xref: /linux/arch/powerpc/kvm/book3s_64_mmu_hv.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20 
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29 
30 #include "book3s.h"
31 #include "book3s_hv.h"
32 #include "trace_hv.h"
33 
34 //#define DEBUG_RESIZE_HPT	1
35 
36 #ifdef DEBUG_RESIZE_HPT
37 #define resize_hpt_debug(resize, ...)				\
38 	do {							\
39 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
40 		printk(__VA_ARGS__);				\
41 	} while (0)
42 #else
43 #define resize_hpt_debug(resize, ...)				\
44 	do { } while (0)
45 #endif
46 
47 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
48 				long pte_index, unsigned long pteh,
49 				unsigned long ptel, unsigned long *pte_idx_ret);
50 
51 struct kvm_resize_hpt {
52 	/* These fields read-only after init */
53 	struct kvm *kvm;
54 	struct work_struct work;
55 	u32 order;
56 
57 	/* These fields protected by kvm->arch.mmu_setup_lock */
58 
59 	/* Possible values and their usage:
60 	 *  <0     an error occurred during allocation,
61 	 *  -EBUSY allocation is in the progress,
62 	 *  0      allocation made successfully.
63 	 */
64 	int error;
65 
66 	/* Private to the work thread, until error != -EBUSY,
67 	 * then protected by kvm->arch.mmu_setup_lock.
68 	 */
69 	struct kvm_hpt_info hpt;
70 };
71 
72 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
73 {
74 	unsigned long hpt = 0;
75 	int cma = 0;
76 	struct page *page = NULL;
77 	struct revmap_entry *rev;
78 	unsigned long npte;
79 
80 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
81 		return -EINVAL;
82 
83 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
84 	if (page) {
85 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
86 		memset((void *)hpt, 0, (1ul << order));
87 		cma = 1;
88 	}
89 
90 	if (!hpt)
91 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
92 				       |__GFP_NOWARN, order - PAGE_SHIFT);
93 
94 	if (!hpt)
95 		return -ENOMEM;
96 
97 	/* HPTEs are 2**4 bytes long */
98 	npte = 1ul << (order - 4);
99 
100 	/* Allocate reverse map array */
101 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
102 	if (!rev) {
103 		if (cma)
104 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
105 		else
106 			free_pages(hpt, order - PAGE_SHIFT);
107 		return -ENOMEM;
108 	}
109 
110 	info->order = order;
111 	info->virt = hpt;
112 	info->cma = cma;
113 	info->rev = rev;
114 
115 	return 0;
116 }
117 
118 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
119 {
120 	atomic64_set(&kvm->arch.mmio_update, 0);
121 	kvm->arch.hpt = *info;
122 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
123 
124 	pr_debug("KVM guest htab at %lx (order %ld), LPID %llx\n",
125 		 info->virt, (long)info->order, kvm->arch.lpid);
126 }
127 
128 int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
129 {
130 	int err = -EBUSY;
131 	struct kvm_hpt_info info;
132 
133 	mutex_lock(&kvm->arch.mmu_setup_lock);
134 	if (kvm->arch.mmu_ready) {
135 		kvm->arch.mmu_ready = 0;
136 		/* order mmu_ready vs. vcpus_running */
137 		smp_mb();
138 		if (atomic_read(&kvm->arch.vcpus_running)) {
139 			kvm->arch.mmu_ready = 1;
140 			goto out;
141 		}
142 	}
143 	if (kvm_is_radix(kvm)) {
144 		err = kvmppc_switch_mmu_to_hpt(kvm);
145 		if (err)
146 			goto out;
147 	}
148 
149 	if (kvm->arch.hpt.order == order) {
150 		/* We already have a suitable HPT */
151 
152 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
153 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
154 		/*
155 		 * Reset all the reverse-mapping chains for all memslots
156 		 */
157 		kvmppc_rmap_reset(kvm);
158 		err = 0;
159 		goto out;
160 	}
161 
162 	if (kvm->arch.hpt.virt) {
163 		kvmppc_free_hpt(&kvm->arch.hpt);
164 		kvmppc_rmap_reset(kvm);
165 	}
166 
167 	err = kvmppc_allocate_hpt(&info, order);
168 	if (err < 0)
169 		goto out;
170 	kvmppc_set_hpt(kvm, &info);
171 
172 out:
173 	if (err == 0)
174 		/* Ensure that each vcpu will flush its TLB on next entry. */
175 		cpumask_setall(&kvm->arch.need_tlb_flush);
176 
177 	mutex_unlock(&kvm->arch.mmu_setup_lock);
178 	return err;
179 }
180 
181 void kvmppc_free_hpt(struct kvm_hpt_info *info)
182 {
183 	vfree(info->rev);
184 	info->rev = NULL;
185 	if (info->cma)
186 		kvm_free_hpt_cma(virt_to_page((void *)info->virt),
187 				 1 << (info->order - PAGE_SHIFT));
188 	else if (info->virt)
189 		free_pages(info->virt, info->order - PAGE_SHIFT);
190 	info->virt = 0;
191 	info->order = 0;
192 }
193 
194 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
195 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
196 {
197 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
198 }
199 
200 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
201 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
202 {
203 	return (pgsize == 0x10000) ? 0x1000 : 0;
204 }
205 
206 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
207 		     unsigned long porder)
208 {
209 	unsigned long i;
210 	unsigned long npages;
211 	unsigned long hp_v, hp_r;
212 	unsigned long addr, hash;
213 	unsigned long psize;
214 	unsigned long hp0, hp1;
215 	unsigned long idx_ret;
216 	long ret;
217 	struct kvm *kvm = vcpu->kvm;
218 
219 	psize = 1ul << porder;
220 	npages = memslot->npages >> (porder - PAGE_SHIFT);
221 
222 	/* VRMA can't be > 1TB */
223 	if (npages > 1ul << (40 - porder))
224 		npages = 1ul << (40 - porder);
225 	/* Can't use more than 1 HPTE per HPTEG */
226 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
227 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
228 
229 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
230 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
231 	hp1 = hpte1_pgsize_encoding(psize) |
232 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
233 
234 	for (i = 0; i < npages; ++i) {
235 		addr = i << porder;
236 		/* can't use hpt_hash since va > 64 bits */
237 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
238 			& kvmppc_hpt_mask(&kvm->arch.hpt);
239 		/*
240 		 * We assume that the hash table is empty and no
241 		 * vcpus are using it at this stage.  Since we create
242 		 * at most one HPTE per HPTEG, we just assume entry 7
243 		 * is available and use it.
244 		 */
245 		hash = (hash << 3) + 7;
246 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
247 		hp_r = hp1 | addr;
248 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
249 						 &idx_ret);
250 		if (ret != H_SUCCESS) {
251 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
252 			       addr, ret);
253 			break;
254 		}
255 	}
256 }
257 
258 int kvmppc_mmu_hv_init(void)
259 {
260 	unsigned long nr_lpids;
261 
262 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
263 		return -EINVAL;
264 
265 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
266 		if (WARN_ON(mfspr(SPRN_LPID) != 0))
267 			return -EINVAL;
268 		nr_lpids = 1UL << mmu_lpid_bits;
269 	} else {
270 		nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
271 	}
272 
273 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
274 		/* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
275 		if (cpu_has_feature(CPU_FTR_ARCH_207S))
276 			WARN_ON(nr_lpids != 1UL << 12);
277 		else
278 			WARN_ON(nr_lpids != 1UL << 10);
279 
280 		/*
281 		 * Reserve the last implemented LPID use in partition
282 		 * switching for POWER7 and POWER8.
