xref: /linux/arch/powerpc/kvm/book3s_hv.c (revision 0408c58be5a475c99b271f08d85859f7b59ec767)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/delay.h>
28 #include <linux/export.h>
29 #include <linux/fs.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/spinlock.h>
34 #include <linux/page-flags.h>
35 #include <linux/srcu.h>
36 #include <linux/miscdevice.h>
37 #include <linux/debugfs.h>
38 #include <linux/gfp.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/hugetlb.h>
42 #include <linux/kvm_irqfd.h>
43 #include <linux/irqbypass.h>
44 #include <linux/module.h>
45 #include <linux/compiler.h>
46 #include <linux/of.h>
47 
48 #include <asm/reg.h>
49 #include <asm/cputable.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlbflush.h>
52 #include <linux/uaccess.h>
53 #include <asm/io.h>
54 #include <asm/kvm_ppc.h>
55 #include <asm/kvm_book3s.h>
56 #include <asm/mmu_context.h>
57 #include <asm/lppaca.h>
58 #include <asm/processor.h>
59 #include <asm/cputhreads.h>
60 #include <asm/page.h>
61 #include <asm/hvcall.h>
62 #include <asm/switch_to.h>
63 #include <asm/smp.h>
64 #include <asm/dbell.h>
65 #include <asm/hmi.h>
66 #include <asm/pnv-pci.h>
67 #include <asm/mmu.h>
68 #include <asm/opal.h>
69 #include <asm/xics.h>
70 #include <asm/xive.h>
71 
72 #include "book3s.h"
73 
74 #define CREATE_TRACE_POINTS
75 #include "trace_hv.h"
76 
77 /* #define EXIT_DEBUG */
78 /* #define EXIT_DEBUG_SIMPLE */
79 /* #define EXIT_DEBUG_INT */
80 
81 /* Used to indicate that a guest page fault needs to be handled */
82 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
83 /* Used to indicate that a guest passthrough interrupt needs to be handled */
84 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
85 
86 /* Used as a "null" value for timebase values */
87 #define TB_NIL	(~(u64)0)
88 
89 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
90 
91 static int dynamic_mt_modes = 6;
92 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
94 static int target_smt_mode;
95 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
96 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
97 
98 #ifdef CONFIG_KVM_XICS
99 static struct kernel_param_ops module_param_ops = {
100 	.set = param_set_int,
101 	.get = param_get_int,
102 };
103 
104 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
105 							S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
107 
108 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
109 							S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
111 #endif
112 
113 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
114 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
115 
116 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
117 		int *ip)
118 {
119 	int i = *ip;
120 	struct kvm_vcpu *vcpu;
121 
122 	while (++i < MAX_SMT_THREADS) {
123 		vcpu = READ_ONCE(vc->runnable_threads[i]);
124 		if (vcpu) {
125 			*ip = i;
126 			return vcpu;
127 		}
128 	}
129 	return NULL;
130 }
131 
132 /* Used to traverse the list of runnable threads for a given vcore */
133 #define for_each_runnable_thread(i, vcpu, vc) \
134 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
135 
136 static bool kvmppc_ipi_thread(int cpu)
137 {
138 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
139 
140 	/* On POWER9 we can use msgsnd to IPI any cpu */
141 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
142 		msg |= get_hard_smp_processor_id(cpu);
143 		smp_mb();
144 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
145 		return true;
146 	}
147 
148 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
149 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
150 		preempt_disable();
151 		if (cpu_first_thread_sibling(cpu) ==
152 		    cpu_first_thread_sibling(smp_processor_id())) {
153 			msg |= cpu_thread_in_core(cpu);
154 			smp_mb();
155 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
156 			preempt_enable();
157 			return true;
158 		}
159 		preempt_enable();
160 	}
161 
162 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
163 	if (cpu >= 0 && cpu < nr_cpu_ids) {
164 		if (paca[cpu].kvm_hstate.xics_phys) {
165 			xics_wake_cpu(cpu);
166 			return true;
167 		}
168 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
169 		return true;
170 	}
171 #endif
172 
173 	return false;
174 }
175 
176 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
177 {
178 	int cpu;
179 	struct swait_queue_head *wqp;
180 
181 	wqp = kvm_arch_vcpu_wq(vcpu);
182 	if (swait_active(wqp)) {
183 		swake_up(wqp);
184 		++vcpu->stat.halt_wakeup;
185 	}
186 
187 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
188 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
189 		return;
190 
191 	/* CPU points to the first thread of the core */
192 	cpu = vcpu->cpu;
193 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
194 		smp_send_reschedule(cpu);
195 }
196 
197 /*
198  * We use the vcpu_load/put functions to measure stolen time.
199  * Stolen time is counted as time when either the vcpu is able to
200  * run as part of a virtual core, but the task running the vcore
201  * is preempted or sleeping, or when the vcpu needs something done
202  * in the kernel by the task running the vcpu, but that task is
203  * preempted or sleeping.  Those two things have to be counted
204  * separately, since one of the vcpu tasks will take on the job
205  * of running the core, and the other vcpu tasks in the vcore will
206  * sleep waiting for it to do that, but that sleep shouldn't count
207  * as stolen time.
208  *
209  * Hence we accumulate stolen time when the vcpu can run as part of
210  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
211  * needs its task to do other things in the kernel (for example,
212  * service a page fault) in busy_stolen.  We don't accumulate
213  * stolen time for a vcore when it is inactive, or for a vcpu
214  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
215  * a misnomer; it means that the vcpu task is not executing in
216  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
217  * the kernel.  We don't have any way of dividing up that time
218  * between time that the vcpu is genuinely stopped, time that
219  * the task is actively working on behalf of the vcpu, and time
220  * that the task is preempted, so we don't count any of it as
221  * stolen.
222  *
223  * Updates to busy_stolen are protected by arch.tbacct_lock;
224  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
225  * lock.  The stolen times are measured in units of timebase ticks.
226  * (Note that the != TB_NIL checks below are purely defensive;
227  * they should never fail.)
228  */
229 
230 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
231 {
232 	unsigned long flags;
233 
234 	spin_lock_irqsave(&vc->stoltb_lock, flags);
235 	vc->preempt_tb = mftb();
236 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
237 }
238 
239 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
240 {
241 	unsigned long flags;
242 
243 	spin_lock_irqsave(&vc->stoltb_lock, flags);
244 	if (vc->preempt_tb != TB_NIL) {
245 		vc->stolen_tb += mftb() - vc->preempt_tb;
246 		vc->preempt_tb = TB_NIL;
247 	}
248 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
249 }
250 
251 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
252 {
253 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
254 	unsigned long flags;
255 
256 	/*
257 	 * We can test vc->runner without taking the vcore lock,
258 	 * because only this task ever sets vc->runner to this
259 	 * vcpu, and once it is set to this vcpu, only this task
260 	 * ever sets it to NULL.
261 	 */
262 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
263 		kvmppc_core_end_stolen(vc);
264 
265 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
266 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
267 	    vcpu->arch.busy_preempt != TB_NIL) {
268 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
269 		vcpu->arch.busy_preempt = TB_NIL;
270 	}
271 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
272 }
273 
274 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
275 {
276 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
277 	unsigned long flags;
278 
279 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
280 		kvmppc_core_start_stolen(vc);
281 
282 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
283 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
284 		vcpu->arch.busy_preempt = mftb();
285 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
286 }
287 
288 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
289 {
290 	/*
291 	 * Check for illegal transactional state bit combination
292 	 * and if we find it, force the TS field to a safe state.
293 	 */
294 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
295 		msr &= ~MSR_TS_MASK;
296 	vcpu->arch.shregs.msr = msr;
297 	kvmppc_end_cede(vcpu);
298 }
299 
300 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
301 {
302 	vcpu->arch.pvr = pvr;
303 }
304 
305 /* Dummy value used in computing PCR value below */
306 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
307 
308 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
309 {
310 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
311 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
312 
313 	/* We can (emulate) our own architecture version and anything older */
314 	if (cpu_has_feature(CPU_FTR_ARCH_300))
315 		host_pcr_bit = PCR_ARCH_300;
316 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
317 		host_pcr_bit = PCR_ARCH_207;
318 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
319 		host_pcr_bit = PCR_ARCH_206;
320 	else
321 		host_pcr_bit = PCR_ARCH_205;
322 
323 	/* Determine lowest PCR bit needed to run guest in given PVR level */
324 	guest_pcr_bit = host_pcr_bit;
325 	if (arch_compat) {
326 		switch (arch_compat) {
327 		case PVR_ARCH_205:
328 			guest_pcr_bit = PCR_ARCH_205;
329 			break;
330 		case PVR_ARCH_206:
331 		case PVR_ARCH_206p:
332 			guest_pcr_bit = PCR_ARCH_206;
333 			break;
334 		case PVR_ARCH_207:
335 			guest_pcr_bit = PCR_ARCH_207;
336 			break;
337 		case PVR_ARCH_300:
338 			guest_pcr_bit = PCR_ARCH_300;
339 			break;
340 		default:
341 			return -EINVAL;
342 		}
343 	}
344 
345 	/* Check requested PCR bits don't exceed our capabilities */
346 	if (guest_pcr_bit > host_pcr_bit)
347 		return -EINVAL;
348 
349 	spin_lock(&vc->lock);
350 	vc->arch_compat = arch_compat;
351 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
352 	vc->pcr = host_pcr_bit - guest_pcr_bit;
353 	spin_unlock(&vc->lock);
354 
355 	return 0;
356 }
357 
358 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
359 {
360 	int r;
361 
362 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
363 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
364 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
365 	for (r = 0; r < 16; ++r)
366 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
367 		       r, kvmppc_get_gpr(vcpu, r),
368 		       r+16, kvmppc_get_gpr(vcpu, r+16));
369 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
370 	       vcpu->arch.ctr, vcpu->arch.lr);
371 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
372 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
373 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
374 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
375 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
376 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
377 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
378 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
379 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
380 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
381 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
382 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
383 	for (r = 0; r < vcpu->arch.slb_max; ++r)
384 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
385 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
386 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
387 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
388 	       vcpu->arch.last_inst);
389 }
390 
391 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
392 {
393 	struct kvm_vcpu *ret;
394 
395 	mutex_lock(&kvm->lock);
396 	ret = kvm_get_vcpu_by_id(kvm, id);
397 	mutex_unlock(&kvm->lock);
398 	return ret;
399 }
400 
401 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
402 {
403 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
404 	vpa->yield_count = cpu_to_be32(1);
405 }
406 
407 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
408 		   unsigned long addr, unsigned long len)
409 {
410 	/* check address is cacheline aligned */
411 	if (addr & (L1_CACHE_BYTES - 1))
412 		return -EINVAL;
413 	spin_lock(&vcpu->arch.vpa_update_lock);
414 	if (v->next_gpa != addr || v->len != len) {
415 		v->next_gpa = addr;
416 		v->len = addr ? len : 0;
417 		v->update_pending = 1;
418 	}
419 	spin_unlock(&vcpu->arch.vpa_update_lock);
420 	return 0;
421 }
422 
423 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
424 struct reg_vpa {
425 	u32 dummy;
426 	union {
427 		__be16 hword;
428 		__be32 word;
429 	} length;
430 };
431 
432 static int vpa_is_registered(struct kvmppc_vpa *vpap)
433 {
434 	if (vpap->update_pending)
435 		return vpap->next_gpa != 0;
436 	return vpap->pinned_addr != NULL;
437 }
438 
439 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
440 				       unsigned long flags,
441 				       unsigned long vcpuid, unsigned long vpa)
442 {
443 	struct kvm *kvm = vcpu->kvm;
444 	unsigned long len, nb;
445 	void *va;
446 	struct kvm_vcpu *tvcpu;
447 	int err;
448 	int subfunc;
449 	struct kvmppc_vpa *vpap;
450 
451 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
452 	if (!tvcpu)
453 		return H_PARAMETER;
454 
455 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
456 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
457 	    subfunc == H_VPA_REG_SLB) {
458 		/* Registering new area - address must be cache-line aligned */
459 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
460 			return H_PARAMETER;
461 
462 		/* convert logical addr to kernel addr and read length */
463 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
464 		if (va == NULL)
465 			return H_PARAMETER;
466 		if (subfunc == H_VPA_REG_VPA)
467 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
468 		else
469 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
470 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
471 
472 		/* Check length */
473 		if (len > nb || len < sizeof(struct reg_vpa))
474 			return H_PARAMETER;
475 	} else {
476 		vpa = 0;
477 		len = 0;
478 	}
479 
480 	err = H_PARAMETER;
481 	vpap = NULL;
482 	spin_lock(&tvcpu->arch.vpa_update_lock);
483 
484 	switch (subfunc) {
485 	case H_VPA_REG_VPA:		/* register VPA */
486 		if (len < sizeof(struct lppaca))
487 			break;
488 		vpap = &tvcpu->arch.vpa;
489 		err = 0;
490 		break;
491 
492 	case H_VPA_REG_DTL:		/* register DTL */
493 		if (len < sizeof(struct dtl_entry))
494 			break;
495 		len -= len % sizeof(struct dtl_entry);
496 
497 		/* Check that they have previously registered a VPA */
498 		err = H_RESOURCE;
499 		if (!vpa_is_registered(&tvcpu->arch.vpa))
500 			break;
501 
502 		vpap = &tvcpu->arch.dtl;
503 		err = 0;
504 		break;
505 
506 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
507 		/* Check that they have previously registered a VPA */
508 		err = H_RESOURCE;
509 		if (!vpa_is_registered(&tvcpu->arch.vpa))
510 			break;
511 
512 		vpap = &tvcpu->arch.slb_shadow;
513 		err = 0;
514 		break;
515 
516 	case H_VPA_DEREG_VPA:		/* deregister VPA */
517 		/* Check they don't still have a DTL or SLB buf registered */
518 		err = H_RESOURCE;
519 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
520 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
521 			break;
522 
523 		vpap = &tvcpu->arch.vpa;
524 		err = 0;
525 		break;
526 
527 	case H_VPA_DEREG_DTL:		/* deregister DTL */
528 		vpap = &tvcpu->arch.dtl;
529 		err = 0;
530 		break;
531 
532 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
533 		vpap = &tvcpu->arch.slb_shadow;
534 		err = 0;
535 		break;
536 	}
537 
538 	if (vpap) {
539 		vpap->next_gpa = vpa;
540 		vpap->len = len;
541 		vpap->update_pending = 1;
542 	}
543 
544 	spin_unlock(&tvcpu->arch.vpa_update_lock);
545 
546 	return err;
547 }
548 
549 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
550 {
551 	struct kvm *kvm = vcpu->kvm;
552 	void *va;
553 	unsigned long nb;
554 	unsigned long gpa;
555 
556 	/*
557 	 * We need to pin the page pointed to by vpap->next_gpa,
558 	 * but we can't call kvmppc_pin_guest_page under the lock
559 	 * as it does get_user_pages() and down_read().  So we
560 	 * have to drop the lock, pin the page, then get the lock
561 	 * again and check that a new area didn't get registered
562 	 * in the meantime.
563 	 */
564 	for (;;) {
565 		gpa = vpap->next_gpa;
566 		spin_unlock(&vcpu->arch.vpa_update_lock);
567 		va = NULL;
568 		nb = 0;
569 		if (gpa)
570 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
571 		spin_lock(&vcpu->arch.vpa_update_lock);
572 		if (gpa == vpap->next_gpa)
573 			break;
574 		/* sigh... unpin that one and try again */
575 		if (va)
576 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
577 	}
578 
579 	vpap->update_pending = 0;
580 	if (va && nb < vpap->len) {
581 		/*
582 		 * If it's now too short, it must be that userspace
583 		 * has changed the mappings underlying guest memory,
584 		 * so unregister the region.
