1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7 #include <linux/types.h> 8 #include <linux/string.h> 9 #include <linux/kvm.h> 10 #include <linux/kvm_host.h> 11 #include <linux/highmem.h> 12 #include <linux/gfp.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/vmalloc.h> 16 #include <linux/srcu.h> 17 #include <linux/anon_inodes.h> 18 #include <linux/file.h> 19 #include <linux/debugfs.h> 20 21 #include <asm/kvm_ppc.h> 22 #include <asm/kvm_book3s.h> 23 #include <asm/book3s/64/mmu-hash.h> 24 #include <asm/hvcall.h> 25 #include <asm/synch.h> 26 #include <asm/ppc-opcode.h> 27 #include <asm/cputable.h> 28 #include <asm/pte-walk.h> 29 30 #include "book3s.h" 31 #include "trace_hv.h" 32 33 //#define DEBUG_RESIZE_HPT 1 34 35 #ifdef DEBUG_RESIZE_HPT 36 #define resize_hpt_debug(resize, ...) \ 37 do { \ 38 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 39 printk(__VA_ARGS__); \ 40 } while (0) 41 #else 42 #define resize_hpt_debug(resize, ...) \ 43 do { } while (0) 44 #endif 45 46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 47 long pte_index, unsigned long pteh, 48 unsigned long ptel, unsigned long *pte_idx_ret); 49 50 struct kvm_resize_hpt { 51 /* These fields read-only after init */ 52 struct kvm *kvm; 53 struct work_struct work; 54 u32 order; 55 56 /* These fields protected by kvm->arch.mmu_setup_lock */ 57 58 /* Possible values and their usage: 59 * <0 an error occurred during allocation, 60 * -EBUSY allocation is in the progress, 61 * 0 allocation made successfully. 62 */ 63 int error; 64 65 /* Private to the work thread, until error != -EBUSY, 66 * then protected by kvm->arch.mmu_setup_lock. 67 */ 68 struct kvm_hpt_info hpt; 69 }; 70 71 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 72 { 73 unsigned long hpt = 0; 74 int cma = 0; 75 struct page *page = NULL; 76 struct revmap_entry *rev; 77 unsigned long npte; 78 79 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 80 return -EINVAL; 81 82 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 83 if (page) { 84 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 85 memset((void *)hpt, 0, (1ul << order)); 86 cma = 1; 87 } 88 89 if (!hpt) 90 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 91 |__GFP_NOWARN, order - PAGE_SHIFT); 92 93 if (!hpt) 94 return -ENOMEM; 95 96 /* HPTEs are 2**4 bytes long */ 97 npte = 1ul << (order - 4); 98 99 /* Allocate reverse map array */ 100 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); 101 if (!rev) { 102 if (cma) 103 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 104 else 105 free_pages(hpt, order - PAGE_SHIFT); 106 return -ENOMEM; 107 } 108 109 info->order = order; 110 info->virt = hpt; 111 info->cma = cma; 112 info->rev = rev; 113 114 return 0; 115 } 116 117 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 118 { 119 atomic64_set(&kvm->arch.mmio_update, 0); 120 kvm->arch.hpt = *info; 121 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 122 123 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 124 info->virt, (long)info->order, kvm->arch.lpid); 125 } 126 127 int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 128 { 129 int err = -EBUSY; 130 struct kvm_hpt_info info; 131 132 mutex_lock(&kvm->arch.mmu_setup_lock); 133 if (kvm->arch.mmu_ready) { 134 kvm->arch.mmu_ready = 0; 135 /* order mmu_ready vs. vcpus_running */ 136 smp_mb(); 137 if (atomic_read(&kvm->arch.vcpus_running)) { 138 kvm->arch.mmu_ready = 1; 139 goto out; 140 } 141 } 142 if (kvm_is_radix(kvm)) { 143 err = kvmppc_switch_mmu_to_hpt(kvm); 144 if (err) 145 goto out; 146 } 147 148 if (kvm->arch.hpt.order == order) { 149 /* We already have a suitable HPT */ 150 151 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 152 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 153 /* 154 * Reset all the reverse-mapping chains for all memslots 155 */ 156 kvmppc_rmap_reset(kvm); 157 err = 0; 158 goto out; 159 } 160 161 if (kvm->arch.hpt.virt) { 162 kvmppc_free_hpt(&kvm->arch.hpt); 163 kvmppc_rmap_reset(kvm); 164 } 165 166 err = kvmppc_allocate_hpt(&info, order); 167 if (err < 0) 168 goto out; 169 kvmppc_set_hpt(kvm, &info); 170 171 out: 172 if (err == 0) 173 /* Ensure that each vcpu will flush its TLB on next entry. */ 174 cpumask_setall(&kvm->arch.need_tlb_flush); 175 176 mutex_unlock(&kvm->arch.mmu_setup_lock); 177 return err; 178 } 179 180 void kvmppc_free_hpt(struct kvm_hpt_info *info) 181 { 182 vfree(info->rev); 183 info->rev = NULL; 184 if (info->cma) 185 kvm_free_hpt_cma(virt_to_page(info->virt), 186 1 << (info->order - PAGE_SHIFT)); 187 else if (info->virt) 188 free_pages(info->virt, info->order - PAGE_SHIFT); 189 info->virt = 0; 190 info->order = 0; 191 } 192 193 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 194 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 195 { 196 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 197 } 198 199 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 200 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 201 { 202 return (pgsize == 0x10000) ? 0x1000 : 0; 203 } 204 205 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 206 unsigned long porder) 207 { 208 unsigned long i; 209 unsigned long npages; 210 unsigned long hp_v, hp_r; 211 unsigned long addr, hash; 212 unsigned long psize; 213 unsigned long hp0, hp1; 214 unsigned long idx_ret; 215 long ret; 216 struct kvm *kvm = vcpu->kvm; 217 218 psize = 1ul << porder; 219 npages = memslot->npages >> (porder - PAGE_SHIFT); 220 221 /* VRMA can't be > 1TB */ 222 if (npages > 1ul << (40 - porder)) 223 npages = 1ul << (40 - porder); 224 /* Can't use more than 1 HPTE per HPTEG */ 225 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 226 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 227 228 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 229 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 230 hp1 = hpte1_pgsize_encoding(psize) | 231 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 232 233 for (i = 0; i < npages; ++i) { 234 addr = i << porder; 235 /* can't use hpt_hash since va > 64 bits */ 236 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 237 & kvmppc_hpt_mask(&kvm->arch.hpt); 238 /* 239 * We assume that the hash table is empty and no 240 * vcpus are using it at this stage. Since we create 241 * at most one HPTE per HPTEG, we just assume entry 7 242 * is available and use it. 243 */ 244 hash = (hash << 3) + 7; 245 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 246 hp_r = hp1 | addr; 247 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 248 &idx_ret); 249 if (ret != H_SUCCESS) { 250 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 251 addr, ret); 252 break; 253 } 254 } 255 } 256 257 int kvmppc_mmu_hv_init(void) 258 { 259 unsigned long nr_lpids; 260 261 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) 262 return -EINVAL; 263 264 if (cpu_has_feature(CPU_FTR_HVMODE)) { 265 if (WARN_ON(mfspr(SPRN_LPID) != 0)) 266 return -EINVAL; 267 nr_lpids = 1UL << mmu_lpid_bits; 268 } else { 269 nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT; 270 } 271 272 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 273 /* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */ 274 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 275 WARN_ON(nr_lpids != 1UL << 12); 276 else 277 WARN_ON(nr_lpids != 1UL << 10); 278 279 /* 280 * Reserve the last implemented LPID use in partition 281 * switching for POWER7 and POWER8. 