1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 #include <linux/irqdomain.h> 46 #include <linux/smp.h> 47 48 #include <asm/ftrace.h> 49 #include <asm/reg.h> 50 #include <asm/ppc-opcode.h> 51 #include <asm/asm-prototypes.h> 52 #include <asm/archrandom.h> 53 #include <asm/debug.h> 54 #include <asm/disassemble.h> 55 #include <asm/cputable.h> 56 #include <asm/cacheflush.h> 57 #include <linux/uaccess.h> 58 #include <asm/interrupt.h> 59 #include <asm/io.h> 60 #include <asm/kvm_ppc.h> 61 #include <asm/kvm_book3s.h> 62 #include <asm/mmu_context.h> 63 #include <asm/lppaca.h> 64 #include <asm/pmc.h> 65 #include <asm/processor.h> 66 #include <asm/cputhreads.h> 67 #include <asm/page.h> 68 #include <asm/hvcall.h> 69 #include <asm/switch_to.h> 70 #include <asm/smp.h> 71 #include <asm/dbell.h> 72 #include <asm/hmi.h> 73 #include <asm/pnv-pci.h> 74 #include <asm/mmu.h> 75 #include <asm/opal.h> 76 #include <asm/xics.h> 77 #include <asm/xive.h> 78 #include <asm/hw_breakpoint.h> 79 #include <asm/kvm_book3s_uvmem.h> 80 #include <asm/ultravisor.h> 81 #include <asm/dtl.h> 82 #include <asm/plpar_wrappers.h> 83 84 #include <trace/events/ipi.h> 85 86 #include "book3s.h" 87 #include "book3s_hv.h" 88 89 #define CREATE_TRACE_POINTS 90 #include "trace_hv.h" 91 92 /* #define EXIT_DEBUG */ 93 /* #define EXIT_DEBUG_SIMPLE */ 94 /* #define EXIT_DEBUG_INT */ 95 96 /* Used to indicate that a guest page fault needs to be handled */ 97 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 98 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 99 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 100 101 /* Used as a "null" value for timebase values */ 102 #define TB_NIL (~(u64)0) 103 104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 105 106 static int dynamic_mt_modes = 6; 107 module_param(dynamic_mt_modes, int, 0644); 108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 109 static int target_smt_mode; 110 module_param(target_smt_mode, int, 0644); 111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 112 113 static bool one_vm_per_core; 114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 116 117 #ifdef CONFIG_KVM_XICS 118 static const struct kernel_param_ops module_param_ops = { 119 .set = param_set_int, 120 .get = param_get_int, 121 }; 122 123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 125 126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 128 #endif 129 130 /* If set, guests are allowed to create and control nested guests */ 131 static bool nested = true; 132 module_param(nested, bool, S_IRUGO | S_IWUSR); 133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 134 135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 136 137 /* 138 * RWMR values for POWER8. These control the rate at which PURR 139 * and SPURR count and should be set according to the number of 140 * online threads in the vcore being run. 141 */ 142 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 143 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 144 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 146 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 150 151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 152 RWMR_RPA_P8_1THREAD, 153 RWMR_RPA_P8_1THREAD, 154 RWMR_RPA_P8_2THREAD, 155 RWMR_RPA_P8_3THREAD, 156 RWMR_RPA_P8_4THREAD, 157 RWMR_RPA_P8_5THREAD, 158 RWMR_RPA_P8_6THREAD, 159 RWMR_RPA_P8_7THREAD, 160 RWMR_RPA_P8_8THREAD, 161 }; 162 163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 164 int *ip) 165 { 166 int i = *ip; 167 struct kvm_vcpu *vcpu; 168 169 while (++i < MAX_SMT_THREADS) { 170 vcpu = READ_ONCE(vc->runnable_threads[i]); 171 if (vcpu) { 172 *ip = i; 173 return vcpu; 174 } 175 } 176 return NULL; 177 } 178 179 /* Used to traverse the list of runnable threads for a given vcore */ 180 #define for_each_runnable_thread(i, vcpu, vc) \ 181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 182 183 static bool kvmppc_ipi_thread(int cpu) 184 { 185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 186 187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 188 if (kvmhv_on_pseries()) 189 return false; 190 191 /* On POWER9 we can use msgsnd to IPI any cpu */ 192 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 193 msg |= get_hard_smp_processor_id(cpu); 194 smp_mb(); 195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 196 return true; 197 } 198 199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 201 preempt_disable(); 202 if (cpu_first_thread_sibling(cpu) == 203 cpu_first_thread_sibling(smp_processor_id())) { 204 msg |= cpu_thread_in_core(cpu); 205 smp_mb(); 206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 207 preempt_enable(); 208 return true; 209 } 210 preempt_enable(); 211 } 212 213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 214 if (cpu >= 0 && cpu < nr_cpu_ids) { 215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 216 xics_wake_cpu(cpu); 217 return true; 218 } 219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 220 return true; 221 } 222 #endif 223 224 return false; 225 } 226 227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 228 { 229 int cpu; 230 struct rcuwait *waitp; 231 232 /* 233 * rcuwait_wake_up contains smp_mb() which orders prior stores that 234 * create pending work vs below loads of cpu fields. The other side 235 * is the barrier in vcpu run that orders setting the cpu fields vs 236 * testing for pending work. 237 */ 238 239 waitp = kvm_arch_vcpu_get_wait(vcpu); 240 if (rcuwait_wake_up(waitp)) 241 ++vcpu->stat.generic.halt_wakeup; 242 243 cpu = READ_ONCE(vcpu->arch.thread_cpu); 244 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 245 return; 246 247 /* CPU points to the first thread of the core */ 248 cpu = vcpu->cpu; 249 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 250 smp_send_reschedule(cpu); 251 } 252 253 /* 254 * We use the vcpu_load/put functions to measure stolen time. 255 * 256 * Stolen time is counted as time when either the vcpu is able to 257 * run as part of a virtual core, but the task running the vcore 258 * is preempted or sleeping, or when the vcpu needs something done 259 * in the kernel by the task running the vcpu, but that task is 260 * preempted or sleeping. Those two things have to be counted 261 * separately, since one of the vcpu tasks will take on the job 262 * of running the core, and the other vcpu tasks in the vcore will 263 * sleep waiting for it to do that, but that sleep shouldn't count 264 * as stolen time. 265 * 266 * Hence we accumulate stolen time when the vcpu can run as part of 267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 268 * needs its task to do other things in the kernel (for example, 269 * service a page fault) in busy_stolen. We don't accumulate 270 * stolen time for a vcore when it is inactive, or for a vcpu 271 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 272 * a misnomer; it means that the vcpu task is not executing in 273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 274 * the kernel. We don't have any way of dividing up that time 275 * between time that the vcpu is genuinely stopped, time that 276 * the task is actively working on behalf of the vcpu, and time 277 * that the task is preempted, so we don't count any of it as 278 * stolen. 279 * 280 * Updates to busy_stolen are protected by arch.tbacct_lock; 281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 282 * lock. The stolen times are measured in units of timebase ticks. 283 * (Note that the != TB_NIL checks below are purely defensive; 284 * they should never fail.) 285 * 286 * The POWER9 path is simpler, one vcpu per virtual core so the 287 * former case does not exist. If a vcpu is preempted when it is 288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate 289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible 290 * state in the P9 path. 291 */ 292 293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb) 294 { 295 unsigned long flags; 296 297 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 298 299 spin_lock_irqsave(&vc->stoltb_lock, flags); 300 vc->preempt_tb = tb; 301 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 302 } 303 304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb) 305 { 306 unsigned long flags; 307 308 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 309 310 spin_lock_irqsave(&vc->stoltb_lock, flags); 311 if (vc->preempt_tb != TB_NIL) { 312 vc->stolen_tb += tb - vc->preempt_tb; 313 vc->preempt_tb = TB_NIL; 314 } 315 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 316 } 317 318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 319 { 320 struct kvmppc_vcore *vc = vcpu->arch.vcore; 321 unsigned long flags; 322 u64 now; 323 324 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 325 if (vcpu->arch.busy_preempt != TB_NIL) { 326 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST); 327 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt; 328 vcpu->arch.busy_preempt = TB_NIL; 329 } 330 return; 331 } 332 333 now = mftb(); 334 335 /* 336 * We can test vc->runner without taking the vcore lock, 337 * because only this task ever sets vc->runner to this 338 * vcpu, and once it is set to this vcpu, only this task 339 * ever sets it to NULL. 340 */ 341 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 342 kvmppc_core_end_stolen(vc, now); 343 344 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 345 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 346 vcpu->arch.busy_preempt != TB_NIL) { 347 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt; 348 vcpu->arch.busy_preempt = TB_NIL; 349 } 350 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 351 } 352 353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 354 { 355 struct kvmppc_vcore *vc = vcpu->arch.vcore; 356 unsigned long flags; 357 u64 now; 358 359 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 360 /* 361 * In the P9 path, RUNNABLE is not preemptible 362 * (nor takes host interrupts) 363 */ 364 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE); 365 /* 366 * Account stolen time when preempted while the vcpu task is 367 * running in the kernel (but not in qemu, which is INACTIVE). 368 */ 369 if (task_is_running(current) && 370 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 371 vcpu->arch.busy_preempt = mftb(); 372 return; 373 } 374 375 now = mftb(); 376 377 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 378 kvmppc_core_start_stolen(vc, now); 379 380 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 381 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 382 vcpu->arch.busy_preempt = now; 383 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 384 } 385 386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 387 { 388 vcpu->arch.pvr = pvr; 389 } 390 391 /* Dummy value used in computing PCR value below */ 392 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 393 394 static inline unsigned long map_pcr_to_cap(unsigned long pcr) 395 { 396 unsigned long cap = 0; 397 398 switch (pcr) { 399 case PCR_ARCH_300: 400 cap = H_GUEST_CAP_POWER9; 401 break; 402 case PCR_ARCH_31: 403 cap = H_GUEST_CAP_POWER10; 404 break; 405 default: 406 break; 407 } 408 409 return cap; 410 } 411 412 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 413 { 414 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0; 415 struct kvmppc_vcore *vc = vcpu->arch.vcore; 416 417 /* We can (emulate) our own architecture version and anything older */ 418 if (cpu_has_feature(CPU_FTR_ARCH_31)) 419 host_pcr_bit = PCR_ARCH_31; 420 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 421 host_pcr_bit = PCR_ARCH_300; 422 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 423 host_pcr_bit = PCR_ARCH_207; 424 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 425 host_pcr_bit = PCR_ARCH_206; 426 else 427 host_pcr_bit = PCR_ARCH_205; 428 429 /* Determine lowest PCR bit needed to run guest in given PVR level */ 430 guest_pcr_bit = host_pcr_bit; 431 if (arch_compat) { 432 switch (arch_compat) { 433 case PVR_ARCH_205: 434 guest_pcr_bit = PCR_ARCH_205; 435 break; 436 case PVR_ARCH_206: 437 case PVR_ARCH_206p: 438 guest_pcr_bit = PCR_ARCH_206; 439 break; 440 case PVR_ARCH_207: 441 guest_pcr_bit = PCR_ARCH_207; 442 break; 443 case PVR_ARCH_300: 444 guest_pcr_bit = PCR_ARCH_300; 445 break; 446 case PVR_ARCH_31: 447 case PVR_ARCH_31_P11: 448 guest_pcr_bit = PCR_ARCH_31; 449 break; 450 default: 451 return -EINVAL; 452 } 453 } 454 455 /* Check requested PCR bits don't exceed our capabilities */ 456 if (guest_pcr_bit > host_pcr_bit) 457 return -EINVAL; 458 459 if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) { 460 /* 461 * 'arch_compat == 0' would mean the guest should default to 462 * L1's compatibility. In this case, the guest would pick 463 * host's PCR and evaluate the corresponding capabilities. 464 */ 465 cap = map_pcr_to_cap(guest_pcr_bit); 466 if (!(cap & nested_capabilities)) 467 return -EINVAL; 468 } 469 470 spin_lock(&vc->lock); 471 vc->arch_compat = arch_compat; 472 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR); 473 /* 474 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 475 * Also set all reserved PCR bits 476 */ 477 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 478 spin_unlock(&vc->lock); 479 480 return 0; 481 } 482 483 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 484 { 485 int r; 486 487 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 488 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 489 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 490 for (r = 0; r < 16; ++r) 491 pr_err("r%2d = %.16lx r%d = %.16lx\n", 492 r, kvmppc_get_gpr(vcpu, r), 493 r+16, kvmppc_get_gpr(vcpu, r+16)); 494 pr_err("ctr = %.16lx lr = %.16lx\n", 495 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 496 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 497 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 498 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 499 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 500 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 501 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 502 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 503 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 504 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 505 pr_err("fault dar = %.16lx dsisr = %.8x\n", 506 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 507 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 508 for (r = 0; r < vcpu->arch.slb_max; ++r) 509 pr_err(" ESID = %.16llx VSID = %.16llx\n", 510 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 511 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n", 512 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 513 vcpu->arch.last_inst); 514 } 515 516 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 517 { 518 return kvm_get_vcpu_by_id(kvm, id); 519 } 520 521 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 522 { 523 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 524 vpa->yield_count = cpu_to_be32(1); 525 } 526 527 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 528 unsigned long addr, unsigned long len) 529 { 530 /* check address is cacheline aligned */ 531 if (addr & (L1_CACHE_BYTES - 1)) 532 return -EINVAL; 533 spin_lock(&vcpu->arch.vpa_update_lock); 534 if (v->next_gpa != addr || v->len != len) { 535 v->next_gpa = addr; 536 v->len = addr ? len : 0; 537 v->update_pending = 1; 538 } 539 spin_unlock(&vcpu->arch.vpa_update_lock); 540 return 0; 541 } 542 543 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 544 struct reg_vpa { 545 u32 dummy; 546 union { 547 __be16 hword; 548 __be32 word; 549 } length; 550 }; 551 552 static int vpa_is_registered(struct kvmppc_vpa *vpap) 553 { 554 if (vpap->update_pending) 555 return vpap->next_gpa != 0; 556 return vpap->pinned_addr != NULL; 557 } 558 559 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 560 unsigned long flags, 561 unsigned long vcpuid, unsigned long vpa) 562 { 563 struct kvm *kvm = vcpu->kvm; 564 unsigned long len, nb; 565 void *va; 566 struct kvm_vcpu *tvcpu; 567 int err; 568 int subfunc; 569 struct kvmppc_vpa *vpap; 570 571 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 572 if (!tvcpu) 573 return H_PARAMETER; 574 575 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 576 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 577 subfunc == H_VPA_REG_SLB) { 578 /* Registering new area - address must be cache-line aligned */ 579 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 580 return H_PARAMETER; 581 582 /* convert logical addr to kernel addr and read length */ 583 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 584 if (va == NULL) 585 return H_PARAMETER; 586 if (subfunc == H_VPA_REG_VPA) 587 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 588 else 589 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 590 kvmppc_unpin_guest_page(kvm, va, vpa, false); 591 592 /* Check length */ 593 if (len > nb || len < sizeof(struct reg_vpa)) 594 return H_PARAMETER; 595 } else { 596 vpa = 0; 597 len = 0; 598 } 599 600 err = H_PARAMETER; 601 vpap = NULL; 602 spin_lock(&tvcpu->arch.vpa_update_lock); 603 604 switch (subfunc) { 605 case H_VPA_REG_VPA: /* register VPA */ 606 /* 607 * The size of our lppaca is 1kB because of the way we align 608 * it for the guest to avoid crossing a 4kB boundary. We only 609 * use 640 bytes of the structure though, so we should accept 610 * clients that set a size of 640. 611 */ 612 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 613 if (len < sizeof(struct lppaca)) 614 break; 615 vpap = &tvcpu->arch.vpa; 616 err = 0; 617 break; 618 619 case H_VPA_REG_DTL: /* register DTL */ 620 if (len < sizeof(struct dtl_entry)) 621 break; 622 len -= len % sizeof(struct dtl_entry); 623 624 /* Check that they have previously registered a VPA */ 625 err = H_RESOURCE; 626 if (!vpa_is_registered(&tvcpu->arch.vpa)) 627 break; 628 629 vpap = &tvcpu->arch.dtl; 630 err = 0; 631 break; 632 633 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 634 /* Check that they have previously registered a VPA */ 635 err = H_RESOURCE; 636 if (!vpa_is_registered(&tvcpu->arch.vpa)) 637 break; 638 639 vpap = &tvcpu->arch.slb_shadow; 640 err = 0; 641 break; 642 643 case H_VPA_DEREG_VPA: /* deregister VPA */ 644 /* Check they don't still have a DTL or SLB buf registered */ 645 err = H_RESOURCE; 646 if (vpa_is_registered(&tvcpu->arch.dtl) || 647 vpa_is_registered(&tvcpu->arch.slb_shadow)) 648 break; 649 650 vpap = &tvcpu->arch.vpa; 651 err = 0; 652 break; 653 654 case H_VPA_DEREG_DTL: /* deregister DTL */ 655 vpap = &tvcpu->arch.dtl; 656 err = 0; 657 break; 658 659 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 660 vpap = &tvcpu->arch.slb_shadow; 661 err = 0; 662 break; 663 } 664 665 if (vpap) { 666 vpap->next_gpa = vpa; 667 vpap->len = len; 668 vpap->update_pending = 1; 669 } 670 671 spin_unlock(&tvcpu->arch.vpa_update_lock); 672 673 return err; 674 } 675 676 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap, 677 struct kvmppc_vpa *old_vpap) 678 { 679 struct kvm *kvm = vcpu->kvm; 680 void *va; 681 unsigned long nb; 682 unsigned long gpa; 683 684 /* 685 * We need to pin the page pointed to by vpap->next_gpa, 686 * but we can't call kvmppc_pin_guest_page under the lock 687 * as it does get_user_pages() and down_read(). So we 688 * have to drop the lock, pin the page, then get the lock 689 * again and check that a new area didn't get registered 690 * in the meantime. 691 */ 692 for (;;) { 693 gpa = vpap->next_gpa; 694 spin_unlock(&vcpu->arch.vpa_update_lock); 695 va = NULL; 696 nb = 0; 697 if (gpa) 698 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 699 spin_lock(&vcpu->arch.vpa_update_lock); 700 if (gpa == vpap->next_gpa) 701 break; 702 /* sigh... unpin that one and try again */ 703 if (va) 704 kvmppc_unpin_guest_page(kvm, va, gpa, false); 705 } 706 707 vpap->update_pending = 0; 708 if (va && nb < vpap->len) { 709 /* 710 * If it's now too short, it must be that userspace 711 * has changed the mappings underlying guest memory, 712 * so unregister the region. 713 */ 714 kvmppc_unpin_guest_page(kvm, va, gpa, false); 715 va = NULL; 716 } 717 *old_vpap = *vpap; 718 719 vpap->gpa = gpa; 720 vpap->pinned_addr = va; 721 vpap->dirty = false; 722 if (va) 723 vpap->pinned_end = va + vpap->len; 724 } 725 726 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 727 { 728 struct kvm *kvm = vcpu->kvm; 729 struct kvmppc_vpa old_vpa = { 0 }; 730 731 if (!(vcpu->arch.vpa.update_pending || 732 vcpu->arch.slb_shadow.update_pending || 733 vcpu->arch.dtl.update_pending)) 734 return; 735 736 spin_lock(&vcpu->arch.vpa_update_lock); 737 if (vcpu->arch.vpa.update_pending) { 738 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa, &old_vpa); 739 if (old_vpa.pinned_addr) { 740 if (kvmhv_is_nestedv2()) 741 kvmhv_nestedv2_set_vpa(vcpu, ~0ull); 742 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 743 old_vpa.dirty); 744 } 745 if (vcpu->arch.vpa.pinned_addr) { 746 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 747 if (kvmhv_is_nestedv2()) 748 kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr)); 749 } 750 } 751 if (vcpu->arch.dtl.update_pending) { 752 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl, &old_vpa); 753 if (old_vpa.pinned_addr) 754 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 755 old_vpa.dirty); 756 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 757 vcpu->arch.dtl_index = 0; 758 } 759 if (vcpu->arch.slb_shadow.update_pending) { 760 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow, &old_vpa); 761 if (old_vpa.pinned_addr) 762 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa, 763 old_vpa.dirty); 764 } 765 766 spin_unlock(&vcpu->arch.vpa_update_lock); 767 } 768 769 /* 770 * Return the accumulated stolen time for the vcore up until `now'. 771 * The caller should hold the vcore lock. 772 */ 773 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 774 { 775 u64 p; 776 unsigned long flags; 777 778 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 779 780 spin_lock_irqsave(&vc->stoltb_lock, flags); 781 p = vc->stolen_tb; 782 if (vc->vcore_state != VCORE_INACTIVE && 783 vc->preempt_tb != TB_NIL) 784 p += now - vc->preempt_tb; 785 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 786 return p; 787 } 788 789 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 790 struct lppaca *vpa, 791 unsigned int pcpu, u64 now, 792 unsigned long stolen) 793 { 794 struct dtl_entry *dt; 795 796 dt = vcpu->arch.dtl_ptr; 797 798 if (!dt) 799 return; 800 801 dt->dispatch_reason = 7; 802 dt->preempt_reason = 0; 803 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid); 804 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 805 dt->ready_to_enqueue_time = 0; 806 dt->waiting_to_ready_time = 0; 807 dt->timebase = cpu_to_be64(now); 808 dt->fault_addr = 0; 809 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 810 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 811 812 ++dt; 813 if (dt == vcpu->arch.dtl.pinned_end) 814 dt = vcpu->arch.dtl.pinned_addr; 815 vcpu->arch.dtl_ptr = dt; 816 /* order writing *dt vs. writing vpa->dtl_idx */ 817 smp_wmb(); 818 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 819 820 /* vcpu->arch.dtl.dirty is set by the caller */ 821 } 822 823 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu, 824 struct kvmppc_vcore *vc) 825 { 826 struct lppaca *vpa; 827 unsigned long stolen; 828 unsigned long core_stolen; 829 u64 now; 830 unsigned long flags; 831 832 vpa = vcpu->arch.vpa.pinned_addr; 833 if (!vpa) 834 return; 835 836 now = mftb(); 837 838 core_stolen = vcore_stolen_time(vc, now); 839 stolen = core_stolen - vcpu->arch.stolen_logged; 840 vcpu->arch.stolen_logged = core_stolen; 841 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 842 stolen += vcpu->arch.busy_stolen; 843 vcpu->arch.busy_stolen = 0; 844 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 845 846 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen); 847 848 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen); 849 850 vcpu->arch.vpa.dirty = true; 851 } 852 853 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu, 854 struct kvmppc_vcore *vc, 855 u64 now) 856 { 857 struct lppaca *vpa; 858 unsigned long stolen; 859 unsigned long stolen_delta; 860 861 vpa = vcpu->arch.vpa.pinned_addr; 862 if (!vpa) 863 return; 864 865 stolen = vc->stolen_tb; 866 stolen_delta = stolen - vcpu->arch.stolen_logged; 867 vcpu->arch.stolen_logged = stolen; 868 869 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen); 870 871 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta); 872 873 vcpu->arch.vpa.dirty = true; 874 } 875 876 /* See if there is a doorbell interrupt pending for a vcpu */ 877 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 878 { 879 int thr; 880 struct kvmppc_vcore *vc; 881 882 if (vcpu->arch.doorbell_request) 883 return true; 884 if (cpu_has_feature(CPU_FTR_ARCH_300)) 885 return false; 886 /* 887 * Ensure that the read of vcore->dpdes comes after the read 888 * of vcpu->doorbell_request. This barrier matches the 889 * smp_wmb() in kvmppc_guest_entry_inject(). 