283 		 */
284 		nr_lpids -= 1;
285 	}
286 
287 	kvmppc_init_lpid(nr_lpids);
288 
289 	return 0;
290 }
291 
292 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
293 				long pte_index, unsigned long pteh,
294 				unsigned long ptel, unsigned long *pte_idx_ret)
295 {
296 	long ret;
297 
298 	preempt_disable();
299 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
300 				kvm->mm->pgd, false, pte_idx_ret);
301 	preempt_enable();
302 	if (ret == H_TOO_HARD) {
303 		/* this can't happen */
304 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
305 		ret = H_RESOURCE;	/* or something */
306 	}
307 	return ret;
308 
309 }
310 
311 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
312 							 gva_t eaddr)
313 {
314 	u64 mask;
315 	int i;
316 
317 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
318 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
319 			continue;
320 
321 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
322 			mask = ESID_MASK_1T;
323 		else
324 			mask = ESID_MASK;
325 
326 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
327 			return &vcpu->arch.slb[i];
328 	}
329 	return NULL;
330 }
331 
332 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
333 			unsigned long ea)
334 {
335 	unsigned long ra_mask;
336 
337 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
338 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
339 }
340 
341 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
342 			struct kvmppc_pte *gpte, bool data, bool iswrite)
343 {
344 	struct kvm *kvm = vcpu->kvm;
345 	struct kvmppc_slb *slbe;
346 	unsigned long slb_v;
347 	unsigned long pp, key;
348 	unsigned long v, orig_v, gr;
349 	__be64 *hptep;
350 	long int index;
351 	int virtmode = __kvmppc_get_msr_hv(vcpu) & (data ? MSR_DR : MSR_IR);
352 
353 	if (kvm_is_radix(vcpu->kvm))
354 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
355 
356 	/* Get SLB entry */
357 	if (virtmode) {
358 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
359 		if (!slbe)
360 			return -EINVAL;
361 		slb_v = slbe->origv;
362 	} else {
363 		/* real mode access */
364 		slb_v = vcpu->kvm->arch.vrma_slb_v;
365 	}
366 
367 	preempt_disable();
368 	/* Find the HPTE in the hash table */
369 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
370 					 HPTE_V_VALID | HPTE_V_ABSENT);
371 	if (index < 0) {
372 		preempt_enable();
373 		return -ENOENT;
374 	}
375 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
376 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
377 	if (cpu_has_feature(CPU_FTR_ARCH_300))
378 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
379 	gr = kvm->arch.hpt.rev[index].guest_rpte;
380 
381 	unlock_hpte(hptep, orig_v);
382 	preempt_enable();
383 
384 	gpte->eaddr = eaddr;
385 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
386 
387 	/* Get PP bits and key for permission check */
388 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
389 	key = (__kvmppc_get_msr_hv(vcpu) & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
390 	key &= slb_v;
391 
392 	/* Calculate permissions */
393 	gpte->may_read = hpte_read_permission(pp, key);
394 	gpte->may_write = hpte_write_permission(pp, key);
395 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
396 
397 	/* Storage key permission check for POWER7 */
398 	if (data && virtmode) {
399 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
400 		if (amrfield & 1)
401 			gpte->may_read = 0;
402 		if (amrfield & 2)
403 			gpte->may_write = 0;
404 	}
405 
406 	/* Get the guest physical address */
407 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
408 	return 0;
409 }
410 
411 /*
412  * Quick test for whether an instruction is a load or a store.
413  * If the instruction is a load or a store, then this will indicate
414  * which it is, at least on server processors.  (Embedded processors
415  * have some external PID instructions that don't follow the rule
416  * embodied here.)  If the instruction isn't a load or store, then
417  * this doesn't return anything useful.
418  */
419 static int instruction_is_store(ppc_inst_t instr)
420 {
421 	unsigned int mask;
422 	unsigned int suffix;
423 
424 	mask = 0x10000000;
425 	suffix = ppc_inst_val(instr);
426 	if (ppc_inst_prefixed(instr))
427 		suffix = ppc_inst_suffix(instr);
428 	else if ((suffix & 0xfc000000) == 0x7c000000)
429 		mask = 0x100;		/* major opcode 31 */
430 	return (suffix & mask) != 0;
431 }
432 
433 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
434 			   unsigned long gpa, gva_t ea, int is_store)
435 {
436 	ppc_inst_t last_inst;
437 	bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
438 
439 	/*
440 	 * Fast path - check if the guest physical address corresponds to a
441 	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
442 	 * instruction all together, then we can just handle it and return.
443 	 */
444 	if (is_store) {
445 		int idx, ret;
446 
447 		idx = srcu_read_lock(&vcpu->kvm->srcu);
448 		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
449 				       NULL);
450 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
451 		if (!ret) {
452 			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4));
453 			return RESUME_GUEST;
454 		}
455 	}
456 
457 	/*
458 	 * If we fail, we just return to the guest and try executing it again.
459 	 */
460 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
461 		EMULATE_DONE)
462 		return RESUME_GUEST;
463 
464 	/*
465 	 * WARNING: We do not know for sure whether the instruction we just
466 	 * read from memory is the same that caused the fault in the first
467 	 * place.
468 	 *
469 	 * If the fault is prefixed but the instruction is not or vice
470 	 * versa, try again so that we don't advance pc the wrong amount.
471 	 */
472 	if (ppc_inst_prefixed(last_inst) != is_prefixed)
473 		return RESUME_GUEST;
474 
475 	/*
476 	 * If the instruction we read is neither an load or a store,
477 	 * then it can't access memory, so we don't need to worry about
478 	 * enforcing access permissions.  So, assuming it is a load or
479 	 * store, we just check that its direction (load or store) is
480 	 * consistent with the original fault, since that's what we
481 	 * checked the access permissions against.  If there is a mismatch
482 	 * we just return and retry the instruction.
483 	 */
484 
485 	if (instruction_is_store(last_inst) != !!is_store)
486 		return RESUME_GUEST;
487 
488 	/*
489 	 * Emulated accesses are emulated by looking at the hash for
490 	 * translation once, then performing the access later. The
491 	 * translation could be invalidated in the meantime in which
492 	 * point performing the subsequent memory access on the old
493 	 * physical address could possibly be a security hole for the
494 	 * guest (but not the host).
495 	 *
496 	 * This is less of an issue for MMIO stores since they aren't
497 	 * globally visible. It could be an issue for MMIO loads to
498 	 * a certain extent but we'll ignore it for now.
499 	 */
500 
501 	vcpu->arch.paddr_accessed = gpa;
502 	vcpu->arch.vaddr_accessed = ea;
503 	return kvmppc_emulate_mmio(vcpu);
504 }
505 
506 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
507 				unsigned long ea, unsigned long dsisr)
508 {
509 	struct kvm *kvm = vcpu->kvm;
510 	unsigned long hpte[3], r;
511 	unsigned long hnow_v, hnow_r;
512 	__be64 *hptep;
513 	unsigned long mmu_seq, psize, pte_size;
514 	unsigned long gpa_base, gfn_base;
515 	unsigned long gpa, gfn, hva, pfn, hpa;
516 	struct kvm_memory_slot *memslot;
517 	unsigned long *rmap;
518 	struct revmap_entry *rev;
519 	struct page *page;
520 	long index, ret;
521 	bool is_ci;
522 	bool writing, write_ok;
523 	unsigned int shift;
524 	unsigned long rcbits;
525 	long mmio_update;
526 	pte_t pte, *ptep;
527 
528 	if (kvm_is_radix(kvm))
529 		return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
530 
531 	/*
532 	 * Real-mode code has already searched the HPT and found the
533 	 * entry we're interested in.  Lock the entry and check that
534 	 * it hasn't changed.  If it has, just return and re-execute the
535 	 * instruction.