282 */ 283 nr_lpids -= 1; 284 } 285 286 kvmppc_init_lpid(nr_lpids); 287 288 return 0; 289 } 290 291 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 292 long pte_index, unsigned long pteh, 293 unsigned long ptel, unsigned long *pte_idx_ret) 294 { 295 long ret; 296 297 preempt_disable(); 298 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 299 kvm->mm->pgd, false, pte_idx_ret); 300 preempt_enable(); 301 if (ret == H_TOO_HARD) { 302 /* this can't happen */ 303 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 304 ret = H_RESOURCE; /* or something */ 305 } 306 return ret; 307 308 } 309 310 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 311 gva_t eaddr) 312 { 313 u64 mask; 314 int i; 315 316 for (i = 0; i < vcpu->arch.slb_nr; i++) { 317 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 318 continue; 319 320 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 321 mask = ESID_MASK_1T; 322 else 323 mask = ESID_MASK; 324 325 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 326 return &vcpu->arch.slb[i]; 327 } 328 return NULL; 329 } 330 331 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 332 unsigned long ea) 333 { 334 unsigned long ra_mask; 335 336 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 337 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 338 } 339 340 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 341 struct kvmppc_pte *gpte, bool data, bool iswrite) 342 { 343 struct kvm *kvm = vcpu->kvm; 344 struct kvmppc_slb *slbe; 345 unsigned long slb_v; 346 unsigned long pp, key; 347 unsigned long v, orig_v, gr; 348 __be64 *hptep; 349 long int index; 350 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 351 352 if (kvm_is_radix(vcpu->kvm)) 353 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 354 355 /* Get SLB entry */ 356 if (virtmode) { 357 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 358 if (!slbe) 359 return -EINVAL; 360 slb_v = slbe->origv; 361 } else { 362 /* real mode access */ 363 slb_v = vcpu->kvm->arch.vrma_slb_v; 364 } 365 366 preempt_disable(); 367 /* Find the HPTE in the hash table */ 368 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 369 HPTE_V_VALID | HPTE_V_ABSENT); 370 if (index < 0) { 371 preempt_enable(); 372 return -ENOENT; 373 } 374 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 375 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 376 if (cpu_has_feature(CPU_FTR_ARCH_300)) 377 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 378 gr = kvm->arch.hpt.rev[index].guest_rpte; 379 380 unlock_hpte(hptep, orig_v); 381 preempt_enable(); 382 383 gpte->eaddr = eaddr; 384 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 385 386 /* Get PP bits and key for permission check */ 387 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 388 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 389 key &= slb_v; 390 391 /* Calculate permissions */ 392 gpte->may_read = hpte_read_permission(pp, key); 393 gpte->may_write = hpte_write_permission(pp, key); 394 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 395 396 /* Storage key permission check for POWER7 */ 397 if (data && virtmode) { 398 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 399 if (amrfield & 1) 400 gpte->may_read = 0; 401 if (amrfield & 2) 402 gpte->may_write = 0; 403 } 404 405 /* Get the guest physical address */ 406 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 407 return 0; 408 } 409 410 /* 411 * Quick test for whether an instruction is a load or a store. 412 * If the instruction is a load or a store, then this will indicate 413 * which it is, at least on server processors. (Embedded processors 414 * have some external PID instructions that don't follow the rule 415 * embodied here.) If the instruction isn't a load or store, then 416 * this doesn't return anything useful. 417 */ 418 static int instruction_is_store(ppc_inst_t instr) 419 { 420 unsigned int mask; 421 unsigned int suffix; 422 423 mask = 0x10000000; 424 suffix = ppc_inst_val(instr); 425 if (ppc_inst_prefixed(instr)) 426 suffix = ppc_inst_suffix(instr); 427 else if ((suffix & 0xfc000000) == 0x7c000000) 428 mask = 0x100; /* major opcode 31 */ 429 return (suffix & mask) != 0; 430 } 431 432 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu, 433 unsigned long gpa, gva_t ea, int is_store) 434 { 435 ppc_inst_t last_inst; 436 bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 437 438 /* 439 * Fast path - check if the guest physical address corresponds to a 440 * device on the FAST_MMIO_BUS, if so we can avoid loading the 441 * instruction all together, then we can just handle it and return. 442 */ 443 if (is_store) { 444 int idx, ret; 445 446 idx = srcu_read_lock(&vcpu->kvm->srcu); 447 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, 448 NULL); 449 srcu_read_unlock(&vcpu->kvm->srcu, idx); 450 if (!ret) { 451 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4)); 452 return RESUME_GUEST; 453 } 454 } 455 456 /* 457 * If we fail, we just return to the guest and try executing it again. 458 */ 459 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 460 EMULATE_DONE) 461 return RESUME_GUEST; 462 463 /* 464 * WARNING: We do not know for sure whether the instruction we just 465 * read from memory is the same that caused the fault in the first 466 * place. 467 * 468 * If the fault is prefixed but the instruction is not or vice 469 * versa, try again so that we don't advance pc the wrong amount. 470 */ 471 if (ppc_inst_prefixed(last_inst) != is_prefixed) 472 return RESUME_GUEST; 473 474 /* 475 * If the instruction we read is neither an load or a store, 476 * then it can't access memory, so we don't need to worry about 477 * enforcing access permissions. So, assuming it is a load or 478 * store, we just check that its direction (load or store) is 479 * consistent with the original fault, since that's what we 480 * checked the access permissions against. If there is a mismatch 481 * we just return and retry the instruction. 482 */ 483 484 if (instruction_is_store(last_inst) != !!is_store) 485 return RESUME_GUEST; 486 487 /* 488 * Emulated accesses are emulated by looking at the hash for 489 * translation once, then performing the access later. The 490 * translation could be invalidated in the meantime in which 491 * point performing the subsequent memory access on the old 492 * physical address could possibly be a security hole for the 493 * guest (but not the host). 494 * 495 * This is less of an issue for MMIO stores since they aren't 496 * globally visible. It could be an issue for MMIO loads to 497 * a certain extent but we'll ignore it for now. 498 */ 499 500 vcpu->arch.paddr_accessed = gpa; 501 vcpu->arch.vaddr_accessed = ea; 502 return kvmppc_emulate_mmio(vcpu); 503 } 504 505 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu, 506 unsigned long ea, unsigned long dsisr) 507 { 508 struct kvm *kvm = vcpu->kvm; 509 unsigned long hpte[3], r; 510 unsigned long hnow_v, hnow_r; 511 __be64 *hptep; 512 unsigned long mmu_seq, psize, pte_size; 513 unsigned long gpa_base, gfn_base; 514 unsigned long gpa, gfn, hva, pfn, hpa; 515 struct kvm_memory_slot *memslot; 516 unsigned long *rmap; 517 struct revmap_entry *rev; 518 struct page *page; 519 long index, ret; 520 bool is_ci; 521 bool writing, write_ok; 522 unsigned int shift; 523 unsigned long rcbits; 524 long mmio_update; 525 pte_t pte, *ptep; 526 527 if (kvm_is_radix(kvm)) 528 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr); 529 530 /* 531 * Real-mode code has already searched the HPT and found the 532 * entry we're interested in. Lock the entry and check that 533 * it hasn't changed. If it has, just return and re-execute the 534 * instruction. 