1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 16 */ 17 18 #include <linux/types.h> 19 #include <linux/string.h> 20 #include <linux/kvm.h> 21 #include <linux/kvm_host.h> 22 #include <linux/highmem.h> 23 #include <linux/gfp.h> 24 #include <linux/slab.h> 25 #include <linux/hugetlb.h> 26 #include <linux/vmalloc.h> 27 #include <linux/srcu.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/file.h> 30 #include <linux/debugfs.h> 31 32 #include <asm/tlbflush.h> 33 #include <asm/kvm_ppc.h> 34 #include <asm/kvm_book3s.h> 35 #include <asm/book3s/64/mmu-hash.h> 36 #include <asm/hvcall.h> 37 #include <asm/synch.h> 38 #include <asm/ppc-opcode.h> 39 #include <asm/cputable.h> 40 #include <asm/pte-walk.h> 41 42 #include "trace_hv.h" 43 44 //#define DEBUG_RESIZE_HPT 1 45 46 #ifdef DEBUG_RESIZE_HPT 47 #define resize_hpt_debug(resize, ...) \ 48 do { \ 49 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 50 printk(__VA_ARGS__); \ 51 } while (0) 52 #else 53 #define resize_hpt_debug(resize, ...) \ 54 do { } while (0) 55 #endif 56 57 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 58 long pte_index, unsigned long pteh, 59 unsigned long ptel, unsigned long *pte_idx_ret); 60 61 struct kvm_resize_hpt { 62 /* These fields read-only after init */ 63 struct kvm *kvm; 64 struct work_struct work; 65 u32 order; 66 67 /* These fields protected by kvm->lock */ 68 int error; 69 bool prepare_done; 70 71 /* Private to the work thread, until prepare_done is true, 72 * then protected by kvm->resize_hpt_sem */ 73 struct kvm_hpt_info hpt; 74 }; 75 76 static void kvmppc_rmap_reset(struct kvm *kvm); 77 78 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 79 { 80 unsigned long hpt = 0; 81 int cma = 0; 82 struct page *page = NULL; 83 struct revmap_entry *rev; 84 unsigned long npte; 85 86 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 87 return -EINVAL; 88 89 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 90 if (page) { 91 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 92 memset((void *)hpt, 0, (1ul << order)); 93 cma = 1; 94 } 95 96 if (!hpt) 97 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 98 |__GFP_NOWARN, order - PAGE_SHIFT); 99 100 if (!hpt) 101 return -ENOMEM; 102 103 /* HPTEs are 2**4 bytes long */ 104 npte = 1ul << (order - 4); 105 106 /* Allocate reverse map array */ 107 rev = vmalloc(sizeof(struct revmap_entry) * npte); 108 if (!rev) { 109 pr_err("kvmppc_allocate_hpt: Couldn't alloc reverse map array\n"); 110 if (cma) 111 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 112 else 113 free_pages(hpt, order - PAGE_SHIFT); 114 return -ENOMEM; 115 } 116 117 info->order = order; 118 info->virt = hpt; 119 info->cma = cma; 120 info->rev = rev; 121 122 return 0; 123 } 124 125 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 126 { 127 atomic64_set(&kvm->arch.mmio_update, 0); 128 kvm->arch.hpt = *info; 129 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 130 131 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 132 info->virt, (long)info->order, kvm->arch.lpid); 133 } 134 135 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 136 { 137 long err = -EBUSY; 138 struct kvm_hpt_info info; 139 140 if (kvm_is_radix(kvm)) 141 return -EINVAL; 142 143 mutex_lock(&kvm->lock); 144 if (kvm->arch.hpte_setup_done) { 145 kvm->arch.hpte_setup_done = 0; 146 /* order hpte_setup_done vs. vcpus_running */ 147 smp_mb(); 148 if (atomic_read(&kvm->arch.vcpus_running)) { 149 kvm->arch.hpte_setup_done = 1; 150 goto out; 151 } 152 } 153 if (kvm->arch.hpt.order == order) { 154 /* We already have a suitable HPT */ 155 156 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 157 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 158 /* 159 * Reset all the reverse-mapping chains for all memslots 160 */ 161 kvmppc_rmap_reset(kvm); 162 /* Ensure that each vcpu will flush its TLB on next entry. */ 163 cpumask_setall(&kvm->arch.need_tlb_flush); 164 err = 0; 165 goto out; 166 } 167 168 if (kvm->arch.hpt.virt) { 169 kvmppc_free_hpt(&kvm->arch.hpt); 170 kvmppc_rmap_reset(kvm); 171 } 172 173 err = kvmppc_allocate_hpt(&info, order); 174 if (err < 0) 175 goto out; 176 kvmppc_set_hpt(kvm, &info); 