536 	 */
537 	if (ea != vcpu->arch.pgfault_addr)
538 		return RESUME_GUEST;
539 
540 	if (vcpu->arch.pgfault_cache) {
541 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
542 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
543 			r = vcpu->arch.pgfault_cache->rpte;
544 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
545 						   r);
546 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
547 			gfn_base = gpa_base >> PAGE_SHIFT;
548 			gpa = gpa_base | (ea & (psize - 1));
549 			return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
550 						dsisr & DSISR_ISSTORE);
551 		}
552 	}
553 	index = vcpu->arch.pgfault_index;
554 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
555 	rev = &kvm->arch.hpt.rev[index];
556 	preempt_disable();
557 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
558 		cpu_relax();
559 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
560 	hpte[1] = be64_to_cpu(hptep[1]);
561 	hpte[2] = r = rev->guest_rpte;
562 	unlock_hpte(hptep, hpte[0]);
563 	preempt_enable();
564 
565 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
566 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
567 		hpte[1] = hpte_new_to_old_r(hpte[1]);
568 	}
569 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
570 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
571 		return RESUME_GUEST;
572 
573 	/* Translate the logical address and get the page */
574 	psize = kvmppc_actual_pgsz(hpte[0], r);
575 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
576 	gfn_base = gpa_base >> PAGE_SHIFT;
577 	gpa = gpa_base | (ea & (psize - 1));
578 	gfn = gpa >> PAGE_SHIFT;
579 	memslot = gfn_to_memslot(kvm, gfn);
580 
581 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
582 
583 	/* No memslot means it's an emulated MMIO region */
584 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
585 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
586 					      dsisr & DSISR_ISSTORE);
587 
588 	/*
589 	 * This should never happen, because of the slot_is_aligned()
590 	 * check in kvmppc_do_h_enter().
591 	 */
592 	if (gfn_base < memslot->base_gfn)
593 		return -EFAULT;
594 
595 	/* used to check for invalidations in progress */
596 	mmu_seq = kvm->mmu_invalidate_seq;
597 	smp_rmb();
598 
599 	ret = -EFAULT;
600 	page = NULL;
601 	writing = (dsisr & DSISR_ISSTORE) != 0;
602 	/* If writing != 0, then the HPTE must allow writing, if we get here */
603 	write_ok = writing;
604 	hva = gfn_to_hva_memslot(memslot, gfn);
605 
606 	pfn = __kvm_faultin_pfn(memslot, gfn, writing ? FOLL_WRITE : 0,
607 				&write_ok, &page);
608 	if (is_error_noslot_pfn(pfn))
609 		return -EFAULT;
610 
611 	/*
612 	 * Read the PTE from the process' radix tree and use that
613 	 * so we get the shift and attribute bits.
614 	 */
615 	spin_lock(&kvm->mmu_lock);
616 	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
617 	pte = __pte(0);
618 	if (ptep)
619 		pte = READ_ONCE(*ptep);
620 	spin_unlock(&kvm->mmu_lock);
621 	/*
622 	 * If the PTE disappeared temporarily due to a THP
623 	 * collapse, just return and let the guest try again.
624 	 */
625 	if (!pte_present(pte)) {
626 		if (page)
627 			put_page(page);
628 		return RESUME_GUEST;
629 	}
630 	hpa = pte_pfn(pte) << PAGE_SHIFT;
631 	pte_size = PAGE_SIZE;
632 	if (shift)
633 		pte_size = 1ul << shift;
634 	is_ci = pte_ci(pte);
635 
636 	if (psize > pte_size)
637 		goto out_put;
638 	if (pte_size > psize)
639 		hpa |= hva & (pte_size - psize);
640 
641 	/* Check WIMG vs. the actual page we're accessing */
642 	if (!hpte_cache_flags_ok(r, is_ci)) {
643 		if (is_ci)
644 			goto out_put;
645 		/*
646 		 * Allow guest to map emulated device memory as
647 		 * uncacheable, but actually make it cacheable.
648 		 */
649 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
650 	}
651 
652 	/*
653 	 * Set the HPTE to point to hpa.
654 	 * Since the hpa is at PAGE_SIZE granularity, make sure we
655 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
656 	 */
657 	if (psize < PAGE_SIZE)
658 		psize = PAGE_SIZE;
659 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
660 	if (hpte_is_writable(r) && !write_ok)
661 		r = hpte_make_readonly(r);
662 	ret = RESUME_GUEST;
663 	preempt_disable();
664 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
665 		cpu_relax();
666 	hnow_v = be64_to_cpu(hptep[0]);
667 	hnow_r = be64_to_cpu(hptep[1]);
668 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
669 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
670 		hnow_r = hpte_new_to_old_r(hnow_r);
671 	}
672 
673 	/*
674 	 * If the HPT is being resized, don't update the HPTE,
675 	 * instead let the guest retry after the resize operation is complete.
676 	 * The synchronization for mmu_ready test vs. set is provided
677 	 * by the HPTE lock.
678 	 */
679 	if (!kvm->arch.mmu_ready)
680 		goto out_unlock;
681 
682 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
683 	    rev->guest_rpte != hpte[2])
684 		/* HPTE has been changed under us; let the guest retry */
685 		goto out_unlock;
686 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
687 
688 	/* Always put the HPTE in the rmap chain for the page base address */
689 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
690 	lock_rmap(rmap);
691 
692 	/* Check if we might have been invalidated; let the guest retry if so */
693 	ret = RESUME_GUEST;
694 	if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) {
695 		unlock_rmap(rmap);
696 		goto out_unlock;
697 	}
698 
699 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
700 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
701 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
702 
703 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
704 		/* HPTE was previously valid, so we need to invalidate it */
705 		unlock_rmap(rmap);
706 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
707 		kvmppc_invalidate_hpte(kvm, hptep, index);
708 		/* don't lose previous R and C bits */
709 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
710 	} else {
711 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
712 	}
713 
714 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
715 		r = hpte_old_to_new_r(hpte[0], r);
716 		hpte[0] = hpte_old_to_new_v(hpte[0]);
717 	}
718 	hptep[1] = cpu_to_be64(r);
719 	eieio();
720 	__unlock_hpte(hptep, hpte[0]);
721 	asm volatile("ptesync" : : : "memory");
722 	preempt_enable();
723 	if (page && hpte_is_writable(r))
724 		set_page_dirty_lock(page);
725 
726  out_put:
727 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
728 
729 	if (page)
730 		put_page(page);
731 	return ret;
732 
733  out_unlock:
734 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
735 	preempt_enable();
736 	goto out_put;
737 }
738 
739 void kvmppc_rmap_reset(struct kvm *kvm)
740 {
741 	struct kvm_memslots *slots;
742 	struct kvm_memory_slot *memslot;
743 	int srcu_idx, bkt;
744 
745 	srcu_idx = srcu_read_lock(&kvm->srcu);
746 	slots = kvm_memslots(kvm);
747 	kvm_for_each_memslot(memslot, bkt, slots) {
748 		/* Mutual exclusion with kvm_unmap_hva_range etc. */
749 		spin_lock(&kvm->mmu_lock);
750 		/*
751 		 * This assumes it is acceptable to lose reference and
752 		 * change bits across a reset.
753 		 */
754 		memset(memslot->arch.rmap, 0,
755 		       memslot->npages * sizeof(*memslot->arch.rmap));
756 		spin_unlock(&kvm->mmu_lock);
757 	}
758 	srcu_read_unlock(&kvm->srcu, srcu_idx);
759 }
760 
761 /* Must be called with both HPTE and rmap locked */
762 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
763 			      struct kvm_memory_slot *memslot,
764 			      unsigned long *rmapp, unsigned long gfn)
765 {
766 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
767 	struct revmap_entry *rev = kvm->arch.hpt.rev;
768 	unsigned long j, h;
769 	unsigned long ptel, psize, rcbits;
770 
771 	j = rev[i].forw;
772 	if (j == i) {
773 		/* chain is now empty */
774 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
775 	} else {
776 		/* remove i from chain */
777 		h = rev[i].back;
778 		rev[h].forw = j;
779 		rev[j].back = h;
780 		rev[i].forw = rev[i].back = i;
781 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
782 	}
783 
784 	/* Now check and modify the HPTE */
785 	ptel = rev[i].guest_rpte;
786 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
787 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
788 	    hpte_rpn(ptel, psize) == gfn) {
789 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
790 		kvmppc_invalidate_hpte(kvm, hptep, i);
791 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
792 		/* Harvest R and C */
793 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
794 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
795 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
796 			kvmppc_update_dirty_map(memslot, gfn, psize);
797 		if (rcbits & ~rev[i].guest_rpte) {
798 			rev[i].guest_rpte = ptel | rcbits;
799 			note_hpte_modification(kvm, &rev[i]);
800 		}
801 	}
802 }
803 
804 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
805 			    unsigned long gfn)
806 {
807 	unsigned long i;
808 	__be64 *hptep;
809 	unsigned long *rmapp;
810 
811 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
812 	for (;;) {
813 		lock_rmap(rmapp);
814 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
815 			unlock_rmap(rmapp);
816 			break;
817 		}
818 
819 		/*
820 		 * To avoid an ABBA deadlock with the HPTE lock bit,
821 		 * we can't spin on the HPTE lock while holding the
822 		 * rmap chain lock.