890 */ 891 smp_rmb(); 892 vc = vcpu->arch.vcore; 893 thr = vcpu->vcpu_id - vc->first_vcpuid; 894 return !!(vc->dpdes & (1 << thr)); 895 } 896 897 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 898 { 899 if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207) 900 return true; 901 if ((!kvmppc_get_arch_compat(vcpu)) && 902 cpu_has_feature(CPU_FTR_ARCH_207S)) 903 return true; 904 return false; 905 } 906 907 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 908 unsigned long resource, unsigned long value1, 909 unsigned long value2) 910 { 911 switch (resource) { 912 case H_SET_MODE_RESOURCE_SET_CIABR: 913 if (!kvmppc_power8_compatible(vcpu)) 914 return H_P2; 915 if (value2) 916 return H_P4; 917 if (mflags) 918 return H_UNSUPPORTED_FLAG_START; 919 /* Guests can't breakpoint the hypervisor */ 920 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 921 return H_P3; 922 kvmppc_set_ciabr_hv(vcpu, value1); 923 return H_SUCCESS; 924 case H_SET_MODE_RESOURCE_SET_DAWR0: 925 if (!kvmppc_power8_compatible(vcpu)) 926 return H_P2; 927 if (!ppc_breakpoint_available()) 928 return H_P2; 929 if (mflags) 930 return H_UNSUPPORTED_FLAG_START; 931 if (value2 & DABRX_HYP) 932 return H_P4; 933 kvmppc_set_dawr0_hv(vcpu, value1); 934 kvmppc_set_dawrx0_hv(vcpu, value2); 935 return H_SUCCESS; 936 case H_SET_MODE_RESOURCE_SET_DAWR1: 937 if (!kvmppc_power8_compatible(vcpu)) 938 return H_P2; 939 if (!ppc_breakpoint_available()) 940 return H_P2; 941 if (!cpu_has_feature(CPU_FTR_DAWR1)) 942 return H_P2; 943 if (!vcpu->kvm->arch.dawr1_enabled) 944 return H_FUNCTION; 945 if (mflags) 946 return H_UNSUPPORTED_FLAG_START; 947 if (value2 & DABRX_HYP) 948 return H_P4; 949 kvmppc_set_dawr1_hv(vcpu, value1); 950 kvmppc_set_dawrx1_hv(vcpu, value2); 951 return H_SUCCESS; 952 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 953 /* 954 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 955 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 956 */ 957 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 958 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 959 return H_UNSUPPORTED_FLAG_START; 960 return H_TOO_HARD; 961 default: 962 return H_TOO_HARD; 963 } 964 } 965 966 /* Copy guest memory in place - must reside within a single memslot */ 967 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 968 unsigned long len) 969 { 970 struct kvm_memory_slot *to_memslot = NULL; 971 struct kvm_memory_slot *from_memslot = NULL; 972 unsigned long to_addr, from_addr; 973 int r; 974 975 /* Get HPA for from address */ 976 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 977 if (!from_memslot) 978 return -EFAULT; 979 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 980 << PAGE_SHIFT)) 981 return -EINVAL; 982 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 983 if (kvm_is_error_hva(from_addr)) 984 return -EFAULT; 985 from_addr |= (from & (PAGE_SIZE - 1)); 986 987 /* Get HPA for to address */ 988 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 989 if (!to_memslot) 990 return -EFAULT; 991 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 992 << PAGE_SHIFT)) 993 return -EINVAL; 994 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 995 if (kvm_is_error_hva(to_addr)) 996 return -EFAULT; 997 to_addr |= (to & (PAGE_SIZE - 1)); 998 999 /* Perform copy */ 1000 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 1001 len); 1002 if (r) 1003 return -EFAULT; 1004 mark_page_dirty(kvm, to >> PAGE_SHIFT); 1005 return 0; 1006 } 1007 1008 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 1009 unsigned long dest, unsigned long src) 1010 { 1011 u64 pg_sz = SZ_4K; /* 4K page size */ 1012 u64 pg_mask = SZ_4K - 1; 1013 int ret; 1014 1015 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 1016 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 1017 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 1018 return H_PARAMETER; 1019 1020 /* dest (and src if copy_page flag set) must be page aligned */ 1021 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 1022 return H_PARAMETER; 1023 1024 /* zero and/or copy the page as determined by the flags */ 1025 if (flags & H_COPY_PAGE) { 1026 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 1027 if (ret < 0) 1028 return H_PARAMETER; 1029 } else if (flags & H_ZERO_PAGE) { 1030 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 1031 if (ret < 0) 1032 return H_PARAMETER; 1033 } 1034 1035 /* We can ignore the remaining flags */ 1036 1037 return H_SUCCESS; 1038 } 1039 1040 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 1041 { 1042 struct kvmppc_vcore *vcore = target->arch.vcore; 1043 1044 /* 1045 * We expect to have been called by the real mode handler 1046 * (kvmppc_rm_h_confer()) which would have directly returned 1047 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 1048 * have useful work to do and should not confer) so we don't 1049 * recheck that here. 1050 * 1051 * In the case of the P9 single vcpu per vcore case, the real 1052 * mode handler is not called but no other threads are in the 1053 * source vcore. 1054 */ 1055 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1056 spin_lock(&vcore->lock); 1057 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 1058 vcore->vcore_state != VCORE_INACTIVE && 1059 vcore->runner) 1060 target = vcore->runner; 1061 spin_unlock(&vcore->lock); 1062 } 1063 1064 return kvm_vcpu_yield_to(target); 1065 } 1066 1067 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 1068 { 1069 int yield_count = 0; 1070 struct lppaca *lppaca; 1071 1072 spin_lock(&vcpu->arch.vpa_update_lock); 1073 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 1074 if (lppaca) 1075 yield_count = be32_to_cpu(lppaca->yield_count); 1076 spin_unlock(&vcpu->arch.vpa_update_lock); 1077 return yield_count; 1078 } 1079 1080 /* 1081 * H_RPT_INVALIDATE hcall handler for nested guests. 1082 * 1083 * Handles only nested process-scoped invalidation requests in L0. 1084 */ 1085 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) 1086 { 1087 unsigned long type = kvmppc_get_gpr(vcpu, 6); 1088 unsigned long pid, pg_sizes, start, end; 1089 1090 /* 1091 * The partition-scoped invalidations aren't handled here in L0. 1092 */ 1093 if (type & H_RPTI_TYPE_NESTED) 1094 return RESUME_HOST; 1095 1096 pid = kvmppc_get_gpr(vcpu, 4); 1097 pg_sizes = kvmppc_get_gpr(vcpu, 7); 1098 start = kvmppc_get_gpr(vcpu, 8); 1099 end = kvmppc_get_gpr(vcpu, 9); 1100 1101 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, 1102 type, pg_sizes, start, end); 1103 1104 kvmppc_set_gpr(vcpu, 3, H_SUCCESS); 1105 return RESUME_GUEST; 1106 } 1107 1108 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, 1109 unsigned long id, unsigned long target, 1110 unsigned long type, unsigned long pg_sizes, 1111 unsigned long start, unsigned long end) 1112 { 1113 if (!kvm_is_radix(vcpu->kvm)) 1114 return H_UNSUPPORTED; 1115 1116 if (end < start) 1117 return H_P5; 1118 1119 /* 1120 * Partition-scoped invalidation for nested guests. 1121 */ 1122 if (type & H_RPTI_TYPE_NESTED) { 1123 if (!nesting_enabled(vcpu->kvm)) 1124 return H_FUNCTION; 1125 1126 /* Support only cores as target */ 1127 if (target != H_RPTI_TARGET_CMMU) 1128 return H_P2; 1129 1130 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, 1131 start, end); 1132 } 1133 1134 /* 1135 * Process-scoped invalidation for L1 guests. 1136 */ 1137 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, 1138 type, pg_sizes, start, end); 1139 return H_SUCCESS; 1140 } 1141 1142 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 1143 { 1144 struct kvm *kvm = vcpu->kvm; 1145 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1146 unsigned long target, ret = H_SUCCESS; 1147 int yield_count; 1148 struct kvm_vcpu *tvcpu; 1149 int idx, rc; 1150 1151 if (req <= MAX_HCALL_OPCODE && 1152 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 1153 return RESUME_HOST; 1154 1155 switch (req) { 1156 case H_REMOVE: 1157 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 1158 kvmppc_get_gpr(vcpu, 5), 1159 kvmppc_get_gpr(vcpu, 6)); 1160 if (ret == H_TOO_HARD) 1161 return RESUME_HOST; 1162 break; 1163 case H_ENTER: 1164 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 1165 kvmppc_get_gpr(vcpu, 5), 1166 kvmppc_get_gpr(vcpu, 6), 1167 kvmppc_get_gpr(vcpu, 7)); 1168 if (ret == H_TOO_HARD) 1169 return RESUME_HOST; 1170 break; 1171 case H_READ: 1172 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 1173 kvmppc_get_gpr(vcpu, 5)); 1174 if (ret == H_TOO_HARD) 1175 return RESUME_HOST; 1176 break; 1177 case H_CLEAR_MOD: 1178 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 1179 kvmppc_get_gpr(vcpu, 5)); 1180 if (ret == H_TOO_HARD) 1181 return RESUME_HOST; 1182 break; 1183 case H_CLEAR_REF: 1184 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 1185 kvmppc_get_gpr(vcpu, 5)); 1186 if (ret == H_TOO_HARD) 1187 return RESUME_HOST; 1188 break; 1189 case H_PROTECT: 1190 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 1191 kvmppc_get_gpr(vcpu, 5), 1192 kvmppc_get_gpr(vcpu, 6)); 1193 if (ret == H_TOO_HARD) 1194 return RESUME_HOST; 1195 break; 1196 case H_BULK_REMOVE: 1197 ret = kvmppc_h_bulk_remove(vcpu); 1198 if (ret == H_TOO_HARD) 1199 return RESUME_HOST; 1200 break; 1201 1202 case H_CEDE: 1203 break; 1204 case H_PROD: 1205 target = kvmppc_get_gpr(vcpu, 4); 1206 tvcpu = kvmppc_find_vcpu(kvm, target); 1207 if (!tvcpu) { 1208 ret = H_PARAMETER; 1209 break; 1210 } 1211 tvcpu->arch.prodded = 1; 1212 smp_mb(); /* This orders prodded store vs ceded load */ 1213 if (tvcpu->arch.ceded) 1214 kvmppc_fast_vcpu_kick_hv(tvcpu); 1215 break; 1216 case H_CONFER: 1217 target = kvmppc_get_gpr(vcpu, 4); 1218 if (target == -1) 1219 break; 1220 tvcpu = kvmppc_find_vcpu(kvm, target); 1221 if (!tvcpu) { 1222 ret = H_PARAMETER; 1223 break; 1224 } 1225 yield_count = kvmppc_get_gpr(vcpu, 5); 1226 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1227 break; 1228 kvm_arch_vcpu_yield_to(tvcpu); 1229 break; 1230 case H_REGISTER_VPA: 1231 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1232 kvmppc_get_gpr(vcpu, 5), 1233 kvmppc_get_gpr(vcpu, 6)); 1234 break; 1235 case H_RTAS: 1236 if (list_empty(&kvm->arch.rtas_tokens)) 1237 return RESUME_HOST; 1238 1239 idx = srcu_read_lock(&kvm->srcu); 1240 rc = kvmppc_rtas_hcall(vcpu); 1241 srcu_read_unlock(&kvm->srcu, idx); 1242 1243 if (rc == -ENOENT) 1244 return RESUME_HOST; 1245 else if (rc == 0) 1246 break; 1247 1248 /* Send the error out to userspace via KVM_RUN */ 1249 return rc; 1250 case H_LOGICAL_CI_LOAD: 1251 ret = kvmppc_h_logical_ci_load(vcpu); 1252 if (ret == H_TOO_HARD) 1253 return RESUME_HOST; 1254 break; 1255 case H_LOGICAL_CI_STORE: 1256 ret = kvmppc_h_logical_ci_store(vcpu); 1257 if (ret == H_TOO_HARD) 1258 return RESUME_HOST; 1259 break; 1260 case H_SET_MODE: 1261 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1262 kvmppc_get_gpr(vcpu, 5), 1263 kvmppc_get_gpr(vcpu, 6), 1264 kvmppc_get_gpr(vcpu, 7)); 1265 if (ret == H_TOO_HARD) 1266 return RESUME_HOST; 1267 break; 1268 case H_XIRR: 1269 case H_CPPR: 1270 case H_EOI: 1271 case H_IPI: 1272 case H_IPOLL: 1273 case H_XIRR_X: 1274 if (kvmppc_xics_enabled(vcpu)) { 1275 if (xics_on_xive()) { 1276 ret = H_NOT_AVAILABLE; 1277 return RESUME_GUEST; 1278 } 1279 ret = kvmppc_xics_hcall(vcpu, req); 1280 break; 1281 } 1282 return RESUME_HOST; 1283 case H_SET_DABR: 1284 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1285 break; 1286 case H_SET_XDABR: 1287 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1288 kvmppc_get_gpr(vcpu, 5)); 1289 break; 1290 #ifdef CONFIG_SPAPR_TCE_IOMMU 1291 case H_GET_TCE: 1292 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1293 kvmppc_get_gpr(vcpu, 5)); 1294 if (ret == H_TOO_HARD) 1295 return RESUME_HOST; 1296 break; 1297 case H_PUT_TCE: 1298 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1299 kvmppc_get_gpr(vcpu, 5), 1300 kvmppc_get_gpr(vcpu, 6)); 1301 if (ret == H_TOO_HARD) 1302 return RESUME_HOST; 1303 break; 1304 case H_PUT_TCE_INDIRECT: 1305 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1306 kvmppc_get_gpr(vcpu, 5), 1307 kvmppc_get_gpr(vcpu, 6), 1308 kvmppc_get_gpr(vcpu, 7)); 1309 if (ret == H_TOO_HARD) 1310 return RESUME_HOST; 1311 break; 1312 case H_STUFF_TCE: 1313 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1314 kvmppc_get_gpr(vcpu, 5), 1315 kvmppc_get_gpr(vcpu, 6), 1316 kvmppc_get_gpr(vcpu, 7)); 1317 if (ret == H_TOO_HARD) 1318 return RESUME_HOST; 1319 break; 1320 #endif 1321 case H_RANDOM: { 1322 unsigned long rand; 1323 1324 if (!arch_get_random_seed_longs(&rand, 1)) 1325 ret = H_HARDWARE; 1326 kvmppc_set_gpr(vcpu, 4, rand); 1327 break; 1328 } 1329 case H_RPT_INVALIDATE: 1330 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), 1331 kvmppc_get_gpr(vcpu, 5), 1332 kvmppc_get_gpr(vcpu, 6), 1333 kvmppc_get_gpr(vcpu, 7), 1334 kvmppc_get_gpr(vcpu, 8), 1335 kvmppc_get_gpr(vcpu, 9)); 1336 break; 1337 1338 case H_SET_PARTITION_TABLE: 1339 ret = H_FUNCTION; 1340 if (nesting_enabled(kvm)) 1341 ret = kvmhv_set_partition_table(vcpu); 1342 break; 1343 case H_ENTER_NESTED: 1344 ret = H_FUNCTION; 1345 if (!nesting_enabled(kvm)) 1346 break; 1347 ret = kvmhv_enter_nested_guest(vcpu); 1348 if (ret == H_INTERRUPT) { 1349 kvmppc_set_gpr(vcpu, 3, 0); 1350 vcpu->arch.hcall_needed = 0; 1351 return -EINTR; 1352 } else if (ret == H_TOO_HARD) { 1353 kvmppc_set_gpr(vcpu, 3, 0); 1354 vcpu->arch.hcall_needed = 0; 1355 return RESUME_HOST; 1356 } 1357 break; 1358 case H_TLB_INVALIDATE: 1359 ret = H_FUNCTION; 1360 if (nesting_enabled(kvm)) 1361 ret = kvmhv_do_nested_tlbie(vcpu); 1362 break; 1363 case H_COPY_TOFROM_GUEST: 1364 ret = H_FUNCTION; 1365 if (nesting_enabled(kvm)) 1366 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1367 break; 1368 case H_PAGE_INIT: 1369 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1370 kvmppc_get_gpr(vcpu, 5), 1371 kvmppc_get_gpr(vcpu, 6)); 1372 break; 1373 case H_SVM_PAGE_IN: 1374 ret = H_UNSUPPORTED; 1375 if (kvmppc_get_srr1(vcpu) & MSR_S) 1376 ret = kvmppc_h_svm_page_in(kvm, 1377 kvmppc_get_gpr(vcpu, 4), 1378 kvmppc_get_gpr(vcpu, 5), 1379 kvmppc_get_gpr(vcpu, 6)); 1380 break; 1381 case H_SVM_PAGE_OUT: 1382 ret = H_UNSUPPORTED; 1383 if (kvmppc_get_srr1(vcpu) & MSR_S) 1384 ret = kvmppc_h_svm_page_out(kvm, 1385 kvmppc_get_gpr(vcpu, 4), 1386 kvmppc_get_gpr(vcpu, 5), 1387 kvmppc_get_gpr(vcpu, 6)); 1388 break; 1389 case H_SVM_INIT_START: 1390 ret = H_UNSUPPORTED; 1391 if (kvmppc_get_srr1(vcpu) & MSR_S) 1392 ret = kvmppc_h_svm_init_start(kvm); 1393 break; 1394 case H_SVM_INIT_DONE: 1395 ret = H_UNSUPPORTED; 1396 if (kvmppc_get_srr1(vcpu) & MSR_S) 1397 ret = kvmppc_h_svm_init_done(kvm); 1398 break; 1399 case H_SVM_INIT_ABORT: 1400 /* 1401 * Even if that call is made by the Ultravisor, the SSR1 value 1402 * is the guest context one, with the secure bit clear as it has 1403 * not yet been secured. So we can't check it here. 1404 * Instead the kvm->arch.secure_guest flag is checked inside 1405 * kvmppc_h_svm_init_abort(). 1406 */ 1407 ret = kvmppc_h_svm_init_abort(kvm); 1408 break; 1409 1410 default: 1411 return RESUME_HOST; 1412 } 1413 WARN_ON_ONCE(ret == H_TOO_HARD); 1414 kvmppc_set_gpr(vcpu, 3, ret); 1415 vcpu->arch.hcall_needed = 0; 1416 return RESUME_GUEST; 1417 } 1418 1419 /* 1420 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1421 * handlers in book3s_hv_rmhandlers.S. 1422 * 1423 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1424 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1425 */ 1426 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1427 { 1428 __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE); 1429 vcpu->arch.ceded = 1; 1430 smp_mb(); 1431 if (vcpu->arch.prodded) { 1432 vcpu->arch.prodded = 0; 1433 smp_mb(); 1434 vcpu->arch.ceded = 0; 1435 } 1436 } 1437 1438 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1439 { 1440 switch (cmd) { 1441 case H_CEDE: 1442 case H_PROD: 1443 case H_CONFER: 1444 case H_REGISTER_VPA: 1445 case H_SET_MODE: 1446 #ifdef CONFIG_SPAPR_TCE_IOMMU 1447 case H_GET_TCE: 1448 case H_PUT_TCE: 1449 case H_PUT_TCE_INDIRECT: 1450 case H_STUFF_TCE: 1451 #endif 1452 case H_LOGICAL_CI_LOAD: 1453 case H_LOGICAL_CI_STORE: 1454 #ifdef CONFIG_KVM_XICS 1455 case H_XIRR: 1456 case H_CPPR: 1457 case H_EOI: 1458 case H_IPI: 1459 case H_IPOLL: 1460 case H_XIRR_X: 1461 #endif 1462 case H_PAGE_INIT: 1463 case H_RPT_INVALIDATE: 1464 return 1; 1465 } 1466 1467 /* See if it's in the real-mode table */ 1468 return kvmppc_hcall_impl_hv_realmode(cmd); 1469 } 1470 1471 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1472 { 1473 ppc_inst_t last_inst; 1474 1475 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1476 EMULATE_DONE) { 1477 /* 1478 * Fetch failed, so return to guest and 1479 * try executing it again. 1480 */ 1481 return RESUME_GUEST; 1482 } 1483 1484 if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) { 1485 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1486 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1487 return RESUME_HOST; 1488 } else { 1489 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1490 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1491 return RESUME_GUEST; 1492 } 1493 } 1494 1495 static void do_nothing(void *x) 1496 { 1497 } 1498 1499 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1500 { 1501 int thr, cpu, pcpu, nthreads; 1502 struct kvm_vcpu *v; 1503 unsigned long dpdes; 1504 1505 nthreads = vcpu->kvm->arch.emul_smt_mode; 1506 dpdes = 0; 1507 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1508 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1509 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1510 if (!v) 1511 continue; 1512 /* 1513 * If the vcpu is currently running on a physical cpu thread, 1514 * interrupt it in order to pull it out of the guest briefly, 1515 * which will update its vcore->dpdes value. 1516 */ 1517 pcpu = READ_ONCE(v->cpu); 1518 if (pcpu >= 0) 1519 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1520 if (kvmppc_doorbell_pending(v)) 1521 dpdes |= 1 << thr; 1522 } 1523 return dpdes; 1524 } 1525 1526 /* 1527 * On POWER9, emulate doorbell-related instructions in order to 1528 * give the guest the illusion of running on a multi-threaded core. 1529 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1530 * and mfspr DPDES. 1531 */ 1532 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1533 { 1534 u32 inst, rb, thr; 1535 unsigned long arg; 1536 struct kvm *kvm = vcpu->kvm; 1537 struct kvm_vcpu *tvcpu; 1538 ppc_inst_t pinst; 1539 1540 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE) 1541 return RESUME_GUEST; 1542 inst = ppc_inst_val(pinst); 1543 if (get_op(inst) != 31) 1544 return EMULATE_FAIL; 1545 rb = get_rb(inst); 1546 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1547 switch (get_xop(inst)) { 1548 case OP_31_XOP_MSGSNDP: 1549 arg = kvmppc_get_gpr(vcpu, rb); 1550 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1551 break; 1552 arg &= 0x7f; 1553 if (arg >= kvm->arch.emul_smt_mode) 1554 break; 1555 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1556 if (!tvcpu) 1557 break; 1558 if (!tvcpu->arch.doorbell_request) { 1559 tvcpu->arch.doorbell_request = 1; 1560 kvmppc_fast_vcpu_kick_hv(tvcpu); 1561 } 1562 break; 1563 case OP_31_XOP_MSGCLRP: 1564 arg = kvmppc_get_gpr(vcpu, rb); 1565 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1566 break; 1567 vcpu->arch.vcore->dpdes = 0; 1568 vcpu->arch.doorbell_request = 0; 1569 break; 1570 case OP_31_XOP_MFSPR: 1571 switch (get_sprn(inst)) { 1572 case SPRN_TIR: 1573 arg = thr; 1574 break; 1575 case SPRN_DPDES: 1576 arg = kvmppc_read_dpdes(vcpu); 1577 break; 1578 default: 1579 return EMULATE_FAIL; 1580 } 1581 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1582 break; 1583 default: 1584 return EMULATE_FAIL; 1585 } 1586 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1587 return RESUME_GUEST; 1588 } 1589 1590 /* 1591 * If the lppaca had pmcregs_in_use clear when we exited the guest, then 1592 * HFSCR_PM is cleared for next entry. If the guest then tries to access 1593 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM 1594 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and 1595 * allow the guest access to continue. 1596 */ 1597 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu) 1598 { 1599 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM)) 1600 return EMULATE_FAIL; 1601 1602 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM); 1603 1604 return RESUME_GUEST; 1605 } 1606 1607 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu) 1608 { 1609 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB)) 1610 return EMULATE_FAIL; 1611 1612 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB); 1613 1614 return RESUME_GUEST; 1615 } 1616 1617 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu) 1618 { 1619 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM)) 1620 return EMULATE_FAIL; 1621 1622 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM); 1623 1624 return RESUME_GUEST; 1625 } 1626 1627 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1628 struct task_struct *tsk) 1629 { 1630 struct kvm_run *run = vcpu->run; 1631 int r = RESUME_HOST; 1632 1633 vcpu->stat.sum_exits++; 1634 1635 /* 1636 * This can happen if an interrupt occurs in the last stages 1637 * of guest entry or the first stages of guest exit (i.e. after 1638 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1639 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1640 * That can happen due to a bug, or due to a machine check 1641 * occurring at just the wrong time. 1642 */ 1643 if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) { 1644 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1645 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1646 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1647 vcpu->arch.shregs.msr); 1648 kvmppc_dump_regs(vcpu); 1649 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1650 run->hw.hardware_exit_reason = vcpu->arch.trap; 1651 return RESUME_HOST; 1652 } 1653 run->exit_reason = KVM_EXIT_UNKNOWN; 1654 run->ready_for_interrupt_injection = 1; 1655 switch (vcpu->arch.trap) { 1656 /* We're good on these - the host merely wanted to get our attention */ 1657 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1658 WARN_ON_ONCE(1); /* Should never happen */ 1659 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1660 fallthrough; 1661 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1662 vcpu->stat.dec_exits++; 1663 r = RESUME_GUEST; 1664 break; 1665 case BOOK3S_INTERRUPT_EXTERNAL: 1666 case BOOK3S_INTERRUPT_H_DOORBELL: 1667 case BOOK3S_INTERRUPT_H_VIRT: 1668 vcpu->stat.ext_intr_exits++; 1669 r = RESUME_GUEST; 1670 break; 1671 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1672 case BOOK3S_INTERRUPT_HMI: 1673 case BOOK3S_INTERRUPT_PERFMON: 1674 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1675 r = RESUME_GUEST; 1676 break; 1677 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1678 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1679 DEFAULT_RATELIMIT_BURST); 1680 /* 1681 * Print the MCE event to host console. Ratelimit so the guest 1682 * can't flood the host log. 1683 */ 1684 if (__ratelimit(&rs)) 1685 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1686 1687 /* 1688 * If the guest can do FWNMI, exit to userspace so it can 1689 * deliver a FWNMI to the guest. 