177 178 out: 179 mutex_unlock(&kvm->lock); 180 return err; 181 } 182 183 void kvmppc_free_hpt(struct kvm_hpt_info *info) 184 { 185 vfree(info->rev); 186 if (info->cma) 187 kvm_free_hpt_cma(virt_to_page(info->virt), 188 1 << (info->order - PAGE_SHIFT)); 189 else if (info->virt) 190 free_pages(info->virt, info->order - PAGE_SHIFT); 191 info->virt = 0; 192 info->order = 0; 193 } 194 195 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 196 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 197 { 198 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 199 } 200 201 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 202 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 203 { 204 return (pgsize == 0x10000) ? 0x1000 : 0; 205 } 206 207 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 208 unsigned long porder) 209 { 210 unsigned long i; 211 unsigned long npages; 212 unsigned long hp_v, hp_r; 213 unsigned long addr, hash; 214 unsigned long psize; 215 unsigned long hp0, hp1; 216 unsigned long idx_ret; 217 long ret; 218 struct kvm *kvm = vcpu->kvm; 219 220 psize = 1ul << porder; 221 npages = memslot->npages >> (porder - PAGE_SHIFT); 222 223 /* VRMA can't be > 1TB */ 224 if (npages > 1ul << (40 - porder)) 225 npages = 1ul << (40 - porder); 226 /* Can't use more than 1 HPTE per HPTEG */ 227 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 228 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 229 230 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 231 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 232 hp1 = hpte1_pgsize_encoding(psize) | 233 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 234 235 for (i = 0; i < npages; ++i) { 236 addr = i << porder; 237 /* can't use hpt_hash since va > 64 bits */ 238 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 239 & kvmppc_hpt_mask(&kvm->arch.hpt); 240 /* 241 * We assume that the hash table is empty and no 242 * vcpus are using it at this stage. Since we create 243 * at most one HPTE per HPTEG, we just assume entry 7 244 * is available and use it. 245 */ 246 hash = (hash << 3) + 7; 247 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 248 hp_r = hp1 | addr; 249 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 250 &idx_ret); 251 if (ret != H_SUCCESS) { 252 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 253 addr, ret); 254 break; 255 } 256 } 257 } 258 259 int kvmppc_mmu_hv_init(void) 260 { 261 unsigned long host_lpid, rsvd_lpid; 262 263 if (!cpu_has_feature(CPU_FTR_HVMODE)) 264 return -EINVAL; 265 266 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */ 267 host_lpid = mfspr(SPRN_LPID); 268 rsvd_lpid = LPID_RSVD; 269 270 kvmppc_init_lpid(rsvd_lpid + 1); 271 272 kvmppc_claim_lpid(host_lpid); 273 /* rsvd_lpid is reserved for use in partition switching */ 274 kvmppc_claim_lpid(rsvd_lpid); 275 276 return 0; 277 } 278 279 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu) 280 { 281 unsigned long msr = vcpu->arch.intr_msr; 282 283 /* If transactional, change to suspend mode on IRQ delivery */ 284 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 285 msr |= MSR_TS_S; 286 else 287 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK; 288 kvmppc_set_msr(vcpu, msr); 289 } 290 291 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 292 long pte_index, unsigned long pteh, 293 unsigned long ptel, unsigned long *pte_idx_ret) 294 { 295 long ret; 296 297 /* Protect linux PTE lookup from page table destruction */ 298 rcu_read_lock_sched(); /* this disables preemption too */ 299 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 300 current->mm->pgd, false, pte_idx_ret); 301 rcu_read_unlock_sched(); 302 if (ret == H_TOO_HARD) { 303 /* this can't happen */ 304 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 305 ret = H_RESOURCE; /* or something */ 306 } 307 return ret; 308 309 } 310 311 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 312 gva_t eaddr) 313 { 314 u64 mask; 315 int i; 316 317 for (i = 0; i < vcpu->arch.slb_nr; i++) { 318 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 319 continue; 320 321 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 322 mask = ESID_MASK_1T; 