535 */ 536 if (ea != vcpu->arch.pgfault_addr) 537 return RESUME_GUEST; 538 539 if (vcpu->arch.pgfault_cache) { 540 mmio_update = atomic64_read(&kvm->arch.mmio_update); 541 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 542 r = vcpu->arch.pgfault_cache->rpte; 543 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 544 r); 545 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 546 gfn_base = gpa_base >> PAGE_SHIFT; 547 gpa = gpa_base | (ea & (psize - 1)); 548 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, 549 dsisr & DSISR_ISSTORE); 550 } 551 } 552 index = vcpu->arch.pgfault_index; 553 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 554 rev = &kvm->arch.hpt.rev[index]; 555 preempt_disable(); 556 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 557 cpu_relax(); 558 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 559 hpte[1] = be64_to_cpu(hptep[1]); 560 hpte[2] = r = rev->guest_rpte; 561 unlock_hpte(hptep, hpte[0]); 562 preempt_enable(); 563 564 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 565 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 566 hpte[1] = hpte_new_to_old_r(hpte[1]); 567 } 568 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 569 hpte[1] != vcpu->arch.pgfault_hpte[1]) 570 return RESUME_GUEST; 571 572 /* Translate the logical address and get the page */ 573 psize = kvmppc_actual_pgsz(hpte[0], r); 574 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 575 gfn_base = gpa_base >> PAGE_SHIFT; 576 gpa = gpa_base | (ea & (psize - 1)); 577 gfn = gpa >> PAGE_SHIFT; 578 memslot = gfn_to_memslot(kvm, gfn); 579 580 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 581 582 /* No memslot means it's an emulated MMIO region */ 583 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 584 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, 585 dsisr & DSISR_ISSTORE); 586 587 /* 588 * This should never happen, because of the slot_is_aligned() 589 * check in kvmppc_do_h_enter(). 590 */ 591 if (gfn_base < memslot->base_gfn) 592 return -EFAULT; 593 594 /* used to check for invalidations in progress */ 595 mmu_seq = kvm->mmu_invalidate_seq; 596 smp_rmb(); 597 598 ret = -EFAULT; 599 page = NULL; 600 writing = (dsisr & DSISR_ISSTORE) != 0; 601 /* If writing != 0, then the HPTE must allow writing, if we get here */ 602 write_ok = writing; 603 hva = gfn_to_hva_memslot(memslot, gfn); 604 605 /* 606 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 607 * do it with !atomic && !async, which is how we call it. 608 * We always ask for write permission since the common case 609 * is that the page is writable. 610 */ 611 if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) { 612 write_ok = true; 613 } else { 614 /* Call KVM generic code to do the slow-path check */ 615 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, 616 writing, &write_ok, NULL); 617 if (is_error_noslot_pfn(pfn)) 618 return -EFAULT; 619 page = NULL; 620 if (pfn_valid(pfn)) { 621 page = pfn_to_page(pfn); 622 if (PageReserved(page)) 623 page = NULL; 624 } 625 } 626 627 /* 628 * Read the PTE from the process' radix tree and use that 629 * so we get the shift and attribute bits. 630 */ 631 spin_lock(&kvm->mmu_lock); 632 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); 633 pte = __pte(0); 634 if (ptep) 635 pte = READ_ONCE(*ptep); 636 spin_unlock(&kvm->mmu_lock); 637 /* 638 * If the PTE disappeared temporarily due to a THP 639 * collapse, just return and let the guest try again. 640 */ 641 if (!pte_present(pte)) { 642 if (page) 643 put_page(page); 644 return RESUME_GUEST; 645 } 646 hpa = pte_pfn(pte) << PAGE_SHIFT; 647 pte_size = PAGE_SIZE; 648 if (shift) 649 pte_size = 1ul << shift; 650 is_ci = pte_ci(pte); 651 652 if (psize > pte_size) 653 goto out_put; 654 if (pte_size > psize) 655 hpa |= hva & (pte_size - psize); 656 657 /* Check WIMG vs. the actual page we're accessing */ 658 if (!hpte_cache_flags_ok(r, is_ci)) { 659 if (is_ci) 660 goto out_put; 661 /* 662 * Allow guest to map emulated device memory as 663 * uncacheable, but actually make it cacheable. 664 */ 665 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 666 } 667 668 /* 669 * Set the HPTE to point to hpa. 670 * Since the hpa is at PAGE_SIZE granularity, make sure we 671 * don't mask out lower-order bits if psize < PAGE_SIZE. 672 */ 673 if (psize < PAGE_SIZE) 674 psize = PAGE_SIZE; 675 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa; 676 if (hpte_is_writable(r) && !write_ok) 677 r = hpte_make_readonly(r); 678 ret = RESUME_GUEST; 679 preempt_disable(); 680 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 681 cpu_relax(); 682 hnow_v = be64_to_cpu(hptep[0]); 683 hnow_r = be64_to_cpu(hptep[1]); 684 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 685 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 686 hnow_r = hpte_new_to_old_r(hnow_r); 687 } 688 689 /* 690 * If the HPT is being resized, don't update the HPTE, 691 * instead let the guest retry after the resize operation is complete. 692 * The synchronization for mmu_ready test vs. set is provided 693 * by the HPTE lock. 694 */ 695 if (!kvm->arch.mmu_ready) 696 goto out_unlock; 697 698 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 699 rev->guest_rpte != hpte[2]) 700 /* HPTE has been changed under us; let the guest retry */ 701 goto out_unlock; 702 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 703 704 /* Always put the HPTE in the rmap chain for the page base address */ 705 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 706 lock_rmap(rmap); 707 708 /* Check if we might have been invalidated; let the guest retry if so */ 709 ret = RESUME_GUEST; 710 if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) { 711 unlock_rmap(rmap); 712 goto out_unlock; 713 } 714 715 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 716 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 717 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 718 719 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 720 /* HPTE was previously valid, so we need to invalidate it */ 721 unlock_rmap(rmap); 722 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 723 kvmppc_invalidate_hpte(kvm, hptep, index); 724 /* don't lose previous R and C bits */ 725 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 726 } else { 727 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 728 } 729 730 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 731 r = hpte_old_to_new_r(hpte[0], r); 732 hpte[0] = hpte_old_to_new_v(hpte[0]); 733 } 734 hptep[1] = cpu_to_be64(r); 735 eieio(); 736 __unlock_hpte(hptep, hpte[0]); 737 asm volatile("ptesync" : : : "memory"); 738 preempt_enable(); 739 if (page && hpte_is_writable(r)) 740 set_page_dirty_lock(page); 741 742 out_put: 743 trace_kvm_page_fault_exit(vcpu, hpte, ret); 744 745 if (page) 746 put_page(page); 747 return ret; 748 749 out_unlock: 750 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 751 preempt_enable(); 752 goto out_put; 753 } 754 755 void kvmppc_rmap_reset(struct kvm *kvm) 756 { 757 struct kvm_memslots *slots; 758 struct kvm_memory_slot *memslot; 759 int srcu_idx, bkt; 760 761 srcu_idx = srcu_read_lock(&kvm->srcu); 762 slots = kvm_memslots(kvm); 763 kvm_for_each_memslot(memslot, bkt, slots) { 764 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 765 spin_lock(&kvm->mmu_lock); 766 /* 767 * This assumes it is acceptable to lose reference and 768 * change bits across a reset. 