_pending() || need_resched() || 3833 recheck_signals_and_mmu(&core_info)) { 3834 local_irq_enable(); 3835 vc->vcore_state = VCORE_INACTIVE; 3836 /* Unlock all except the primary vcore */ 3837 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3838 pvc = core_info.vc[sub]; 3839 /* Put back on to the preempted vcores list */ 3840 kvmppc_vcore_preempt(pvc); 3841 spin_unlock(&pvc->lock); 3842 } 3843 for (i = 0; i < controlled_threads; ++i) 3844 kvmppc_release_hwthread(pcpu + i); 3845 return; 3846 } 3847 3848 kvmppc_clear_host_core(pcpu); 3849 3850 /* Decide on micro-threading (split-core) mode */ 3851 subcore_size = threads_per_subcore; 3852 cmd_bit = stat_bit = 0; 3853 split = core_info.n_subcores; 3854 sip = NULL; 3855 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3856 3857 if (split > 1) { 3858 sip = &split_info; 3859 memset(&split_info, 0, sizeof(split_info)); 3860 for (sub = 0; sub < core_info.n_subcores; ++sub) 3861 split_info.vc[sub] = core_info.vc[sub]; 3862 3863 if (is_power8) { 3864 if (split == 2 && (dynamic_mt_modes & 2)) { 3865 cmd_bit = HID0_POWER8_1TO2LPAR; 3866 stat_bit = HID0_POWER8_2LPARMODE; 3867 } else { 3868 split = 4; 3869 cmd_bit = HID0_POWER8_1TO4LPAR; 3870 stat_bit = HID0_POWER8_4LPARMODE; 3871 } 3872 subcore_size = MAX_SMT_THREADS / split; 3873 split_info.rpr = mfspr(SPRN_RPR); 3874 split_info.pmmar = mfspr(SPRN_PMMAR); 3875 split_info.ldbar = mfspr(SPRN_LDBAR); 3876 split_info.subcore_size = subcore_size; 3877 } else { 3878 split_info.subcore_size = 1; 3879 } 3880 3881 /* order writes to split_info before kvm_split_mode pointer */ 3882 smp_wmb(); 3883 } 3884 3885 for (thr = 0; thr < controlled_threads; ++thr) { 3886 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3887 3888 paca->kvm_hstate.napping = 0; 3889 paca->kvm_hstate.kvm_split_mode = sip; 3890 } 3891 3892 /* Initiate micro-threading (split-core) on POWER8 if required */ 3893 if (cmd_bit) { 3894 unsigned long hid0 = mfspr(SPRN_HID0); 3895 3896 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3897 mb(); 3898 mtspr(SPRN_HID0, hid0); 3899 isync(); 3900 for (;;) { 3901 hid0 = mfspr(SPRN_HID0); 3902 if (hid0 & stat_bit) 3903 break; 3904 cpu_relax(); 3905 } 3906 } 3907 3908 /* 3909 * On POWER8, set RWMR register. 3910 * Since it only affects PURR and SPURR, it doesn't affect 3911 * the host, so we don't save/restore the host value. 3912 */ 3913 if (is_power8) { 3914 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3915 int n_online = atomic_read(&vc->online_count); 3916 3917 /* 3918 * Use the 8-thread value if we're doing split-core 3919 * or if the vcore's online count looks bogus. 3920 */ 3921 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3922 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3923 rwmr_val = p8_rwmr_values[n_online]; 3924 mtspr(SPRN_RWMR, rwmr_val); 3925 } 3926 3927 /* Start all the threads */ 3928 active = 0; 3929 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3930 thr = is_power8 ? subcore_thread_map[sub] : sub; 3931 thr0_done = false; 3932 active |= 1 << thr; 3933 pvc = core_info.vc[sub]; 3934 pvc->pcpu = pcpu + thr; 3935 for_each_runnable_thread(i, vcpu, pvc) { 3936 /* 3937 * XXX: is kvmppc_start_thread called too late here? 3938 * It updates vcpu->cpu and vcpu->arch.thread_cpu 3939 * which are used by kvmppc_fast_vcpu_kick_hv(), but 3940 * kick is called after new exceptions become available 3941 * and exceptions are checked earlier than here, by 3942 * kvmppc_core_prepare_to_enter. 3943 */ 3944 kvmppc_start_thread(vcpu, pvc); 3945 kvmppc_update_vpa_dispatch(vcpu, pvc); 3946 trace_kvm_guest_enter(vcpu); 3947 if (!vcpu->arch.ptid) 3948 thr0_done = true; 3949 active |= 1 << (thr + vcpu->arch.ptid); 3950 } 3951 /* 3952 * We need to start the first thread of each subcore 3953 * even if it doesn't have a vcpu. 3954 */ 3955 if (!thr0_done) 3956 kvmppc_start_thread(NULL, pvc); 3957 } 3958 3959 /* 3960 * Ensure that split_info.do_nap is set after setting 3961 * the vcore pointer in the PACA of the secondaries. 3962 */ 3963 smp_mb(); 3964 3965 /* 3966 * When doing micro-threading, poke the inactive threads as well. 3967 * This gets them to the nap instruction after kvm_do_nap, 3968 * which reduces the time taken to unsplit later. 3969 */ 3970 if (cmd_bit) { 3971 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3972 for (thr = 1; thr < threads_per_subcore; ++thr) 3973 if (!(active & (1 << thr))) 3974 kvmppc_ipi_thread(pcpu + thr); 3975 } 3976 3977 vc->vcore_state = VCORE_RUNNING; 3978 preempt_disable(); 3979 3980 trace_kvmppc_run_core(vc, 0); 3981 3982 for (sub = 0; sub < core_info.n_subcores; ++sub) 3983 spin_unlock(&core_info.vc[sub]->lock); 3984 3985 guest_timing_enter_irqoff(); 3986 3987 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3988 3989 guest_state_enter_irqoff(); 3990 this_cpu_disable_ftrace(); 3991 3992 trap = __kvmppc_vcore_entry(); 3993 3994 this_cpu_enable_ftrace(); 3995 guest_state_exit_irqoff(); 3996 3997 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3998 3999 set_irq_happened(trap); 4000 4001 spin_lock(&vc->lock); 4002 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 4003 vc->vcore_state = VCORE_EXITING; 4004 4005 /* wait for secondary threads to finish writing their state to memory */ 4006 kvmppc_wait_for_nap(controlled_threads); 4007 4008 /* Return to whole-core mode if we split the core earlier */ 4009 if (cmd_bit) { 4010 unsigned long hid0 = mfspr(SPRN_HID0); 4011 unsigned long loops = 0; 4012 4013 hid0 &= ~HID0_POWER8_DYNLPARDIS; 4014 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 4015 mb(); 4016 mtspr(SPRN_HID0, hid0); 4017 isync(); 4018 for (;;) { 4019 hid0 = mfspr(SPRN_HID0); 4020 if (!(hid0 & stat_bit)) 4021 break; 4022 cpu_relax(); 4023 ++loops; 4024 } 4025 split_info.do_nap = 0; 4026 } 4027 4028 kvmppc_set_host_core(pcpu); 4029 4030 if (!vtime_accounting_enabled_this_cpu()) { 4031 local_irq_enable(); 4032 /* 4033 * Service IRQs here before guest_timing_exit_irqoff() so any 4034 * ticks that occurred while running the guest are accounted to 4035 * the guest. If vtime accounting is enabled, accounting uses 4036 * TB rather than ticks, so it can be done without enabling 4037 * interrupts here, which has the problem that it accounts 4038 * interrupt processing overhead to the host. 4039 */ 4040 local_irq_disable(); 4041 } 4042 guest_timing_exit_irqoff(); 4043 4044 local_irq_enable(); 4045 4046 /* Let secondaries go back to the offline loop */ 4047 for (i = 0; i < controlled_threads; ++i) { 4048 kvmppc_release_hwthread(pcpu + i); 4049 if (sip && sip->napped[i]) 4050 kvmppc_ipi_thread(pcpu + i); 4051 } 4052 4053 spin_unlock(&vc->lock); 4054 4055 /* make sure updates to secondary vcpu structs are visible now */ 4056 smp_mb(); 4057 4058 preempt_enable(); 4059 4060 for (sub = 0; sub < core_info.n_subcores; ++sub) { 4061 pvc = core_info.vc[sub]; 4062 post_guest_process(pvc, pvc == vc); 4063 } 4064 4065 spin_lock(&vc->lock); 4066 4067 out: 4068 vc->vcore_state = VCORE_INACTIVE; 4069 trace_kvmppc_run_core(vc, 1); 4070 } 4071 4072 static inline bool hcall_is_xics(unsigned long req) 4073 { 4074 return req == H_EOI || req == H_CPPR || req == H_IPI || 4075 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 4076 } 4077 4078 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu) 4079 { 4080 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 4081 if (lp) { 4082 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 4083 lp->yield_count = cpu_to_be32(yield_count); 4084 vcpu->arch.vpa.dirty = 1; 4085 } 4086 } 4087 4088 static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit, 4089 unsigned long lpcr, u64 *tb) 4090 { 4091 struct kvmhv_nestedv2_io *io; 4092 unsigned long msr, i; 4093 int trap; 4094 long rc; 4095 4096 io = &vcpu->arch.nestedv2_io; 4097 4098 msr = mfmsr(); 4099 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4100 if (lazy_irq_pending()) 4101 return 0; 4102 4103 rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit); 4104 if (rc < 0) 4105 return -EINVAL; 4106 4107 kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr); 4108 4109 accumulate_time(vcpu, &vcpu->arch.in_guest); 4110 rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id, 4111 &trap, &i); 4112 4113 if (rc != H_SUCCESS) { 4114 pr_err("KVM Guest Run VCPU hcall failed\n"); 4115 if (rc == H_INVALID_ELEMENT_ID) 4116 pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i); 4117 else if (rc == H_INVALID_ELEMENT_SIZE) 4118 pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i); 4119 else if (rc == H_INVALID_ELEMENT_VALUE) 4120 pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i); 4121 return -EINVAL; 4122 } 4123 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4124 4125 *tb = mftb(); 4126 kvmppc_gsm_reset(io->vcpu_message); 4127 kvmppc_gsm_reset(io->vcore_message); 4128 kvmppc_gsbm_zero(&io->valids); 4129 4130 rc = kvmhv_nestedv2_parse_output(vcpu); 4131 if (rc < 0) 4132 return -EINVAL; 4133 4134 timer_rearm_host_dec(*tb); 4135 4136 return trap; 4137 } 4138 4139 /* call our hypervisor to load up HV regs and go */ 4140 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) 4141 { 4142 unsigned long host_psscr; 4143 unsigned long msr; 4144 struct hv_guest_state hvregs; 4145 struct p9_host_os_sprs host_os_sprs; 4146 s64 dec; 4147 int trap; 4148 4149 msr = mfmsr(); 4150 4151 save_p9_host_os_sprs(&host_os_sprs); 4152 4153 /* 4154 * We need to save and restore the guest visible part of the 4155 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 4156 * doesn't do this for us. Note only required if pseries since 4157 