585 		 */
586 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
587 		va = NULL;
588 	}
589 	if (vpap->pinned_addr)
590 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
591 					vpap->dirty);
592 	vpap->gpa = gpa;
593 	vpap->pinned_addr = va;
594 	vpap->dirty = false;
595 	if (va)
596 		vpap->pinned_end = va + vpap->len;
597 }
598 
599 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
600 {
601 	if (!(vcpu->arch.vpa.update_pending ||
602 	      vcpu->arch.slb_shadow.update_pending ||
603 	      vcpu->arch.dtl.update_pending))
604 		return;
605 
606 	spin_lock(&vcpu->arch.vpa_update_lock);
607 	if (vcpu->arch.vpa.update_pending) {
608 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
609 		if (vcpu->arch.vpa.pinned_addr)
610 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
611 	}
612 	if (vcpu->arch.dtl.update_pending) {
613 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
614 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
615 		vcpu->arch.dtl_index = 0;
616 	}
617 	if (vcpu->arch.slb_shadow.update_pending)
618 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
619 	spin_unlock(&vcpu->arch.vpa_update_lock);
620 }
621 
622 /*
623  * Return the accumulated stolen time for the vcore up until `now'.
624  * The caller should hold the vcore lock.
625  */
626 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
627 {
628 	u64 p;
629 	unsigned long flags;
630 
631 	spin_lock_irqsave(&vc->stoltb_lock, flags);
632 	p = vc->stolen_tb;
633 	if (vc->vcore_state != VCORE_INACTIVE &&
634 	    vc->preempt_tb != TB_NIL)
635 		p += now - vc->preempt_tb;
636 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
637 	return p;
638 }
639 
640 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
641 				    struct kvmppc_vcore *vc)
642 {
643 	struct dtl_entry *dt;
644 	struct lppaca *vpa;
645 	unsigned long stolen;
646 	unsigned long core_stolen;
647 	u64 now;
648 
649 	dt = vcpu->arch.dtl_ptr;
650 	vpa = vcpu->arch.vpa.pinned_addr;
651 	now = mftb();
652 	core_stolen = vcore_stolen_time(vc, now);
653 	stolen = core_stolen - vcpu->arch.stolen_logged;
654 	vcpu->arch.stolen_logged = core_stolen;
655 	spin_lock_irq(&vcpu->arch.tbacct_lock);
656 	stolen += vcpu->arch.busy_stolen;
657 	vcpu->arch.busy_stolen = 0;
658 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
659 	if (!dt || !vpa)
660 		return;
661 	memset(dt, 0, sizeof(struct dtl_entry));
662 	dt->dispatch_reason = 7;
663 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
664 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
665 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
666 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
667 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
668 	++dt;
669 	if (dt == vcpu->arch.dtl.pinned_end)
670 		dt = vcpu->arch.dtl.pinned_addr;
671 	vcpu->arch.dtl_ptr = dt;
672 	/* order writing *dt vs. writing vpa->dtl_idx */
673 	smp_wmb();
674 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
675 	vcpu->arch.dtl.dirty = true;
676 }
677 
678 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
679 {
680 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
681 		return true;
682 	if ((!vcpu->arch.vcore->arch_compat) &&
683 	    cpu_has_feature(CPU_FTR_ARCH_207S))
684 		return true;
685 	return false;
686 }
687 
688 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
689 			     unsigned long resource, unsigned long value1,
690 			     unsigned long value2)
691 {
692 	switch (resource) {
693 	case H_SET_MODE_RESOURCE_SET_CIABR:
694 		if (!kvmppc_power8_compatible(vcpu))
695 			return H_P2;
696 		if (value2)
697 			return H_P4;
698 		if (mflags)
699 			return H_UNSUPPORTED_FLAG_START;
700 		/* Guests can't breakpoint the hypervisor */
701 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
702 			return H_P3;
703 		vcpu->arch.ciabr  = value1;
704 		return H_SUCCESS;
705 	case H_SET_MODE_RESOURCE_SET_DAWR:
706 		if (!kvmppc_power8_compatible(vcpu))
707 			return H_P2;
708 		if (mflags)
709 			return H_UNSUPPORTED_FLAG_START;
710 		if (value2 & DABRX_HYP)
711 			return H_P4;
712 		vcpu->arch.dawr  = value1;
713 		vcpu->arch.dawrx = value2;
714 		return H_SUCCESS;
715 	default:
716 		return H_TOO_HARD;
717 	}
718 }
719 
720 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
721 {
722 	struct kvmppc_vcore *vcore = target->arch.vcore;
723 
724 	/*
725 	 * We expect to have been called by the real mode handler
726 	 * (kvmppc_rm_h_confer()) which would have directly returned
727 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
728 	 * have useful work to do and should not confer) so we don't
729 	 * recheck that here.
730 	 */
731 
732 	spin_lock(&vcore->lock);
733 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
734 	    vcore->vcore_state != VCORE_INACTIVE &&
735 	    vcore->runner)
736 		target = vcore->runner;
737 	spin_unlock(&vcore->lock);
738 
739 	return kvm_vcpu_yield_to(target);
740 }
741 
742 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
743 {
744 	int yield_count = 0;
745 	struct lppaca *lppaca;
746 
747 	spin_lock(&vcpu->arch.vpa_update_lock);
748 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
749 	if (lppaca)
750 		yield_count = be32_to_cpu(lppaca->yield_count);
751 	spin_unlock(&vcpu->arch.vpa_update_lock);
752 	return yield_count;
753 }
754 
755 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
756 {
757 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
758 	unsigned long target, ret = H_SUCCESS;
759 	int yield_count;
760 	struct kvm_vcpu *tvcpu;
761 	int idx, rc;
762 
763 	if (req <= MAX_HCALL_OPCODE &&
764 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
765 		return RESUME_HOST;
766 
767 	switch (req) {
768 	case H_CEDE:
769 		break;
770 	case H_PROD:
771 		target = kvmppc_get_gpr(vcpu, 4);
772 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
773 		if (!tvcpu) {
774 			ret = H_PARAMETER;
775 			break;
776 		}
777 		tvcpu->arch.prodded = 1;
778 		smp_mb();
779 		if (tvcpu->arch.ceded)
780 			kvmppc_fast_vcpu_kick_hv(tvcpu);
781 		break;
782 	case H_CONFER:
783 		target = kvmppc_get_gpr(vcpu, 4);
784 		if (target == -1)
785 			break;
786 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
787 		if (!tvcpu) {
788 			ret = H_PARAMETER;
789 			break;
790 		}
791 		yield_count = kvmppc_get_gpr(vcpu, 5);
792 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
793 			break;
794 		kvm_arch_vcpu_yield_to(tvcpu);
795 		break;
796 	case H_REGISTER_VPA:
797 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
798 					kvmppc_get_gpr(vcpu, 5),
799 					kvmppc_get_gpr(vcpu, 6));
800 		break;
801 	case H_RTAS:
802 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
803 			return RESUME_HOST;
804 
805 		idx = srcu_read_lock(&vcpu->kvm->srcu);
806 		rc = kvmppc_rtas_hcall(vcpu);
807 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
808 
809 		if (rc == -ENOENT)
810 			return RESUME_HOST;
811 		else if (rc == 0)
812 			break;
813 
814 		/* Send the error out to userspace via KVM_RUN */
815 		return rc;
816 	case H_LOGICAL_CI_LOAD:
817 		ret = kvmppc_h_logical_ci_load(vcpu);
818 		if (ret == H_TOO_HARD)
819 			return RESUME_HOST;
820 		break;
821 	case H_LOGICAL_CI_STORE:
822 		ret = kvmppc_h_logical_ci_store(vcpu);
823 		if (ret == H_TOO_HARD)
824 			return RESUME_HOST;
825 		break;
826 	case H_SET_MODE:
827 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
828 					kvmppc_get_gpr(vcpu, 5),
829 					kvmppc_get_gpr(vcpu, 6),
830 					kvmppc_get_gpr(vcpu, 7));
831 		if (ret == H_TOO_HARD)
832 			return RESUME_HOST;
833 		break;
834 	case H_XIRR:
835 	case H_CPPR:
836 	case H_EOI:
837 	case H_IPI:
838 	case H_IPOLL:
839 	case H_XIRR_X:
840 		if (kvmppc_xics_enabled(vcpu)) {
841 			if (xive_enabled()) {
842 				ret = H_NOT_AVAILABLE;
843 				return RESUME_GUEST;
844 			}
845 			ret = kvmppc_xics_hcall(vcpu, req);
846 			break;
847 		}
848 		return RESUME_HOST;
849 	case H_PUT_TCE:
850 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
851 						kvmppc_get_gpr(vcpu, 5),
852 						kvmppc_get_gpr(vcpu, 6));
853 		if (ret == H_TOO_HARD)
854 			return RESUME_HOST;
855 		break;
856 	case H_PUT_TCE_INDIRECT:
857 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
858 						kvmppc_get_gpr(vcpu, 5),
859 						kvmppc_get_gpr(vcpu, 6),
860 						kvmppc_get_gpr(vcpu, 7));
861 		if (ret == H_TOO_HARD)
862 			return RESUME_HOST;
863 		break;
864 	case H_STUFF_TCE:
865 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
866 						kvmppc_get_gpr(vcpu, 5),
867 						kvmppc_get_gpr(vcpu, 6),
868 						kvmppc_get_gpr(vcpu, 7));
869 		if (ret == H_TOO_HARD)
870 			return RESUME_HOST;
871 		break;
872 	default:
873 		return RESUME_HOST;
874 	}
875 	kvmppc_set_gpr(vcpu, 3, ret);
876 	vcpu->arch.hcall_needed = 0;
877 	return RESUME_GUEST;
878 }
879 
880 static int kvmppc_hcall_impl_hv(unsigned long cmd)
881 {
882 	switch (cmd) {
883 	case H_CEDE:
884 	case H_PROD:
885 	case H_CONFER:
886 	case H_REGISTER_VPA:
887 	case H_SET_MODE:
888 	case H_LOGICAL_CI_LOAD:
889 	case H_LOGICAL_CI_STORE:
890 #ifdef CONFIG_KVM_XICS
891 	case H_XIRR:
892 	case H_CPPR:
893 	case H_EOI:
894 	case H_IPI:
895 	case H_IPOLL:
896 	case H_XIRR_X:
897 #endif
898 		return 1;
899 	}
900 
901 	/* See if it's in the real-mode table */
902 	return kvmppc_hcall_impl_hv_realmode(cmd);
903 }
904 
905 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
906 					struct kvm_vcpu *vcpu)
907 {
908 	u32 last_inst;
909 
910 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
911 					EMULATE_DONE) {
912 		/*
913 		 * Fetch failed, so return to guest and
914 		 * try executing it again.
915 		 */
916 		return RESUME_GUEST;
917 	}
918 
919 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
920 		run->exit_reason = KVM_EXIT_DEBUG;
921 		run->debug.arch.address = kvmppc_get_pc(vcpu);
922 		return RESUME_HOST;
923 	} else {
924 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
925 		return RESUME_GUEST;
926 	}
927 }
928 
929 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
930 				 struct task_struct *tsk)
931 {
932 	int r = RESUME_HOST;
933 
934 	vcpu->stat.sum_exits++;
935 
936 	/*
937 	 * This can happen if an interrupt occurs in the last stages
938 	 * of guest entry or the first stages of guest exit (i.e. after
939 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
940 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
941 	 * That can happen due to a bug, or due to a machine check
942 	 * occurring at just the wrong time.
943 	 */
944 	if (vcpu->arch.shregs.msr & MSR_HV) {
945 		printk(KERN_EMERG "KVM trap in HV mode!\n");
946 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
947 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
948 			vcpu->arch.shregs.msr);
949 		kvmppc_dump_regs(vcpu);
950 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
951 		run->hw.hardware_exit_reason = vcpu->arch.trap;
952 		return RESUME_HOST;
953 	}
954 	run->exit_reason = KVM_EXIT_UNKNOWN;
955 	run->ready_for_interrupt_injection = 1;
956 	switch (vcpu->arch.trap) {
957 	/* We're good on these - the host merely wanted to get our attention */
958 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
959 		vcpu->stat.dec_exits++;
960 		r = RESUME_GUEST;
961 		break;
962 	case BOOK3S_INTERRUPT_EXTERNAL:
963 	case BOOK3S_INTERRUPT_H_DOORBELL:
964 	case BOOK3S_INTERRUPT_H_VIRT:
965 		vcpu->stat.ext_intr_exits++;
966 		r = RESUME_GUEST;
967 		break;
968 	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
969 	case BOOK3S_INTERRUPT_HMI:
970 	case BOOK3S_INTERRUPT_PERFMON:
971 		r = RESUME_GUEST;
972 		break;
973 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
974 		/*
975 		 * Deliver a machine check interrupt to the guest.
976 		 * We have to do this, even if the host has handled the
977 		 * machine check, because machine checks use SRR0/1 and
978 		 * the interrupt might have trashed guest state in them.
979 		 */
980 		kvmppc_book3s_queue_irqprio(vcpu,
981 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
982 		r = RESUME_GUEST;
983 		break;
984 	case BOOK3S_INTERRUPT_PROGRAM:
985 	{
986 		ulong flags;
987 		/*
988 		 * Normally program interrupts are delivered directly
989 		 * to the guest by the hardware, but we can get here
990 		 * as a result of a hypervisor emulation interrupt
991 		 * (e40) getting turned into a 700 by BML RTAS.
992 		 */
993 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
994 		kvmppc_core_queue_program(vcpu, flags);
995 		r = RESUME_GUEST;
996 		break;
997 	}
998 	case BOOK3S_INTERRUPT_SYSCALL:
999 	{
1000 		/* hcall - punt to userspace */
1001 		int i;
1002 
1003 		/* hypercall with MSR_PR has already been handled in rmode,
1004 		 * and never reaches here.
1005 		 */
1006 
1007 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1008 		for (i = 0; i < 9; ++i)
1009 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1010 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1011 		vcpu->arch.hcall_needed = 1;
1012 		r = RESUME_HOST;
1013 		break;
1014 	}
1015 	/*
1016 	 * We get these next two if the guest accesses a page which it thinks
1017 	 * it has mapped but which is not actually present, either because
1018 	 * it is for an emulated I/O device or because the corresonding
1019 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1020 	 * have been handled already.
1021 	 */
1022 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1023 		r = RESUME_PAGE_FAULT;
1024 		break;
1025 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1026 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1027 		vcpu->arch.fault_dsisr = 0;
1028 		r = RESUME_PAGE_FAULT;
1029 		break;
1030 	/*
1031 	 * This occurs if the guest executes an illegal instruction.
1032 	 * If the guest debug is disabled, generate a program interrupt
1033 	 * to the guest. If guest debug is enabled, we need to check
1034 	 * whether the instruction is a software breakpoint instruction.
1035 	 * Accordingly return to Guest or Host.
1036 	 */
1037 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1038 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1039 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1040 				swab32(vcpu->arch.emul_inst) :
1041 				vcpu->arch.emul_inst;
1042 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1043 			r = kvmppc_emulate_debug_inst(run, vcpu);
1044 		} else {
1045 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1046 			r = RESUME_GUEST;
1047 		}
1048 		break;
1049 	/*
1050 	 * This occurs if the guest (kernel or userspace), does something that
1051 	 * is prohibited by HFSCR.  We just generate a program interrupt to
1052 	 * the guest.