1690 * Otherwise we synthesize a machine check for the guest 1691 * so that it knows that the machine check occurred. 1692 */ 1693 if (!vcpu->kvm->arch.fwnmi_enabled) { 1694 ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) | 1695 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1696 kvmppc_core_queue_machine_check(vcpu, flags); 1697 r = RESUME_GUEST; 1698 break; 1699 } 1700 1701 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1702 run->exit_reason = KVM_EXIT_NMI; 1703 run->hw.hardware_exit_reason = vcpu->arch.trap; 1704 /* Clear out the old NMI status from run->flags */ 1705 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1706 /* Now set the NMI status */ 1707 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1708 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1709 else 1710 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1711 1712 r = RESUME_HOST; 1713 break; 1714 } 1715 case BOOK3S_INTERRUPT_PROGRAM: 1716 { 1717 ulong flags; 1718 /* 1719 * Normally program interrupts are delivered directly 1720 * to the guest by the hardware, but we can get here 1721 * as a result of a hypervisor emulation interrupt 1722 * (e40) getting turned into a 700 by BML RTAS. 1723 */ 1724 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) | 1725 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 1726 kvmppc_core_queue_program(vcpu, flags); 1727 r = RESUME_GUEST; 1728 break; 1729 } 1730 case BOOK3S_INTERRUPT_SYSCALL: 1731 { 1732 int i; 1733 1734 if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 1735 /* 1736 * Guest userspace executed sc 1. This can only be 1737 * reached by the P9 path because the old path 1738 * handles this case in realmode hcall handlers. 1739 */ 1740 if (!kvmhv_vcpu_is_radix(vcpu)) { 1741 /* 1742 * A guest could be running PR KVM, so this 1743 * may be a PR KVM hcall. It must be reflected 1744 * to the guest kernel as a sc interrupt. 1745 */ 1746 kvmppc_core_queue_syscall(vcpu); 1747 } else { 1748 /* 1749 * Radix guests can not run PR KVM or nested HV 1750 * hash guests which might run PR KVM, so this 1751 * is always a privilege fault. Send a program 1752 * check to guest kernel. 1753 */ 1754 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1755 } 1756 r = RESUME_GUEST; 1757 break; 1758 } 1759 1760 /* 1761 * hcall - gather args and set exit_reason. This will next be 1762 * handled by kvmppc_pseries_do_hcall which may be able to deal 1763 * with it and resume guest, or may punt to userspace. 1764 */ 1765 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1766 for (i = 0; i < 9; ++i) 1767 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1768 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1769 vcpu->arch.hcall_needed = 1; 1770 r = RESUME_HOST; 1771 break; 1772 } 1773 /* 1774 * We get these next two if the guest accesses a page which it thinks 1775 * it has mapped but which is not actually present, either because 1776 * it is for an emulated I/O device or because the corresonding 1777 * host page has been paged out. 1778 * 1779 * Any other HDSI/HISI interrupts have been handled already for P7/8 1780 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1781 * fault handling is done here. 1782 */ 1783 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1784 unsigned long vsid; 1785 long err; 1786 1787 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 1788 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) { 1789 r = RESUME_GUEST; /* Just retry if it's the canary */ 1790 break; 1791 } 1792 1793 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1794 /* 1795 * Radix doesn't require anything, and pre-ISAv3.0 hash 1796 * already attempted to handle this in rmhandlers. The 1797 * hash fault handling below is v3 only (it uses ASDR 1798 * via fault_gpa). 1799 */ 1800 r = RESUME_PAGE_FAULT; 1801 break; 1802 } 1803 1804 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1805 kvmppc_core_queue_data_storage(vcpu, 1806 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1807 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1808 r = RESUME_GUEST; 1809 break; 1810 } 1811 1812 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR)) 1813 vsid = vcpu->kvm->arch.vrma_slb_v; 1814 else 1815 vsid = vcpu->arch.fault_gpa; 1816 1817 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1818 vsid, vcpu->arch.fault_dsisr, true); 1819 if (err == 0) { 1820 r = RESUME_GUEST; 1821 } else if (err == -1 || err == -2) { 1822 r = RESUME_PAGE_FAULT; 1823 } else { 1824 kvmppc_core_queue_data_storage(vcpu, 1825 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 1826 vcpu->arch.fault_dar, err); 1827 r = RESUME_GUEST; 1828 } 1829 break; 1830 } 1831 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1832 unsigned long vsid; 1833 long err; 1834 1835 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1836 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) & 1837 DSISR_SRR1_MATCH_64S; 1838 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1839 /* 1840 * Radix doesn't require anything, and pre-ISAv3.0 hash 1841 * already attempted to handle this in rmhandlers. The 1842 * hash fault handling below is v3 only (it uses ASDR 1843 * via fault_gpa). 1844 */ 1845 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE) 1846 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1847 r = RESUME_PAGE_FAULT; 1848 break; 1849 } 1850 1851 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1852 kvmppc_core_queue_inst_storage(vcpu, 1853 vcpu->arch.fault_dsisr | 1854 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1855 r = RESUME_GUEST; 1856 break; 1857 } 1858 1859 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR)) 1860 vsid = vcpu->kvm->arch.vrma_slb_v; 1861 else 1862 vsid = vcpu->arch.fault_gpa; 1863 1864 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1865 vsid, vcpu->arch.fault_dsisr, false); 1866 if (err == 0) { 1867 r = RESUME_GUEST; 1868 } else if (err == -1) { 1869 r = RESUME_PAGE_FAULT; 1870 } else { 1871 kvmppc_core_queue_inst_storage(vcpu, 1872 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1873 r = RESUME_GUEST; 1874 } 1875 break; 1876 } 1877 1878 /* 1879 * This occurs if the guest executes an illegal instruction. 1880 * If the guest debug is disabled, generate a program interrupt 1881 * to the guest. If guest debug is enabled, we need to check 1882 * whether the instruction is a software breakpoint instruction. 1883 * Accordingly return to Guest or Host. 1884 */ 1885 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1886 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1887 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1888 swab32(vcpu->arch.emul_inst) : 1889 vcpu->arch.emul_inst; 1890 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1891 r = kvmppc_emulate_debug_inst(vcpu); 1892 } else { 1893 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1894 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1895 r = RESUME_GUEST; 1896 } 1897 break; 1898 1899 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1900 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1901 /* 1902 * This occurs for various TM-related instructions that 1903 * we need to emulate on POWER9 DD2.2. We have already 1904 * handled the cases where the guest was in real-suspend 1905 * mode and was transitioning to transactional state. 1906 */ 1907 r = kvmhv_p9_tm_emulation(vcpu); 1908 if (r != -1) 1909 break; 1910 fallthrough; /* go to facility unavailable handler */ 1911 #endif 1912 1913 /* 1914 * This occurs if the guest (kernel or userspace), does something that 1915 * is prohibited by HFSCR. 1916 * On POWER9, this could be a doorbell instruction that we need 1917 * to emulate. 1918 * Otherwise, we just generate a program interrupt to the guest. 1919 */ 1920 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1921 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56; 1922 1923 r = EMULATE_FAIL; 1924 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1925 if (cause == FSCR_MSGP_LG) 1926 r = kvmppc_emulate_doorbell_instr(vcpu); 1927 if (cause == FSCR_PM_LG) 1928 r = kvmppc_pmu_unavailable(vcpu); 1929 if (cause == FSCR_EBB_LG) 1930 r = kvmppc_ebb_unavailable(vcpu); 1931 if (cause == FSCR_TM_LG) 1932 r = kvmppc_tm_unavailable(vcpu); 1933 } 1934 if (r == EMULATE_FAIL) { 1935 kvmppc_core_queue_program(vcpu, SRR1_PROGILL | 1936 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED)); 1937 r = RESUME_GUEST; 1938 } 1939 break; 1940 } 1941 1942 case BOOK3S_INTERRUPT_HV_RM_HARD: 1943 r = RESUME_PASSTHROUGH; 1944 break; 1945 default: 1946 kvmppc_dump_regs(vcpu); 1947 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1948 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1949 __kvmppc_get_msr_hv(vcpu)); 1950 run->hw.hardware_exit_reason = vcpu->arch.trap; 1951 r = RESUME_HOST; 1952 break; 1953 } 1954 1955 return r; 1956 } 1957 1958 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1959 { 1960 int r; 1961 int srcu_idx; 1962 1963 vcpu->stat.sum_exits++; 1964 1965 /* 1966 * This can happen if an interrupt occurs in the last stages 1967 * of guest entry or the first stages of guest exit (i.e. after 1968 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1969 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1970 * That can happen due to a bug, or due to a machine check 1971 * occurring at just the wrong time. 1972 */ 1973 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) { 1974 pr_emerg("KVM trap in HV mode while nested!\n"); 1975 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1976 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1977 __kvmppc_get_msr_hv(vcpu)); 1978 kvmppc_dump_regs(vcpu); 1979 return RESUME_HOST; 1980 } 1981 switch (vcpu->arch.trap) { 1982 /* We're good on these - the host merely wanted to get our attention */ 1983 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1984 vcpu->stat.dec_exits++; 1985 r = RESUME_GUEST; 1986 break; 1987 case BOOK3S_INTERRUPT_EXTERNAL: 1988 vcpu->stat.ext_intr_exits++; 1989 r = RESUME_HOST; 1990 break; 1991 case BOOK3S_INTERRUPT_H_DOORBELL: 1992 case BOOK3S_INTERRUPT_H_VIRT: 1993 vcpu->stat.ext_intr_exits++; 1994 r = RESUME_GUEST; 1995 break; 1996 /* These need to go to the nested HV */ 1997 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1998 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1999 vcpu->stat.dec_exits++; 2000 r = RESUME_HOST; 2001 break; 2002 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 2003 case BOOK3S_INTERRUPT_HMI: 2004 case BOOK3S_INTERRUPT_PERFMON: 2005 case BOOK3S_INTERRUPT_SYSTEM_RESET: 2006 r = RESUME_GUEST; 2007 break; 2008 case BOOK3S_INTERRUPT_MACHINE_CHECK: 2009 { 2010 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 2011 DEFAULT_RATELIMIT_BURST); 2012 /* Pass the machine check to the L1 guest */ 2013 r = RESUME_HOST; 2014 /* Print the MCE event to host console. */ 2015 if (__ratelimit(&rs)) 2016 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 2017 break; 2018 } 2019 /* 2020 * We get these next two if the guest accesses a page which it thinks 2021 * it has mapped but which is not actually present, either because 2022 * it is for an emulated I/O device or because the corresonding 2023 * host page has been paged out. 2024 */ 2025 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 2026 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2027 r = kvmhv_nested_page_fault(vcpu); 2028 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2029 break; 2030 case BOOK3S_INTERRUPT_H_INST_STORAGE: 2031 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 2032 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 2033 DSISR_SRR1_MATCH_64S; 2034 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE) 2035 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 2036 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2037 r = kvmhv_nested_page_fault(vcpu); 2038 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2039 break; 2040 2041 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2042 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 2043 /* 2044 * This occurs for various TM-related instructions that 2045 * we need to emulate on POWER9 DD2.2. We have already 2046 * handled the cases where the guest was in real-suspend 2047 * mode and was transitioning to transactional state. 2048 */ 2049 r = kvmhv_p9_tm_emulation(vcpu); 2050 if (r != -1) 2051 break; 2052 fallthrough; /* go to facility unavailable handler */ 2053 #endif 2054 2055 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 2056 u64 cause = vcpu->arch.hfscr >> 56; 2057 2058 /* 2059 * Only pass HFU interrupts to the L1 if the facility is 2060 * permitted but disabled by the L1's HFSCR, otherwise 2061 * the interrupt does not make sense to the L1 so turn 2062 * it into a HEAI. 2063 */ 2064 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || 2065 (vcpu->arch.nested_hfscr & (1UL << cause))) { 2066 ppc_inst_t pinst; 2067 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; 2068 2069 /* 2070 * If the fetch failed, return to guest and 2071 * try executing it again. 2072 */ 2073 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst); 2074 vcpu->arch.emul_inst = ppc_inst_val(pinst); 2075 if (r != EMULATE_DONE) 2076 r = RESUME_GUEST; 2077 else 2078 r = RESUME_HOST; 2079 } else { 2080 r = RESUME_HOST; 2081 } 2082 2083 break; 2084 } 2085 2086 case BOOK3S_INTERRUPT_HV_RM_HARD: 2087 vcpu->arch.trap = 0; 2088 r = RESUME_GUEST; 2089 if (!xics_on_xive()) 2090 kvmppc_xics_rm_complete(vcpu, 0); 2091 break; 2092 case BOOK3S_INTERRUPT_SYSCALL: 2093 { 2094 unsigned long req = kvmppc_get_gpr(vcpu, 3); 2095 2096 /* 2097 * The H_RPT_INVALIDATE hcalls issued by nested 2098 * guests for process-scoped invalidations when 2099 * GTSE=0, are handled here in L0. 2100 */ 2101 if (req == H_RPT_INVALIDATE) { 2102 r = kvmppc_nested_h_rpt_invalidate(vcpu); 2103 break; 2104 } 2105 2106 r = RESUME_HOST; 2107 break; 2108 } 2109 default: 2110 r = RESUME_HOST; 2111 break; 2112 } 2113 2114 return r; 2115 } 2116 2117 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 2118 struct kvm_sregs *sregs) 2119 { 2120 int i; 2121 2122 memset(sregs, 0, sizeof(struct kvm_sregs)); 2123 sregs->pvr = vcpu->arch.pvr; 2124 for (i = 0; i < vcpu->arch.slb_max; i++) { 2125 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 2126 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 2127 } 2128 2129 return 0; 2130 } 2131 2132 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 2133 struct kvm_sregs *sregs) 2134 { 2135 int i, j; 2136 2137 /* Only accept the same PVR as the host's, since we can't spoof it */ 2138 if (sregs->pvr != vcpu->arch.pvr) 2139 return -EINVAL; 2140 2141 j = 0; 2142 for (i = 0; i < vcpu->arch.slb_nr; i++) { 2143 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 2144 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 2145 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 2146 ++j; 2147 } 2148 } 2149 vcpu->arch.slb_max = j; 2150 2151 return 0; 2152 } 2153 2154 /* 2155 * Enforce limits on guest LPCR values based on hardware availability, 2156 * guest configuration, and possibly hypervisor support and security 2157 * concerns. 2158 */ 2159 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 2160 { 2161 /* LPCR_TC only applies to HPT guests */ 2162 if (kvm_is_radix(kvm)) 2163 lpcr &= ~LPCR_TC; 2164 2165 /* On POWER8 and above, userspace can modify AIL */ 2166 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2167 lpcr &= ~LPCR_AIL; 2168 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 2169 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 2170 /* 2171 * On some POWER9s we force AIL off for radix guests to prevent 2172 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 2173 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 2174 * be cached, which the host TLB management does not expect. 2175 */ 2176 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 2177 lpcr &= ~LPCR_AIL; 2178 2179 /* 2180 * On POWER9, allow userspace to enable large decrementer for the 2181 * guest, whether or not the host has it enabled. 2182 */ 2183 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2184 lpcr &= ~LPCR_LD; 2185 2186 return lpcr; 2187 } 2188 2189 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 2190 { 2191 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 2192 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 2193 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 2194 } 2195 } 2196 2197 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 2198 bool preserve_top32) 2199 { 2200 struct kvm *kvm = vcpu->kvm; 2201 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2202 u64 mask; 2203 2204 spin_lock(&vc->lock); 2205 2206 /* 2207 * Userspace can only modify 2208 * DPFD (default prefetch depth), ILE (interrupt little-endian), 2209 * TC (translation control), AIL (alternate interrupt location), 2210 * LD (large decrementer). 2211 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 2212 */ 2213 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 2214 2215 /* Broken 32-bit version of LPCR must not clear top bits */ 2216 if (preserve_top32) 2217 mask &= 0xFFFFFFFF; 2218 2219 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 2220 (vc->lpcr & ~mask) | (new_lpcr & mask)); 2221 2222 /* 2223 * If ILE (interrupt little-endian) has changed, update the 2224 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 2225 */ 2226 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 2227 struct kvm_vcpu *vcpu; 2228 unsigned long i; 2229 2230 kvm_for_each_vcpu(i, vcpu, kvm) { 2231 if (vcpu->arch.vcore != vc) 2232 continue; 2233 if (new_lpcr & LPCR_ILE) 2234 vcpu->arch.intr_msr |= MSR_LE; 2235 else 2236 vcpu->arch.intr_msr &= ~MSR_LE; 2237 } 2238 } 2239 2240 vc->lpcr = new_lpcr; 2241 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR); 2242 2243 spin_unlock(&vc->lock); 2244 } 2245 2246 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2247 union kvmppc_one_reg *val) 2248 { 2249 int r = 0; 2250 long int i; 2251 2252 switch (id) { 2253 case KVM_REG_PPC_DEBUG_INST: 2254 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 2255 break; 2256 case KVM_REG_PPC_HIOR: 2257 *val = get_reg_val(id, 0); 2258 break; 2259 case KVM_REG_PPC_DABR: 2260 *val = get_reg_val(id, vcpu->arch.dabr); 2261 break; 2262 case KVM_REG_PPC_DABRX: 2263 *val = get_reg_val(id, vcpu->arch.dabrx); 2264 break; 2265 case KVM_REG_PPC_DSCR: 2266 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu)); 2267 break; 2268 case KVM_REG_PPC_PURR: 2269 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu)); 2270 break; 2271 case KVM_REG_PPC_SPURR: 2272 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu)); 2273 break; 2274 case KVM_REG_PPC_AMR: 2275 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu)); 2276 break; 2277 case KVM_REG_PPC_UAMOR: 2278 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu)); 2279 break; 2280 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2281 i = id - KVM_REG_PPC_MMCR0; 2282 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i)); 2283 break; 2284 case KVM_REG_PPC_MMCR2: 2285 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2)); 2286 break; 2287 case KVM_REG_PPC_MMCRA: 2288 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu)); 2289 break; 2290 case KVM_REG_PPC_MMCRS: 2291 *val = get_reg_val(id, vcpu->arch.mmcrs); 2292 break; 2293 case KVM_REG_PPC_MMCR3: 2294 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3)); 2295 break; 2296 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2297 i = id - KVM_REG_PPC_PMC1; 2298 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i)); 2299 break; 2300 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2301 i = id - KVM_REG_PPC_SPMC1; 2302 *val = get_reg_val(id, vcpu->arch.spmc[i]); 2303 break; 2304 case KVM_REG_PPC_SIAR: 2305 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu)); 2306 break; 2307 case KVM_REG_PPC_SDAR: 2308 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu)); 2309 break; 2310 case KVM_REG_PPC_SIER: 2311 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0)); 2312 break; 2313 case KVM_REG_PPC_SIER2: 2314 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1)); 2315 break; 2316 case KVM_REG_PPC_SIER3: 2317 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2)); 2318 break; 2319 case KVM_REG_PPC_IAMR: 2320 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu)); 2321 break; 2322 case KVM_REG_PPC_PSPB: 2323 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu)); 2324 break; 2325 case KVM_REG_PPC_DPDES: 2326 /* 2327 * On POWER9, where we are emulating msgsndp etc., 2328 * we return 1 bit for each vcpu, which can come from 2329 * either vcore->dpdes or doorbell_request. 2330 * On POWER8, doorbell_request is 0. 