1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/stat.h> 27 #include <linux/delay.h> 28 #include <linux/export.h> 29 #include <linux/fs.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/cpu.h> 32 #include <linux/cpumask.h> 33 #include <linux/spinlock.h> 34 #include <linux/page-flags.h> 35 #include <linux/srcu.h> 36 #include <linux/miscdevice.h> 37 #include <linux/debugfs.h> 38 #include <linux/gfp.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/hugetlb.h> 42 #include <linux/kvm_irqfd.h> 43 #include <linux/irqbypass.h> 44 #include <linux/module.h> 45 #include <linux/compiler.h> 46 #include <linux/of.h> 47 48 #include <asm/reg.h> 49 #include <asm/cputable.h> 50 #include <asm/cacheflush.h> 51 #include <asm/tlbflush.h> 52 #include <linux/uaccess.h> 53 #include <asm/io.h> 54 #include <asm/kvm_ppc.h> 55 #include <asm/kvm_book3s.h> 56 #include <asm/mmu_context.h> 57 #include <asm/lppaca.h> 58 #include <asm/processor.h> 59 #include <asm/cputhreads.h> 60 #include <asm/page.h> 61 #include <asm/hvcall.h> 62 #include <asm/switch_to.h> 63 #include <asm/smp.h> 64 #include <asm/dbell.h> 65 #include <asm/hmi.h> 66 #include <asm/pnv-pci.h> 67 #include <asm/mmu.h> 68 #include <asm/opal.h> 69 #include <asm/xics.h> 70 #include <asm/xive.h> 71 72 #include "book3s.h" 73 74 #define CREATE_TRACE_POINTS 75 #include "trace_hv.h" 76 77 /* #define EXIT_DEBUG */ 78 /* #define EXIT_DEBUG_SIMPLE */ 79 /* #define EXIT_DEBUG_INT */ 80 81 /* Used to indicate that a guest page fault needs to be handled */ 82 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 83 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 84 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 85 86 /* Used as a "null" value for timebase values */ 87 #define TB_NIL (~(u64)0) 88 89 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 90 91 static int dynamic_mt_modes = 6; 92 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); 93 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 94 static int target_smt_mode; 95 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); 96 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 97 98 #ifdef CONFIG_KVM_XICS 99 static struct kernel_param_ops module_param_ops = { 100 .set = param_set_int, 101 .get = param_get_int, 102 }; 103 104 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 105 S_IRUGO | S_IWUSR); 106 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 107 108 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 109 S_IRUGO | S_IWUSR); 110 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 111 #endif 112 113 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 114 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 115 116 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 117 int *ip) 118 { 119 int i = *ip; 120 struct kvm_vcpu *vcpu; 121 122 while (++i < MAX_SMT_THREADS) { 123 vcpu = READ_ONCE(vc->runnable_threads[i]); 124 if (vcpu) { 125 *ip = i; 126 return vcpu; 127 } 128 } 129 return NULL; 130 } 131 132 /* Used to traverse the list of runnable threads for a given vcore */ 133 #define for_each_runnable_thread(i, vcpu, vc) \ 134 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 135 136 static bool kvmppc_ipi_thread(int cpu) 137 { 138 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 139 140 /* On POWER9 we can use msgsnd to IPI any cpu */ 141 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 142 msg |= get_hard_smp_processor_id(cpu); 143 smp_mb(); 144 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 145 return true; 146 } 147 148 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 149 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 150 preempt_disable(); 151 if (cpu_first_thread_sibling(cpu) == 152 cpu_first_thread_sibling(smp_processor_id())) { 153 msg |= cpu_thread_in_core(cpu); 154 smp_mb(); 155 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 156 preempt_enable(); 157 return true; 158 } 159 preempt_enable(); 160 } 161 162 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 163 if (cpu >= 0 && cpu < nr_cpu_ids) { 164 if (paca[cpu].kvm_hstate.xics_phys) { 165 xics_wake_cpu(cpu); 166 return true; 167 } 168 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 169 return true; 170 } 171 #endif 172 173 return false; 174 } 175 176 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 177 { 178 int cpu; 179 struct swait_queue_head *wqp; 180 181 wqp = kvm_arch_vcpu_wq(vcpu); 182 if (swait_active(wqp)) { 183 swake_up(wqp); 184 ++vcpu->stat.halt_wakeup; 185 } 186 187 cpu = READ_ONCE(vcpu->arch.thread_cpu); 188 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 189 return; 190 191 /* CPU points to the first thread of the core */ 192 cpu = vcpu->cpu; 193 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 194 smp_send_reschedule(cpu); 195 } 196 197 /* 198 * We use the vcpu_load/put functions to measure stolen time. 199 * Stolen time is counted as time when either the vcpu is able to 200 * run as part of a virtual core, but the task running the vcore 201 * is preempted or sleeping, or when the vcpu needs something done 202 * in the kernel by the task running the vcpu, but that task is 203 * preempted or sleeping. Those two things have to be counted 204 * separately, since one of the vcpu tasks will take on the job 205 * of running the core, and the other vcpu tasks in the vcore will 206 * sleep waiting for it to do that, but that sleep shouldn't count 207 * as stolen time. 208 * 209 * Hence we accumulate stolen time when the vcpu can run as part of 210 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 211 * needs its task to do other things in the kernel (for example, 212 * service a page fault) in busy_stolen. We don't accumulate 213 * stolen time for a vcore when it is inactive, or for a vcpu 214 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 215 * a misnomer; it means that the vcpu task is not executing in 216 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 217 * the kernel. We don't have any way of dividing up that time 218 * between time that the vcpu is genuinely stopped, time that 219 * the task is actively working on behalf of the vcpu, and time 220 * that the task is preempted, so we don't count any of it as 221 * stolen. 222 * 223 * Updates to busy_stolen are protected by arch.tbacct_lock; 224 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 225 * lock. The stolen times are measured in units of timebase ticks. 226 * (Note that the != TB_NIL checks below are purely defensive; 227 * they should never fail.) 228 */ 229 230 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 231 { 232 unsigned long flags; 233 234 spin_lock_irqsave(&vc->stoltb_lock, flags); 235 vc->preempt_tb = mftb(); 236 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 237 } 238 239 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 240 { 241 unsigned long flags; 242 243 spin_lock_irqsave(&vc->stoltb_lock, flags); 244 if (vc->preempt_tb != TB_NIL) { 245 vc->stolen_tb += mftb() - vc->preempt_tb; 246 vc->preempt_tb = TB_NIL; 247 } 248 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 249 } 250 251 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 252 { 253 struct kvmppc_vcore *vc = vcpu->arch.vcore; 254 unsigned long flags; 255 256 /* 257 * We can test vc->runner without taking the vcore lock, 258 * because only this task ever sets vc->runner to this 259 * vcpu, and once it is set to this vcpu, only this task 260 * ever sets it to NULL. 261 */ 262 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 263 kvmppc_core_end_stolen(vc); 264 265 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 266 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 267 vcpu->arch.busy_preempt != TB_NIL) { 268 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 269 vcpu->arch.busy_preempt = TB_NIL; 270 } 271 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 272 } 273 274 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 275 { 276 struct kvmppc_vcore *vc = vcpu->arch.vcore; 277 unsigned long flags; 278 279 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 280 kvmppc_core_start_stolen(vc); 281 282 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 283 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 284 vcpu->arch.busy_preempt = mftb(); 285 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 286 } 287 288 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 289 { 290 /* 291 * Check for illegal transactional state bit combination 292 * and if we find it, force the TS field to a safe state. 293 */ 294 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 295 msr &= ~MSR_TS_MASK; 296 vcpu->arch.shregs.msr = msr; 297 kvmppc_end_cede(vcpu); 298 } 299 300 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 301 { 302 vcpu->arch.pvr = pvr; 303 } 304 305 /* Dummy value used in computing PCR value below */ 306 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 307 308 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 309 { 310 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 311 struct kvmppc_vcore *vc = vcpu->arch.vcore; 312 313 /* We can (emulate) our own architecture version and anything older */ 314 if (cpu_has_feature(CPU_FTR_ARCH_300)) 315 host_pcr_bit = PCR_ARCH_300; 316 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 317 host_pcr_bit = PCR_ARCH_207; 318 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 319 host_pcr_bit = PCR_ARCH_206; 320 else 321 host_pcr_bit = PCR_ARCH_205; 322 323 /* Determine lowest PCR bit needed to run guest in given PVR level */ 324 guest_pcr_bit = host_pcr_bit; 325 if (arch_compat) { 326 switch (arch_compat) { 327 case PVR_ARCH_205: 328 guest_pcr_bit = PCR_ARCH_205; 329 break; 330 case PVR_ARCH_206: 331 case PVR_ARCH_206p: 332 guest_pcr_bit = PCR_ARCH_206; 333 break; 334 case PVR_ARCH_207: 335 guest_pcr_bit = PCR_ARCH_207; 336 break; 337 case PVR_ARCH_300: 338 guest_pcr_bit = PCR_ARCH_300; 339 break; 340 default: 341 return -EINVAL; 342 } 343 } 344 345 /* Check requested PCR bits don't exceed our capabilities */ 346 if (guest_pcr_bit > host_pcr_bit) 347 return -EINVAL; 348 349 spin_lock(&vc->lock); 350 vc->arch_compat = arch_compat; 351 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 352 vc->pcr = host_pcr_bit - guest_pcr_bit; 353 spin_unlock(&vc->lock); 354 355 return 0; 356 } 357 358 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 359 { 360 int r; 361 362 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 363 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 364 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 365 for (r = 0; r < 16; ++r) 366 pr_err("r%2d = %.16lx r%d = %.16lx\n", 367 r, kvmppc_get_gpr(vcpu, r), 368 r+16, kvmppc_get_gpr(vcpu, r+16)); 369 pr_err("ctr = %.16lx lr = %.16lx\n", 370 vcpu->arch.ctr, vcpu->arch.lr); 371 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 372 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 373 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 374 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 375 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 376 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 377 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 378 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 379 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 380 pr_err("fault dar = %.16lx dsisr = %.8x\n", 381 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 382 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 383 for (r = 0; r < vcpu->arch.slb_max; ++r) 384 pr_err(" ESID = %.16llx VSID = %.16llx\n", 385 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 386 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 387 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 388 vcpu->arch.last_inst); 389 } 390 391 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 392 { 393 struct kvm_vcpu *ret; 394 395 mutex_lock(&kvm->lock); 396 ret = kvm_get_vcpu_by_id(kvm, id); 397 mutex_unlock(&kvm->lock); 398 return ret; 399 } 400 401 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 402 { 403 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 404 vpa->yield_count = cpu_to_be32(1); 405 } 406 407 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 408 unsigned long addr, unsigned long len) 409 { 410 /* check address is cacheline aligned */ 411 if (addr & (L1_CACHE_BYTES - 1)) 412 return -EINVAL; 413 spin_lock(&vcpu->arch.vpa_update_lock); 414 if (v->next_gpa != addr || v->len != len) { 415 v->next_gpa = addr; 416 v->len = addr ? len : 0; 417 v->update_pending = 1; 418 } 419 spin_unlock(&vcpu->arch.vpa_update_lock); 420 return 0; 421 } 422 423 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 424 struct reg_vpa { 425 u32 dummy; 426 union { 427 __be16 hword; 428 __be32 word; 429 } length; 430 }; 431 432 static int vpa_is_registered(struct kvmppc_vpa *vpap) 433 { 434 if (vpap->update_pending) 435 return vpap->next_gpa != 0; 436 return vpap->pinned_addr != NULL; 437 } 438 439 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 440 unsigned long flags, 441 unsigned long vcpuid, unsigned long vpa) 442 { 443 struct kvm *kvm = vcpu->kvm; 444 unsigned long len, nb; 445 void *va; 446 struct kvm_vcpu *tvcpu; 447 int err; 448 int subfunc; 449 struct kvmppc_vpa *vpap; 450 451 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 452 if (!tvcpu) 453 return H_PARAMETER; 454 455 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 456 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 457 subfunc == H_VPA_REG_SLB) { 458 /* Registering new area - address must be cache-line aligned */ 459 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 460 return H_PARAMETER; 461 462 /* convert logical addr to kernel addr and read length */ 463 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 464 if (va == NULL) 465 return H_PARAMETER; 466 if (subfunc == H_VPA_REG_VPA) 467 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 468 else 469 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 470 kvmppc_unpin_guest_page(kvm, va, vpa, false); 471 472 /* Check length */ 473 if (len > nb || len < sizeof(struct reg_vpa)) 474 return H_PARAMETER; 475 } else { 476 vpa = 0; 477 len = 0; 478 } 479 480 err = H_PARAMETER; 481 vpap = NULL; 482 spin_lock(&tvcpu->arch.vpa_update_lock); 483 484 switch (subfunc) { 485 case H_VPA_REG_VPA: /* register VPA */ 486 if (len < sizeof(struct lppaca)) 487 break; 488 vpap = &tvcpu->arch.vpa; 489 err = 0; 490 break; 491 492 case H_VPA_REG_DTL: /* register DTL */ 493 if (len < sizeof(struct dtl_entry)) 494 break; 495 len -= len % sizeof(struct dtl_entry); 496 497 /* Check that they have previously registered a VPA */ 498 err = H_RESOURCE; 499 if (!vpa_is_registered(&tvcpu->arch.vpa)) 500 break; 501 502 vpap = &tvcpu->arch.dtl; 503 err = 0; 504 break; 505 506 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 507 /* Check that they have previously registered a VPA */ 508 err = H_RESOURCE; 509 if (!vpa_is_registered(&tvcpu->arch.vpa)) 510 break; 511 512 vpap = &tvcpu->arch.slb_shadow; 513 err = 0; 514 break; 515 516 case H_VPA_DEREG_VPA: /* deregister VPA */ 517 /* Check they don't still have a DTL or SLB buf registered */ 518 err = H_RESOURCE; 519 if (vpa_is_registered(&tvcpu->arch.dtl) || 520 vpa_is_registered(&tvcpu->arch.slb_shadow)) 521 break; 522 523 vpap = &tvcpu->arch.vpa; 524 err = 0; 525 break; 526 527 case H_VPA_DEREG_DTL: /* deregister DTL */ 528 vpap = &tvcpu->arch.dtl; 529 err = 0; 530 break; 531 532 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 533 vpap = &tvcpu->arch.slb_shadow; 534 err = 0; 535 break; 536 } 537 538 if (vpap) { 539 vpap->next_gpa = vpa; 540 vpap->len = len; 541 vpap->update_pending = 1; 542 } 543 544 spin_unlock(&tvcpu->arch.vpa_update_lock); 545 546 return err; 547 } 548 549 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 550 { 551 struct kvm *kvm = vcpu->kvm; 552 void *va; 553 unsigned long nb; 554 unsigned long gpa; 555 556 /* 557 * We need to pin the page pointed to by vpap->next_gpa, 558 * but we can't call kvmppc_pin_guest_page under the lock 559 * as it does get_user_pages() and down_read(). So we 560 * have to drop the lock, pin the page, then get the lock 561 * again and check that a new area didn't get registered 562 * in the meantime. 