1053 	 */
1054 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1055 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1056 		r = RESUME_GUEST;
1057 		break;
1058 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1059 		r = RESUME_PASSTHROUGH;
1060 		break;
1061 	default:
1062 		kvmppc_dump_regs(vcpu);
1063 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1064 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1065 			vcpu->arch.shregs.msr);
1066 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1067 		r = RESUME_HOST;
1068 		break;
1069 	}
1070 
1071 	return r;
1072 }
1073 
1074 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1075 					    struct kvm_sregs *sregs)
1076 {
1077 	int i;
1078 
1079 	memset(sregs, 0, sizeof(struct kvm_sregs));
1080 	sregs->pvr = vcpu->arch.pvr;
1081 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1082 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1083 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1090 					    struct kvm_sregs *sregs)
1091 {
1092 	int i, j;
1093 
1094 	/* Only accept the same PVR as the host's, since we can't spoof it */
1095 	if (sregs->pvr != vcpu->arch.pvr)
1096 		return -EINVAL;
1097 
1098 	j = 0;
1099 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1100 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1101 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1102 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1103 			++j;
1104 		}
1105 	}
1106 	vcpu->arch.slb_max = j;
1107 
1108 	return 0;
1109 }
1110 
1111 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1112 		bool preserve_top32)
1113 {
1114 	struct kvm *kvm = vcpu->kvm;
1115 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1116 	u64 mask;
1117 
1118 	mutex_lock(&kvm->lock);
1119 	spin_lock(&vc->lock);
1120 	/*
1121 	 * If ILE (interrupt little-endian) has changed, update the
1122 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1123 	 */
1124 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1125 		struct kvm_vcpu *vcpu;
1126 		int i;
1127 
1128 		kvm_for_each_vcpu(i, vcpu, kvm) {
1129 			if (vcpu->arch.vcore != vc)
1130 				continue;
1131 			if (new_lpcr & LPCR_ILE)
1132 				vcpu->arch.intr_msr |= MSR_LE;
1133 			else
1134 				vcpu->arch.intr_msr &= ~MSR_LE;
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * Userspace can only modify DPFD (default prefetch depth),
1140 	 * ILE (interrupt little-endian) and TC (translation control).
1141 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1142 	 */
1143 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1144 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1145 		mask |= LPCR_AIL;
1146 
1147 	/* Broken 32-bit version of LPCR must not clear top bits */
1148 	if (preserve_top32)
1149 		mask &= 0xFFFFFFFF;
1150 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1151 	spin_unlock(&vc->lock);
1152 	mutex_unlock(&kvm->lock);
1153 }
1154 
1155 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1156 				 union kvmppc_one_reg *val)
1157 {
1158 	int r = 0;
1159 	long int i;
1160 
1161 	switch (id) {
1162 	case KVM_REG_PPC_DEBUG_INST:
1163 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1164 		break;
1165 	case KVM_REG_PPC_HIOR:
1166 		*val = get_reg_val(id, 0);
1167 		break;
1168 	case KVM_REG_PPC_DABR:
1169 		*val = get_reg_val(id, vcpu->arch.dabr);
1170 		break;
1171 	case KVM_REG_PPC_DABRX:
1172 		*val = get_reg_val(id, vcpu->arch.dabrx);
1173 		break;
1174 	case KVM_REG_PPC_DSCR:
1175 		*val = get_reg_val(id, vcpu->arch.dscr);
1176 		break;
1177 	case KVM_REG_PPC_PURR:
1178 		*val = get_reg_val(id, vcpu->arch.purr);
1179 		break;
1180 	case KVM_REG_PPC_SPURR:
1181 		*val = get_reg_val(id, vcpu->arch.spurr);
1182 		break;
1183 	case KVM_REG_PPC_AMR:
1184 		*val = get_reg_val(id, vcpu->arch.amr);
1185 		break;
1186 	case KVM_REG_PPC_UAMOR:
1187 		*val = get_reg_val(id, vcpu->arch.uamor);
1188 		break;
1189 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1190 		i = id - KVM_REG_PPC_MMCR0;
1191 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1192 		break;
1193 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1194 		i = id - KVM_REG_PPC_PMC1;
1195 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1196 		break;
1197 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1198 		i = id - KVM_REG_PPC_SPMC1;
1199 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1200 		break;
1201 	case KVM_REG_PPC_SIAR:
1202 		*val = get_reg_val(id, vcpu->arch.siar);
1203 		break;
1204 	case KVM_REG_PPC_SDAR:
1205 		*val = get_reg_val(id, vcpu->arch.sdar);
1206 		break;
1207 	case KVM_REG_PPC_SIER:
1208 		*val = get_reg_val(id, vcpu->arch.sier);
1209 		break;
1210 	case KVM_REG_PPC_IAMR:
1211 		*val = get_reg_val(id, vcpu->arch.iamr);
1212 		break;
1213 	case KVM_REG_PPC_PSPB:
1214 		*val = get_reg_val(id, vcpu->arch.pspb);
1215 		break;
1216 	case KVM_REG_PPC_DPDES:
1217 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1218 		break;
1219 	case KVM_REG_PPC_VTB:
1220 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1221 		break;
1222 	case KVM_REG_PPC_DAWR:
1223 		*val = get_reg_val(id, vcpu->arch.dawr);
1224 		break;
1225 	case KVM_REG_PPC_DAWRX:
1226 		*val = get_reg_val(id, vcpu->arch.dawrx);
1227 		break;
1228 	case KVM_REG_PPC_CIABR:
1229 		*val = get_reg_val(id, vcpu->arch.ciabr);
1230 		break;
1231 	case KVM_REG_PPC_CSIGR:
1232 		*val = get_reg_val(id, vcpu->arch.csigr);
1233 		break;
1234 	case KVM_REG_PPC_TACR:
1235 		*val = get_reg_val(id, vcpu->arch.tacr);
1236 		break;
1237 	case KVM_REG_PPC_TCSCR:
1238 		*val = get_reg_val(id, vcpu->arch.tcscr);
1239 		break;
1240 	case KVM_REG_PPC_PID:
1241 		*val = get_reg_val(id, vcpu->arch.pid);
1242 		break;
1243 	case KVM_REG_PPC_ACOP:
1244 		*val = get_reg_val(id, vcpu->arch.acop);
1245 		break;
1246 	case KVM_REG_PPC_WORT:
1247 		*val = get_reg_val(id, vcpu->arch.wort);
1248 		break;
1249 	case KVM_REG_PPC_TIDR:
1250 		*val = get_reg_val(id, vcpu->arch.tid);
1251 		break;
1252 	case KVM_REG_PPC_PSSCR:
1253 		*val = get_reg_val(id, vcpu->arch.psscr);
1254 		break;
1255 	case KVM_REG_PPC_VPA_ADDR:
1256 		spin_lock(&vcpu->arch.vpa_update_lock);
1257 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1258 		spin_unlock(&vcpu->arch.vpa_update_lock);
1259 		break;
1260 	case KVM_REG_PPC_VPA_SLB:
1261 		spin_lock(&vcpu->arch.vpa_update_lock);
1262 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1263 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1264 		spin_unlock(&vcpu->arch.vpa_update_lock);
1265 		break;
1266 	case KVM_REG_PPC_VPA_DTL:
1267 		spin_lock(&vcpu->arch.vpa_update_lock);
1268 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1269 		val->vpaval.length = vcpu->arch.dtl.len;
1270 		spin_unlock(&vcpu->arch.vpa_update_lock);
1271 		break;
1272 	case KVM_REG_PPC_TB_OFFSET:
1273 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1274 		break;
1275 	case KVM_REG_PPC_LPCR:
1276 	case KVM_REG_PPC_LPCR_64:
1277 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1278 		break;
1279 	case KVM_REG_PPC_PPR:
1280 		*val = get_reg_val(id, vcpu->arch.ppr);
1281 		break;
1282 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1283 	case KVM_REG_PPC_TFHAR:
1284 		*val = get_reg_val(id, vcpu->arch.tfhar);
1285 		break;
1286 	case KVM_REG_PPC_TFIAR:
1287 		*val = get_reg_val(id, vcpu->arch.tfiar);
1288 		break;
1289 	case KVM_REG_PPC_TEXASR:
1290 		*val = get_reg_val(id, vcpu->arch.texasr);
1291 		break;
1292 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1293 		i = id - KVM_REG_PPC_TM_GPR0;
1294 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1295 		break;
1296 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1297 	{
1298 		int j;
1299 		i = id - KVM_REG_PPC_TM_VSR0;
1300 		if (i < 32)
1301 			for (j = 0; j < TS_FPRWIDTH; j++)
1302 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1303 		else {
1304 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1305 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1306 			else
1307 				r = -ENXIO;
1308 		}
1309 		break;
1310 	}
1311 	case KVM_REG_PPC_TM_CR:
1312 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1313 		break;
1314 	case KVM_REG_PPC_TM_XER:
1315 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1316 		break;
1317 	case KVM_REG_PPC_TM_LR:
1318 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1319 		break;
1320 	case KVM_REG_PPC_TM_CTR:
1321 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1322 		break;
1323 	case KVM_REG_PPC_TM_FPSCR:
1324 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1325 		break;
1326 	case KVM_REG_PPC_TM_AMR:
1327 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1328 		break;
1329 	case KVM_REG_PPC_TM_PPR:
1330 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1331 		break;
1332 	case KVM_REG_PPC_TM_VRSAVE:
1333 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1334 		break;
1335 	case KVM_REG_PPC_TM_VSCR:
1336 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1337 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1338 		else
1339 			r = -ENXIO;
1340 		break;
1341 	case KVM_REG_PPC_TM_DSCR:
1342 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1343 		break;
1344 	case KVM_REG_PPC_TM_TAR:
1345 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1346 		break;
1347 #endif
1348 	case KVM_REG_PPC_ARCH_COMPAT:
1349 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1350 		break;
1351 	default:
1352 		r = -EINVAL;
1353 		break;
1354 	}
1355 
1356 	return r;
1357 }
1358 
1359 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1360 				 union kvmppc_one_reg *val)
1361 {
1362 	int r = 0;
1363 	long int i;
1364 	unsigned long addr, len;
1365 
1366 	switch (id) {
1367 	case KVM_REG_PPC_HIOR:
1368 		/* Only allow this to be set to zero */
1369 		if (set_reg_val(id, *val))
1370 			r = -EINVAL;
1371 		break;
1372 	case KVM_REG_PPC_DABR:
1373 		vcpu->arch.dabr = set_reg_val(id, *val);
1374 		break;
1375 	case KVM_REG_PPC_DABRX:
1376 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1377 		break;
1378 	case KVM_REG_PPC_DSCR:
1379 		vcpu->arch.dscr = set_reg_val(id, *val);
1380 		break;
1381 	case KVM_REG_PPC_PURR:
1382 		vcpu->arch.purr = set_reg_val(id, *val);
1383 		break;
1384 	case KVM_REG_PPC_SPURR:
1385 		vcpu->arch.spurr = set_reg_val(id, *val);
1386 		break;
1387 	case KVM_REG_PPC_AMR:
1388 		vcpu->arch.amr = set_reg_val(id, *val);
1389 		break;
1390 	case KVM_REG_PPC_UAMOR:
1391 		vcpu->arch.uamor = set_reg_val(id, *val);
1392 		break;
1393 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1394 		i = id - KVM_REG_PPC_MMCR0;
1395 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1396 		break;
1397 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1398 		i = id - KVM_REG_PPC_PMC1;
1399 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1400 		break;
1401 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1402 		i = id - KVM_REG_PPC_SPMC1;
1403 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1404 		break;
1405 	case KVM_REG_PPC_SIAR:
1406 		vcpu->arch.siar = set_reg_val(id, *val);
1407 		break;
1408 	case KVM_REG_PPC_SDAR:
1409 		vcpu->arch.sdar = set_reg_val(id, *val);
1410 		break;
1411 	case KVM_REG_PPC_SIER:
1412 		vcpu->arch.sier = set_reg_val(id, *val);
1413 		break;
1414 	case KVM_REG_PPC_IAMR:
1415 		vcpu->arch.iamr = set_reg_val(id, *val);
1416 		break;
1417 	case KVM_REG_PPC_PSPB:
1418 		vcpu->arch.pspb = set_reg_val(id, *val);
1419 		break;
1420 	case KVM_REG_PPC_DPDES:
1421 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1422 		break;
1423 	case KVM_REG_PPC_VTB:
1424 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1425 		break;
1426 	case KVM_REG_PPC_DAWR:
1427 		vcpu->arch.dawr = set_reg_val(id, *val);
1428 		break;
1429 	case KVM_REG_PPC_DAWRX:
1430 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1431 		break;
1432 	case KVM_REG_PPC_CIABR:
1433 		vcpu->arch.ciabr = set_reg_val(id, *val);
1434 		/* Don't allow setting breakpoints in hypervisor code */
1435 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1436 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1437 		break;
1438 	case KVM_REG_PPC_CSIGR:
1439 		vcpu->arch.csigr = set_reg_val(id, *val);
1440 		break;
1441 	case KVM_REG_PPC_TACR:
1442 		vcpu->arch.tacr = set_reg_val(id, *val);
1443 		break;
1444 	case KVM_REG_PPC_TCSCR:
1445 		vcpu->arch.tcscr = set_reg_val(id, *val);
1446 		break;
1447 	case KVM_REG_PPC_PID:
1448 		vcpu->arch.pid = set_reg_val(id, *val);
1449 		break;
1450 	case KVM_REG_PPC_ACOP:
1451 		vcpu->arch.acop = set_reg_val(id, *val);
1452 		break;
1453 	case KVM_REG_PPC_WORT:
1454 		vcpu->arch.wort = set_reg_val(id, *val);
1455 		break;
1456 	case KVM_REG_PPC_TIDR:
1457 		vcpu->arch.tid = set_reg_val(id, *val);
1458 		break;
1459 	case KVM_REG_PPC_PSSCR:
1460 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1461 		break;
1462 	case KVM_REG_PPC_VPA_ADDR:
1463 		addr = set_reg_val(id, *val);
1464 		r = -EINVAL;
1465 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1466 			      vcpu->arch.dtl.next_gpa))
1467 			break;
1468 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1469 		break;
1470 	case KVM_REG_PPC_VPA_SLB:
1471 		addr = val->vpaval.addr;
1472 		len = val->vpaval.length;
1473 		r = -EINVAL;
1474 		if (addr && !vcpu->arch.vpa.next_gpa)
1475 			break;
1476 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1477 		break;
1478 	case KVM_REG_PPC_VPA_DTL:
1479 		addr = val->vpaval.addr;
1480 		len = val->vpaval.length;
1481 		r = -EINVAL;
1482 		if (addr && (len < sizeof(struct dtl_entry) ||
1483 			     !vcpu->arch.vpa.next_gpa))
1484 			break;
1485 		len -= len % sizeof(struct dtl_entry);
1486 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1487 		break;
1488 	case KVM_REG_PPC_TB_OFFSET:
1489 		/*
1490 		 * POWER9 DD1 has an erratum where writing TBU40 causes
1491 		 * the timebase to lose ticks.  So we don't let the
1492 		 * timebase offset be changed on P9 DD1.  (It is
1493 		 * initialized to zero.)
1494 		 */
1495 		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1496 			break;
1497 		/* round up to multiple of 2^24 */
1498 		vcpu->arch.vcore->tb_offset =
1499 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1500 		break;
1501 	case KVM_REG_PPC_LPCR:
1502 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1503 		break;
1504 	case KVM_REG_PPC_LPCR_64:
1505 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1506 		break;
1507 	case KVM_REG_PPC_PPR:
1508 		vcpu->arch.ppr = set_reg_val(id, *val);
1509 		break;
1510 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1511 	case KVM_REG_PPC_TFHAR:
1512 		vcpu->arch.tfhar = set_reg_val(id, *val);
1513 		break;
1514 	case KVM_REG_PPC_TFIAR:
1515 		vcpu->arch.tfiar = set_reg_val(id, *val);
1516 		break;
1517 	case KVM_REG_PPC_TEXASR:
1518 		vcpu->arch.texasr = set_reg_val(id, *val);
1519 		break;
1520 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1521 		i = id - KVM_REG_PPC_TM_GPR0;
1522 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1523 		break;
1524 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1525 	{
1526 		int j;
1527 		i = id - KVM_REG_PPC_TM_VSR0;
1528 		if (i < 32)
1529 			for (j = 0; j < TS_FPRWIDTH; j++)
1530 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1531 		else
1532 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1533 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1534 			else
1535 				r = -ENXIO;
1536 		break;
1537 	}
1538 	case KVM_REG_PPC_TM_CR:
1539 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1540 		break;
1541 	case KVM_REG_PPC_TM_XER:
1542 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1543 		break;
1544 	case KVM_REG_PPC_TM_LR:
1545 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1546 		break;
1547 	case KVM_REG_PPC_TM_CTR:
1548 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1549 		break;
1550 	case KVM_REG_PPC_TM_FPSCR:
1551 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1552 		break;
1553 	case KVM_REG_PPC_TM_AMR:
1554 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1555 		break;
1556 	case KVM_REG_PPC_TM_PPR:
1557 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1558 		break;
1559 	case KVM_REG_PPC_TM_VRSAVE:
1560 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1561 		break;
1562 	case KVM_REG_PPC_TM_VSCR:
1563 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1564 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1565 		else
1566 			r = - ENXIO;
1567 		break;
1568 	case KVM_REG_PPC_TM_DSCR:
1569 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1570 		break;
1571 	case KVM_REG_PPC_TM_TAR:
1572 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1573 		break;
1574 #endif
1575 	case KVM_REG_PPC_ARCH_COMPAT:
1576 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1577 		break;
1578 	default:
1579 		r = -EINVAL;
1580 		break;
1581 	}
1582 
1583 	return r;
1584 }
1585 
1586 /*
1587  * On POWER9, threads are independent and can be in different partitions.