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 4158 */ 4159 host_psscr = mfspr(SPRN_PSSCR_PR); 4160 4161 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4162 if (lazy_irq_pending()) 4163 return 0; 4164 4165 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) 4166 msr = mfmsr(); /* TM restore can update msr */ 4167 4168 if (vcpu->arch.psscr != host_psscr) 4169 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 4170 4171 kvmhv_save_hv_regs(vcpu, &hvregs); 4172 hvregs.lpcr = lpcr; 4173 hvregs.amor = ~0; 4174 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 4175 hvregs.version = HV_GUEST_STATE_VERSION; 4176 if (vcpu->arch.nested) { 4177 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 4178 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 4179 } else { 4180 hvregs.lpid = vcpu->kvm->arch.lpid; 4181 hvregs.vcpu_token = vcpu->vcpu_id; 4182 } 4183 hvregs.hdec_expiry = time_limit; 4184 4185 /* 4186 * When setting DEC, we must always deal with irq_work_raise 4187 * via NMI vs setting DEC. The problem occurs right as we 4188 * switch into guest mode if a NMI hits and sets pending work 4189 * and sets DEC, then that will apply to the guest and not 4190 * bring us back to the host. 4191 * 4192 * irq_work_raise could check a flag (or possibly LPCR[HDICE] 4193 * for example) and set HDEC to 1? That wouldn't solve the 4194 * nested hv case which needs to abort the hcall or zero the 4195 * time limit. 4196 * 4197 * XXX: Another day's problem. 4198 */ 4199 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb); 4200 4201 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 4202 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 4203 switch_pmu_to_guest(vcpu, &host_os_sprs); 4204 accumulate_time(vcpu, &vcpu->arch.in_guest); 4205 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 4206 __pa(&vcpu->arch.regs)); 4207 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4208 kvmhv_restore_hv_return_state(vcpu, &hvregs); 4209 switch_pmu_to_host(vcpu, &host_os_sprs); 4210 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 4211 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 4212 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 4213 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 4214 4215 store_vcpu_state(vcpu); 4216 4217 dec = mfspr(SPRN_DEC); 4218 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 4219 dec = (s32) dec; 4220 *tb = mftb(); 4221 vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu)); 4222 4223 timer_rearm_host_dec(*tb); 4224 4225 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 4226 if (vcpu->arch.psscr != host_psscr) 4227 mtspr(SPRN_PSSCR_PR, host_psscr); 4228 4229 return trap; 4230 } 4231 4232 /* 4233 * Guest entry for POWER9 and later CPUs. 4234 */ 4235 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 4236 unsigned long lpcr, u64 *tb) 4237 { 4238 struct kvm *kvm = vcpu->kvm; 4239 struct kvm_nested_guest *nested = vcpu->arch.nested; 4240 u64 next_timer; 4241 int trap; 4242 4243 next_timer = timer_get_next_tb(); 4244 if (*tb >= next_timer) 4245 return BOOK3S_INTERRUPT_HV_DECREMENTER; 4246 if (next_timer < time_limit) 4247 time_limit = next_timer; 4248 else if (*tb >= time_limit) /* nested time limit */ 4249 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER; 4250 4251 vcpu->arch.ceded = 0; 4252 4253 vcpu_vpa_increment_dispatch(vcpu); 4254 4255 if (kvmhv_on_pseries()) { 4256 if (kvmhv_is_nestedv1()) 4257 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb); 4258 else 4259 trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb); 4260 4261 /* H_CEDE has to be handled now, not later */ 4262 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested && 4263 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 4264 kvmppc_cede(vcpu); 4265 kvmppc_set_gpr(vcpu, 3, 0); 4266 trap = 0; 4267 } 4268 4269 } else if (nested) { 4270 __this_cpu_write(cpu_in_guest, kvm); 4271 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4272 __this_cpu_write(cpu_in_guest, NULL); 4273 4274 } else { 4275 kvmppc_xive_push_vcpu(vcpu); 4276 4277 __this_cpu_write(cpu_in_guest, kvm); 4278 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4279 __this_cpu_write(cpu_in_guest, NULL); 4280 4281 if (trap == BOOK3S_INTERRUPT_SYSCALL && 4282 !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 4283 unsigned long req = kvmppc_get_gpr(vcpu, 3); 4284 4285 /* 4286 * XIVE rearm and XICS hcalls must be handled 4287 * before xive context is pulled (is this 4288 * true?) 4289 */ 4290 if (req == H_CEDE) { 4291 /* H_CEDE has to be handled now */ 4292 kvmppc_cede(vcpu); 4293 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4294 /* 4295 * Pending escalation so abort 4296 * the cede. 4297 */ 4298 vcpu->arch.ceded = 0; 4299 } 4300 kvmppc_set_gpr(vcpu, 3, 0); 4301 trap = 0; 4302 4303 } else if (req == H_ENTER_NESTED) { 4304 /* 4305 * L2 should not run with the L1 4306 * context so rearm and pull it. 4307 */ 4308 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4309 /* 4310 * Pending escalation so abort 4311 * H_ENTER_NESTED. 4312 */ 4313 kvmppc_set_gpr(vcpu, 3, 0); 4314 trap = 0; 4315 } 4316 4317 } else if (hcall_is_xics(req)) { 4318 int ret; 4319 4320 ret = kvmppc_xive_xics_hcall(vcpu, req); 4321 if (ret != H_TOO_HARD) { 4322 kvmppc_set_gpr(vcpu, 3, ret); 4323 trap = 0; 4324 } 4325 } 4326 } 4327 kvmppc_xive_pull_vcpu(vcpu); 4328 4329 if (kvm_is_radix(kvm)) 4330 vcpu->arch.slb_max = 0; 4331 } 4332 4333 vcpu_vpa_increment_dispatch(vcpu); 4334 4335 return trap; 4336 } 4337 4338 /* 4339 * Wait for some other vcpu thread to execute us, and 4340 * wake us up when we need to handle something in the host. 4341 */ 4342 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 4343 struct kvm_vcpu *vcpu, int wait_state) 4344 { 4345 DEFINE_WAIT(wait); 4346 4347 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 4348 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4349 spin_unlock(&vc->lock); 4350 schedule(); 4351 spin_lock(&vc->lock); 4352 } 4353 finish_wait(&vcpu->arch.cpu_run, &wait); 4354 } 4355 4356 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 4357 { 4358 if (!halt_poll_ns_grow) 4359 return; 4360 4361 vc->halt_poll_ns *= halt_poll_ns_grow; 4362 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 4363 vc->halt_poll_ns = halt_poll_ns_grow_start; 4364 } 4365 4366 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 4367 { 4368 if (halt_poll_ns_shrink == 0) 4369 vc->halt_poll_ns = 0; 4370 else 4371 vc->halt_poll_ns /= halt_poll_ns_shrink; 4372 } 4373 4374 #ifdef CONFIG_KVM_XICS 4375 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4376 { 4377 if (!xics_on_xive()) 4378 return false; 4379 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 4380 vcpu->arch.xive_saved_state.cppr; 4381 } 4382 #else 4383 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4384 { 4385 return false; 4386 } 4387 #endif /* CONFIG_KVM_XICS */ 4388 4389 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 4390 { 4391 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 4392 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 4393 return true; 4394 4395 return false; 4396 } 4397 4398 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu) 4399 { 4400 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 4401 return true; 4402 return false; 4403 } 4404 4405 /* 4406 * Check to see if any of the runnable vcpus on the vcore have pending 4407 * exceptions or are no longer ceded 4408 */ 4409 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 4410 { 4411 struct kvm_vcpu *vcpu; 4412 int i; 4413 4414 for_each_runnable_thread(i, vcpu, vc) { 4415 if (kvmppc_vcpu_check_block(vcpu)) 4416 return 1; 4417 } 4418 4419 return 0; 4420 } 4421 4422 /* 4423 * All the vcpus in this vcore are idle, so wait for a decrementer 4424 * or external interrupt to one of the vcpus. vc->lock is held. 4425 */ 4426 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 4427 { 4428 ktime_t cur, start_poll, start_wait; 4429 int do_sleep = 1; 4430 u64 block_ns; 4431 4432 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 4433 4434 /* Poll for pending exceptions and ceded state */ 4435 cur = start_poll = ktime_get(); 4436 if (vc->halt_poll_ns) { 4437 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4438 ++vc->runner->stat.generic.halt_attempted_poll; 4439 4440 vc->vcore_state = VCORE_POLLING; 4441 spin_unlock(&vc->lock); 4442 4443 do { 4444 if (kvmppc_vcore_check_block(vc)) { 4445 do_sleep = 0; 4446 break; 4447 } 4448 cur = ktime_get(); 4449 } while (kvm_vcpu_can_poll(cur, stop)); 4450 4451 spin_lock(&vc->lock); 4452 vc->vcore_state = VCORE_INACTIVE; 4453 4454 if (!do_sleep) { 4455 ++vc->runner->stat.generic.halt_successful_poll; 4456 goto out; 4457 } 4458 } 4459 4460 prepare_to_rcuwait(&vc->wait); 4461 set_current_state(TASK_INTERRUPTIBLE); 4462 if (kvmppc_vcore_check_block(vc)) { 4463 finish_rcuwait(&vc->wait); 4464 do_sleep = 0; 4465 /* If we polled, count this as a successful poll */ 4466 if (vc->halt_poll_ns) 4467 ++vc->runner->stat.generic.halt_successful_poll; 4468 goto out; 4469 } 4470 4471 start_wait = ktime_get(); 4472 4473 vc->vcore_state = VCORE_SLEEPING; 4474 trace_kvmppc_vcore_blocked(vc->runner, 0); 4475 spin_unlock(&vc->lock); 4476 schedule(); 4477 finish_rcuwait(&vc->wait); 4478 spin_lock(&vc->lock); 4479 vc->vcore_state = VCORE_INACTIVE; 4480 trace_kvmppc_vcore_blocked(vc->runner, 1); 4481 ++vc->runner->stat.halt_successful_wait; 4482 4483 cur = ktime_get(); 4484 4485 out: 4486 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4487 4488 /* Attribute wait time */ 4489 if (do_sleep) { 4490 vc->runner->stat.generic.halt_wait_ns += 4491 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4492 KVM_STATS_LOG_HIST_UPDATE( 4493 vc->runner->stat.generic.halt_wait_hist, 4494 ktime_to_ns(cur) - ktime_to_ns(start_wait)); 4495 /* Attribute failed poll time */ 4496 if (vc->halt_poll_ns) { 4497 vc->runner->stat.generic.halt_poll_fail_ns += 4498 ktime_to_ns(start_wait) - 4499 ktime_to_ns(start_poll); 4500 KVM_STATS_LOG_HIST_UPDATE( 4501 vc->runner->stat.generic.halt_poll_fail_hist, 4502 ktime_to_ns(start_wait) - 4503 ktime_to_ns(start_poll)); 4504 } 4505 } else { 4506 /* Attribute successful poll time */ 4507 if (vc->halt_poll_ns) { 4508 vc->runner->stat.generic.halt_poll_success_ns += 4509 ktime_to_ns(cur) - 4510 ktime_to_ns(start_poll); 4511 KVM_STATS_LOG_HIST_UPDATE( 4512 vc->runner->stat.generic.halt_poll_success_hist, 4513 ktime_to_ns(cur) - ktime_to_ns(start_poll)); 4514 } 4515 } 4516 4517 /* Adjust poll time */ 4518 if (halt_poll_ns) { 4519 if (block_ns <= vc->halt_poll_ns) 4520 ; 4521 /* We slept and blocked for longer than the max halt time */ 4522 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4523 shrink_halt_poll_ns(vc); 4524 /* We slept and our poll time is too small */ 4525 else if (vc->halt_poll_ns < halt_poll_ns && 4526 block_ns < halt_poll_ns) 4527 grow_halt_poll_ns(vc); 4528 if (vc->halt_poll_ns > halt_poll_ns) 4529 vc->halt_poll_ns = halt_poll_ns; 4530 } else 4531 vc->halt_poll_ns = 0; 4532 4533 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4534 } 4535 4536 /* 4537 * This never fails for a radix guest, as none of the operations it does 4538 * for a radix guest can fail or have a way to report failure. 4539 */ 4540 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4541 { 4542 int r = 0; 4543 struct kvm *kvm = vcpu->kvm; 4544 4545 mutex_lock(&kvm->arch.mmu_setup_lock); 4546 if (!kvm->arch.mmu_ready) { 4547 if (!kvm_is_radix(kvm)) 4548 r = kvmppc_hv_setup_htab_rma(vcpu); 4549 if (!r) { 4550 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4551 kvmppc_setup_partition_table(kvm); 4552 kvm->arch.mmu_ready = 1; 4553 } 4554 } 4555 mutex_unlock(&kvm->arch.mmu_setup_lock); 4556 return r; 4557 } 4558 4559 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4560 { 4561 struct kvm_run *run = vcpu->run; 4562 int n_ceded, i, r; 4563 struct kvmppc_vcore *vc; 4564 struct kvm_vcpu *v; 4565 4566 trace_kvmppc_run_vcpu_enter(vcpu); 4567 4568 run->exit_reason = 0; 4569 vcpu->arch.ret = RESUME_GUEST; 4570 vcpu->arch.trap = 0; 4571 kvmppc_update_vpas(vcpu); 4572 4573 /* 4574 * Synchronize with other threads in this virtual core 4575 */ 4576 vc = vcpu->arch.vcore; 4577 spin_lock(&vc->lock); 4578 vcpu->arch.ceded = 0; 4579 vcpu->arch.run_task = current; 4580 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4581 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4582 vcpu->arch.busy_preempt = TB_NIL; 4583 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4584 ++vc->n_runnable; 4585 4586 /* 4587 * This happens the first time this is called for a vcpu. 4588 * If the vcore is already running, we may be able to start 4589 * this thread straight away and have it join in. 4590 */ 4591 if (!signal_pending(current)) { 4592 if ((vc->vcore_state == VCORE_PIGGYBACK || 4593 vc->vcore_state == VCORE_RUNNING) && 4594 !VCORE_IS_EXITING(vc)) { 4595 kvmppc_update_vpa_dispatch(vcpu, vc); 4596 kvmppc_start_thread(vcpu, vc); 4597 trace_kvm_guest_enter(vcpu); 4598 } else if (vc->vcore_state == VCORE_SLEEPING) { 4599 rcuwait_wake_up(&vc->wait); 4600 } 4601 4602 } 4603 4604 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4605 !signal_pending(current)) { 4606 /* See if the MMU is ready to go */ 4607 if (!vcpu->kvm->arch.mmu_ready) { 4608 spin_unlock(&vc->lock); 4609 r = kvmhv_setup_mmu(vcpu); 4610 spin_lock(&vc->lock); 4611 if (r) { 4612 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4613 run->fail_entry. 4614 hardware_entry_failure_reason = 0; 4615 vcpu->arch.ret = r; 4616 break; 4617 } 4618 } 4619 4620 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4621 kvmppc_vcore_end_preempt(vc); 4622 4623 if (vc->vcore_state != VCORE_INACTIVE) { 4624 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4625 continue; 4626 } 4627 for_each_runnable_thread(i, v, vc) { 4628 kvmppc_core_prepare_to_enter(v); 4629 if (signal_pending(v->arch.run_task)) { 4630 kvmppc_remove_runnable(vc, v, mftb()); 4631 v->stat.signal_exits++; 4632 v->run->exit_reason = KVM_EXIT_INTR; 4633 v->arch.ret = -EINTR; 4634 wake_up(&v->arch.cpu_run); 4635 } 4636 } 4637 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4638 break; 4639 n_ceded = 0; 4640 for_each_runnable_thread(i, v, vc) { 4641 if (!kvmppc_vcpu_woken(v)) 4642 n_ceded += v->arch.ceded; 4643 else 4644 v->arch.ceded = 0; 4645 } 4646 vc->runner = vcpu; 4647 if (n_ceded == vc->n_runnable) { 4648 kvmppc_vcore_blocked(vc); 4649 } else if (need_resched()) { 4650 kvmppc_vcore_preempt(vc); 4651 /* Let something else run */ 4652 cond_resched_lock(&vc->lock); 4653 if (vc->vcore_state == VCORE_PREEMPT) 4654 kvmppc_vcore_end_preempt(vc); 4655 } else { 4656 kvmppc_run_core(vc); 4657 } 4658 vc->runner = NULL; 4659 } 4660 4661 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4662 (vc->vcore_state == VCORE_RUNNING || 4663 vc->vcore_state == VCORE_EXITING || 4664 vc->vcore_state == VCORE_PIGGYBACK)) 4665 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4666 4667 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4668 kvmppc_vcore_end_preempt(vc); 4669 4670 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4671 kvmppc_remove_runnable(vc, vcpu, mftb()); 4672 vcpu->stat.signal_exits++; 4673 run->exit_reason = KVM_EXIT_INTR; 4674 vcpu->arch.ret = -EINTR; 4675 } 4676 4677 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4678 /* Wake up some vcpu to run the core */ 4679 i = -1; 4680 v = next_runnable_thread(vc, &i); 4681 wake_up(&v->arch.cpu_run); 4682 } 4683 4684 trace_kvmppc_run_vcpu_exit(vcpu); 4685 spin_unlock(&vc->lock); 4686 return vcpu->arch.ret; 4687 } 4688 4689 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4690 unsigned long lpcr) 4691 { 4692 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 4693 struct kvm_run *run = vcpu->run; 4694 int trap, r, pcpu; 4695 int srcu_idx; 4696 struct kvmppc_vcore *vc; 4697 struct kvm *kvm = vcpu->kvm; 4698 struct kvm_nested_guest *nested = vcpu->arch.nested; 4699 unsigned long flags; 4700 u64 tb; 4701 4702 trace_kvmppc_run_vcpu_enter(vcpu); 4703 4704 run->exit_reason = 0; 4705 vcpu->arch.ret = RESUME_GUEST; 4706 vcpu->arch.trap = 0; 4707 4708 vc = vcpu->arch.vcore; 4709 vcpu->arch.ceded = 0; 4710 vcpu->arch.run_task = current; 4711 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4712 4713 /* See if the MMU is ready to go */ 4714 if (unlikely(!kvm->arch.mmu_ready)) { 4715 r = kvmhv_setup_mmu(vcpu); 4716 if (r) { 4717 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4718 run->fail_entry.hardware_entry_failure_reason = 0; 4719 vcpu->arch.ret = r; 4720 return r; 4721 } 4722 } 4723 4724 if (need_resched()) 4725 cond_resched(); 4726 4727 kvmppc_update_vpas(vcpu); 4728 4729 preempt_disable(); 4730 pcpu = smp_processor_id(); 4731 if (kvm_is_radix(kvm)) 4732 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4733 4734 /* flags save not required, but irq_pmu has no disable/enable API */ 4735 powerpc_local_irq_pmu_save(flags); 4736 4737 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4738 4739 if (signal_pending(current)) 4740 goto sigpend; 4741 if (need_resched() || !kvm->arch.mmu_ready) 4742 goto out; 4743 4744 vcpu->cpu = pcpu; 4745 vcpu->arch.thread_cpu = pcpu; 4746 vc->pcpu = pcpu; 4747 local_paca->kvm_hstate.kvm_vcpu = vcpu; 4748 local_paca->kvm_hstate.ptid = 0; 4749 local_paca->kvm_hstate.fake_suspend = 0; 4750 4751 /* 4752 * Orders set cpu/thread_cpu vs testing for pending interrupts and 4753 * doorbells below. The other side is when these fields are set vs 4754 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to 4755 * kick a vCPU to notice the pending interrupt. 4756 */ 4757 smp_mb(); 4758 4759 if (!nested) { 4760 kvmppc_core_prepare_to_enter(vcpu); 4761 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4762 &vcpu->arch.pending_exceptions) || 4763 xive_interrupt_pending(vcpu)) { 4764 /* 4765 * For nested HV, don't synthesize but always pass MER, 4766 * the L0 will be able to optimise that more 4767 * effectively than manipulating registers directly. 