563 */ 564 for (;;) { 565 gpa = vpap->next_gpa; 566 spin_unlock(&vcpu->arch.vpa_update_lock); 567 va = NULL; 568 nb = 0; 569 if (gpa) 570 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 571 spin_lock(&vcpu->arch.vpa_update_lock); 572 if (gpa == vpap->next_gpa) 573 break; 574 /* sigh... unpin that one and try again */ 575 if (va) 576 kvmppc_unpin_guest_page(kvm, va, gpa, false); 577 } 578 579 vpap->update_pending = 0; 580 if (va && nb < vpap->len) { 581 /* 582 * If it's now too short, it must be that userspace 583 * has changed the mappings underlying guest memory, 584 * so unregister the region. 585 */ 586 kvmppc_unpin_guest_page(kvm, va, gpa, false); 587 va = NULL; 588 } 589 if (vpap->pinned_addr) 590 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 591 vpap->dirty); 592 vpap->gpa = gpa; 593 vpap->pinned_addr = va; 594 vpap->dirty = false; 595 if (va) 596 vpap->pinned_end = va + vpap->len; 597 } 598 599 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 600 { 601 if (!(vcpu->arch.vpa.update_pending || 602 vcpu->arch.slb_shadow.update_pending || 603 vcpu->arch.dtl.update_pending)) 604 return; 605 606 spin_lock(&vcpu->arch.vpa_update_lock); 607 if (vcpu->arch.vpa.update_pending) { 608 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 609 if (vcpu->arch.vpa.pinned_addr) 610 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 611 } 612 if (vcpu->arch.dtl.update_pending) { 613 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 614 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 615 vcpu->arch.dtl_index = 0; 616 } 617 if (vcpu->arch.slb_shadow.update_pending) 618 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 619 spin_unlock(&vcpu->arch.vpa_update_lock); 620 } 621 622 /* 623 * Return the accumulated stolen time for the vcore up until `now'. 624 * The caller should hold the vcore lock. 625 */ 626 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 627 { 628 u64 p; 629 unsigned long flags; 630 631 spin_lock_irqsave(&vc->stoltb_lock, flags); 632 p = vc->stolen_tb; 633 if (vc->vcore_state != VCORE_INACTIVE && 634 vc->preempt_tb != TB_NIL) 635 p += now - vc->preempt_tb; 636 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 637 return p; 638 } 639 640 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 641 struct kvmppc_vcore *vc) 642 { 643 struct dtl_entry *dt; 644 struct lppaca *vpa; 645 unsigned long stolen; 646 unsigned long core_stolen; 647 u64 now; 648 649 dt = vcpu->arch.dtl_ptr; 650 vpa = vcpu->arch.vpa.pinned_addr; 651 now = mftb(); 652 core_stolen = vcore_stolen_time(vc, now); 653 stolen = core_stolen - vcpu->arch.stolen_logged; 654 vcpu->arch.stolen_logged = core_stolen; 655 spin_lock_irq(&vcpu->arch.tbacct_lock); 656 stolen += vcpu->arch.busy_stolen; 657 vcpu->arch.busy_stolen = 0; 658 spin_unlock_irq(&vcpu->arch.tbacct_lock); 659 if (!dt || !vpa) 660 return; 661 memset(dt, 0, sizeof(struct dtl_entry)); 662 dt->dispatch_reason = 7; 663 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 664 dt->timebase = cpu_to_be64(now + vc->tb_offset); 665 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 666 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 667 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 668 ++dt; 669 if (dt == vcpu->arch.dtl.pinned_end) 670 dt = vcpu->arch.dtl.pinned_addr; 671 vcpu->arch.dtl_ptr = dt; 672 /* order writing *dt vs. writing vpa->dtl_idx */ 673 smp_wmb(); 674 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 675 vcpu->arch.dtl.dirty = true; 676 } 677 678 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 679 { 680 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 681 return true; 682 if ((!vcpu->arch.vcore->arch_compat) && 683 cpu_has_feature(CPU_FTR_ARCH_207S)) 684 return true; 685 return false; 686 } 687 688 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 689 unsigned long resource, unsigned long value1, 690 unsigned long value2) 691 { 692 switch (resource) { 693 case H_SET_MODE_RESOURCE_SET_CIABR: 694 if (!kvmppc_power8_compatible(vcpu)) 695 return H_P2; 696 if (value2) 697 return H_P4; 698 if (mflags) 699 return H_UNSUPPORTED_FLAG_START; 700 /* Guests can't breakpoint the hypervisor */ 701 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 702 return H_P3; 703 vcpu->arch.ciabr = value1; 704 return H_SUCCESS; 705 case H_SET_MODE_RESOURCE_SET_DAWR: 706 if (!kvmppc_power8_compatible(vcpu)) 707 return H_P2; 708 if (mflags) 709 return H_UNSUPPORTED_FLAG_START; 710 if (value2 & DABRX_HYP) 711 return H_P4; 712 vcpu->arch.dawr = value1; 713 vcpu->arch.dawrx = value2; 714 return H_SUCCESS; 715 default: 716 return H_TOO_HARD; 717 } 718 } 719 720 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 721 { 722 struct kvmppc_vcore *vcore = target->arch.vcore; 723 724 /* 725 * We expect to have been called by the real mode handler 726 * (kvmppc_rm_h_confer()) which would have directly returned 727 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 728 * have useful work to do and should not confer) so we don't 729 * recheck that here. 730 */ 731 732 spin_lock(&vcore->lock); 733 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 734 vcore->vcore_state != VCORE_INACTIVE && 735 vcore->runner) 736 target = vcore->runner; 737 spin_unlock(&vcore->lock); 738 739 return kvm_vcpu_yield_to(target); 740 } 741 742 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 743 { 744 int yield_count = 0; 745 struct lppaca *lppaca; 746 747 spin_lock(&vcpu->arch.vpa_update_lock); 748 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 749 if (lppaca) 750 yield_count = be32_to_cpu(lppaca->yield_count); 751 spin_unlock(&vcpu->arch.vpa_update_lock); 752 return yield_count; 753 } 754 755 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 756 { 757 unsigned long req = kvmppc_get_gpr(vcpu, 3); 758 unsigned long target, ret = H_SUCCESS; 759 int yield_count; 760 struct kvm_vcpu *tvcpu; 761 int idx, rc; 762 763 if (req <= MAX_HCALL_OPCODE && 764 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 765 return RESUME_HOST; 766 767 switch (req) { 768 case H_CEDE: 769 break; 770 case H_PROD: 771 target = kvmppc_get_gpr(vcpu, 4); 772 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 773 if (!tvcpu) { 774 ret = H_PARAMETER; 775 break; 776 } 777 tvcpu->arch.prodded = 1; 778 smp_mb(); 779 if (tvcpu->arch.ceded) 780 kvmppc_fast_vcpu_kick_hv(tvcpu); 781 break; 782 case H_CONFER: 783 target = kvmppc_get_gpr(vcpu, 4); 784 if (target == -1) 785 break; 786 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 787 if (!tvcpu) { 788 ret = H_PARAMETER; 789 break; 790 } 791 yield_count = kvmppc_get_gpr(vcpu, 5); 792 if (kvmppc_get_yield_count(tvcpu) != yield_count) 793 break; 794 kvm_arch_vcpu_yield_to(tvcpu); 795 break; 796 case H_REGISTER_VPA: 797 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 798 kvmppc_get_gpr(vcpu, 5), 799 kvmppc_get_gpr(vcpu, 6)); 800 break; 801 case H_RTAS: 802 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 803 return RESUME_HOST; 804 805 idx = srcu_read_lock(&vcpu->kvm->srcu); 806 rc = kvmppc_rtas_hcall(vcpu); 807 srcu_read_unlock(&vcpu->kvm->srcu, idx); 808 809 if (rc == -ENOENT) 810 return RESUME_HOST; 811 else if (rc == 0) 812 break; 813 814 /* Send the error out to userspace via KVM_RUN */ 815 return rc; 816 case H_LOGICAL_CI_LOAD: 817 ret = kvmppc_h_logical_ci_load(vcpu); 818 if (ret == H_TOO_HARD) 819 return RESUME_HOST; 820 break; 821 case H_LOGICAL_CI_STORE: 822 ret = kvmppc_h_logical_ci_store(vcpu); 823 if (ret == H_TOO_HARD) 824 return RESUME_HOST; 825 break; 826 case H_SET_MODE: 827 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 828 kvmppc_get_gpr(vcpu, 5), 829 kvmppc_get_gpr(vcpu, 6), 830 kvmppc_get_gpr(vcpu, 7)); 831 if (ret == H_TOO_HARD) 832 return RESUME_HOST; 833 break; 834 case H_XIRR: 835 case H_CPPR: 836 case H_EOI: 837 case H_IPI: 838 case H_IPOLL: 839 case H_XIRR_X: 840 if (kvmppc_xics_enabled(vcpu)) { 841 if (xive_enabled()) { 842 ret = H_NOT_AVAILABLE; 843 return RESUME_GUEST; 844 } 845 ret = kvmppc_xics_hcall(vcpu, req); 846 break; 847 } 848 return RESUME_HOST; 849 case H_PUT_TCE: 850 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 851 kvmppc_get_gpr(vcpu, 5), 852 kvmppc_get_gpr(vcpu, 6)); 853 if (ret == H_TOO_HARD) 854 return RESUME_HOST; 855 break; 856 case H_PUT_TCE_INDIRECT: 857 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 858 kvmppc_get_gpr(vcpu, 5), 859 kvmppc_get_gpr(vcpu, 6), 860 kvmppc_get_gpr(vcpu, 7)); 861 if (ret == H_TOO_HARD) 862 return RESUME_HOST; 863 break; 864 case H_STUFF_TCE: 865 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 866 kvmppc_get_gpr(vcpu, 5), 867 kvmppc_get_gpr(vcpu, 6), 868 kvmppc_get_gpr(vcpu, 7)); 869 if (ret == H_TOO_HARD) 870 return RESUME_HOST; 871 break; 872 default: 873 return RESUME_HOST; 874 } 875 kvmppc_set_gpr(vcpu, 3, ret); 876 vcpu->arch.hcall_needed = 0; 877 return RESUME_GUEST; 878 } 879 880 static int kvmppc_hcall_impl_hv(unsigned long cmd) 881 { 882 switch (cmd) { 883 case H_CEDE: 884 case H_PROD: 885 case H_CONFER: 886 case H_REGISTER_VPA: 887 case H_SET_MODE: 888 case H_LOGICAL_CI_LOAD: 889 case H_LOGICAL_CI_STORE: 890 #ifdef CONFIG_KVM_XICS 891 case H_XIRR: 892 case H_CPPR: 893 case H_EOI: 894 case H_IPI: 895 case H_IPOLL: 896 case H_XIRR_X: 897 #endif 898 return 1; 899 } 900 901 /* See if it's in the real-mode table */ 902 return kvmppc_hcall_impl_hv_realmode(cmd); 903 } 904 905 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 906 struct kvm_vcpu *vcpu) 907 { 908 u32 last_inst; 909 910 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 911 EMULATE_DONE) { 912 /* 913 * Fetch failed, so return to guest and 914 * try executing it again. 915 */ 916 return RESUME_GUEST; 917 } 918 919 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 920 run->exit_reason = KVM_EXIT_DEBUG; 921 run->debug.arch.address = kvmppc_get_pc(vcpu); 922 return RESUME_HOST; 923 } else { 924 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 925 return RESUME_GUEST; 926 } 927 } 928 929 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 930 struct task_struct *tsk) 931 { 932 int r = RESUME_HOST; 933 934 vcpu->stat.sum_exits++; 935 936 /* 937 * This can happen if an interrupt occurs in the last stages 938 * of guest entry or the first stages of guest exit (i.e. after 939 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 940 * and before setting it to KVM_GUEST_MODE_HOST_HV). 941 * That can happen due to a bug, or due to a machine check 942 * occurring at just the wrong time. 943 */ 944 if (vcpu->arch.shregs.msr & MSR_HV) { 945 printk(KERN_EMERG "KVM trap in HV mode!\n"); 946 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 947 vcpu->arch.trap, kvmppc_get_pc(vcpu), 948 vcpu->arch.shregs.msr); 949 kvmppc_dump_regs(vcpu); 950 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 951 run->hw.hardware_exit_reason = vcpu->arch.trap; 952 return RESUME_HOST; 953 } 954 run->exit_reason = KVM_EXIT_UNKNOWN; 955 run->ready_for_interrupt_injection = 1; 956 switch (vcpu->arch.trap) { 957 /* We're good on these - the host merely wanted to get our attention */ 958 case BOOK3S_INTERRUPT_HV_DECREMENTER: 959 vcpu->stat.dec_exits++; 960 r = RESUME_GUEST; 961 break; 962 case BOOK3S_INTERRUPT_EXTERNAL: 963 case BOOK3S_INTERRUPT_H_DOORBELL: 964 case BOOK3S_INTERRUPT_H_VIRT: 965 vcpu->stat.ext_intr_exits++; 966 r = RESUME_GUEST; 967 break; 968 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 969 case BOOK3S_INTERRUPT_HMI: 970 case BOOK3S_INTERRUPT_PERFMON: 971 r = RESUME_GUEST; 972 break; 973 case BOOK3S_INTERRUPT_MACHINE_CHECK: 974 /* 975 * Deliver a machine check interrupt to the guest. 976 * We have to do this, even if the host has handled the 977 * machine check, because machine checks use SRR0/1 and 978 * the interrupt might have trashed guest state in them. 979 */ 980 kvmppc_book3s_queue_irqprio(vcpu, 981 BOOK3S_INTERRUPT_MACHINE_CHECK); 982 r = RESUME_GUEST; 983 break; 984 case BOOK3S_INTERRUPT_PROGRAM: 985 { 986 ulong flags; 987 /* 988 * Normally program interrupts are delivered directly 989 * to the guest by the hardware, but we can get here 990 * as a result of a hypervisor emulation interrupt 991 * (e40) getting turned into a 700 by BML RTAS. 992 */ 993 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 994 kvmppc_core_queue_program(vcpu, flags); 995 r = RESUME_GUEST; 996 break; 997 } 998 case BOOK3S_INTERRUPT_SYSCALL: 999 { 1000 /* hcall - punt to userspace */ 1001 int i; 1002 1003 /* hypercall with MSR_PR has already been handled in rmode, 1004 * and never reaches here. 1005 */ 1006 1007 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1008 for (i = 0; i < 9; ++i) 1009 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1010 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1011 vcpu->arch.hcall_needed = 1; 1012 r = RESUME_HOST; 1013 break; 1014 } 1015 /* 1016 * We get these next two if the guest accesses a page which it thinks 1017 * it has mapped but which is not actually present, either because 1018 * it is for an emulated I/O device or because the corresonding 1019 * host page has been paged out. Any other HDSI/HISI interrupts 1020 * have been handled already. 