1588  * Therefore we consider each thread to be a subcore.
1589  * There is a restriction that all threads have to be in the same
1590  * MMU mode (radix or HPT), unfortunately, but since we only support
1591  * HPT guests on a HPT host so far, that isn't an impediment yet.
1592  */
1593 static int threads_per_vcore(void)
1594 {
1595 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1596 		return 1;
1597 	return threads_per_subcore;
1598 }
1599 
1600 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1601 {
1602 	struct kvmppc_vcore *vcore;
1603 
1604 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1605 
1606 	if (vcore == NULL)
1607 		return NULL;
1608 
1609 	spin_lock_init(&vcore->lock);
1610 	spin_lock_init(&vcore->stoltb_lock);
1611 	init_swait_queue_head(&vcore->wq);
1612 	vcore->preempt_tb = TB_NIL;
1613 	vcore->lpcr = kvm->arch.lpcr;
1614 	vcore->first_vcpuid = core * threads_per_vcore();
1615 	vcore->kvm = kvm;
1616 	INIT_LIST_HEAD(&vcore->preempt_list);
1617 
1618 	return vcore;
1619 }
1620 
1621 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1622 static struct debugfs_timings_element {
1623 	const char *name;
1624 	size_t offset;
1625 } timings[] = {
1626 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1627 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1628 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1629 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1630 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1631 };
1632 
1633 #define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))
1634 
1635 struct debugfs_timings_state {
1636 	struct kvm_vcpu	*vcpu;
1637 	unsigned int	buflen;
1638 	char		buf[N_TIMINGS * 100];
1639 };
1640 
1641 static int debugfs_timings_open(struct inode *inode, struct file *file)
1642 {
1643 	struct kvm_vcpu *vcpu = inode->i_private;
1644 	struct debugfs_timings_state *p;
1645 
1646 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1647 	if (!p)
1648 		return -ENOMEM;
1649 
1650 	kvm_get_kvm(vcpu->kvm);
1651 	p->vcpu = vcpu;
1652 	file->private_data = p;
1653 
1654 	return nonseekable_open(inode, file);
1655 }
1656 
1657 static int debugfs_timings_release(struct inode *inode, struct file *file)
1658 {
1659 	struct debugfs_timings_state *p = file->private_data;
1660 
1661 	kvm_put_kvm(p->vcpu->kvm);
1662 	kfree(p);
1663 	return 0;
1664 }
1665 
1666 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1667 				    size_t len, loff_t *ppos)
1668 {
1669 	struct debugfs_timings_state *p = file->private_data;
1670 	struct kvm_vcpu *vcpu = p->vcpu;
1671 	char *s, *buf_end;
1672 	struct kvmhv_tb_accumulator tb;
1673 	u64 count;
1674 	loff_t pos;
1675 	ssize_t n;
1676 	int i, loops;
1677 	bool ok;
1678 
1679 	if (!p->buflen) {
1680 		s = p->buf;
1681 		buf_end = s + sizeof(p->buf);
1682 		for (i = 0; i < N_TIMINGS; ++i) {
1683 			struct kvmhv_tb_accumulator *acc;
1684 
1685 			acc = (struct kvmhv_tb_accumulator *)
1686 				((unsigned long)vcpu + timings[i].offset);
1687 			ok = false;
1688 			for (loops = 0; loops < 1000; ++loops) {
1689 				count = acc->seqcount;
1690 				if (!(count & 1)) {
1691 					smp_rmb();
1692 					tb = *acc;
1693 					smp_rmb();
1694 					if (count == acc->seqcount) {
1695 						ok = true;
1696 						break;
1697 					}
1698 				}
1699 				udelay(1);
1700 			}
1701 			if (!ok)
1702 				snprintf(s, buf_end - s, "%s: stuck\n",
1703 					timings[i].name);
1704 			else
1705 				snprintf(s, buf_end - s,
1706 					"%s: %llu %llu %llu %llu\n",
1707 					timings[i].name, count / 2,
1708 					tb_to_ns(tb.tb_total),
1709 					tb_to_ns(tb.tb_min),
1710 					tb_to_ns(tb.tb_max));
1711 			s += strlen(s);
1712 		}
1713 		p->buflen = s - p->buf;
1714 	}
1715 
1716 	pos = *ppos;
1717 	if (pos >= p->buflen)
1718 		return 0;
1719 	if (len > p->buflen - pos)
1720 		len = p->buflen - pos;
1721 	n = copy_to_user(buf, p->buf + pos, len);
1722 	if (n) {
1723 		if (n == len)
1724 			return -EFAULT;
1725 		len -= n;
1726 	}
1727 	*ppos = pos + len;
1728 	return len;
1729 }
1730 
1731 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1732 				     size_t len, loff_t *ppos)
1733 {
1734 	return -EACCES;
1735 }
1736 
1737 static const struct file_operations debugfs_timings_ops = {
1738 	.owner	 = THIS_MODULE,
1739 	.open	 = debugfs_timings_open,
1740 	.release = debugfs_timings_release,
1741 	.read	 = debugfs_timings_read,
1742 	.write	 = debugfs_timings_write,
1743 	.llseek	 = generic_file_llseek,
1744 };
1745 
1746 /* Create a debugfs directory for the vcpu */
1747 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1748 {
1749 	char buf[16];
1750 	struct kvm *kvm = vcpu->kvm;
1751 
1752 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1753 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1754 		return;
1755 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1756 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1757 		return;
1758 	vcpu->arch.debugfs_timings =
1759 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1760 				    vcpu, &debugfs_timings_ops);
1761 }
1762 
1763 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1764 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1765 {
1766 }
1767 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1768 
1769 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1770 						   unsigned int id)
1771 {
1772 	struct kvm_vcpu *vcpu;
1773 	int err = -EINVAL;
1774 	int core;
1775 	struct kvmppc_vcore *vcore;
1776 
1777 	core = id / threads_per_vcore();
1778 	if (core >= KVM_MAX_VCORES)
1779 		goto out;
1780 
1781 	err = -ENOMEM;
1782 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1783 	if (!vcpu)
1784 		goto out;
1785 
1786 	err = kvm_vcpu_init(vcpu, kvm, id);
1787 	if (err)
1788 		goto free_vcpu;
1789 
1790 	vcpu->arch.shared = &vcpu->arch.shregs;
1791 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1792 	/*
1793 	 * The shared struct is never shared on HV,
1794 	 * so we can always use host endianness
1795 	 */
1796 #ifdef __BIG_ENDIAN__
1797 	vcpu->arch.shared_big_endian = true;
1798 #else
1799 	vcpu->arch.shared_big_endian = false;
1800 #endif
1801 #endif
1802 	vcpu->arch.mmcr[0] = MMCR0_FC;
1803 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1804 	/* default to host PVR, since we can't spoof it */
1805 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1806 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1807 	spin_lock_init(&vcpu->arch.tbacct_lock);
1808 	vcpu->arch.busy_preempt = TB_NIL;
1809 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1810 
1811 	kvmppc_mmu_book3s_hv_init(vcpu);
1812 
1813 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1814 
1815 	init_waitqueue_head(&vcpu->arch.cpu_run);
1816 
1817 	mutex_lock(&kvm->lock);
1818 	vcore = kvm->arch.vcores[core];
1819 	if (!vcore) {
1820 		vcore = kvmppc_vcore_create(kvm, core);
1821 		kvm->arch.vcores[core] = vcore;
1822 		kvm->arch.online_vcores++;
1823 	}
1824 	mutex_unlock(&kvm->lock);
1825 
1826 	if (!vcore)
1827 		goto free_vcpu;
1828 
1829 	spin_lock(&vcore->lock);
1830 	++vcore->num_threads;
1831 	spin_unlock(&vcore->lock);
1832 	vcpu->arch.vcore = vcore;
1833 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1834 	vcpu->arch.thread_cpu = -1;
1835 	vcpu->arch.prev_cpu = -1;
1836 
1837 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1838 	kvmppc_sanity_check(vcpu);
1839 
1840 	debugfs_vcpu_init(vcpu, id);
1841 
1842 	return vcpu;
1843 
1844 free_vcpu:
1845 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1846 out:
1847 	return ERR_PTR(err);
1848 }
1849 
1850 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1851 {
1852 	if (vpa->pinned_addr)
1853 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1854 					vpa->dirty);
1855 }
1856 
1857 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1858 {
1859 	spin_lock(&vcpu->arch.vpa_update_lock);
1860 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1861 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1862 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1863 	spin_unlock(&vcpu->arch.vpa_update_lock);
1864 	kvm_vcpu_uninit(vcpu);
1865 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1866 }
1867 
1868 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1869 {
1870 	/* Indicate we want to get back into the guest */
1871 	return 1;
1872 }
1873 
1874 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1875 {
1876 	unsigned long dec_nsec, now;
1877 
1878 	now = get_tb();
1879 	if (now > vcpu->arch.dec_expires) {
1880 		/* decrementer has already gone negative */
1881 		kvmppc_core_queue_dec(vcpu);
1882 		kvmppc_core_prepare_to_enter(vcpu);
1883 		return;
1884 	}
1885 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1886 		   / tb_ticks_per_sec;
1887 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
1888 	vcpu->arch.timer_running = 1;
1889 }
1890 
1891 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1892 {
1893 	vcpu->arch.ceded = 0;
1894 	if (vcpu->arch.timer_running) {
1895 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1896 		vcpu->arch.timer_running = 0;
1897 	}
1898 }
1899 
1900 extern void __kvmppc_vcore_entry(void);
1901 
1902 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1903 				   struct kvm_vcpu *vcpu)
1904 {
1905 	u64 now;
1906 
1907 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1908 		return;
1909 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1910 	now = mftb();
1911 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1912 		vcpu->arch.stolen_logged;
1913 	vcpu->arch.busy_preempt = now;
1914 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1915 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1916 	--vc->n_runnable;
1917 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1918 }
1919 
1920 static int kvmppc_grab_hwthread(int cpu)
1921 {
1922 	struct paca_struct *tpaca;
1923 	long timeout = 10000;
1924 
1925 	tpaca = &paca[cpu];
1926 
1927 	/* Ensure the thread won't go into the kernel if it wakes */
1928 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1929 	tpaca->kvm_hstate.kvm_vcore = NULL;
1930 	tpaca->kvm_hstate.napping = 0;
1931 	smp_wmb();
1932 	tpaca->kvm_hstate.hwthread_req = 1;
1933 
1934 	/*
1935 	 * If the thread is already executing in the kernel (e.g. handling
1936 	 * a stray interrupt), wait for it to get back to nap mode.
1937 	 * The smp_mb() is to ensure that our setting of hwthread_req
1938 	 * is visible before we look at hwthread_state, so if this
1939 	 * races with the code at system_reset_pSeries and the thread
1940 	 * misses our setting of hwthread_req, we are sure to see its
1941 	 * setting of hwthread_state, and vice versa.
1942 	 */
1943 	smp_mb();
1944 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1945 		if (--timeout <= 0) {
1946 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1947 			return -EBUSY;
1948 		}
1949 		udelay(1);
1950 	}
1951 	return 0;
1952 }
1953 
1954 static void kvmppc_release_hwthread(int cpu)
1955 {
1956 	struct paca_struct *tpaca;
1957 
1958 	tpaca = &paca[cpu];
1959 	tpaca->kvm_hstate.hwthread_req = 0;
1960 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1961 	tpaca->kvm_hstate.kvm_vcore = NULL;
1962 	tpaca->kvm_hstate.kvm_split_mode = NULL;
1963 }
1964 
1965 static void do_nothing(void *x)
1966 {
1967 }
1968 
1969 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
1970 {
1971 	int i;
1972 
1973 	cpu = cpu_first_thread_sibling(cpu);
1974 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
1975 	/*
1976 	 * Make sure setting of bit in need_tlb_flush precedes
1977 	 * testing of cpu_in_guest bits.  The matching barrier on
1978 	 * the other side is the first smp_mb() in kvmppc_run_core().
1979 	 */
1980 	smp_mb();
1981 	for (i = 0; i < threads_per_core; ++i)
1982 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
1983 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
1984 }
1985 
1986 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1987 {
1988 	int cpu;
1989 	struct paca_struct *tpaca;
1990 	struct kvmppc_vcore *mvc = vc->master_vcore;
1991 	struct kvm *kvm = vc->kvm;
1992 
1993 	cpu = vc->pcpu;
1994 	if (vcpu) {
1995 		if (vcpu->arch.timer_running) {
1996 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1997 			vcpu->arch.timer_running = 0;
1998 		}
1999 		cpu += vcpu->arch.ptid;
2000 		vcpu->cpu = mvc->pcpu;
2001 		vcpu->arch.thread_cpu = cpu;
2002 
2003 		/*
2004 		 * With radix, the guest can do TLB invalidations itself,
2005 		 * and it could choose to use the local form (tlbiel) if
2006 		 * it is invalidating a translation that has only ever been
2007 		 * used on one vcpu.  However, that doesn't mean it has
2008 		 * only ever been used on one physical cpu, since vcpus
2009 		 * can move around between pcpus.  To cope with this, when
2010 		 * a vcpu moves from one pcpu to another, we need to tell
2011 		 * any vcpus running on the same core as this vcpu previously
2012 		 * ran to flush the TLB.  The TLB is shared between threads,
2013 		 * so we use a single bit in .need_tlb_flush for all 4 threads.
2014 		 */
2015 		if (kvm_is_radix(kvm) && vcpu->arch.prev_cpu != cpu) {
2016 			if (vcpu->arch.prev_cpu >= 0 &&
2017 			    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2018 			    cpu_first_thread_sibling(cpu))
2019 				radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2020 			vcpu->arch.prev_cpu = cpu;
2021 		}
2022 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2023 	}
2024 	tpaca = &paca[cpu];
2025 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2026 	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
2027 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2028 	smp_wmb();
2029 	tpaca->kvm_hstate.kvm_vcore = mvc;
2030 	if (cpu != smp_processor_id())
2031 		kvmppc_ipi_thread(cpu);
2032 }
2033 
2034 static void kvmppc_wait_for_nap(void)
2035 {
2036 	int cpu = smp_processor_id();
2037 	int i, loops;
2038 	int n_threads = threads_per_vcore();
2039 
2040 	if (n_threads <= 1)
2041 		return;
2042 	for (loops = 0; loops < 1000000; ++loops) {
2043 		/*
2044 		 * Check if all threads are finished.
2045 		 * We set the vcore pointer when starting a thread
2046 		 * and the thread clears it when finished, so we look
2047 		 * for any threads that still have a non-NULL vcore ptr.
2048 		 */
2049 		for (i = 1; i < n_threads; ++i)
2050 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2051 				break;
2052 		if (i == n_threads) {
2053 			HMT_medium();
2054 			return;
2055 		}
2056 		HMT_low();
2057 	}
2058 	HMT_medium();
2059 	for (i = 1; i < n_threads; ++i)
2060 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2061 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2062 }
2063 
2064 /*
2065  * Check that we are on thread 0 and that any other threads in
2066  * this core are off-line.  Then grab the threads so they can't
2067  * enter the kernel.