2331 */ 2332 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2333 *val = get_reg_val(id, vcpu->arch.doorbell_request); 2334 else 2335 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 2336 break; 2337 case KVM_REG_PPC_VTB: 2338 *val = get_reg_val(id, kvmppc_get_vtb(vcpu)); 2339 break; 2340 case KVM_REG_PPC_DAWR: 2341 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu)); 2342 break; 2343 case KVM_REG_PPC_DAWRX: 2344 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu)); 2345 break; 2346 case KVM_REG_PPC_DAWR1: 2347 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu)); 2348 break; 2349 case KVM_REG_PPC_DAWRX1: 2350 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu)); 2351 break; 2352 case KVM_REG_PPC_CIABR: 2353 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu)); 2354 break; 2355 case KVM_REG_PPC_CSIGR: 2356 *val = get_reg_val(id, vcpu->arch.csigr); 2357 break; 2358 case KVM_REG_PPC_TACR: 2359 *val = get_reg_val(id, vcpu->arch.tacr); 2360 break; 2361 case KVM_REG_PPC_TCSCR: 2362 *val = get_reg_val(id, vcpu->arch.tcscr); 2363 break; 2364 case KVM_REG_PPC_PID: 2365 *val = get_reg_val(id, kvmppc_get_pid(vcpu)); 2366 break; 2367 case KVM_REG_PPC_ACOP: 2368 *val = get_reg_val(id, vcpu->arch.acop); 2369 break; 2370 case KVM_REG_PPC_WORT: 2371 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu)); 2372 break; 2373 case KVM_REG_PPC_TIDR: 2374 *val = get_reg_val(id, vcpu->arch.tid); 2375 break; 2376 case KVM_REG_PPC_PSSCR: 2377 *val = get_reg_val(id, vcpu->arch.psscr); 2378 break; 2379 case KVM_REG_PPC_VPA_ADDR: 2380 spin_lock(&vcpu->arch.vpa_update_lock); 2381 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2382 spin_unlock(&vcpu->arch.vpa_update_lock); 2383 break; 2384 case KVM_REG_PPC_VPA_SLB: 2385 spin_lock(&vcpu->arch.vpa_update_lock); 2386 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2387 val->vpaval.length = vcpu->arch.slb_shadow.len; 2388 spin_unlock(&vcpu->arch.vpa_update_lock); 2389 break; 2390 case KVM_REG_PPC_VPA_DTL: 2391 spin_lock(&vcpu->arch.vpa_update_lock); 2392 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2393 val->vpaval.length = vcpu->arch.dtl.len; 2394 spin_unlock(&vcpu->arch.vpa_update_lock); 2395 break; 2396 case KVM_REG_PPC_TB_OFFSET: 2397 *val = get_reg_val(id, kvmppc_get_tb_offset(vcpu)); 2398 break; 2399 case KVM_REG_PPC_LPCR: 2400 case KVM_REG_PPC_LPCR_64: 2401 *val = get_reg_val(id, kvmppc_get_lpcr(vcpu)); 2402 break; 2403 case KVM_REG_PPC_PPR: 2404 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu)); 2405 break; 2406 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2407 case KVM_REG_PPC_TFHAR: 2408 *val = get_reg_val(id, vcpu->arch.tfhar); 2409 break; 2410 case KVM_REG_PPC_TFIAR: 2411 *val = get_reg_val(id, vcpu->arch.tfiar); 2412 break; 2413 case KVM_REG_PPC_TEXASR: 2414 *val = get_reg_val(id, vcpu->arch.texasr); 2415 break; 2416 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2417 i = id - KVM_REG_PPC_TM_GPR0; 2418 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2419 break; 2420 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2421 { 2422 int j; 2423 i = id - KVM_REG_PPC_TM_VSR0; 2424 if (i < 32) 2425 for (j = 0; j < TS_FPRWIDTH; j++) 2426 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2427 else { 2428 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2429 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2430 else 2431 r = -ENXIO; 2432 } 2433 break; 2434 } 2435 case KVM_REG_PPC_TM_CR: 2436 *val = get_reg_val(id, vcpu->arch.cr_tm); 2437 break; 2438 case KVM_REG_PPC_TM_XER: 2439 *val = get_reg_val(id, vcpu->arch.xer_tm); 2440 break; 2441 case KVM_REG_PPC_TM_LR: 2442 *val = get_reg_val(id, vcpu->arch.lr_tm); 2443 break; 2444 case KVM_REG_PPC_TM_CTR: 2445 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2446 break; 2447 case KVM_REG_PPC_TM_FPSCR: 2448 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2449 break; 2450 case KVM_REG_PPC_TM_AMR: 2451 *val = get_reg_val(id, vcpu->arch.amr_tm); 2452 break; 2453 case KVM_REG_PPC_TM_PPR: 2454 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2455 break; 2456 case KVM_REG_PPC_TM_VRSAVE: 2457 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2458 break; 2459 case KVM_REG_PPC_TM_VSCR: 2460 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2461 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2462 else 2463 r = -ENXIO; 2464 break; 2465 case KVM_REG_PPC_TM_DSCR: 2466 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2467 break; 2468 case KVM_REG_PPC_TM_TAR: 2469 *val = get_reg_val(id, vcpu->arch.tar_tm); 2470 break; 2471 #endif 2472 case KVM_REG_PPC_ARCH_COMPAT: 2473 *val = get_reg_val(id, kvmppc_get_arch_compat(vcpu)); 2474 break; 2475 case KVM_REG_PPC_DEC_EXPIRY: 2476 *val = get_reg_val(id, kvmppc_get_dec_expires(vcpu)); 2477 break; 2478 case KVM_REG_PPC_ONLINE: 2479 *val = get_reg_val(id, vcpu->arch.online); 2480 break; 2481 case KVM_REG_PPC_PTCR: 2482 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2483 break; 2484 case KVM_REG_PPC_FSCR: 2485 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu)); 2486 break; 2487 default: 2488 r = -EINVAL; 2489 break; 2490 } 2491 2492 return r; 2493 } 2494 2495 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2496 union kvmppc_one_reg *val) 2497 { 2498 int r = 0; 2499 long int i; 2500 unsigned long addr, len; 2501 2502 switch (id) { 2503 case KVM_REG_PPC_HIOR: 2504 /* Only allow this to be set to zero */ 2505 if (set_reg_val(id, *val)) 2506 r = -EINVAL; 2507 break; 2508 case KVM_REG_PPC_DABR: 2509 vcpu->arch.dabr = set_reg_val(id, *val); 2510 break; 2511 case KVM_REG_PPC_DABRX: 2512 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2513 break; 2514 case KVM_REG_PPC_DSCR: 2515 kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val)); 2516 break; 2517 case KVM_REG_PPC_PURR: 2518 kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val)); 2519 break; 2520 case KVM_REG_PPC_SPURR: 2521 kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val)); 2522 break; 2523 case KVM_REG_PPC_AMR: 2524 kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val)); 2525 break; 2526 case KVM_REG_PPC_UAMOR: 2527 kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val)); 2528 break; 2529 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2530 i = id - KVM_REG_PPC_MMCR0; 2531 kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val)); 2532 break; 2533 case KVM_REG_PPC_MMCR2: 2534 kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val)); 2535 break; 2536 case KVM_REG_PPC_MMCRA: 2537 kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val)); 2538 break; 2539 case KVM_REG_PPC_MMCRS: 2540 vcpu->arch.mmcrs = set_reg_val(id, *val); 2541 break; 2542 case KVM_REG_PPC_MMCR3: 2543 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2544 break; 2545 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2546 i = id - KVM_REG_PPC_PMC1; 2547 kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val)); 2548 break; 2549 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2550 i = id - KVM_REG_PPC_SPMC1; 2551 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2552 break; 2553 case KVM_REG_PPC_SIAR: 2554 kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val)); 2555 break; 2556 case KVM_REG_PPC_SDAR: 2557 kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val)); 2558 break; 2559 case KVM_REG_PPC_SIER: 2560 kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val)); 2561 break; 2562 case KVM_REG_PPC_SIER2: 2563 kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val)); 2564 break; 2565 case KVM_REG_PPC_SIER3: 2566 kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val)); 2567 break; 2568 case KVM_REG_PPC_IAMR: 2569 kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val)); 2570 break; 2571 case KVM_REG_PPC_PSPB: 2572 kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val)); 2573 break; 2574 case KVM_REG_PPC_DPDES: 2575 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2576 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1; 2577 else 2578 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2579 break; 2580 case KVM_REG_PPC_VTB: 2581 kvmppc_set_vtb(vcpu, set_reg_val(id, *val)); 2582 break; 2583 case KVM_REG_PPC_DAWR: 2584 kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val)); 2585 break; 2586 case KVM_REG_PPC_DAWRX: 2587 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP); 2588 break; 2589 case KVM_REG_PPC_DAWR1: 2590 kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val)); 2591 break; 2592 case KVM_REG_PPC_DAWRX1: 2593 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP); 2594 break; 2595 case KVM_REG_PPC_CIABR: 2596 kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val)); 2597 /* Don't allow setting breakpoints in hypervisor code */ 2598 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER) 2599 kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV); 2600 break; 2601 case KVM_REG_PPC_CSIGR: 2602 vcpu->arch.csigr = set_reg_val(id, *val); 2603 break; 2604 case KVM_REG_PPC_TACR: 2605 vcpu->arch.tacr = set_reg_val(id, *val); 2606 break; 2607 case KVM_REG_PPC_TCSCR: 2608 vcpu->arch.tcscr = set_reg_val(id, *val); 2609 break; 2610 case KVM_REG_PPC_PID: 2611 kvmppc_set_pid(vcpu, set_reg_val(id, *val)); 2612 break; 2613 case KVM_REG_PPC_ACOP: 2614 vcpu->arch.acop = set_reg_val(id, *val); 2615 break; 2616 case KVM_REG_PPC_WORT: 2617 kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val)); 2618 break; 2619 case KVM_REG_PPC_TIDR: 2620 vcpu->arch.tid = set_reg_val(id, *val); 2621 break; 2622 case KVM_REG_PPC_PSSCR: 2623 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2624 break; 2625 case KVM_REG_PPC_VPA_ADDR: 2626 addr = set_reg_val(id, *val); 2627 r = -EINVAL; 2628 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2629 vcpu->arch.dtl.next_gpa)) 2630 break; 2631 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2632 break; 2633 case KVM_REG_PPC_VPA_SLB: 2634 addr = val->vpaval.addr; 2635 len = val->vpaval.length; 2636 r = -EINVAL; 2637 if (addr && !vcpu->arch.vpa.next_gpa) 2638 break; 2639 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2640 break; 2641 case KVM_REG_PPC_VPA_DTL: 2642 addr = val->vpaval.addr; 2643 len = val->vpaval.length; 2644 r = -EINVAL; 2645 if (addr && (len < sizeof(struct dtl_entry) || 2646 !vcpu->arch.vpa.next_gpa)) 2647 break; 2648 len -= len % sizeof(struct dtl_entry); 2649 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2650 break; 2651 case KVM_REG_PPC_TB_OFFSET: 2652 { 2653 /* round up to multiple of 2^24 */ 2654 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24); 2655 2656 /* 2657 * Now that we know the timebase offset, update the 2658 * decrementer expiry with a guest timebase value. If 2659 * the userspace does not set DEC_EXPIRY, this ensures 2660 * a migrated vcpu at least starts with an expired 2661 * decrementer, which is better than a large one that 2662 * causes a hang. 2663 */ 2664 kvmppc_set_tb_offset(vcpu, tb_offset); 2665 if (!kvmppc_get_dec_expires(vcpu) && tb_offset) 2666 kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset); 2667 2668 kvmppc_set_tb_offset(vcpu, tb_offset); 2669 break; 2670 } 2671 case KVM_REG_PPC_LPCR: 2672 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2673 break; 2674 case KVM_REG_PPC_LPCR_64: 2675 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2676 break; 2677 case KVM_REG_PPC_PPR: 2678 kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val)); 2679 break; 2680 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2681 case KVM_REG_PPC_TFHAR: 2682 vcpu->arch.tfhar = set_reg_val(id, *val); 2683 break; 2684 case KVM_REG_PPC_TFIAR: 2685 vcpu->arch.tfiar = set_reg_val(id, *val); 2686 break; 2687 case KVM_REG_PPC_TEXASR: 2688 vcpu->arch.texasr = set_reg_val(id, *val); 2689 break; 2690 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2691 i = id - KVM_REG_PPC_TM_GPR0; 2692 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2693 break; 2694 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2695 { 2696 int j; 2697 i = id - KVM_REG_PPC_TM_VSR0; 2698 if (i < 32) 2699 for (j = 0; j < TS_FPRWIDTH; j++) 2700 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2701 else 2702 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2703 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2704 else 2705 r = -ENXIO; 2706 break; 2707 } 2708 case KVM_REG_PPC_TM_CR: 2709 vcpu->arch.cr_tm = set_reg_val(id, *val); 2710 break; 2711 case KVM_REG_PPC_TM_XER: 2712 vcpu->arch.xer_tm = set_reg_val(id, *val); 2713 break; 2714 case KVM_REG_PPC_TM_LR: 2715 vcpu->arch.lr_tm = set_reg_val(id, *val); 2716 break; 2717 case KVM_REG_PPC_TM_CTR: 2718 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2719 break; 2720 case KVM_REG_PPC_TM_FPSCR: 2721 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2722 break; 2723 case KVM_REG_PPC_TM_AMR: 2724 vcpu->arch.amr_tm = set_reg_val(id, *val); 2725 break; 2726 case KVM_REG_PPC_TM_PPR: 2727 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2728 break; 2729 case KVM_REG_PPC_TM_VRSAVE: 2730 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2731 break; 2732 case KVM_REG_PPC_TM_VSCR: 2733 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2734 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2735 else 2736 r = - ENXIO; 2737 break; 2738 case KVM_REG_PPC_TM_DSCR: 2739 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2740 break; 2741 case KVM_REG_PPC_TM_TAR: 2742 vcpu->arch.tar_tm = set_reg_val(id, *val); 2743 break; 2744 #endif 2745 case KVM_REG_PPC_ARCH_COMPAT: 2746 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2747 break; 2748 case KVM_REG_PPC_DEC_EXPIRY: 2749 kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val)); 2750 break; 2751 case KVM_REG_PPC_ONLINE: 2752 i = set_reg_val(id, *val); 2753 if (i && !vcpu->arch.online) 2754 atomic_inc(&vcpu->arch.vcore->online_count); 2755 else if (!i && vcpu->arch.online) 2756 atomic_dec(&vcpu->arch.vcore->online_count); 2757 vcpu->arch.online = i; 2758 break; 2759 case KVM_REG_PPC_PTCR: 2760 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2761 break; 2762 case KVM_REG_PPC_FSCR: 2763 kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val)); 2764 break; 2765 default: 2766 r = -EINVAL; 2767 break; 2768 } 2769 2770 return r; 2771 } 2772 2773 /* 2774 * On POWER9, threads are independent and can be in different partitions. 2775 * Therefore we consider each thread to be a subcore. 2776 * There is a restriction that all threads have to be in the same 2777 * MMU mode (radix or HPT), unfortunately, but since we only support 2778 * HPT guests on a HPT host so far, that isn't an impediment yet. 2779 */ 2780 static int threads_per_vcore(struct kvm *kvm) 2781 { 2782 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2783 return 1; 2784 return threads_per_subcore; 2785 } 2786 2787 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2788 { 2789 struct kvmppc_vcore *vcore; 2790 2791 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2792 2793 if (vcore == NULL) 2794 return NULL; 2795 2796 spin_lock_init(&vcore->lock); 2797 spin_lock_init(&vcore->stoltb_lock); 2798 rcuwait_init(&vcore->wait); 2799 vcore->preempt_tb = TB_NIL; 2800 vcore->lpcr = kvm->arch.lpcr; 2801 vcore->first_vcpuid = id; 2802 vcore->kvm = kvm; 2803 INIT_LIST_HEAD(&vcore->preempt_list); 2804 2805 return vcore; 2806 } 2807 2808 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2809 static struct debugfs_timings_element { 2810 const char *name; 2811 size_t offset; 2812 } timings[] = { 2813 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING 2814 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)}, 2815 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)}, 2816 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)}, 2817 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)}, 2818 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)}, 2819 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)}, 2820 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)}, 2821 #else 2822 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2823 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2824 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2825 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2826 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2827 #endif 2828 }; 2829 2830 #define N_TIMINGS (ARRAY_SIZE(timings)) 2831 2832 struct debugfs_timings_state { 2833 struct kvm_vcpu *vcpu; 2834 unsigned int buflen; 2835 char buf[N_TIMINGS * 100]; 2836 }; 2837 2838 static int debugfs_timings_open(struct inode *inode, struct file *file) 2839 { 2840 struct kvm_vcpu *vcpu = inode->i_private; 2841 struct debugfs_timings_state *p; 2842 2843 p = kzalloc(sizeof(*p), GFP_KERNEL); 2844 if (!p) 2845 return -ENOMEM; 2846 2847 kvm_get_kvm(vcpu->kvm); 2848 p->vcpu = vcpu; 2849 file->private_data = p; 2850 2851 return nonseekable_open(inode, file); 2852 } 2853 2854 static int debugfs_timings_release(struct inode *inode, struct file *file) 2855 { 2856 struct debugfs_timings_state *p = file->private_data; 2857 2858 kvm_put_kvm(p->vcpu->kvm); 2859 kfree(p); 2860 return 0; 2861 } 2862 2863 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2864 size_t len, loff_t *ppos) 2865 { 2866 struct debugfs_timings_state *p = file->private_data; 2867 struct kvm_vcpu *vcpu = p->vcpu; 2868 char *s, *buf_end; 2869 struct kvmhv_tb_accumulator tb; 2870 u64 count; 2871 loff_t pos; 2872 ssize_t n; 2873 int i, loops; 2874 bool ok; 2875 2876 if (!p->buflen) { 2877 s = p->buf; 2878 buf_end = s + sizeof(p->buf); 2879 for (i = 0; i < N_TIMINGS; ++i) { 2880 struct kvmhv_tb_accumulator *acc; 2881 2882 acc = (struct kvmhv_tb_accumulator *) 2883 ((unsigned long)vcpu + timings[i].offset); 2884 ok = false; 2885 for (loops = 0; loops < 1000; ++loops) { 2886 count = acc->seqcount; 2887 if (!(count & 1)) { 2888 smp_rmb(); 2889 tb = *acc; 2890 smp_rmb(); 2891 if (count == acc->seqcount) { 2892 ok = true; 2893 break; 2894 } 2895 } 2896 udelay(1); 2897 } 2898 if (!ok) 2899 snprintf(s, buf_end - s, "%s: stuck\n", 2900 timings[i].name); 2901 else 2902 snprintf(s, buf_end - s, 2903 "%s: %llu %llu %llu %llu\n", 2904 timings[i].name, count / 2, 2905 tb_to_ns(tb.tb_total), 2906 tb_to_ns(tb.tb_min), 2907 tb_to_ns(tb.tb_max)); 2908 s += strlen(s); 2909 } 2910 p->buflen = s - p->buf; 2911 } 2912 2913 pos = *ppos; 2914 if (pos >= p->buflen) 2915 return 0; 2916 if (len > p->buflen - pos) 2917 len = p->buflen - pos; 2918 n = copy_to_user(buf, p->buf + pos, len); 2919 if (n) { 2920 if (n == len) 2921 return -EFAULT; 2922 len -= n; 2923 } 2924 *ppos = pos + len; 2925 return len; 2926 } 2927 2928 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2929 size_t len, loff_t *ppos) 2930 { 2931 return -EACCES; 2932 } 2933 2934 static const struct file_operations debugfs_timings_ops = { 2935 .owner = THIS_MODULE, 2936 .open = debugfs_timings_open, 2937 .release = debugfs_timings_release, 2938 .read = debugfs_timings_read, 2939 .write = debugfs_timings_write, 2940 .llseek = generic_file_llseek, 2941 }; 2942 2943 /* Create a debugfs directory for the vcpu */ 2944 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2945 { 2946 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING)) 2947 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu, 2948 &debugfs_timings_ops); 2949 return 0; 2950 } 2951 2952 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2953 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2954 { 2955 return 0; 2956 } 2957 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2958 2959 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2960 { 2961 int err; 2962 int core; 2963 struct kvmppc_vcore *vcore; 2964 struct kvm *kvm; 2965 unsigned int id; 2966 2967 kvm = vcpu->kvm; 2968 id = vcpu->vcpu_id; 2969 2970 vcpu->arch.shared = &vcpu->arch.shregs; 2971 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2972 /* 2973 * The shared struct is never shared on HV, 2974 * so we can always use host endianness 2975 */ 2976 #ifdef __BIG_ENDIAN__ 2977 vcpu->arch.shared_big_endian = true; 2978 #else 2979 vcpu->arch.shared_big_endian = false; 2980 #endif 2981 #endif 2982 2983 if (kvmhv_is_nestedv2()) { 2984 err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io); 2985 if (err < 0) 2986 return err; 2987 } 2988 2989 kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC); 2990 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 2991 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT); 2992 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE); 2993 } 2994 2995 kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH); 2996 /* default to host PVR, since we can't spoof it */ 2997 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2998 spin_lock_init(&vcpu->arch.vpa_update_lock); 2999 spin_lock_init(&vcpu->arch.tbacct_lock); 3000 vcpu->arch.busy_preempt = TB_NIL; 3001 __kvmppc_set_msr_hv(vcpu, MSR_ME); 3002 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 3003 3004 /* 3005 * Set the default HFSCR for the guest from the host value. 3006 * This value is only used on POWER9 and later. 3007 * On >= POWER9, we want to virtualize the doorbell facility, so we 3008 * don't set the HFSCR_MSGP bit, and that causes those instructions 3009 * to trap and then we emulate them. 3010 */ 3011 kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 3012 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP); 3013 3014 /* On POWER10 and later, allow prefixed instructions */ 3015 if (cpu_has_feature(CPU_FTR_ARCH_31)) 3016 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX); 3017 3018 if (cpu_has_feature(CPU_FTR_HVMODE)) { 3019 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR)); 3020 3021 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 3022 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3023 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM); 3024 #endif 3025 } 3026 if (cpu_has_feature(CPU_FTR_TM_COMP)) 3027 vcpu->arch.hfscr |= HFSCR_TM; 3028 3029 vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu); 3030 3031 /* 3032 * PM, EBB, TM are demand-faulted so start with it clear. 3033 */ 3034 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM)); 3035 3036 kvmppc_mmu_book3s_hv_init(vcpu); 3037 3038 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3039 3040 init_waitqueue_head(&vcpu->arch.cpu_run); 3041 3042 mutex_lock(&kvm->lock); 3043 vcore = NULL; 3044 err = -EINVAL; 3045 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3046 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 3047 pr_devel("KVM: VCPU ID too high\n"); 3048 core = KVM_MAX_VCORES; 3049 } else { 3050 BUG_ON(kvm->arch.smt_mode != 1); 3051 core = kvmppc_pack_vcpu_id(kvm, id); 3052 } 3053 } else { 3054 core = id / kvm->arch.smt_mode; 3055 } 3056 if (core < KVM_MAX_VCORES) { 3057 vcore = kvm->arch.vcores[core]; 3058 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 3059 pr_devel("KVM: collision on id %u", id); 3060 vcore = NULL; 3061 } else if (!vcore) { 3062 /* 3063 * Take mmu_setup_lock for mutual exclusion 3064 * with kvmppc_update_lpcr(). 3065 */ 3066 err = -ENOMEM; 3067 vcore = kvmppc_vcore_create(kvm, 3068 id & ~(kvm->arch.smt_mode - 1)); 3069 mutex_lock(&kvm->arch.mmu_setup_lock); 3070 kvm->arch.vcores[core] = vcore; 3071 kvm->arch.online_vcores++; 3072 mutex_unlock(&kvm->arch.mmu_setup_lock); 3073 } 3074 } 3075 mutex_unlock(&kvm->lock); 3076 3077 if (!vcore) 3078 return err; 3079 3080 spin_lock(&vcore->lock); 3081 ++vcore->num_threads; 3082 spin_unlock(&vcore->lock); 3083 vcpu->arch.vcore = vcore; 3084 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 3085 vcpu->arch.thread_cpu = -1; 3086 vcpu->arch.prev_cpu = -1; 3087 3088 vcpu->arch.cpu_type = KVM_CPU_3S_64; 3089 kvmppc_sanity_check(vcpu); 3090 3091 return 0; 3092 } 3093 3094 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 3095 unsigned long flags) 3096 { 3097 int err; 3098 int esmt = 0; 3099 3100 if (flags) 3101 return -EINVAL; 3102 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 3103 return -EINVAL; 3104 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3105 /* 3106 * On POWER8 (or POWER7), the threading mode is "strict", 3107 * so we pack smt_mode vcpus per vcore. 3108 */ 3109 if (smt_mode > threads_per_subcore) 3110 return -EINVAL; 3111 } else { 3112 /* 3113 * On POWER9, the threading mode is "loose", 3114 * so each vcpu gets its own vcore. 3115 */ 3116 esmt = smt_mode; 3117 smt_mode = 1; 3118 } 3119 mutex_lock(&kvm->lock); 3120 err = -EBUSY; 3121 if (!kvm->arch.online_vcores) { 3122 kvm->arch.smt_mode = smt_mode; 3123 kvm->arch.emul_smt_mode = esmt; 3124 err = 0; 3125 } 3126 mutex_unlock(&kvm->lock); 3127 3128 return err; 3129 } 3130 3131 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 3132 { 3133 if (vpa->pinned_addr) 3134 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 3135 vpa->dirty); 3136 } 3137 3138 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 3139 { 3140 spin_lock(&vcpu->arch.vpa_update_lock); 3141 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 3142 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 3143 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 3144 spin_unlock(&vcpu->arch.vpa_update_lock); 3145 if (kvmhv_is_nestedv2()) 3146 kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io); 3147 } 3148 3149 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 3150 { 3151 /* Indicate we want to get back into the guest */ 3152 return 1; 3153 } 3154 3155 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 3156 { 3157 unsigned long dec_nsec, now; 3158 3159 now = get_tb(); 3160 if (now > kvmppc_dec_expires_host_tb(vcpu)) { 3161 /* decrementer has already gone negative */ 3162 kvmppc_core_queue_dec(vcpu); 3163 kvmppc_core_prepare_to_enter(vcpu); 3164 return; 3165 } 3166 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now); 3167 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 3168 vcpu->arch.timer_running = 1; 3169 } 3170 3171 extern int __kvmppc_vcore_entry(void); 3172 3173 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 3174 struct kvm_vcpu *vcpu, u64 tb) 3175 { 3176 u64 now; 3177 3178 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3179 return; 3180 spin_lock_irq(&vcpu->arch.tbacct_lock); 3181 now = tb; 3182 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 3183 vcpu->arch.stolen_logged; 3184 vcpu->arch.busy_preempt = now; 3185 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3186 spin_unlock_irq(&vcpu->arch.tbacct_lock); 3187 --vc->n_runnable; 3188 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 3189 } 3190 3191 static int kvmppc_grab_hwthread(int cpu) 3192 { 3193 struct paca_struct *tpaca; 3194 long timeout = 10000; 3195 3196 tpaca = paca_ptrs[cpu]; 3197 3198 /* Ensure the thread won't go into the kernel if it wakes */ 3199 tpaca->kvm_hstate.kvm_vcpu = NULL; 3200 tpaca->kvm_hstate.kvm_vcore = NULL; 3201 tpaca->kvm_hstate.napping = 0; 3202 smp_wmb(); 3203 tpaca->kvm_hstate.hwthread_req = 1; 3204 3205 /* 3206 * If the thread is already executing in the kernel (e.g. handling 3207 * a stray interrupt), wait for it to get back to nap mode. 3208 * The smp_mb() is to ensure that our setting of hwthread_req 3209 * is visible before we look at hwthread_state, so if this 3210 * races with the code at system_reset_pSeries and the thread 3211 * misses our setting of hwthread_req, we are sure to see its 3212 * setting of hwthread_state, and vice versa. 