1021 */ 1022 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1023 r = RESUME_PAGE_FAULT; 1024 break; 1025 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1026 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1027 vcpu->arch.fault_dsisr = 0; 1028 r = RESUME_PAGE_FAULT; 1029 break; 1030 /* 1031 * This occurs if the guest executes an illegal instruction. 1032 * If the guest debug is disabled, generate a program interrupt 1033 * to the guest. If guest debug is enabled, we need to check 1034 * whether the instruction is a software breakpoint instruction. 1035 * Accordingly return to Guest or Host. 1036 */ 1037 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1038 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1039 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1040 swab32(vcpu->arch.emul_inst) : 1041 vcpu->arch.emul_inst; 1042 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1043 r = kvmppc_emulate_debug_inst(run, vcpu); 1044 } else { 1045 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1046 r = RESUME_GUEST; 1047 } 1048 break; 1049 /* 1050 * This occurs if the guest (kernel or userspace), does something that 1051 * is prohibited by HFSCR. We just generate a program interrupt to 1052 * the guest. 1053 */ 1054 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1055 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1056 r = RESUME_GUEST; 1057 break; 1058 case BOOK3S_INTERRUPT_HV_RM_HARD: 1059 r = RESUME_PASSTHROUGH; 1060 break; 1061 default: 1062 kvmppc_dump_regs(vcpu); 1063 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1064 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1065 vcpu->arch.shregs.msr); 1066 run->hw.hardware_exit_reason = vcpu->arch.trap; 1067 r = RESUME_HOST; 1068 break; 1069 } 1070 1071 return r; 1072 } 1073 1074 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1075 struct kvm_sregs *sregs) 1076 { 1077 int i; 1078 1079 memset(sregs, 0, sizeof(struct kvm_sregs)); 1080 sregs->pvr = vcpu->arch.pvr; 1081 for (i = 0; i < vcpu->arch.slb_max; i++) { 1082 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1083 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1084 } 1085 1086 return 0; 1087 } 1088 1089 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1090 struct kvm_sregs *sregs) 1091 { 1092 int i, j; 1093 1094 /* Only accept the same PVR as the host's, since we can't spoof it */ 1095 if (sregs->pvr != vcpu->arch.pvr) 1096 return -EINVAL; 1097 1098 j = 0; 1099 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1100 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1101 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1102 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1103 ++j; 1104 } 1105 } 1106 vcpu->arch.slb_max = j; 1107 1108 return 0; 1109 } 1110 1111 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1112 bool preserve_top32) 1113 { 1114 struct kvm *kvm = vcpu->kvm; 1115 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1116 u64 mask; 1117 1118 mutex_lock(&kvm->lock); 1119 spin_lock(&vc->lock); 1120 /* 1121 * If ILE (interrupt little-endian) has changed, update the 1122 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1123 */ 1124 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1125 struct kvm_vcpu *vcpu; 1126 int i; 1127 1128 kvm_for_each_vcpu(i, vcpu, kvm) { 1129 if (vcpu->arch.vcore != vc) 1130 continue; 1131 if (new_lpcr & LPCR_ILE) 1132 vcpu->arch.intr_msr |= MSR_LE; 1133 else 1134 vcpu->arch.intr_msr &= ~MSR_LE; 1135 } 1136 } 1137 1138 /* 1139 * Userspace can only modify DPFD (default prefetch depth), 1140 * ILE (interrupt little-endian) and TC (translation control). 1141 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1142 */ 1143 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1144 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1145 mask |= LPCR_AIL; 1146 1147 /* Broken 32-bit version of LPCR must not clear top bits */ 1148 if (preserve_top32) 1149 mask &= 0xFFFFFFFF; 1150 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1151 spin_unlock(&vc->lock); 1152 mutex_unlock(&kvm->lock); 1153 } 1154 1155 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1156 union kvmppc_one_reg *val) 1157 { 1158 int r = 0; 1159 long int i; 1160 1161 switch (id) { 1162 case KVM_REG_PPC_DEBUG_INST: 1163 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1164 break; 1165 case KVM_REG_PPC_HIOR: 1166 *val = get_reg_val(id, 0); 1167 break; 1168 case KVM_REG_PPC_DABR: 1169 *val = get_reg_val(id, vcpu->arch.dabr); 1170 break; 1171 case KVM_REG_PPC_DABRX: 1172 *val = get_reg_val(id, vcpu->arch.dabrx); 1173 break; 1174 case KVM_REG_PPC_DSCR: 1175 *val = get_reg_val(id, vcpu->arch.dscr); 1176 break; 1177 case KVM_REG_PPC_PURR: 1178 *val = get_reg_val(id, vcpu->arch.purr); 1179 break; 1180 case KVM_REG_PPC_SPURR: 1181 *val = get_reg_val(id, vcpu->arch.spurr); 1182 break; 1183 case KVM_REG_PPC_AMR: 1184 *val = get_reg_val(id, vcpu->arch.amr); 1185 break; 1186 case KVM_REG_PPC_UAMOR: 1187 *val = get_reg_val(id, vcpu->arch.uamor); 1188 break; 1189 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1190 i = id - KVM_REG_PPC_MMCR0; 1191 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1192 break; 1193 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1194 i = id - KVM_REG_PPC_PMC1; 1195 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1196 break; 1197 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1198 i = id - KVM_REG_PPC_SPMC1; 1199 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1200 break; 1201 case KVM_REG_PPC_SIAR: 1202 *val = get_reg_val(id, vcpu->arch.siar); 1203 break; 1204 case KVM_REG_PPC_SDAR: 1205 *val = get_reg_val(id, vcpu->arch.sdar); 1206 break; 1207 case KVM_REG_PPC_SIER: 1208 *val = get_reg_val(id, vcpu->arch.sier); 1209 break; 1210 case KVM_REG_PPC_IAMR: 1211 *val = get_reg_val(id, vcpu->arch.iamr); 1212 break; 1213 case KVM_REG_PPC_PSPB: 1214 *val = get_reg_val(id, vcpu->arch.pspb); 1215 break; 1216 case KVM_REG_PPC_DPDES: 1217 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1218 break; 1219 case KVM_REG_PPC_VTB: 1220 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1221 break; 1222 case KVM_REG_PPC_DAWR: 1223 *val = get_reg_val(id, vcpu->arch.dawr); 1224 break; 1225 case KVM_REG_PPC_DAWRX: 1226 *val = get_reg_val(id, vcpu->arch.dawrx); 1227 break; 1228 case KVM_REG_PPC_CIABR: 1229 *val = get_reg_val(id, vcpu->arch.ciabr); 1230 break; 1231 case KVM_REG_PPC_CSIGR: 1232 *val = get_reg_val(id, vcpu->arch.csigr); 1233 break; 1234 case KVM_REG_PPC_TACR: 1235 *val = get_reg_val(id, vcpu->arch.tacr); 1236 break; 1237 case KVM_REG_PPC_TCSCR: 1238 *val = get_reg_val(id, vcpu->arch.tcscr); 1239 break; 1240 case KVM_REG_PPC_PID: 1241 *val = get_reg_val(id, vcpu->arch.pid); 1242 break; 1243 case KVM_REG_PPC_ACOP: 1244 *val = get_reg_val(id, vcpu->arch.acop); 1245 break; 1246 case KVM_REG_PPC_WORT: 1247 *val = get_reg_val(id, vcpu->arch.wort); 1248 break; 1249 case KVM_REG_PPC_TIDR: 1250 *val = get_reg_val(id, vcpu->arch.tid); 1251 break; 1252 case KVM_REG_PPC_PSSCR: 1253 *val = get_reg_val(id, vcpu->arch.psscr); 1254 break; 1255 case KVM_REG_PPC_VPA_ADDR: 1256 spin_lock(&vcpu->arch.vpa_update_lock); 1257 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1258 spin_unlock(&vcpu->arch.vpa_update_lock); 1259 break; 1260 case KVM_REG_PPC_VPA_SLB: 1261 spin_lock(&vcpu->arch.vpa_update_lock); 1262 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1263 val->vpaval.length = vcpu->arch.slb_shadow.len; 1264 spin_unlock(&vcpu->arch.vpa_update_lock); 1265 break; 1266 case KVM_REG_PPC_VPA_DTL: 1267 spin_lock(&vcpu->arch.vpa_update_lock); 1268 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1269 val->vpaval.length = vcpu->arch.dtl.len; 1270 spin_unlock(&vcpu->arch.vpa_update_lock); 1271 break; 1272 case KVM_REG_PPC_TB_OFFSET: 1273 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1274 break; 1275 case KVM_REG_PPC_LPCR: 1276 case KVM_REG_PPC_LPCR_64: 1277 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1278 break; 1279 case KVM_REG_PPC_PPR: 1280 *val = get_reg_val(id, vcpu->arch.ppr); 1281 break; 1282 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1283 case KVM_REG_PPC_TFHAR: 1284 *val = get_reg_val(id, vcpu->arch.tfhar); 1285 break; 1286 case KVM_REG_PPC_TFIAR: 1287 *val = get_reg_val(id, vcpu->arch.tfiar); 1288 break; 1289 case KVM_REG_PPC_TEXASR: 1290 *val = get_reg_val(id, vcpu->arch.texasr); 1291 break; 1292 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1293 i = id - KVM_REG_PPC_TM_GPR0; 1294 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1295 break; 1296 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1297 { 1298 int j; 1299 i = id - KVM_REG_PPC_TM_VSR0; 1300 if (i < 32) 1301 for (j = 0; j < TS_FPRWIDTH; j++) 1302 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1303 else { 1304 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1305 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1306 else 1307 r = -ENXIO; 1308 } 1309 break; 1310 } 1311 case KVM_REG_PPC_TM_CR: 1312 *val = get_reg_val(id, vcpu->arch.cr_tm); 1313 break; 1314 case KVM_REG_PPC_TM_XER: 1315 *val = get_reg_val(id, vcpu->arch.xer_tm); 1316 break; 1317 case KVM_REG_PPC_TM_LR: 1318 *val = get_reg_val(id, vcpu->arch.lr_tm); 1319 break; 1320 case KVM_REG_PPC_TM_CTR: 1321 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1322 break; 1323 case KVM_REG_PPC_TM_FPSCR: 1324 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1325 break; 1326 case KVM_REG_PPC_TM_AMR: 1327 *val = get_reg_val(id, vcpu->arch.amr_tm); 1328 break; 1329 case KVM_REG_PPC_TM_PPR: 1330 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1331 break; 1332 case KVM_REG_PPC_TM_VRSAVE: 1333 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1334 break; 1335 case KVM_REG_PPC_TM_VSCR: 1336 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1337 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1338 else 1339 r = -ENXIO; 1340 break; 1341 case KVM_REG_PPC_TM_DSCR: 1342 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1343 break; 1344 case KVM_REG_PPC_TM_TAR: 1345 *val = get_reg_val(id, vcpu->arch.tar_tm); 1346 break; 1347 #endif 1348 case KVM_REG_PPC_ARCH_COMPAT: 1349 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1350 break; 1351 default: 1352 r = -EINVAL; 1353 break; 1354 } 1355 1356 return r; 1357 } 1358 1359 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1360 union kvmppc_one_reg *val) 1361 { 1362 int r = 0; 1363 long int i; 1364 unsigned long addr, len; 1365 1366 switch (id) { 1367 case KVM_REG_PPC_HIOR: 1368 /* Only allow this to be set to zero */ 1369 if (set_reg_val(id, *val)) 1370 r = -EINVAL; 1371 break; 1372 case KVM_REG_PPC_DABR: 1373 vcpu->arch.dabr = set_reg_val(id, *val); 1374 break; 1375 case KVM_REG_PPC_DABRX: 1376 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1377 break; 1378 case KVM_REG_PPC_DSCR: 1379 vcpu->arch.dscr = set_reg_val(id, *val); 1380 break; 1381 case KVM_REG_PPC_PURR: 1382 vcpu->arch.purr = set_reg_val(id, *val); 1383 break; 1384 case KVM_REG_PPC_SPURR: 1385 vcpu->arch.spurr = set_reg_val(id, *val); 1386 break; 1387 case KVM_REG_PPC_AMR: 1388 vcpu->arch.amr = set_reg_val(id, *val); 1389 break; 1390 case KVM_REG_PPC_UAMOR: 1391 vcpu->arch.uamor = set_reg_val(id, *val); 1392 break; 1393 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1394 i = id - KVM_REG_PPC_MMCR0; 1395 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1396 break; 1397 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1398 i = id - KVM_REG_PPC_PMC1; 1399 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1400 break; 1401 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1402 i = id - KVM_REG_PPC_SPMC1; 1403 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1404 break; 1405 case KVM_REG_PPC_SIAR: 1406 vcpu->arch.siar = set_reg_val(id, *val); 1407 break; 1408 case KVM_REG_PPC_SDAR: 1409 vcpu->arch.sdar = set_reg_val(id, *val); 1410 break; 1411 case KVM_REG_PPC_SIER: 1412 vcpu->arch.sier = set_reg_val(id, *val); 1413 break; 1414 case KVM_REG_PPC_IAMR: 1415 vcpu->arch.iamr = set_reg_val(id, *val); 1416 break; 1417 case KVM_REG_PPC_PSPB: 1418 vcpu->arch.pspb = set_reg_val(id, *val); 1419 break; 1420 case KVM_REG_PPC_DPDES: 1421 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1422 break; 1423 case KVM_REG_PPC_VTB: 1424 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1425 break; 1426 case KVM_REG_PPC_DAWR: 1427 vcpu->arch.dawr = set_reg_val(id, *val); 1428 break; 1429 case KVM_REG_PPC_DAWRX: 1430 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1431 break; 1432 case KVM_REG_PPC_CIABR: 1433 vcpu->arch.ciabr = set_reg_val(id, *val); 1434 /* Don't allow setting breakpoints in hypervisor code */ 1435 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1436 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1437 break; 1438 case KVM_REG_PPC_CSIGR: 1439 vcpu->arch.csigr = set_reg_val(id, *val); 1440 break; 1441 case KVM_REG_PPC_TACR: 1442 vcpu->arch.tacr = set_reg_val(id, *val); 1443 break; 1444 case KVM_REG_PPC_TCSCR: 1445 vcpu->arch.tcscr = set_reg_val(id, *val); 1446 break; 1447 case KVM_REG_PPC_PID: 1448 vcpu->arch.pid = set_reg_val(id, *val); 1449 break; 1450 case KVM_REG_PPC_ACOP: 1451 vcpu->arch.acop = set_reg_val(id, *val); 1452 break; 1453 case KVM_REG_PPC_WORT: 1454 vcpu->arch.wort = set_reg_val(id, *val); 1455 break; 1456 case KVM_REG_PPC_TIDR: 1457 vcpu->arch.tid = set_reg_val(id, *val); 1458 break; 1459 case KVM_REG_PPC_PSSCR: 1460 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1461 break; 1462 case KVM_REG_PPC_VPA_ADDR: 1463 addr = set_reg_val(id, *val); 1464 r = -EINVAL; 1465 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1466 vcpu->arch.dtl.next_gpa)) 1467 break; 1468 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1469 break; 1470 case KVM_REG_PPC_VPA_SLB: 1471 addr = val->vpaval.addr; 1472 len = val->vpaval.length; 1473 r = -EINVAL; 1474 if (addr && !vcpu->arch.vpa.next_gpa) 1475 break; 1476 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1477 break; 1478 case KVM_REG_PPC_VPA_DTL: 1479 addr = val->vpaval.addr; 1480 len = val->vpaval.length; 1481 r = -EINVAL; 1482 if (addr && (len < sizeof(struct dtl_entry) || 1483 !vcpu->arch.vpa.next_gpa)) 1484 break; 1485 len -= len % sizeof(struct dtl_entry); 1486 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1487 break; 1488 case KVM_REG_PPC_TB_OFFSET: 1489 /* 1490 * POWER9 DD1 has an erratum where writing TBU40 causes 1491 * the timebase to lose ticks. So we don't let the 1492 * timebase offset be changed on P9 DD1. (It is 1493 * initialized to zero.) 1494 */ 1495 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) 1496 break; 1497 /* round up to multiple of 2^24 */ 1498 vcpu->arch.vcore->tb_offset = 1499 ALIGN(set_reg_val(id, *val), 1UL << 24); 1500 break; 1501 case KVM_REG_PPC_LPCR: 1502 