823 		 */
824 		i = *rmapp & KVMPPC_RMAP_INDEX;
825 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
826 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
827 			/* unlock rmap before spinning on the HPTE lock */
828 			unlock_rmap(rmapp);
829 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
830 				cpu_relax();
831 			continue;
832 		}
833 
834 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
835 		unlock_rmap(rmapp);
836 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
837 	}
838 }
839 
840 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
841 {
842 	gfn_t gfn;
843 
844 	if (kvm_is_radix(kvm)) {
845 		for (gfn = range->start; gfn < range->end; gfn++)
846 			kvm_unmap_radix(kvm, range->slot, gfn);
847 	} else {
848 		for (gfn = range->start; gfn < range->end; gfn++)
849 			kvm_unmap_rmapp(kvm, range->slot, gfn);
850 	}
851 
852 	return false;
853 }
854 
855 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
856 				  struct kvm_memory_slot *memslot)
857 {
858 	unsigned long gfn;
859 	unsigned long n;
860 	unsigned long *rmapp;
861 
862 	gfn = memslot->base_gfn;
863 	rmapp = memslot->arch.rmap;
864 	if (kvm_is_radix(kvm)) {
865 		kvmppc_radix_flush_memslot(kvm, memslot);
866 		return;
867 	}
868 
869 	for (n = memslot->npages; n; --n, ++gfn) {
870 		/*
871 		 * Testing the present bit without locking is OK because
872 		 * the memslot has been marked invalid already, and hence
873 		 * no new HPTEs referencing this page can be created,
874 		 * thus the present bit can't go from 0 to 1.
875 		 */
876 		if (*rmapp & KVMPPC_RMAP_PRESENT)
877 			kvm_unmap_rmapp(kvm, memslot, gfn);
878 		++rmapp;
879 	}
880 }
881 
882 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
883 			  unsigned long gfn)
884 {
885 	struct revmap_entry *rev = kvm->arch.hpt.rev;
886 	unsigned long head, i, j;
887 	__be64 *hptep;
888 	bool ret = false;
889 	unsigned long *rmapp;
890 
891 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
892  retry:
893 	lock_rmap(rmapp);
894 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
895 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
896 		ret = true;
897 	}
898 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
899 		unlock_rmap(rmapp);
900 		return ret;
901 	}
902 
903 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
904 	do {
905 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
906 		j = rev[i].forw;
907 
908 		/* If this HPTE isn't referenced, ignore it */
909 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
910 			continue;
911 
912 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
913 			/* unlock rmap before spinning on the HPTE lock */
914 			unlock_rmap(rmapp);
915 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
916 				cpu_relax();
917 			goto retry;
918 		}
919 
920 		/* Now check and modify the HPTE */
921 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
922 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
923 			kvmppc_clear_ref_hpte(kvm, hptep, i);
924 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
925 				rev[i].guest_rpte |= HPTE_R_R;
926 				note_hpte_modification(kvm, &rev[i]);
927 			}
928 			ret = true;
929 		}
930 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
931 	} while ((i = j) != head);
932 
933 	unlock_rmap(rmapp);
934 	return ret;
935 }
936 
937 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
938 {
939 	gfn_t gfn;
940 	bool ret = false;
941 
942 	if (kvm_is_radix(kvm)) {
943 		for (gfn = range->start; gfn < range->end; gfn++)
944 			ret |= kvm_age_radix(kvm, range->slot, gfn);
945 	} else {
946 		for (gfn = range->start; gfn < range->end; gfn++)
947 			ret |= kvm_age_rmapp(kvm, range->slot, gfn);
948 	}
949 
950 	return ret;
951 }
952 
953 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
954 			       unsigned long gfn)
955 {
956 	struct revmap_entry *rev = kvm->arch.hpt.rev;
957 	unsigned long head, i, j;
958 	unsigned long *hp;
959 	bool ret = true;
960 	unsigned long *rmapp;
961 
962 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
963 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
964 		return true;
965 
966 	lock_rmap(rmapp);
967 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
968 		goto out;
969 
970 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
971 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
972 		do {
973 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
974 			j = rev[i].forw;
975 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
976 				goto out;
977 		} while ((i = j) != head);
978 	}
979 	ret = false;
980 
981  out:
982 	unlock_rmap(rmapp);
983 	return ret;
984 }
985 
986 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
987 {
988 	WARN_ON(range->start + 1 != range->end);
989 
990 	if (kvm_is_radix(kvm))
991 		return kvm_test_age_radix(kvm, range->slot, range->start);
992 	else
993 		return kvm_test_age_rmapp(kvm, range->slot, range->start);
994 }
995 
996 static int vcpus_running(struct kvm *kvm)
997 {
998 	return atomic_read(&kvm->arch.vcpus_running) != 0;
999 }
1000 
1001 /*
1002  * Returns the number of system pages that are dirty.
1003  * This can be more than 1 if we find a huge-page HPTE.
1004  */
1005 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1006 {
1007 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1008 	unsigned long head, i, j;
1009 	unsigned long n;
1010 	unsigned long v, r;
1011 	__be64 *hptep;
1012 	int npages_dirty = 0;
1013 
1014  retry:
1015 	lock_rmap(rmapp);
1016 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1017 		unlock_rmap(rmapp);
1018 		return npages_dirty;
1019 	}
1020 
1021 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1022 	do {
1023 		unsigned long hptep1;
1024 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1025 		j = rev[i].forw;
1026 
1027 		/*
1028 		 * Checking the C (changed) bit here is racy since there
1029 		 * is no guarantee about when the hardware writes it back.
1030 		 * If the HPTE is not writable then it is stable since the
1031 		 * page can't be written to, and we would have done a tlbie
1032 		 * (which forces the hardware to complete any writeback)
1033 		 * when making the HPTE read-only.
1034 		 * If vcpus are running then this call is racy anyway
1035 		 * since the page could get dirtied subsequently, so we
1036 		 * expect there to be a further call which would pick up
1037 		 * any delayed C bit writeback.
1038 		 * Otherwise we need to do the tlbie even if C==0 in
1039 		 * order to pick up any delayed writeback of C.