3213 */ 3214 smp_mb(); 3215 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 3216 if (--timeout <= 0) { 3217 pr_err("KVM: couldn't grab cpu %d\n", cpu); 3218 return -EBUSY; 3219 } 3220 udelay(1); 3221 } 3222 return 0; 3223 } 3224 3225 static void kvmppc_release_hwthread(int cpu) 3226 { 3227 struct paca_struct *tpaca; 3228 3229 tpaca = paca_ptrs[cpu]; 3230 tpaca->kvm_hstate.hwthread_req = 0; 3231 tpaca->kvm_hstate.kvm_vcpu = NULL; 3232 tpaca->kvm_hstate.kvm_vcore = NULL; 3233 tpaca->kvm_hstate.kvm_split_mode = NULL; 3234 } 3235 3236 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest); 3237 3238 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 3239 { 3240 struct kvm_nested_guest *nested = vcpu->arch.nested; 3241 cpumask_t *need_tlb_flush; 3242 int i; 3243 3244 if (nested) 3245 need_tlb_flush = &nested->need_tlb_flush; 3246 else 3247 need_tlb_flush = &kvm->arch.need_tlb_flush; 3248 3249 cpu = cpu_first_tlb_thread_sibling(cpu); 3250 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3251 i += cpu_tlb_thread_sibling_step()) 3252 cpumask_set_cpu(i, need_tlb_flush); 3253 3254 /* 3255 * Make sure setting of bit in need_tlb_flush precedes testing of 3256 * cpu_in_guest. The matching barrier on the other side is hwsync 3257 * when switching to guest MMU mode, which happens between 3258 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit 3259 * being tested. 3260 */ 3261 smp_mb(); 3262 3263 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3264 i += cpu_tlb_thread_sibling_step()) { 3265 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i); 3266 3267 if (running == kvm) 3268 smp_call_function_single(i, do_nothing, NULL, 1); 3269 } 3270 } 3271 3272 static void do_migrate_away_vcpu(void *arg) 3273 { 3274 struct kvm_vcpu *vcpu = arg; 3275 struct kvm *kvm = vcpu->kvm; 3276 3277 /* 3278 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync; 3279 * ptesync sequence on the old CPU before migrating to a new one, in 3280 * case we interrupted the guest between a tlbie ; eieio ; 3281 * tlbsync; ptesync sequence. 3282 * 3283 * Otherwise, ptesync is sufficient for ordering tlbiel sequences. 3284 */ 3285 if (kvm->arch.lpcr & LPCR_GTSE) 3286 asm volatile("eieio; tlbsync; ptesync"); 3287 else 3288 asm volatile("ptesync"); 3289 } 3290 3291 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 3292 { 3293 struct kvm_nested_guest *nested = vcpu->arch.nested; 3294 struct kvm *kvm = vcpu->kvm; 3295 int prev_cpu; 3296 3297 if (!cpu_has_feature(CPU_FTR_HVMODE)) 3298 return; 3299 3300 if (nested) 3301 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 3302 else 3303 prev_cpu = vcpu->arch.prev_cpu; 3304 3305 /* 3306 * With radix, the guest can do TLB invalidations itself, 3307 * and it could choose to use the local form (tlbiel) if 3308 * it is invalidating a translation that has only ever been 3309 * used on one vcpu. However, that doesn't mean it has 3310 * only ever been used on one physical cpu, since vcpus 3311 * can move around between pcpus. To cope with this, when 3312 * a vcpu moves from one pcpu to another, we need to tell 3313 * any vcpus running on the same core as this vcpu previously 3314 * ran to flush the TLB. 3315 */ 3316 if (prev_cpu != pcpu) { 3317 if (prev_cpu >= 0) { 3318 if (cpu_first_tlb_thread_sibling(prev_cpu) != 3319 cpu_first_tlb_thread_sibling(pcpu)) 3320 radix_flush_cpu(kvm, prev_cpu, vcpu); 3321 3322 smp_call_function_single(prev_cpu, 3323 do_migrate_away_vcpu, vcpu, 1); 3324 } 3325 if (nested) 3326 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 3327 else 3328 vcpu->arch.prev_cpu = pcpu; 3329 } 3330 } 3331 3332 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 3333 { 3334 int cpu; 3335 struct paca_struct *tpaca; 3336 3337 cpu = vc->pcpu; 3338 if (vcpu) { 3339 if (vcpu->arch.timer_running) { 3340 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 3341 vcpu->arch.timer_running = 0; 3342 } 3343 cpu += vcpu->arch.ptid; 3344 vcpu->cpu = vc->pcpu; 3345 vcpu->arch.thread_cpu = cpu; 3346 } 3347 tpaca = paca_ptrs[cpu]; 3348 tpaca->kvm_hstate.kvm_vcpu = vcpu; 3349 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 3350 tpaca->kvm_hstate.fake_suspend = 0; 3351 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 3352 smp_wmb(); 3353 tpaca->kvm_hstate.kvm_vcore = vc; 3354 if (cpu != smp_processor_id()) 3355 kvmppc_ipi_thread(cpu); 3356 } 3357 3358 static void kvmppc_wait_for_nap(int n_threads) 3359 { 3360 int cpu = smp_processor_id(); 3361 int i, loops; 3362 3363 if (n_threads <= 1) 3364 return; 3365 for (loops = 0; loops < 1000000; ++loops) { 3366 /* 3367 * Check if all threads are finished. 3368 * We set the vcore pointer when starting a thread 3369 * and the thread clears it when finished, so we look 3370 * for any threads that still have a non-NULL vcore ptr. 3371 */ 3372 for (i = 1; i < n_threads; ++i) 3373 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3374 break; 3375 if (i == n_threads) { 3376 HMT_medium(); 3377 return; 3378 } 3379 HMT_low(); 3380 } 3381 HMT_medium(); 3382 for (i = 1; i < n_threads; ++i) 3383 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3384 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 3385 } 3386 3387 /* 3388 * Check that we are on thread 0 and that any other threads in 3389 * this core are off-line. Then grab the threads so they can't 3390 * enter the kernel. 3391 */ 3392 static int on_primary_thread(void) 3393 { 3394 int cpu = smp_processor_id(); 3395 int thr; 3396 3397 /* Are we on a primary subcore? */ 3398 if (cpu_thread_in_subcore(cpu)) 3399 return 0; 3400 3401 thr = 0; 3402 while (++thr < threads_per_subcore) 3403 if (cpu_online(cpu + thr)) 3404 return 0; 3405 3406 /* Grab all hw threads so they can't go into the kernel */ 3407 for (thr = 1; thr < threads_per_subcore; ++thr) { 3408 if (kvmppc_grab_hwthread(cpu + thr)) { 3409 /* Couldn't grab one; let the others go */ 3410 do { 3411 kvmppc_release_hwthread(cpu + thr); 3412 } while (--thr > 0); 3413 return 0; 3414 } 3415 } 3416 return 1; 3417 } 3418 3419 /* 3420 * A list of virtual cores for each physical CPU. 3421 * These are vcores that could run but their runner VCPU tasks are 3422 * (or may be) preempted. 3423 */ 3424 struct preempted_vcore_list { 3425 struct list_head list; 3426 spinlock_t lock; 3427 }; 3428 3429 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 3430 3431 static void init_vcore_lists(void) 3432 { 3433 int cpu; 3434 3435 for_each_possible_cpu(cpu) { 3436 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 3437 spin_lock_init(&lp->lock); 3438 INIT_LIST_HEAD(&lp->list); 3439 } 3440 } 3441 3442 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 3443 { 3444 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3445 3446 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3447 3448 vc->vcore_state = VCORE_PREEMPT; 3449 vc->pcpu = smp_processor_id(); 3450 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 3451 spin_lock(&lp->lock); 3452 list_add_tail(&vc->preempt_list, &lp->list); 3453 spin_unlock(&lp->lock); 3454 } 3455 3456 /* Start accumulating stolen time */ 3457 kvmppc_core_start_stolen(vc, mftb()); 3458 } 3459 3460 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3461 { 3462 struct preempted_vcore_list *lp; 3463 3464 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3465 3466 kvmppc_core_end_stolen(vc, mftb()); 3467 if (!list_empty(&vc->preempt_list)) { 3468 lp = &per_cpu(preempted_vcores, vc->pcpu); 3469 spin_lock(&lp->lock); 3470 list_del_init(&vc->preempt_list); 3471 spin_unlock(&lp->lock); 3472 } 3473 vc->vcore_state = VCORE_INACTIVE; 3474 } 3475 3476 /* 3477 * This stores information about the virtual cores currently 3478 * assigned to a physical core. 3479 */ 3480 struct core_info { 3481 int n_subcores; 3482 int max_subcore_threads; 3483 int total_threads; 3484 int subcore_threads[MAX_SUBCORES]; 3485 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3486 }; 3487 3488 /* 3489 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3490 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3491 */ 3492 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3493 3494 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3495 { 3496 memset(cip, 0, sizeof(*cip)); 3497 cip->n_subcores = 1; 3498 cip->max_subcore_threads = vc->num_threads; 3499 cip->total_threads = vc->num_threads; 3500 cip->subcore_threads[0] = vc->num_threads; 3501 cip->vc[0] = vc; 3502 } 3503 3504 static bool subcore_config_ok(int n_subcores, int n_threads) 3505 { 3506 /* 3507 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3508 * split-core mode, with one thread per subcore. 3509 */ 3510 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3511 return n_subcores <= 4 && n_threads == 1; 3512 3513 /* On POWER8, can only dynamically split if unsplit to begin with */ 3514 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3515 return false; 3516 if (n_subcores > MAX_SUBCORES) 3517 return false; 3518 if (n_subcores > 1) { 3519 if (!(dynamic_mt_modes & 2)) 3520 n_subcores = 4; 3521 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3522 return false; 3523 } 3524 3525 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3526 } 3527 3528 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3529 { 3530 vc->entry_exit_map = 0; 3531 vc->in_guest = 0; 3532 vc->napping_threads = 0; 3533 vc->conferring_threads = 0; 3534 vc->tb_offset_applied = 0; 3535 } 3536 3537 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3538 { 3539 int n_threads = vc->num_threads; 3540 int sub; 3541 3542 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3543 return false; 3544 3545 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3546 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3547 return false; 3548 3549 if (n_threads < cip->max_subcore_threads) 3550 n_threads = cip->max_subcore_threads; 3551 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3552 return false; 3553 cip->max_subcore_threads = n_threads; 3554 3555 sub = cip->n_subcores; 3556 ++cip->n_subcores; 3557 cip->total_threads += vc->num_threads; 3558 cip->subcore_threads[sub] = vc->num_threads; 3559 cip->vc[sub] = vc; 3560 init_vcore_to_run(vc); 3561 list_del_init(&vc->preempt_list); 3562 3563 return true; 3564 } 3565 3566 /* 3567 * Work out whether it is possible to piggyback the execution of 3568 * vcore *pvc onto the execution of the other vcores described in *cip. 3569 */ 3570 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3571 int target_threads) 3572 { 3573 if (cip->total_threads + pvc->num_threads > target_threads) 3574 return false; 3575 3576 return can_dynamic_split(pvc, cip); 3577 } 3578 3579 static void prepare_threads(struct kvmppc_vcore *vc) 3580 { 3581 int i; 3582 struct kvm_vcpu *vcpu; 3583 3584 for_each_runnable_thread(i, vcpu, vc) { 3585 if (signal_pending(vcpu->arch.run_task)) 3586 vcpu->arch.ret = -EINTR; 3587 else if (vcpu->arch.vpa.update_pending || 3588 vcpu->arch.slb_shadow.update_pending || 3589 vcpu->arch.dtl.update_pending) 3590 vcpu->arch.ret = RESUME_GUEST; 3591 else 3592 continue; 3593 kvmppc_remove_runnable(vc, vcpu, mftb()); 3594 wake_up(&vcpu->arch.cpu_run); 3595 } 3596 } 3597 3598 static void collect_piggybacks(struct core_info *cip, int target_threads) 3599 { 3600 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3601 struct kvmppc_vcore *pvc, *vcnext; 3602 3603 spin_lock(&lp->lock); 3604 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3605 if (!spin_trylock(&pvc->lock)) 3606 continue; 3607 prepare_threads(pvc); 3608 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3609 list_del_init(&pvc->preempt_list); 3610 if (pvc->runner == NULL) { 3611 pvc->vcore_state = VCORE_INACTIVE; 3612 kvmppc_core_end_stolen(pvc, mftb()); 3613 } 3614 spin_unlock(&pvc->lock); 3615 continue; 3616 } 3617 if (!can_piggyback(pvc, cip, target_threads)) { 3618 spin_unlock(&pvc->lock); 3619 continue; 3620 } 3621 kvmppc_core_end_stolen(pvc, mftb()); 3622 pvc->vcore_state = VCORE_PIGGYBACK; 3623 if (cip->total_threads >= target_threads) 3624 break; 3625 } 3626 spin_unlock(&lp->lock); 3627 } 3628 3629 static bool recheck_signals_and_mmu(struct core_info *cip) 3630 { 3631 int sub, i; 3632 struct kvm_vcpu *vcpu; 3633 struct kvmppc_vcore *vc; 3634 3635 for (sub = 0; sub < cip->n_subcores; ++sub) { 3636 vc = cip->vc[sub]; 3637 if (!vc->kvm->arch.mmu_ready) 3638 return true; 3639 for_each_runnable_thread(i, vcpu, vc) 3640 if (signal_pending(vcpu->arch.run_task)) 3641 return true; 3642 } 3643 return false; 3644 } 3645 3646 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3647 { 3648 int still_running = 0, i; 3649 u64 now; 3650 long ret; 3651 struct kvm_vcpu *vcpu; 3652 3653 spin_lock(&vc->lock); 3654 now = get_tb(); 3655 for_each_runnable_thread(i, vcpu, vc) { 3656 /* 3657 * It's safe to unlock the vcore in the loop here, because 3658 * for_each_runnable_thread() is safe against removal of 3659 * the vcpu, and the vcore state is VCORE_EXITING here, 3660 * so any vcpus becoming runnable will have their arch.trap 3661 * set to zero and can't actually run in the guest. 3662 */ 3663 spin_unlock(&vc->lock); 3664 /* cancel pending dec exception if dec is positive */ 3665 if (now < kvmppc_dec_expires_host_tb(vcpu) && 3666 kvmppc_core_pending_dec(vcpu)) 3667 kvmppc_core_dequeue_dec(vcpu); 3668 3669 trace_kvm_guest_exit(vcpu); 3670 3671 ret = RESUME_GUEST; 3672 if (vcpu->arch.trap) 3673 ret = kvmppc_handle_exit_hv(vcpu, 3674 vcpu->arch.run_task); 3675 3676 vcpu->arch.ret = ret; 3677 vcpu->arch.trap = 0; 3678 3679 spin_lock(&vc->lock); 3680 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3681 if (vcpu->arch.pending_exceptions) 3682 kvmppc_core_prepare_to_enter(vcpu); 3683 if (vcpu->arch.ceded) 3684 kvmppc_set_timer(vcpu); 3685 else 3686 ++still_running; 3687 } else { 3688 kvmppc_remove_runnable(vc, vcpu, mftb()); 3689 wake_up(&vcpu->arch.cpu_run); 3690 } 3691 } 3692 if (!is_master) { 3693 if (still_running > 0) { 3694 kvmppc_vcore_preempt(vc); 3695 } else if (vc->runner) { 3696 vc->vcore_state = VCORE_PREEMPT; 3697 kvmppc_core_start_stolen(vc, mftb()); 3698 } else { 3699 vc->vcore_state = VCORE_INACTIVE; 3700 } 3701 if (vc->n_runnable > 0 && vc->runner == NULL) { 3702 /* make sure there's a candidate runner awake */ 3703 i = -1; 3704 vcpu = next_runnable_thread(vc, &i); 3705 wake_up(&vcpu->arch.cpu_run); 3706 } 3707 } 3708 spin_unlock(&vc->lock); 3709 } 3710 3711 /* 3712 * Clear core from the list of active host cores as we are about to 3713 * enter the guest. Only do this if it is the primary thread of the 3714 * core (not if a subcore) that is entering the guest. 3715 */ 3716 static inline int kvmppc_clear_host_core(unsigned int cpu) 3717 { 3718 int core; 3719 3720 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3721 return 0; 3722 /* 3723 * Memory barrier can be omitted here as we will do a smp_wmb() 3724 * later in kvmppc_start_thread and we need ensure that state is 3725 * visible to other CPUs only after we enter guest. 3726 */ 3727 core = cpu >> threads_shift; 3728 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3729 return 0; 3730 } 3731 3732 /* 3733 * Advertise this core as an active host core since we exited the guest 3734 * Only need to do this if it is the primary thread of the core that is 3735 * exiting. 3736 */ 3737 static inline int kvmppc_set_host_core(unsigned int cpu) 3738 { 3739 int core; 3740 3741 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3742 return 0; 3743 3744 /* 3745 * Memory barrier can be omitted here because we do a spin_unlock 3746 * immediately after this which provides the memory barrier. 3747 */ 3748 core = cpu >> threads_shift; 3749 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3750 return 0; 3751 } 3752 3753 static void set_irq_happened(int trap) 3754 { 3755 switch (trap) { 3756 case BOOK3S_INTERRUPT_EXTERNAL: 3757 local_paca->irq_happened |= PACA_IRQ_EE; 3758 break; 3759 case BOOK3S_INTERRUPT_H_DOORBELL: 3760 local_paca->irq_happened |= PACA_IRQ_DBELL; 3761 break; 3762 case BOOK3S_INTERRUPT_HMI: 3763 local_paca->irq_happened |= PACA_IRQ_HMI; 3764 break; 3765 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3766 replay_system_reset(); 3767 break; 3768 } 3769 } 3770 3771 /* 3772 * Run a set of guest threads on a physical core. 3773 * Called with vc->lock held. 3774 */ 3775 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3776 { 3777 struct kvm_vcpu *vcpu; 3778 int i; 3779 int srcu_idx; 3780 struct core_info core_info; 3781 struct kvmppc_vcore *pvc; 3782 struct kvm_split_mode split_info, *sip; 3783 int split, subcore_size, active; 3784 int sub; 3785 bool thr0_done; 3786 unsigned long cmd_bit, stat_bit; 3787 int pcpu, thr; 3788 int target_threads; 3789 int controlled_threads; 3790 int trap; 3791 bool is_power8; 3792 3793 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3794 return; 3795 3796 /* 3797 * Remove from the list any threads that have a signal pending 3798 * or need a VPA update done 3799 */ 3800 prepare_threads(vc); 3801 3802 /* if the runner is no longer runnable, let the caller pick a new one */ 3803 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3804 return; 3805 3806 /* 3807 * Initialize *vc. 3808 */ 3809 init_vcore_to_run(vc); 3810 vc->preempt_tb = TB_NIL; 3811 3812 /* 3813 * Number of threads that we will be controlling: the same as 3814 * the number of threads per subcore, except on POWER9, 3815 * where it's 1 because the threads are (mostly) independent. 3816 */ 3817 controlled_threads = threads_per_vcore(vc->kvm); 3818 3819 /* 3820 * Make sure we are running on primary threads, and that secondary 3821 * threads are offline. Also check if the number of threads in this 3822 * guest are greater than the current system threads per guest. 3823 */ 3824 if ((controlled_threads > 1) && 3825 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3826 for_each_runnable_thread(i, vcpu, vc) { 3827 vcpu->arch.ret = -EBUSY; 3828 kvmppc_remove_runnable(vc, vcpu, mftb()); 3829 wake_up(&vcpu->arch.cpu_run); 3830 } 3831 goto out; 3832 } 3833 3834 /* 3835 * See if we could run any other vcores on the physical core 3836 * along with this one. 3837 */ 3838 init_core_info(&core_info, vc); 3839 pcpu = smp_processor_id(); 3840 target_threads = controlled_threads; 3841 if (target_smt_mode && target_smt_mode < target_threads) 3842 target_threads = target_smt_mode; 3843 if (vc->num_threads < target_threads) 3844 collect_piggybacks(&core_info, target_threads); 3845 3846 /* 3847 * Hard-disable interrupts, and check resched flag and signals. 3848 * If we need to reschedule or deliver a signal, clean up 3849 * and return without going into the guest(s). 3850 * If the mmu_ready flag has been cleared, don't go into the 3851 * guest because that means a HPT resize operation is in progress. 3852 */ 3853 local_irq_disable(); 3854 hard_irq_disable(); 3855 if (lazy_irq_pending() || need_resched() || 3856 recheck_signals_and_mmu(&core_info)) { 3857 local_irq_enable(); 3858 vc->vcore_state = VCORE_INACTIVE; 3859 /* Unlock all except the primary vcore */ 3860 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3861 pvc = core_info.vc[sub]; 3862 /* Put back on to the preempted vcores list */ 3863 kvmppc_vcore_preempt(pvc); 3864 spin_unlock(&pvc->lock); 3865 } 3866 for (i = 0; i < controlled_threads; ++i) 3867 kvmppc_release_hwthread(pcpu + i); 3868 return; 3869 } 3870 3871 kvmppc_clear_host_core(pcpu); 3872 3873 /* Decide on micro-threading (split-core) mode */ 3874 subcore_size = threads_per_subcore; 3875 cmd_bit = stat_bit = 0; 3876 split = core_info.n_subcores; 3877 sip = NULL; 3878 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3879 3880 if (split > 1) { 3881 sip = &split_info; 3882 memset(&split_info, 0, sizeof(split_info)); 3883 for (sub = 0; sub < core_info.n_subcores; ++sub) 3884 split_info.vc[sub] = core_info.vc[sub]; 3885 3886 if (is_power8) { 3887 if (split == 2 && (dynamic_mt_modes & 2)) { 3888 cmd_bit = HID0_POWER8_1TO2LPAR; 3889 stat_bit = HID0_POWER8_2LPARMODE; 3890 } else { 3891 split = 4; 3892 cmd_bit = HID0_POWER8_1TO4LPAR; 3893 stat_bit = HID0_POWER8_4LPARMODE; 3894 } 3895 subcore_size = MAX_SMT_THREADS / split; 3896 split_info.rpr = mfspr(SPRN_RPR); 3897 split_info.pmmar = mfspr(SPRN_PMMAR); 3898 split_info.ldbar = mfspr(SPRN_LDBAR); 3899 split_info.subcore_size = subcore_size; 3900 } else { 3901 split_info.subcore_size = 1; 3902 } 3903 3904 /* order writes to split_info before kvm_split_mode pointer */ 3905 smp_wmb(); 3906 } 3907 3908 for (thr = 0; thr < controlled_threads; ++thr) { 3909 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3910 3911 paca->kvm_hstate.napping = 0; 3912 paca->kvm_hstate.kvm_split_mode = sip; 3913 } 3914 3915 /* Initiate micro-threading (split-core) on POWER8 if required */ 3916 if (cmd_bit) { 3917 unsigned long hid0 = mfspr(SPRN_HID0); 3918 3919 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3920 mb(); 3921 mtspr(SPRN_HID0, hid0); 3922 isync(); 3923 for (;;) { 3924 hid0 = mfspr(SPRN_HID0); 3925 if (hid0 & stat_bit) 3926 break; 3927 cpu_relax(); 3928 } 3929 } 3930 3931 /* 3932 * On POWER8, set RWMR register. 3933 * Since it only affects PURR and SPURR, it doesn't affect 3934 * the host, so we don't save/restore the host value. 3935 */ 3936 if (is_power8) { 3937 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3938 int n_online = atomic_read(&vc->online_count); 3939 3940 /* 3941 * Use the 8-thread value if we're doing split-core 3942 * or if the vcore's online count looks bogus. 3943 */ 3944 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3945 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3946 rwmr_val = p8_rwmr_values[n_online]; 3947 mtspr(SPRN_RWMR, rwmr_val); 3948 } 3949 3950 /* Start all the threads */ 3951 active = 0; 3952 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3953 thr = is_power8 ? subcore_thread_map[sub] : sub; 3954 thr0_done = false; 3955 active |= 1 << thr; 3956 pvc = core_info.vc[sub]; 3957 pvc->pcpu = pcpu + thr; 3958 for_each_runnable_thread(i, vcpu, pvc) { 3959 /* 3960 * XXX: is kvmppc_start_thread called too late here? 3961 * It updates vcpu->cpu and vcpu->arch.thread_cpu 3962 * which are used by kvmppc_fast_vcpu_kick_hv(), but 3963 * kick is called after new exceptions become available 3964 * and exceptions are checked earlier than here, by 3965 * kvmppc_core_prepare_to_enter. 3966 */ 3967 kvmppc_start_thread(vcpu, pvc); 3968 kvmppc_update_vpa_dispatch(vcpu, pvc); 3969 trace_kvm_guest_enter(vcpu); 3970 if (!vcpu->arch.ptid) 3971 thr0_done = true; 3972 active |= 1 << (thr + vcpu->arch.ptid); 3973 } 3974 /* 3975 * We need to start the first thread of each subcore 3976 * even if it doesn't have a vcpu. 3977 */ 3978 if (!thr0_done) 3979 kvmppc_start_thread(NULL, pvc); 3980 } 3981 3982 /* 3983 * Ensure that split_info.do_nap is set after setting 3984 * the vcore pointer in the PACA of the secondaries. 3985 */ 3986 smp_mb(); 3987 3988 /* 3989 * When doing micro-threading, poke the inactive threads as well. 3990 * This gets them to the nap instruction after kvm_do_nap, 3991 * which reduces the time taken to unsplit later. 3992 */ 3993 if (cmd_bit) { 3994 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3995 for (thr = 1; thr < threads_per_subcore; ++thr) 3996 if (!