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1503 break; 1504 case KVM_REG_PPC_LPCR_64: 1505 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1506 break; 1507 case KVM_REG_PPC_PPR: 1508 vcpu->arch.ppr = set_reg_val(id, *val); 1509 break; 1510 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1511 case KVM_REG_PPC_TFHAR: 1512 vcpu->arch.tfhar = set_reg_val(id, *val); 1513 break; 1514 case KVM_REG_PPC_TFIAR: 1515 vcpu->arch.tfiar = set_reg_val(id, *val); 1516 break; 1517 case KVM_REG_PPC_TEXASR: 1518 vcpu->arch.texasr = set_reg_val(id, *val); 1519 break; 1520 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1521 i = id - KVM_REG_PPC_TM_GPR0; 1522 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1523 break; 1524 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1525 { 1526 int j; 1527 i = id - KVM_REG_PPC_TM_VSR0; 1528 if (i < 32) 1529 for (j = 0; j < TS_FPRWIDTH; j++) 1530 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1531 else 1532 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1533 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1534 else 1535 r = -ENXIO; 1536 break; 1537 } 1538 case KVM_REG_PPC_TM_CR: 1539 vcpu->arch.cr_tm = set_reg_val(id, *val); 1540 break; 1541 case KVM_REG_PPC_TM_XER: 1542 vcpu->arch.xer_tm = set_reg_val(id, *val); 1543 break; 1544 case KVM_REG_PPC_TM_LR: 1545 vcpu->arch.lr_tm = set_reg_val(id, *val); 1546 break; 1547 case KVM_REG_PPC_TM_CTR: 1548 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1549 break; 1550 case KVM_REG_PPC_TM_FPSCR: 1551 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1552 break; 1553 case KVM_REG_PPC_TM_AMR: 1554 vcpu->arch.amr_tm = set_reg_val(id, *val); 1555 break; 1556 case KVM_REG_PPC_TM_PPR: 1557 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1558 break; 1559 case KVM_REG_PPC_TM_VRSAVE: 1560 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1561 break; 1562 case KVM_REG_PPC_TM_VSCR: 1563 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1564 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1565 else 1566 r = - ENXIO; 1567 break; 1568 case KVM_REG_PPC_TM_DSCR: 1569 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1570 break; 1571 case KVM_REG_PPC_TM_TAR: 1572 vcpu->arch.tar_tm = set_reg_val(id, *val); 1573 break; 1574 #endif 1575 case KVM_REG_PPC_ARCH_COMPAT: 1576 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1577 break; 1578 default: 1579 r = -EINVAL; 1580 break; 1581 } 1582 1583 return r; 1584 } 1585 1586 /* 1587 * On POWER9, threads are independent and can be in different partitions. 1588 * Therefore we consider each thread to be a subcore. 1589 * There is a restriction that all threads have to be in the same 1590 * MMU mode (radix or HPT), unfortunately, but since we only support 1591 * HPT guests on a HPT host so far, that isn't an impediment yet. 1592 */ 1593 static int threads_per_vcore(void) 1594 { 1595 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1596 return 1; 1597 return threads_per_subcore; 1598 } 1599 1600 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1601 { 1602 struct kvmppc_vcore *vcore; 1603 1604 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1605 1606 if (vcore == NULL) 1607 return NULL; 1608 1609 spin_lock_init(&vcore->lock); 1610 spin_lock_init(&vcore->stoltb_lock); 1611 init_swait_queue_head(&vcore->wq); 1612 vcore->preempt_tb = TB_NIL; 1613 vcore->lpcr = kvm->arch.lpcr; 1614 vcore->first_vcpuid = core * threads_per_vcore(); 1615 vcore->kvm = kvm; 1616 INIT_LIST_HEAD(&vcore->preempt_list); 1617 1618 return vcore; 1619 } 1620 1621 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1622 static struct debugfs_timings_element { 1623 const char *name; 1624 size_t offset; 1625 } timings[] = { 1626 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1627 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1628 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1629 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1630 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1631 }; 1632 1633 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1634 1635 struct debugfs_timings_state { 1636 struct kvm_vcpu *vcpu; 1637 unsigned int buflen; 1638 char buf[N_TIMINGS * 100]; 1639 }; 1640 1641 static int debugfs_timings_open(struct inode *inode, struct file *file) 1642 { 1643 struct kvm_vcpu *vcpu = inode->i_private; 1644 struct debugfs_timings_state *p; 1645 1646 p = kzalloc(sizeof(*p), GFP_KERNEL); 1647 if (!p) 1648 return -ENOMEM; 1649 1650 kvm_get_kvm(vcpu->kvm); 1651 p->vcpu = vcpu; 1652 file->private_data = p; 1653 1654 return nonseekable_open(inode, file); 1655 } 1656 1657 static int debugfs_timings_release(struct inode *inode, struct file *file) 1658 { 1659 struct debugfs_timings_state *p = file->private_data; 1660 1661 kvm_put_kvm(p->vcpu->kvm); 1662 kfree(p); 1663 return 0; 1664 } 1665 1666 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1667 size_t len, loff_t *ppos) 1668 { 1669 struct debugfs_timings_state *p = file->private_data; 1670 struct kvm_vcpu *vcpu = p->vcpu; 1671 char *s, *buf_end; 1672 struct kvmhv_tb_accumulator tb; 1673 u64 count; 1674 loff_t pos; 1675 ssize_t n; 1676 int i, loops; 1677 bool ok; 1678 1679 if (!p->buflen) { 1680 s = p->buf; 1681 buf_end = s + sizeof(p->buf); 1682 for (i = 0; i < N_TIMINGS; ++i) { 1683 struct kvmhv_tb_accumulator *acc; 1684 1685 acc = (struct kvmhv_tb_accumulator *) 1686 ((unsigned long)vcpu + timings[i].offset); 1687 ok = false; 1688 for (loops = 0; loops < 1000; ++loops) { 1689 count = acc->seqcount; 1690 if (!(count & 1)) { 1691 smp_rmb(); 1692 tb = *acc; 1693 smp_rmb(); 1694 if (count == acc->seqcount) { 1695 ok = true; 1696 break; 1697 } 1698 } 1699 udelay(1); 1700 } 1701 if (!ok) 1702 snprintf(s, buf_end - s, "%s: stuck\n", 1703 timings[i].name); 1704 else 1705 snprintf(s, buf_end - s, 1706 "%s: %llu %llu %llu %llu\n", 1707 timings[i].name, count / 2, 1708 tb_to_ns(tb.tb_total), 1709 tb_to_ns(tb.tb_min), 1710 tb_to_ns(tb.tb_max)); 1711 s += strlen(s); 1712 } 1713 p->buflen = s - p->buf; 1714 } 1715 1716 pos = *ppos; 1717 if (pos >= p->buflen) 1718 return 0; 1719 if (len > p->buflen - pos) 1720 len = p->buflen - pos; 1721 n = copy_to_user(buf, p->buf + pos, len); 1722 if (n) { 1723 if (n == len) 1724 return -EFAULT; 1725 len -= n; 1726 } 1727 *ppos = pos + len; 1728 return len; 1729 } 1730 1731 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1732 size_t len, loff_t *ppos) 1733 { 1734 return -EACCES; 1735 } 1736 1737 static const struct file_operations debugfs_timings_ops = { 1738 .owner = THIS_MODULE, 1739 .open = debugfs_timings_open, 1740 .release = debugfs_timings_release, 1741 .read = debugfs_timings_read, 1742 .write = debugfs_timings_write, 1743 .llseek = generic_file_llseek, 1744 }; 1745 1746 /* Create a debugfs directory for the vcpu */ 1747 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1748 { 1749 char buf[16]; 1750 struct kvm *kvm = vcpu->kvm; 1751 1752 snprintf(buf, sizeof(buf), "vcpu%u", id); 1753 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1754 return; 1755 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1756 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1757 return; 1758 vcpu->arch.debugfs_timings = 1759 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1760 vcpu, &debugfs_timings_ops); 1761 } 1762 1763 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1764 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1765 { 1766 } 1767 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1768 1769 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1770 unsigned int id) 1771 { 1772 struct kvm_vcpu *vcpu; 1773 int err = -EINVAL; 1774 int core; 1775 struct kvmppc_vcore *vcore; 1776 1777 core = id / threads_per_vcore(); 1778 if (core >= KVM_MAX_VCORES) 1779 goto out; 1780 1781 err = -ENOMEM; 1782 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1783 if (!vcpu) 1784 goto out; 1785 1786 err = kvm_vcpu_init(vcpu, kvm, id); 1787 if (err) 1788 goto free_vcpu; 1789 1790 vcpu->arch.shared = &vcpu->arch.shregs; 1791 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1792 /* 1793 * The shared struct is never shared on HV, 1794 * so we can always use host endianness 1795 */ 1796 #ifdef __BIG_ENDIAN__ 1797 vcpu->arch.shared_big_endian = true; 1798 #else 1799 vcpu->arch.shared_big_endian = false; 1800 #endif 1801 #endif 1802 vcpu->arch.mmcr[0] = MMCR0_FC; 1803 vcpu->arch.ctrl = CTRL_RUNLATCH; 1804 /* default to host PVR, since we can't spoof it */ 1805 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1806 spin_lock_init(&vcpu->arch.vpa_update_lock); 1807 spin_lock_init(&vcpu->arch.tbacct_lock); 1808 vcpu->arch.busy_preempt = TB_NIL; 1809 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1810 1811 kvmppc_mmu_book3s_hv_init(vcpu); 1812 1813 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1814 1815 init_waitqueue_head(&vcpu->arch.cpu_run); 1816 1817 mutex_lock(&kvm->lock); 1818 vcore = kvm->arch.vcores[core]; 1819 if (!vcore) { 1820 vcore = kvmppc_vcore_create(kvm, core); 1821 kvm->arch.vcores[core] = vcore; 1822 kvm->arch.online_vcores++; 1823 } 1824 mutex_unlock(&kvm->lock); 1825 1826 if (!vcore) 1827 goto free_vcpu; 1828 1829 spin_lock(&vcore->lock); 1830 ++vcore->num_threads; 1831 spin_unlock(&vcore->lock); 1832 vcpu->arch.vcore = vcore; 1833 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1834 vcpu->arch.thread_cpu = -1; 1835 vcpu->arch.prev_cpu = -1; 1836 1837 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1838 kvmppc_sanity_check(vcpu); 1839 1840 debugfs_vcpu_init(vcpu, id); 1841 1842 return vcpu; 1843 1844 free_vcpu: 1845 kmem_cache_free(kvm_vcpu_cache, vcpu); 1846 out: 1847 return ERR_PTR(err); 1848 } 1849 1850 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1851 { 1852 if (vpa->pinned_addr) 1853 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1854 vpa->dirty); 1855 } 1856 1857 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1858 { 1859 spin_lock(&vcpu->arch.vpa_update_lock); 1860 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1861 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1862 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1863 spin_unlock(&vcpu->arch.vpa_update_lock); 1864 kvm_vcpu_uninit(vcpu); 1865 kmem_cache_free(kvm_vcpu_cache, vcpu); 1866 } 1867 1868 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1869 { 1870 /* Indicate we want to get back into the guest */ 1871 return 1; 1872 } 1873 1874 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1875 { 1876 unsigned long dec_nsec, now; 1877 1878 now = get_tb(); 1879 if (now > vcpu->arch.dec_expires) { 1880 /* decrementer has already gone negative */ 1881 kvmppc_core_queue_dec(vcpu); 1882 kvmppc_core_prepare_to_enter(vcpu); 1883 return; 1884 } 1885 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1886 / tb_ticks_per_sec; 1887 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 1888 vcpu->arch.timer_running = 1; 1889 } 1890 1891 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1892 { 1893 vcpu->arch.ceded = 0; 1894 if (vcpu->arch.timer_running) { 1895 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1896 vcpu->arch.timer_running = 0; 1897 } 1898 } 1899 1900 extern void __kvmppc_vcore_entry(void); 1901 1902 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1903 struct kvm_vcpu *vcpu) 1904 { 1905 u64 now; 1906 1907 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1908 return; 1909 spin_lock_irq(&vcpu->arch.tbacct_lock); 1910 now = mftb(); 1911 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1912 vcpu->arch.stolen_logged; 1913 vcpu->arch.busy_preempt = now; 1914 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1915 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1916 --vc->n_runnable; 1917 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 1918 } 1919 1920 static int kvmppc_grab_hwthread(int cpu) 1921 { 1922 struct paca_struct *tpaca; 1923 long timeout = 10000; 1924 1925 tpaca = &paca[cpu]; 1926 1927 /* Ensure the thread won't go into the kernel if it wakes */ 1928 tpaca->kvm_hstate.kvm_vcpu = NULL; 1929 tpaca->kvm_hstate.kvm_vcore = NULL; 1930 tpaca->kvm_hstate.napping = 0; 1931 smp_wmb(); 1932 tpaca->kvm_hstate.hwthread_req = 1; 1933 1934 /* 1935 * If the thread is already executing in the kernel (e.g. handling 1936 * a stray interrupt), wait for it to get back to nap mode. 1937 * The smp_mb() is to ensure that our setting of hwthread_req 1938 * is visible before we look at hwthread_state, so if this 1939 * races with the code at system_reset_pSeries and the thread 1940 * misses our setting of hwthread_req, we are sure to see its 1941 * setting of hwthread_state, and vice versa. 1942 */ 1943 smp_mb(); 1944 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1945 if (--timeout <= 0) { 1946 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1947 return -EBUSY; 1948 } 1949 udelay(1); 1950 } 1951 return 0; 1952 } 1953 1954 static void kvmppc_release_hwthread(int cpu) 1955 { 1956 struct paca_struct *tpaca; 1957 1958 tpaca = &paca[cpu]; 1959 tpaca->kvm_hstate.hwthread_req = 0; 1960 tpaca->kvm_hstate.kvm_vcpu = NULL; 1961 tpaca->kvm_hstate.kvm_vcore = NULL; 1962 tpaca->kvm_hstate.kvm_split_mode = NULL; 1963 } 1964 1965 static void do_nothing(void *x) 1966 { 1967 } 1968 1969 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 1970 { 1971 int i; 1972 1973 cpu = cpu_first_thread_sibling(cpu); 1974 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 1975 /* 1976 * Make sure setting of bit in need_tlb_flush precedes 1977 * testing of cpu_in_guest bits. The matching barrier on 1978 * the other side is the first smp_mb() in kvmppc_run_core(). 1979 */ 1980 smp_mb(); 1981 for (i = 0; i < threads_per_core; ++i) 1982 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) 1983 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 1984 } 1985 1986 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 1987 { 1988 int cpu; 1989 struct paca_struct *tpaca; 1990 struct kvmppc_vcore *mvc = vc->master_vcore; 1991 struct kvm *kvm = vc->kvm; 1992 1993 cpu = vc->pcpu; 1994 if (vcpu) { 1995 if (vcpu->arch.timer_running) { 1996 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1997 vcpu->arch.timer_running = 0; 1998 } 1999 cpu += vcpu->arch.ptid; 2000 vcpu->cpu = mvc->pcpu; 2001 vcpu->arch.thread_cpu = cpu; 2002 2003 /* 2004 * With radix, the guest can do TLB invalidations itself, 2005 * and it could choose to use the local form (tlbiel) if 2006 * it is invalidating a translation that has only ever been 2007 * used on one vcpu. However, that doesn't mean it has 2008 * only ever been used on one physical cpu, since vcpus 2009 * can move around between pcpus. To cope with this, when 2010 * a vcpu moves from one pcpu to another, we need to tell 2011 * any vcpus running on the same core as this vcpu previously 2012 * ran to flush the TLB. The TLB is shared between threads, 2013 * so we use a single bit in .need_tlb_flush for all 4 threads. 