769 */ 770 memset(memslot->arch.rmap, 0, 771 memslot->npages * sizeof(*memslot->arch.rmap)); 772 spin_unlock(&kvm->mmu_lock); 773 } 774 srcu_read_unlock(&kvm->srcu, srcu_idx); 775 } 776 777 /* Must be called with both HPTE and rmap locked */ 778 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 779 struct kvm_memory_slot *memslot, 780 unsigned long *rmapp, unsigned long gfn) 781 { 782 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 783 struct revmap_entry *rev = kvm->arch.hpt.rev; 784 unsigned long j, h; 785 unsigned long ptel, psize, rcbits; 786 787 j = rev[i].forw; 788 if (j == i) { 789 /* chain is now empty */ 790 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 791 } else { 792 /* remove i from chain */ 793 h = rev[i].back; 794 rev[h].forw = j; 795 rev[j].back = h; 796 rev[i].forw = rev[i].back = i; 797 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 798 } 799 800 /* Now check and modify the HPTE */ 801 ptel = rev[i].guest_rpte; 802 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 803 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 804 hpte_rpn(ptel, psize) == gfn) { 805 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 806 kvmppc_invalidate_hpte(kvm, hptep, i); 807 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 808 /* Harvest R and C */ 809 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 810 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 811 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 812 kvmppc_update_dirty_map(memslot, gfn, psize); 813 if (rcbits & ~rev[i].guest_rpte) { 814 rev[i].guest_rpte = ptel | rcbits; 815 note_hpte_modification(kvm, &rev[i]); 816 } 817 } 818 } 819 820 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 821 unsigned long gfn) 822 { 823 unsigned long i; 824 __be64 *hptep; 825 unsigned long *rmapp; 826 827 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 828 for (;;) { 829 lock_rmap(rmapp); 830 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 831 unlock_rmap(rmapp); 832 break; 833 } 834 835 /* 836 * To avoid an ABBA deadlock with the HPTE lock bit, 837 * we can't spin on the HPTE lock while holding the 838 * rmap chain lock. 839 */ 840 i = *rmapp & KVMPPC_RMAP_INDEX; 841 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 842 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 843 /* unlock rmap before spinning on the HPTE lock */ 844 unlock_rmap(rmapp); 845 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 846 cpu_relax(); 847 continue; 848 } 849 850 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 851 unlock_rmap(rmapp); 852 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 853 } 854 } 855 856 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range) 857 { 858 gfn_t gfn; 859 860 if (kvm_is_radix(kvm)) { 861 for (gfn = range->start; gfn < range->end; gfn++) 862 kvm_unmap_radix(kvm, range->slot, gfn); 863 } else { 864 for (gfn = range->start; gfn < range->end; gfn++) 865 kvm_unmap_rmapp(kvm, range->slot, gfn); 866 } 867 868 return false; 869 } 870 871 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 872 struct kvm_memory_slot *memslot) 873 { 874 unsigned long gfn; 875 unsigned long n; 876 unsigned long *rmapp; 877 878 gfn = memslot->base_gfn; 879 rmapp = memslot->arch.rmap; 880 if (kvm_is_radix(kvm)) { 881 kvmppc_radix_flush_memslot(kvm, memslot); 882 return; 883 } 884 885 for (n = memslot->npages; n; --n, ++gfn) { 886 /* 887 * Testing the present bit without locking is OK because 888 * the memslot has been marked invalid already, and hence 889 * no new HPTEs referencing this page can be created, 890 * thus the present bit can't go from 0 to 1. 891 */ 892 if (*rmapp & KVMPPC_RMAP_PRESENT) 893 kvm_unmap_rmapp(kvm, memslot, gfn); 894 ++rmapp; 895 } 896 } 897 898 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 899 unsigned long gfn) 900 { 901 struct revmap_entry *rev = kvm->arch.hpt.rev; 902 unsigned long head, i, j; 903 __be64 *hptep; 904 bool ret = false; 905 unsigned long *rmapp; 906 907 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 908 retry: 909 lock_rmap(rmapp); 910 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 911 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 912 ret = true; 913 } 914 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 915 unlock_rmap(rmapp); 916 return ret; 917 } 918 919 i = head = *rmapp & KVMPPC_RMAP_INDEX; 920 do { 921 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 922 j = rev[i].forw; 923 924 /* If this HPTE isn't referenced, ignore it */ 925 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 926 continue; 927 928 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 929 /* unlock rmap before spinning on the HPTE lock */ 930 unlock_rmap(rmapp); 931 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 932 cpu_relax(); 933 goto retry; 934 } 935 936 /* Now check and modify the HPTE */ 937 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 938 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 939 kvmppc_clear_ref_hpte(kvm, hptep, i); 940 if (!(rev[i].guest_rpte & HPTE_R_R)) { 941 rev[i].guest_rpte |= HPTE_R_R; 942 note_hpte_modification(kvm, &rev[i]); 943 } 944 ret = true; 945 } 946 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 947 } while ((i = j) != head); 948 949 unlock_rmap(rmapp); 950 return ret; 951 } 952 953 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) 954 { 955 gfn_t gfn; 956 bool ret = false; 957 958 if (kvm_is_radix(kvm)) { 959 for (gfn = range->start; gfn < range->end; gfn++) 960 ret |= kvm_age_radix(kvm, range->slot, gfn); 961 } else { 962 for (gfn = range->start; gfn < range->end; gfn++) 963 ret |= kvm_age_rmapp(kvm, range->slot, gfn); 964 } 965 966 return ret; 967 } 968 969 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 970 unsigned long gfn) 971 { 972 struct revmap_entry *rev = kvm->arch.hpt.rev; 973 unsigned long head, i, j; 974 unsigned long *hp; 975 bool ret = true; 976 unsigned long *rmapp; 977 978 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 979 if (*rmapp & KVMPPC_RMAP_REFERENCED) 980 return true; 981 982 lock_rmap(rmapp); 983 if (*rmapp & KVMPPC_RMAP_REFERENCED) 984 goto out; 985 986 if (*rmapp & KVMPPC_RMAP_PRESENT) { 987 i = head = *rmapp & KVMPPC_RMAP_INDEX; 988 do { 989 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 990 j = rev[i].forw; 991 if (be64_to_cpu(hp[1]) & HPTE_R_R) 992 goto out; 993 } while ((i = j) != head); 994 } 995 ret = false; 996 997 out: 998 unlock_rmap(rmapp); 999 return ret; 1000 } 1001 1002 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) 1003 { 1004 WARN_ON(range->start + 1 != range->end); 1005 1006 if (kvm_is_radix(kvm)) 1007 return kvm_test_age_radix(kvm, range->slot, range->start); 1008 else 1009 return kvm_test_age_rmapp(kvm, range->slot, range->start); 1010 } 1011 1012 bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) 1013 { 1014 WARN_ON(range->start + 1 != range->end); 1015 1016 if (kvm_is_radix(kvm)) 1017 kvm_unmap_radix(kvm, range->slot, range->start); 1018 else 1019 kvm_unmap_rmapp(kvm, range->slot, range->start); 1020 1021 return false; 1022 } 1023 1024 static int vcpus_running(struct kvm *kvm) 1025 { 1026 return atomic_read(&kvm->arch.vcpus_running) != 0; 1027 } 1028 1029 /* 1030 * Returns the number of system pages that are dirty. 