(active & (1 << thr))) 3997 kvmppc_ipi_thread(pcpu + thr); 3998 } 3999 4000 vc->vcore_state = VCORE_RUNNING; 4001 preempt_disable(); 4002 4003 trace_kvmppc_run_core(vc, 0); 4004 4005 for (sub = 0; sub < core_info.n_subcores; ++sub) 4006 spin_unlock(&core_info.vc[sub]->lock); 4007 4008 guest_timing_enter_irqoff(); 4009 4010 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 4011 4012 guest_state_enter_irqoff(); 4013 this_cpu_disable_ftrace(); 4014 4015 trap = __kvmppc_vcore_entry(); 4016 4017 this_cpu_enable_ftrace(); 4018 guest_state_exit_irqoff(); 4019 4020 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 4021 4022 set_irq_happened(trap); 4023 4024 spin_lock(&vc->lock); 4025 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 4026 vc->vcore_state = VCORE_EXITING; 4027 4028 /* wait for secondary threads to finish writing their state to memory */ 4029 kvmppc_wait_for_nap(controlled_threads); 4030 4031 /* Return to whole-core mode if we split the core earlier */ 4032 if (cmd_bit) { 4033 unsigned long hid0 = mfspr(SPRN_HID0); 4034 unsigned long loops = 0; 4035 4036 hid0 &= ~HID0_POWER8_DYNLPARDIS; 4037 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 4038 mb(); 4039 mtspr(SPRN_HID0, hid0); 4040 isync(); 4041 for (;;) { 4042 hid0 = mfspr(SPRN_HID0); 4043 if (!(hid0 & stat_bit)) 4044 break; 4045 cpu_relax(); 4046 ++loops; 4047 } 4048 split_info.do_nap = 0; 4049 } 4050 4051 kvmppc_set_host_core(pcpu); 4052 4053 if (!vtime_accounting_enabled_this_cpu()) { 4054 local_irq_enable(); 4055 /* 4056 * Service IRQs here before guest_timing_exit_irqoff() so any 4057 * ticks that occurred while running the guest are accounted to 4058 * the guest. If vtime accounting is enabled, accounting uses 4059 * TB rather than ticks, so it can be done without enabling 4060 * interrupts here, which has the problem that it accounts 4061 * interrupt processing overhead to the host. 4062 */ 4063 local_irq_disable(); 4064 } 4065 guest_timing_exit_irqoff(); 4066 4067 local_irq_enable(); 4068 4069 /* Let secondaries go back to the offline loop */ 4070 for (i = 0; i < controlled_threads; ++i) { 4071 kvmppc_release_hwthread(pcpu + i); 4072 if (sip && sip->napped[i]) 4073 kvmppc_ipi_thread(pcpu + i); 4074 } 4075 4076 spin_unlock(&vc->lock); 4077 4078 /* make sure updates to secondary vcpu structs are visible now */ 4079 smp_mb(); 4080 4081 preempt_enable(); 4082 4083 for (sub = 0; sub < core_info.n_subcores; ++sub) { 4084 pvc = core_info.vc[sub]; 4085 post_guest_process(pvc, pvc == vc); 4086 } 4087 4088 spin_lock(&vc->lock); 4089 4090 out: 4091 vc->vcore_state = VCORE_INACTIVE; 4092 trace_kvmppc_run_core(vc, 1); 4093 } 4094 4095 static inline bool hcall_is_xics(unsigned long req) 4096 { 4097 return req == H_EOI || req == H_CPPR || req == H_IPI || 4098 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 4099 } 4100 4101 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu) 4102 { 4103 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 4104 if (lp) { 4105 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 4106 lp->yield_count = cpu_to_be32(yield_count); 4107 vcpu->arch.vpa.dirty = 1; 4108 } 4109 } 4110 4111 static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit, 4112 unsigned long lpcr, u64 *tb) 4113 { 4114 struct kvmhv_nestedv2_io *io; 4115 unsigned long msr, i; 4116 int trap; 4117 long rc; 4118 4119 io = &vcpu->arch.nestedv2_io; 4120 4121 msr = mfmsr(); 4122 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4123 if (lazy_irq_pending()) 4124 return 0; 4125 4126 rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit); 4127 if (rc < 0) 4128 return -EINVAL; 4129 4130 kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr); 4131 4132 accumulate_time(vcpu, &vcpu->arch.in_guest); 4133 rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id, 4134 &trap, &i); 4135 4136 if (rc != H_SUCCESS) { 4137 pr_err("KVM Guest Run VCPU hcall failed\n"); 4138 if (rc == H_INVALID_ELEMENT_ID) 4139 pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i); 4140 else if (rc == H_INVALID_ELEMENT_SIZE) 4141 pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i); 4142 else if (rc == H_INVALID_ELEMENT_VALUE) 4143 pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i); 4144 return -EINVAL; 4145 } 4146 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4147 4148 *tb = mftb(); 4149 kvmppc_gsm_reset(io->vcpu_message); 4150 kvmppc_gsm_reset(io->vcore_message); 4151 kvmppc_gsbm_zero(&io->valids); 4152 4153 rc = kvmhv_nestedv2_parse_output(vcpu); 4154 if (rc < 0) 4155 return -EINVAL; 4156 4157 timer_rearm_host_dec(*tb); 4158 4159 return trap; 4160 } 4161 4162 /* call our hypervisor to load up HV regs and go */ 4163 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) 4164 { 4165 unsigned long host_psscr; 4166 unsigned long msr; 4167 struct hv_guest_state hvregs; 4168 struct p9_host_os_sprs host_os_sprs; 4169 s64 dec; 4170 int trap; 4171 4172 msr = mfmsr(); 4173 4174 save_p9_host_os_sprs(&host_os_sprs); 4175 4176 /* 4177 * We need to save and restore the guest visible part of the 4178 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 4179 * doesn't do this for us. Note only required if pseries since 4180 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 4181 */ 4182 host_psscr = mfspr(SPRN_PSSCR_PR); 4183 4184 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4185 if (lazy_irq_pending()) 4186 return 0; 4187 4188 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) 4189 msr = mfmsr(); /* TM restore can update msr */ 4190 4191 if (vcpu->arch.psscr != host_psscr) 4192 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 4193 4194 kvmhv_save_hv_regs(vcpu, &hvregs); 4195 hvregs.lpcr = lpcr; 4196 hvregs.amor = ~0; 4197 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 4198 hvregs.version = HV_GUEST_STATE_VERSION; 4199 if (vcpu->arch.nested) { 4200 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 4201 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 4202 } else { 4203 hvregs.lpid = vcpu->kvm->arch.lpid; 4204 hvregs.vcpu_token = vcpu->vcpu_id; 4205 } 4206 hvregs.hdec_expiry = time_limit; 4207 4208 /* 4209 * When setting DEC, we must always deal with irq_work_raise 4210 * via NMI vs setting DEC. The problem occurs right as we 4211 * switch into guest mode if a NMI hits and sets pending work 4212 * and sets DEC, then that will apply to the guest and not 4213 * bring us back to the host. 4214 * 4215 * irq_work_raise could check a flag (or possibly LPCR[HDICE] 4216 * for example) and set HDEC to 1? That wouldn't solve the 4217 * nested hv case which needs to abort the hcall or zero the 4218 * time limit. 4219 * 4220 * XXX: Another day's problem. 4221 */ 4222 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb); 4223 4224 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 4225 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 4226 switch_pmu_to_guest(vcpu, &host_os_sprs); 4227 accumulate_time(vcpu, &vcpu->arch.in_guest); 4228 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 4229 __pa(&vcpu->arch.regs)); 4230 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4231 kvmhv_restore_hv_return_state(vcpu, &hvregs); 4232 switch_pmu_to_host(vcpu, &host_os_sprs); 4233 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 4234 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 4235 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 4236 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 4237 4238 store_vcpu_state(vcpu); 4239 4240 dec = mfspr(SPRN_DEC); 4241 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 4242 dec = (s32) dec; 4243 *tb = mftb(); 4244 vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu)); 4245 4246 timer_rearm_host_dec(*tb); 4247 4248 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 4249 if (vcpu->arch.psscr != host_psscr) 4250 mtspr(SPRN_PSSCR_PR, host_psscr); 4251 4252 return trap; 4253 } 4254 4255 /* 4256 * Guest entry for POWER9 and later CPUs. 4257 */ 4258 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 4259 unsigned long lpcr, u64 *tb) 4260 { 4261 struct kvm *kvm = vcpu->kvm; 4262 struct kvm_nested_guest *nested = vcpu->arch.nested; 4263 u64 next_timer; 4264 int trap; 4265 4266 next_timer = timer_get_next_tb(); 4267 if (*tb >= next_timer) 4268 return BOOK3S_INTERRUPT_HV_DECREMENTER; 4269 if (next_timer < time_limit) 4270 time_limit = next_timer; 4271 else if (*tb >= time_limit) /* nested time limit */ 4272 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER; 4273 4274 vcpu->arch.ceded = 0; 4275 4276 vcpu_vpa_increment_dispatch(vcpu); 4277 4278 if (kvmhv_on_pseries()) { 4279 if (kvmhv_is_nestedv1()) 4280 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb); 4281 else 4282 trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb); 4283 4284 /* H_CEDE has to be handled now, not later */ 4285 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested && 4286 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 4287 kvmppc_cede(vcpu); 4288 kvmppc_set_gpr(vcpu, 3, 0); 4289 trap = 0; 4290 } 4291 4292 } else if (nested) { 4293 __this_cpu_write(cpu_in_guest, kvm); 4294 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4295 __this_cpu_write(cpu_in_guest, NULL); 4296 4297 } else { 4298 kvmppc_xive_push_vcpu(vcpu); 4299 4300 __this_cpu_write(cpu_in_guest, kvm); 4301 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4302 __this_cpu_write(cpu_in_guest, NULL); 4303 4304 if (trap == BOOK3S_INTERRUPT_SYSCALL && 4305 !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 4306 unsigned long req = kvmppc_get_gpr(vcpu, 3); 4307 4308 /* 4309 * XIVE rearm and XICS hcalls must be handled 4310 * before xive context is pulled (is this 4311 * true?) 4312 */ 4313 if (req == H_CEDE) { 4314 /* H_CEDE has to be handled now */ 4315 kvmppc_cede(vcpu); 4316 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4317 /* 4318 * Pending escalation so abort 4319 * the cede. 4320 */ 4321 vcpu->arch.ceded = 0; 4322 } 4323 kvmppc_set_gpr(vcpu, 3, 0); 4324 trap = 0; 4325 4326 } else if (req == H_ENTER_NESTED) { 4327 /* 4328 * L2 should not run with the L1 4329 * context so rearm and pull it. 4330 */ 4331 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4332 /* 4333 * Pending escalation so abort 4334 * H_ENTER_NESTED. 4335 */ 4336 kvmppc_set_gpr(vcpu, 3, 0); 4337 trap = 0; 4338 } 4339 4340 } else if (hcall_is_xics(req)) { 4341 int ret; 4342 4343 ret = kvmppc_xive_xics_hcall(vcpu, req); 4344 if (ret != H_TOO_HARD) { 4345 kvmppc_set_gpr(vcpu, 3, ret); 4346 trap = 0; 4347 } 4348 } 4349 } 4350 kvmppc_xive_pull_vcpu(vcpu); 4351 4352 if (kvm_is_radix(kvm)) 4353 vcpu->arch.slb_max = 0; 4354 } 4355 4356 vcpu_vpa_increment_dispatch(vcpu); 4357 4358 return trap; 4359 } 4360 4361 /* 4362 * Wait for some other vcpu thread to execute us, and 4363 * wake us up when we need to handle something in the host. 4364 */ 4365 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 4366 struct kvm_vcpu *vcpu, int wait_state) 4367 { 4368 DEFINE_WAIT(wait); 4369 4370 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 4371 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4372 spin_unlock(&vc->lock); 4373 schedule(); 4374 spin_lock(&vc->lock); 4375 } 4376 finish_wait(&vcpu->arch.cpu_run, &wait); 4377 } 4378 4379 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 4380 { 4381 if (!halt_poll_ns_grow) 4382 return; 4383 4384 vc->halt_poll_ns *= halt_poll_ns_grow; 4385 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 4386 vc->halt_poll_ns = halt_poll_ns_grow_start; 4387 } 4388 4389 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 4390 { 4391 if (halt_poll_ns_shrink == 0) 4392 vc->halt_poll_ns = 0; 4393 else 4394 vc->halt_poll_ns /= halt_poll_ns_shrink; 4395 } 4396 4397 #ifdef CONFIG_KVM_XICS 4398 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4399 { 4400 if (!xics_on_xive()) 4401 return false; 4402 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 4403 vcpu->arch.xive_saved_state.cppr; 4404 } 4405 #else 4406 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4407 { 4408 return false; 4409 } 4410 #endif /* CONFIG_KVM_XICS */ 4411 4412 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 4413 { 4414 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 4415 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 4416 return true; 4417 4418 return false; 4419 } 4420 4421 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu) 4422 { 4423 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 4424 return true; 4425 return false; 4426 } 4427 4428 /* 4429 * Check to see if any of the runnable vcpus on the vcore have pending 4430 * exceptions or are no longer ceded 4431 */ 4432 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 4433 { 4434 struct kvm_vcpu *vcpu; 4435 int i; 4436 4437 for_each_runnable_thread(i, vcpu, vc) { 4438 if (kvmppc_vcpu_check_block(vcpu)) 4439 return 1; 4440 } 4441 4442 return 0; 4443 } 4444 4445 /* 4446 * All the vcpus in this vcore are idle, so wait for a decrementer 4447 * or external interrupt to one of the vcpus. vc->lock is held. 4448 */ 4449 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 4450 { 4451 ktime_t cur, start_poll, start_wait; 4452 int do_sleep = 1; 4453 u64 block_ns; 4454 4455 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 4456 4457 /* Poll for pending exceptions and ceded state */ 4458 cur = start_poll = ktime_get(); 4459 if (vc->halt_poll_ns) { 4460 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4461 ++vc->runner->stat.generic.halt_attempted_poll; 4462 4463 vc->vcore_state = VCORE_POLLING; 4464 spin_unlock(&vc->lock); 4465 4466 do { 4467 if (kvmppc_vcore_check_block(vc)) { 4468 do_sleep = 0; 4469 break; 4470 } 4471 cur = ktime_get(); 4472 } while (kvm_vcpu_can_poll(cur, stop)); 4473 4474 spin_lock(&vc->lock); 4475 vc->vcore_state = VCORE_INACTIVE; 4476 4477 if (!do_sleep) { 4478 ++vc->runner->stat.generic.halt_successful_poll; 4479 goto out; 4480 } 4481 } 4482 4483 prepare_to_rcuwait(&vc->wait); 4484 set_current_state(TASK_INTERRUPTIBLE); 4485 if (kvmppc_vcore_check_block(vc)) { 4486 finish_rcuwait(&vc->wait); 4487 do_sleep = 0; 4488 /* If we polled, count this as a successful poll */ 4489 if (vc->halt_poll_ns) 4490 ++vc->runner->stat.generic.halt_successful_poll; 4491 goto out; 4492 } 4493 4494 start_wait = ktime_get(); 4495 4496 vc->vcore_state = VCORE_SLEEPING; 4497 trace_kvmppc_vcore_blocked(vc->runner, 0); 4498 spin_unlock(&vc->lock); 4499 schedule(); 4500 finish_rcuwait(&vc->wait); 4501 spin_lock(&vc->lock); 4502 vc->vcore_state = VCORE_INACTIVE; 4503 trace_kvmppc_vcore_blocked(vc->runner, 1); 4504 ++vc->runner->stat.halt_successful_wait; 4505 4506 cur = ktime_get(); 4507 4508 out: 4509 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4510 4511 /* Attribute wait time */ 4512 if (do_sleep) { 4513 vc->runner->stat.generic.halt_wait_ns += 4514 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4515 KVM_STATS_LOG_HIST_UPDATE( 4516 vc->runner->stat.generic.halt_wait_hist, 4517 ktime_to_ns(cur) - ktime_to_ns(start_wait)); 4518 /* Attribute failed poll time */ 4519 if (vc->halt_poll_ns) { 4520 vc->runner->stat.generic.halt_poll_fail_ns += 4521 ktime_to_ns(start_wait) - 4522 ktime_to_ns(start_poll); 4523 KVM_STATS_LOG_HIST_UPDATE( 4524 vc->runner->stat.generic.halt_poll_fail_hist, 4525 ktime_to_ns(start_wait) - 4526 ktime_to_ns(start_poll)); 4527 } 4528 } else { 4529 /* Attribute successful poll time */ 4530 if (vc->halt_poll_ns) { 4531 vc->runner->stat.generic.halt_poll_success_ns += 4532 ktime_to_ns(cur) - 4533 ktime_to_ns(start_poll); 4534 KVM_STATS_LOG_HIST_UPDATE( 4535 vc->runner->stat.generic.halt_poll_success_hist, 4536 ktime_to_ns(cur) - ktime_to_ns(start_poll)); 4537 } 4538 } 4539 4540 /* Adjust poll time */ 4541 if (halt_poll_ns) { 4542 if (block_ns <= vc->halt_poll_ns) 4543 ; 4544 /* We slept and blocked for longer than the max halt time */ 4545 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4546 shrink_halt_poll_ns(vc); 4547 /* We slept and our poll time is too small */ 4548 else if (vc->halt_poll_ns < halt_poll_ns && 4549 block_ns < halt_poll_ns) 4550 grow_halt_poll_ns(vc); 4551 if (vc->halt_poll_ns > halt_poll_ns) 4552 vc->halt_poll_ns = halt_poll_ns; 4553 } else 4554 vc->halt_poll_ns = 0; 4555 4556 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4557 } 4558 4559 /* 4560 * This never fails for a radix guest, as none of the operations it does 4561 * for a radix guest can fail or have a way to report failure. 4562 */ 4563 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4564 { 4565 int r = 0; 4566 struct kvm *kvm = vcpu->kvm; 4567 4568 mutex_lock(&kvm->arch.mmu_setup_lock); 4569 if (!kvm->arch.mmu_ready) { 4570 if (!kvm_is_radix(kvm)) 4571 r = kvmppc_hv_setup_htab_rma(vcpu); 4572 if (!r) { 4573 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4574 kvmppc_setup_partition_table(kvm); 4575 kvm->arch.mmu_ready = 1; 4576 } 4577 } 4578 mutex_unlock(&kvm->arch.mmu_setup_lock); 4579 return r; 4580 } 4581 4582 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4583 { 4584 struct kvm_run *run = vcpu->run; 4585 int n_ceded, i, r; 4586 struct kvmppc_vcore *vc; 4587 struct kvm_vcpu *v; 4588 4589 trace_kvmppc_run_vcpu_enter(vcpu); 4590 4591 run->exit_reason = 0; 4592 vcpu->arch.ret = RESUME_GUEST; 4593 vcpu->arch.trap = 0; 4594 kvmppc_update_vpas(vcpu); 4595 4596 /* 4597 * Synchronize with other threads in this virtual core 4598 */ 4599 vc = vcpu->arch.vcore; 4600 spin_lock(&vc->lock); 4601 vcpu->arch.ceded = 0; 4602 vcpu->arch.run_task = current; 4603 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4604 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4605 vcpu->arch.busy_preempt = TB_NIL; 4606 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4607 ++vc->n_runnable; 4608 4609 /* 4610 * This happens the first time this is called for a vcpu. 4611 * If the vcore is already running, we may be able to start 4612 * this thread straight away and have it join in. 4613 */ 4614 if (!signal_pending(current)) { 4615 if ((vc->vcore_state == VCORE_PIGGYBACK || 4616 vc->vcore_state == VCORE_RUNNING) && 4617 !VCORE_IS_EXITING(vc)) { 4618 kvmppc_update_vpa_dispatch(vcpu, vc); 4619 kvmppc_start_thread(vcpu, vc); 4620 trace_kvm_guest_enter(vcpu); 4621 } else if (vc->vcore_state == VCORE_SLEEPING) { 4622 rcuwait_wake_up(&vc->wait); 4623 } 4624 4625 } 4626 4627 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4628 !signal_pending(current)) { 4629 /* See if the MMU is ready to go */ 4630 if (!vcpu->kvm->arch.mmu_ready) { 4631 spin_unlock(&vc->lock); 4632 r = kvmhv_setup_mmu(vcpu); 4633 spin_lock(&vc->lock); 4634 if (r) { 4635 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4636 run->fail_entry. 4637 hardware_entry_failure_reason = 0; 4638 vcpu->arch.ret = r; 4639 break; 4640 } 4641 } 4642 4643 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4644 kvmppc_vcore_end_preempt(vc); 4645 4646 if (vc->vcore_state != VCORE_INACTIVE) { 4647 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4648 continue; 4649 } 4650 for_each_runnable_thread(i, v, vc) { 4651 kvmppc_core_prepare_to_enter(v); 4652 if (signal_pending(v->arch.run_task)) { 4653 kvmppc_remove_runnable(vc, v, mftb()); 4654 v->stat.signal_exits++; 4655 v->run->exit_reason = KVM_EXIT_INTR; 4656 v->arch.ret = -EINTR; 4657 wake_up(&v->arch.cpu_run); 4658 } 4659 } 4660 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4661 break; 4662 n_ceded = 0; 4663 for_each_runnable_thread(i, v, vc) { 4664 if (!kvmppc_vcpu_woken(v)) 4665 n_ceded += v->arch.ceded; 4666 else 4667 v->arch.ceded = 0; 4668 } 4669 vc->runner = vcpu; 4670 if (n_ceded == vc->n_runnable) { 4671 kvmppc_vcore_blocked(vc); 4672 } else if (need_resched()) { 4673 kvmppc_vcore_preempt(vc); 4674 /* Let something else run */ 4675 cond_resched_lock(&vc->lock); 4676 if (vc->vcore_state == VCORE_PREEMPT) 4677 kvmppc_vcore_end_preempt(vc); 4678 } else { 4679 kvmppc_run_core(vc); 4680 } 4681 vc->runner = NULL; 4682 } 4683 4684 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4685 (vc->vcore_state == VCORE_RUNNING || 4686 vc->vcore_state == VCORE_EXITING || 4687 vc->vcore_state == VCORE_PIGGYBACK)) 4688 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4689 4690 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4691 kvmppc_vcore_end_preempt(vc); 4692 4693 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4694 kvmppc_remove_runnable(vc, vcpu, mftb()); 4695 vcpu->stat.signal_exits++; 4696 run->exit_reason = KVM_EXIT_INTR; 4697 vcpu->arch.ret = -EINTR; 4698 } 4699 4700 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4701 /* Wake up some vcpu to run the core */ 4702 i = -1; 4703 v = next_runnable_thread(vc, &i); 4704 wake_up(&v->arch.cpu_run); 4705 } 4706 4707 trace_kvmppc_run_vcpu_exit(vcpu); 4708 spin_unlock(&vc->lock); 4709 return vcpu->arch.ret; 4710 } 4711 4712 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4713 unsigned long lpcr) 4714 { 4715 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 4716 struct kvm_run *run = vcpu->run; 4717 int trap, r, pcpu; 4718 int srcu_idx; 4719 struct kvmppc_vcore *vc; 4720 struct kvm *kvm = vcpu->kvm; 4721 struct kvm_nested_guest *nested = vcpu->arch.nested; 4722 unsigned long flags; 4723 u64 tb; 4724 4725 trace_kvmppc_run_vcpu_enter(vcpu); 4726 4727 run->exit_reason = 0; 4728 vcpu->arch.ret = RESUME_GUEST; 4729 vcpu->arch.trap = 0; 4730 4731 vc = vcpu->arch.vcore; 4732 vcpu->arch.ceded = 0; 4733 vcpu->arch.run_task = current; 4734 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4735 4736 /* See if the MMU is ready to go */ 4737 if (unlikely(!kvm->arch.mmu_ready)) { 4738 r = kvmhv_setup_mmu(vcpu); 4739 if (r) { 4740 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4741 run->fail_entry.hardware_entry_failure_reason = 0; 4742 vcpu->arch.ret = r; 4743 return r; 4744 } 4745 } 4746 4747 if (need_resched()) 4748 cond_resched(); 4749 4750 kvmppc_update_vpas(vcpu); 4751 4752 preempt_disable(); 4753 pcpu = smp_processor_id(); 4754 if (kvm_is_radix(kvm)) 4755 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4756 4757 /* flags save not required, but irq_pmu has no disable/enable API */ 4758 powerpc_local_irq_pmu_save(flags); 4759 4760 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4761 4762 if (signal_pending(current)) 4763 goto sigpend; 4764 if (need_resched() || !kvm->arch.mmu_ready) 4765 goto out; 4766 4767 vcpu->cpu = pcpu; 4768 vcpu->arch.thread_cpu = pcpu; 4769 vc->pcpu = pcpu; 4770 local_paca->kvm_hstate.kvm_vcpu = vcpu; 4771 local_paca->kvm_hstate.ptid = 0; 4772 local_paca->kvm_hstate.fake_suspend = 0; 4773 4774 /* 4775 * Orders set cpu/thread_cpu vs testing for pending interrupts and 4776 * doorbells below. The other side is when these fields are set vs 4777 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to 4778 * kick a vCPU to notice the pending interrupt. 4779 */ 4780 smp_mb(); 4781 4782 if (!nested) { 4783 kvmppc_core_prepare_to_enter(vcpu); 4784 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4785 &vcpu->arch.pending_exceptions) || 4786 xive_interrupt_pending(vcpu)) { 4787 /* 4788 * For nested HV, don't synthesize but always pass MER, 4789 * the L0 will be able to optimise that more 4790 * effectively than manipulating registers directly. 