1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/string.h> 11 #include <linux/kvm.h> 12 #include <linux/kvm_host.h> 13 14 #include <asm/kvm_ppc.h> 15 #include <asm/kvm_book3s.h> 16 #include <asm/page.h> 17 #include <asm/mmu.h> 18 #include <asm/pgtable.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 22 /* 23 * Supported radix tree geometry. 24 * Like p9, we support either 5 or 9 bits at the first (lowest) level, 25 * for a page size of 64k or 4k. 26 */ 27 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; 28 29 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 30 struct kvmppc_pte *gpte, bool data, bool iswrite) 31 { 32 struct kvm *kvm = vcpu->kvm; 33 u32 pid; 34 int ret, level, ps; 35 __be64 prte, rpte; 36 unsigned long ptbl; 37 unsigned long root, pte, index; 38 unsigned long rts, bits, offset; 39 unsigned long gpa; 40 unsigned long proc_tbl_size; 41 42 /* Work out effective PID */ 43 switch (eaddr >> 62) { 44 case 0: 45 pid = vcpu->arch.pid; 46 break; 47 case 3: 48 pid = 0; 49 break; 50 default: 51 return -EINVAL; 52 } 53 proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12); 54 if (pid * 16 >= proc_tbl_size) 55 return -EINVAL; 56 57 /* Read partition table to find root of tree for effective PID */ 58 ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16); 59 ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte)); 60 if (ret) 61 return ret; 62 63 root = be64_to_cpu(prte); 64 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | 65 ((root & RTS2_MASK) >> RTS2_SHIFT); 66 bits = root & RPDS_MASK; 67 root = root & RPDB_MASK; 68 69 /* P9 DD1 interprets RTS (radix tree size) differently */ 70 offset = rts + 31; 71 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) 72 offset -= 3; 73 74 /* current implementations only support 52-bit space */ 75 if (offset != 52) 76 return -EINVAL; 77 78 for (level = 3; level >= 0; --level) { 79 if (level && bits != p9_supported_radix_bits[level]) 80 return -EINVAL; 81 if (level == 0 && !(bits == 5 || bits == 9)) 82 return -EINVAL; 83 offset -= bits; 84 index = (eaddr >> offset) & ((1UL << bits) - 1); 85 /* check that low bits of page table base are zero */ 86 if (root & ((1UL << (bits + 3)) - 1)) 87 return -EINVAL; 88 ret = kvm_read_guest(kvm, root + index * 8, 89 &rpte, sizeof(rpte)); 90 if (ret) 91 return ret; 92 pte = __be64_to_cpu(rpte); 93 if (!(pte & _PAGE_PRESENT)) 94 return -ENOENT; 95 if (pte & _PAGE_PTE) 96 break; 97 bits = pte & 0x1f; 98 root = pte & 0x0fffffffffffff00ul; 99 } 100 /* need a leaf at lowest level; 512GB pages not supported */ 101 if (level < 0 || level == 3) 102 return -EINVAL; 103 104 /* offset is now log base 2 of the page size */ 105 gpa = pte & 0x01fffffffffff000ul; 106 if (gpa & ((1ul << offset) - 1)) 107 return -EINVAL; 108 gpa += eaddr & ((1ul << offset) - 1); 109 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) 110 if (offset == mmu_psize_defs[ps].shift) 111 break; 112 gpte->page_size = ps; 113 114 gpte->eaddr = eaddr; 115 gpte->raddr = gpa; 116 117 /* Work out permissions */ 118 gpte->may_read = !!(pte & _PAGE_READ); 119 gpte->may_write = !!(pte & _PAGE_WRITE); 120 gpte->may_execute = !!(pte & _PAGE_EXEC); 121 if (kvmppc_get_msr(vcpu) & MSR_PR) { 122 if (pte & _PAGE_PRIVILEGED) { 123 gpte->may_read = 0; 124 gpte->may_write = 0; 125 gpte->may_execute = 0; 126 } 127 } else { 128 if (!