4768 */ 4769 if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE)) 4770 kvmppc_inject_interrupt_hv(vcpu, 4771 BOOK3S_INTERRUPT_EXTERNAL, 0); 4772 else 4773 lpcr |= LPCR_MER; 4774 } 4775 } else if (vcpu->arch.pending_exceptions || 4776 vcpu->arch.doorbell_request || 4777 xive_interrupt_pending(vcpu)) { 4778 vcpu->arch.ret = RESUME_HOST; 4779 goto out; 4780 } 4781 4782 if (vcpu->arch.timer_running) { 4783 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 4784 vcpu->arch.timer_running = 0; 4785 } 4786 4787 tb = mftb(); 4788 4789 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu)); 4790 4791 trace_kvm_guest_enter(vcpu); 4792 4793 guest_timing_enter_irqoff(); 4794 4795 srcu_idx = srcu_read_lock(&kvm->srcu); 4796 4797 guest_state_enter_irqoff(); 4798 this_cpu_disable_ftrace(); 4799 4800 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb); 4801 vcpu->arch.trap = trap; 4802 4803 this_cpu_enable_ftrace(); 4804 guest_state_exit_irqoff(); 4805 4806 srcu_read_unlock(&kvm->srcu, srcu_idx); 4807 4808 set_irq_happened(trap); 4809 4810 vcpu->cpu = -1; 4811 vcpu->arch.thread_cpu = -1; 4812 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4813 4814 if (!vtime_accounting_enabled_this_cpu()) { 4815 powerpc_local_irq_pmu_restore(flags); 4816 /* 4817 * Service IRQs here before guest_timing_exit_irqoff() so any 4818 * ticks that occurred while running the guest are accounted to 4819 * the guest. If vtime accounting is enabled, accounting uses 4820 * TB rather than ticks, so it can be done without enabling 4821 * interrupts here, which has the problem that it accounts 4822 * interrupt processing overhead to the host. 4823 */ 4824 powerpc_local_irq_pmu_save(flags); 4825 } 4826 guest_timing_exit_irqoff(); 4827 4828 powerpc_local_irq_pmu_restore(flags); 4829 4830 preempt_enable(); 4831 4832 /* 4833 * cancel pending decrementer exception if DEC is now positive, or if 4834 * entering a nested guest in which case the decrementer is now owned 4835 * by L2 and the L1 decrementer is provided in hdec_expires 4836 */ 4837 if (!kvmhv_is_nestedv2() && kvmppc_core_pending_dec(vcpu) && 4838 ((tb < kvmppc_dec_expires_host_tb(vcpu)) || 4839 (trap == BOOK3S_INTERRUPT_SYSCALL && 4840 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4841 kvmppc_core_dequeue_dec(vcpu); 4842 4843 trace_kvm_guest_exit(vcpu); 4844 r = RESUME_GUEST; 4845 if (trap) { 4846 if (!nested) 4847 r = kvmppc_handle_exit_hv(vcpu, current); 4848 else 4849 r = kvmppc_handle_nested_exit(vcpu); 4850 } 4851 vcpu->arch.ret = r; 4852 4853 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) { 4854 kvmppc_set_timer(vcpu); 4855 4856 prepare_to_rcuwait(wait); 4857 for (;;) { 4858 set_current_state(TASK_INTERRUPTIBLE); 4859 if (signal_pending(current)) { 4860 vcpu->stat.signal_exits++; 4861 run->exit_reason = KVM_EXIT_INTR; 4862 vcpu->arch.ret = -EINTR; 4863 break; 4864 } 4865 4866 if (kvmppc_vcpu_check_block(vcpu)) 4867 break; 4868 4869 trace_kvmppc_vcore_blocked(vcpu, 0); 4870 schedule(); 4871 trace_kvmppc_vcore_blocked(vcpu, 1); 4872 } 4873 finish_rcuwait(wait); 4874 } 4875 vcpu->arch.ceded = 0; 4876 4877 done: 4878 trace_kvmppc_run_vcpu_exit(vcpu); 4879 4880 return vcpu->arch.ret; 4881 4882 sigpend: 4883 vcpu->stat.signal_exits++; 4884 run->exit_reason = KVM_EXIT_INTR; 4885 vcpu->arch.ret = -EINTR; 4886 out: 4887 vcpu->cpu = -1; 4888 vcpu->arch.thread_cpu = -1; 4889 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4890 powerpc_local_irq_pmu_restore(flags); 4891 preempt_enable(); 4892 goto done; 4893 } 4894 4895 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4896 { 4897 struct kvm_run *run = vcpu->run; 4898 int r; 4899 int srcu_idx; 4900 struct kvm *kvm; 4901 unsigned long msr; 4902 4903 start_timing(vcpu, &vcpu->arch.vcpu_entry); 4904 4905 if (!vcpu->arch.sane) { 4906 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4907 return -EINVAL; 4908 } 4909 4910 /* No need to go into the guest when all we'll do is come back out */ 4911 if (signal_pending(current)) { 4912 run->exit_reason = KVM_EXIT_INTR; 4913 return -EINTR; 4914 } 4915 4916 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4917 /* 4918 * Don't allow entry with a suspended transaction, because 4919 * the guest entry/exit code will lose it. 4920 */ 4921 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4922 (current->thread.regs->msr & MSR_TM)) { 4923 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4924 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4925 run->fail_entry.hardware_entry_failure_reason = 0; 4926 return -EINVAL; 4927 } 4928 } 4929 #endif 4930 4931 /* 4932 * Force online to 1 for the sake of old userspace which doesn't 4933 * set it. 4934 */ 4935 if (!vcpu->arch.online) { 4936 atomic_inc(&vcpu->arch.vcore->online_count); 4937 vcpu->arch.online = 1; 4938 } 4939 4940 kvmppc_core_prepare_to_enter(vcpu); 4941 4942 kvm = vcpu->kvm; 4943 atomic_inc(&kvm->arch.vcpus_running); 4944 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4945 smp_mb(); 4946 4947 msr = 0; 4948 if (IS_ENABLED(CONFIG_PPC_FPU)) 4949 msr |= MSR_FP; 4950 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 4951 msr |= MSR_VEC; 4952 if (cpu_has_feature(CPU_FTR_VSX)) 4953 msr |= MSR_VSX; 4954 if ((cpu_has_feature(CPU_FTR_TM) || 4955 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && 4956 (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM)) 4957 msr |= MSR_TM; 4958 msr = msr_check_and_set(msr); 4959 4960 kvmppc_save_user_regs(); 4961 4962 kvmppc_save_current_sprs(); 4963 4964 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4965 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4966 vcpu->arch.pgdir = kvm->mm->pgd; 4967 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4968 4969 do { 4970 accumulate_time(vcpu, &vcpu->arch.guest_entry); 4971 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4972 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4973 vcpu->arch.vcore->lpcr); 4974 else 4975 r = kvmppc_run_vcpu(vcpu); 4976 4977 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 4978 accumulate_time(vcpu, &vcpu->arch.hcall); 4979 4980 if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 4981 /* 4982 * These should have been caught reflected 4983 * into the guest by now. Final sanity check: 4984 * don't allow userspace to execute hcalls in 4985 * the hypervisor. 4986 */ 4987 r = RESUME_GUEST; 4988 continue; 4989 } 4990 trace_kvm_hcall_enter(vcpu); 4991 r = kvmppc_pseries_do_hcall(vcpu); 4992 trace_kvm_hcall_exit(vcpu, r); 4993 kvmppc_core_prepare_to_enter(vcpu); 4994 } else if (r == RESUME_PAGE_FAULT) { 4995 accumulate_time(vcpu, &vcpu->arch.pg_fault); 4996 srcu_idx = srcu_read_lock(&kvm->srcu); 4997 r = kvmppc_book3s_hv_page_fault(vcpu, 4998 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4999 srcu_read_unlock(&kvm->srcu, srcu_idx); 5000 } else if (r == RESUME_PASSTHROUGH) { 5001 if (WARN_ON(xics_on_xive())) 5002 r = H_SUCCESS; 5003 else 5004 r = kvmppc_xics_rm_complete(vcpu, 0); 5005 } 5006 } while (is_kvmppc_resume_guest(r)); 5007 accumulate_time(vcpu, &vcpu->arch.vcpu_exit); 5008 5009 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 5010 atomic_dec(&kvm->arch.vcpus_running); 5011 5012 srr_regs_clobbered(); 5013 5014 end_timing(vcpu); 5015 5016 return r; 5017 } 5018 5019 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 5020 int shift, int sllp) 5021 { 5022 (*sps)->page_shift = shift; 5023 (*sps)->slb_enc = sllp; 5024 (*sps)->enc[0].page_shift = shift; 5025 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 5026 /* 5027 * Add 16MB MPSS support (may get filtered out by userspace) 5028 */ 5029 if (shift != 24) { 5030 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 5031 if (penc != -1) { 5032 (*sps)->enc[1].page_shift = 24; 5033 (*sps)->enc[1].pte_enc = penc; 5034 } 5035 } 5036 (*sps)++; 5037 } 5038 5039 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 5040 struct kvm_ppc_smmu_info *info) 5041 { 5042 struct kvm_ppc_one_seg_page_size *sps; 5043 5044 /* 5045 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 5046 * POWER7 doesn't support keys for instruction accesses, 5047 * POWER8 and POWER9 do. 5048 */ 5049 info->data_keys = 32; 5050 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 5051 5052 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 5053 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 5054 info->slb_size = 32; 5055 5056 /* We only support these sizes for now, and no muti-size segments */ 5057 sps = &info->sps[0]; 5058 kvmppc_add_seg_page_size(&sps, 12, 0); 5059 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 5060 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 5061 5062 /* If running as a nested hypervisor, we don't support HPT guests */ 5063 if (kvmhv_on_pseries()) 5064 info->flags |= KVM_PPC_NO_HASH; 5065 5066 return 0; 5067 } 5068 5069 /* 5070 * Get (and clear) the dirty memory log for a memory slot. 5071 */ 5072 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 5073 struct kvm_dirty_log *log) 5074 { 5075 struct kvm_memslots *slots; 5076 struct kvm_memory_slot *memslot; 5077 int r; 5078 unsigned long n, i; 5079 unsigned long *buf, *p; 5080 struct kvm_vcpu *vcpu; 5081 5082 mutex_lock(&kvm->slots_lock); 5083 5084 r = -EINVAL; 5085 if (log->slot >= KVM_USER_MEM_SLOTS) 5086 goto out; 5087 5088 slots = kvm_memslots(kvm); 5089 memslot = id_to_memslot(slots, log->slot); 5090 r = -ENOENT; 5091 if (!memslot || !memslot->dirty_bitmap) 5092 goto out; 5093 5094 /* 5095 * Use second half of bitmap area because both HPT and radix 5096 * accumulate bits in the first half. 5097 */ 5098 n = kvm_dirty_bitmap_bytes(memslot); 5099 buf = memslot->dirty_bitmap + n / sizeof(long); 5100 memset(buf, 0, n); 5101 5102 if (kvm_is_radix(kvm)) 5103 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 5104 else 5105 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 5106 if (r) 5107 goto out; 5108 5109 /* 5110 * We accumulate dirty bits in the first half of the 5111 * memslot's dirty_bitmap area, for when pages are paged 5112 * out or modified by the host directly. Pick up these 5113 * bits and add them to the map. 5114 */ 5115 p = memslot->dirty_bitmap; 5116 for (i = 0; i < n / sizeof(long); ++i) 5117 buf[i] |= xchg(&p[i], 0); 5118 5119 /* Harvest dirty bits from VPA and DTL updates */ 5120 /* Note: we never modify the SLB shadow buffer areas */ 5121 kvm_for_each_vcpu(i, vcpu, kvm) { 5122 spin_lock(&vcpu->arch.vpa_update_lock); 5123 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 5124 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 5125 spin_unlock(&vcpu->arch.vpa_update_lock); 5126 } 5127 5128 r = -EFAULT; 5129 if (copy_to_user(log->dirty_bitmap, buf, n)) 5130 goto out; 5131 5132 r = 0; 5133 out: 5134 mutex_unlock(&kvm->slots_lock); 5135 return r; 5136 } 5137 5138 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 5139 { 5140 vfree(slot->arch.rmap); 5141 slot->arch.rmap = NULL; 5142 } 5143 5144 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 5145 const struct kvm_memory_slot *old, 5146 struct kvm_memory_slot *new, 5147 enum kvm_mr_change change) 5148 { 5149 if (change == KVM_MR_CREATE) { 5150 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap)); 5151 5152 if ((size >> PAGE_SHIFT) > totalram_pages()) 5153 return -ENOMEM; 5154 5155 new->arch.rmap = vzalloc(size); 5156 if (!new->arch.rmap) 5157 return -ENOMEM; 5158 } else if (change != KVM_MR_DELETE) { 5159 new->arch.rmap = old->arch.rmap; 5160 } 5161 5162 return 0; 5163 } 5164 5165 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 5166 struct kvm_memory_slot *old, 5167 const struct kvm_memory_slot *new, 5168 enum kvm_mr_change change) 5169 { 5170 /* 5171 * If we are creating or modifying a memslot, it might make 5172 * some address that was previously cached as emulated 5173 * MMIO be no longer emulated MMIO, so invalidate 5174 * all the caches of emulated MMIO translations. 