2068  */
2069 static int on_primary_thread(void)
2070 {
2071 	int cpu = smp_processor_id();
2072 	int thr;
2073 
2074 	/* Are we on a primary subcore? */
2075 	if (cpu_thread_in_subcore(cpu))
2076 		return 0;
2077 
2078 	thr = 0;
2079 	while (++thr < threads_per_subcore)
2080 		if (cpu_online(cpu + thr))
2081 			return 0;
2082 
2083 	/* Grab all hw threads so they can't go into the kernel */
2084 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2085 		if (kvmppc_grab_hwthread(cpu + thr)) {
2086 			/* Couldn't grab one; let the others go */
2087 			do {
2088 				kvmppc_release_hwthread(cpu + thr);
2089 			} while (--thr > 0);
2090 			return 0;
2091 		}
2092 	}
2093 	return 1;
2094 }
2095 
2096 /*
2097  * A list of virtual cores for each physical CPU.
2098  * These are vcores that could run but their runner VCPU tasks are
2099  * (or may be) preempted.
2100  */
2101 struct preempted_vcore_list {
2102 	struct list_head	list;
2103 	spinlock_t		lock;
2104 };
2105 
2106 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2107 
2108 static void init_vcore_lists(void)
2109 {
2110 	int cpu;
2111 
2112 	for_each_possible_cpu(cpu) {
2113 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2114 		spin_lock_init(&lp->lock);
2115 		INIT_LIST_HEAD(&lp->list);
2116 	}
2117 }
2118 
2119 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2120 {
2121 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2122 
2123 	vc->vcore_state = VCORE_PREEMPT;
2124 	vc->pcpu = smp_processor_id();
2125 	if (vc->num_threads < threads_per_vcore()) {
2126 		spin_lock(&lp->lock);
2127 		list_add_tail(&vc->preempt_list, &lp->list);
2128 		spin_unlock(&lp->lock);
2129 	}
2130 
2131 	/* Start accumulating stolen time */
2132 	kvmppc_core_start_stolen(vc);
2133 }
2134 
2135 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2136 {
2137 	struct preempted_vcore_list *lp;
2138 
2139 	kvmppc_core_end_stolen(vc);
2140 	if (!list_empty(&vc->preempt_list)) {
2141 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2142 		spin_lock(&lp->lock);
2143 		list_del_init(&vc->preempt_list);
2144 		spin_unlock(&lp->lock);
2145 	}
2146 	vc->vcore_state = VCORE_INACTIVE;
2147 }
2148 
2149 /*
2150  * This stores information about the virtual cores currently
2151  * assigned to a physical core.
2152  */
2153 struct core_info {
2154 	int		n_subcores;
2155 	int		max_subcore_threads;
2156 	int		total_threads;
2157 	int		subcore_threads[MAX_SUBCORES];
2158 	struct kvm	*subcore_vm[MAX_SUBCORES];
2159 	struct list_head vcs[MAX_SUBCORES];
2160 };
2161 
2162 /*
2163  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2164  * respectively in 2-way micro-threading (split-core) mode.
2165  */
2166 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2167 
2168 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2169 {
2170 	int sub;
2171 
2172 	memset(cip, 0, sizeof(*cip));
2173 	cip->n_subcores = 1;
2174 	cip->max_subcore_threads = vc->num_threads;
2175 	cip->total_threads = vc->num_threads;
2176 	cip->subcore_threads[0] = vc->num_threads;
2177 	cip->subcore_vm[0] = vc->kvm;
2178 	for (sub = 0; sub < MAX_SUBCORES; ++sub)
2179 		INIT_LIST_HEAD(&cip->vcs[sub]);
2180 	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2181 }
2182 
2183 static bool subcore_config_ok(int n_subcores, int n_threads)
2184 {
2185 	/* Can only dynamically split if unsplit to begin with */
2186 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2187 		return false;
2188 	if (n_subcores > MAX_SUBCORES)
2189 		return false;
2190 	if (n_subcores > 1) {
2191 		if (!(dynamic_mt_modes & 2))
2192 			n_subcores = 4;
2193 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2194 			return false;
2195 	}
2196 
2197 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2198 }
2199 
2200 static void init_master_vcore(struct kvmppc_vcore *vc)
2201 {
2202 	vc->master_vcore = vc;
2203 	vc->entry_exit_map = 0;
2204 	vc->in_guest = 0;
2205 	vc->napping_threads = 0;
2206 	vc->conferring_threads = 0;
2207 }
2208 
2209 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2210 {
2211 	int n_threads = vc->num_threads;
2212 	int sub;
2213 
2214 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2215 		return false;
2216 
2217 	if (n_threads < cip->max_subcore_threads)
2218 		n_threads = cip->max_subcore_threads;
2219 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2220 		return false;
2221 	cip->max_subcore_threads = n_threads;
2222 
2223 	sub = cip->n_subcores;
2224 	++cip->n_subcores;
2225 	cip->total_threads += vc->num_threads;
2226 	cip->subcore_threads[sub] = vc->num_threads;
2227 	cip->subcore_vm[sub] = vc->kvm;
2228 	init_master_vcore(vc);
2229 	list_move_tail(&vc->preempt_list, &cip->vcs[sub]);
2230 
2231 	return true;
2232 }
2233 
2234 /*
2235  * Work out whether it is possible to piggyback the execution of
2236  * vcore *pvc onto the execution of the other vcores described in *cip.
2237  */
2238 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2239 			  int target_threads)
2240 {
2241 	if (cip->total_threads + pvc->num_threads > target_threads)
2242 		return false;
2243 
2244 	return can_dynamic_split(pvc, cip);
2245 }
2246 
2247 static void prepare_threads(struct kvmppc_vcore *vc)
2248 {
2249 	int i;
2250 	struct kvm_vcpu *vcpu;
2251 
2252 	for_each_runnable_thread(i, vcpu, vc) {
2253 		if (signal_pending(vcpu->arch.run_task))
2254 			vcpu->arch.ret = -EINTR;
2255 		else if (vcpu->arch.vpa.update_pending ||
2256 			 vcpu->arch.slb_shadow.update_pending ||
2257 			 vcpu->arch.dtl.update_pending)
2258 			vcpu->arch.ret = RESUME_GUEST;
2259 		else
2260 			continue;
2261 		kvmppc_remove_runnable(vc, vcpu);
2262 		wake_up(&vcpu->arch.cpu_run);
2263 	}
2264 }
2265 
2266 static void collect_piggybacks(struct core_info *cip, int target_threads)
2267 {
2268 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2269 	struct kvmppc_vcore *pvc, *vcnext;
2270 
2271 	spin_lock(&lp->lock);
2272 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2273 		if (!spin_trylock(&pvc->lock))
2274 			continue;
2275 		prepare_threads(pvc);
2276 		if (!pvc->n_runnable) {
2277 			list_del_init(&pvc->preempt_list);
2278 			if (pvc->runner == NULL) {
2279 				pvc->vcore_state = VCORE_INACTIVE;
2280 				kvmppc_core_end_stolen(pvc);
2281 			}
2282 			spin_unlock(&pvc->lock);
2283 			continue;
2284 		}
2285 		if (!can_piggyback(pvc, cip, target_threads)) {
2286 			spin_unlock(&pvc->lock);
2287 			continue;
2288 		}
2289 		kvmppc_core_end_stolen(pvc);
2290 		pvc->vcore_state = VCORE_PIGGYBACK;
2291 		if (cip->total_threads >= target_threads)
2292 			break;
2293 	}
2294 	spin_unlock(&lp->lock);
2295 }
2296 
2297 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2298 {
2299 	int still_running = 0, i;
2300 	u64 now;
2301 	long ret;
2302 	struct kvm_vcpu *vcpu;
2303 
2304 	spin_lock(&vc->lock);
2305 	now = get_tb();
2306 	for_each_runnable_thread(i, vcpu, vc) {
2307 		/* cancel pending dec exception if dec is positive */
2308 		if (now < vcpu->arch.dec_expires &&
2309 		    kvmppc_core_pending_dec(vcpu))
2310 			kvmppc_core_dequeue_dec(vcpu);
2311 
2312 		trace_kvm_guest_exit(vcpu);
2313 
2314 		ret = RESUME_GUEST;
2315 		if (vcpu->arch.trap)
2316 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2317 						    vcpu->arch.run_task);
2318 
2319 		vcpu->arch.ret = ret;
2320 		vcpu->arch.trap = 0;
2321 
2322 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2323 			if (vcpu->arch.pending_exceptions)
2324 				kvmppc_core_prepare_to_enter(vcpu);
2325 			if (vcpu->arch.ceded)
2326 				kvmppc_set_timer(vcpu);
2327 			else
2328 				++still_running;
2329 		} else {
2330 			kvmppc_remove_runnable(vc, vcpu);
2331 			wake_up(&vcpu->arch.cpu_run);
2332 		}
2333 	}
2334 	list_del_init(&vc->preempt_list);
2335 	if (!is_master) {
2336 		if (still_running > 0) {
2337 			kvmppc_vcore_preempt(vc);
2338 		} else if (vc->runner) {
2339 			vc->vcore_state = VCORE_PREEMPT;
2340 			kvmppc_core_start_stolen(vc);
2341 		} else {
2342 			vc->vcore_state = VCORE_INACTIVE;
2343 		}
2344 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2345 			/* make sure there's a candidate runner awake */
2346 			i = -1;
2347 			vcpu = next_runnable_thread(vc, &i);
2348 			wake_up(&vcpu->arch.cpu_run);
2349 		}
2350 	}
2351 	spin_unlock(&vc->lock);
2352 }
2353 
2354 /*
2355  * Clear core from the list of active host cores as we are about to
2356  * enter the guest. Only do this if it is the primary thread of the
2357  * core (not if a subcore) that is entering the guest.
2358  */
2359 static inline int kvmppc_clear_host_core(unsigned int cpu)
2360 {
2361 	int core;
2362 
2363 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2364 		return 0;
2365 	/*
2366 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2367 	 * later in kvmppc_start_thread and we need ensure that state is
2368 	 * visible to other CPUs only after we enter guest.
2369 	 */
2370 	core = cpu >> threads_shift;
2371 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2372 	return 0;
2373 }
2374 
2375 /*
2376  * Advertise this core as an active host core since we exited the guest
2377  * Only need to do this if it is the primary thread of the core that is
2378  * exiting.
2379  */
2380 static inline int kvmppc_set_host_core(unsigned int cpu)
2381 {
2382 	int core;
2383 
2384 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2385 		return 0;
2386 
2387 	/*
2388 	 * Memory barrier can be omitted here because we do a spin_unlock
2389 	 * immediately after this which provides the memory barrier.
2390 	 */
2391 	core = cpu >> threads_shift;
2392 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2393 	return 0;
2394 }
2395 
2396 /*
2397  * Run a set of guest threads on a physical core.
2398  * Called with vc->lock held.
2399  */
2400 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2401 {
2402 	struct kvm_vcpu *vcpu;
2403 	int i;
2404 	int srcu_idx;
2405 	struct core_info core_info;
2406 	struct kvmppc_vcore *pvc, *vcnext;
2407 	struct kvm_split_mode split_info, *sip;
2408 	int split, subcore_size, active;
2409 	int sub;
2410 	bool thr0_done;
2411 	unsigned long cmd_bit, stat_bit;
2412 	int pcpu, thr;
2413 	int target_threads;
2414 	int controlled_threads;
2415 
2416 	/*
2417 	 * Remove from the list any threads that have a signal pending
2418 	 * or need a VPA update done
2419 	 */
2420 	prepare_threads(vc);
2421 
2422 	/* if the runner is no longer runnable, let the caller pick a new one */
2423 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2424 		return;
2425 
2426 	/*
2427 	 * Initialize *vc.
2428 	 */
2429 	init_master_vcore(vc);
2430 	vc->preempt_tb = TB_NIL;
2431 
2432 	/*
2433 	 * Number of threads that we will be controlling: the same as
2434 	 * the number of threads per subcore, except on POWER9,
2435 	 * where it's 1 because the threads are (mostly) independent.
2436 	 */
2437 	controlled_threads = threads_per_vcore();
2438 
2439 	/*
2440 	 * Make sure we are running on primary threads, and that secondary
2441 	 * threads are offline.  Also check if the number of threads in this
2442 	 * guest are greater than the current system threads per guest.
2443 	 */
2444 	if ((controlled_threads > 1) &&
2445 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2446 		for_each_runnable_thread(i, vcpu, vc) {
2447 			vcpu->arch.ret = -EBUSY;
2448 			kvmppc_remove_runnable(vc, vcpu);
2449 			wake_up(&vcpu->arch.cpu_run);
2450 		}
2451 		goto out;
2452 	}
2453 
2454 	/*
2455 	 * See if we could run any other vcores on the physical core
2456 	 * along with this one.
2457 	 */
2458 	init_core_info(&core_info, vc);
2459 	pcpu = smp_processor_id();
2460 	target_threads = controlled_threads;
2461 	if (target_smt_mode && target_smt_mode < target_threads)
2462 		target_threads = target_smt_mode;
2463 	if (vc->num_threads < target_threads)
2464 		collect_piggybacks(&core_info, target_threads);
2465 
2466 	/* Decide on micro-threading (split-core) mode */
2467 	subcore_size = threads_per_subcore;
2468 	cmd_bit = stat_bit = 0;
2469 	split = core_info.n_subcores;
2470 	sip = NULL;
2471 	if (split > 1) {
2472 		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2473 		if (split == 2 && (dynamic_mt_modes & 2)) {
2474 			cmd_bit = HID0_POWER8_1TO2LPAR;
2475 			stat_bit = HID0_POWER8_2LPARMODE;
2476 		} else {
2477 			split = 4;
2478 			cmd_bit = HID0_POWER8_1TO4LPAR;
2479 			stat_bit = HID0_POWER8_4LPARMODE;
2480 		}
2481 		subcore_size = MAX_SMT_THREADS / split;
2482 		sip = &split_info;
2483 		memset(&split_info, 0, sizeof(split_info));
2484 		split_info.rpr = mfspr(SPRN_RPR);
2485 		split_info.pmmar = mfspr(SPRN_PMMAR);
2486 		split_info.ldbar = mfspr(SPRN_LDBAR);
2487 		split_info.subcore_size = subcore_size;
2488 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2489 			split_info.master_vcs[sub] =
2490 				list_first_entry(&core_info.vcs[sub],
2491 					struct kvmppc_vcore, preempt_list);
2492 		/* order writes to split_info before kvm_split_mode pointer */
2493 		smp_wmb();
2494 	}
2495 	pcpu = smp_processor_id();
2496 	for (thr = 0; thr < controlled_threads; ++thr)
2497 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2498 
2499 	/* Initiate micro-threading (split-core) if required */
2500 	if (cmd_bit) {
2501 		unsigned long hid0 = mfspr(SPRN_HID0);
2502 
2503 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2504 		mb();
2505 		mtspr(SPRN_HID0, hid0);
2506 		isync();
2507 		for (;;) {
2508 			hid0 = mfspr(SPRN_HID0);
2509 			if (hid0 & stat_bit)
2510 				break;
2511 			cpu_relax();
2512 		}
2513 	}
2514 
2515 	kvmppc_clear_host_core(pcpu);
2516 
2517 	/* Start all the threads */
2518 	active = 0;
2519 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2520 		thr = subcore_thread_map[sub];
2521 		thr0_done = false;
2522 		active |= 1 << thr;
2523 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2524 			pvc->pcpu = pcpu + thr;
2525 			for_each_runnable_thread(i, vcpu, pvc) {
2526 				kvmppc_start_thread(vcpu, pvc);
2527 				kvmppc_create_dtl_entry(vcpu, pvc);
2528 				trace_kvm_guest_enter(vcpu);
2529 				if (!vcpu->arch.ptid)
2530 					thr0_done = true;
2531 				active |= 1 << (thr + vcpu->arch.ptid);
2532 			}
2533 			/*
2534 			 * We need to start the first thread of each subcore
2535 			 * even if it doesn't have a vcpu.