323 else 324 mask = ESID_MASK; 325 326 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 327 return &vcpu->arch.slb[i]; 328 } 329 return NULL; 330 } 331 332 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 333 unsigned long ea) 334 { 335 unsigned long ra_mask; 336 337 ra_mask = hpte_page_size(v, r) - 1; 338 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 339 } 340 341 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 342 struct kvmppc_pte *gpte, bool data, bool iswrite) 343 { 344 struct kvm *kvm = vcpu->kvm; 345 struct kvmppc_slb *slbe; 346 unsigned long slb_v; 347 unsigned long pp, key; 348 unsigned long v, orig_v, gr; 349 __be64 *hptep; 350 int index; 351 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 352 353 /* Get SLB entry */ 354 if (virtmode) { 355 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 356 if (!slbe) 357 return -EINVAL; 358 slb_v = slbe->origv; 359 } else { 360 /* real mode access */ 361 slb_v = vcpu->kvm->arch.vrma_slb_v; 362 } 363 364 preempt_disable(); 365 /* Find the HPTE in the hash table */ 366 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 367 HPTE_V_VALID | HPTE_V_ABSENT); 368 if (index < 0) { 369 preempt_enable(); 370 return -ENOENT; 371 } 372 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 373 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 374 if (cpu_has_feature(CPU_FTR_ARCH_300)) 375 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 376 gr = kvm->arch.hpt.rev[index].guest_rpte; 377 378 unlock_hpte(hptep, orig_v); 379 preempt_enable(); 380 381 gpte->eaddr = eaddr; 382 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 383 384 /* Get PP bits and key for permission check */ 385 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 386 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 387 key &= slb_v; 388 389 /* Calculate permissions */ 390 gpte->may_read = hpte_read_permission(pp, key); 391 gpte->may_write = hpte_write_permission(pp, key); 392 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 393 394 /* Storage key permission check for POWER7 */ 395 if (data && virtmode) { 396 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 397 if (amrfield & 1) 398 gpte->may_read = 0; 399 if (amrfield & 2) 400 gpte->may_write = 0; 401 } 402 403 /* Get the guest physical address */ 404 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 405 return 0; 406 } 407 408 /* 409 * Quick test for whether an instruction is a load or a store. 410 * If the instruction is a load or a store, then this will indicate 411 * which it is, at least on server processors. (Embedded processors 412 * have some external PID instructions that don't follow the rule 413 * embodied here.) If the instruction isn't a load or store, then 414 * this doesn't return anything useful. 415 */ 416 static int instruction_is_store(unsigned int instr) 417 { 418 unsigned int mask; 419 420 mask = 0x10000000; 421 if ((instr & 0xfc000000) == 0x7c000000) 422 mask = 0x100; /* major opcode 31 */ 423 return (instr & mask) != 0; 424 } 425 426 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu, 427 unsigned long gpa, gva_t ea, int is_store) 428 { 429 u32 last_inst; 430 431 /* 432 * If we fail, we just return to the guest and try executing it again. 433 */ 434 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 435 EMULATE_DONE) 436 return RESUME_GUEST; 437 438 /* 439 * WARNING: We do not know for sure whether the instruction we just 440 * read from memory is the same that caused the fault in the first 441 * place. If the instruction we read is neither an load or a store, 442 * then it can't access memory, so we don't need to worry about 443 * enforcing access permissions. So, assuming it is a load or 444 * store, we just check that its direction (load or store) is 445 * consistent with the original fault, since that's what we 446 * checked the access permissions against. If there is a mismatch 447 * we just return and retry the instruction. 