2014 */ 2015 if (kvm_is_radix(kvm) && vcpu->arch.prev_cpu != cpu) { 2016 if (vcpu->arch.prev_cpu >= 0 && 2017 cpu_first_thread_sibling(vcpu->arch.prev_cpu) != 2018 cpu_first_thread_sibling(cpu)) 2019 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); 2020 vcpu->arch.prev_cpu = cpu; 2021 } 2022 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2023 } 2024 tpaca = &paca[cpu]; 2025 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2026 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu; 2027 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2028 smp_wmb(); 2029 tpaca->kvm_hstate.kvm_vcore = mvc; 2030 if (cpu != smp_processor_id()) 2031 kvmppc_ipi_thread(cpu); 2032 } 2033 2034 static void kvmppc_wait_for_nap(void) 2035 { 2036 int cpu = smp_processor_id(); 2037 int i, loops; 2038 int n_threads = threads_per_vcore(); 2039 2040 if (n_threads <= 1) 2041 return; 2042 for (loops = 0; loops < 1000000; ++loops) { 2043 /* 2044 * Check if all threads are finished. 2045 * We set the vcore pointer when starting a thread 2046 * and the thread clears it when finished, so we look 2047 * for any threads that still have a non-NULL vcore ptr. 2048 */ 2049 for (i = 1; i < n_threads; ++i) 2050 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2051 break; 2052 if (i == n_threads) { 2053 HMT_medium(); 2054 return; 2055 } 2056 HMT_low(); 2057 } 2058 HMT_medium(); 2059 for (i = 1; i < n_threads; ++i) 2060 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2061 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2062 } 2063 2064 /* 2065 * Check that we are on thread 0 and that any other threads in 2066 * this core are off-line. Then grab the threads so they can't 2067 * enter the kernel. 2068 */ 2069 static int on_primary_thread(void) 2070 { 2071 int cpu = smp_processor_id(); 2072 int thr; 2073 2074 /* Are we on a primary subcore? */ 2075 if (cpu_thread_in_subcore(cpu)) 2076 return 0; 2077 2078 thr = 0; 2079 while (++thr < threads_per_subcore) 2080 if (cpu_online(cpu + thr)) 2081 return 0; 2082 2083 /* Grab all hw threads so they can't go into the kernel */ 2084 for (thr = 1; thr < threads_per_subcore; ++thr) { 2085 if (kvmppc_grab_hwthread(cpu + thr)) { 2086 /* Couldn't grab one; let the others go */ 2087 do { 2088 kvmppc_release_hwthread(cpu + thr); 2089 } while (--thr > 0); 2090 return 0; 2091 } 2092 } 2093 return 1; 2094 } 2095 2096 /* 2097 * A list of virtual cores for each physical CPU. 2098 * These are vcores that could run but their runner VCPU tasks are 2099 * (or may be) preempted. 2100 */ 2101 struct preempted_vcore_list { 2102 struct list_head list; 2103 spinlock_t lock; 2104 }; 2105 2106 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2107 2108 static void init_vcore_lists(void) 2109 { 2110 int cpu; 2111 2112 for_each_possible_cpu(cpu) { 2113 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2114 spin_lock_init(&lp->lock); 2115 INIT_LIST_HEAD(&lp->list); 2116 } 2117 } 2118 2119 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2120 { 2121 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2122 2123 vc->vcore_state = VCORE_PREEMPT; 2124 vc->pcpu = smp_processor_id(); 2125 if (vc->num_threads < threads_per_vcore()) { 2126 spin_lock(&lp->lock); 2127 list_add_tail(&vc->preempt_list, &lp->list); 2128 spin_unlock(&lp->lock); 2129 } 2130 2131 /* Start accumulating stolen time */ 2132 kvmppc_core_start_stolen(vc); 2133 } 2134 2135 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2136 { 2137 struct preempted_vcore_list *lp; 2138 2139 kvmppc_core_end_stolen(vc); 2140 if (!list_empty(&vc->preempt_list)) { 2141 lp = &per_cpu(preempted_vcores, vc->pcpu); 2142 spin_lock(&lp->lock); 2143 list_del_init(&vc->preempt_list); 2144 spin_unlock(&lp->lock); 2145 } 2146 vc->vcore_state = VCORE_INACTIVE; 2147 } 2148 2149 /* 2150 * This stores information about the virtual cores currently 2151 * assigned to a physical core. 2152 */ 2153 struct core_info { 2154 int n_subcores; 2155 int max_subcore_threads; 2156 int total_threads; 2157 int subcore_threads[MAX_SUBCORES]; 2158 struct kvm *subcore_vm[MAX_SUBCORES]; 2159 struct list_head vcs[MAX_SUBCORES]; 2160 }; 2161 2162 /* 2163 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2164 * respectively in 2-way micro-threading (split-core) mode. 2165 */ 2166 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2167 2168 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2169 { 2170 int sub; 2171 2172 memset(cip, 0, sizeof(*cip)); 2173 cip->n_subcores = 1; 2174 cip->max_subcore_threads = vc->num_threads; 2175 cip->total_threads = vc->num_threads; 2176 cip->subcore_threads[0] = vc->num_threads; 2177 cip->subcore_vm[0] = vc->kvm; 2178 for (sub = 0; sub < MAX_SUBCORES; ++sub) 2179 INIT_LIST_HEAD(&cip->vcs[sub]); 2180 list_add_tail(&vc->preempt_list, &cip->vcs[0]); 2181 } 2182 2183 static bool subcore_config_ok(int n_subcores, int n_threads) 2184 { 2185 /* Can only dynamically split if unsplit to begin with */ 2186 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2187 return false; 2188 if (n_subcores > MAX_SUBCORES) 2189 return false; 2190 if (n_subcores > 1) { 2191 if (!(dynamic_mt_modes & 2)) 2192 n_subcores = 4; 2193 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2194 return false; 2195 } 2196 2197 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2198 } 2199 2200 static void init_master_vcore(struct kvmppc_vcore *vc) 2201 { 2202 vc->master_vcore = vc; 2203 vc->entry_exit_map = 0; 2204 vc->in_guest = 0; 2205 vc->napping_threads = 0; 2206 vc->conferring_threads = 0; 2207 } 2208 2209 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2210 { 2211 int n_threads = vc->num_threads; 2212 int sub; 2213 2214 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2215 return false; 2216 2217 if (n_threads < cip->max_subcore_threads) 2218 n_threads = cip->max_subcore_threads; 2219 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2220 return false; 2221 cip->max_subcore_threads = n_threads; 2222 2223 sub = cip->n_subcores; 2224 ++cip->n_subcores; 2225 cip->total_threads += vc->num_threads; 2226 cip->subcore_threads[sub] = vc->num_threads; 2227 cip->subcore_vm[sub] = vc->kvm; 2228 init_master_vcore(vc); 2229 list_move_tail(&vc->preempt_list, &cip->vcs[sub]); 2230 2231 return true; 2232 } 2233 2234 /* 2235 * Work out whether it is possible to piggyback the execution of 2236 * vcore *pvc onto the execution of the other vcores described in *cip. 2237 */ 2238 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2239 int target_threads) 2240 { 2241 if (cip->total_threads + pvc->num_threads > target_threads) 2242 return false; 2243 2244 return can_dynamic_split(pvc, cip); 2245 } 2246 2247 static void prepare_threads(struct kvmppc_vcore *vc) 2248 { 2249 int i; 2250 struct kvm_vcpu *vcpu; 2251 2252 for_each_runnable_thread(i, vcpu, vc) { 2253 if (signal_pending(vcpu->arch.run_task)) 2254 vcpu->arch.ret = -EINTR; 2255 else if (vcpu->arch.vpa.update_pending || 2256 vcpu->arch.slb_shadow.update_pending || 2257 vcpu->arch.dtl.update_pending) 2258 vcpu->arch.ret = RESUME_GUEST; 2259 else 2260 continue; 2261 kvmppc_remove_runnable(vc, vcpu); 2262 wake_up(&vcpu->arch.cpu_run); 2263 } 2264 } 2265 2266 static void collect_piggybacks(struct core_info *cip, int target_threads) 2267 { 2268 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2269 struct kvmppc_vcore *pvc, *vcnext; 2270 2271 spin_lock(&lp->lock); 2272 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2273 if (!spin_trylock(&pvc->lock)) 2274 continue; 2275 prepare_threads(pvc); 2276 if (!pvc->n_runnable) { 2277 list_del_init(&pvc->preempt_list); 2278 if (pvc->runner == NULL) { 2279 pvc->vcore_state = VCORE_INACTIVE; 2280 kvmppc_core_end_stolen(pvc); 2281 } 2282 spin_unlock(&pvc->lock); 2283 continue; 2284 } 2285 if (!can_piggyback(pvc, cip, target_threads)) { 2286 spin_unlock(&pvc->lock); 2287 continue; 2288 } 2289 kvmppc_core_end_stolen(pvc); 2290 pvc->vcore_state = VCORE_PIGGYBACK; 2291 if (cip->total_threads >= target_threads) 2292 break; 2293 } 2294 spin_unlock(&lp->lock); 2295 } 2296 2297 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2298 { 2299 int still_running = 0, i; 2300 u64 now; 2301 long ret; 2302 struct kvm_vcpu *vcpu; 2303 2304 spin_lock(&vc->lock); 2305 now = get_tb(); 2306 for_each_runnable_thread(i, vcpu, vc) { 2307 /* cancel pending dec exception if dec is positive */ 2308 if (now < vcpu->arch.dec_expires && 2309 kvmppc_core_pending_dec(vcpu)) 2310 kvmppc_core_dequeue_dec(vcpu); 2311 2312 trace_kvm_guest_exit(vcpu); 2313 2314 ret = RESUME_GUEST; 2315 if (vcpu->arch.trap) 2316 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2317 vcpu->arch.run_task); 2318 2319 vcpu->arch.ret = ret; 2320 vcpu->arch.trap = 0; 2321 2322 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2323 if (vcpu->arch.pending_exceptions) 2324 kvmppc_core_prepare_to_enter(vcpu); 2325 if (vcpu->arch.ceded) 2326 kvmppc_set_timer(vcpu); 2327 else 2328 ++still_running; 2329 } else { 2330 kvmppc_remove_runnable(vc, vcpu); 2331 wake_up(&vcpu->arch.cpu_run); 2332 } 2333 } 2334 list_del_init(&vc->preempt_list); 2335 if (!is_master) { 2336 if (still_running > 0) { 2337 kvmppc_vcore_preempt(vc); 2338 } else if (vc->runner) { 2339 vc->vcore_state = VCORE_PREEMPT; 2340 kvmppc_core_start_stolen(vc); 2341 } else { 2342 vc->vcore_state = VCORE_INACTIVE; 2343 } 2344 if (vc->n_runnable > 0 && vc->runner == NULL) { 2345 /* make sure there's a candidate runner awake */ 2346 i = -1; 2347 vcpu = next_runnable_thread(vc, &i); 2348 wake_up(&vcpu->arch.cpu_run); 2349 } 2350 } 2351 spin_unlock(&vc->lock); 2352 } 2353 2354 /* 2355 * Clear core from the list of active host cores as we are about to 2356 * enter the guest. Only do this if it is the primary thread of the 2357 * core (not if a subcore) that is entering the guest. 2358 */ 2359 static inline int kvmppc_clear_host_core(unsigned int cpu) 2360 { 2361 int core; 2362 2363 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2364 return 0; 2365 /* 2366 * Memory barrier can be omitted here as we will do a smp_wmb() 2367 * later in kvmppc_start_thread and we need ensure that state is 2368 * visible to other CPUs only after we enter guest. 2369 */ 2370 core = cpu >> threads_shift; 2371 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2372 return 0; 2373 } 2374 2375 /* 2376 * Advertise this core as an active host core since we exited the guest 2377 * Only need to do this if it is the primary thread of the core that is 2378 * exiting. 2379 */ 2380 static inline int kvmppc_set_host_core(unsigned int cpu) 2381 { 2382 int core; 2383 2384 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2385 return 0; 2386 2387 /* 2388 * Memory barrier can be omitted here because we do a spin_unlock 2389 * immediately after this which provides the memory barrier. 2390 */ 2391 core = cpu >> threads_shift; 2392 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2393 return 0; 2394 } 2395 2396 /* 2397 * Run a set of guest threads on a physical core. 2398 * Called with vc->lock held. 2399 */ 2400 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2401 { 2402 struct kvm_vcpu *vcpu; 2403 int i; 2404 int srcu_idx; 2405 struct core_info core_info; 2406 struct kvmppc_vcore *pvc, *vcnext; 2407 struct kvm_split_mode split_info, *sip; 2408 int split, subcore_size, active; 2409 int sub; 2410 bool thr0_done; 2411 unsigned long cmd_bit, stat_bit; 2412 int pcpu, thr; 2413 int target_threads; 2414 int controlled_threads; 2415 2416 /* 2417 * Remove from the list any threads that have a signal pending 2418 * or need a VPA update done 2419 */ 2420 prepare_threads(vc); 2421 2422 /* if the runner is no longer runnable, let the caller pick a new one */ 2423 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2424 return; 2425 2426 /* 2427 * Initialize *vc. 2428 */ 2429 init_master_vcore(vc); 2430 vc->preempt_tb = TB_NIL; 2431 2432 /* 2433 * Number of threads that we will be controlling: the same as 2434 * the number of threads per subcore, except on POWER9, 2435 * where it's 1 because the threads are (mostly) independent. 2436 */ 2437 controlled_threads = threads_per_vcore(); 2438 2439 /* 2440 * Make sure we are running on primary threads, and that secondary 2441 * threads are offline. Also check if the number of threads in this 2442 * guest are greater than the current system threads per guest. 2443 */ 2444 if ((controlled_threads > 1) && 2445 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 2446 for_each_runnable_thread(i, vcpu, vc) { 2447 vcpu->arch.ret = -EBUSY; 2448 kvmppc_remove_runnable(vc, vcpu); 2449 wake_up(&vcpu->arch.cpu_run); 2450 } 2451 goto out; 2452 } 2453 2454 /* 2455 * See if we could run any other vcores on the physical core 2456 * along with this one. 2457 */ 2458 init_core_info(&core_info, vc); 2459 pcpu = smp_processor_id(); 2460 target_threads = controlled_threads; 2461 if (target_smt_mode && target_smt_mode < target_threads) 2462 target_threads = target_smt_mode; 2463 if (vc->num_threads < target_threads) 2464 collect_piggybacks(&core_info, target_threads); 2465 2466 /* Decide on micro-threading (split-core) mode */ 2467 subcore_size = threads_per_subcore; 2468 cmd_bit = stat_bit = 0; 2469 split = core_info.n_subcores; 2470 sip = NULL; 2471 if (split > 1) { 2472 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */ 2473 if (split == 2 && (dynamic_mt_modes & 2)) { 2474 cmd_bit = HID0_POWER8_1TO2LPAR; 2475 stat_bit = HID0_POWER8_2LPARMODE; 2476 } else { 2477 split = 4; 2478 cmd_bit = HID0_POWER8_1TO4LPAR; 2479 stat_bit = HID0_POWER8_4LPARMODE; 2480 } 2481 subcore_size = MAX_SMT_THREADS / split; 2482 sip = &split_info; 2483 memset(&split_info, 0, sizeof(split_info)); 2484 split_info.rpr = mfspr(SPRN_RPR); 2485 split_info.pmmar = mfspr(SPRN_PMMAR); 2486 split_info.ldbar = mfspr(SPRN_LDBAR); 2487 split_info.subcore_size = subcore_size; 2488 for (sub = 0; sub < core_info.n_subcores; ++sub) 2489 split_info.master_vcs[sub] = 2490 list_first_entry(&core_info.vcs[sub], 2491 struct kvmppc_vcore, preempt_list); 2492 /* order writes to split_info before kvm_split_mode pointer */ 2493 smp_wmb(); 2494 } 2495 pcpu = smp_processor_id(); 2496 for (thr = 0; thr < controlled_threads; ++thr) 2497 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2498 2499 /* Initiate micro-threading (split-core) if required */ 2500 if (cmd_bit) { 2501 unsigned long hid0 = mfspr(SPRN_HID0); 2502 2503 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2504 mb(); 2505 mtspr(SPRN_HID0, hid0); 2506 isync(); 2507 for (;;) { 2508 hid0 = mfspr(SPRN_HID0); 2509 if (hid0 & stat_bit) 2510 break; 2511 cpu_relax(); 2512 } 2513 } 2514 2515 kvmppc_clear_host_core(pcpu); 2516 2517 /* Start all the threads */ 2518 active = 0; 2519 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2520 thr = subcore_thread_map[sub]; 2521 thr0_done = false; 2522 active |= 1 << thr; 2523 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) { 2524 pvc->pcpu = pcpu + thr; 2525 for_each_runnable_thread(i, vcpu, pvc) { 2526 kvmppc_start_thread(vcpu, pvc); 2527 kvmppc_create_dtl_entry(vcpu, pvc); 2528 trace_kvm_guest_enter(vcpu); 2529 if (!vcpu->arch.ptid) 2530 thr0_done = true; 2531 active |= 1 << (thr + vcpu->arch.ptid); 2532 } 2533 /* 2534 * We need to start the first thread of each subcore 2535 * even if it doesn't have a vcpu. 2536 */ 2537 if (pvc->master_vcore == pvc && !thr0_done) 2538 kvmppc_start_thread(NULL, pvc); 2539 thr += pvc->num_threads; 2540 } 2541 } 2542 2543 /* 2544 * Ensure that split_info.do_nap is set after setting 2545 * the vcore pointer in the PACA of the secondaries. 