1040 		 */
1041 		hptep1 = be64_to_cpu(hptep[1]);
1042 		if (!(hptep1 & HPTE_R_C) &&
1043 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1044 			continue;
1045 
1046 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1047 			/* unlock rmap before spinning on the HPTE lock */
1048 			unlock_rmap(rmapp);
1049 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1050 				cpu_relax();
1051 			goto retry;
1052 		}
1053 
1054 		/* Now check and modify the HPTE */
1055 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1056 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1057 			continue;
1058 		}
1059 
1060 		/* need to make it temporarily absent so C is stable */
1061 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1062 		kvmppc_invalidate_hpte(kvm, hptep, i);
1063 		v = be64_to_cpu(hptep[0]);
1064 		r = be64_to_cpu(hptep[1]);
1065 		if (r & HPTE_R_C) {
1066 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1067 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1068 				rev[i].guest_rpte |= HPTE_R_C;
1069 				note_hpte_modification(kvm, &rev[i]);
1070 			}
1071 			n = kvmppc_actual_pgsz(v, r);
1072 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1073 			if (n > npages_dirty)
1074 				npages_dirty = n;
1075 			eieio();
1076 		}
1077 		v &= ~HPTE_V_ABSENT;
1078 		v |= HPTE_V_VALID;
1079 		__unlock_hpte(hptep, v);
1080 	} while ((i = j) != head);
1081 
1082 	unlock_rmap(rmapp);
1083 	return npages_dirty;
1084 }
1085 
1086 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1087 			      struct kvm_memory_slot *memslot,
1088 			      unsigned long *map)
1089 {
1090 	unsigned long gfn;
1091 
1092 	if (!vpa->dirty || !vpa->pinned_addr)
1093 		return;
1094 	gfn = vpa->gpa >> PAGE_SHIFT;
1095 	if (gfn < memslot->base_gfn ||
1096 	    gfn >= memslot->base_gfn + memslot->npages)
1097 		return;
1098 
1099 	vpa->dirty = false;
1100 	if (map)
1101 		__set_bit_le(gfn - memslot->base_gfn, map);
1102 }
1103 
1104 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1105 			struct kvm_memory_slot *memslot, unsigned long *map)
1106 {
1107 	unsigned long i;
1108 	unsigned long *rmapp;
1109 
1110 	preempt_disable();
1111 	rmapp = memslot->arch.rmap;
1112 	for (i = 0; i < memslot->npages; ++i) {
1113 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1114 		/*
1115 		 * Note that if npages > 0 then i must be a multiple of npages,
1116 		 * since we always put huge-page HPTEs in the rmap chain
1117 		 * corresponding to their page base address.
1118 		 */
1119 		if (npages)
1120 			set_dirty_bits(map, i, npages);
1121 		++rmapp;
1122 	}
1123 	preempt_enable();
1124 	return 0;
1125 }
1126 
1127 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1128 			    unsigned long *nb_ret)
1129 {
1130 	struct kvm_memory_slot *memslot;
1131 	unsigned long gfn = gpa >> PAGE_SHIFT;
1132 	struct page *page, *pages[1];
1133 	int npages;
1134 	unsigned long hva, offset;
1135 	int srcu_idx;
1136 
1137 	srcu_idx = srcu_read_lock(&kvm->srcu);
1138 	memslot = gfn_to_memslot(kvm, gfn);
1139 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1140 		goto err;
1141 	hva = gfn_to_hva_memslot(memslot, gfn);
1142 	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1143 	if (npages < 1)
1144 		goto err;
1145 	page = pages[0];
1146 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1147 
1148 	offset = gpa & (PAGE_SIZE - 1);
1149 	if (nb_ret)
1150 		*nb_ret = PAGE_SIZE - offset;
1151 	return page_address(page) + offset;
1152 
1153  err:
1154 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1155 	return NULL;
1156 }
1157 
1158 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1159 			     bool dirty)
1160 {
1161 	struct page *page = virt_to_page(va);
1162 	struct kvm_memory_slot *memslot;
1163 	unsigned long gfn;
1164 	int srcu_idx;
1165 
1166 	put_page(page);
1167 
1168 	if (!dirty)
1169 		return;
1170 
1171 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1172 	gfn = gpa >> PAGE_SHIFT;
1173 	srcu_idx = srcu_read_lock(&kvm->srcu);
1174 	memslot = gfn_to_memslot(kvm, gfn);
1175 	if (memslot && memslot->dirty_bitmap)
1176 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1177 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1178 }
1179 
1180 /*
1181  * HPT resizing
1182  */
1183 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1184 {
1185 	int rc;
1186 
1187 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1188 	if (rc < 0)
1189 		return rc;
1190 
1191 	resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__,
1192 			 resize->hpt.virt);
1193 
1194 	return 0;
1195 }
1196 
1197 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1198 					    unsigned long idx)
1199 {
1200 	struct kvm *kvm = resize->kvm;
1201 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1202 	struct kvm_hpt_info *new = &resize->hpt;
1203 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1204 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1205 	__be64 *hptep, *new_hptep;
1206 	unsigned long vpte, rpte, guest_rpte;
1207 	int ret;
1208 	struct revmap_entry *rev;
1209 	unsigned long apsize, avpn, pteg, hash;
1210 	unsigned long new_idx, new_pteg, replace_vpte;
1211 	int pshift;
1212 
1213 	hptep = (__be64 *)(old->virt + (idx << 4));
1214 
1215 	/* Guest is stopped, so new HPTEs can't be added or faulted
1216 	 * in, only unmapped or altered by host actions.  So, it's
1217 	 * safe to check this before we take the HPTE lock */
1218 	vpte = be64_to_cpu(hptep[0]);
1219 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1220 		return 0; /* nothing to do */
1221 
1222 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1223 		cpu_relax();
1224 
1225 	vpte = be64_to_cpu(hptep[0]);
1226 
1227 	ret = 0;
1228 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1229 		/* Nothing to do */
1230 		goto out;
1231 
1232 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1233 		rpte = be64_to_cpu(hptep[1]);
1234 		vpte = hpte_new_to_old_v(vpte, rpte);
1235 	}
1236 
1237 	/* Unmap */
1238 	rev = &old->rev[idx];
1239 	guest_rpte = rev->guest_rpte;
1240 
1241 	ret = -EIO;
1242 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1243 	if (!apsize)
1244 		goto out;
1245 
1246 	if (vpte & HPTE_V_VALID) {
1247 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1248 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1249 		struct kvm_memory_slot *memslot =
1250 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1251 
1252 		if (memslot) {
1253 			unsigned long *rmapp;
1254 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1255 
1256 			lock_rmap(rmapp);
1257 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1258 			unlock_rmap(rmapp);
1259 		}
1260 
1261 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1262 	}
1263 
1264 	/* Reload PTE after unmap */
1265 	vpte = be64_to_cpu(hptep[0]);
1266 	BUG_ON(vpte & HPTE_V_VALID);
1267 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1268 
1269 	ret = 0;
1270 	if (!(vpte & HPTE_V_BOLTED))
1271 		goto out;
1272 
1273 	rpte = be64_to_cpu(hptep[1]);
1274 
1275 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1276 		vpte = hpte_new_to_old_v(vpte, rpte);
1277 		rpte = hpte_new_to_old_r(rpte);
1278 	}
1279 
1280 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1281 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1282 	pteg = idx / HPTES_PER_GROUP;
1283 	if (vpte & HPTE_V_SECONDARY)
1284 		pteg = ~pteg;
1285 
1286 	if (!(vpte & HPTE_V_1TB_SEG)) {
1287 		unsigned long offset, vsid;
1288 
1289 		/* We only have 28 - 23 bits of offset in avpn */
1290 		offset = (avpn & 0x1f) << 23;
1291 		vsid = avpn >> 5;
1292 		/* We can find more bits from the pteg value */
1293 		if (pshift < 23)
1294 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1295 
1296 		hash = vsid ^ (offset >> pshift);
1297 	} else {
1298 		unsigned long offset, vsid;
1299 
1300 		/* We only have 40 - 23 bits of seg_off in avpn */
1301 		offset = (avpn & 0x1ffff) << 23;
1302 		vsid = avpn >> 17;