448 */ 449 450 if (instruction_is_store(last_inst) != !!is_store) 451 return RESUME_GUEST; 452 453 /* 454 * Emulated accesses are emulated by looking at the hash for 455 * translation once, then performing the access later. The 456 * translation could be invalidated in the meantime in which 457 * point performing the subsequent memory access on the old 458 * physical address could possibly be a security hole for the 459 * guest (but not the host). 460 * 461 * This is less of an issue for MMIO stores since they aren't 462 * globally visible. It could be an issue for MMIO loads to 463 * a certain extent but we'll ignore it for now. 464 */ 465 466 vcpu->arch.paddr_accessed = gpa; 467 vcpu->arch.vaddr_accessed = ea; 468 return kvmppc_emulate_mmio(run, vcpu); 469 } 470 471 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 472 unsigned long ea, unsigned long dsisr) 473 { 474 struct kvm *kvm = vcpu->kvm; 475 unsigned long hpte[3], r; 476 unsigned long hnow_v, hnow_r; 477 __be64 *hptep; 478 unsigned long mmu_seq, psize, pte_size; 479 unsigned long gpa_base, gfn_base; 480 unsigned long gpa, gfn, hva, pfn; 481 struct kvm_memory_slot *memslot; 482 unsigned long *rmap; 483 struct revmap_entry *rev; 484 struct page *page, *pages[1]; 485 long index, ret, npages; 486 bool is_ci; 487 unsigned int writing, write_ok; 488 struct vm_area_struct *vma; 489 unsigned long rcbits; 490 long mmio_update; 491 492 if (kvm_is_radix(kvm)) 493 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr); 494 495 /* 496 * Real-mode code has already searched the HPT and found the 497 * entry we're interested in. Lock the entry and check that 498 * it hasn't changed. If it has, just return and re-execute the 499 * instruction. 500 */ 501 if (ea != vcpu->arch.pgfault_addr) 502 return RESUME_GUEST; 503 504 if (vcpu->arch.pgfault_cache) { 505 mmio_update = atomic64_read(&kvm->arch.mmio_update); 506 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 507 r = vcpu->arch.pgfault_cache->rpte; 508 psize = hpte_page_size(vcpu->arch.pgfault_hpte[0], r); 509 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 510 gfn_base = gpa_base >> PAGE_SHIFT; 511 gpa = gpa_base | (ea & (psize - 1)); 512 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 513 dsisr & DSISR_ISSTORE); 514 } 515 } 516 index = vcpu->arch.pgfault_index; 517 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 518 rev = &kvm->arch.hpt.rev[index]; 519 preempt_disable(); 520 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 521 cpu_relax(); 522 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 523 hpte[1] = be64_to_cpu(hptep[1]); 524 hpte[2] = r = rev->guest_rpte; 525 unlock_hpte(hptep, hpte[0]); 526 preempt_enable(); 527 528 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 529 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 530 hpte[1] = hpte_new_to_old_r(hpte[1]); 531 } 532 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 533 hpte[1] != vcpu->arch.pgfault_hpte[1]) 534 return RESUME_GUEST; 535 536 /* Translate the logical address and get the page */ 537 psize = hpte_page_size(hpte[0], r); 538 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 539 gfn_base = gpa_base >> PAGE_SHIFT; 540 gpa = gpa_base | (ea & (psize - 1)); 541 gfn = gpa >> PAGE_SHIFT; 542 memslot = gfn_to_memslot(kvm, gfn); 543 544 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 545 546 /* No memslot means it's an emulated MMIO region */ 547 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 548 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 549 dsisr & DSISR_ISSTORE); 550 551 /* 552 * This should never happen, because of the slot_is_aligned() 553 * check in kvmppc_do_h_enter(). 554 */ 555 if (gfn_base < memslot->base_gfn) 556 return -EFAULT; 557 558 /* used to check for invalidations in progress */ 559 mmu_seq = kvm->mmu_notifier_seq; 560 smp_rmb(); 561 562 ret = -EFAULT; 563 is_ci = false; 564 pfn = 0; 565 page = NULL; 566 pte_size = PAGE_SIZE; 567 writing = (dsisr & DSISR_ISSTORE) != 0; 568 /* If writing != 0, then the HPTE must allow writing, if we get here */ 569 write_ok = writing; 570 hva = gfn_to_hva_memslot(memslot, gfn); 571 npages = get_user_pages_fast(hva, 1, writing, pages); 572 if (npages < 1) { 573 /* Check if it's an I/O mapping */ 574 down_read(¤t->mm->mmap_sem); 575 vma = find_vma(current->mm, hva); 576 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end && 577 (vma->vm_flags & VM_PFNMAP)) { 578 pfn = vma->vm_pgoff + 579 ((hva - vma->vm_start) >> PAGE_SHIFT); 580 pte_size = psize; 581 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot)))); 582 write_ok = vma->vm_flags & VM_WRITE; 583 } 584 up_read(¤t->mm->mmap_sem); 585 if (!pfn) 586 goto out_put; 587 } else { 588 page = pages[0]; 589 pfn = page_to_pfn(page); 590 if (PageHuge(page)) { 591 page = compound_head(page); 592 pte_size <<= compound_order(page); 593 } 594 /* if the guest wants write access, see if that is OK */ 595 if (!writing && hpte_is_writable(r)) { 596 pte_t *ptep, pte; 597 unsigned long flags; 598 /* 599 * We need to protect against page table destruction 600 * hugepage split and collapse. 601 */ 602 local_irq_save(flags); 603 ptep = find_current_mm_pte(current->mm->pgd, 604 hva, NULL, NULL); 605 if (ptep) { 606 pte = kvmppc_read_update_linux_pte(ptep, 1); 607 if (__pte_write(pte)) 608 write_ok = 1; 609 } 610 local_irq_restore(flags); 611 } 612 } 613 614 if (psize > pte_size) 615 goto out_put; 616 617 /* Check WIMG vs. the actual page we're accessing */ 618 if (!hpte_cache_flags_ok(r, is_ci)) { 619 if (is_ci) 620 goto out_put; 621 /* 622 * Allow guest to map emulated device memory as 623 * uncacheable, but actually make it cacheable. 624 */ 625 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 626 } 627 628 /* 629 * Set the HPTE to point to pfn. 630 * Since the pfn is at PAGE_SIZE granularity, make sure we 631 * don't mask out lower-order bits if psize < PAGE_SIZE. 632 */ 633 if (psize < PAGE_SIZE) 634 psize = PAGE_SIZE; 635 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | 636 ((pfn << PAGE_SHIFT) & ~(psize - 1)); 637 if (hpte_is_writable(r) && !write_ok) 638 r = hpte_make_readonly(r); 639 ret = RESUME_GUEST; 640 preempt_disable(); 641 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 642 cpu_relax(); 643 hnow_v = be64_to_cpu(hptep[0]); 644 hnow_r = be64_to_cpu(hptep[1]); 645 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 646 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 647 hnow_r = hpte_new_to_old_r(hnow_r); 648 } 649 650 /* 651 * If the HPT is being resized, don't update the HPTE, 652 * instead let the guest retry after the resize operation is complete. 653 * The synchronization for hpte_setup_done test vs. set is provided 654 * by the HPTE lock. 655 */ 656 if (!kvm->arch.hpte_setup_done) 657 goto out_unlock; 658 659 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 660 rev->guest_rpte != hpte[2]) 661 /* HPTE has been changed under us; let the guest retry */ 662 goto out_unlock; 663 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 664 665 /* Always put the HPTE in the rmap chain for the page base address */ 666 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 667 lock_rmap(rmap); 668 669 /* Check if we might have been invalidated; let the guest retry if so */ 670 ret = RESUME_GUEST; 671 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 672 unlock_rmap(rmap); 673 goto out_unlock; 674 } 675 676 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 677 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 678 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 679 680 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 681 /* HPTE was previously valid, so we need to invalidate it */ 682 unlock_rmap(rmap); 683 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 684 kvmppc_invalidate_hpte(kvm, hptep, index); 685 /* don't lose previous R and C bits */ 686 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 687 } else { 688 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 689 } 690 691 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 692 r = hpte_old_to_new_r(hpte[0], r); 693 hpte[0] = hpte_old_to_new_v(hpte[0]); 694 } 695 hptep[1] = cpu_to_be64(r); 696 eieio(); 697 __unlock_hpte(hptep, hpte[0]); 698 asm volatile("ptesync" : : : "memory"); 699 preempt_enable(); 700 if (page && hpte_is_writable(r)) 701 SetPageDirty(page); 702 703 out_put: 704 trace_kvm_page_fault_exit(vcpu, hpte, ret); 705 706 if (page) { 707 /* 708 * We drop pages[0] here, not page because page might 709 * have been