2546 */ 2547 smp_mb(); 2548 if (cmd_bit) 2549 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2550 2551 /* 2552 * When doing micro-threading, poke the inactive threads as well. 2553 * This gets them to the nap instruction after kvm_do_nap, 2554 * which reduces the time taken to unsplit later. 2555 */ 2556 if (split > 1) 2557 for (thr = 1; thr < threads_per_subcore; ++thr) 2558 if (!(active & (1 << thr))) 2559 kvmppc_ipi_thread(pcpu + thr); 2560 2561 vc->vcore_state = VCORE_RUNNING; 2562 preempt_disable(); 2563 2564 trace_kvmppc_run_core(vc, 0); 2565 2566 for (sub = 0; sub < core_info.n_subcores; ++sub) 2567 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) 2568 spin_unlock(&pvc->lock); 2569 2570 guest_enter(); 2571 2572 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2573 2574 __kvmppc_vcore_entry(); 2575 2576 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2577 2578 spin_lock(&vc->lock); 2579 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2580 vc->vcore_state = VCORE_EXITING; 2581 2582 /* wait for secondary threads to finish writing their state to memory */ 2583 kvmppc_wait_for_nap(); 2584 2585 /* Return to whole-core mode if we split the core earlier */ 2586 if (split > 1) { 2587 unsigned long hid0 = mfspr(SPRN_HID0); 2588 unsigned long loops = 0; 2589 2590 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2591 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2592 mb(); 2593 mtspr(SPRN_HID0, hid0); 2594 isync(); 2595 for (;;) { 2596 hid0 = mfspr(SPRN_HID0); 2597 if (!(hid0 & stat_bit)) 2598 break; 2599 cpu_relax(); 2600 ++loops; 2601 } 2602 split_info.do_nap = 0; 2603 } 2604 2605 /* Let secondaries go back to the offline loop */ 2606 for (i = 0; i < controlled_threads; ++i) { 2607 kvmppc_release_hwthread(pcpu + i); 2608 if (sip && sip->napped[i]) 2609 kvmppc_ipi_thread(pcpu + i); 2610 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 2611 } 2612 2613 kvmppc_set_host_core(pcpu); 2614 2615 spin_unlock(&vc->lock); 2616 2617 /* make sure updates to secondary vcpu structs are visible now */ 2618 smp_mb(); 2619 guest_exit(); 2620 2621 for (sub = 0; sub < core_info.n_subcores; ++sub) 2622 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub], 2623 preempt_list) 2624 post_guest_process(pvc, pvc == vc); 2625 2626 spin_lock(&vc->lock); 2627 preempt_enable(); 2628 2629 out: 2630 vc->vcore_state = VCORE_INACTIVE; 2631 trace_kvmppc_run_core(vc, 1); 2632 } 2633 2634 /* 2635 * Wait for some other vcpu thread to execute us, and 2636 * wake us up when we need to handle something in the host. 2637 */ 2638 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2639 struct kvm_vcpu *vcpu, int wait_state) 2640 { 2641 DEFINE_WAIT(wait); 2642 2643 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2644 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2645 spin_unlock(&vc->lock); 2646 schedule(); 2647 spin_lock(&vc->lock); 2648 } 2649 finish_wait(&vcpu->arch.cpu_run, &wait); 2650 } 2651 2652 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 2653 { 2654 /* 10us base */ 2655 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) 2656 vc->halt_poll_ns = 10000; 2657 else 2658 vc->halt_poll_ns *= halt_poll_ns_grow; 2659 } 2660 2661 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 2662 { 2663 if (halt_poll_ns_shrink == 0) 2664 vc->halt_poll_ns = 0; 2665 else 2666 vc->halt_poll_ns /= halt_poll_ns_shrink; 2667 } 2668 2669 /* 2670 * Check to see if any of the runnable vcpus on the vcore have pending 2671 * exceptions or are no longer ceded 2672 */ 2673 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 2674 { 2675 struct kvm_vcpu *vcpu; 2676 int i; 2677 2678 for_each_runnable_thread(i, vcpu, vc) { 2679 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded || 2680 vcpu->arch.prodded) 2681 return 1; 2682 } 2683 2684 return 0; 2685 } 2686 2687 /* 2688 * All the vcpus in this vcore are idle, so wait for a decrementer 2689 * or external interrupt to one of the vcpus. vc->lock is held. 2690 */ 2691 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2692 { 2693 ktime_t cur, start_poll, start_wait; 2694 int do_sleep = 1; 2695 u64 block_ns; 2696 DECLARE_SWAITQUEUE(wait); 2697 2698 /* Poll for pending exceptions and ceded state */ 2699 cur = start_poll = ktime_get(); 2700 if (vc->halt_poll_ns) { 2701 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 2702 ++vc->runner->stat.halt_attempted_poll; 2703 2704 vc->vcore_state = VCORE_POLLING; 2705 spin_unlock(&vc->lock); 2706 2707 do { 2708 if (kvmppc_vcore_check_block(vc)) { 2709 do_sleep = 0; 2710 break; 2711 } 2712 cur = ktime_get(); 2713 } while (single_task_running() && ktime_before(cur, stop)); 2714 2715 spin_lock(&vc->lock); 2716 vc->vcore_state = VCORE_INACTIVE; 2717 2718 if (!do_sleep) { 2719 ++vc->runner->stat.halt_successful_poll; 2720 goto out; 2721 } 2722 } 2723 2724 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 2725 2726 if (kvmppc_vcore_check_block(vc)) { 2727 finish_swait(&vc->wq, &wait); 2728 do_sleep = 0; 2729 /* If we polled, count this as a successful poll */ 2730 if (vc->halt_poll_ns) 2731 ++vc->runner->stat.halt_successful_poll; 2732 goto out; 2733 } 2734 2735 start_wait = ktime_get(); 2736 2737 vc->vcore_state = VCORE_SLEEPING; 2738 trace_kvmppc_vcore_blocked(vc, 0); 2739 spin_unlock(&vc->lock); 2740 schedule(); 2741 finish_swait(&vc->wq, &wait); 2742 spin_lock(&vc->lock); 2743 vc->vcore_state = VCORE_INACTIVE; 2744 trace_kvmppc_vcore_blocked(vc, 1); 2745 ++vc->runner->stat.halt_successful_wait; 2746 2747 cur = ktime_get(); 2748 2749 out: 2750 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 2751 2752 /* Attribute wait time */ 2753 if (do_sleep) { 2754 vc->runner->stat.halt_wait_ns += 2755 ktime_to_ns(cur) - ktime_to_ns(start_wait); 2756 /* Attribute failed poll time */ 2757 if (vc->halt_poll_ns) 2758 vc->runner->stat.halt_poll_fail_ns += 2759 ktime_to_ns(start_wait) - 2760 ktime_to_ns(start_poll); 2761 } else { 2762 /* Attribute successful poll time */ 2763 if (vc->halt_poll_ns) 2764 vc->runner->stat.halt_poll_success_ns += 2765 ktime_to_ns(cur) - 2766 ktime_to_ns(start_poll); 2767 } 2768 2769 /* Adjust poll time */ 2770 if (halt_poll_ns) { 2771 if (block_ns <= vc->halt_poll_ns) 2772 ; 2773 /* We slept and blocked for longer than the max halt time */ 2774 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 2775 shrink_halt_poll_ns(vc); 2776 /* We slept and our poll time is too small */ 2777 else if (vc->halt_poll_ns < halt_poll_ns && 2778 block_ns < halt_poll_ns) 2779 grow_halt_poll_ns(vc); 2780 if (vc->halt_poll_ns > halt_poll_ns) 2781 vc->halt_poll_ns = halt_poll_ns; 2782 } else 2783 vc->halt_poll_ns = 0; 2784 2785 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 2786 } 2787 2788 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 2789 { 2790 int n_ceded, i; 2791 struct kvmppc_vcore *vc; 2792 struct kvm_vcpu *v; 2793 2794 trace_kvmppc_run_vcpu_enter(vcpu); 2795 2796 kvm_run->exit_reason = 0; 2797 vcpu->arch.ret = RESUME_GUEST; 2798 vcpu->arch.trap = 0; 2799 kvmppc_update_vpas(vcpu); 2800 2801 /* 2802 * Synchronize with other threads in this virtual core 2803 */ 2804 vc = vcpu->arch.vcore; 2805 spin_lock(&vc->lock); 2806 vcpu->arch.ceded = 0; 2807 vcpu->arch.run_task = current; 2808 vcpu->arch.kvm_run = kvm_run; 2809 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 2810 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 2811 vcpu->arch.busy_preempt = TB_NIL; 2812 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 2813 ++vc->n_runnable; 2814 2815 /* 2816 * This happens the first time this is called for a vcpu. 2817 * If the vcore is already running, we may be able to start 2818 * this thread straight away and have it join in. 2819 */ 2820 if (!signal_pending(current)) { 2821 if (vc->vcore_state == VCORE_PIGGYBACK) { 2822 struct kvmppc_vcore *mvc = vc->master_vcore; 2823 if (spin_trylock(&mvc->lock)) { 2824 if (mvc->vcore_state == VCORE_RUNNING && 2825 !VCORE_IS_EXITING(mvc)) { 2826 kvmppc_create_dtl_entry(vcpu, vc); 2827 kvmppc_start_thread(vcpu, vc); 2828 trace_kvm_guest_enter(vcpu); 2829 } 2830 spin_unlock(&mvc->lock); 2831 } 2832 } else if (vc->vcore_state == VCORE_RUNNING && 2833 !VCORE_IS_EXITING(vc)) { 2834 kvmppc_create_dtl_entry(vcpu, vc); 2835 kvmppc_start_thread(vcpu, vc); 2836 trace_kvm_guest_enter(vcpu); 2837 } else if (vc->vcore_state == VCORE_SLEEPING) { 2838 swake_up(&vc->wq); 2839 } 2840 2841 } 2842 2843 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2844 !signal_pending(current)) { 2845 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2846 kvmppc_vcore_end_preempt(vc); 2847 2848 if (vc->vcore_state != VCORE_INACTIVE) { 2849 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 2850 continue; 2851 } 2852 for_each_runnable_thread(i, v, vc) { 2853 kvmppc_core_prepare_to_enter(v); 2854 if (signal_pending(v->arch.run_task)) { 2855 kvmppc_remove_runnable(vc, v); 2856 v->stat.signal_exits++; 2857 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 2858 v->arch.ret = -EINTR; 2859 wake_up(&v->arch.cpu_run); 2860 } 2861 } 2862 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2863 break; 2864 n_ceded = 0; 2865 for_each_runnable_thread(i, v, vc) { 2866 if (!v->arch.pending_exceptions && !v->arch.prodded) 2867 n_ceded += v->arch.ceded; 2868 else 2869 v->arch.ceded = 0; 2870 } 2871 vc->runner = vcpu; 2872 if (n_ceded == vc->n_runnable) { 2873 kvmppc_vcore_blocked(vc); 2874 } else if (need_resched()) { 2875 kvmppc_vcore_preempt(vc); 2876 /* Let something else run */ 2877 cond_resched_lock(&vc->lock); 2878 if (vc->vcore_state == VCORE_PREEMPT) 2879 kvmppc_vcore_end_preempt(vc); 2880 } else { 2881 kvmppc_run_core(vc); 2882 } 2883 vc->runner = NULL; 2884 } 2885 2886 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2887 (vc->vcore_state == VCORE_RUNNING || 2888 vc->vcore_state == VCORE_EXITING || 2889 vc->vcore_state == VCORE_PIGGYBACK)) 2890 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 2891 2892 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2893 kvmppc_vcore_end_preempt(vc); 2894 2895 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2896 kvmppc_remove_runnable(vc, vcpu); 2897 vcpu->stat.signal_exits++; 2898 kvm_run->exit_reason = KVM_EXIT_INTR; 2899 vcpu->arch.ret = -EINTR; 2900 } 2901 2902 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 2903 /* Wake up some vcpu to run the core */ 2904 i = -1; 2905 v = next_runnable_thread(vc, &i); 2906 wake_up(&v->arch.cpu_run); 2907 } 2908 2909 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 2910 spin_unlock(&vc->lock); 2911 return vcpu->arch.ret; 2912 } 2913 2914 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 2915 { 2916 int r; 2917 int srcu_idx; 2918 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 2919 unsigned long user_tar = 0; 2920 unsigned int user_vrsave; 2921 2922 if (!vcpu->arch.sane) { 2923 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2924 return -EINVAL; 2925 } 2926 2927 /* 2928 * Don't allow entry with a suspended transaction, because 2929 * the guest entry/exit code will lose it. 2930 * If the guest has TM enabled, save away their TM-related SPRs 2931 * (they will get restored by the TM unavailable interrupt). 2932 */ 2933 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2934 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 2935 (current->thread.regs->msr & MSR_TM)) { 2936 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 2937 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 2938 run->fail_entry.hardware_entry_failure_reason = 0; 2939 return -EINVAL; 2940 } 2941 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 2942 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 2943 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 2944 current->thread.regs->msr &= ~MSR_TM; 2945 } 2946 #endif 2947 2948 kvmppc_core_prepare_to_enter(vcpu); 2949 2950 /* No need to go into the guest when all we'll do is come back out */ 2951 if (signal_pending(current)) { 2952 run->exit_reason = KVM_EXIT_INTR; 2953 return -EINTR; 2954 } 2955 2956 atomic_inc(&vcpu->kvm->arch.vcpus_running); 2957 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 2958 smp_mb(); 2959 2960 /* On the first time here, set up HTAB and VRMA */ 2961 if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) { 2962 r = kvmppc_hv_setup_htab_rma(vcpu); 2963 if (r) 2964 goto out; 2965 } 2966 2967 flush_all_to_thread(current); 2968 2969 /* Save userspace EBB and other register values */ 2970 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 2971 ebb_regs[0] = mfspr(SPRN_EBBHR); 2972 ebb_regs[1] = mfspr(SPRN_EBBRR); 2973 ebb_regs[2] = mfspr(SPRN_BESCR); 2974 user_tar = mfspr(SPRN_TAR); 2975 } 2976 user_vrsave = mfspr(SPRN_VRSAVE); 2977 2978 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 2979 vcpu->arch.pgdir = current->mm->pgd; 2980 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2981 2982 do { 2983 r = kvmppc_run_vcpu(run, vcpu); 2984 2985 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 2986 !