2536 			 */
2537 			if (pvc->master_vcore == pvc && !thr0_done)
2538 				kvmppc_start_thread(NULL, pvc);
2539 			thr += pvc->num_threads;
2540 		}
2541 	}
2542 
2543 	/*
2544 	 * Ensure that split_info.do_nap is set after setting
2545 	 * the vcore pointer in the PACA of the secondaries.
2546 	 */
2547 	smp_mb();
2548 	if (cmd_bit)
2549 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2550 
2551 	/*
2552 	 * When doing micro-threading, poke the inactive threads as well.
2553 	 * This gets them to the nap instruction after kvm_do_nap,
2554 	 * which reduces the time taken to unsplit later.
2555 	 */
2556 	if (split > 1)
2557 		for (thr = 1; thr < threads_per_subcore; ++thr)
2558 			if (!(active & (1 << thr)))
2559 				kvmppc_ipi_thread(pcpu + thr);
2560 
2561 	vc->vcore_state = VCORE_RUNNING;
2562 	preempt_disable();
2563 
2564 	trace_kvmppc_run_core(vc, 0);
2565 
2566 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2567 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2568 			spin_unlock(&pvc->lock);
2569 
2570 	guest_enter();
2571 
2572 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2573 
2574 	__kvmppc_vcore_entry();
2575 
2576 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2577 
2578 	spin_lock(&vc->lock);
2579 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2580 	vc->vcore_state = VCORE_EXITING;
2581 
2582 	/* wait for secondary threads to finish writing their state to memory */
2583 	kvmppc_wait_for_nap();
2584 
2585 	/* Return to whole-core mode if we split the core earlier */
2586 	if (split > 1) {
2587 		unsigned long hid0 = mfspr(SPRN_HID0);
2588 		unsigned long loops = 0;
2589 
2590 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2591 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2592 		mb();
2593 		mtspr(SPRN_HID0, hid0);
2594 		isync();
2595 		for (;;) {
2596 			hid0 = mfspr(SPRN_HID0);
2597 			if (!(hid0 & stat_bit))
2598 				break;
2599 			cpu_relax();
2600 			++loops;
2601 		}
2602 		split_info.do_nap = 0;
2603 	}
2604 
2605 	/* Let secondaries go back to the offline loop */
2606 	for (i = 0; i < controlled_threads; ++i) {
2607 		kvmppc_release_hwthread(pcpu + i);
2608 		if (sip && sip->napped[i])
2609 			kvmppc_ipi_thread(pcpu + i);
2610 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2611 	}
2612 
2613 	kvmppc_set_host_core(pcpu);
2614 
2615 	spin_unlock(&vc->lock);
2616 
2617 	/* make sure updates to secondary vcpu structs are visible now */
2618 	smp_mb();
2619 	guest_exit();
2620 
2621 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2622 		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2623 					 preempt_list)
2624 			post_guest_process(pvc, pvc == vc);
2625 
2626 	spin_lock(&vc->lock);
2627 	preempt_enable();
2628 
2629  out:
2630 	vc->vcore_state = VCORE_INACTIVE;
2631 	trace_kvmppc_run_core(vc, 1);
2632 }
2633 
2634 /*
2635  * Wait for some other vcpu thread to execute us, and
2636  * wake us up when we need to handle something in the host.
2637  */
2638 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2639 				 struct kvm_vcpu *vcpu, int wait_state)
2640 {
2641 	DEFINE_WAIT(wait);
2642 
2643 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2644 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2645 		spin_unlock(&vc->lock);
2646 		schedule();
2647 		spin_lock(&vc->lock);
2648 	}
2649 	finish_wait(&vcpu->arch.cpu_run, &wait);
2650 }
2651 
2652 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2653 {
2654 	/* 10us base */
2655 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2656 		vc->halt_poll_ns = 10000;
2657 	else
2658 		vc->halt_poll_ns *= halt_poll_ns_grow;
2659 }
2660 
2661 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2662 {
2663 	if (halt_poll_ns_shrink == 0)
2664 		vc->halt_poll_ns = 0;
2665 	else
2666 		vc->halt_poll_ns /= halt_poll_ns_shrink;
2667 }
2668 
2669 /*
2670  * Check to see if any of the runnable vcpus on the vcore have pending
2671  * exceptions or are no longer ceded
2672  */
2673 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2674 {
2675 	struct kvm_vcpu *vcpu;
2676 	int i;
2677 
2678 	for_each_runnable_thread(i, vcpu, vc) {
2679 		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded ||
2680 		    vcpu->arch.prodded)
2681 			return 1;
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 /*
2688  * All the vcpus in this vcore are idle, so wait for a decrementer
2689  * or external interrupt to one of the vcpus.  vc->lock is held.
2690  */
2691 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2692 {
2693 	ktime_t cur, start_poll, start_wait;
2694 	int do_sleep = 1;
2695 	u64 block_ns;
2696 	DECLARE_SWAITQUEUE(wait);
2697 
2698 	/* Poll for pending exceptions and ceded state */
2699 	cur = start_poll = ktime_get();
2700 	if (vc->halt_poll_ns) {
2701 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2702 		++vc->runner->stat.halt_attempted_poll;
2703 
2704 		vc->vcore_state = VCORE_POLLING;
2705 		spin_unlock(&vc->lock);
2706 
2707 		do {
2708 			if (kvmppc_vcore_check_block(vc)) {
2709 				do_sleep = 0;
2710 				break;
2711 			}
2712 			cur = ktime_get();
2713 		} while (single_task_running() && ktime_before(cur, stop));
2714 
2715 		spin_lock(&vc->lock);
2716 		vc->vcore_state = VCORE_INACTIVE;
2717 
2718 		if (!do_sleep) {
2719 			++vc->runner->stat.halt_successful_poll;
2720 			goto out;
2721 		}
2722 	}
2723 
2724 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2725 
2726 	if (kvmppc_vcore_check_block(vc)) {
2727 		finish_swait(&vc->wq, &wait);
2728 		do_sleep = 0;
2729 		/* If we polled, count this as a successful poll */
2730 		if (vc->halt_poll_ns)
2731 			++vc->runner->stat.halt_successful_poll;
2732 		goto out;
2733 	}
2734 
2735 	start_wait = ktime_get();
2736 
2737 	vc->vcore_state = VCORE_SLEEPING;
2738 	trace_kvmppc_vcore_blocked(vc, 0);
2739 	spin_unlock(&vc->lock);
2740 	schedule();
2741 	finish_swait(&vc->wq, &wait);
2742 	spin_lock(&vc->lock);
2743 	vc->vcore_state = VCORE_INACTIVE;
2744 	trace_kvmppc_vcore_blocked(vc, 1);
2745 	++vc->runner->stat.halt_successful_wait;
2746 
2747 	cur = ktime_get();
2748 
2749 out:
2750 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
2751 
2752 	/* Attribute wait time */
2753 	if (do_sleep) {
2754 		vc->runner->stat.halt_wait_ns +=
2755 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
2756 		/* Attribute failed poll time */
2757 		if (vc->halt_poll_ns)
2758 			vc->runner->stat.halt_poll_fail_ns +=
2759 				ktime_to_ns(start_wait) -
2760 				ktime_to_ns(start_poll);
2761 	} else {
2762 		/* Attribute successful poll time */
2763 		if (vc->halt_poll_ns)
2764 			vc->runner->stat.halt_poll_success_ns +=
2765 				ktime_to_ns(cur) -
2766 				ktime_to_ns(start_poll);
2767 	}
2768 
2769 	/* Adjust poll time */
2770 	if (halt_poll_ns) {
2771 		if (block_ns <= vc->halt_poll_ns)
2772 			;
2773 		/* We slept and blocked for longer than the max halt time */
2774 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
2775 			shrink_halt_poll_ns(vc);
2776 		/* We slept and our poll time is too small */
2777 		else if (vc->halt_poll_ns < halt_poll_ns &&
2778 				block_ns < halt_poll_ns)
2779 			grow_halt_poll_ns(vc);
2780 		if (vc->halt_poll_ns > halt_poll_ns)
2781 			vc->halt_poll_ns = halt_poll_ns;
2782 	} else
2783 		vc->halt_poll_ns = 0;
2784 
2785 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
2786 }
2787 
2788 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2789 {
2790 	int n_ceded, i;
2791 	struct kvmppc_vcore *vc;
2792 	struct kvm_vcpu *v;
2793 
2794 	trace_kvmppc_run_vcpu_enter(vcpu);
2795 
2796 	kvm_run->exit_reason = 0;
2797 	vcpu->arch.ret = RESUME_GUEST;
2798 	vcpu->arch.trap = 0;
2799 	kvmppc_update_vpas(vcpu);
2800 
2801 	/*
2802 	 * Synchronize with other threads in this virtual core
2803 	 */
2804 	vc = vcpu->arch.vcore;
2805 	spin_lock(&vc->lock);
2806 	vcpu->arch.ceded = 0;
2807 	vcpu->arch.run_task = current;
2808 	vcpu->arch.kvm_run = kvm_run;
2809 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2810 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2811 	vcpu->arch.busy_preempt = TB_NIL;
2812 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2813 	++vc->n_runnable;
2814 
2815 	/*
2816 	 * This happens the first time this is called for a vcpu.
2817 	 * If the vcore is already running, we may be able to start
2818 	 * this thread straight away and have it join in.
2819 	 */
2820 	if (!signal_pending(current)) {
2821 		if (vc->vcore_state == VCORE_PIGGYBACK) {
2822 			struct kvmppc_vcore *mvc = vc->master_vcore;
2823 			if (spin_trylock(&mvc->lock)) {
2824 				if (mvc->vcore_state == VCORE_RUNNING &&
2825 				    !VCORE_IS_EXITING(mvc)) {
2826 					kvmppc_create_dtl_entry(vcpu, vc);
2827 					kvmppc_start_thread(vcpu, vc);
2828 					trace_kvm_guest_enter(vcpu);
2829 				}
2830 				spin_unlock(&mvc->lock);
2831 			}
2832 		} else if (vc->vcore_state == VCORE_RUNNING &&
2833 			   !VCORE_IS_EXITING(vc)) {
2834 			kvmppc_create_dtl_entry(vcpu, vc);
2835 			kvmppc_start_thread(vcpu, vc);
2836 			trace_kvm_guest_enter(vcpu);
2837 		} else if (vc->vcore_state == VCORE_SLEEPING) {
2838 			swake_up(&vc->wq);
2839 		}
2840 
2841 	}
2842 
2843 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2844 	       !signal_pending(current)) {
2845 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2846 			kvmppc_vcore_end_preempt(vc);
2847 
2848 		if (vc->vcore_state != VCORE_INACTIVE) {
2849 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2850 			continue;
2851 		}
2852 		for_each_runnable_thread(i, v, vc) {
2853 			kvmppc_core_prepare_to_enter(v);
2854 			if (signal_pending(v->arch.run_task)) {
2855 				kvmppc_remove_runnable(vc, v);
2856 				v->stat.signal_exits++;
2857 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2858 				v->arch.ret = -EINTR;
2859 				wake_up(&v->arch.cpu_run);
2860 			}
2861 		}
2862 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2863 			break;
2864 		n_ceded = 0;
2865 		for_each_runnable_thread(i, v, vc) {
2866 			if (!v->arch.pending_exceptions && !v->arch.prodded)
2867 				n_ceded += v->arch.ceded;
2868 			else
2869 				v->arch.ceded = 0;
2870 		}
2871 		vc->runner = vcpu;
2872 		if (n_ceded == vc->n_runnable) {
2873 			kvmppc_vcore_blocked(vc);
2874 		} else if (need_resched()) {
2875 			kvmppc_vcore_preempt(vc);
2876 			/* Let something else run */
2877 			cond_resched_lock(&vc->lock);
2878 			if (vc->vcore_state == VCORE_PREEMPT)
2879 				kvmppc_vcore_end_preempt(vc);
2880 		} else {
2881 			kvmppc_run_core(vc);
2882 		}
2883 		vc->runner = NULL;
2884 	}
2885 
2886 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2887 	       (vc->vcore_state == VCORE_RUNNING ||
2888 		vc->vcore_state == VCORE_EXITING ||
2889 		vc->vcore_state == VCORE_PIGGYBACK))
2890 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2891 
2892 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2893 		kvmppc_vcore_end_preempt(vc);
2894 
2895 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2896 		kvmppc_remove_runnable(vc, vcpu);
2897 		vcpu->stat.signal_exits++;
2898 		kvm_run->exit_reason = KVM_EXIT_INTR;
2899 		vcpu->arch.ret = -EINTR;
2900 	}
2901 
2902 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2903 		/* Wake up some vcpu to run the core */
2904 		i = -1;
2905 		v = next_runnable_thread(vc, &i);
2906 		wake_up(&v->arch.cpu_run);
2907 	}
2908 
2909 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2910 	spin_unlock(&vc->lock);
2911 	return vcpu->arch.ret;
2912 }
2913 
2914 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2915 {
2916 	int r;
2917 	int srcu_idx;
2918 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
2919 	unsigned long user_tar = 0;
2920 	unsigned int user_vrsave;
2921 
2922 	if (!vcpu->arch.sane) {
2923 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2924 		return -EINVAL;
2925 	}
2926 
2927 	/*
2928 	 * Don't allow entry with a suspended transaction, because
2929 	 * the guest entry/exit code will lose it.
2930 	 * If the guest has TM enabled, save away their TM-related SPRs
2931 	 * (they will get restored by the TM unavailable interrupt).
2932 	 */
2933 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2934 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
2935 	    (current->thread.regs->msr & MSR_TM)) {
2936 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
2937 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2938 			run->fail_entry.hardware_entry_failure_reason = 0;
2939 			return -EINVAL;
2940 		}
2941 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
2942 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
2943 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
2944 		current->thread.regs->msr &= ~MSR_TM;
2945 	}
2946 #endif
2947 
2948 	kvmppc_core_prepare_to_enter(vcpu);
2949 
2950 	/* No need to go into the guest when all we'll do is come back out */
2951 	if (signal_pending(current)) {
2952 		run->exit_reason = KVM_EXIT_INTR;
2953 		return -EINTR;
2954 	}
2955 
2956 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2957 	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2958 	smp_mb();
2959 
2960 	/* On the first time here, set up HTAB and VRMA */
2961 	if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) {
2962 		r = kvmppc_hv_setup_htab_rma(vcpu);
2963 		if (r)
2964 			goto out;
2965 	}
2966 
2967 	flush_all_to_thread(current);
2968 
2969 	/* Save userspace EBB and other register values */
2970 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
2971 		ebb_regs[0] = mfspr(SPRN_EBBHR);
2972 		ebb_regs[1] = mfspr(SPRN_EBBRR);
2973 		ebb_regs[2] = mfspr(SPRN_BESCR);
2974 		user_tar = mfspr(SPRN_TAR);
2975 	}
2976 	user_vrsave = mfspr(SPRN_VRSAVE);
2977 
2978 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2979 	vcpu->arch.pgdir = current->mm->pgd;
2980 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2981 
2982 	do {
2983 		r = kvmppc_run_vcpu(run, vcpu);
2984 
2985 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2986 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2987 			trace_kvm_hcall_enter(vcpu);
2988 			r = kvmppc_pseries_do_hcall(vcpu);
2989 			trace_kvm_hcall_exit(vcpu, r);
2990 			kvmppc_core_prepare_to_enter(vcpu);
2991 		} else if (r == RESUME_PAGE_FAULT) {
2992 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2993 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
2994 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2995 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2996 		} else if (r == RESUME_PASSTHROUGH) {
2997 			if (WARN_ON(xive_enabled()))
2998 				r = H_SUCCESS;
2999 			else
3000 				r = kvmppc_xics_rm_complete(vcpu, 0);
3001 		}
3002 	} while (is_kvmppc_resume_guest(r));
3003 
3004 	/* Restore userspace EBB and other register values */
3005 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3006 		mtspr(SPRN_EBBHR, ebb_regs[0]);
3007 		mtspr(SPRN_EBBRR, ebb_regs[1]);
3008 		mtspr(SPRN_BESCR, ebb_regs[2]);
3009 		mtspr(SPRN_TAR, user_tar);
3010 		mtspr(SPRN_FSCR, current->thread.fscr);
3011 	}
3012 	mtspr(SPRN_VRSAVE, user_vrsave);
3013 
3014  out:
3015 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3016 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
3017 	return r;
3018 }
3019 
3020 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3021 				     int linux_psize)
3022 {
3023 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
3024 
3025 	if (!def->shift)
3026 		return;
3027 	(*sps)->page_shift = def->shift;
3028 	(*sps)->slb_enc = def->sllp;
3029 	(*sps)->enc[0].page_shift = def->shift;
3030 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
3031 	/*
3032 	 * Add 16MB MPSS support if host supports it
3033 	 */
3034 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
3035 		(*sps)->enc[1].page_shift = 24;
3036 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
3037 	}
3038 	(*sps)++;
3039 }
3040 
3041 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3042 					 struct kvm_ppc_smmu_info *info)
3043 {
3044 	struct kvm_ppc_one_seg_page_size *sps;
3045 
3046 	/*
3047 	 * Since we don't yet support HPT guests on a radix host,
3048 	 * return an error if the host uses radix.