set to the head page of a compound, but 710 * we have to drop the reference on the correct tail 711 * page to match the get inside gup() 712 */ 713 put_page(pages[0]); 714 } 715 return ret; 716 717 out_unlock: 718 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 719 preempt_enable(); 720 goto out_put; 721 } 722 723 static void kvmppc_rmap_reset(struct kvm *kvm) 724 { 725 struct kvm_memslots *slots; 726 struct kvm_memory_slot *memslot; 727 int srcu_idx; 728 729 srcu_idx = srcu_read_lock(&kvm->srcu); 730 slots = kvm_memslots(kvm); 731 kvm_for_each_memslot(memslot, slots) { 732 /* 733 * This assumes it is acceptable to lose reference and 734 * change bits across a reset. 735 */ 736 memset(memslot->arch.rmap, 0, 737 memslot->npages * sizeof(*memslot->arch.rmap)); 738 } 739 srcu_read_unlock(&kvm->srcu, srcu_idx); 740 } 741 742 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, 743 unsigned long gfn); 744 745 static int kvm_handle_hva_range(struct kvm *kvm, 746 unsigned long start, 747 unsigned long end, 748 hva_handler_fn handler) 749 { 750 int ret; 751 int retval = 0; 752 struct kvm_memslots *slots; 753 struct kvm_memory_slot *memslot; 754 755 slots = kvm_memslots(kvm); 756 kvm_for_each_memslot(memslot, slots) { 757 unsigned long hva_start, hva_end; 758 gfn_t gfn, gfn_end; 759 760 hva_start = max(start, memslot->userspace_addr); 761 hva_end = min(end, memslot->userspace_addr + 762 (memslot->npages << PAGE_SHIFT)); 763 if (hva_start >= hva_end) 764 continue; 765 /* 766 * {gfn(page) | page intersects with [hva_start, hva_end)} = 767 * {gfn, gfn+1, ..., gfn_end-1}. 768 */ 769 gfn = hva_to_gfn_memslot(hva_start, memslot); 770 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 771 772 for (; gfn < gfn_end; ++gfn) { 773 ret = handler(kvm, memslot, gfn); 774 retval |= ret; 775 } 776 } 777 778 return retval; 779 } 780 781 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 782 hva_handler_fn handler) 783 { 784 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 785 } 786 787 /* Must be called with both HPTE and rmap locked */ 788 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 789 unsigned long *rmapp, unsigned long gfn) 790 { 791 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 792 struct revmap_entry *rev = kvm->arch.hpt.rev; 793 unsigned long j, h; 794 unsigned long ptel, psize, rcbits; 795 796 j = rev[i].forw; 797 if (j == i) { 798 /* chain is now empty */ 799 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 800 } else { 801 /* remove i from chain */ 802 h = rev[i].back; 803 rev[h].forw = j; 804 rev[j].back = h; 805 rev[i].forw = rev[i].back = i; 806 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 807 } 808 809 /* Now check and modify the HPTE */ 810 ptel = rev[i].guest_rpte; 811 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel); 812 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 813 hpte_rpn(ptel, psize) == gfn) { 814 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 815 kvmppc_invalidate_hpte(kvm, hptep, i); 816 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 817 /* Harvest R and C */ 818 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 819 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 820 if (rcbits & HPTE_R_C) 821 kvmppc_update_rmap_change(rmapp, psize); 822 if (rcbits & ~rev[i].guest_rpte) { 823 rev[i].guest_rpte = ptel | rcbits; 824 note_hpte_modification(kvm, &rev[i]); 825 } 826 } 827 } 828 829 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 830 unsigned long gfn) 831 { 832 unsigned long i; 833 __be64 *hptep; 834 unsigned long *rmapp; 835 836 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 837 for (;;) { 838 lock_rmap(rmapp); 839 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 840 unlock_rmap(rmapp); 841 break; 842 } 843 844 /* 845 * To avoid an ABBA deadlock with the HPTE lock bit, 846 * we can't spin on the HPTE lock while holding the 847 * rmap chain lock. 848 */ 849 i = *rmapp & KVMPPC_RMAP_INDEX; 850 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 851 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 852 /* unlock rmap before spinning on the HPTE lock */ 853 unlock_rmap(rmapp); 854 