5175 */ 5176 if (change != KVM_MR_DELETE) 5177 atomic64_inc(&kvm->arch.mmio_update); 5178 5179 /* 5180 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 5181 * have already called kvm_arch_flush_shadow_memslot() to 5182 * flush shadow mappings. For KVM_MR_CREATE we have no 5183 * previous mappings. So the only case to handle is 5184 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 5185 * has been changed. 5186 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 5187 * to get rid of any THP PTEs in the partition-scoped page tables 5188 * so we can track dirtiness at the page level; we flush when 5189 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 5190 * using THP PTEs. 5191 */ 5192 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 5193 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 5194 kvmppc_radix_flush_memslot(kvm, old); 5195 /* 5196 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 5197 */ 5198 if (!kvm->arch.secure_guest) 5199 return; 5200 5201 switch (change) { 5202 case KVM_MR_CREATE: 5203 /* 5204 * @TODO kvmppc_uvmem_memslot_create() can fail and 5205 * return error. Fix this. 5206 */ 5207 kvmppc_uvmem_memslot_create(kvm, new); 5208 break; 5209 case KVM_MR_DELETE: 5210 kvmppc_uvmem_memslot_delete(kvm, old); 5211 break; 5212 default: 5213 /* TODO: Handle KVM_MR_MOVE */ 5214 break; 5215 } 5216 } 5217 5218 /* 5219 * Update LPCR values in kvm->arch and in vcores. 5220 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 5221 * of kvm->arch.lpcr update). 5222 */ 5223 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 5224 { 5225 long int i; 5226 u32 cores_done = 0; 5227 5228 if ((kvm->arch.lpcr & mask) == lpcr) 5229 return; 5230 5231 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 5232 5233 for (i = 0; i < KVM_MAX_VCORES; ++i) { 5234 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 5235 if (!vc) 5236 continue; 5237 5238 spin_lock(&vc->lock); 5239 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 5240 verify_lpcr(kvm, vc->lpcr); 5241 spin_unlock(&vc->lock); 5242 if (++cores_done >= kvm->arch.online_vcores) 5243 break; 5244 } 5245 5246 if (kvmhv_is_nestedv2()) { 5247 struct kvm_vcpu *vcpu; 5248 5249 kvm_for_each_vcpu(i, vcpu, kvm) { 5250 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR); 5251 } 5252 } 5253 } 5254 5255 void kvmppc_setup_partition_table(struct kvm *kvm) 5256 { 5257 unsigned long dw0, dw1; 5258 5259 if (!kvm_is_radix(kvm)) { 5260 /* PS field - page size for VRMA */ 5261 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 5262 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 5263 /* HTABSIZE and HTABORG fields */ 5264 dw0 |= kvm->arch.sdr1; 5265 5266 /* Second dword as set by userspace */ 5267 dw1 = kvm->arch.process_table; 5268 } else { 5269 dw0 = PATB_HR | radix__get_tree_size() | 5270 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 5271 dw1 = PATB_GR | kvm->arch.process_table; 5272 } 5273 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 5274 } 5275 5276 /* 5277 * Set up HPT (hashed page table) and RMA (real-mode area). 5278 * Must be called with kvm->arch.mmu_setup_lock held. 5279 */ 5280 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 5281 { 5282 int err = 0; 5283 struct kvm *kvm = vcpu->kvm; 5284 unsigned long hva; 5285 struct kvm_memory_slot *memslot; 5286 struct vm_area_struct *vma; 5287 unsigned long lpcr = 0, senc; 5288 unsigned long psize, porder; 5289 int srcu_idx; 5290 5291 /* Allocate hashed page table (if not done already) and reset it */ 5292 if (!kvm->arch.hpt.virt) { 5293 int order = KVM_DEFAULT_HPT_ORDER; 5294 struct kvm_hpt_info info; 5295 5296 err = kvmppc_allocate_hpt(&info, order); 5297 /* If we get here, it means userspace didn't specify a 5298 * size explicitly. So, try successively smaller 5299 * sizes if the default failed. */ 5300 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 5301 err = kvmppc_allocate_hpt(&info, order); 5302 5303 if (err < 0) { 5304 pr_err("KVM: Couldn't alloc HPT\n"); 5305 goto out; 5306 } 5307 5308 kvmppc_set_hpt(kvm, &info); 5309 } 5310 5311 /* Look up the memslot for guest physical address 0 */ 5312 srcu_idx = srcu_read_lock(&kvm->srcu); 5313 memslot = gfn_to_memslot(kvm, 0); 5314 5315 /* We must have some memory at 0 by now */ 5316 err = -EINVAL; 5317 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 5318 goto out_srcu; 5319 5320 /* Look up the VMA for the start of this memory slot */ 5321 hva = memslot->userspace_addr; 5322 mmap_read_lock(kvm->mm); 5323 vma = vma_lookup(kvm->mm, hva); 5324 if (!vma || (vma->vm_flags & VM_IO)) 5325 goto up_out; 5326 5327 psize = vma_kernel_pagesize(vma); 5328 5329 mmap_read_unlock(kvm->mm); 5330 5331 /* We can handle 4k, 64k or 16M pages in the VRMA */ 5332 if (psize >= 0x1000000) 5333 psize = 0x1000000; 5334 else if (psize >= 0x10000) 5335 psize = 0x10000; 5336 else 5337 psize = 0x1000; 5338 porder = __ilog2(psize); 5339 5340 senc = slb_pgsize_encoding(psize); 5341 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 5342 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5343 /* Create HPTEs in the hash page table for the VRMA */ 5344 kvmppc_map_vrma(vcpu, memslot, porder); 5345 5346 /* Update VRMASD field in the LPCR */ 5347 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 5348 /* the -4 is to account for senc values starting at 0x10 */ 5349 lpcr = senc << (LPCR_VRMASD_SH - 4); 5350 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 5351 } 5352 5353 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 5354 smp_wmb(); 5355 err = 0; 5356 out_srcu: 5357 srcu_read_unlock(&kvm->srcu, srcu_idx); 5358 out: 5359 return err; 5360 5361 up_out: 5362 mmap_read_unlock(kvm->mm); 5363 goto out_srcu; 5364 } 5365 5366 /* 5367 * Must be called with kvm->arch.mmu_setup_lock held and 5368 * mmu_ready = 0 and no vcpus running. 5369 */ 5370 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 5371 { 5372 unsigned long lpcr, lpcr_mask; 5373 5374 if (nesting_enabled(kvm)) 5375 kvmhv_release_all_nested(kvm); 5376 kvmppc_rmap_reset(kvm); 5377 kvm->arch.process_table = 0; 5378 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5379 spin_lock(&kvm->mmu_lock); 5380 kvm->arch.radix = 0; 5381 spin_unlock(&kvm->mmu_lock); 5382 kvmppc_free_radix(kvm); 5383 5384 lpcr = LPCR_VPM1; 5385 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5386 if (cpu_has_feature(CPU_FTR_ARCH_31)) 5387 lpcr_mask |= LPCR_HAIL; 5388 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5389 5390 return 0; 5391 } 5392 5393 /* 5394 * Must be called with kvm->arch.mmu_setup_lock held and 5395 * mmu_ready = 0 and no vcpus running. 5396 */ 5397 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 5398 { 5399 unsigned long lpcr, lpcr_mask; 5400 int err; 5401 5402 err = kvmppc_init_vm_radix(kvm); 5403 if (err) 5404 return err; 5405 kvmppc_rmap_reset(kvm); 5406 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5407 spin_lock(&kvm->mmu_lock); 5408 kvm->arch.radix = 1; 5409 spin_unlock(&kvm->mmu_lock); 5410 kvmppc_free_hpt(&kvm->arch.hpt); 5411 5412 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5413 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5414 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5415 lpcr_mask |= LPCR_HAIL; 5416 if (cpu_has_feature(CPU_FTR_HVMODE) && 5417 (kvm->arch.host_lpcr & LPCR_HAIL)) 5418 lpcr |= LPCR_HAIL; 5419 } 5420 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5421 5422 return 0; 5423 } 5424 5425 #ifdef CONFIG_KVM_XICS 5426 /* 5427 * Allocate a per-core structure for managing state about which cores are 5428 * running in the host versus the guest and for exchanging data between 5429 * real mode KVM and CPU running in the host. 5430 * This is only done for the first VM. 5431 * The allocated structure stays even if all VMs have stopped. 5432 * It is only freed when the kvm-hv module is unloaded. 5433 * It's OK for this routine to fail, we just don't support host 5434 * core operations like redirecting H_IPI wakeups. 