(vcpu->arch.shregs.msr & MSR_PR)) { 2987 trace_kvm_hcall_enter(vcpu); 2988 r = kvmppc_pseries_do_hcall(vcpu); 2989 trace_kvm_hcall_exit(vcpu, r); 2990 kvmppc_core_prepare_to_enter(vcpu); 2991 } else if (r == RESUME_PAGE_FAULT) { 2992 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2993 r = kvmppc_book3s_hv_page_fault(run, vcpu, 2994 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 2995 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2996 } else if (r == RESUME_PASSTHROUGH) { 2997 if (WARN_ON(xive_enabled())) 2998 r = H_SUCCESS; 2999 else 3000 r = kvmppc_xics_rm_complete(vcpu, 0); 3001 } 3002 } while (is_kvmppc_resume_guest(r)); 3003 3004 /* Restore userspace EBB and other register values */ 3005 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3006 mtspr(SPRN_EBBHR, ebb_regs[0]); 3007 mtspr(SPRN_EBBRR, ebb_regs[1]); 3008 mtspr(SPRN_BESCR, ebb_regs[2]); 3009 mtspr(SPRN_TAR, user_tar); 3010 mtspr(SPRN_FSCR, current->thread.fscr); 3011 } 3012 mtspr(SPRN_VRSAVE, user_vrsave); 3013 3014 out: 3015 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3016 atomic_dec(&vcpu->kvm->arch.vcpus_running); 3017 return r; 3018 } 3019 3020 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 3021 int linux_psize) 3022 { 3023 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 3024 3025 if (!def->shift) 3026 return; 3027 (*sps)->page_shift = def->shift; 3028 (*sps)->slb_enc = def->sllp; 3029 (*sps)->enc[0].page_shift = def->shift; 3030 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 3031 /* 3032 * Add 16MB MPSS support if host supports it 3033 */ 3034 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 3035 (*sps)->enc[1].page_shift = 24; 3036 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 3037 } 3038 (*sps)++; 3039 } 3040 3041 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 3042 struct kvm_ppc_smmu_info *info) 3043 { 3044 struct kvm_ppc_one_seg_page_size *sps; 3045 3046 /* 3047 * Since we don't yet support HPT guests on a radix host, 3048 * return an error if the host uses radix. 3049 */ 3050 if (radix_enabled()) 3051 return -EINVAL; 3052 3053 info->flags = KVM_PPC_PAGE_SIZES_REAL; 3054 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 3055 info->flags |= KVM_PPC_1T_SEGMENTS; 3056 info->slb_size = mmu_slb_size; 3057 3058 /* We only support these sizes for now, and no muti-size segments */ 3059 sps = &info->sps[0]; 3060 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 3061 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 3062 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 3063 3064 return 0; 3065 } 3066 3067 /* 3068 * Get (and clear) the dirty memory log for a memory slot. 3069 */ 3070 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 3071 struct kvm_dirty_log *log) 3072 { 3073 struct kvm_memslots *slots; 3074 struct kvm_memory_slot *memslot; 3075 int i, r; 3076 unsigned long n; 3077 unsigned long *buf; 3078 struct kvm_vcpu *vcpu; 3079 3080 mutex_lock(&kvm->slots_lock); 3081 3082 r = -EINVAL; 3083 if (log->slot >= KVM_USER_MEM_SLOTS) 3084 goto out; 3085 3086 slots = kvm_memslots(kvm); 3087 memslot = id_to_memslot(slots, log->slot); 3088 r = -ENOENT; 3089 if (!memslot->dirty_bitmap) 3090 goto out; 3091 3092 /* 3093 * Use second half of bitmap area because radix accumulates 3094 * bits in the first half. 3095 */ 3096 n = kvm_dirty_bitmap_bytes(memslot); 3097 buf = memslot->dirty_bitmap + n / sizeof(long); 3098 memset(buf, 0, n); 3099 3100 if (kvm_is_radix(kvm)) 3101 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 3102 else 3103 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 3104 if (r) 3105 goto out; 3106 3107 /* Harvest dirty bits from VPA and DTL updates */ 3108 /* Note: we never modify the SLB shadow buffer areas */ 3109 kvm_for_each_vcpu(i, vcpu, kvm) { 3110 spin_lock(&vcpu->arch.vpa_update_lock); 3111 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 3112 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 3113 spin_unlock(&vcpu->arch.vpa_update_lock); 3114 } 3115 3116 r = -EFAULT; 3117 if (copy_to_user(log->dirty_bitmap, buf, n)) 3118 goto out; 3119 3120 r = 0; 3121 out: 3122 mutex_unlock(&kvm->slots_lock); 3123 return r; 3124 } 3125 3126 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 3127 struct kvm_memory_slot *dont) 3128 { 3129 if (!dont || free->arch.rmap != dont->arch.rmap) { 3130 vfree(free->arch.rmap); 3131 free->arch.rmap = NULL; 3132 } 3133 } 3134 3135 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 3136 unsigned long npages) 3137 { 3138 /* 3139 * For now, if radix_enabled() then we only support radix guests, 3140 * and in that case we don't need the rmap array. 3141 */ 3142 if (radix_enabled()) { 3143 slot->arch.rmap = NULL; 3144 return 0; 3145 } 3146 3147 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 3148 if (!slot->arch.rmap) 3149 return -ENOMEM; 3150 3151 return 0; 3152 } 3153 3154 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 3155 struct kvm_memory_slot *memslot, 3156 const struct kvm_userspace_memory_region *mem) 3157 { 3158 return 0; 3159 } 3160 3161 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 3162 const struct kvm_userspace_memory_region *mem, 3163 const struct kvm_memory_slot *old, 3164 const struct kvm_memory_slot *new) 3165 { 3166 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 3167 struct kvm_memslots *slots; 3168 struct kvm_memory_slot *memslot; 3169 3170 /* 3171 * If we are making a new memslot, it might make 3172 * some address that was previously cached as emulated 3173 * MMIO be no longer emulated MMIO, so invalidate 3174 * all the caches of emulated MMIO translations. 3175 */ 3176 if (npages) 3177 atomic64_inc(&kvm->arch.mmio_update); 3178 3179 if (npages && old->npages && !kvm_is_radix(kvm)) { 3180 /* 3181 * If modifying a memslot, reset all the rmap dirty bits. 3182 * If this is a new memslot, we don't need to do anything 3183 * since the rmap array starts out as all zeroes, 3184 * i.e. no pages are dirty. 3185 */ 3186 slots = kvm_memslots(kvm); 3187 memslot = id_to_memslot(slots, mem->slot); 3188 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL); 3189 } 3190 } 3191 3192 /* 3193 * Update LPCR values in kvm->arch and in vcores. 3194 * Caller must hold kvm->lock. 3195 */ 3196 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 3197 { 3198 long int i; 3199 u32 cores_done = 0; 3200 3201 if ((kvm->arch.lpcr & mask) == lpcr) 3202 return; 3203 3204 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 3205 3206 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3207 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3208 if (!vc) 3209 continue; 3210 spin_lock(&vc->lock); 3211 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 3212 spin_unlock(&vc->lock); 3213 if (++cores_done >= kvm->arch.online_vcores) 3214 break; 3215 } 3216 } 3217 3218 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 3219 { 3220 return; 3221 } 3222 3223 static void kvmppc_setup_partition_table(struct kvm *kvm) 3224 { 3225 unsigned long dw0, dw1; 3226 3227 if (!kvm_is_radix(kvm)) { 3228 /* PS field - page size for VRMA */ 3229 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 3230 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 3231 /* HTABSIZE and HTABORG fields */ 3232 dw0 |= kvm->arch.sdr1; 3233 3234 /* Second dword as set by userspace */ 3235 dw1 = kvm->arch.process_table; 3236 } else { 3237 dw0 = PATB_HR | radix__get_tree_size() | 3238 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 3239 dw1 = PATB_GR | kvm->arch.process_table; 3240 } 3241 3242 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); 3243 } 3244 3245 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 3246 { 3247 int err = 0; 3248 struct kvm *kvm = vcpu->kvm; 3249 unsigned long hva; 3250 struct kvm_memory_slot *memslot; 3251 struct vm_area_struct *vma; 3252 unsigned long lpcr = 0, senc; 3253 unsigned long psize, porder; 3254 int srcu_idx; 3255 3256 mutex_lock(&kvm->lock); 3257 if (kvm->arch.hpte_setup_done) 3258 goto out; /* another vcpu beat us to it */ 3259 3260 /* Allocate hashed page table (if not done already) and reset it */ 3261 if (!kvm->arch.hpt.virt) { 3262 int order = KVM_DEFAULT_HPT_ORDER; 3263 struct kvm_hpt_info info; 3264 3265 err = kvmppc_allocate_hpt(&info, order); 3266 /* If we get here, it means userspace didn't specify a 3267 * size explicitly. So, try successively smaller 3268 * sizes if the default failed. */ 3269 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 3270 err = kvmppc_allocate_hpt(&info, order); 3271 3272 if (err < 0) { 3273 pr_err("KVM: Couldn't alloc HPT\n"); 3274 goto out; 3275 } 3276 3277 kvmppc_set_hpt(kvm, &info); 3278 } 3279 3280 /* Look up the memslot for guest physical address 0 */ 3281 srcu_idx = srcu_read_lock(&kvm->srcu); 3282 memslot = gfn_to_memslot(kvm, 0); 3283 3284 /* We must have some memory at 0 by now */ 3285 err = -EINVAL; 3286 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3287 goto out_srcu; 3288 3289 /* Look up the VMA for the start of this memory slot */ 3290 hva = memslot->userspace_addr; 3291 down_read(¤t->mm->mmap_sem); 3292 vma = find_vma(current->mm, hva); 3293 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3294 goto up_out; 3295 3296 psize = vma_kernel_pagesize(vma); 3297 porder = __ilog2(psize); 3298 3299 up_read(¤t->mm->mmap_sem); 3300 3301 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3302 err = -EINVAL; 3303 if (!(psize == 0x1000 || psize == 0x10000 || 3304 psize == 0x1000000)) 3305 goto out_srcu; 3306 3307 senc = slb_pgsize_encoding(psize); 3308 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3309 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3310 /* Create HPTEs in the hash page table for the VRMA */ 3311 kvmppc_map_vrma(vcpu, memslot, porder); 3312 3313 /* Update VRMASD field in the LPCR */ 3314 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3315 /* the -4 is to account for senc values starting at 0x10 */ 3316 lpcr = senc << (LPCR_VRMASD_SH - 4); 3317 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3318 } else { 3319 kvmppc_setup_partition_table(kvm); 3320 } 3321 3322 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 3323 smp_wmb(); 3324 kvm->arch.hpte_setup_done = 1; 3325 err = 0; 3326 out_srcu: 3327 srcu_read_unlock(&kvm->srcu, srcu_idx); 3328 out: 3329 mutex_unlock(&kvm->lock); 3330 return err; 3331 3332 up_out: 3333 up_read(¤t->mm->mmap_sem); 3334 goto out_srcu; 3335 } 3336 3337 #ifdef CONFIG_KVM_XICS 3338 /* 3339 * Allocate a per-core structure for managing state about which cores are 3340 * running in the host versus the guest and for exchanging data between 3341 * real mode KVM and CPU running in the host. 3342 * This is only done for the first VM. 3343 * The allocated structure stays even if all VMs have stopped. 3344 * It is only freed when the kvm-hv module is unloaded. 3345 * It's OK for this routine to fail, we just don't support host 3346 * core operations like redirecting H_IPI wakeups. 3347 */ 3348 void kvmppc_alloc_host_rm_ops(void) 3349 { 3350 struct kvmppc_host_rm_ops *ops; 3351 unsigned long l_ops; 3352 int cpu, core; 3353 int size; 3354 3355 /* Not the first time here ? */ 3356 if (kvmppc_host_rm_ops_hv != NULL) 3357 return; 3358 3359 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3360 if (!ops) 3361 return; 3362 3363 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3364 ops->rm_core = kzalloc(size, GFP_KERNEL); 3365 3366 if (!ops->rm_core) { 3367 kfree(ops); 3368 return; 3369 } 3370 3371 get_online_cpus(); 3372 3373 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3374 if (!cpu_online(cpu)) 3375 continue; 3376 3377 core = cpu >> threads_shift; 3378 ops->rm_core[core].rm_state.in_host = 1; 3379 } 3380 3381 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3382 3383 /* 3384 * Make the contents of the kvmppc_host_rm_ops structure visible 3385 * to other CPUs before we assign it to the global variable. 3386 * Do an atomic assignment (no locks used here), but if someone 3387 * beats us to it, just free our copy and return. 3388 */ 3389 smp_wmb(); 3390 l_ops = (unsigned long) ops; 3391 3392 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3393 put_online_cpus(); 3394 kfree(ops->rm_core); 3395 kfree(ops); 3396 return; 3397 } 3398 3399 cpuhp_setup_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE, 3400 "ppc/kvm_book3s:prepare", 3401 kvmppc_set_host_core, 3402 kvmppc_clear_host_core); 3403 put_online_cpus(); 3404 } 3405 3406 void kvmppc_free_host_rm_ops(void) 3407 { 3408 if (kvmppc_host_rm_ops_hv) { 3409 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 3410 kfree(kvmppc_host_rm_ops_hv->rm_core); 3411 kfree(kvmppc_host_rm_ops_hv); 3412 kvmppc_host_rm_ops_hv = NULL; 3413 } 3414 } 3415 #endif 3416 3417 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3418 { 3419 unsigned long lpcr, lpid; 3420 char buf[32]; 3421 int ret; 3422 3423 /* Allocate the guest's logical partition ID */ 3424 3425 lpid = kvmppc_alloc_lpid(); 3426 if ((long)lpid < 0) 3427 return -ENOMEM; 3428 kvm->arch.lpid = lpid; 3429 3430 kvmppc_alloc_host_rm_ops(); 3431 3432 /* 3433 * Since we don't flush the TLB when tearing down a VM, 3434 * and this lpid might have previously been used, 3435 * make sure we flush on each core before running the new VM. 3436 * On POWER9, the tlbie in mmu_partition_table_set_entry() 3437 * does this flush for us. 3438 */ 3439 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3440 cpumask_setall(&kvm->arch.need_tlb_flush); 3441 3442 /* Start out with the default set of hcalls enabled */ 3443 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3444 sizeof(kvm->arch.enabled_hcalls)); 3445 3446 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3447 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3448 3449 /* Init LPCR for virtual RMA mode */ 3450 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3451 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3452 lpcr &= LPCR_PECE | LPCR_LPES; 3453 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3454 LPCR_VPM0 | LPCR_VPM1; 3455 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3456 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3457 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3458 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3459 lpcr |= LPCR_ONL; 3460 /* 3461 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 3462 * Set HVICE bit to enable hypervisor virtualization interrupts. 3463 * Set HEIC to prevent OS interrupts to go to hypervisor (should 3464 * be unnecessary but better safe than sorry in case we re-enable 3465 * EE in HV mode with this LPCR still set) 3466 */ 3467 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3468 lpcr &= ~LPCR_VPM0; 3469 lpcr |= LPCR_HVICE | LPCR_HEIC; 3470 3471 /* 3472 * If xive is enabled, we route 0x500 interrupts directly 3473 * to the guest. 3474 */ 3475 if (xive_enabled()) 3476 lpcr |= LPCR_LPES; 3477 } 3478 3479 /* 3480 * For now, if the host uses radix, the guest must be radix. 3481 */ 3482 if (radix_enabled()) { 3483 kvm->arch.radix = 1; 3484 lpcr &= ~LPCR_VPM1; 3485 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 3486 ret = kvmppc_init_vm_radix(kvm); 3487 if (ret) { 3488 kvmppc_free_lpid(kvm->arch.lpid); 3489 return ret; 3490 } 3491 kvmppc_setup_partition_table(kvm); 3492 } 3493 3494 kvm->arch.lpcr = lpcr; 3495 3496 /* Initialization for future HPT resizes */ 3497 kvm->arch.resize_hpt = NULL; 3498 3499 /* 3500 * Work out how many sets the TLB has, for the use of 3501 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 3502 */ 3503 if (kvm_is_radix(kvm)) 3504 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 3505 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 3506 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 3507 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3508 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 3509 else 3510 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 3511 3512 /* 3513 * Track that we now have a HV mode VM active. This blocks secondary 3514 * CPU threads from coming online. 