(pte & _PAGE_PRIVILEGED)) { 129 /* Check AMR/IAMR to see if strict mode is in force */ 130 if (vcpu->arch.amr & (1ul << 62)) 131 gpte->may_read = 0; 132 if (vcpu->arch.amr & (1ul << 63)) 133 gpte->may_write = 0; 134 if (vcpu->arch.iamr & (1ul << 62)) 135 gpte->may_execute = 0; 136 } 137 } 138 139 return 0; 140 } 141 142 #ifdef CONFIG_PPC_64K_PAGES 143 #define MMU_BASE_PSIZE MMU_PAGE_64K 144 #else 145 #define MMU_BASE_PSIZE MMU_PAGE_4K 146 #endif 147 148 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, 149 unsigned int pshift) 150 { 151 int psize = MMU_BASE_PSIZE; 152 153 if (pshift >= PMD_SHIFT) 154 psize = MMU_PAGE_2M; 155 addr &= ~0xfffUL; 156 addr |= mmu_psize_defs[psize].ap << 5; 157 asm volatile("ptesync": : :"memory"); 158 asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1) 159 : : "r" (addr), "r" (kvm->arch.lpid) : "memory"); 160 asm volatile("ptesync": : :"memory"); 161 } 162 163 unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, 164 unsigned long clr, unsigned long set, 165 unsigned long addr, unsigned int shift) 166 { 167 unsigned long old = 0; 168 169 if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) && 170 pte_present(*ptep)) { 171 /* have to invalidate it first */ 172 old = __radix_pte_update(ptep, _PAGE_PRESENT, 0); 173 kvmppc_radix_tlbie_page(kvm, addr, shift); 174 set |= _PAGE_PRESENT; 175 old &= _PAGE_PRESENT; 176 } 177 return __radix_pte_update(ptep, clr, set) | old; 178 } 179 180 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, 181 pte_t *ptep, pte_t pte) 182 { 183 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); 184 } 185 186 static struct kmem_cache *kvm_pte_cache; 187 188 static pte_t *kvmppc_pte_alloc(void) 189 { 190 return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); 191 } 192 193 static void kvmppc_pte_free(pte_t *ptep) 194 { 195 kmem_cache_free(kvm_pte_cache, ptep); 196 } 197 198 /* Like pmd_huge() and pmd_large(), but works regardless of config options */ 199 static inline int pmd_is_leaf(pmd_t pmd) 200 { 201 return !!(pmd_val(pmd) & _PAGE_PTE); 202 } 203 204 static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa, 205 unsigned int level, unsigned long mmu_seq) 206 { 207 pgd_t *pgd; 208 pud_t *pud, *new_pud = NULL; 209 pmd_t *pmd, *new_pmd = NULL; 210 pte_t *ptep, *new_ptep = NULL; 211 unsigned long old; 212 int ret; 213 214 /* Traverse the guest's 2nd-level tree, allocate new levels needed */ 215 pgd = kvm->arch.pgtable + pgd_index(gpa); 216 pud = NULL; 217 if (pgd_present(*pgd)) 218 pud = pud_offset(pgd, gpa); 219 else 220 new_pud = pud_alloc_one(kvm->mm, gpa); 221 222 pmd = NULL; 223 if (pud && pud_present(*pud)) 224 pmd = pmd_offset(pud, gpa); 225 else 226 new_pmd = pmd_alloc_one(kvm->mm, gpa); 227 228 if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) 229 new_ptep = kvmppc_pte_alloc(); 230 231 /* Check if we might have been invalidated; let the guest retry if so */ 232 spin_lock(&kvm->mmu_lock); 233 ret = -EAGAIN; 234 if (mmu_notifier_retry(kvm, mmu_seq)) 235 goto out_unlock; 236 237 /* Now traverse again under the lock and change the tree */ 238 ret = -ENOMEM; 239 if (pgd_none(*pgd)) { 240 if (!new_pud) 241 goto out_unlock; 242 pgd_populate(kvm->mm, pgd, new_pud); 243 new_pud = NULL; 244 } 245 pud = pud_offset(pgd, gpa); 246 if (pud_none(*pud)) { 247 if (!new_pmd) 248 goto out_unlock; 249 pud_populate(kvm->mm, pud, new_pmd); 250 new_pmd = NULL; 251 } 252 pmd = pmd_offset(pud, gpa); 253 if (pmd_is_leaf(*pmd)) { 254 unsigned long lgpa = gpa & PMD_MASK; 255 256 /* 257 * If we raced with another CPU which has just put 258 * a 2MB pte in after we saw a pte page, try again. 259 */ 260 if (level == 0 && !new_ptep) { 261 ret = -EAGAIN; 262 goto out_unlock; 263 } 264 /* Valid 2MB page here already, remove it */ 265 old = kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), 266 ~0UL, 0, lgpa, PMD_SHIFT); 267 kvmppc_radix_tlbie_page(kvm, lgpa, PMD_SHIFT); 268 if (old & _PAGE_DIRTY) { 269 unsigned long gfn = lgpa >> PAGE_SHIFT; 270 struct kvm_memory_slot *memslot; 271 memslot = gfn_to_memslot(kvm, gfn); 272 if (memslot && memslot->dirty_bitmap) 273 kvmppc_update_dirty_map(memslot, 274 gfn, PMD_SIZE); 275 } 276 } else if (level == 1 && !pmd_none(*pmd)) { 277 /* 278 * There's a page table page here, but we wanted 279 * to install a large page. Tell the caller and let 280 * it try installing a normal page if it wants. 