3049 	 */
3050 	if (radix_enabled())
3051 		return -EINVAL;
3052 
3053 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
3054 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3055 		info->flags |= KVM_PPC_1T_SEGMENTS;
3056 	info->slb_size = mmu_slb_size;
3057 
3058 	/* We only support these sizes for now, and no muti-size segments */
3059 	sps = &info->sps[0];
3060 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3061 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3062 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3063 
3064 	return 0;
3065 }
3066 
3067 /*
3068  * Get (and clear) the dirty memory log for a memory slot.
3069  */
3070 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3071 					 struct kvm_dirty_log *log)
3072 {
3073 	struct kvm_memslots *slots;
3074 	struct kvm_memory_slot *memslot;
3075 	int i, r;
3076 	unsigned long n;
3077 	unsigned long *buf;
3078 	struct kvm_vcpu *vcpu;
3079 
3080 	mutex_lock(&kvm->slots_lock);
3081 
3082 	r = -EINVAL;
3083 	if (log->slot >= KVM_USER_MEM_SLOTS)
3084 		goto out;
3085 
3086 	slots = kvm_memslots(kvm);
3087 	memslot = id_to_memslot(slots, log->slot);
3088 	r = -ENOENT;
3089 	if (!memslot->dirty_bitmap)
3090 		goto out;
3091 
3092 	/*
3093 	 * Use second half of bitmap area because radix accumulates
3094 	 * bits in the first half.
3095 	 */
3096 	n = kvm_dirty_bitmap_bytes(memslot);
3097 	buf = memslot->dirty_bitmap + n / sizeof(long);
3098 	memset(buf, 0, n);
3099 
3100 	if (kvm_is_radix(kvm))
3101 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3102 	else
3103 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3104 	if (r)
3105 		goto out;
3106 
3107 	/* Harvest dirty bits from VPA and DTL updates */
3108 	/* Note: we never modify the SLB shadow buffer areas */
3109 	kvm_for_each_vcpu(i, vcpu, kvm) {
3110 		spin_lock(&vcpu->arch.vpa_update_lock);
3111 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3112 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3113 		spin_unlock(&vcpu->arch.vpa_update_lock);
3114 	}
3115 
3116 	r = -EFAULT;
3117 	if (copy_to_user(log->dirty_bitmap, buf, n))
3118 		goto out;
3119 
3120 	r = 0;
3121 out:
3122 	mutex_unlock(&kvm->slots_lock);
3123 	return r;
3124 }
3125 
3126 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3127 					struct kvm_memory_slot *dont)
3128 {
3129 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3130 		vfree(free->arch.rmap);
3131 		free->arch.rmap = NULL;
3132 	}
3133 }
3134 
3135 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3136 					 unsigned long npages)
3137 {
3138 	/*
3139 	 * For now, if radix_enabled() then we only support radix guests,
3140 	 * and in that case we don't need the rmap array.
3141 	 */
3142 	if (radix_enabled()) {
3143 		slot->arch.rmap = NULL;
3144 		return 0;
3145 	}
3146 
3147 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3148 	if (!slot->arch.rmap)
3149 		return -ENOMEM;
3150 
3151 	return 0;
3152 }
3153 
3154 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3155 					struct kvm_memory_slot *memslot,
3156 					const struct kvm_userspace_memory_region *mem)
3157 {
3158 	return 0;
3159 }
3160 
3161 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3162 				const struct kvm_userspace_memory_region *mem,
3163 				const struct kvm_memory_slot *old,
3164 				const struct kvm_memory_slot *new)
3165 {
3166 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3167 	struct kvm_memslots *slots;
3168 	struct kvm_memory_slot *memslot;
3169 
3170 	/*
3171 	 * If we are making a new memslot, it might make
3172 	 * some address that was previously cached as emulated
3173 	 * MMIO be no longer emulated MMIO, so invalidate
3174 	 * all the caches of emulated MMIO translations.
3175 	 */
3176 	if (npages)
3177 		atomic64_inc(&kvm->arch.mmio_update);
3178 
3179 	if (npages && old->npages && !kvm_is_radix(kvm)) {
3180 		/*
3181 		 * If modifying a memslot, reset all the rmap dirty bits.
3182 		 * If this is a new memslot, we don't need to do anything
3183 		 * since the rmap array starts out as all zeroes,
3184 		 * i.e. no pages are dirty.
3185 		 */
3186 		slots = kvm_memslots(kvm);
3187 		memslot = id_to_memslot(slots, mem->slot);
3188 		kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3189 	}
3190 }
3191 
3192 /*
3193  * Update LPCR values in kvm->arch and in vcores.
3194  * Caller must hold kvm->lock.
3195  */
3196 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3197 {
3198 	long int i;
3199 	u32 cores_done = 0;
3200 
3201 	if ((kvm->arch.lpcr & mask) == lpcr)
3202 		return;
3203 
3204 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3205 
3206 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3207 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3208 		if (!vc)
3209 			continue;
3210 		spin_lock(&vc->lock);
3211 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3212 		spin_unlock(&vc->lock);
3213 		if (++cores_done >= kvm->arch.online_vcores)
3214 			break;
3215 	}
3216 }
3217 
3218 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3219 {
3220 	return;
3221 }
3222 
3223 static void kvmppc_setup_partition_table(struct kvm *kvm)
3224 {
3225 	unsigned long dw0, dw1;
3226 
3227 	if (!kvm_is_radix(kvm)) {
3228 		/* PS field - page size for VRMA */
3229 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3230 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3231 		/* HTABSIZE and HTABORG fields */
3232 		dw0 |= kvm->arch.sdr1;
3233 
3234 		/* Second dword as set by userspace */
3235 		dw1 = kvm->arch.process_table;
3236 	} else {
3237 		dw0 = PATB_HR | radix__get_tree_size() |
3238 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3239 		dw1 = PATB_GR | kvm->arch.process_table;
3240 	}
3241 
3242 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3243 }
3244 
3245 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3246 {
3247 	int err = 0;
3248 	struct kvm *kvm = vcpu->kvm;
3249 	unsigned long hva;
3250 	struct kvm_memory_slot *memslot;
3251 	struct vm_area_struct *vma;
3252 	unsigned long lpcr = 0, senc;
3253 	unsigned long psize, porder;
3254 	int srcu_idx;
3255 
3256 	mutex_lock(&kvm->lock);
3257 	if (kvm->arch.hpte_setup_done)
3258 		goto out;	/* another vcpu beat us to it */
3259 
3260 	/* Allocate hashed page table (if not done already) and reset it */
3261 	if (!kvm->arch.hpt.virt) {
3262 		int order = KVM_DEFAULT_HPT_ORDER;
3263 		struct kvm_hpt_info info;
3264 
3265 		err = kvmppc_allocate_hpt(&info, order);
3266 		/* If we get here, it means userspace didn't specify a
3267 		 * size explicitly.  So, try successively smaller
3268 		 * sizes if the default failed. */
3269 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3270 			err  = kvmppc_allocate_hpt(&info, order);
3271 
3272 		if (err < 0) {
3273 			pr_err("KVM: Couldn't alloc HPT\n");
3274 			goto out;
3275 		}
3276 
3277 		kvmppc_set_hpt(kvm, &info);
3278 	}
3279 
3280 	/* Look up the memslot for guest physical address 0 */
3281 	srcu_idx = srcu_read_lock(&kvm->srcu);
3282 	memslot = gfn_to_memslot(kvm, 0);
3283 
3284 	/* We must have some memory at 0 by now */
3285 	err = -EINVAL;
3286 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3287 		goto out_srcu;
3288 
3289 	/* Look up the VMA for the start of this memory slot */
3290 	hva = memslot->userspace_addr;
3291 	down_read(&current->mm->mmap_sem);
3292 	vma = find_vma(current->mm, hva);
3293 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3294 		goto up_out;
3295 
3296 	psize = vma_kernel_pagesize(vma);
3297 	porder = __ilog2(psize);
3298 
3299 	up_read(&current->mm->mmap_sem);
3300 
3301 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3302 	err = -EINVAL;
3303 	if (!(psize == 0x1000 || psize == 0x10000 ||
3304 	      psize == 0x1000000))
3305 		goto out_srcu;
3306 
3307 	senc = slb_pgsize_encoding(psize);
3308 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3309 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3310 	/* Create HPTEs in the hash page table for the VRMA */
3311 	kvmppc_map_vrma(vcpu, memslot, porder);
3312 
3313 	/* Update VRMASD field in the LPCR */
3314 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3315 		/* the -4 is to account for senc values starting at 0x10 */
3316 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3317 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3318 	} else {
3319 		kvmppc_setup_partition_table(kvm);
3320 	}
3321 
3322 	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3323 	smp_wmb();
3324 	kvm->arch.hpte_setup_done = 1;
3325 	err = 0;
3326  out_srcu:
3327 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3328  out:
3329 	mutex_unlock(&kvm->lock);
3330 	return err;
3331 
3332  up_out:
3333 	up_read(&current->mm->mmap_sem);
3334 	goto out_srcu;
3335 }
3336 
3337 #ifdef CONFIG_KVM_XICS
3338 /*
3339  * Allocate a per-core structure for managing state about which cores are
3340  * running in the host versus the guest and for exchanging data between
3341  * real mode KVM and CPU running in the host.
3342  * This is only done for the first VM.
3343  * The allocated structure stays even if all VMs have stopped.
3344  * It is only freed when the kvm-hv module is unloaded.
3345  * It's OK for this routine to fail, we just don't support host
3346  * core operations like redirecting H_IPI wakeups.
3347  */
3348 void kvmppc_alloc_host_rm_ops(void)
3349 {
3350 	struct kvmppc_host_rm_ops *ops;
3351 	unsigned long l_ops;
3352 	int cpu, core;
3353 	int size;
3354 
3355 	/* Not the first time here ? */
3356 	if (kvmppc_host_rm_ops_hv != NULL)
3357 		return;
3358 
3359 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3360 	if (!ops)
3361 		return;
3362 
3363 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3364 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3365 
3366 	if (!ops->rm_core) {
3367 		kfree(ops);
3368 		return;
3369 	}
3370 
3371 	get_online_cpus();
3372 
3373 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3374 		if (!cpu_online(cpu))
3375 			continue;
3376 
3377 		core = cpu >> threads_shift;
3378 		ops->rm_core[core].rm_state.in_host = 1;
3379 	}
3380 
3381 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3382 
3383 	/*
3384 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3385 	 * to other CPUs before we assign it to the global variable.
3386 	 * Do an atomic assignment (no locks used here), but if someone
3387 	 * beats us to it, just free our copy and return.
3388 	 */
3389 	smp_wmb();
3390 	l_ops = (unsigned long) ops;
3391 
3392 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3393 		put_online_cpus();
3394 		kfree(ops->rm_core);
3395 		kfree(ops);
3396 		return;
3397 	}
3398 
3399 	cpuhp_setup_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3400 				  "ppc/kvm_book3s:prepare",
3401 				  kvmppc_set_host_core,
3402 				  kvmppc_clear_host_core);
3403 	put_online_cpus();
3404 }
3405 
3406 void kvmppc_free_host_rm_ops(void)
3407 {
3408 	if (kvmppc_host_rm_ops_hv) {
3409 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3410 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3411 		kfree(kvmppc_host_rm_ops_hv);
3412 		kvmppc_host_rm_ops_hv = NULL;
3413 	}
3414 }
3415 #endif
3416 
3417 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3418 {
3419 	unsigned long lpcr, lpid;
3420 	char buf[32];
3421 	int ret;
3422 
3423 	/* Allocate the guest's logical partition ID */
3424 
3425 	lpid = kvmppc_alloc_lpid();
3426 	if ((long)lpid < 0)
3427 		return -ENOMEM;
3428 	kvm->arch.lpid = lpid;
3429 
3430 	kvmppc_alloc_host_rm_ops();
3431 
3432 	/*
3433 	 * Since we don't flush the TLB when tearing down a VM,
3434 	 * and this lpid might have previously been used,
3435 	 * make sure we flush on each core before running the new VM.
3436 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3437 	 * does this flush for us.
3438 	 */
3439 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3440 		cpumask_setall(&kvm->arch.need_tlb_flush);
3441 
3442 	/* Start out with the default set of hcalls enabled */
3443 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3444 	       sizeof(kvm->arch.enabled_hcalls));
3445 
3446 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3447 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3448 
3449 	/* Init LPCR for virtual RMA mode */
3450 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3451 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3452 	lpcr &= LPCR_PECE | LPCR_LPES;
3453 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3454 		LPCR_VPM0 | LPCR_VPM1;
3455 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3456 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3457 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3458 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3459 		lpcr |= LPCR_ONL;
3460 	/*
3461 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3462 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3463 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3464 	 * be unnecessary but better safe than sorry in case we re-enable
3465 	 * EE in HV mode with this LPCR still set)
3466 	 */
3467 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3468 		lpcr &= ~LPCR_VPM0;
3469 		lpcr |= LPCR_HVICE | LPCR_HEIC;
3470 
3471 		/*
3472 		 * If xive is enabled, we route 0x500 interrupts directly
3473 		 * to the guest.
3474 		 */
3475 		if (xive_enabled())
3476 			lpcr |= LPCR_LPES;
3477 	}
3478 
3479 	/*
3480 	 * For now, if the host uses radix, the guest must be radix.
3481 	 */
3482 	if (radix_enabled()) {
3483 		kvm->arch.radix = 1;
3484 		lpcr &= ~LPCR_VPM1;
3485 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3486 		ret = kvmppc_init_vm_radix(kvm);
3487 		if (ret) {
3488 			kvmppc_free_lpid(kvm->arch.lpid);
3489 			return ret;
3490 		}
3491 		kvmppc_setup_partition_table(kvm);
3492 	}
3493 
3494 	kvm->arch.lpcr = lpcr;
3495 
3496 	/* Initialization for future HPT resizes */
3497 	kvm->arch.resize_hpt = NULL;
3498 
3499 	/*
3500 	 * Work out how many sets the TLB has, for the use of
3501 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3502 	 */
3503 	if (kvm_is_radix(kvm))
3504 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
3505 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3506 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
3507 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3508 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
3509 	else
3510 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
3511 
3512 	/*
3513 	 * Track that we now have a HV mode VM active. This blocks secondary
3514 	 * CPU threads from coming online.
3515 	 * On POWER9, we only need to do this for HPT guests on a radix
3516 	 * host, which is not yet supported.