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 855 cpu_relax(); 856 continue; 857 } 858 859 kvmppc_unmap_hpte(kvm, i, rmapp, gfn); 860 unlock_rmap(rmapp); 861 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 862 } 863 return 0; 864 } 865 866 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva) 867 { 868 hva_handler_fn handler; 869 870 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 871 kvm_handle_hva(kvm, hva, handler); 872 return 0; 873 } 874 875 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 876 { 877 hva_handler_fn handler; 878 879 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 880 kvm_handle_hva_range(kvm, start, end, handler); 881 return 0; 882 } 883 884 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 885 struct kvm_memory_slot *memslot) 886 { 887 unsigned long gfn; 888 unsigned long n; 889 unsigned long *rmapp; 890 891 gfn = memslot->base_gfn; 892 rmapp = memslot->arch.rmap; 893 for (n = memslot->npages; n; --n, ++gfn) { 894 if (kvm_is_radix(kvm)) { 895 kvm_unmap_radix(kvm, memslot, gfn); 896 continue; 897 } 898 /* 899 * Testing the present bit without locking is OK because 900 * the memslot has been marked invalid already, and hence 901 * no new HPTEs referencing this page can be created, 902 * thus the present bit can't go from 0 to 1. 903 */ 904 if (*rmapp & KVMPPC_RMAP_PRESENT) 905 kvm_unmap_rmapp(kvm, memslot, gfn); 906 ++rmapp; 907 } 908 } 909 910 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 911 unsigned long gfn) 912 { 913 struct revmap_entry *rev = kvm->arch.hpt.rev; 914 unsigned long head, i, j; 915 __be64 *hptep; 916 int ret = 0; 917 unsigned long *rmapp; 918 919 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 920 retry: 921 lock_rmap(rmapp); 922 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 923 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 924 ret = 1; 925 } 926 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 927 unlock_rmap(rmapp); 928 return ret; 929 } 930 931 i = head = *rmapp & KVMPPC_RMAP_INDEX; 932 do { 933 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 934 j = rev[i].forw; 935 936 /* If this HPTE isn't referenced, ignore it */ 937 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 938 continue; 939 940 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 941 /* unlock rmap before spinning on the HPTE lock */ 942 unlock_rmap(rmapp); 943 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 944 cpu_relax(); 945 goto retry; 946 } 947 948 /* Now check and modify the HPTE */ 949 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 950 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 951 kvmppc_clear_ref_hpte(kvm, hptep, i); 952 if (!(rev[i].guest_rpte & HPTE_R_R)) { 953 rev[i].guest_rpte |= HPTE_R_R; 954 note_hpte_modification(kvm, &rev[i]); 955 } 956 ret = 1; 957 } 958 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 959 } while ((i = j) != head); 960 961 unlock_rmap(rmapp); 962 return ret; 963 } 964 965 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 966 { 967 hva_handler_fn handler; 968 969 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; 970 return kvm_handle_hva_range(kvm, start, end, handler); 971 } 972 973 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 974 unsigned long gfn) 975 { 976 struct revmap_entry *rev = kvm->arch.hpt.rev; 977 unsigned long head, i, j; 978 unsigned long *hp; 979 int ret = 1; 980 unsigned long *rmapp; 981 982 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 983 if (*rmapp & KVMPPC_RMAP_REFERENCED) 984 return 1; 985 986 lock_rmap(rmapp); 987 if (*rmapp & KVMPPC_RMAP_REFERENCED) 988 goto out; 989 990 if (*rmapp & KVMPPC_RMAP_PRESENT) { 991 i = head = *rmapp & KVMPPC_RMAP_INDEX; 992 do { 993 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 994 j = rev[i].forw; 995 if (be64_to_cpu(hp[1]) & HPTE_R_R) 996 goto out; 997 } while ((i = j) != head); 998 } 999 ret = 0; 1000 1001 out: 1002 unlock_rmap(rmapp); 1003 return ret; 1004 } 1005 1006 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 1007 { 1008 hva_handler_fn handler; 1009 1010 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; 1011 return kvm_handle_hva(kvm, hva, handler); 1012 } 1013 1014 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 1015 { 1016 hva_handler_fn handler; 1017 1018 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 1019 kvm_handle_hva(kvm, hva, handler); 1020 } 1021 1022 static int vcpus_running(struct kvm *kvm) 1023 { 1024 return atomic_read(&kvm->arch.vcpus_running) != 0; 1025 } 1026 1027 /* 1028 * Returns the number of system pages that are dirty. 