4791 */ 4792 if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE)) 4793 kvmppc_inject_interrupt_hv(vcpu, 4794 BOOK3S_INTERRUPT_EXTERNAL, 0); 4795 else 4796 lpcr |= LPCR_MER; 4797 } 4798 } else if (vcpu->arch.pending_exceptions || 4799 vcpu->arch.doorbell_request || 4800 xive_interrupt_pending(vcpu)) { 4801 vcpu->arch.ret = RESUME_HOST; 4802 goto out; 4803 } 4804 4805 if (vcpu->arch.timer_running) { 4806 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 4807 vcpu->arch.timer_running = 0; 4808 } 4809 4810 tb = mftb(); 4811 4812 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu)); 4813 4814 trace_kvm_guest_enter(vcpu); 4815 4816 guest_timing_enter_irqoff(); 4817 4818 srcu_idx = srcu_read_lock(&kvm->srcu); 4819 4820 guest_state_enter_irqoff(); 4821 this_cpu_disable_ftrace(); 4822 4823 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb); 4824 vcpu->arch.trap = trap; 4825 4826 this_cpu_enable_ftrace(); 4827 guest_state_exit_irqoff(); 4828 4829 srcu_read_unlock(&kvm->srcu, srcu_idx); 4830 4831 set_irq_happened(trap); 4832 4833 vcpu->cpu = -1; 4834 vcpu->arch.thread_cpu = -1; 4835 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4836 4837 if (!vtime_accounting_enabled_this_cpu()) { 4838 powerpc_local_irq_pmu_restore(flags); 4839 /* 4840 * Service IRQs here before guest_timing_exit_irqoff() so any 4841 * ticks that occurred while running the guest are accounted to 4842 * the guest. If vtime accounting is enabled, accounting uses 4843 * TB rather than ticks, so it can be done without enabling 4844 * interrupts here, which has the problem that it accounts 4845 * interrupt processing overhead to the host. 4846 */ 4847 powerpc_local_irq_pmu_save(flags); 4848 } 4849 guest_timing_exit_irqoff(); 4850 4851 powerpc_local_irq_pmu_restore(flags); 4852 4853 preempt_enable(); 4854 4855 /* 4856 * cancel pending decrementer exception if DEC is now positive, or if 4857 * entering a nested guest in which case the decrementer is now owned 4858 * by L2 and the L1 decrementer is provided in hdec_expires 4859 */ 4860 if (kvmppc_core_pending_dec(vcpu) && 4861 ((tb < kvmppc_dec_expires_host_tb(vcpu)) || 4862 (trap == BOOK3S_INTERRUPT_SYSCALL && 4863 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4864 kvmppc_core_dequeue_dec(vcpu); 4865 4866 trace_kvm_guest_exit(vcpu); 4867 r = RESUME_GUEST; 4868 if (trap) { 4869 if (!nested) 4870 r = kvmppc_handle_exit_hv(vcpu, current); 4871 else 4872 r = kvmppc_handle_nested_exit(vcpu); 4873 } 4874 vcpu->arch.ret = r; 4875 4876 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) { 4877 kvmppc_set_timer(vcpu); 4878 4879 prepare_to_rcuwait(wait); 4880 for (;;) { 4881 set_current_state(TASK_INTERRUPTIBLE); 4882 if (signal_pending(current)) { 4883 vcpu->stat.signal_exits++; 4884 run->exit_reason = KVM_EXIT_INTR; 4885 vcpu->arch.ret = -EINTR; 4886 break; 4887 } 4888 4889 if (kvmppc_vcpu_check_block(vcpu)) 4890 break; 4891 4892 trace_kvmppc_vcore_blocked(vcpu, 0); 4893 schedule(); 4894 trace_kvmppc_vcore_blocked(vcpu, 1); 4895 } 4896 finish_rcuwait(wait); 4897 } 4898 vcpu->arch.ceded = 0; 4899 4900 done: 4901 trace_kvmppc_run_vcpu_exit(vcpu); 4902 4903 return vcpu->arch.ret; 4904 4905 sigpend: 4906 vcpu->stat.signal_exits++; 4907 run->exit_reason = KVM_EXIT_INTR; 4908 vcpu->arch.ret = -EINTR; 4909 out: 4910 vcpu->cpu = -1; 4911 vcpu->arch.thread_cpu = -1; 4912 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4913 powerpc_local_irq_pmu_restore(flags); 4914 preempt_enable(); 4915 goto done; 4916 } 4917 4918 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4919 { 4920 struct kvm_run *run = vcpu->run; 4921 int r; 4922 int srcu_idx; 4923 struct kvm *kvm; 4924 unsigned long msr; 4925 4926 start_timing(vcpu, &vcpu->arch.vcpu_entry); 4927 4928 if (!vcpu->arch.sane) { 4929 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4930 return -EINVAL; 4931 } 4932 4933 /* No need to go into the guest when all we'll do is come back out */ 4934 if (signal_pending(current)) { 4935 run->exit_reason = KVM_EXIT_INTR; 4936 return -EINTR; 4937 } 4938 4939 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4940 /* 4941 * Don't allow entry with a suspended transaction, because 4942 * the guest entry/exit code will lose it. 4943 */ 4944 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4945 (current->thread.regs->msr & MSR_TM)) { 4946 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4947 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4948 run->fail_entry.hardware_entry_failure_reason = 0; 4949 return -EINVAL; 4950 } 4951 } 4952 #endif 4953 4954 /* 4955 * Force online to 1 for the sake of old userspace which doesn't 4956 * set it. 4957 */ 4958 if (!vcpu->arch.online) { 4959 atomic_inc(&vcpu->arch.vcore->online_count); 4960 vcpu->arch.online = 1; 4961 } 4962 4963 kvmppc_core_prepare_to_enter(vcpu); 4964 4965 kvm = vcpu->kvm; 4966 atomic_inc(&kvm->arch.vcpus_running); 4967 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4968 smp_mb(); 4969 4970 msr = 0; 4971 if (IS_ENABLED(CONFIG_PPC_FPU)) 4972 msr |= MSR_FP; 4973 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 4974 msr |= MSR_VEC; 4975 if (cpu_has_feature(CPU_FTR_VSX)) 4976 msr |= MSR_VSX; 4977 if ((cpu_has_feature(CPU_FTR_TM) || 4978 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && 4979 (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM)) 4980 msr |= MSR_TM; 4981 msr = msr_check_and_set(msr); 4982 4983 kvmppc_save_user_regs(); 4984 4985 kvmppc_save_current_sprs(); 4986 4987 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4988 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4989 vcpu->arch.pgdir = kvm->mm->pgd; 4990 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4991 4992 do { 4993 accumulate_time(vcpu, &vcpu->arch.guest_entry); 4994 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4995 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4996 vcpu->arch.vcore->lpcr); 4997 else 4998 r = kvmppc_run_vcpu(vcpu); 4999 5000 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 5001 accumulate_time(vcpu, &vcpu->arch.hcall); 5002 5003 if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) { 5004 /* 5005 * These should have been caught reflected 5006 * into the guest by now. Final sanity check: 5007 * don't allow userspace to execute hcalls in 5008 * the hypervisor. 5009 */ 5010 r = RESUME_GUEST; 5011 continue; 5012 } 5013 trace_kvm_hcall_enter(vcpu); 5014 r = kvmppc_pseries_do_hcall(vcpu); 5015 trace_kvm_hcall_exit(vcpu, r); 5016 kvmppc_core_prepare_to_enter(vcpu); 5017 } else if (r == RESUME_PAGE_FAULT) { 5018 accumulate_time(vcpu, &vcpu->arch.pg_fault); 5019 srcu_idx = srcu_read_lock(&kvm->srcu); 5020 r = kvmppc_book3s_hv_page_fault(vcpu, 5021 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 5022 srcu_read_unlock(&kvm->srcu, srcu_idx); 5023 } else if (r == RESUME_PASSTHROUGH) { 5024 if (WARN_ON(xics_on_xive())) 5025 r = H_SUCCESS; 5026 else 5027 r = kvmppc_xics_rm_complete(vcpu, 0); 5028 } 5029 } while (is_kvmppc_resume_guest(r)); 5030 accumulate_time(vcpu, &vcpu->arch.vcpu_exit); 5031 5032 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 5033 atomic_dec(&kvm->arch.vcpus_running); 5034 5035 srr_regs_clobbered(); 5036 5037 end_timing(vcpu); 5038 5039 return r; 5040 } 5041 5042 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 5043 int shift, int sllp) 5044 { 5045 (*sps)->page_shift = shift; 5046 (*sps)->slb_enc = sllp; 5047 (*sps)->enc[0].page_shift = shift; 5048 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 5049 /* 5050 * Add 16MB MPSS support (may get filtered out by userspace) 5051 */ 5052 if (shift != 24) { 5053 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 5054 if (penc != -1) { 5055 (*sps)->enc[1].page_shift = 24; 5056 (*sps)->enc[1].pte_enc = penc; 5057 } 5058 } 5059 (*sps)++; 5060 } 5061 5062 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 5063 struct kvm_ppc_smmu_info *info) 5064 { 5065 struct kvm_ppc_one_seg_page_size *sps; 5066 5067 /* 5068 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 5069 * POWER7 doesn't support keys for instruction accesses, 5070 * POWER8 and POWER9 do. 5071 */ 5072 info->data_keys = 32; 5073 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 5074 5075 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 5076 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 5077 info->slb_size = 32; 5078 5079 /* We only support these sizes for now, and no muti-size segments */ 5080 sps = &info->sps[0]; 5081 kvmppc_add_seg_page_size(&sps, 12, 0); 5082 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 5083 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 5084 5085 /* If running as a nested hypervisor, we don't support HPT guests */ 5086 if (kvmhv_on_pseries()) 5087 info->flags |= KVM_PPC_NO_HASH; 5088 5089 return 0; 5090 } 5091 5092 /* 5093 * Get (and clear) the dirty memory log for a memory slot. 5094 */ 5095 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 5096 struct kvm_dirty_log *log) 5097 { 5098 struct kvm_memslots *slots; 5099 struct kvm_memory_slot *memslot; 5100 int r; 5101 unsigned long n, i; 5102 unsigned long *buf, *p; 5103 struct kvm_vcpu *vcpu; 5104 5105 mutex_lock(&kvm->slots_lock); 5106 5107 r = -EINVAL; 5108 if (log->slot >= KVM_USER_MEM_SLOTS) 5109 goto out; 5110 5111 slots = kvm_memslots(kvm); 5112 memslot = id_to_memslot(slots, log->slot); 5113 r = -ENOENT; 5114 if (!memslot || !memslot->dirty_bitmap) 5115 goto out; 5116 5117 /* 5118 * Use second half of bitmap area because both HPT and radix 5119 * accumulate bits in the first half. 5120 */ 5121 n = kvm_dirty_bitmap_bytes(memslot); 5122 buf = memslot->dirty_bitmap + n / sizeof(long); 5123 memset(buf, 0, n); 5124 5125 if (kvm_is_radix(kvm)) 5126 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 5127 else 5128 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 5129 if (r) 5130 goto out; 5131 5132 /* 5133 * We accumulate dirty bits in the first half of the 5134 * memslot's dirty_bitmap area, for when pages are paged 5135 * out or modified by the host directly. Pick up these 5136 * bits and add them to the map. 5137 */ 5138 p = memslot->dirty_bitmap; 5139 for (i = 0; i < n / sizeof(long); ++i) 5140 buf[i] |= xchg(&p[i], 0); 5141 5142 /* Harvest dirty bits from VPA and DTL updates */ 5143 /* Note: we never modify the SLB shadow buffer areas */ 5144 kvm_for_each_vcpu(i, vcpu, kvm) { 5145 spin_lock(&vcpu->arch.vpa_update_lock); 5146 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 5147 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 5148 spin_unlock(&vcpu->arch.vpa_update_lock); 5149 } 5150 5151 r = -EFAULT; 5152 if (copy_to_user(log->dirty_bitmap, buf, n)) 5153 goto out; 5154 5155 r = 0; 5156 out: 5157 mutex_unlock(&kvm->slots_lock); 5158 return r; 5159 } 5160 5161 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 5162 { 5163 vfree(slot->arch.rmap); 5164 slot->arch.rmap = NULL; 5165 } 5166 5167 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 5168 const struct kvm_memory_slot *old, 5169 struct kvm_memory_slot *new, 5170 enum kvm_mr_change change) 5171 { 5172 if (change == KVM_MR_CREATE) { 5173 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap)); 5174 5175 if ((size >> PAGE_SHIFT) > totalram_pages()) 5176 return -ENOMEM; 5177 5178 new->arch.rmap = vzalloc(size); 5179 if (!new->arch.rmap) 5180 return -ENOMEM; 5181 } else if (change != KVM_MR_DELETE) { 5182 new->arch.rmap = old->arch.rmap; 5183 } 5184 5185 return 0; 5186 } 5187 5188 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 5189 struct kvm_memory_slot *old, 5190 const struct kvm_memory_slot *new, 5191 enum kvm_mr_change change) 5192 { 5193 /* 5194 * If we are creating or modifying a memslot, it might make 5195 * some address that was previously cached as emulated 5196 * MMIO be no longer emulated MMIO, so invalidate 5197 * all the caches of emulated MMIO translations. 5198 */ 5199 if (change != KVM_MR_DELETE) 5200 atomic64_inc(&kvm->arch.mmio_update); 5201 5202 /* 5203 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 5204 * have already called kvm_arch_flush_shadow_memslot() to 5205 * flush shadow mappings. For KVM_MR_CREATE we have no 5206 * previous mappings. So the only case to handle is 5207 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 5208 * has been changed. 5209 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 5210 * to get rid of any THP PTEs in the partition-scoped page tables 5211 * so we can track dirtiness at the page level; we flush when 5212 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 5213 * using THP PTEs. 5214 */ 5215 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 5216 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 5217 kvmppc_radix_flush_memslot(kvm, old); 5218 /* 5219 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 5220 */ 5221 if (!kvm->arch.secure_guest) 5222 return; 5223 5224 switch (change) { 5225 case KVM_MR_CREATE: 5226 /* 5227 * @TODO kvmppc_uvmem_memslot_create() can fail and 5228 * return error. Fix this. 5229 */ 5230 kvmppc_uvmem_memslot_create(kvm, new); 5231 break; 5232 case KVM_MR_DELETE: 5233 kvmppc_uvmem_memslot_delete(kvm, old); 5234 break; 5235 default: 5236 /* TODO: Handle KVM_MR_MOVE */ 5237 break; 5238 } 5239 } 5240 5241 /* 5242 * Update LPCR values in kvm->arch and in vcores. 5243 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 5244 * of kvm->arch.lpcr update). 5245 */ 5246 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 5247 { 5248 long int i; 5249 u32 cores_done = 0; 5250 5251 if ((kvm->arch.lpcr & mask) == lpcr) 5252 return; 5253 5254 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 5255 5256 for (i = 0; i < KVM_MAX_VCORES; ++i) { 5257 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 5258 if (!vc) 5259 continue; 5260 5261 spin_lock(&vc->lock); 5262 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 5263 verify_lpcr(kvm, vc->lpcr); 5264 spin_unlock(&vc->lock); 5265 if (++cores_done >= kvm->arch.online_vcores) 5266 break; 5267 } 5268 5269 if (kvmhv_is_nestedv2()) { 5270 struct kvm_vcpu *vcpu; 5271 5272 kvm_for_each_vcpu(i, vcpu, kvm) { 5273 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR); 5274 } 5275 } 5276 } 5277 5278 void kvmppc_setup_partition_table(struct kvm *kvm) 5279 { 5280 unsigned long dw0, dw1; 5281 5282 if (!kvm_is_radix(kvm)) { 5283 /* PS field - page size for VRMA */ 5284 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 5285 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 5286 /* HTABSIZE and HTABORG fields */ 5287 dw0 |= kvm->arch.sdr1; 5288 5289 /* Second dword as set by userspace */ 5290 dw1 = kvm->arch.process_table; 5291 } else { 5292 dw0 = PATB_HR | radix__get_tree_size() | 5293 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 5294 dw1 = PATB_GR | kvm->arch.process_table; 5295 } 5296 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 5297 } 5298 5299 /* 5300 * Set up HPT (hashed page table) and RMA (real-mode area). 5301 * Must be called with kvm->arch.mmu_setup_lock held. 5302 */ 5303 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 5304 { 5305 int err = 0; 5306 struct kvm *kvm = vcpu->kvm; 5307 unsigned long hva; 5308 struct kvm_memory_slot *memslot; 5309 struct vm_area_struct *vma; 5310 unsigned long lpcr = 0, senc; 5311 unsigned long psize, porder; 5312 int srcu_idx; 5313 5314 /* Allocate hashed page table (if not done already) and reset it */ 5315 if (!kvm->arch.hpt.virt) { 5316 int order = KVM_DEFAULT_HPT_ORDER; 5317 struct kvm_hpt_info info; 5318 5319 err = kvmppc_allocate_hpt(&info, order); 5320 /* If we get here, it means userspace didn't specify a 5321 * size explicitly. So, try successively smaller 5322 * sizes if the default failed. */ 5323 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 5324 err = kvmppc_allocate_hpt(&info, order); 5325 5326 if (err < 0) { 5327 pr_err("KVM: Couldn't alloc HPT\n"); 5328 goto out; 5329 } 5330 5331 kvmppc_set_hpt(kvm, &info); 5332 } 5333 5334 /* Look up the memslot for guest physical address 0 */ 5335 srcu_idx = srcu_read_lock(&kvm->srcu); 5336 memslot = gfn_to_memslot(kvm, 0); 5337 5338 /* We must have some memory at 0 by now */ 5339 err = -EINVAL; 5340 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 5341 goto out_srcu; 5342 5343 /* Look up the VMA for the start of this memory slot */ 5344 hva = memslot->userspace_addr; 5345 mmap_read_lock(kvm->mm); 5346 vma = vma_lookup(kvm->mm, hva); 5347 if (!vma || (vma->vm_flags & VM_IO)) 5348 goto up_out; 5349 5350 psize = vma_kernel_pagesize(vma); 5351 5352 mmap_read_unlock(kvm->mm); 5353 5354 /* We can handle 4k, 64k or 16M pages in the VRMA */ 5355 if (psize >= 0x1000000) 5356 psize = 0x1000000; 5357 else if (psize >= 0x10000) 5358 psize = 0x10000; 5359 else 5360 psize = 0x1000; 5361 porder = __ilog2(psize); 5362 5363 senc = slb_pgsize_encoding(psize); 5364 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 5365 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5366 /* Create HPTEs in the hash page table for the VRMA */ 5367 kvmppc_map_vrma(vcpu, memslot, porder); 5368 5369 /* Update VRMASD field in the LPCR */ 5370 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 5371 /* the -4 is to account for senc values starting at 0x10 */ 5372 lpcr = senc << (LPCR_VRMASD_SH - 4); 5373 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 5374 } 5375 5376 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 5377 smp_wmb(); 5378 err = 0; 5379 out_srcu: 5380 srcu_read_unlock(&kvm->srcu, srcu_idx); 5381 out: 5382 return err; 5383 5384 up_out: 5385 mmap_read_unlock(kvm->mm); 5386 goto out_srcu; 5387 } 5388 5389 /* 5390 * Must be called with kvm->arch.mmu_setup_lock held and 5391 * mmu_ready = 0 and no vcpus running. 5392 */ 5393 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 5394 { 5395 unsigned long lpcr, lpcr_mask; 5396 5397 if (nesting_enabled(kvm)) 5398 kvmhv_release_all_nested(kvm); 5399 kvmppc_rmap_reset(kvm); 5400 kvm->arch.process_table = 0; 5401 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5402 spin_lock(&kvm->mmu_lock); 5403 kvm->arch.radix = 0; 5404 spin_unlock(&kvm->mmu_lock); 5405 kvmppc_free_radix(kvm); 5406 5407 lpcr = LPCR_VPM1; 5408 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5409 if (cpu_has_feature(CPU_FTR_ARCH_31)) 5410 lpcr_mask |= LPCR_HAIL; 5411 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5412 5413 return 0; 5414 } 5415 5416 /* 5417 * Must be called with kvm->arch.mmu_setup_lock held and 5418 * mmu_ready = 0 and no vcpus running. 5419 */ 5420 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 5421 { 5422 unsigned long lpcr, lpcr_mask; 5423 int err; 5424 5425 err = kvmppc_init_vm_radix(kvm); 5426 if (err) 5427 return err; 5428 kvmppc_rmap_reset(kvm); 5429 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5430 spin_lock(&kvm->mmu_lock); 5431 kvm->arch.radix = 1; 5432 spin_unlock(&kvm->mmu_lock); 5433 kvmppc_free_hpt(&kvm->arch.hpt); 5434 5435 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5436 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5437 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5438 lpcr_mask |= LPCR_HAIL; 5439 if (cpu_has_feature(CPU_FTR_HVMODE) && 5440 (kvm->arch.host_lpcr & LPCR_HAIL)) 5441 lpcr |= LPCR_HAIL; 5442 } 5443 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5444 5445 return 0; 5446 } 5447 5448 #ifdef CONFIG_KVM_XICS 5449 /* 5450 * Allocate a per-core structure for managing state about which cores are 5451 * running in the host versus the guest and for exchanging data between 5452 * real mode KVM and CPU running in the host. 5453 * This is only done for the first VM. 5454 * The allocated structure stays even if all VMs have stopped. 5455 * It is only freed when the kvm-hv module is unloaded. 5456 * It's OK for this routine to fail, we just don't support host 5457 * core operations like redirecting H_IPI wakeups. 5458 */ 5459 void kvmppc_alloc_host_rm_ops(void) 5460 { 5461 struct kvmppc_host_rm_ops *ops; 5462 unsigned long l_ops; 5463 int cpu, core; 5464 int size; 5465 5466 if (cpu_has_feature(CPU_FTR_ARCH_300)) 5467 return; 5468 5469 /* Not the first time here ? */ 5470 if (kvmppc_host_rm_ops_hv != NULL) 5471 return; 5472 5473 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 5474 if (!ops) 5475 return; 5476 5477 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 5478 ops->rm_core = kzalloc(size, GFP_KERNEL); 5479 5480 if (!ops->rm_core) { 5481 kfree(ops); 5482 return; 5483 } 5484 5485 cpus_read_lock(); 5486 5487 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 5488 if (!cpu_online(cpu)) 5489 continue; 5490 5491 core = cpu >> threads_shift; 5492 ops->rm_core[core].rm_state.in_host = 1; 5493 } 5494 5495 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 5496 5497 /* 5498 * Make the contents of the kvmppc_host_rm_ops structure visible 5499 * to other CPUs before we assign it to the global variable. 5500 * Do an atomic assignment (no locks used here), but if someone 5501 * beats us to it, just free our copy and return. 5502 */ 5503 smp_wmb(); 5504 l_ops = (unsigned long) ops; 5505 5506 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 5507 cpus_read_unlock(); 5508 kfree(ops->rm_core); 5509 kfree(ops); 5510 return; 5511 } 5512 5513 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 5514 "ppc/kvm_book3s:prepare", 5515 kvmppc_set_host_core, 5516 kvmppc_clear_host_core); 5517 cpus_read_unlock(); 5518 } 5519 5520 void kvmppc_free_host_rm_ops(void) 5521 { 5522 if (kvmppc_host_rm_ops_hv) { 5523 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 5524 kfree(kvmppc_host_rm_ops_hv->rm_core); 5525 kfree(kvmppc_host_rm_ops_hv); 5526 kvmppc_host_rm_ops_hv = NULL; 5527 } 5528 } 5529 #endif 5530 5531 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5532 { 5533 unsigned long lpcr, lpid; 5534 int ret; 5535 5536 mutex_init(&kvm->arch.uvmem_lock); 5537 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5538 mutex_init(&kvm->arch.mmu_setup_lock); 5539 5540 /* Allocate the guest's logical partition ID */ 5541 5542 if (!kvmhv_is_nestedv2()) { 5543 lpid = kvmppc_alloc_lpid(); 5544 if ((long)lpid < 0) 5545 return -ENOMEM; 5546 kvm->arch.lpid = lpid; 5547 } 5548 5549 kvmppc_alloc_host_rm_ops(); 5550 5551 kvmhv_vm_nested_init(kvm); 5552 5553 if (kvmhv_is_nestedv2()) { 5554 long rc; 5555 unsigned long guest_id; 5556 5557 rc = plpar_guest_create(0, &guest_id); 5558 5559 if (rc != H_SUCCESS) 5560 pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc); 5561 5562 switch (rc) { 5563 case H_PARAMETER: 5564 case H_FUNCTION: 5565 case H_STATE: 5566 return -EINVAL; 5567 case H_NOT_ENOUGH_RESOURCES: 5568 case H_ABORTED: 5569 return -ENOMEM; 5570 case H_AUTHORITY: 5571 return -EPERM; 5572 case H_NOT_AVAILABLE: 5573 return -EBUSY; 5574 } 5575 kvm->arch.lpid = guest_id; 5576 } 5577 5578 5579 /* 5580 * Since we don't flush the TLB when tearing down a VM, 5581 * and this lpid might have previously been used, 5582 * make sure we flush on each core before running the new VM. 5583 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5584 * does this flush for us. 5585 */ 5586 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5587 cpumask_setall(&kvm->arch.need_tlb_flush); 5588 5589 /* Start out with the default set of hcalls enabled */ 5590 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5591 sizeof(kvm->arch.enabled_hcalls)); 5592 5593 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5594 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5595 5596 /* Init LPCR for virtual RMA mode */ 5597 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5598 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5599 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5600 lpcr &= LPCR_PECE | LPCR_LPES; 5601 } else { 5602 /* 5603 * The L2 LPES mode will be set by the L0 according to whether 5604 * or not it needs to take external interrupts in HV mode. 5605 */ 5606 lpcr = 0; 5607 } 5608 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5609 LPCR_VPM0 | LPCR_VPM1; 5610 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5611 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5612 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5613 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5614 lpcr |= LPCR_ONL; 5615 /* 5616 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5617 * Set HVICE bit to enable hypervisor virtualization interrupts. 5618 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5619 * be unnecessary but better safe than sorry in case we re-enable 5620 * EE in HV mode with this LPCR still set) 5621 */ 5622 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5623 lpcr &= ~LPCR_VPM0; 5624 lpcr |= LPCR_HVICE | LPCR_HEIC; 5625 5626 /* 5627 * If xive is enabled, we route 0x500 interrupts directly 5628 * to the guest. 5629 */ 5630 if (xics_on_xive()) 5631 lpcr |= LPCR_LPES; 5632 } 5633 5634 /* 5635 * If the host uses radix, the guest starts out as radix. 