1031 * This can be more than 1 if we find a huge-page HPTE. 1032 */ 1033 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1034 { 1035 struct revmap_entry *rev = kvm->arch.hpt.rev; 1036 unsigned long head, i, j; 1037 unsigned long n; 1038 unsigned long v, r; 1039 __be64 *hptep; 1040 int npages_dirty = 0; 1041 1042 retry: 1043 lock_rmap(rmapp); 1044 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1045 unlock_rmap(rmapp); 1046 return npages_dirty; 1047 } 1048 1049 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1050 do { 1051 unsigned long hptep1; 1052 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1053 j = rev[i].forw; 1054 1055 /* 1056 * Checking the C (changed) bit here is racy since there 1057 * is no guarantee about when the hardware writes it back. 1058 * If the HPTE is not writable then it is stable since the 1059 * page can't be written to, and we would have done a tlbie 1060 * (which forces the hardware to complete any writeback) 1061 * when making the HPTE read-only. 1062 * If vcpus are running then this call is racy anyway 1063 * since the page could get dirtied subsequently, so we 1064 * expect there to be a further call which would pick up 1065 * any delayed C bit writeback. 1066 * Otherwise we need to do the tlbie even if C==0 in 1067 * order to pick up any delayed writeback of C. 1068 */ 1069 hptep1 = be64_to_cpu(hptep[1]); 1070 if (!(hptep1 & HPTE_R_C) && 1071 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1072 continue; 1073 1074 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1075 /* unlock rmap before spinning on the HPTE lock */ 1076 unlock_rmap(rmapp); 1077 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1078 cpu_relax(); 1079 goto retry; 1080 } 1081 1082 /* Now check and modify the HPTE */ 1083 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1084 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1085 continue; 1086 } 1087 1088 /* need to make it temporarily absent so C is stable */ 1089 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1090 kvmppc_invalidate_hpte(kvm, hptep, i); 1091 v = be64_to_cpu(hptep[0]); 1092 r = be64_to_cpu(hptep[1]); 1093 if (r & HPTE_R_C) { 1094 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1095 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1096 rev[i].guest_rpte |= HPTE_R_C; 1097 note_hpte_modification(kvm, &rev[i]); 1098 } 1099 n = kvmppc_actual_pgsz(v, r); 1100 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1101 if (n > npages_dirty) 1102 npages_dirty = n; 1103 eieio(); 1104 } 1105 v &= ~HPTE_V_ABSENT; 1106 v |= HPTE_V_VALID; 1107 __unlock_hpte(hptep, v); 1108 } while ((i = j) != head); 1109 1110 unlock_rmap(rmapp); 1111 return npages_dirty; 1112 } 1113 1114 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1115 struct kvm_memory_slot *memslot, 1116 unsigned long *map) 1117 { 1118 unsigned long gfn; 1119 1120 if (!vpa->dirty || !vpa->pinned_addr) 1121 return; 1122 gfn = vpa->gpa >> PAGE_SHIFT; 1123 if (gfn < memslot->base_gfn || 1124 gfn >= memslot->base_gfn + memslot->npages) 1125 return; 1126 1127 vpa->dirty = false; 1128 if (map) 1129 __set_bit_le(gfn - memslot->base_gfn, map); 1130 } 1131 1132 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1133 struct kvm_memory_slot *memslot, unsigned long *map) 1134 { 1135 unsigned long i; 1136 unsigned long *rmapp; 1137 1138 preempt_disable(); 1139 rmapp = memslot->arch.rmap; 1140 for (i = 0; i < memslot->npages; ++i) { 1141 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1142 /* 1143 * Note that if npages > 0 then i must be a multiple of npages, 1144 * since we always put huge-page HPTEs in the rmap chain 1145 * corresponding to their page base address. 1146 */ 1147 if (npages) 1148 set_dirty_bits(map, i, npages); 1149 ++rmapp; 1150 } 1151 preempt_enable(); 1152 return 0; 1153 } 1154 1155 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1156 unsigned long *nb_ret) 1157 { 1158 struct kvm_memory_slot *memslot; 1159 unsigned long gfn = gpa >> PAGE_SHIFT; 1160 struct page *page, *pages[1]; 1161 int npages; 1162 unsigned long hva, offset; 1163 int srcu_idx; 1164 1165 srcu_idx = srcu_read_lock(&kvm->srcu); 1166 memslot = gfn_to_memslot(kvm, gfn); 1167 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1168 goto err; 1169 hva = gfn_to_hva_memslot(memslot, gfn); 1170 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); 1171 if (npages < 1) 1172 goto err; 1173 page = pages[0]; 1174 srcu_read_unlock(&kvm->srcu, srcu_idx); 1175 1176 offset = gpa & (PAGE_SIZE - 1); 1177 if (nb_ret) 1178 *nb_ret = PAGE_SIZE - offset; 1179 return page_address(page) + offset; 1180 1181 err: 1182 srcu_read_unlock(&kvm->srcu, srcu_idx); 1183 return NULL; 1184 } 1185 1186 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1187 bool dirty) 1188 { 1189 struct page *page = virt_to_page(va); 1190 struct kvm_memory_slot *memslot; 1191 unsigned long gfn; 1192 int srcu_idx; 1193 1194 put_page(page); 1195 1196 if (!dirty) 1197 return; 1198 1199 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1200 gfn = gpa >> PAGE_SHIFT; 1201 srcu_idx = srcu_read_lock(&kvm->srcu); 1202 memslot = gfn_to_memslot(kvm, gfn); 1203 if (memslot && memslot->dirty_bitmap) 1204 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1205 srcu_read_unlock(&kvm->srcu, srcu_idx); 1206 } 1207 1208 /* 1209 * HPT resizing 1210 */ 1211 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1212 { 1213 int rc; 1214 1215 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1216 if (rc < 0) 1217 return rc; 1218 1219 resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__, 1220 resize->hpt.virt); 1221 1222 return 0; 1223 } 1224 1225 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1226 unsigned long idx) 1227 { 1228 struct kvm *kvm = resize->kvm; 1229 struct kvm_hpt_info *old = &kvm->arch.hpt; 1230 struct kvm_hpt_info *new = &resize->hpt; 1231 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1232 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1233 __be64 *hptep, *new_hptep; 1234 unsigned long vpte, rpte, guest_rpte; 1235 int ret; 1236 struct revmap_entry *rev; 1237 unsigned long apsize, avpn, pteg, hash; 1238 unsigned long new_idx, new_pteg, replace_vpte; 1239 int pshift; 1240 1241 hptep = (__be64 *)(old->virt + (idx << 4)); 1242 1243 /* Guest is stopped, so new HPTEs can't be added or faulted 1244 * in, only unmapped or altered by host actions. So, it's 1245 * safe to check this before we take the HPTE lock */ 1246 vpte = be64_to_cpu(hptep[0]); 1247 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1248 return 0; /* nothing to do */ 1249 1250 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1251 cpu_relax(); 1252 1253 vpte = be64_to_cpu(hptep[0]); 1254 1255 ret = 0; 1256 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1257 /* Nothing to do */ 1258 goto out; 1259 1260 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1261 rpte = be64_to_cpu(hptep[1]); 1262 vpte = hpte_new_to_old_v(vpte, rpte); 1263 } 1264 1265 /* Unmap */ 1266 rev = &old->rev[idx]; 1267 guest_rpte = rev->guest_rpte; 1268 1269 ret = -EIO; 1270 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1271 if (!apsize) 1272 goto out; 1273 1274 if (vpte & HPTE_V_VALID) { 1275 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1276 int srcu_idx = srcu_read_lock(&kvm->srcu); 1277 struct kvm_memory_slot *memslot = 1278 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1279 1280 if (memslot) { 1281 unsigned long *rmapp; 1282 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1283 1284 lock_rmap(rmapp); 1285 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1286 unlock_rmap(rmapp); 1287 } 1288 1289 srcu_read_unlock(&kvm->srcu, srcu_idx); 1290 } 1291 1292 /* Reload PTE after unmap */ 1293 vpte = be64_to_cpu(hptep[0]); 1294 BUG_ON(vpte & HPTE_V_VALID); 1295 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1296 1297 ret = 0; 1298 if (!