281 */ 282 ret = -EBUSY; 283 goto out_unlock; 284 } 285 if (level == 0) { 286 if (pmd_none(*pmd)) { 287 if (!new_ptep) 288 goto out_unlock; 289 pmd_populate(kvm->mm, pmd, new_ptep); 290 new_ptep = NULL; 291 } 292 ptep = pte_offset_kernel(pmd, gpa); 293 if (pte_present(*ptep)) { 294 /* PTE was previously valid, so invalidate it */ 295 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 296 0, gpa, 0); 297 kvmppc_radix_tlbie_page(kvm, gpa, 0); 298 if (old & _PAGE_DIRTY) 299 mark_page_dirty(kvm, gpa >> PAGE_SHIFT); 300 } 301 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); 302 } else { 303 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); 304 } 305 ret = 0; 306 307 out_unlock: 308 spin_unlock(&kvm->mmu_lock); 309 if (new_pud) 310 pud_free(kvm->mm, new_pud); 311 if (new_pmd) 312 pmd_free(kvm->mm, new_pmd); 313 if (new_ptep) 314 kvmppc_pte_free(new_ptep); 315 return ret; 316 } 317 318 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 319 unsigned long ea, unsigned long dsisr) 320 { 321 struct kvm *kvm = vcpu->kvm; 322 unsigned long mmu_seq, pte_size; 323 unsigned long gpa, gfn, hva, pfn; 324 struct kvm_memory_slot *memslot; 325 struct page *page = NULL, *pages[1]; 326 long ret, npages, ok; 327 unsigned int writing; 328 struct vm_area_struct *vma; 329 unsigned long flags; 330 pte_t pte, *ptep; 331 unsigned long pgflags; 332 unsigned int shift, level; 333 334 /* Check for unusual errors */ 335 if (dsisr & DSISR_UNSUPP_MMU) { 336 pr_err("KVM: Got unsupported MMU fault\n"); 337 return -EFAULT; 338 } 339 if (dsisr & DSISR_BADACCESS) { 340 /* Reflect to the guest as DSI */ 341 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); 342 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 343 return RESUME_GUEST; 344 } 345 346 /* Translate the logical address and get the page */ 347 gpa = vcpu->arch.fault_gpa & ~0xfffUL; 348 gpa &= ~0xF000000000000000ul; 349 gfn = gpa >> PAGE_SHIFT; 350 if (!(dsisr & DSISR_PRTABLE_FAULT)) 351 gpa |= ea & 0xfff; 352 memslot = gfn_to_memslot(kvm, gfn); 353 354 /* No memslot means it's an emulated MMIO region */ 355 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 356 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | 357 DSISR_SET_RC)) { 358 /* 359 * Bad address in guest page table tree, or other 360 * unusual error - reflect it to the guest as DSI. 361 */ 362 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 363 return RESUME_GUEST; 364 } 365 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 366 dsisr & DSISR_ISSTORE); 367 } 368 369 /* used to check for invalidations in progress */ 370 mmu_seq = kvm->mmu_notifier_seq; 371 smp_rmb(); 372 373 writing = (dsisr & DSISR_ISSTORE) != 0; 374 hva = gfn_to_hva_memslot(memslot, gfn); 375 if (dsisr & DSISR_SET_RC) { 376 /* 377 * Need to set an R or C bit in the 2nd-level tables; 378 * if the relevant bits aren't already set in the linux 379 * page tables, fall through to do the gup_fast to 380 * set them in the linux page tables too. 381 */ 382 ok = 0; 383 pgflags = _PAGE_ACCESSED; 384 if (writing) 385 pgflags |= _PAGE_DIRTY; 386 local_irq_save(flags); 387 ptep = find_current_mm_pte(current->mm->pgd, hva, NULL, NULL); 388 if (ptep) { 389 pte = READ_ONCE(*ptep); 390 if (pte_present(pte) && 391 (pte_val(pte) & pgflags) == pgflags) 392 ok = 1; 393 } 394 local_irq_restore(flags); 395 if (ok) { 396 spin_lock(&kvm->mmu_lock); 397 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 398 spin_unlock(&kvm->mmu_lock); 399 return RESUME_GUEST; 400 } 401 /* 402 * We are walking the secondary page table here. We can do this 403 * without disabling irq. 404 */ 405 ptep = __find_linux_pte(kvm->arch.pgtable, 406 gpa, NULL, &shift); 407 if (ptep && pte_present(*ptep)) { 408 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, 409 gpa, shift); 410 spin_unlock(&kvm->mmu_lock); 411 return RESUME_GUEST; 412 } 413 spin_unlock(&kvm->mmu_lock); 414 } 415 } 416 417 ret = -EFAULT; 418 pfn = 0; 419 pte_size = PAGE_SIZE; 420 pgflags = _PAGE_READ | _PAGE_EXEC; 421 level = 0; 422 npages = get_user_pages_fast(hva, 1, writing, pages); 423 if (npages < 1) { 424 /* Check if it's an I/O mapping */ 425 down_read(¤t->mm->mmap_sem); 426 vma = find_vma(current->mm, hva); 427 if (vma && vma->vm_start <= hva && hva < vma->vm_end && 428 (vma->vm_flags & VM_PFNMAP)) { 429 pfn = vma->vm_pgoff + 430 ((hva - vma->vm_start) >> PAGE_SHIFT); 431 pgflags = pgprot_val(vma->vm_page_prot); 432 } 433 up_read(¤t->mm->mmap_sem); 434 if (!pfn) 435 return -EFAULT; 436 } else { 437 page = pages[0]; 438 pfn = page_to_pfn(page); 439 if (PageCompound(page)) { 440 pte_size <<= compound_order(compound_head(page)); 441 /* See if we can insert a 2MB large-page PTE here */ 442 if (pte_size >= PMD_SIZE && 443 (gpa & (PMD_SIZE - PAGE_SIZE)) == 444 (hva & (PMD_SIZE - PAGE_SIZE))) { 445 level = 1; 446 pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1); 447 } 448 } 449 /* See if we can provide write access */ 450 if (writing) { 451 pgflags |= _PAGE_WRITE; 452 } else { 453 local_irq_save(flags); 454 ptep = find_current_mm_pte(current->mm->pgd, 455 hva, NULL, NULL); 456 if (ptep && pte_write(*ptep)) 457 pgflags |= _PAGE_WRITE; 458 local_irq_restore(flags); 459 } 460 } 461 462 /* 463 * Compute the PTE value that we need to insert. 464 */ 465 pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED; 466 if (pgflags & _PAGE_WRITE) 467 pgflags |= _PAGE_DIRTY; 468 pte = pfn_pte(pfn, __pgprot(pgflags)); 469 470 /* Allocate space in the tree and write the PTE */ 471 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq); 472 if (ret == -EBUSY) { 473 /* 474 * There's already a PMD where wanted to install a large page; 475 * for now, fall back to installing a small page. 476 */ 477 level = 0; 478 pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1); 479 pte = pfn_pte(pfn, __pgprot(pgflags)); 480 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq); 481 } 482 483 if (page) { 484 if (!ret && (pgflags & _PAGE_WRITE)) 485 set_page_dirty_lock(page); 486 put_page(page); 487 } 488 489 if (ret == 0 || ret == -EAGAIN) 490 ret = RESUME_GUEST; 491 return ret; 492 } 493 494 /* Called with kvm->lock held */ 495 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 496 unsigned long gfn) 497 { 498 pte_t *ptep; 499 unsigned long gpa = gfn << PAGE_SHIFT; 500 unsigned int shift; 501 unsigned long old; 502 503 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 504 if (ptep && pte_present(*ptep)) { 505 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0, 506 gpa, shift); 507 kvmppc_radix_tlbie_page(kvm, gpa, shift); 508 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) { 509 unsigned long npages = 1; 510 if (shift) 511 npages = 1ul << (shift - PAGE_SHIFT); 512 kvmppc_update_dirty_map(memslot, gfn, npages); 513 } 514 } 515 return 0; 516 } 517 518 /* Called with kvm->lock held */ 519 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 520 unsigned long gfn) 521 { 522 pte_t *ptep; 523 unsigned long gpa = gfn << PAGE_SHIFT; 524 unsigned int shift; 525 int ref = 0; 526 527 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 528 if (ptep && pte_present(*ptep) && pte_young(*ptep)) { 529 kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, 530 gpa, shift); 531 /* XXX need to flush tlb here? */ 532 ref = 1; 533 } 534 return ref; 535 } 536 537 /* Called with kvm->lock held */ 538 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 539 unsigned long gfn) 540 { 541 pte_t *ptep; 542 unsigned long gpa = gfn << PAGE_SHIFT; 543 unsigned int shift; 544 int ref = 0; 545 546 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 547 if (ptep && pte_present(*ptep) && pte_young(*ptep)) 548 ref = 1; 549 return ref; 550 } 551 552 /* Returns the number of PAGE_SIZE pages that are dirty */ 553 static int kvm_radix_test_clear_dirty(struct kvm *kvm, 554 struct kvm_memory_slot *memslot, int