1303 		if (pshift < 23)
1304 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1305 
1306 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1307 	}
1308 
1309 	new_pteg = hash & new_hash_mask;
1310 	if (vpte & HPTE_V_SECONDARY)
1311 		new_pteg = ~hash & new_hash_mask;
1312 
1313 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1314 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1315 
1316 	replace_vpte = be64_to_cpu(new_hptep[0]);
1317 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1318 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1319 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1320 	}
1321 
1322 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1323 		BUG_ON(new->order >= old->order);
1324 
1325 		if (replace_vpte & HPTE_V_BOLTED) {
1326 			if (vpte & HPTE_V_BOLTED)
1327 				/* Bolted collision, nothing we can do */
1328 				ret = -ENOSPC;
1329 			/* Discard the new HPTE */
1330 			goto out;
1331 		}
1332 
1333 		/* Discard the previous HPTE */
1334 	}
1335 
1336 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1337 		rpte = hpte_old_to_new_r(vpte, rpte);
1338 		vpte = hpte_old_to_new_v(vpte);
1339 	}
1340 
1341 	new_hptep[1] = cpu_to_be64(rpte);
1342 	new->rev[new_idx].guest_rpte = guest_rpte;
1343 	/* No need for a barrier, since new HPT isn't active */
1344 	new_hptep[0] = cpu_to_be64(vpte);
1345 	unlock_hpte(new_hptep, vpte);
1346 
1347 out:
1348 	unlock_hpte(hptep, vpte);
1349 	return ret;
1350 }
1351 
1352 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1353 {
1354 	struct kvm *kvm = resize->kvm;
1355 	unsigned  long i;
1356 	int rc;
1357 
1358 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1359 		rc = resize_hpt_rehash_hpte(resize, i);
1360 		if (rc != 0)
1361 			return rc;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1368 {
1369 	struct kvm *kvm = resize->kvm;
1370 	struct kvm_hpt_info hpt_tmp;
1371 
1372 	/* Exchange the pending tables in the resize structure with
1373 	 * the active tables */
1374 
1375 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1376 
1377 	spin_lock(&kvm->mmu_lock);
1378 	asm volatile("ptesync" : : : "memory");
1379 
1380 	hpt_tmp = kvm->arch.hpt;
1381 	kvmppc_set_hpt(kvm, &resize->hpt);
1382 	resize->hpt = hpt_tmp;
1383 
1384 	spin_unlock(&kvm->mmu_lock);
1385 
1386 	synchronize_srcu_expedited(&kvm->srcu);
1387 
1388 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1389 		kvmppc_setup_partition_table(kvm);
1390 
1391 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1392 }
1393 
1394 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1395 {
1396 	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1397 		return;
1398 
1399 	if (!resize)
1400 		return;
1401 
1402 	if (resize->error != -EBUSY) {
1403 		if (resize->hpt.virt)
1404 			kvmppc_free_hpt(&resize->hpt);
1405 		kfree(resize);
1406 	}
1407 
1408 	if (kvm->arch.resize_hpt == resize)
1409 		kvm->arch.resize_hpt = NULL;
1410 }
1411 
1412 static void resize_hpt_prepare_work(struct work_struct *work)
1413 {
1414 	struct kvm_resize_hpt *resize = container_of(work,
1415 						     struct kvm_resize_hpt,
1416 						     work);
1417 	struct kvm *kvm = resize->kvm;
1418 	int err = 0;
1419 
1420 	if (WARN_ON(resize->error != -EBUSY))
1421 		return;
1422 
1423 	mutex_lock(&kvm->arch.mmu_setup_lock);
1424 
1425 	/* Request is still current? */
1426 	if (kvm->arch.resize_hpt == resize) {
1427 		/* We may request large allocations here:
1428 		 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1429 		 */
1430 		mutex_unlock(&kvm->arch.mmu_setup_lock);
1431 
1432 		resize_hpt_debug(resize, "%s(): order = %d\n", __func__,
1433 				 resize->order);
1434 
1435 		err = resize_hpt_allocate(resize);
1436 
1437 		/* We have strict assumption about -EBUSY
1438 		 * when preparing for HPT resize.
1439 		 */
1440 		if (WARN_ON(err == -EBUSY))
1441 			err = -EINPROGRESS;
1442 
1443 		mutex_lock(&kvm->arch.mmu_setup_lock);
1444 		/* It is possible that kvm->arch.resize_hpt != resize
1445 		 * after we grab kvm->arch.mmu_setup_lock again.
1446 		 */
1447 	}
1448 
1449 	resize->error = err;
1450 
1451 	if (kvm->arch.resize_hpt != resize)
1452 		resize_hpt_release(kvm, resize);
1453 
1454 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1455 }
1456 
1457 int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1458 				    struct kvm_ppc_resize_hpt *rhpt)
1459 {
1460 	unsigned long flags = rhpt->flags;
1461 	unsigned long shift = rhpt->shift;
1462 	struct kvm_resize_hpt *resize;
1463 	int ret;
1464 
1465 	if (flags != 0 || kvm_is_radix(kvm))
1466 		return -EINVAL;
1467 
1468 	if (shift && ((shift < 18) || (shift > 46)))
1469 		return -EINVAL;
1470 
1471 	mutex_lock(&kvm->arch.mmu_setup_lock);
1472 
1473 	resize = kvm->arch.resize_hpt;
1474 
1475 	if (resize) {
1476 		if (resize->order == shift) {
1477 			/* Suitable resize in progress? */
1478 			ret = resize->error;
1479 			if (ret == -EBUSY)
1480 				ret = 100; /* estimated time in ms */
1481 			else if (ret)
1482 				resize_hpt_release(kvm, resize);
1483 
1484 			goto out;
1485 		}
1486 
1487 		/* not suitable, cancel it */
1488 		resize_hpt_release(kvm, resize);
1489 	}
1490 
1491 	ret = 0;
1492 	if (!shift)
1493 		goto out; /* nothing to do */
1494 
1495 	/* start new resize */
1496 
1497 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1498 	if (!resize) {
1499 		ret = -ENOMEM;
1500 		goto out;
1501 	}
1502 
1503 	resize->error = -EBUSY;
1504 	resize->order = shift;
1505 	resize->kvm = kvm;
1506 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1507 	kvm->arch.resize_hpt = resize;
1508 
1509 	schedule_work(&resize->work);
1510 
1511 	ret = 100; /* estimated time in ms */
1512 
1513 out:
1514 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1515 	return ret;
1516 }
1517 
1518 static void resize_hpt_boot_vcpu(void *opaque)
1519 {
1520 	/* Nothing to do, just force a KVM exit */
1521 }
1522 
1523 int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1524 				   struct kvm_ppc_resize_hpt *rhpt)
1525 {
1526 	unsigned long flags = rhpt->flags;
1527 	unsigned long shift = rhpt->shift;
1528 	struct kvm_resize_hpt *resize;
1529 	int ret;
1530 
1531 	if (flags != 0 || kvm_is_radix(kvm))
1532 		return -EINVAL;
1533 
1534 	if (shift && ((shift < 18) || (shift > 46)))
1535 		return -EINVAL;
1536 
1537 	mutex_lock(&kvm->arch.mmu_setup_lock);
1538 
1539 	resize = kvm->arch.resize_hpt;
1540 
1541 	/* This shouldn't be possible */
1542 	ret = -EIO;
1543 	if (WARN_ON(!kvm->arch.mmu_ready))
1544 		goto out_no_hpt;
1545 
1546 	/* Stop VCPUs from running while we mess with the HPT */
1547 	kvm->arch.mmu_ready = 0;
1548 	smp_mb();
1549 
1550 	/* Boot all CPUs out of the guest so they re-read
1551 	 * mmu_ready */
1552 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1553 
1554 	ret = -ENXIO;
1555 	if (!resize || (resize->order != shift))
1556 		goto out;
1557 
1558 	ret = resize->error;
1559 	if (ret)
1560 		goto out;
1561 
1562 	ret = resize_hpt_rehash(resize);
1563 	if (ret)
1564 		goto out;
1565 
1566 	resize_hpt_pivot(resize);
1567 
1568 out:
1569 	/* Let VCPUs run again */
1570 	kvm->arch.mmu_ready = 1;
1571 	smp_mb();
1572 out_no_hpt:
1573 	resize_hpt_release(kvm, resize);
1574 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1575 	return ret;
1576 }
1577 
1578 /*
1579  * Functions for reading and writing the hash table via reads and
1580  * writes on a file descriptor.
1581  *
1582  * Reads return the guest view of the hash table, which has to be
1583  * pieced together from the real hash table and the guest_rpte
1584  * values in the revmap array.
1585  *
1586  * On writes, each HPTE written is considered in turn, and if it
1587  * is valid, it is written to the HPT as if an H_ENTER with the
1588  * exact flag set was done.  When the invalid count is non-zero
1589  * in the header written to the stream, the kernel will make
1590  * sure that that many HPTEs are invalid, and invalidate them
1591  * if not.