(vpte & HPTE_V_BOLTED)) 1299 goto out; 1300 1301 rpte = be64_to_cpu(hptep[1]); 1302 1303 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1304 vpte = hpte_new_to_old_v(vpte, rpte); 1305 rpte = hpte_new_to_old_r(rpte); 1306 } 1307 1308 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1309 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1310 pteg = idx / HPTES_PER_GROUP; 1311 if (vpte & HPTE_V_SECONDARY) 1312 pteg = ~pteg; 1313 1314 if (!(vpte & HPTE_V_1TB_SEG)) { 1315 unsigned long offset, vsid; 1316 1317 /* We only have 28 - 23 bits of offset in avpn */ 1318 offset = (avpn & 0x1f) << 23; 1319 vsid = avpn >> 5; 1320 /* We can find more bits from the pteg value */ 1321 if (pshift < 23) 1322 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1323 1324 hash = vsid ^ (offset >> pshift); 1325 } else { 1326 unsigned long offset, vsid; 1327 1328 /* We only have 40 - 23 bits of seg_off in avpn */ 1329 offset = (avpn & 0x1ffff) << 23; 1330 vsid = avpn >> 17; 1331 if (pshift < 23) 1332 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1333 1334 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1335 } 1336 1337 new_pteg = hash & new_hash_mask; 1338 if (vpte & HPTE_V_SECONDARY) 1339 new_pteg = ~hash & new_hash_mask; 1340 1341 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1342 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1343 1344 replace_vpte = be64_to_cpu(new_hptep[0]); 1345 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1346 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); 1347 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); 1348 } 1349 1350 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1351 BUG_ON(new->order >= old->order); 1352 1353 if (replace_vpte & HPTE_V_BOLTED) { 1354 if (vpte & HPTE_V_BOLTED) 1355 /* Bolted collision, nothing we can do */ 1356 ret = -ENOSPC; 1357 /* Discard the new HPTE */ 1358 goto out; 1359 } 1360 1361 /* Discard the previous HPTE */ 1362 } 1363 1364 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1365 rpte = hpte_old_to_new_r(vpte, rpte); 1366 vpte = hpte_old_to_new_v(vpte); 1367 } 1368 1369 new_hptep[1] = cpu_to_be64(rpte); 1370 new->rev[new_idx].guest_rpte = guest_rpte; 1371 /* No need for a barrier, since new HPT isn't active */ 1372 new_hptep[0] = cpu_to_be64(vpte); 1373 unlock_hpte(new_hptep, vpte); 1374 1375 out: 1376 unlock_hpte(hptep, vpte); 1377 return ret; 1378 } 1379 1380 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1381 { 1382 struct kvm *kvm = resize->kvm; 1383 unsigned long i; 1384 int rc; 1385 1386 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1387 rc = resize_hpt_rehash_hpte(resize, i); 1388 if (rc != 0) 1389 return rc; 1390 } 1391 1392 return 0; 1393 } 1394 1395 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1396 { 1397 struct kvm *kvm = resize->kvm; 1398 struct kvm_hpt_info hpt_tmp; 1399 1400 /* Exchange the pending tables in the resize structure with 1401 * the active tables */ 1402 1403 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1404 1405 spin_lock(&kvm->mmu_lock); 1406 asm volatile("ptesync" : : : "memory"); 1407 1408 hpt_tmp = kvm->arch.hpt; 1409 kvmppc_set_hpt(kvm, &resize->hpt); 1410 resize->hpt = hpt_tmp; 1411 1412 spin_unlock(&kvm->mmu_lock); 1413 1414 synchronize_srcu_expedited(&kvm->srcu); 1415 1416 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1417 kvmppc_setup_partition_table(kvm); 1418 1419 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1420 } 1421 1422 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1423 { 1424 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) 1425 return; 1426 1427 if (!resize) 1428 return; 1429 1430 if (resize->error != -EBUSY) { 1431 if (resize->hpt.virt) 1432 kvmppc_free_hpt(&resize->hpt); 1433 kfree(resize); 1434 } 1435 1436 if (kvm->arch.resize_hpt == resize) 1437 kvm->arch.resize_hpt = NULL; 1438 } 1439 1440 static void resize_hpt_prepare_work(struct work_struct *work) 1441 { 1442 struct kvm_resize_hpt *resize = container_of(work, 1443 struct kvm_resize_hpt, 1444 work); 1445 struct kvm *kvm = resize->kvm; 1446 int err = 0; 1447 1448 if (WARN_ON(resize->error != -EBUSY)) 1449 return; 1450 1451 mutex_lock(&kvm->arch.mmu_setup_lock); 1452 1453 /* Request is still current? */ 1454 if (kvm->arch.resize_hpt == resize) { 1455 /* We may request large allocations here: 1456 * do not sleep with kvm->arch.mmu_setup_lock held for a while. 1457 */ 1458 mutex_unlock(&kvm->arch.mmu_setup_lock); 1459 1460 resize_hpt_debug(resize, "%s(): order = %d\n", __func__, 1461 resize->order); 1462 1463 err = resize_hpt_allocate(resize); 1464 1465 /* We have strict assumption about -EBUSY 1466 * when preparing for HPT resize. 1467 */ 1468 if (WARN_ON(err == -EBUSY)) 1469 err = -EINPROGRESS; 1470 1471 mutex_lock(&kvm->arch.mmu_setup_lock); 1472 /* It is possible that kvm->arch.resize_hpt != resize 1473 * after we grab kvm->arch.mmu_setup_lock again. 1474 */ 1475 } 1476 1477 resize->error = err; 1478 1479 if (kvm->arch.resize_hpt != resize) 1480 resize_hpt_release(kvm, resize); 1481 1482 mutex_unlock(&kvm->arch.mmu_setup_lock); 1483 } 1484 1485 int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1486 struct kvm_ppc_resize_hpt *rhpt) 1487 { 1488 unsigned long flags = rhpt->flags; 1489 unsigned long shift = rhpt->shift; 1490 struct kvm_resize_hpt *resize; 1491 int ret; 1492 1493 if (flags != 0 || kvm_is_radix(kvm)) 1494 return -EINVAL; 1495 1496 if (shift && ((shift < 18) || (shift > 46))) 1497 return -EINVAL; 1498 1499 mutex_lock(&kvm->arch.mmu_setup_lock); 1500 1501 resize = kvm->arch.resize_hpt; 1502 1503 if (resize) { 1504 if (resize->order == shift) { 1505 /* Suitable resize in progress? */ 1506 ret = resize->error; 1507 if (ret == -EBUSY) 1508 ret = 100; /* estimated time in ms */ 1509 else if (ret) 1510 resize_hpt_release(kvm, resize); 1511 1512 goto out; 1513 } 1514 1515 /* not suitable, cancel it */ 1516 resize_hpt_release(kvm, resize); 1517 } 1518 1519 ret = 0; 1520 if (!shift) 1521 goto out; /* nothing to do */ 1522 1523 /* start new resize */ 1524 1525 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1526 if (!resize) { 1527 ret = -ENOMEM; 1528 goto out; 1529 } 1530 1531 resize->error = -EBUSY; 1532 resize->order = shift; 1533 resize->kvm = kvm; 1534 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1535 kvm->arch.resize_hpt = resize; 1536 1537 schedule_work(&resize->work); 1538 1539 ret = 100; /* estimated time in ms */ 1540 1541 out: 1542 mutex_unlock(&kvm->arch.mmu_setup_lock); 1543 return ret; 1544 } 1545 1546 static void resize_hpt_boot_vcpu(void *opaque) 1547 { 1548 /* Nothing to do, just force a KVM exit */ 1549 } 1550 1551 int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1552 struct kvm_ppc_resize_hpt *rhpt) 1553 { 1554 unsigned long flags = rhpt->flags; 1555 unsigned long shift = rhpt->shift; 1556 struct kvm_resize_hpt *resize; 1557 int ret; 1558 1559 if (flags != 0 || kvm_is_radix(kvm)) 1560 return -EINVAL; 1561 1562 if (shift && ((shift < 18) || (shift > 46))) 1563 return -EINVAL; 1564 1565 mutex_lock(&kvm->arch.mmu_setup_lock); 1566 1567 resize = kvm->arch.resize_hpt; 1568 1569 /* This shouldn't be possible */ 1570 ret = -EIO; 1571 if (WARN_ON(!kvm->arch.mmu_ready)) 1572 goto out_no_hpt; 1573 1574 /* Stop VCPUs from running while we mess with the HPT */ 1575 kvm->arch.mmu_ready = 0; 1576 smp_mb(); 1577 1578 /* Boot all CPUs out of the guest so they re-read 1579 * mmu_ready */ 1580 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1581 1582 ret = -ENXIO; 1583 if (!resize || (resize->order != shift)) 1584 goto out; 1585 1586 ret = resize->error; 1587 if (ret) 1588 goto out; 1589 1590 ret = resize_hpt_rehash(resize); 1591 if (ret) 1592 goto out; 1593 1594 resize_hpt_pivot(resize); 1595 1596 out: 1597 /* Let VCPUs run again */ 1598 kvm->arch.mmu_ready = 1; 1599 smp_mb(); 1600 out_no_hpt: 1601 resize_hpt_release(kvm, resize); 1602 mutex_unlock(&kvm->arch.mmu_setup_lock); 1603 return ret; 1604 } 1605 1606 /* 1607 * Functions for reading and writing the hash table via reads and 1608 * writes on a file descriptor. 