3515 * On POWER9, we only need to do this for HPT guests on a radix 3516 * host, which is not yet supported. 3517 */ 3518 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3519 kvm_hv_vm_activated(); 3520 3521 /* 3522 * Create a debugfs directory for the VM 3523 */ 3524 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3525 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3526 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3527 kvmppc_mmu_debugfs_init(kvm); 3528 3529 return 0; 3530 } 3531 3532 static void kvmppc_free_vcores(struct kvm *kvm) 3533 { 3534 long int i; 3535 3536 for (i = 0; i < KVM_MAX_VCORES; ++i) 3537 kfree(kvm->arch.vcores[i]); 3538 kvm->arch.online_vcores = 0; 3539 } 3540 3541 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3542 { 3543 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3544 3545 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3546 kvm_hv_vm_deactivated(); 3547 3548 kvmppc_free_vcores(kvm); 3549 3550 kvmppc_free_lpid(kvm->arch.lpid); 3551 3552 if (kvm_is_radix(kvm)) 3553 kvmppc_free_radix(kvm); 3554 else 3555 kvmppc_free_hpt(&kvm->arch.hpt); 3556 3557 kvmppc_free_pimap(kvm); 3558 } 3559 3560 /* We don't need to emulate any privileged instructions or dcbz */ 3561 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3562 unsigned int inst, int *advance) 3563 { 3564 return EMULATE_FAIL; 3565 } 3566 3567 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3568 ulong spr_val) 3569 { 3570 return EMULATE_FAIL; 3571 } 3572 3573 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3574 ulong *spr_val) 3575 { 3576 return EMULATE_FAIL; 3577 } 3578 3579 static int kvmppc_core_check_processor_compat_hv(void) 3580 { 3581 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3582 !cpu_has_feature(CPU_FTR_ARCH_206)) 3583 return -EIO; 3584 3585 return 0; 3586 } 3587 3588 #ifdef CONFIG_KVM_XICS 3589 3590 void kvmppc_free_pimap(struct kvm *kvm) 3591 { 3592 kfree(kvm->arch.pimap); 3593 } 3594 3595 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 3596 { 3597 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 3598 } 3599 3600 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 3601 { 3602 struct irq_desc *desc; 3603 struct kvmppc_irq_map *irq_map; 3604 struct kvmppc_passthru_irqmap *pimap; 3605 struct irq_chip *chip; 3606 int i, rc = 0; 3607 3608 if (!kvm_irq_bypass) 3609 return 1; 3610 3611 desc = irq_to_desc(host_irq); 3612 if (!desc) 3613 return -EIO; 3614 3615 mutex_lock(&kvm->lock); 3616 3617 pimap = kvm->arch.pimap; 3618 if (pimap == NULL) { 3619 /* First call, allocate structure to hold IRQ map */ 3620 pimap = kvmppc_alloc_pimap(); 3621 if (pimap == NULL) { 3622 mutex_unlock(&kvm->lock); 3623 return -ENOMEM; 3624 } 3625 kvm->arch.pimap = pimap; 3626 } 3627 3628 /* 3629 * For now, we only support interrupts for which the EOI operation 3630 * is an OPAL call followed by a write to XIRR, since that's 3631 * what our real-mode EOI code does, or a XIVE interrupt 3632 */ 3633 chip = irq_data_get_irq_chip(&desc->irq_data); 3634 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 3635 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 3636 host_irq, guest_gsi); 3637 mutex_unlock(&kvm->lock); 3638 return -ENOENT; 3639 } 3640 3641 /* 3642 * See if we already have an entry for this guest IRQ number. 3643 * If it's mapped to a hardware IRQ number, that's an error, 3644 * otherwise re-use this entry. 3645 */ 3646 for (i = 0; i < pimap->n_mapped; i++) { 3647 if (guest_gsi == pimap->mapped[i].v_hwirq) { 3648 if (pimap->mapped[i].r_hwirq) { 3649 mutex_unlock(&kvm->lock); 3650 return -EINVAL; 3651 } 3652 break; 3653 } 3654 } 3655 3656 if (i == KVMPPC_PIRQ_MAPPED) { 3657 mutex_unlock(&kvm->lock); 3658 return -EAGAIN; /* table is full */ 3659 } 3660 3661 irq_map = &pimap->mapped[i]; 3662 3663 irq_map->v_hwirq = guest_gsi; 3664 irq_map->desc = desc; 3665 3666 /* 3667 * Order the above two stores before the next to serialize with 3668 * the KVM real mode handler. 3669 */ 3670 smp_wmb(); 3671 irq_map->r_hwirq = desc->irq_data.hwirq; 3672 3673 if (i == pimap->n_mapped) 3674 pimap->n_mapped++; 3675 3676 if (xive_enabled()) 3677 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 3678 else 3679 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 3680 if (rc) 3681 irq_map->r_hwirq = 0; 3682 3683 mutex_unlock(&kvm->lock); 3684 3685 return 0; 3686 } 3687 3688 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 3689 { 3690 struct irq_desc *desc; 3691 struct kvmppc_passthru_irqmap *pimap; 3692 int i, rc = 0; 3693 3694 if (!kvm_irq_bypass) 3695 return 0; 3696 3697 desc = irq_to_desc(host_irq); 3698 if (!desc) 3699 return -EIO; 3700 3701 mutex_lock(&kvm->lock); 3702 if (!kvm->arch.pimap) 3703 goto unlock; 3704 3705 pimap = kvm->arch.pimap; 3706 3707 for (i = 0; i < pimap->n_mapped; i++) { 3708 if (guest_gsi == pimap->mapped[i].v_hwirq) 3709 break; 3710 } 3711 3712 if (i == pimap->n_mapped) { 3713 mutex_unlock(&kvm->lock); 3714 return -ENODEV; 3715 } 3716 3717 if (xive_enabled()) 3718 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 3719 else 3720 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 3721 3722 /* invalidate the entry (what do do on error from the above ?) */ 3723 pimap->mapped[i].r_hwirq = 0; 3724 3725 /* 3726 * We don't free this structure even when the count goes to 3727 * zero. The structure is freed when we destroy the VM. 3728 */ 3729 unlock: 3730 mutex_unlock(&kvm->lock); 3731 return rc; 3732 } 3733 3734 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 3735 struct irq_bypass_producer *prod) 3736 { 3737 int ret = 0; 3738 struct kvm_kernel_irqfd *irqfd = 3739 container_of(cons, struct kvm_kernel_irqfd, consumer); 3740 3741 irqfd->producer = prod; 3742 3743 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 3744 if (ret) 3745 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 3746 prod->irq, irqfd->gsi, ret); 3747 3748 return ret; 3749 } 3750 3751 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 3752 struct irq_bypass_producer *prod) 3753 { 3754 int ret; 3755 struct kvm_kernel_irqfd *irqfd = 3756 container_of(cons, struct kvm_kernel_irqfd, consumer); 3757 3758 irqfd->producer = NULL; 3759 3760 /* 3761 * When producer of consumer is unregistered, we change back to 3762 * default external interrupt handling mode - KVM real mode 3763 * will switch back to host. 3764 */ 3765 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 3766 if (ret) 3767 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 3768 prod->irq, irqfd->gsi, ret); 3769 } 3770 #endif 3771 3772 static long kvm_arch_vm_ioctl_hv(struct file *filp, 3773 unsigned int ioctl, unsigned long arg) 3774 { 3775 struct kvm *kvm __maybe_unused = filp->private_data; 3776 void __user *argp = (void __user *)arg; 3777 long r; 3778 3779 switch (ioctl) { 3780 3781 case KVM_PPC_ALLOCATE_HTAB: { 3782 u32 htab_order; 3783 3784 r = -EFAULT; 3785 if (get_user(htab_order, (u32 __user *)argp)) 3786 break; 3787 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 3788 if (r) 3789 break; 3790 r = 0; 3791 break; 3792 } 3793 3794 case KVM_PPC_GET_HTAB_FD: { 3795 struct kvm_get_htab_fd ghf; 3796 3797 r = -EFAULT; 3798 if (copy_from_user(&ghf, argp, sizeof(ghf))) 3799 break; 3800 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 3801 break; 3802 } 3803 3804 case KVM_PPC_RESIZE_HPT_PREPARE: { 3805 struct kvm_ppc_resize_hpt rhpt; 3806 3807 r = -EFAULT; 3808 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 3809 break; 3810 3811 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 3812 break; 3813 } 3814 3815 case KVM_PPC_RESIZE_HPT_COMMIT: { 3816 struct kvm_ppc_resize_hpt rhpt; 3817 3818 r = -EFAULT; 3819 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 3820 break; 3821 3822 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 3823 break; 3824 } 3825 3826 default: 3827 r = -ENOTTY; 3828 } 3829 3830 return r; 3831 } 3832 3833 /* 3834 * List of hcall numbers to enable by default. 3835 * For compatibility with old userspace, we enable by default 3836 * all hcalls that were implemented before the hcall-enabling 3837 * facility was added. Note this list should not include H_RTAS. 3838 */ 3839 static unsigned int default_hcall_list[] = { 3840 H_REMOVE, 3841 H_ENTER, 3842 H_READ, 3843 H_PROTECT, 3844 H_BULK_REMOVE, 3845 H_GET_TCE, 3846 H_PUT_TCE, 3847 H_SET_DABR, 3848 H_SET_XDABR, 3849 H_CEDE, 3850 H_PROD, 3851 H_CONFER, 3852 H_REGISTER_VPA, 3853 #ifdef CONFIG_KVM_XICS 3854 H_EOI, 3855 H_CPPR, 3856 H_IPI, 3857 H_IPOLL, 3858 H_XIRR, 3859 H_XIRR_X, 3860 #endif 3861 0 3862 }; 3863 3864 static void init_default_hcalls(void) 3865 { 3866 int i; 3867 unsigned int hcall; 3868 3869 for (i = 0; default_hcall_list[i]; ++i) { 3870 hcall = default_hcall_list[i]; 3871 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 3872 __set_bit(hcall / 4, default_enabled_hcalls); 3873 } 3874 } 3875 3876 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 3877 { 3878 unsigned long lpcr; 3879 int radix; 3880 3881 /* If not on a POWER9, reject it */ 3882 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3883 return -ENODEV; 3884 3885 /* If any unknown flags set, reject it */ 3886 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 3887 return -EINVAL; 3888 3889 /* We can't change a guest to/from radix yet */ 3890 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 3891 if (radix != kvm_is_radix(kvm)) 3892 return -EINVAL; 3893 3894 /* GR (guest radix) bit in process_table field must match */ 3895 if (!!(cfg->process_table & PATB_GR) != radix) 3896 return -EINVAL; 3897 3898 /* Process table size field must be reasonable, i.e. <= 24 */ 3899 if ((cfg->process_table & PRTS_MASK) > 24) 3900 return -EINVAL; 3901 3902 kvm->arch.process_table = cfg->process_table; 3903 kvmppc_setup_partition_table(kvm); 3904 3905 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 3906 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 3907 3908 return 0; 3909 } 3910 3911 static struct kvmppc_ops kvm_ops_hv = { 3912 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 3913 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 3914 .get_one_reg = kvmppc_get_one_reg_hv, 3915 .set_one_reg = kvmppc_set_one_reg_hv, 3916 .vcpu_load = kvmppc_core_vcpu_load_hv, 3917 .vcpu_put = kvmppc_core_vcpu_put_hv, 3918 .set_msr = kvmppc_set_msr_hv, 3919 .vcpu_run = kvmppc_vcpu_run_hv, 3920 .vcpu_create = kvmppc_core_vcpu_create_hv, 3921 .vcpu_free = kvmppc_core_vcpu_free_hv, 3922 .check_requests = kvmppc_core_check_requests_hv, 3923 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 3924 .flush_memslot = kvmppc_core_flush_memslot_hv, 3925 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 3926 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 3927 .unmap_hva = kvm_unmap_hva_hv, 3928 .unmap_hva_range = kvm_unmap_hva_range_hv, 3929 .age_hva = kvm_age_hva_hv, 3930 .test_age_hva = kvm_test_age_hva_hv, 3931 .set_spte_hva = kvm_set_spte_hva_hv, 3932 .mmu_destroy = kvmppc_mmu_destroy_hv, 3933 .free_memslot = kvmppc_core_free_memslot_hv, 3934 .create_memslot = kvmppc_core_create_memslot_hv, 3935 .init_vm = kvmppc_core_init_vm_hv, 3936 .destroy_vm = kvmppc_core_destroy_vm_hv, 3937 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 3938 .emulate_op = kvmppc_core_emulate_op_hv, 3939 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 3940 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 3941 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 3942 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 3943 .hcall_implemented = kvmppc_hcall_impl_hv, 3944 #ifdef CONFIG_KVM_XICS 3945 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 3946 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 3947 #endif 3948 .configure_mmu = kvmhv_configure_mmu, 3949 .get_rmmu_info = kvmhv_get_rmmu_info, 3950 }; 3951 3952 static int kvm_init_subcore_bitmap(void) 3953 { 3954 int i, j; 3955 int nr_cores = cpu_nr_cores(); 3956 struct sibling_subcore_state *sibling_subcore_state; 3957 3958 for (i = 0; i < nr_cores; i++) { 3959 int first_cpu = i * threads_per_core; 3960 int node = cpu_to_node(first_cpu); 3961 3962 /* Ignore if it is already allocated. */ 3963 if (paca[first_cpu].sibling_subcore_state) 3964 continue; 3965 3966 sibling_subcore_state = 3967 kmalloc_node(sizeof(struct sibling_subcore_state), 3968 GFP_KERNEL, node); 3969 if (!sibling_subcore_state) 3970 return -ENOMEM; 3971 3972 memset(sibling_subcore_state, 0, 3973 sizeof(struct sibling_subcore_state)); 3974 3975 for (j = 0; j < threads_per_core; j++) { 3976 int cpu = first_cpu + j; 3977 3978 paca[cpu].sibling_subcore_state = sibling_subcore_state; 3979 } 3980 } 3981 return 0; 3982 } 3983 3984 static int kvmppc_radix_possible(void) 3985 { 3986 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 3987 } 3988 3989 static int kvmppc_book3s_init_hv(void) 3990 { 3991 int r; 3992 /* 3993 * FIXME!! Do we need to check on all cpus ? 3994 */ 3995 r = kvmppc_core_check_processor_compat_hv(); 3996 if (r < 0) 3997 return -ENODEV; 3998 3999 r = kvm_init_subcore_bitmap(); 4000 if (r) 4001 return r; 4002 4003 /* 4004 * We need a way of accessing the XICS interrupt controller, 4005 * either directly, via paca[cpu].kvm_hstate.xics_phys, or 4006 * indirectly, via OPAL. 4007 */ 4008 #ifdef CONFIG_SMP 4009 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { 4010 struct device_node *np; 4011 4012 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 4013 if (!np) { 4014 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 4015 return -ENODEV; 4016 } 4017 } 4018 #endif 4019 4020 kvm_ops_hv.owner = THIS_MODULE; 4021 kvmppc_hv_ops = &kvm_ops_hv; 4022 4023 init_default_hcalls(); 4024 4025 init_vcore_lists(); 4026 4027 r = kvmppc_mmu_hv_init(); 4028 if (r) 4029 return r; 4030 4031 if (kvmppc_radix_possible()) 4032 r = kvmppc_radix_init(); 4033 return r; 4034 } 4035 4036 static void kvmppc_book3s_exit_hv(void) 4037 { 4038 kvmppc_free_host_rm_ops(); 4039 if (kvmppc_radix_possible()) 4040 kvmppc_radix_exit(); 4041 kvmppc_hv_ops = NULL; 4042 } 4043 4044 module_init(kvmppc_book3s_init_hv); 4045 module_exit(kvmppc_book3s_exit_hv); 4046 MODULE_LICENSE("GPL"); 4047 MODULE_ALIAS_MISCDEV(KVM_MINOR); 4048 MODULE_ALIAS("devname:kvm"); 4049 4050