1592  */
1593 
1594 struct kvm_htab_ctx {
1595 	unsigned long	index;
1596 	unsigned long	flags;
1597 	struct kvm	*kvm;
1598 	int		first_pass;
1599 };
1600 
1601 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1602 
1603 /*
1604  * Returns 1 if this HPT entry has been modified or has pending
1605  * R/C bit changes.
1606  */
1607 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1608 {
1609 	unsigned long rcbits_unset;
1610 
1611 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1612 		return 1;
1613 
1614 	/* Also need to consider changes in reference and changed bits */
1615 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1616 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1617 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1618 		return 1;
1619 
1620 	return 0;
1621 }
1622 
1623 static long record_hpte(unsigned long flags, __be64 *hptp,
1624 			unsigned long *hpte, struct revmap_entry *revp,
1625 			int want_valid, int first_pass)
1626 {
1627 	unsigned long v, r, hr;
1628 	unsigned long rcbits_unset;
1629 	int ok = 1;
1630 	int valid, dirty;
1631 
1632 	/* Unmodified entries are uninteresting except on the first pass */
1633 	dirty = hpte_dirty(revp, hptp);
1634 	if (!first_pass && !dirty)
1635 		return 0;
1636 
1637 	valid = 0;
1638 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1639 		valid = 1;
1640 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1641 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1642 			valid = 0;
1643 	}
1644 	if (valid != want_valid)
1645 		return 0;
1646 
1647 	v = r = 0;
1648 	if (valid || dirty) {
1649 		/* lock the HPTE so it's stable and read it */
1650 		preempt_disable();
1651 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1652 			cpu_relax();
1653 		v = be64_to_cpu(hptp[0]);
1654 		hr = be64_to_cpu(hptp[1]);
1655 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1656 			v = hpte_new_to_old_v(v, hr);
1657 			hr = hpte_new_to_old_r(hr);
1658 		}
1659 
1660 		/* re-evaluate valid and dirty from synchronized HPTE value */
1661 		valid = !!(v & HPTE_V_VALID);
1662 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1663 
1664 		/* Harvest R and C into guest view if necessary */
1665 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1666 		if (valid && (rcbits_unset & hr)) {
1667 			revp->guest_rpte |= (hr &
1668 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1669 			dirty = 1;
1670 		}
1671 
1672 		if (v & HPTE_V_ABSENT) {
1673 			v &= ~HPTE_V_ABSENT;
1674 			v |= HPTE_V_VALID;
1675 			valid = 1;
1676 		}
1677 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1678 			valid = 0;
1679 
1680 		r = revp->guest_rpte;
1681 		/* only clear modified if this is the right sort of entry */
1682 		if (valid == want_valid && dirty) {
1683 			r &= ~HPTE_GR_MODIFIED;
1684 			revp->guest_rpte = r;
1685 		}
1686 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1687 		preempt_enable();
1688 		if (!(valid == want_valid && (first_pass || dirty)))
1689 			ok = 0;
1690 	}
1691 	hpte[0] = cpu_to_be64(v);
1692 	hpte[1] = cpu_to_be64(r);
1693 	return ok;
1694 }
1695 
1696 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1697 			     size_t count, loff_t *ppos)
1698 {
1699 	struct kvm_htab_ctx *ctx = file->private_data;
1700 	struct kvm *kvm = ctx->kvm;
1701 	struct kvm_get_htab_header hdr;
1702 	__be64 *hptp;
1703 	struct revmap_entry *revp;
1704 	unsigned long i, nb, nw;
1705 	unsigned long __user *lbuf;
1706 	struct kvm_get_htab_header __user *hptr;
1707 	unsigned long flags;
1708 	int first_pass;
1709 	unsigned long hpte[2];
1710 
1711 	if (!access_ok(buf, count))
1712 		return -EFAULT;
1713 	if (kvm_is_radix(kvm))
1714 		return 0;
1715 
1716 	first_pass = ctx->first_pass;
1717 	flags = ctx->flags;
1718 
1719 	i = ctx->index;
1720 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1721 	revp = kvm->arch.hpt.rev + i;
1722 	lbuf = (unsigned long __user *)buf;
1723 
1724 	nb = 0;
1725 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1726 		/* Initialize header */
1727 		hptr = (struct kvm_get_htab_header __user *)buf;
1728 		hdr.n_valid = 0;
1729 		hdr.n_invalid = 0;
1730 		nw = nb;
1731 		nb += sizeof(hdr);
1732 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1733 
1734 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1735 		if (!first_pass) {
1736 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1737 			       !hpte_dirty(revp, hptp)) {
1738 				++i;
1739 				hptp += 2;
1740 				++revp;
1741 			}
1742 		}
1743 		hdr.index = i;
1744 
1745 		/* Grab a series of valid entries */
1746 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1747 		       hdr.n_valid < 0xffff &&
1748 		       nb + HPTE_SIZE < count &&
1749 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1750 			/* valid entry, write it out */
1751 			++hdr.n_valid;
1752 			if (__put_user(hpte[0], lbuf) ||
1753 			    __put_user(hpte[1], lbuf + 1))
1754 				return -EFAULT;
1755 			nb += HPTE_SIZE;
1756 			lbuf += 2;
1757 			++i;
1758 			hptp += 2;
1759 			++revp;
1760 		}
1761 		/* Now skip invalid entries while we can */
1762 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1763 		       hdr.n_invalid < 0xffff &&
1764 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1765 			/* found an invalid entry */
1766 			++hdr.n_invalid;
1767 			++i;
1768 			hptp += 2;
1769 			++revp;
1770 		}
1771 
1772 		if (hdr.n_valid || hdr.n_invalid) {
1773 			/* write back the header */
1774 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1775 				return -EFAULT;
1776 			nw = nb;
1777 			buf = (char __user *)lbuf;
1778 		} else {
1779 			nb = nw;
1780 		}
1781 
1782 		/* Check if we've wrapped around the hash table */
1783 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1784 			i = 0;
1785 			ctx->first_pass = 0;
1786 			break;
1787 		}
1788 	}
1789 
1790 	ctx->index = i;
1791 
1792 	return nb;
1793 }
1794 
1795 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1796 			      size_t count, loff_t *ppos)
1797 {
1798 	struct kvm_htab_ctx *ctx = file->private_data;
1799 	struct kvm *kvm = ctx->kvm;
1800 	struct kvm_get_htab_header hdr;
1801 	unsigned long i, j;
1802 	unsigned long v, r;
1803 	unsigned long __user *lbuf;
1804 	__be64 *hptp;
1805 	unsigned long tmp[2];
1806 	ssize_t nb;
1807 	long int err, ret;
1808 	int mmu_ready;
1809 	int pshift;
1810 
1811 	if (!access_ok(buf, count))
1812 		return -EFAULT;
1813 	if (kvm_is_radix(kvm))
1814 		return -EINVAL;
1815 
1816 	/* lock out vcpus from running while we're doing this */
1817 	mutex_lock(&kvm->arch.mmu_setup_lock);
1818 	mmu_ready = kvm->arch.mmu_ready;
1819 	if (mmu_ready) {
1820 		kvm->arch.mmu_ready = 0;	/* temporarily */
1821 		/* order mmu_ready vs. vcpus_running */
1822 		smp_mb();
1823 		if (atomic_read(&kvm->arch.vcpus_running)) {
1824 			kvm->arch.mmu_ready = 1;
1825 			mutex_unlock(&kvm->arch.mmu_setup_lock);
1826 			return -EBUSY;
1827 		}
1828 	}
1829 
1830 	err = 0;
1831 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1832 		err = -EFAULT;
1833 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1834 			break;
1835 
1836 		err = 0;
1837 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1838 			break;
1839 
1840 		nb += sizeof(hdr);
1841 		buf += sizeof(hdr);
1842 
1843 		err = -EINVAL;
1844 		i = hdr.index;
1845 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1846 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1847 			break;
1848 