5636 */ 5637 if (radix_enabled()) { 5638 kvm->arch.radix = 1; 5639 kvm->arch.mmu_ready = 1; 5640 lpcr &= ~LPCR_VPM1; 5641 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5642 if (cpu_has_feature(CPU_FTR_HVMODE) && 5643 cpu_has_feature(CPU_FTR_ARCH_31) && 5644 (kvm->arch.host_lpcr & LPCR_HAIL)) 5645 lpcr |= LPCR_HAIL; 5646 ret = kvmppc_init_vm_radix(kvm); 5647 if (ret) { 5648 if (kvmhv_is_nestedv2()) 5649 plpar_guest_delete(0, kvm->arch.lpid); 5650 else 5651 kvmppc_free_lpid(kvm->arch.lpid); 5652 return ret; 5653 } 5654 kvmppc_setup_partition_table(kvm); 5655 } 5656 5657 verify_lpcr(kvm, lpcr); 5658 kvm->arch.lpcr = lpcr; 5659 5660 /* Initialization for future HPT resizes */ 5661 kvm->arch.resize_hpt = NULL; 5662 5663 /* 5664 * Work out how many sets the TLB has, for the use of 5665 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5666 */ 5667 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5668 /* 5669 * P10 will flush all the congruence class with a single tlbiel 5670 */ 5671 kvm->arch.tlb_sets = 1; 5672 } else if (radix_enabled()) 5673 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5674 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5675 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5676 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5677 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5678 else 5679 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5680 5681 /* 5682 * Track that we now have a HV mode VM active. This blocks secondary 5683 * CPU threads from coming online. 5684 */ 5685 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5686 kvm_hv_vm_activated(); 5687 5688 /* 5689 * Initialize smt_mode depending on processor. 5690 * POWER8 and earlier have to use "strict" threading, where 5691 * all vCPUs in a vcore have to run on the same (sub)core, 5692 * whereas on POWER9 the threads can each run a different 5693 * guest. 5694 */ 5695 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5696 kvm->arch.smt_mode = threads_per_subcore; 5697 else 5698 kvm->arch.smt_mode = 1; 5699 kvm->arch.emul_smt_mode = 1; 5700 5701 return 0; 5702 } 5703 5704 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm) 5705 { 5706 kvmppc_mmu_debugfs_init(kvm); 5707 if (radix_enabled()) 5708 kvmhv_radix_debugfs_init(kvm); 5709 return 0; 5710 } 5711 5712 static void kvmppc_free_vcores(struct kvm *kvm) 5713 { 5714 long int i; 5715 5716 for (i = 0; i < KVM_MAX_VCORES; ++i) 5717 kfree(kvm->arch.vcores[i]); 5718 kvm->arch.online_vcores = 0; 5719 } 5720 5721 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5722 { 5723 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5724 kvm_hv_vm_deactivated(); 5725 5726 kvmppc_free_vcores(kvm); 5727 5728 5729 if (kvm_is_radix(kvm)) 5730 kvmppc_free_radix(kvm); 5731 else 5732 kvmppc_free_hpt(&kvm->arch.hpt); 5733 5734 /* Perform global invalidation and return lpid to the pool */ 5735 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5736 if (nesting_enabled(kvm)) 5737 kvmhv_release_all_nested(kvm); 5738 kvm->arch.process_table = 0; 5739 if (kvm->arch.secure_guest) 5740 uv_svm_terminate(kvm->arch.lpid); 5741 if (!kvmhv_is_nestedv2()) 5742 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5743 } 5744 5745 if (kvmhv_is_nestedv2()) { 5746 kvmhv_flush_lpid(kvm->arch.lpid); 5747 plpar_guest_delete(0, kvm->arch.lpid); 5748 } else { 5749 kvmppc_free_lpid(kvm->arch.lpid); 5750 } 5751 5752 kvmppc_free_pimap(kvm); 5753 } 5754 5755 /* We don't need to emulate any privileged instructions or dcbz */ 5756 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5757 unsigned int inst, int *advance) 5758 { 5759 return EMULATE_FAIL; 5760 } 5761 5762 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5763 ulong spr_val) 5764 { 5765 return EMULATE_FAIL; 5766 } 5767 5768 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5769 ulong *spr_val) 5770 { 5771 return EMULATE_FAIL; 5772 } 5773 5774 static int kvmppc_core_check_processor_compat_hv(void) 5775 { 5776 if (cpu_has_feature(CPU_FTR_HVMODE) && 5777 cpu_has_feature(CPU_FTR_ARCH_206)) 5778 return 0; 5779 5780 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5781 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5782 return 0; 5783 5784 return -EIO; 5785 } 5786 5787 #ifdef CONFIG_KVM_XICS 5788 5789 void kvmppc_free_pimap(struct kvm *kvm) 5790 { 5791 kfree(kvm->arch.pimap); 5792 } 5793 5794 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5795 { 5796 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5797 } 5798 5799 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5800 { 5801 struct irq_desc *desc; 5802 struct kvmppc_irq_map *irq_map; 5803 struct kvmppc_passthru_irqmap *pimap; 5804 struct irq_chip *chip; 5805 int i, rc = 0; 5806 struct irq_data *host_data; 5807 5808 if (!kvm_irq_bypass) 5809 return 1; 5810 5811 desc = irq_to_desc(host_irq); 5812 if (!desc) 5813 return -EIO; 5814 5815 mutex_lock(&kvm->lock); 5816 5817 pimap = kvm->arch.pimap; 5818 if (pimap == NULL) { 5819 /* First call, allocate structure to hold IRQ map */ 5820 pimap = kvmppc_alloc_pimap(); 5821 if (pimap == NULL) { 5822 mutex_unlock(&kvm->lock); 5823 return -ENOMEM; 5824 } 5825 kvm->arch.pimap = pimap; 5826 } 5827 5828 /* 5829 * For now, we only support interrupts for which the EOI operation 5830 * is an OPAL call followed by a write to XIRR, since that's 5831 * what our real-mode EOI code does, or a XIVE interrupt 5832 */ 5833 chip = irq_data_get_irq_chip(&desc->irq_data); 5834 if (!chip || !is_pnv_opal_msi(chip)) { 5835 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5836 host_irq, guest_gsi); 5837 mutex_unlock(&kvm->lock); 5838 return -ENOENT; 5839 } 5840 5841 /* 5842 * See if we already have an entry for this guest IRQ number. 5843 * If it's mapped to a hardware IRQ number, that's an error, 5844 * otherwise re-use this entry. 5845 */ 5846 for (i = 0; i < pimap->n_mapped; i++) { 5847 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5848 if (pimap->mapped[i].r_hwirq) { 5849 mutex_unlock(&kvm->lock); 5850 return -EINVAL; 5851 } 5852 break; 5853 } 5854 } 5855 5856 if (i == KVMPPC_PIRQ_MAPPED) { 5857 mutex_unlock(&kvm->lock); 5858 return -EAGAIN; /* table is full */ 5859 } 5860 5861 irq_map = &pimap->mapped[i]; 5862 5863 irq_map->v_hwirq = guest_gsi; 5864 irq_map->desc = desc; 5865 5866 /* 5867 * Order the above two stores before the next to serialize with 5868 * the KVM real mode handler. 5869 */ 5870 smp_wmb(); 5871 5872 /* 5873 * The 'host_irq' number is mapped in the PCI-MSI domain but 5874 * the underlying calls, which will EOI the interrupt in real 5875 * mode, need an HW IRQ number mapped in the XICS IRQ domain. 5876 */ 5877 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); 5878 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); 5879 5880 if (i == pimap->n_mapped) 5881 pimap->n_mapped++; 5882 5883 if (xics_on_xive()) 5884 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); 5885 else 5886 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); 5887 if (rc) 5888 irq_map->r_hwirq = 0; 5889 5890 mutex_unlock(&kvm->lock); 5891 5892 return 0; 5893 } 5894 5895 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5896 { 5897 struct irq_desc *desc; 5898 struct kvmppc_passthru_irqmap *pimap; 5899 int i, rc = 0; 5900 5901 if (!kvm_irq_bypass) 5902 return 0; 5903 5904 desc = irq_to_desc(host_irq); 5905 if (!desc) 5906 return -EIO; 5907 5908 mutex_lock(&kvm->lock); 5909 if (!kvm->arch.pimap) 5910 goto unlock; 5911 5912 pimap = kvm->arch.pimap; 5913 5914 for (i = 0; i < pimap->n_mapped; i++) { 5915 if (guest_gsi == pimap->mapped[i].v_hwirq) 5916 break; 5917 } 5918 5919 if (i == pimap->n_mapped) { 5920 mutex_unlock(&kvm->lock); 5921 return -ENODEV; 5922 } 5923 5924 if (xics_on_xive()) 5925 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); 5926 else 5927 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5928 5929 /* invalidate the entry (what to do on error from the above ?) */ 5930 pimap->mapped[i].r_hwirq = 0; 5931 5932 /* 5933 * We don't free this structure even when the count goes to 5934 * zero. The structure is freed when we destroy the VM. 5935 */ 5936 unlock: 5937 mutex_unlock(&kvm->lock); 5938 return rc; 5939 } 5940 5941 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5942 struct irq_bypass_producer *prod) 5943 { 5944 int ret = 0; 5945 struct kvm_kernel_irqfd *irqfd = 5946 container_of(cons, struct kvm_kernel_irqfd, consumer); 5947 5948 irqfd->producer = prod; 5949 5950 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5951 if (ret) 5952 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5953 prod->irq, irqfd->gsi, ret); 5954 5955 return ret; 5956 } 5957 5958 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5959 struct irq_bypass_producer *prod) 5960 { 5961 int ret; 5962 struct kvm_kernel_irqfd *irqfd = 5963 container_of(cons, struct kvm_kernel_irqfd, consumer); 5964 5965 irqfd->producer = NULL; 5966 5967 /* 5968 * When producer of consumer is unregistered, we change back to 5969 * default external interrupt handling mode - KVM real mode 5970 * will switch back to host. 5971 */ 5972 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5973 if (ret) 5974 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5975 prod->irq, irqfd->gsi, ret); 5976 } 5977 #endif 5978 5979 static int kvm_arch_vm_ioctl_hv(struct file *filp, 5980 unsigned int ioctl, unsigned long arg) 5981 { 5982 struct kvm *kvm __maybe_unused = filp->private_data; 5983 void __user *argp = (void __user *)arg; 5984 int r; 5985 5986 switch (ioctl) { 5987 5988 case KVM_PPC_ALLOCATE_HTAB: { 5989 u32 htab_order; 5990 5991 /* If we're a nested hypervisor, we currently only support radix */ 5992 if (kvmhv_on_pseries()) { 5993 r = -EOPNOTSUPP; 5994 break; 5995 } 5996 5997 r = -EFAULT; 5998 if (get_user(htab_order, (u32 __user *)argp)) 5999 break; 6000 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 6001 if (r) 6002 break; 6003 r = 0; 6004 break; 6005 } 6006 6007 case KVM_PPC_GET_HTAB_FD: { 6008 struct kvm_get_htab_fd ghf; 6009 6010 r = -EFAULT; 6011 if (copy_from_user(&ghf, argp, sizeof(ghf))) 6012 break; 6013 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 6014 break; 6015 } 6016 6017 case KVM_PPC_RESIZE_HPT_PREPARE: { 6018 struct kvm_ppc_resize_hpt rhpt; 6019 6020 r = -EFAULT; 6021 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 6022 break; 6023 6024 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 6025 break; 6026 } 6027 6028 case KVM_PPC_RESIZE_HPT_COMMIT: { 6029 struct kvm_ppc_resize_hpt rhpt; 6030 6031 r = -EFAULT; 6032 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 6033 break; 6034 6035 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 6036 break; 6037 } 6038 6039 default: 6040 r = -ENOTTY; 6041 } 6042 6043 return r; 6044 } 6045 6046 /* 6047 * List of hcall numbers to enable by default. 6048 * For compatibility with old userspace, we enable by default 6049 * all hcalls that were implemented before the hcall-enabling 6050 * facility was added. Note this list should not include H_RTAS. 6051 */ 6052 static unsigned int default_hcall_list[] = { 6053 H_REMOVE, 6054 H_ENTER, 6055 H_READ, 6056 H_PROTECT, 6057 H_BULK_REMOVE, 6058 #ifdef CONFIG_SPAPR_TCE_IOMMU 6059 H_GET_TCE, 6060 H_PUT_TCE, 6061 #endif 6062 H_SET_DABR, 6063 H_SET_XDABR, 6064 H_CEDE, 6065 H_PROD, 6066 H_CONFER, 6067 H_REGISTER_VPA, 6068 #ifdef CONFIG_KVM_XICS 6069 H_EOI, 6070 H_CPPR, 6071 H_IPI, 6072 H_IPOLL, 6073 H_XIRR, 6074 H_XIRR_X, 6075 #endif 6076 0 6077 }; 6078 6079 static void init_default_hcalls(void) 6080 { 6081 int i; 6082 unsigned int hcall; 6083 6084 for (i = 0; default_hcall_list[i]; ++i) { 6085 hcall = default_hcall_list[i]; 6086 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 6087 __set_bit(hcall / 4, default_enabled_hcalls); 6088 } 6089 } 6090 6091 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 6092 { 6093 unsigned long lpcr; 6094 int radix; 6095 int err; 6096 6097 /* If not on a POWER9, reject it */ 6098 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6099 return -ENODEV; 6100 6101 /* If any unknown flags set, reject it */ 6102 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 6103 return -EINVAL; 6104 6105 /* GR (guest radix) bit in process_table field must match */ 6106 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 6107 if (!!(cfg->process_table & PATB_GR) != radix) 6108 return -EINVAL; 6109 6110 /* Process table size field must be reasonable, i.e. <= 24 */ 6111 if ((cfg->process_table & PRTS_MASK) > 24) 6112 return -EINVAL; 6113 6114 /* We can change a guest to/from radix now, if the host is radix */ 6115 if (radix && !radix_enabled()) 6116 return -EINVAL; 6117 6118 /* If we're a nested hypervisor, we currently only support radix */ 6119 if (kvmhv_on_pseries() && !radix) 6120 return -EINVAL; 6121 6122 mutex_lock(&kvm->arch.mmu_setup_lock); 6123 if (radix != kvm_is_radix(kvm)) { 6124 if (kvm->arch.mmu_ready) { 6125 kvm->arch.mmu_ready = 0; 6126 /* order mmu_ready vs. vcpus_running */ 6127 smp_mb(); 6128 if (atomic_read(&kvm->arch.vcpus_running)) { 6129 kvm->arch.mmu_ready = 1; 6130 err = -EBUSY; 6131 goto out_unlock; 6132 } 6133 } 6134 if (radix) 6135 err = kvmppc_switch_mmu_to_radix(kvm); 6136 else 6137 err = kvmppc_switch_mmu_to_hpt(kvm); 6138 if (err) 6139 goto out_unlock; 6140 } 6141 6142 kvm->arch.process_table = cfg->process_table; 6143 kvmppc_setup_partition_table(kvm); 6144 6145 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 6146 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 6147 err = 0; 6148 6149 out_unlock: 6150 mutex_unlock(&kvm->arch.mmu_setup_lock); 6151 return err; 6152 } 6153 6154 static int kvmhv_enable_nested(struct kvm *kvm) 6155 { 6156 if (!nested) 6157 return -EPERM; 6158 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6159 return -ENODEV; 6160 if (!radix_enabled()) 6161 return -ENODEV; 6162 if (kvmhv_is_nestedv2()) 6163 return -ENODEV; 6164 6165 /* kvm == NULL means the caller is testing if the capability exists */ 6166 if (kvm) 6167 kvm->arch.nested_enable = true; 6168 return 0; 6169 } 6170 6171 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 6172 int size) 6173 { 6174 int rc = -EINVAL; 6175 6176 if (kvmhv_vcpu_is_radix(vcpu)) { 6177 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 6178 6179 if (rc > 0) 6180 rc = -EINVAL; 6181 } 6182 6183 /* For now quadrants are the only way to access nested guest memory */ 6184 if (rc && vcpu->arch.nested) 6185 rc = -EAGAIN; 6186 6187 return rc; 6188 } 6189 6190 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 6191 int size) 6192 { 6193 int rc = -EINVAL; 6194 6195 if (kvmhv_vcpu_is_radix(vcpu)) { 6196 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 6197 6198 if (rc > 0) 6199 rc = -EINVAL; 6200 } 6201 6202 /* For now quadrants are the only way to access nested guest memory */ 6203 if (rc && vcpu->arch.nested) 6204 rc = -EAGAIN; 6205 6206 return rc; 6207 } 6208 6209 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 6210 { 6211 unpin_vpa(kvm, vpa); 6212 vpa->gpa = 0; 6213 vpa->pinned_addr = NULL; 6214 vpa->dirty = false; 6215 vpa->update_pending = 0; 6216 } 6217 6218 /* 6219 * Enable a guest to become a secure VM, or test whether 6220 * that could be enabled. 6221 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 6222 * tested (kvm == NULL) or enabled (kvm != NULL). 6223 */ 6224 static int kvmhv_enable_svm(struct kvm *kvm) 6225 { 6226 if (!kvmppc_uvmem_available()) 6227 return -EINVAL; 6228 if (kvm) 6229 kvm->arch.svm_enabled = 1; 6230 return 0; 6231 } 6232 6233 /* 6234 * IOCTL handler to turn off secure mode of guest 6235 * 6236 * - Release all device pages 6237 * - Issue ucall to terminate the guest on the UV side 6238 * - Unpin the VPA pages. 6239 * - Reinit the partition scoped page tables 6240 */ 6241 static int kvmhv_svm_off(struct kvm *kvm) 6242 { 6243 struct kvm_vcpu *vcpu; 6244 int mmu_was_ready; 6245 int srcu_idx; 6246 int ret = 0; 6247 unsigned long i; 6248 6249 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 6250 return ret; 6251 6252 mutex_lock(&kvm->arch.mmu_setup_lock); 6253 mmu_was_ready = kvm->arch.mmu_ready; 6254 if (kvm->arch.mmu_ready) { 6255 kvm->arch.mmu_ready = 0; 6256 /* order mmu_ready vs. vcpus_running */ 6257 smp_mb(); 6258 if (atomic_read(&kvm->arch.vcpus_running)) { 6259 kvm->arch.mmu_ready = 1; 6260 ret = -EBUSY; 6261 goto out; 6262 } 6263 } 6264 6265 srcu_idx = srcu_read_lock(&kvm->srcu); 6266 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6267 struct kvm_memory_slot *memslot; 6268 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 6269 int bkt; 6270 6271 if (!slots) 6272 continue; 6273 6274 kvm_for_each_memslot(memslot, bkt, slots) { 6275 kvmppc_uvmem_drop_pages(memslot, kvm, true); 6276 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 6277 } 6278 } 6279 srcu_read_unlock(&kvm->srcu, srcu_idx); 6280 6281 ret = uv_svm_terminate(kvm->arch.lpid); 6282 if (ret != U_SUCCESS) { 6283 ret = -EINVAL; 6284 goto out; 6285 } 6286 6287 /* 6288 * When secure guest is reset, all the guest pages are sent 6289 * to UV via UV_PAGE_IN before the non-boot vcpus get a 6290 * chance to run and unpin their VPA pages. Unpinning of all 6291 * VPA pages is done here explicitly so that VPA pages 6292 * can be migrated to the secure side. 6293 * 6294 * This is required to for the secure SMP guest to reboot 6295 * correctly. 6296 */ 6297 kvm_for_each_vcpu(i, vcpu, kvm) { 6298 spin_lock(&vcpu->arch.vpa_update_lock); 6299 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 6300 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 6301 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 6302 spin_unlock(&vcpu->arch.vpa_update_lock); 6303 } 6304 6305 kvmppc_setup_partition_table(kvm); 6306 kvm->arch.secure_guest = 0; 6307 kvm->arch.mmu_ready = mmu_was_ready; 6308 out: 6309 mutex_unlock(&kvm->arch.mmu_setup_lock); 6310 return ret; 6311 } 6312 6313 static int kvmhv_enable_dawr1(struct kvm *kvm) 6314 { 6315 if (!cpu_has_feature(CPU_FTR_DAWR1)) 6316 return -ENODEV; 6317 6318 /* kvm == NULL means the caller is testing if the capability exists */ 6319 if (kvm) 6320 kvm->arch.dawr1_enabled = true; 6321 return 0; 6322 } 6323 6324 static bool kvmppc_hash_v3_possible(void) 6325 { 6326 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6327 return false; 6328 6329 if (!cpu_has_feature(CPU_FTR_HVMODE)) 6330 return false; 6331 6332 /* 6333 * POWER9 chips before version 2.02 can't have some threads in 6334 * HPT mode and some in radix mode on the same core. 6335 */ 6336 if (radix_enabled()) { 6337 unsigned int pvr = mfspr(SPRN_PVR); 6338 if ((pvr >> 16) == PVR_POWER9 && 6339 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 6340 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 6341 return false; 6342 } 6343 6344 return true; 6345 } 6346 6347 static struct kvmppc_ops kvm_ops_hv = { 6348 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 6349 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 6350 .get_one_reg = kvmppc_get_one_reg_hv, 6351 .set_one_reg = kvmppc_set_one_reg_hv, 6352 .vcpu_load = kvmppc_core_vcpu_load_hv, 6353 .vcpu_put = kvmppc_core_vcpu_put_hv, 6354 .inject_interrupt = kvmppc_inject_interrupt_hv, 6355 .set_msr = kvmppc_set_msr_hv, 6356 .vcpu_run = kvmppc_vcpu_run_hv, 6357 .vcpu_create = kvmppc_core_vcpu_create_hv, 6358 .vcpu_free = kvmppc_core_vcpu_free_hv, 6359 .check_requests = kvmppc_core_check_requests_hv, 6360 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 6361 .flush_memslot = kvmppc_core_flush_memslot_hv, 6362 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 6363 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 6364 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 6365 .age_gfn = kvm_age_gfn_hv, 6366 .test_age_gfn = kvm_test_age_gfn_hv, 6367 .free_memslot = kvmppc_core_free_memslot_hv, 6368 .init_vm = kvmppc_core_init_vm_hv, 6369 .destroy_vm = kvmppc_core_destroy_vm_hv, 6370 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 6371 .emulate_op = kvmppc_core_emulate_op_hv, 6372 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 6373 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 6374 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 6375 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 6376 .hcall_implemented = kvmppc_hcall_impl_hv, 6377 #ifdef CONFIG_KVM_XICS 6378 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 6379 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 6380 #endif 6381 .configure_mmu = kvmhv_configure_mmu, 6382 .get_rmmu_info = kvmhv_get_rmmu_info, 6383 .set_smt_mode = kvmhv_set_smt_mode, 6384 .enable_nested = kvmhv_enable_nested, 6385 .load_from_eaddr = kvmhv_load_from_eaddr, 6386 .store_to_eaddr = kvmhv_store_to_eaddr, 6387 .enable_svm = kvmhv_enable_svm, 6388 .svm_off = kvmhv_svm_off, 6389 .enable_dawr1 = kvmhv_enable_dawr1, 6390 .hash_v3_possible = kvmppc_hash_v3_possible, 6391 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv, 6392 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv, 6393 }; 6394 6395 static int kvm_init_subcore_bitmap(void) 6396 { 6397 int i, j; 6398 int nr_cores = cpu_nr_cores(); 6399 struct sibling_subcore_state *sibling_subcore_state; 6400 6401 for (i = 0; i < nr_cores; i++) { 6402 int first_cpu = i * threads_per_core; 6403 int node = cpu_to_node(first_cpu); 6404 6405 /* Ignore if it is already allocated. */ 6406 if (paca_ptrs[first_cpu]->sibling_subcore_state) 6407 continue; 6408 6409 sibling_subcore_state = 6410 kzalloc_node(sizeof(struct sibling_subcore_state), 6411 GFP_KERNEL, node); 6412 if (!sibling_subcore_state) 6413 return -ENOMEM; 6414 6415 6416 for (j = 0; j < threads_per_core; j++) { 6417 int cpu = first_cpu + j; 6418 6419 paca_ptrs[cpu]->sibling_subcore_state = 6420 sibling_subcore_state; 6421 } 6422 } 6423 return 0; 6424 } 6425 6426 static int kvmppc_radix_possible(void) 6427 { 6428 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 6429 } 6430 6431 static int kvmppc_book3s_init_hv(void) 6432 { 6433 int r; 6434 6435 if (!tlbie_capable) { 6436 pr_err("KVM-HV: Host does not support TLBIE\n"); 6437 return -ENODEV; 6438 } 6439 6440 /* 6441 * FIXME!! Do we need to check on all cpus ? 6442 */ 6443 r = kvmppc_core_check_processor_compat_hv(); 6444 if (r < 0) 6445 return -ENODEV; 6446 6447 r = kvmhv_nested_init(); 6448 if (r) 6449 return r; 6450 6451 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 6452 r = kvm_init_subcore_bitmap(); 6453 if (r) 6454 goto err; 6455 } 6456 6457 /* 6458 * We need a way of accessing the XICS interrupt controller, 6459 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 6460 * indirectly, via OPAL. 6461 */ 6462 #ifdef CONFIG_SMP 6463 if (!xics_on_xive() && !kvmhv_on_pseries() && 6464 !local_paca->kvm_hstate.xics_phys) { 6465 struct device_node *np; 6466 6467 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 6468 if (!np) { 6469 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 6470 r = -ENODEV; 6471 goto err; 6472 } 6473 /* presence of intc confirmed - node can be dropped again */ 6474 of_node_put(np); 6475 } 6476 #endif 6477 6478 init_default_hcalls(); 6479 6480 init_vcore_lists(); 6481 6482 r = kvmppc_mmu_hv_init(); 6483 if (r) 6484 goto err; 6485 6486 if (kvmppc_radix_possible()) { 6487 r = kvmppc_radix_init(); 6488 if (r) 6489 goto err; 6490 } 6491 6492 r = kvmppc_uvmem_init(); 6493 if (r < 0) { 6494 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 6495 return r; 6496 } 6497 6498 kvm_ops_hv.owner = THIS_MODULE; 6499 kvmppc_hv_ops = &kvm_ops_hv; 6500 6501 return 0; 6502 6503 err: 6504 kvmhv_nested_exit(); 6505 kvmppc_radix_exit(); 6506 6507 return r; 6508 } 6509 6510 static void kvmppc_book3s_exit_hv(void) 6511 { 6512 kvmppc_uvmem_free(); 6513 kvmppc_free_host_rm_ops(); 6514 if (kvmppc_radix_possible()) 6515 kvmppc_radix_exit(); 6516 kvmppc_hv_ops = NULL; 6517 kvmhv_nested_exit(); 6518 } 6519 6520 module_init(kvmppc_book3s_init_hv); 6521 module_exit(kvmppc_book3s_exit_hv); 6522 MODULE_LICENSE("GPL"); 6523 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6524 MODULE_ALIAS("devname:kvm"); 6525