pagenum) 555 { 556 unsigned long gfn = memslot->base_gfn + pagenum; 557 unsigned long gpa = gfn << PAGE_SHIFT; 558 pte_t *ptep; 559 unsigned int shift; 560 int ret = 0; 561 562 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); 563 if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) { 564 ret = 1; 565 if (shift) 566 ret = 1 << (shift - PAGE_SHIFT); 567 kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, 568 gpa, shift); 569 kvmppc_radix_tlbie_page(kvm, gpa, shift); 570 } 571 return ret; 572 } 573 574 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, 575 struct kvm_memory_slot *memslot, unsigned long *map) 576 { 577 unsigned long i, j; 578 int npages; 579 580 for (i = 0; i < memslot->npages; i = j) { 581 npages = kvm_radix_test_clear_dirty(kvm, memslot, i); 582 583 /* 584 * Note that if npages > 0 then i must be a multiple of npages, 585 * since huge pages are only used to back the guest at guest 586 * real addresses that are a multiple of their size. 587 * Since we have at most one PTE covering any given guest 588 * real address, if npages > 1 we can skip to i + npages. 589 */ 590 j = i + 1; 591 if (npages) { 592 set_dirty_bits(map, i, npages); 593 j = i + npages; 594 } 595 } 596 return 0; 597 } 598 599 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, 600 int psize, int *indexp) 601 { 602 if (!mmu_psize_defs[psize].shift) 603 return; 604 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | 605 (mmu_psize_defs[psize].ap << 29); 606 ++(*indexp); 607 } 608 609 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) 610 { 611 int i; 612 613 if (!radix_enabled()) 614 return -EINVAL; 615 memset(info, 0, sizeof(*info)); 616 617 /* 4k page size */ 618 info->geometries[0].page_shift = 12; 619 info->geometries[0].level_bits[0] = 9; 620 for (i = 1; i < 4; ++i) 621 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; 622 /* 64k page size */ 623 info->geometries[1].page_shift = 16; 624 for (i = 0; i < 4; ++i) 625 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; 626 627 i = 0; 628 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); 629 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); 630 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); 631 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); 632 633 return 0; 634 } 635 636 int kvmppc_init_vm_radix(struct kvm *kvm) 637 { 638 kvm->arch.pgtable = pgd_alloc(kvm->mm); 639 if (!kvm->arch.pgtable) 640 return -ENOMEM; 641 return 0; 642 } 643 644 void kvmppc_free_radix(struct kvm *kvm) 645 { 646 unsigned long ig, iu, im; 647 pte_t *pte; 648 pmd_t *pmd; 649 pud_t *pud; 650 pgd_t *pgd; 651 652 if (!kvm->arch.pgtable) 653 return; 654 pgd = kvm->arch.pgtable; 655 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { 656 if (!pgd_present(*pgd)) 657 continue; 658 pud = pud_offset(pgd, 0); 659 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) { 660 if (!pud_present(*pud)) 661 continue; 662 pmd = pmd_offset(pud, 0); 663 for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) { 664 if (pmd_is_leaf(*pmd)) { 665 pmd_clear(pmd); 666 continue; 667 } 668 if (!pmd_present(*pmd)) 669 continue; 670 pte = pte_offset_map(pmd, 0); 671 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE); 672 kvmppc_pte_free(pte); 673 pmd_clear(pmd); 674 } 675 pmd_free(kvm->mm, pmd_offset(pud, 0)); 676 pud_clear(pud); 677 } 678 pud_free(kvm->mm, pud_offset(pgd, 0)); 679 pgd_clear(pgd); 680 } 681 pgd_free(kvm->mm, kvm->arch.pgtable); 682 kvm->arch.pgtable = NULL; 683 } 684 685 static void pte_ctor(void *addr) 686 { 687 memset(addr, 0, PTE_TABLE_SIZE); 688 } 689 690 int kvmppc_radix_init(void) 691 { 692 unsigned long size = sizeof(void *) << PTE_INDEX_SIZE; 693 694 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); 695 if (!kvm_pte_cache) 696 return -ENOMEM; 697 return 0; 698 } 699 700 void kvmppc_radix_exit(void) 701 { 702 kmem_cache_destroy(kvm_pte_cache); 703 } 704