5435 */ 5436 void kvmppc_alloc_host_rm_ops(void) 5437 { 5438 struct kvmppc_host_rm_ops *ops; 5439 unsigned long l_ops; 5440 int cpu, core; 5441 int size; 5442 5443 if (cpu_has_feature(CPU_FTR_ARCH_300)) 5444 return; 5445 5446 /* Not the first time here ? */ 5447 if (kvmppc_host_rm_ops_hv != NULL) 5448 return; 5449 5450 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 5451 if (!ops) 5452 return; 5453 5454 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 5455 ops->rm_core = kzalloc(size, GFP_KERNEL); 5456 5457 if (!ops->rm_core) { 5458 kfree(ops); 5459 return; 5460 } 5461 5462 cpus_read_lock(); 5463 5464 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 5465 if (!cpu_online(cpu)) 5466 continue; 5467 5468 core = cpu >> threads_shift; 5469 ops->rm_core[core].rm_state.in_host = 1; 5470 } 5471 5472 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 5473 5474 /* 5475 * Make the contents of the kvmppc_host_rm_ops structure visible 5476 * to other CPUs before we assign it to the global variable. 5477 * Do an atomic assignment (no locks used here), but if someone 5478 * beats us to it, just free our copy and return. 5479 */ 5480 smp_wmb(); 5481 l_ops = (unsigned long) ops; 5482 5483 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 5484 cpus_read_unlock(); 5485 kfree(ops->rm_core); 5486 kfree(ops); 5487 return; 5488 } 5489 5490 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 5491 "ppc/kvm_book3s:prepare", 5492 kvmppc_set_host_core, 5493 kvmppc_clear_host_core); 5494 cpus_read_unlock(); 5495 } 5496 5497 void kvmppc_free_host_rm_ops(void) 5498 { 5499 if (kvmppc_host_rm_ops_hv) { 5500 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 5501 kfree(kvmppc_host_rm_ops_hv->rm_core); 5502 kfree(kvmppc_host_rm_ops_hv); 5503 kvmppc_host_rm_ops_hv = NULL; 5504 } 5505 } 5506 #endif 5507 5508 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5509 { 5510 unsigned long lpcr, lpid; 5511 int ret; 5512 5513 mutex_init(&kvm->arch.uvmem_lock); 5514 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5515 mutex_init(&kvm->arch.mmu_setup_lock); 5516 5517 /* Allocate the guest's logical partition ID */ 5518 5519 if (!kvmhv_is_nestedv2()) { 5520 lpid = kvmppc_alloc_lpid(); 5521 if ((long)lpid < 0) 5522 return -ENOMEM; 5523 kvm->arch.lpid = lpid; 5524 } 5525 5526 kvmppc_alloc_host_rm_ops(); 5527 5528 kvmhv_vm_nested_init(kvm); 5529 5530 if (kvmhv_is_nestedv2()) { 5531 long rc; 5532 unsigned long guest_id; 5533 5534 rc = plpar_guest_create(0, &guest_id); 5535 5536 if (rc != H_SUCCESS) 5537 pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc); 5538 5539 switch (rc) { 5540 case H_PARAMETER: 5541 case H_FUNCTION: 5542 case H_STATE: 5543 return -EINVAL; 5544 case H_NOT_ENOUGH_RESOURCES: 5545 case H_ABORTED: 5546 return -ENOMEM; 5547 case H_AUTHORITY: 5548 return -EPERM; 5549 case H_NOT_AVAILABLE: 5550 return -EBUSY; 5551 } 5552 kvm->arch.lpid = guest_id; 5553 } 5554 5555 5556 /* 5557 * Since we don't flush the TLB when tearing down a VM, 5558 * and this lpid might have previously been used, 5559 * make sure we flush on each core before running the new VM. 5560 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5561 * does this flush for us. 5562 */ 5563 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5564 cpumask_setall(&kvm->arch.need_tlb_flush); 5565 5566 /* Start out with the default set of hcalls enabled */ 5567 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5568 sizeof(kvm->arch.enabled_hcalls)); 5569 5570 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5571 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5572 5573 /* Init LPCR for virtual RMA mode */ 5574 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5575 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5576 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5577 lpcr &= LPCR_PECE | LPCR_LPES; 5578 } else { 5579 /* 5580 * The L2 LPES mode will be set by the L0 according to whether 5581 * or not it needs to take external interrupts in HV mode. 5582 */ 5583 lpcr = 0; 5584 } 5585 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5586 LPCR_VPM0 | LPCR_VPM1; 5587 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5588 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5589 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5590 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5591 lpcr |= LPCR_ONL; 5592 /* 5593 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5594 * Set HVICE bit to enable hypervisor virtualization interrupts. 5595 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5596 * be unnecessary but better safe than sorry in case we re-enable 5597 * EE in HV mode with this LPCR still set) 5598 */ 5599 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5600 lpcr &= ~LPCR_VPM0; 5601 lpcr |= LPCR_HVICE | LPCR_HEIC; 5602 5603 /* 5604 * If xive is enabled, we route 0x500 interrupts directly 5605 * to the guest. 5606 */ 5607 if (xics_on_xive()) 5608 lpcr |= LPCR_LPES; 5609 } 5610 5611 /* 5612 * If the host uses radix, the guest starts out as radix. 5613 */ 5614 if (radix_enabled()) { 5615 kvm->arch.radix = 1; 5616 kvm->arch.mmu_ready = 1; 5617 lpcr &= ~LPCR_VPM1; 5618 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5619 if (cpu_has_feature(CPU_FTR_HVMODE) && 5620 cpu_has_feature(CPU_FTR_ARCH_31) && 5621 (kvm->arch.host_lpcr & LPCR_HAIL)) 5622 lpcr |= LPCR_HAIL; 5623 ret = kvmppc_init_vm_radix(kvm); 5624 if (ret) { 5625 if (kvmhv_is_nestedv2()) 5626 plpar_guest_delete(0, kvm->arch.lpid); 5627 else 5628 kvmppc_free_lpid(kvm->arch.lpid); 5629 return ret; 5630 } 5631 kvmppc_setup_partition_table(kvm); 5632 } 5633 5634 verify_lpcr(kvm, lpcr); 5635 kvm->arch.lpcr = lpcr; 5636 5637 /* Initialization for future HPT resizes */ 5638 kvm->arch.resize_hpt = NULL; 5639 5640 /* 5641 * Work out how many sets the TLB has, for the use of 5642 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5643 */ 5644 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5645 /* 5646 * P10 will flush all the congruence class with a single tlbiel 5647 */ 5648 kvm->arch.tlb_sets = 1; 5649 } else if (radix_enabled()) 5650 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5651 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5652 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5653 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5654 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5655 else 5656 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5657 5658 /* 5659 * Track that we now have a HV mode VM active. This blocks secondary 5660 * CPU threads from coming online. 5661 */ 5662 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5663 kvm_hv_vm_activated(); 5664 5665 /* 5666 * Initialize smt_mode depending on processor. 5667 * POWER8 and earlier have to use "strict" threading, where 5668 * all vCPUs in a vcore have to run on the same (sub)core, 5669 * whereas on POWER9 the threads can each run a different 5670 * guest. 5671 */ 5672 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5673 kvm->arch.smt_mode = threads_per_subcore; 5674 else 5675 kvm->arch.smt_mode = 1; 5676 kvm->arch.emul_smt_mode = 1; 5677 5678 return 0; 5679 } 5680 5681 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm) 5682 { 5683 kvmppc_mmu_debugfs_init(kvm); 5684 if (radix_enabled()) 5685 kvmhv_radix_debugfs_init(kvm); 5686 return 0; 5687 } 5688 5689 static void kvmppc_free_vcores(struct kvm *kvm) 5690 { 5691 long int i; 5692 5693 for (i = 0; i < KVM_MAX_VCORES; ++i) 5694 kfree(kvm->arch.vcores[i]); 5695 kvm->arch.online_vcores = 0; 5696 } 5697 5698 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5699 { 5700 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5701 kvm_hv_vm_deactivated(); 5702 5703 kvmppc_free_vcores(kvm); 5704 5705 5706 if (kvm_is_radix(kvm)) 5707 kvmppc_free_radix(kvm); 5708 else 5709 kvmppc_free_hpt(&kvm->arch.hpt); 5710 5711 /* Perform global invalidation and return lpid to the pool */ 5712 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5713 if (nesting_enabled(kvm)) 5714 kvmhv_release_all_nested(kvm); 5715 kvm->arch.process_table = 0; 5716 if (kvm->arch.secure_guest) 5717 uv_svm_terminate(kvm->arch.lpid); 5718 if (!kvmhv_is_nestedv2()) 5719 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5720 } 5721 5722 if (kvmhv_is_nestedv2()) { 5723 kvmhv_flush_lpid(kvm->arch.lpid); 5724 plpar_guest_delete(0, kvm->arch.lpid); 5725 } else { 5726 kvmppc_free_lpid(kvm->arch.lpid); 5727 } 5728 5729 kvmppc_free_pimap(kvm); 5730 } 5731 5732 /* We don't need to emulate any privileged instructions or dcbz */ 5733 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5734 unsigned int inst, int *advance) 5735 { 5736 return EMULATE_FAIL; 5737 } 5738 5739 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5740 ulong spr_val) 5741 { 5742 return EMULATE_FAIL; 5743 } 5744 5745 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5746 ulong *spr_val) 5747 { 5748 return EMULATE_FAIL; 5749 } 5750 5751 static int kvmppc_core_check_processor_compat_hv(void) 5752 { 5753 if (cpu_has_feature(CPU_FTR_HVMODE) && 5754 cpu_has_feature(CPU_FTR_ARCH_206)) 5755 return 0; 5756 5757 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5758 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5759 return 0; 5760 5761 return -EIO; 5762 } 5763 5764 #ifdef CONFIG_KVM_XICS 5765 5766 void kvmppc_free_pimap(struct kvm *kvm) 5767 { 5768 kfree(kvm->arch.pimap); 5769 } 5770 5771 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5772 { 5773 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5774 } 5775 5776 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5777 { 5778 struct irq_desc *desc; 5779 struct kvmppc_irq_map *irq_map; 5780 struct kvmppc_passthru_irqmap *pimap; 5781 struct irq_chip *chip; 5782 int i, rc = 0; 5783 struct irq_data *host_data; 5784 5785 if (!kvm_irq_bypass) 5786 return 1; 5787 5788 desc = irq_to_desc(host_irq); 5789 if (!desc) 5790 return -EIO; 5791 5792 mutex_lock(&kvm->lock); 5793 5794 pimap = kvm->arch.pimap; 5795 if (pimap == NULL) { 5796 /* First call, allocate structure to hold IRQ map */ 5797 pimap = kvmppc_alloc_pimap(); 5798 if (pimap == NULL) { 5799 mutex_unlock(&kvm->lock); 5800 return -ENOMEM; 5801 } 5802 kvm->arch.pimap = pimap; 5803 } 5804 5805 /* 5806 * For now, we only support interrupts for which the EOI operation 5807 * is an OPAL call followed by a write to XIRR, since that's 5808 * what our real-mode EOI code does, or a XIVE interrupt 5809 */ 5810 chip = irq_data_get_irq_chip(&desc->irq_data); 5811 if (!chip || !is_pnv_opal_msi(chip)) { 5812 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5813 host_irq, guest_gsi); 5814 mutex_unlock(&kvm->lock); 5815 return -ENOENT; 5816 } 5817 5818 /* 5819 * See if we already have an entry for this guest IRQ number. 