3517 	 */
3518 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3519 		kvm_hv_vm_activated();
3520 
3521 	/*
3522 	 * Create a debugfs directory for the VM
3523 	 */
3524 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3525 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3526 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3527 		kvmppc_mmu_debugfs_init(kvm);
3528 
3529 	return 0;
3530 }
3531 
3532 static void kvmppc_free_vcores(struct kvm *kvm)
3533 {
3534 	long int i;
3535 
3536 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3537 		kfree(kvm->arch.vcores[i]);
3538 	kvm->arch.online_vcores = 0;
3539 }
3540 
3541 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3542 {
3543 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3544 
3545 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3546 		kvm_hv_vm_deactivated();
3547 
3548 	kvmppc_free_vcores(kvm);
3549 
3550 	kvmppc_free_lpid(kvm->arch.lpid);
3551 
3552 	if (kvm_is_radix(kvm))
3553 		kvmppc_free_radix(kvm);
3554 	else
3555 		kvmppc_free_hpt(&kvm->arch.hpt);
3556 
3557 	kvmppc_free_pimap(kvm);
3558 }
3559 
3560 /* We don't need to emulate any privileged instructions or dcbz */
3561 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3562 				     unsigned int inst, int *advance)
3563 {
3564 	return EMULATE_FAIL;
3565 }
3566 
3567 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3568 					ulong spr_val)
3569 {
3570 	return EMULATE_FAIL;
3571 }
3572 
3573 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3574 					ulong *spr_val)
3575 {
3576 	return EMULATE_FAIL;
3577 }
3578 
3579 static int kvmppc_core_check_processor_compat_hv(void)
3580 {
3581 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3582 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3583 		return -EIO;
3584 
3585 	return 0;
3586 }
3587 
3588 #ifdef CONFIG_KVM_XICS
3589 
3590 void kvmppc_free_pimap(struct kvm *kvm)
3591 {
3592 	kfree(kvm->arch.pimap);
3593 }
3594 
3595 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3596 {
3597 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3598 }
3599 
3600 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3601 {
3602 	struct irq_desc *desc;
3603 	struct kvmppc_irq_map *irq_map;
3604 	struct kvmppc_passthru_irqmap *pimap;
3605 	struct irq_chip *chip;
3606 	int i, rc = 0;
3607 
3608 	if (!kvm_irq_bypass)
3609 		return 1;
3610 
3611 	desc = irq_to_desc(host_irq);
3612 	if (!desc)
3613 		return -EIO;
3614 
3615 	mutex_lock(&kvm->lock);
3616 
3617 	pimap = kvm->arch.pimap;
3618 	if (pimap == NULL) {
3619 		/* First call, allocate structure to hold IRQ map */
3620 		pimap = kvmppc_alloc_pimap();
3621 		if (pimap == NULL) {
3622 			mutex_unlock(&kvm->lock);
3623 			return -ENOMEM;
3624 		}
3625 		kvm->arch.pimap = pimap;
3626 	}
3627 
3628 	/*
3629 	 * For now, we only support interrupts for which the EOI operation
3630 	 * is an OPAL call followed by a write to XIRR, since that's
3631 	 * what our real-mode EOI code does, or a XIVE interrupt
3632 	 */
3633 	chip = irq_data_get_irq_chip(&desc->irq_data);
3634 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3635 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3636 			host_irq, guest_gsi);
3637 		mutex_unlock(&kvm->lock);
3638 		return -ENOENT;
3639 	}
3640 
3641 	/*
3642 	 * See if we already have an entry for this guest IRQ number.
3643 	 * If it's mapped to a hardware IRQ number, that's an error,
3644 	 * otherwise re-use this entry.
3645 	 */
3646 	for (i = 0; i < pimap->n_mapped; i++) {
3647 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
3648 			if (pimap->mapped[i].r_hwirq) {
3649 				mutex_unlock(&kvm->lock);
3650 				return -EINVAL;
3651 			}
3652 			break;
3653 		}
3654 	}
3655 
3656 	if (i == KVMPPC_PIRQ_MAPPED) {
3657 		mutex_unlock(&kvm->lock);
3658 		return -EAGAIN;		/* table is full */
3659 	}
3660 
3661 	irq_map = &pimap->mapped[i];
3662 
3663 	irq_map->v_hwirq = guest_gsi;
3664 	irq_map->desc = desc;
3665 
3666 	/*
3667 	 * Order the above two stores before the next to serialize with
3668 	 * the KVM real mode handler.
3669 	 */
3670 	smp_wmb();
3671 	irq_map->r_hwirq = desc->irq_data.hwirq;
3672 
3673 	if (i == pimap->n_mapped)
3674 		pimap->n_mapped++;
3675 
3676 	if (xive_enabled())
3677 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
3678 	else
3679 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3680 	if (rc)
3681 		irq_map->r_hwirq = 0;
3682 
3683 	mutex_unlock(&kvm->lock);
3684 
3685 	return 0;
3686 }
3687 
3688 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3689 {
3690 	struct irq_desc *desc;
3691 	struct kvmppc_passthru_irqmap *pimap;
3692 	int i, rc = 0;
3693 
3694 	if (!kvm_irq_bypass)
3695 		return 0;
3696 
3697 	desc = irq_to_desc(host_irq);
3698 	if (!desc)
3699 		return -EIO;
3700 
3701 	mutex_lock(&kvm->lock);
3702 	if (!kvm->arch.pimap)
3703 		goto unlock;
3704 
3705 	pimap = kvm->arch.pimap;
3706 
3707 	for (i = 0; i < pimap->n_mapped; i++) {
3708 		if (guest_gsi == pimap->mapped[i].v_hwirq)
3709 			break;
3710 	}
3711 
3712 	if (i == pimap->n_mapped) {
3713 		mutex_unlock(&kvm->lock);
3714 		return -ENODEV;
3715 	}
3716 
3717 	if (xive_enabled())
3718 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
3719 	else
3720 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
3721 
3722 	/* invalidate the entry (what do do on error from the above ?) */
3723 	pimap->mapped[i].r_hwirq = 0;
3724 
3725 	/*
3726 	 * We don't free this structure even when the count goes to
3727 	 * zero. The structure is freed when we destroy the VM.
3728 	 */
3729  unlock:
3730 	mutex_unlock(&kvm->lock);
3731 	return rc;
3732 }
3733 
3734 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
3735 					     struct irq_bypass_producer *prod)
3736 {
3737 	int ret = 0;
3738 	struct kvm_kernel_irqfd *irqfd =
3739 		container_of(cons, struct kvm_kernel_irqfd, consumer);
3740 
3741 	irqfd->producer = prod;
3742 
3743 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3744 	if (ret)
3745 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
3746 			prod->irq, irqfd->gsi, ret);
3747 
3748 	return ret;
3749 }
3750 
3751 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
3752 					      struct irq_bypass_producer *prod)
3753 {
3754 	int ret;
3755 	struct kvm_kernel_irqfd *irqfd =
3756 		container_of(cons, struct kvm_kernel_irqfd, consumer);
3757 
3758 	irqfd->producer = NULL;
3759 
3760 	/*
3761 	 * When producer of consumer is unregistered, we change back to
3762 	 * default external interrupt handling mode - KVM real mode
3763 	 * will switch back to host.
3764 	 */
3765 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3766 	if (ret)
3767 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
3768 			prod->irq, irqfd->gsi, ret);
3769 }
3770 #endif
3771 
3772 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3773 				 unsigned int ioctl, unsigned long arg)
3774 {
3775 	struct kvm *kvm __maybe_unused = filp->private_data;
3776 	void __user *argp = (void __user *)arg;
3777 	long r;
3778 
3779 	switch (ioctl) {
3780 
3781 	case KVM_PPC_ALLOCATE_HTAB: {
3782 		u32 htab_order;
3783 
3784 		r = -EFAULT;
3785 		if (get_user(htab_order, (u32 __user *)argp))
3786 			break;
3787 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
3788 		if (r)
3789 			break;
3790 		r = 0;
3791 		break;
3792 	}
3793 
3794 	case KVM_PPC_GET_HTAB_FD: {
3795 		struct kvm_get_htab_fd ghf;
3796 
3797 		r = -EFAULT;
3798 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
3799 			break;
3800 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3801 		break;
3802 	}
3803 
3804 	case KVM_PPC_RESIZE_HPT_PREPARE: {
3805 		struct kvm_ppc_resize_hpt rhpt;
3806 
3807 		r = -EFAULT;
3808 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
3809 			break;
3810 
3811 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
3812 		break;
3813 	}
3814 
3815 	case KVM_PPC_RESIZE_HPT_COMMIT: {
3816 		struct kvm_ppc_resize_hpt rhpt;
3817 
3818 		r = -EFAULT;
3819 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
3820 			break;
3821 
3822 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
3823 		break;
3824 	}
3825 
3826 	default:
3827 		r = -ENOTTY;
3828 	}
3829 
3830 	return r;
3831 }
3832 
3833 /*
3834  * List of hcall numbers to enable by default.
3835  * For compatibility with old userspace, we enable by default
3836  * all hcalls that were implemented before the hcall-enabling
3837  * facility was added.  Note this list should not include H_RTAS.
3838  */
3839 static unsigned int default_hcall_list[] = {
3840 	H_REMOVE,
3841 	H_ENTER,
3842 	H_READ,
3843 	H_PROTECT,
3844 	H_BULK_REMOVE,
3845 	H_GET_TCE,
3846 	H_PUT_TCE,
3847 	H_SET_DABR,
3848 	H_SET_XDABR,
3849 	H_CEDE,
3850 	H_PROD,
3851 	H_CONFER,
3852 	H_REGISTER_VPA,
3853 #ifdef CONFIG_KVM_XICS
3854 	H_EOI,
3855 	H_CPPR,
3856 	H_IPI,
3857 	H_IPOLL,
3858 	H_XIRR,
3859 	H_XIRR_X,
3860 #endif
3861 	0
3862 };
3863 
3864 static void init_default_hcalls(void)
3865 {
3866 	int i;
3867 	unsigned int hcall;
3868 
3869 	for (i = 0; default_hcall_list[i]; ++i) {
3870 		hcall = default_hcall_list[i];
3871 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3872 		__set_bit(hcall / 4, default_enabled_hcalls);
3873 	}
3874 }
3875 
3876 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
3877 {
3878 	unsigned long lpcr;
3879 	int radix;
3880 
3881 	/* If not on a POWER9, reject it */
3882 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3883 		return -ENODEV;
3884 
3885 	/* If any unknown flags set, reject it */
3886 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
3887 		return -EINVAL;
3888 
3889 	/* We can't change a guest to/from radix yet */
3890 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
3891 	if (radix != kvm_is_radix(kvm))
3892 		return -EINVAL;
3893 
3894 	/* GR (guest radix) bit in process_table field must match */
3895 	if (!!(cfg->process_table & PATB_GR) != radix)
3896 		return -EINVAL;
3897 
3898 	/* Process table size field must be reasonable, i.e. <= 24 */
3899 	if ((cfg->process_table & PRTS_MASK) > 24)
3900 		return -EINVAL;
3901 
3902 	kvm->arch.process_table = cfg->process_table;
3903 	kvmppc_setup_partition_table(kvm);
3904 
3905 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
3906 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
3907 
3908 	return 0;
3909 }
3910 
3911 static struct kvmppc_ops kvm_ops_hv = {
3912 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3913 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3914 	.get_one_reg = kvmppc_get_one_reg_hv,
3915 	.set_one_reg = kvmppc_set_one_reg_hv,
3916 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
3917 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
3918 	.set_msr     = kvmppc_set_msr_hv,
3919 	.vcpu_run    = kvmppc_vcpu_run_hv,
3920 	.vcpu_create = kvmppc_core_vcpu_create_hv,
3921 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
3922 	.check_requests = kvmppc_core_check_requests_hv,
3923 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3924 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
3925 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3926 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3927 	.unmap_hva = kvm_unmap_hva_hv,
3928 	.unmap_hva_range = kvm_unmap_hva_range_hv,
3929 	.age_hva  = kvm_age_hva_hv,
3930 	.test_age_hva = kvm_test_age_hva_hv,
3931 	.set_spte_hva = kvm_set_spte_hva_hv,
3932 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
3933 	.free_memslot = kvmppc_core_free_memslot_hv,
3934 	.create_memslot = kvmppc_core_create_memslot_hv,
3935 	.init_vm =  kvmppc_core_init_vm_hv,
3936 	.destroy_vm = kvmppc_core_destroy_vm_hv,
3937 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3938 	.emulate_op = kvmppc_core_emulate_op_hv,
3939 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3940 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3941 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3942 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3943 	.hcall_implemented = kvmppc_hcall_impl_hv,
3944 #ifdef CONFIG_KVM_XICS
3945 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
3946 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
3947 #endif
3948 	.configure_mmu = kvmhv_configure_mmu,
3949 	.get_rmmu_info = kvmhv_get_rmmu_info,
3950 };
3951 
3952 static int kvm_init_subcore_bitmap(void)
3953 {
3954 	int i, j;
3955 	int nr_cores = cpu_nr_cores();
3956 	struct sibling_subcore_state *sibling_subcore_state;
3957 
3958 	for (i = 0; i < nr_cores; i++) {
3959 		int first_cpu = i * threads_per_core;
3960 		int node = cpu_to_node(first_cpu);
3961 
3962 		/* Ignore if it is already allocated. */
3963 		if (paca[first_cpu].sibling_subcore_state)
3964 			continue;
3965 
3966 		sibling_subcore_state =
3967 			kmalloc_node(sizeof(struct sibling_subcore_state),
3968 							GFP_KERNEL, node);
3969 		if (!sibling_subcore_state)
3970 			return -ENOMEM;
3971 
3972 		memset(sibling_subcore_state, 0,
3973 				sizeof(struct sibling_subcore_state));
3974 
3975 		for (j = 0; j < threads_per_core; j++) {
3976 			int cpu = first_cpu + j;
3977 
3978 			paca[cpu].sibling_subcore_state = sibling_subcore_state;
3979 		}
3980 	}
3981 	return 0;
3982 }
3983 
3984 static int kvmppc_radix_possible(void)
3985 {
3986 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
3987 }
3988 
3989 static int kvmppc_book3s_init_hv(void)
3990 {
3991 	int r;
3992 	/*
3993 	 * FIXME!! Do we need to check on all cpus ?
3994 	 */
3995 	r = kvmppc_core_check_processor_compat_hv();
3996 	if (r < 0)
3997 		return -ENODEV;
3998 
3999 	r = kvm_init_subcore_bitmap();
4000 	if (r)
4001 		return r;
4002 
4003 	/*
4004 	 * We need a way of accessing the XICS interrupt controller,
4005 	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4006 	 * indirectly, via OPAL.
4007 	 */
4008 #ifdef CONFIG_SMP
4009 	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4010 		struct device_node *np;
4011 
4012 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4013 		if (!np) {
4014 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4015 			return -ENODEV;
4016 		}
4017 	}
4018 #endif
4019 
4020 	kvm_ops_hv.owner = THIS_MODULE;
4021 	kvmppc_hv_ops = &kvm_ops_hv;
4022 
4023 	init_default_hcalls();
4024 
4025 	init_vcore_lists();
4026 
4027 	r = kvmppc_mmu_hv_init();
4028 	if (r)
4029 		return r;
4030 
4031 	if (kvmppc_radix_possible())
4032 		r = kvmppc_radix_init();
4033 	return r;
4034 }
4035 
4036 static void kvmppc_book3s_exit_hv(void)
4037 {
4038 	kvmppc_free_host_rm_ops();
4039 	if (kvmppc_radix_possible())
4040 		kvmppc_radix_exit();
4041 	kvmppc_hv_ops = NULL;
4042 }
4043 
4044 module_init(kvmppc_book3s_init_hv);
4045 module_exit(kvmppc_book3s_exit_hv);
4046 MODULE_LICENSE("GPL");
4047 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4048 MODULE_ALIAS("devname:kvm");
4049 
4050