1609 * 1610 * Reads return the guest view of the hash table, which has to be 1611 * pieced together from the real hash table and the guest_rpte 1612 * values in the revmap array. 1613 * 1614 * On writes, each HPTE written is considered in turn, and if it 1615 * is valid, it is written to the HPT as if an H_ENTER with the 1616 * exact flag set was done. When the invalid count is non-zero 1617 * in the header written to the stream, the kernel will make 1618 * sure that that many HPTEs are invalid, and invalidate them 1619 * if not. 1620 */ 1621 1622 struct kvm_htab_ctx { 1623 unsigned long index; 1624 unsigned long flags; 1625 struct kvm *kvm; 1626 int first_pass; 1627 }; 1628 1629 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1630 1631 /* 1632 * Returns 1 if this HPT entry has been modified or has pending 1633 * R/C bit changes. 1634 */ 1635 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1636 { 1637 unsigned long rcbits_unset; 1638 1639 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1640 return 1; 1641 1642 /* Also need to consider changes in reference and changed bits */ 1643 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1644 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1645 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1646 return 1; 1647 1648 return 0; 1649 } 1650 1651 static long record_hpte(unsigned long flags, __be64 *hptp, 1652 unsigned long *hpte, struct revmap_entry *revp, 1653 int want_valid, int first_pass) 1654 { 1655 unsigned long v, r, hr; 1656 unsigned long rcbits_unset; 1657 int ok = 1; 1658 int valid, dirty; 1659 1660 /* Unmodified entries are uninteresting except on the first pass */ 1661 dirty = hpte_dirty(revp, hptp); 1662 if (!first_pass && !dirty) 1663 return 0; 1664 1665 valid = 0; 1666 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1667 valid = 1; 1668 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1669 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1670 valid = 0; 1671 } 1672 if (valid != want_valid) 1673 return 0; 1674 1675 v = r = 0; 1676 if (valid || dirty) { 1677 /* lock the HPTE so it's stable and read it */ 1678 preempt_disable(); 1679 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1680 cpu_relax(); 1681 v = be64_to_cpu(hptp[0]); 1682 hr = be64_to_cpu(hptp[1]); 1683 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1684 v = hpte_new_to_old_v(v, hr); 1685 hr = hpte_new_to_old_r(hr); 1686 } 1687 1688 /* re-evaluate valid and dirty from synchronized HPTE value */ 1689 valid = !!(v & HPTE_V_VALID); 1690 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1691 1692 /* Harvest R and C into guest view if necessary */ 1693 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1694 if (valid && (rcbits_unset & hr)) { 1695 revp->guest_rpte |= (hr & 1696 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1697 dirty = 1; 1698 } 1699 1700 if (v & HPTE_V_ABSENT) { 1701 v &= ~HPTE_V_ABSENT; 1702 v |= HPTE_V_VALID; 1703 valid = 1; 1704 } 1705 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1706 valid = 0; 1707 1708 r = revp->guest_rpte; 1709 /* only clear modified if this is the right sort of entry */ 1710 if (valid == want_valid && dirty) { 1711 r &= ~HPTE_GR_MODIFIED; 1712 revp->guest_rpte = r; 1713 } 1714 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1715 preempt_enable(); 1716 if (!(valid == want_valid && (first_pass || dirty))) 1717 ok = 0; 1718 } 1719 hpte[0] = cpu_to_be64(v); 1720 hpte[1] = cpu_to_be64(r); 1721 return ok; 1722 } 1723 1724 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1725 size_t count, loff_t *ppos) 1726 { 1727 struct kvm_htab_ctx *ctx = file->private_data; 1728 struct kvm *kvm = ctx->kvm; 1729 struct kvm_get_htab_header hdr; 1730 __be64 *hptp; 1731 struct revmap_entry *revp; 1732 unsigned long i, nb, nw; 1733 unsigned long __user *lbuf; 1734 struct kvm_get_htab_header __user *hptr; 1735 unsigned long flags; 1736 int first_pass; 1737 unsigned long hpte[2]; 1738 1739 if (!access_ok(buf, count)) 1740 return -EFAULT; 1741 if (kvm_is_radix(kvm)) 1742 return 0; 1743 1744 first_pass = ctx->first_pass; 1745 flags = ctx->flags; 1746 1747 i = ctx->index; 1748 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1749 revp = kvm->arch.hpt.rev + i; 1750 lbuf = (unsigned long __user *)buf; 1751 1752 nb = 0; 1753 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1754 /* Initialize header */ 1755 hptr = (struct kvm_get_htab_header __user *)buf; 1756 hdr.n_valid = 0; 1757 hdr.n_invalid = 0; 1758 nw = nb; 1759 nb += sizeof(hdr); 1760 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1761 1762 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1763 if (!first_pass) { 1764 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1765 !hpte_dirty(revp, hptp)) { 1766 ++i; 1767 hptp += 2; 1768 ++revp; 1769 } 1770 } 1771 hdr.index = i; 1772 1773 /* Grab a series of valid entries */ 1774 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1775 hdr.n_valid < 0xffff && 1776 nb + HPTE_SIZE < count && 1777 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1778 /* valid entry, write it out */ 1779 ++hdr.n_valid; 1780 if (__put_user(hpte[0], lbuf) || 1781 __put_user(hpte[1], lbuf + 1)) 1782 return -EFAULT; 1783 nb += HPTE_SIZE; 1784 lbuf += 2; 1785 ++i; 1786 hptp += 2; 1787 ++revp; 1788 } 1789 /* Now skip invalid entries while we can */ 1790 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1791 hdr.n_invalid < 0xffff && 1792 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1793 /* found an invalid entry */ 1794 ++hdr.n_invalid; 1795 ++i; 1796 hptp += 2; 1797 ++revp; 1798 } 1799 1800 if (hdr.n_valid || hdr.n_invalid) { 1801 /* write back the header */ 1802 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1803 return -EFAULT; 1804 nw = nb; 1805 buf = (char __user *)lbuf; 1806 } else { 1807 nb = nw; 1808 } 1809 1810 /* Check if we've wrapped around the hash table */ 1811 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1812 i = 0; 1813 ctx->first_pass = 0; 1814 break; 1815 } 1816 } 1817 1818 ctx->index = i; 1819 1820 return nb; 1821 } 1822 1823 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1824 size_t count, loff_t *ppos) 1825 { 1826 struct kvm_htab_ctx *ctx = file->private_data; 1827 struct kvm *kvm = ctx->kvm; 1828 struct kvm_get_htab_header hdr; 1829 unsigned long i, j; 1830 unsigned long v, r; 1831 unsigned long __user *lbuf; 1832 __be64 *hptp; 1833 unsigned long tmp[2]; 1834 ssize_t nb; 1835 long int err, ret; 1836 int mmu_ready; 1837 int pshift; 1838 1839 if (!access_ok(buf, count)) 1840 return -EFAULT; 1841 if (kvm_is_radix(kvm)) 1842 return -EINVAL; 1843 1844 /* lock out vcpus from running while we're doing this */ 1845 mutex_lock(&kvm->arch.mmu_setup_lock); 1846 mmu_ready = kvm->arch.mmu_ready; 1847 if (mmu_ready) { 1848 kvm->arch.mmu_ready = 0; /* temporarily */ 1849 /* order mmu_ready vs. vcpus_running */ 1850 smp_mb(); 1851 if (atomic_read(&kvm->arch.vcpus_running)) { 1852 kvm->arch.mmu_ready = 1; 1853 mutex_unlock(&kvm->arch.mmu_setup_lock); 1854 return -EBUSY; 1855 } 1856 } 1857 1858 err = 0; 1859 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1860 err = -EFAULT; 1861 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1862 break; 1863 1864 err = 0; 1865 if (nb + hdr.n_valid * HPTE_SIZE > count) 1866 break; 1867 1868 nb += sizeof(hdr); 1869 buf += sizeof(hdr); 1870 1871 err = -EINVAL; 1872 i = hdr.index; 1873 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1874 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1875 break; 1876 1877 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1878 lbuf = (unsigned long __user *)buf; 1879 for (j = 0; j < hdr.n_valid; ++j) { 1880 __be64 hpte_v; 1881 __be64 hpte_r; 1882 1883 err = -EFAULT; 1884 if (__get_user(hpte_v, lbuf) || 1885 __get_user(hpte_r, lbuf + 1)) 1886 goto out; 1887 v = be64_to_cpu(hpte_v); 1888 r = be64_to_cpu(hpte_r); 1889 err = -EINVAL; 1890 if (!