5820 * If it's mapped to a hardware IRQ number, that's an error, 5821 * otherwise re-use this entry. 5822 */ 5823 for (i = 0; i < pimap->n_mapped; i++) { 5824 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5825 if (pimap->mapped[i].r_hwirq) { 5826 mutex_unlock(&kvm->lock); 5827 return -EINVAL; 5828 } 5829 break; 5830 } 5831 } 5832 5833 if (i == KVMPPC_PIRQ_MAPPED) { 5834 mutex_unlock(&kvm->lock); 5835 return -EAGAIN; /* table is full */ 5836 } 5837 5838 irq_map = &pimap->mapped[i]; 5839 5840 irq_map->v_hwirq = guest_gsi; 5841 irq_map->desc = desc; 5842 5843 /* 5844 * Order the above two stores before the next to serialize with 5845 * the KVM real mode handler. 5846 */ 5847 smp_wmb(); 5848 5849 /* 5850 * The 'host_irq' number is mapped in the PCI-MSI domain but 5851 * the underlying calls, which will EOI the interrupt in real 5852 * mode, need an HW IRQ number mapped in the XICS IRQ domain. 5853 */ 5854 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); 5855 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); 5856 5857 if (i == pimap->n_mapped) 5858 pimap->n_mapped++; 5859 5860 if (xics_on_xive()) 5861 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); 5862 else 5863 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); 5864 if (rc) 5865 irq_map->r_hwirq = 0; 5866 5867 mutex_unlock(&kvm->lock); 5868 5869 return 0; 5870 } 5871 5872 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5873 { 5874 struct irq_desc *desc; 5875 struct kvmppc_passthru_irqmap *pimap; 5876 int i, rc = 0; 5877 5878 if (!kvm_irq_bypass) 5879 return 0; 5880 5881 desc = irq_to_desc(host_irq); 5882 if (!desc) 5883 return -EIO; 5884 5885 mutex_lock(&kvm->lock); 5886 if (!kvm->arch.pimap) 5887 goto unlock; 5888 5889 pimap = kvm->arch.pimap; 5890 5891 for (i = 0; i < pimap->n_mapped; i++) { 5892 if (guest_gsi == pimap->mapped[i].v_hwirq) 5893 break; 5894 } 5895 5896 if (i == pimap->n_mapped) { 5897 mutex_unlock(&kvm->lock); 5898 return -ENODEV; 5899 } 5900 5901 if (xics_on_xive()) 5902 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); 5903 else 5904 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5905 5906 /* invalidate the entry (what to do on error from the above ?) */ 5907 pimap->mapped[i].r_hwirq = 0; 5908 5909 /* 5910 * We don't free this structure even when the count goes to 5911 * zero. The structure is freed when we destroy the VM. 5912 */ 5913 unlock: 5914 mutex_unlock(&kvm->lock); 5915 return rc; 5916 } 5917 5918 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5919 struct irq_bypass_producer *prod) 5920 { 5921 int ret = 0; 5922 struct kvm_kernel_irqfd *irqfd = 5923 container_of(cons, struct kvm_kernel_irqfd, consumer); 5924 5925 irqfd->producer = prod; 5926 5927 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5928 if (ret) 5929 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5930 prod->irq, irqfd->gsi, ret); 5931 5932 return ret; 5933 } 5934 5935 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5936 struct irq_bypass_producer *prod) 5937 { 5938 int ret; 5939 struct kvm_kernel_irqfd *irqfd = 5940 container_of(cons, struct kvm_kernel_irqfd, consumer); 5941 5942 irqfd->producer = NULL; 5943 5944 /* 5945 * When producer of consumer is unregistered, we change back to 5946 * default external interrupt handling mode - KVM real mode 5947 * will switch back to host. 5948 */ 5949 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5950 if (ret) 5951 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5952 prod->irq, irqfd->gsi, ret); 5953 } 5954 #endif 5955 5956 static int kvm_arch_vm_ioctl_hv(struct file *filp, 5957 unsigned int ioctl, unsigned long arg) 5958 { 5959 struct kvm *kvm __maybe_unused = filp->private_data; 5960 void __user *argp = (void __user *)arg; 5961 int r; 5962 5963 switch (ioctl) { 5964 5965 case KVM_PPC_ALLOCATE_HTAB: { 5966 u32 htab_order; 5967 5968 /* If we're a nested hypervisor, we currently only support radix */ 5969 if (kvmhv_on_pseries()) { 5970 r = -EOPNOTSUPP; 5971 break; 5972 } 5973 5974 r = -EFAULT; 5975 if (get_user(htab_order, (u32 __user *)argp)) 5976 break; 5977 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5978 if (r) 5979 break; 5980 r = 0; 5981 break; 5982 } 5983 5984 case KVM_PPC_GET_HTAB_FD: { 5985 struct kvm_get_htab_fd ghf; 5986 5987 r = -EFAULT; 5988 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5989 break; 5990 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5991 break; 5992 } 5993 5994 case KVM_PPC_RESIZE_HPT_PREPARE: { 5995 struct kvm_ppc_resize_hpt rhpt; 5996 5997 r = -EFAULT; 5998 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5999 break; 6000 6001 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 6002 break; 6003 } 6004 6005 case KVM_PPC_RESIZE_HPT_COMMIT: { 6006 struct kvm_ppc_resize_hpt rhpt; 6007 6008 r = -EFAULT; 6009 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 6010 break; 6011 6012 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 6013 break; 6014 } 6015 6016 default: 6017 r = -ENOTTY; 6018 } 6019 6020 return r; 6021 } 6022 6023 /* 6024 * List of hcall numbers to enable by default. 6025 * For compatibility with old userspace, we enable by default 6026 * all hcalls that were implemented before the hcall-enabling 6027 * facility was added. Note this list should not include H_RTAS. 6028 */ 6029 static unsigned int default_hcall_list[] = { 6030 H_REMOVE, 6031 H_ENTER, 6032 H_READ, 6033 H_PROTECT, 6034 H_BULK_REMOVE, 6035 #ifdef CONFIG_SPAPR_TCE_IOMMU 6036 H_GET_TCE, 6037 H_PUT_TCE, 6038 #endif 6039 H_SET_DABR, 6040 H_SET_XDABR, 6041 H_CEDE, 6042 H_PROD, 6043 H_CONFER, 6044 H_REGISTER_VPA, 6045 #ifdef CONFIG_KVM_XICS 6046 H_EOI, 6047 H_CPPR, 6048 H_IPI, 6049 H_IPOLL, 6050 H_XIRR, 6051 H_XIRR_X, 6052 #endif 6053 0 6054 }; 6055 6056 static void init_default_hcalls(void) 6057 { 6058 int i; 6059 unsigned int hcall; 6060 6061 for (i = 0; default_hcall_list[i]; ++i) { 6062 hcall = default_hcall_list[i]; 6063 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 6064 __set_bit(hcall / 4, default_enabled_hcalls); 6065 } 6066 } 6067 6068 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 6069 { 6070 unsigned long lpcr; 6071 int radix; 6072 int err; 6073 6074 /* If not on a POWER9, reject it */ 6075 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6076 return -ENODEV; 6077 6078 /* If any unknown flags set, reject it */ 6079 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 6080 return -EINVAL; 6081 6082 /* GR (guest radix) bit in process_table field must match */ 6083 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 6084 if (!!(cfg->process_table & PATB_GR) != radix) 6085 return -EINVAL; 6086 6087 /* Process table size field must be reasonable, i.e. <= 24 */ 6088 if ((cfg->process_table & PRTS_MASK) > 24) 6089 return -EINVAL; 6090 6091 /* We can change a guest to/from radix now, if the host is radix */ 6092 if (radix && !radix_enabled()) 6093 return -EINVAL; 6094 6095 /* If we're a nested hypervisor, we currently only support radix */ 6096 if (kvmhv_on_pseries() && !radix) 6097 return -EINVAL; 6098 6099 mutex_lock(&kvm->arch.mmu_setup_lock); 6100 if (radix != kvm_is_radix(kvm)) { 6101 if (kvm->arch.mmu_ready) { 6102 kvm->arch.mmu_ready = 0; 6103 /* order mmu_ready vs. vcpus_running */ 6104 smp_mb(); 6105 if (atomic_read(&kvm->arch.vcpus_running)) { 6106 kvm->arch.mmu_ready = 1; 6107 err = -EBUSY; 6108 goto out_unlock; 6109 } 6110 } 6111 if (radix) 6112 err = kvmppc_switch_mmu_to_radix(kvm); 6113 else 6114 err = kvmppc_switch_mmu_to_hpt(kvm); 6115 if (err) 6116 goto out_unlock; 6117 } 6118 6119 kvm->arch.process_table = cfg->process_table; 6120 kvmppc_setup_partition_table(kvm); 6121 6122 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 6123 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 6124 err = 0; 6125 6126 out_unlock: 6127 mutex_unlock(&kvm->arch.mmu_setup_lock); 6128 return err; 6129 } 6130 6131 static int kvmhv_enable_nested(struct kvm *kvm) 6132 { 6133 if (!nested) 6134 return -EPERM; 6135 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6136 return -ENODEV; 6137 if (!radix_enabled()) 6138 return -ENODEV; 6139 if (kvmhv_is_nestedv2()) 6140 return -ENODEV; 6141 6142 /* kvm == NULL means the caller is testing if the capability exists */ 6143 if (kvm) 6144 kvm->arch.nested_enable = true; 6145 return 0; 6146 } 6147 6148 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 6149 int size) 6150 { 6151 int rc = -EINVAL; 6152 6153 if (kvmhv_vcpu_is_radix(vcpu)) { 6154 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 6155 6156 if (rc > 0) 6157 rc = -EINVAL; 6158 } 6159 6160 /* For now quadrants are the only way to access nested guest memory */ 6161 if (rc && vcpu->arch.nested) 6162 rc = -EAGAIN; 6163 6164 return rc; 6165 } 6166 6167 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 6168 int size) 6169 { 6170 int rc = -EINVAL; 6171 6172 if (kvmhv_vcpu_is_radix(vcpu)) { 6173 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 6174 6175 if (rc > 0) 6176 rc = -EINVAL; 6177 } 6178 6179 /* For now quadrants are the only way to access nested guest memory */ 6180 if (rc && vcpu->arch.nested) 6181 rc = -EAGAIN; 6182 6183 return rc; 6184 } 6185 6186 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 6187 { 6188 unpin_vpa(kvm, vpa); 6189 vpa->gpa = 0; 6190 vpa->pinned_addr = NULL; 6191 vpa->dirty = false; 6192 vpa->update_pending = 0; 6193 } 6194 6195 /* 6196 * Enable a guest to become a secure VM, or test whether 6197 * that could be enabled. 