1849 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1850 		lbuf = (unsigned long __user *)buf;
1851 		for (j = 0; j < hdr.n_valid; ++j) {
1852 			__be64 hpte_v;
1853 			__be64 hpte_r;
1854 
1855 			err = -EFAULT;
1856 			if (__get_user(hpte_v, lbuf) ||
1857 			    __get_user(hpte_r, lbuf + 1))
1858 				goto out;
1859 			v = be64_to_cpu(hpte_v);
1860 			r = be64_to_cpu(hpte_r);
1861 			err = -EINVAL;
1862 			if (!(v & HPTE_V_VALID))
1863 				goto out;
1864 			pshift = kvmppc_hpte_base_page_shift(v, r);
1865 			if (pshift <= 0)
1866 				goto out;
1867 			lbuf += 2;
1868 			nb += HPTE_SIZE;
1869 
1870 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1871 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1872 			err = -EIO;
1873 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1874 							 tmp);
1875 			if (ret != H_SUCCESS) {
1876 				pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r);
1877 				goto out;
1878 			}
1879 			if (!mmu_ready && is_vrma_hpte(v)) {
1880 				unsigned long senc, lpcr;
1881 
1882 				senc = slb_pgsize_encoding(1ul << pshift);
1883 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1884 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1885 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1886 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1887 					kvmppc_update_lpcr(kvm, lpcr,
1888 							   LPCR_VRMASD);
1889 				} else {
1890 					kvmppc_setup_partition_table(kvm);
1891 				}
1892 				mmu_ready = 1;
1893 			}
1894 			++i;
1895 			hptp += 2;
1896 		}
1897 
1898 		for (j = 0; j < hdr.n_invalid; ++j) {
1899 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1900 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1901 			++i;
1902 			hptp += 2;
1903 		}
1904 		err = 0;
1905 	}
1906 
1907  out:
1908 	/* Order HPTE updates vs. mmu_ready */
1909 	smp_wmb();
1910 	kvm->arch.mmu_ready = mmu_ready;
1911 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1912 
1913 	if (err)
1914 		return err;
1915 	return nb;
1916 }
1917 
1918 static int kvm_htab_release(struct inode *inode, struct file *filp)
1919 {
1920 	struct kvm_htab_ctx *ctx = filp->private_data;
1921 
1922 	filp->private_data = NULL;
1923 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1924 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1925 	kvm_put_kvm(ctx->kvm);
1926 	kfree(ctx);
1927 	return 0;
1928 }
1929 
1930 static const struct file_operations kvm_htab_fops = {
1931 	.read		= kvm_htab_read,
1932 	.write		= kvm_htab_write,
1933 	.llseek		= default_llseek,
1934 	.release	= kvm_htab_release,
1935 };
1936 
1937 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1938 {
1939 	int ret;
1940 	struct kvm_htab_ctx *ctx;
1941 	int rwflag;
1942 
1943 	/* reject flags we don't recognize */
1944 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1945 		return -EINVAL;
1946 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1947 	if (!ctx)
1948 		return -ENOMEM;
1949 	kvm_get_kvm(kvm);
1950 	ctx->kvm = kvm;
1951 	ctx->index = ghf->start_index;
1952 	ctx->flags = ghf->flags;
1953 	ctx->first_pass = 1;
1954 
1955 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1956 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1957 	if (ret < 0) {
1958 		kfree(ctx);
1959 		kvm_put_kvm_no_destroy(kvm);
1960 		return ret;
1961 	}
1962 
1963 	if (rwflag == O_RDONLY) {
1964 		mutex_lock(&kvm->slots_lock);
1965 		atomic_inc(&kvm->arch.hpte_mod_interest);
1966 		/* make sure kvmppc_do_h_enter etc. see the increment */
1967 		synchronize_srcu_expedited(&kvm->srcu);
1968 		mutex_unlock(&kvm->slots_lock);
1969 	}
1970 
1971 	return ret;
1972 }
1973 
1974 struct debugfs_htab_state {
1975 	struct kvm	*kvm;
1976 	struct mutex	mutex;
1977 	unsigned long	hpt_index;
1978 	int		chars_left;
1979 	int		buf_index;
1980 	char		buf[64];
1981 };
1982 
1983 static int debugfs_htab_open(struct inode *inode, struct file *file)
1984 {
1985 	struct kvm *kvm = inode->i_private;
1986 	struct debugfs_htab_state *p;
1987 
1988 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1989 	if (!p)
1990 		return -ENOMEM;
1991 
1992 	kvm_get_kvm(kvm);
1993 	p->kvm = kvm;
1994 	mutex_init(&p->mutex);
1995 	file->private_data = p;
1996 
1997 	return nonseekable_open(inode, file);
1998 }
1999 
2000 static int debugfs_htab_release(struct inode *inode, struct file *file)
2001 {
2002 	struct debugfs_htab_state *p = file->private_data;
2003 
2004 	kvm_put_kvm(p->kvm);
2005 	kfree(p);
2006 	return 0;
2007 }
2008 
2009 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2010 				 size_t len, loff_t *ppos)
2011 {
2012 	struct debugfs_htab_state *p = file->private_data;
2013 	ssize_t ret, r;
2014 	unsigned long i, n;
2015 	unsigned long v, hr, gr;
2016 	struct kvm *kvm;
2017 	__be64 *hptp;
2018 
2019 	kvm = p->kvm;
2020 	if (kvm_is_radix(kvm))
2021 		return 0;
2022 
2023 	ret = mutex_lock_interruptible(&p->mutex);
2024 	if (ret)
2025 		return ret;
2026 
2027 	if (p->chars_left) {
2028 		n = p->chars_left;
2029 		if (n > len)
2030 			n = len;
2031 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2032 		n -= r;
2033 		p->chars_left -= n;
2034 		p->buf_index += n;
2035 		buf += n;
2036 		len -= n;
2037 		ret = n;
2038 		if (r) {
2039 			if (!n)
2040 				ret = -EFAULT;
2041 			goto out;
2042 		}
2043 	}
2044 
2045 	i = p->hpt_index;
2046 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2047 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2048 	     ++i, hptp += 2) {
2049 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2050 			continue;
2051 
2052 		/* lock the HPTE so it's stable and read it */
2053 		preempt_disable();
2054 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2055 			cpu_relax();
2056 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2057 		hr = be64_to_cpu(hptp[1]);
2058 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2059 		unlock_hpte(hptp, v);
2060 		preempt_enable();
2061 
2062 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2063 			continue;
2064 
2065 		n = scnprintf(p->buf, sizeof(p->buf),
2066 			      "%6lx %.16lx %.16lx %.16lx\n",
2067 			      i, v, hr, gr);
2068 		p->chars_left = n;
2069 		if (n > len)
2070 			n = len;
2071 		r = copy_to_user(buf, p->buf, n);
2072 		n -= r;
2073 		p->chars_left -= n;
2074 		p->buf_index = n;
2075 		buf += n;
2076 		len -= n;
2077 		ret += n;
2078 		if (r) {
2079 			if (!ret)
2080 				ret = -EFAULT;
2081 			goto out;
2082 		}
2083 	}
2084 	p->hpt_index = i;
2085 
2086  out:
2087 	mutex_unlock(&p->mutex);
2088 	return ret;
2089 }
2090 
2091 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2092 			   size_t len, loff_t *ppos)
2093 {
2094 	return -EACCES;
2095 }
2096 
2097 static const struct file_operations debugfs_htab_fops = {
2098 	.owner	 = THIS_MODULE,
2099 	.open	 = debugfs_htab_open,
2100 	.release = debugfs_htab_release,
2101 	.read	 = debugfs_htab_read,
2102 	.write	 = debugfs_htab_write,
2103 	.llseek	 = generic_file_llseek,
2104 };
2105 
2106 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2107 {
2108 	debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm,
2109 			    &debugfs_htab_fops);
2110 }
2111 
2112 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2113 {
2114 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2115 
2116 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2117 
2118 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2119 
2120 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2121 }
2122