(v & HPTE_V_VALID)) 1891 goto out; 1892 pshift = kvmppc_hpte_base_page_shift(v, r); 1893 if (pshift <= 0) 1894 goto out; 1895 lbuf += 2; 1896 nb += HPTE_SIZE; 1897 1898 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1899 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1900 err = -EIO; 1901 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1902 tmp); 1903 if (ret != H_SUCCESS) { 1904 pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r); 1905 goto out; 1906 } 1907 if (!mmu_ready && is_vrma_hpte(v)) { 1908 unsigned long senc, lpcr; 1909 1910 senc = slb_pgsize_encoding(1ul << pshift); 1911 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1912 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1913 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1914 lpcr = senc << (LPCR_VRMASD_SH - 4); 1915 kvmppc_update_lpcr(kvm, lpcr, 1916 LPCR_VRMASD); 1917 } else { 1918 kvmppc_setup_partition_table(kvm); 1919 } 1920 mmu_ready = 1; 1921 } 1922 ++i; 1923 hptp += 2; 1924 } 1925 1926 for (j = 0; j < hdr.n_invalid; ++j) { 1927 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1928 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1929 ++i; 1930 hptp += 2; 1931 } 1932 err = 0; 1933 } 1934 1935 out: 1936 /* Order HPTE updates vs. mmu_ready */ 1937 smp_wmb(); 1938 kvm->arch.mmu_ready = mmu_ready; 1939 mutex_unlock(&kvm->arch.mmu_setup_lock); 1940 1941 if (err) 1942 return err; 1943 return nb; 1944 } 1945 1946 static int kvm_htab_release(struct inode *inode, struct file *filp) 1947 { 1948 struct kvm_htab_ctx *ctx = filp->private_data; 1949 1950 filp->private_data = NULL; 1951 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1952 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1953 kvm_put_kvm(ctx->kvm); 1954 kfree(ctx); 1955 return 0; 1956 } 1957 1958 static const struct file_operations kvm_htab_fops = { 1959 .read = kvm_htab_read, 1960 .write = kvm_htab_write, 1961 .llseek = default_llseek, 1962 .release = kvm_htab_release, 1963 }; 1964 1965 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1966 { 1967 int ret; 1968 struct kvm_htab_ctx *ctx; 1969 int rwflag; 1970 1971 /* reject flags we don't recognize */ 1972 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1973 return -EINVAL; 1974 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1975 if (!ctx) 1976 return -ENOMEM; 1977 kvm_get_kvm(kvm); 1978 ctx->kvm = kvm; 1979 ctx->index = ghf->start_index; 1980 ctx->flags = ghf->flags; 1981 ctx->first_pass = 1; 1982 1983 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1984 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1985 if (ret < 0) { 1986 kfree(ctx); 1987 kvm_put_kvm_no_destroy(kvm); 1988 return ret; 1989 } 1990 1991 if (rwflag == O_RDONLY) { 1992 mutex_lock(&kvm->slots_lock); 1993 atomic_inc(&kvm->arch.hpte_mod_interest); 1994 /* make sure kvmppc_do_h_enter etc. see the increment */ 1995 synchronize_srcu_expedited(&kvm->srcu); 1996 mutex_unlock(&kvm->slots_lock); 1997 } 1998 1999 return ret; 2000 } 2001 2002 struct debugfs_htab_state { 2003 struct kvm *kvm; 2004 struct mutex mutex; 2005 unsigned long hpt_index; 2006 int chars_left; 2007 int buf_index; 2008 char buf[64]; 2009 }; 2010 2011 static int debugfs_htab_open(struct inode *inode, struct file *file) 2012 { 2013 struct kvm *kvm = inode->i_private; 2014 struct debugfs_htab_state *p; 2015 2016 p = kzalloc(sizeof(*p), GFP_KERNEL); 2017 if (!p) 2018 return -ENOMEM; 2019 2020 kvm_get_kvm(kvm); 2021 p->kvm = kvm; 2022 mutex_init(&p->mutex); 2023 file->private_data = p; 2024 2025 return nonseekable_open(inode, file); 2026 } 2027 2028 static int debugfs_htab_release(struct inode *inode, struct file *file) 2029 { 2030 struct debugfs_htab_state *p = file->private_data; 2031 2032 kvm_put_kvm(p->kvm); 2033 kfree(p); 2034 return 0; 2035 } 2036 2037 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2038 size_t len, loff_t *ppos) 2039 { 2040 struct debugfs_htab_state *p = file->private_data; 2041 ssize_t ret, r; 2042 unsigned long i, n; 2043 unsigned long v, hr, gr; 2044 struct kvm *kvm; 2045 __be64 *hptp; 2046 2047 kvm = p->kvm; 2048 if (kvm_is_radix(kvm)) 2049 return 0; 2050 2051 ret = mutex_lock_interruptible(&p->mutex); 2052 if (ret) 2053 return ret; 2054 2055 if (p->chars_left) { 2056 n = p->chars_left; 2057 if (n > len) 2058 n = len; 2059 r = copy_to_user(buf, p->buf + p->buf_index, n); 2060 n -= r; 2061 p->chars_left -= n; 2062 p->buf_index += n; 2063 buf += n; 2064 len -= n; 2065 ret = n; 2066 if (r) { 2067 if (!n) 2068 ret = -EFAULT; 2069 goto out; 2070 } 2071 } 2072 2073 i = p->hpt_index; 2074 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2075 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2076 ++i, hptp += 2) { 2077 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2078 continue; 2079 2080 /* lock the HPTE so it's stable and read it */ 2081 preempt_disable(); 2082 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2083 cpu_relax(); 2084 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2085 hr = be64_to_cpu(hptp[1]); 2086 gr = kvm->arch.hpt.rev[i].guest_rpte; 2087 unlock_hpte(hptp, v); 2088 preempt_enable(); 2089 2090 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2091 continue; 2092 2093 n = scnprintf(p->buf, sizeof(p->buf), 2094 "%6lx %.16lx %.16lx %.16lx\n", 2095 i, v, hr, gr); 2096 p->chars_left = n; 2097 if (n > len) 2098 n = len; 2099 r = copy_to_user(buf, p->buf, n); 2100 n -= r; 2101 p->chars_left -= n; 2102 p->buf_index = n; 2103 buf += n; 2104 len -= n; 2105 ret += n; 2106 if (r) { 2107 if (!ret) 2108 ret = -EFAULT; 2109 goto out; 2110 } 2111 } 2112 p->hpt_index = i; 2113 2114 out: 2115 mutex_unlock(&p->mutex); 2116 return ret; 2117 } 2118 2119 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2120 size_t len, loff_t *ppos) 2121 { 2122 return -EACCES; 2123 } 2124 2125 static const struct file_operations debugfs_htab_fops = { 2126 .owner = THIS_MODULE, 2127 .open = debugfs_htab_open, 2128 .release = debugfs_htab_release, 2129 .read = debugfs_htab_read, 2130 .write = debugfs_htab_write, 2131 .llseek = generic_file_llseek, 2132 }; 2133 2134 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2135 { 2136 debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm, 2137 &debugfs_htab_fops); 2138 } 2139 2140 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2141 { 2142 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2143 2144 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2145 2146 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2147 2148 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2149 } 2150