6198 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 6199 * tested (kvm == NULL) or enabled (kvm != NULL). 6200 */ 6201 static int kvmhv_enable_svm(struct kvm *kvm) 6202 { 6203 if (!kvmppc_uvmem_available()) 6204 return -EINVAL; 6205 if (kvm) 6206 kvm->arch.svm_enabled = 1; 6207 return 0; 6208 } 6209 6210 /* 6211 * IOCTL handler to turn off secure mode of guest 6212 * 6213 * - Release all device pages 6214 * - Issue ucall to terminate the guest on the UV side 6215 * - Unpin the VPA pages. 6216 * - Reinit the partition scoped page tables 6217 */ 6218 static int kvmhv_svm_off(struct kvm *kvm) 6219 { 6220 struct kvm_vcpu *vcpu; 6221 int mmu_was_ready; 6222 int srcu_idx; 6223 int ret = 0; 6224 unsigned long i; 6225 6226 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 6227 return ret; 6228 6229 mutex_lock(&kvm->arch.mmu_setup_lock); 6230 mmu_was_ready = kvm->arch.mmu_ready; 6231 if (kvm->arch.mmu_ready) { 6232 kvm->arch.mmu_ready = 0; 6233 /* order mmu_ready vs. vcpus_running */ 6234 smp_mb(); 6235 if (atomic_read(&kvm->arch.vcpus_running)) { 6236 kvm->arch.mmu_ready = 1; 6237 ret = -EBUSY; 6238 goto out; 6239 } 6240 } 6241 6242 srcu_idx = srcu_read_lock(&kvm->srcu); 6243 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6244 struct kvm_memory_slot *memslot; 6245 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 6246 int bkt; 6247 6248 if (!slots) 6249 continue; 6250 6251 kvm_for_each_memslot(memslot, bkt, slots) { 6252 kvmppc_uvmem_drop_pages(memslot, kvm, true); 6253 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 6254 } 6255 } 6256 srcu_read_unlock(&kvm->srcu, srcu_idx); 6257 6258 ret = uv_svm_terminate(kvm->arch.lpid); 6259 if (ret != U_SUCCESS) { 6260 ret = -EINVAL; 6261 goto out; 6262 } 6263 6264 /* 6265 * When secure guest is reset, all the guest pages are sent 6266 * to UV via UV_PAGE_IN before the non-boot vcpus get a 6267 * chance to run and unpin their VPA pages. Unpinning of all 6268 * VPA pages is done here explicitly so that VPA pages 6269 * can be migrated to the secure side. 6270 * 6271 * This is required to for the secure SMP guest to reboot 6272 * correctly. 6273 */ 6274 kvm_for_each_vcpu(i, vcpu, kvm) { 6275 spin_lock(&vcpu->arch.vpa_update_lock); 6276 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 6277 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 6278 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 6279 spin_unlock(&vcpu->arch.vpa_update_lock); 6280 } 6281 6282 kvmppc_setup_partition_table(kvm); 6283 kvm->arch.secure_guest = 0; 6284 kvm->arch.mmu_ready = mmu_was_ready; 6285 out: 6286 mutex_unlock(&kvm->arch.mmu_setup_lock); 6287 return ret; 6288 } 6289 6290 static int kvmhv_enable_dawr1(struct kvm *kvm) 6291 { 6292 if (!cpu_has_feature(CPU_FTR_DAWR1)) 6293 return -ENODEV; 6294 6295 /* kvm == NULL means the caller is testing if the capability exists */ 6296 if (kvm) 6297 kvm->arch.dawr1_enabled = true; 6298 return 0; 6299 } 6300 6301 static bool kvmppc_hash_v3_possible(void) 6302 { 6303 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6304 return false; 6305 6306 if (!cpu_has_feature(CPU_FTR_HVMODE)) 6307 return false; 6308 6309 /* 6310 * POWER9 chips before version 2.02 can't have some threads in 6311 * HPT mode and some in radix mode on the same core. 6312 */ 6313 if (radix_enabled()) { 6314 unsigned int pvr = mfspr(SPRN_PVR); 6315 if ((pvr >> 16) == PVR_POWER9 && 6316 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 6317 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 6318 return false; 6319 } 6320 6321 return true; 6322 } 6323 6324 static struct kvmppc_ops kvm_ops_hv = { 6325 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 6326 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 6327 .get_one_reg = kvmppc_get_one_reg_hv, 6328 .set_one_reg = kvmppc_set_one_reg_hv, 6329 .vcpu_load = kvmppc_core_vcpu_load_hv, 6330 .vcpu_put = kvmppc_core_vcpu_put_hv, 6331 .inject_interrupt = kvmppc_inject_interrupt_hv, 6332 .set_msr = kvmppc_set_msr_hv, 6333 .vcpu_run = kvmppc_vcpu_run_hv, 6334 .vcpu_create = kvmppc_core_vcpu_create_hv, 6335 .vcpu_free = kvmppc_core_vcpu_free_hv, 6336 .check_requests = kvmppc_core_check_requests_hv, 6337 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 6338 .flush_memslot = kvmppc_core_flush_memslot_hv, 6339 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 6340 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 6341 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 6342 .age_gfn = kvm_age_gfn_hv, 6343 .test_age_gfn = kvm_test_age_gfn_hv, 6344 .set_spte_gfn = kvm_set_spte_gfn_hv, 6345 .free_memslot = kvmppc_core_free_memslot_hv, 6346 .init_vm = kvmppc_core_init_vm_hv, 6347 .destroy_vm = kvmppc_core_destroy_vm_hv, 6348 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 6349 .emulate_op = kvmppc_core_emulate_op_hv, 6350 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 6351 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 6352 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 6353 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 6354 .hcall_implemented = kvmppc_hcall_impl_hv, 6355 #ifdef CONFIG_KVM_XICS 6356 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 6357 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 6358 #endif 6359 .configure_mmu = kvmhv_configure_mmu, 6360 .get_rmmu_info = kvmhv_get_rmmu_info, 6361 .set_smt_mode = kvmhv_set_smt_mode, 6362 .enable_nested = kvmhv_enable_nested, 6363 .load_from_eaddr = kvmhv_load_from_eaddr, 6364 .store_to_eaddr = kvmhv_store_to_eaddr, 6365 .enable_svm = kvmhv_enable_svm, 6366 .svm_off = kvmhv_svm_off, 6367 .enable_dawr1 = kvmhv_enable_dawr1, 6368 .hash_v3_possible = kvmppc_hash_v3_possible, 6369 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv, 6370 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv, 6371 }; 6372 6373 static int kvm_init_subcore_bitmap(void) 6374 { 6375 int i, j; 6376 int nr_cores = cpu_nr_cores(); 6377 struct sibling_subcore_state *sibling_subcore_state; 6378 6379 for (i = 0; i < nr_cores; i++) { 6380 int first_cpu = i * threads_per_core; 6381 int node = cpu_to_node(first_cpu); 6382 6383 /* Ignore if it is already allocated. */ 6384 if (paca_ptrs[first_cpu]->sibling_subcore_state) 6385 continue; 6386 6387 sibling_subcore_state = 6388 kzalloc_node(sizeof(struct sibling_subcore_state), 6389 GFP_KERNEL, node); 6390 if (!sibling_subcore_state) 6391 return -ENOMEM; 6392 6393 6394 for (j = 0; j < threads_per_core; j++) { 6395 int cpu = first_cpu + j; 6396 6397 paca_ptrs[cpu]->sibling_subcore_state = 6398 sibling_subcore_state; 6399 } 6400 } 6401 return 0; 6402 } 6403 6404 static int kvmppc_radix_possible(void) 6405 { 6406 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 6407 } 6408 6409 static int kvmppc_book3s_init_hv(void) 6410 { 6411 int r; 6412 6413 if (!tlbie_capable) { 6414 pr_err("KVM-HV: Host does not support TLBIE\n"); 6415 return -ENODEV; 6416 } 6417 6418 /* 6419 * FIXME!! Do we need to check on all cpus ? 6420 */ 6421 r = kvmppc_core_check_processor_compat_hv(); 6422 if (r < 0) 6423 return -ENODEV; 6424 6425 r = kvmhv_nested_init(); 6426 if (r) 6427 return r; 6428 6429 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 6430 r = kvm_init_subcore_bitmap(); 6431 if (r) 6432 goto err; 6433 } 6434 6435 /* 6436 * We need a way of accessing the XICS interrupt controller, 6437 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 6438 * indirectly, via OPAL. 6439 */ 6440 #ifdef CONFIG_SMP 6441 if (!xics_on_xive() && !kvmhv_on_pseries() && 6442 !local_paca->kvm_hstate.xics_phys) { 6443 struct device_node *np; 6444 6445 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 6446 if (!np) { 6447 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 6448 r = -ENODEV; 6449 goto err; 6450 } 6451 /* presence of intc confirmed - node can be dropped again */ 6452 of_node_put(np); 6453 } 6454 #endif 6455 6456 init_default_hcalls(); 6457 6458 init_vcore_lists(); 6459 6460 r = kvmppc_mmu_hv_init(); 6461 if (r) 6462 goto err; 6463 6464 if (kvmppc_radix_possible()) { 6465 r = kvmppc_radix_init(); 6466 if (r) 6467 goto err; 6468 } 6469 6470 r = kvmppc_uvmem_init(); 6471 if (r < 0) { 6472 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 6473 return r; 6474 } 6475 6476 kvm_ops_hv.owner = THIS_MODULE; 6477 kvmppc_hv_ops = &kvm_ops_hv; 6478 6479 return 0; 6480 6481 err: 6482 kvmhv_nested_exit(); 6483 kvmppc_radix_exit(); 6484 6485 return r; 6486 } 6487 6488 static void kvmppc_book3s_exit_hv(void) 6489 { 6490 kvmppc_uvmem_free(); 6491 kvmppc_free_host_rm_ops(); 6492 if (kvmppc_radix_possible()) 6493 kvmppc_radix_exit(); 6494 kvmppc_hv_ops = NULL; 6495 kvmhv_nested_exit(); 6496 } 6497 6498 module_init(kvmppc_book3s_init_hv); 6499 module_exit(kvmppc_book3s_exit_hv); 6500 MODULE_LICENSE("GPL"); 6501 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6502 MODULE_ALIAS("devname:kvm"); 6503