1029 * This can be more than 1 if we find a huge-page HPTE. 1030 */ 1031 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1032 { 1033 struct revmap_entry *rev = kvm->arch.hpt.rev; 1034 unsigned long head, i, j; 1035 unsigned long n; 1036 unsigned long v, r; 1037 __be64 *hptep; 1038 int npages_dirty = 0; 1039 1040 retry: 1041 lock_rmap(rmapp); 1042 if (*rmapp & KVMPPC_RMAP_CHANGED) { 1043 long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER) 1044 >> KVMPPC_RMAP_CHG_SHIFT; 1045 *rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER); 1046 npages_dirty = 1; 1047 if (change_order > PAGE_SHIFT) 1048 npages_dirty = 1ul << (change_order - PAGE_SHIFT); 1049 } 1050 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1051 unlock_rmap(rmapp); 1052 return npages_dirty; 1053 } 1054 1055 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1056 do { 1057 unsigned long hptep1; 1058 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1059 j = rev[i].forw; 1060 1061 /* 1062 * Checking the C (changed) bit here is racy since there 1063 * is no guarantee about when the hardware writes it back. 1064 * If the HPTE is not writable then it is stable since the 1065 * page can't be written to, and we would have done a tlbie 1066 * (which forces the hardware to complete any writeback) 1067 * when making the HPTE read-only. 1068 * If vcpus are running then this call is racy anyway 1069 * since the page could get dirtied subsequently, so we 1070 * expect there to be a further call which would pick up 1071 * any delayed C bit writeback. 1072 * Otherwise we need to do the tlbie even if C==0 in 1073 * order to pick up any delayed writeback of C. 1074 */ 1075 hptep1 = be64_to_cpu(hptep[1]); 1076 if (!(hptep1 & HPTE_R_C) && 1077 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1078 continue; 1079 1080 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1081 /* unlock rmap before spinning on the HPTE lock */ 1082 unlock_rmap(rmapp); 1083 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1084 cpu_relax(); 1085 goto retry; 1086 } 1087 1088 /* Now check and modify the HPTE */ 1089 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1090 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1091 continue; 1092 } 1093 1094 /* need to make it temporarily absent so C is stable */ 1095 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1096 kvmppc_invalidate_hpte(kvm, hptep, i); 1097 v = be64_to_cpu(hptep[0]); 1098 r = be64_to_cpu(hptep[1]); 1099 if (r & HPTE_R_C) { 1100 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1101 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1102 rev[i].guest_rpte |= HPTE_R_C; 1103 note_hpte_modification(kvm, &rev[i]); 1104 } 1105 n = hpte_page_size(v, r); 1106 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1107 if (n > npages_dirty) 1108 npages_dirty = n; 1109 eieio(); 1110 } 1111 v &= ~HPTE_V_ABSENT; 1112 v |= HPTE_V_VALID; 1113 __unlock_hpte(hptep, v); 1114 } while ((i = j) != head); 1115 1116 unlock_rmap(rmapp); 1117 return npages_dirty; 1118 } 1119 1120 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1121 struct kvm_memory_slot *memslot, 1122 unsigned long *map) 1123 { 1124 unsigned long gfn; 1125 1126 if (!vpa->dirty || !vpa->pinned_addr) 1127 return; 1128 gfn = vpa->gpa >> PAGE_SHIFT; 1129 if (gfn < memslot->base_gfn || 1130 gfn >= memslot->base_gfn + memslot->npages) 1131 return; 1132 1133 vpa->dirty = false; 1134 if (map) 1135 __set_bit_le(gfn - memslot->base_gfn, map); 1136 } 1137 1138 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1139 struct kvm_memory_slot *memslot, unsigned long *map) 1140 { 1141 unsigned long i, j; 1142 unsigned long *rmapp; 1143 1144 preempt_disable(); 1145 rmapp = memslot->arch.rmap; 1146 for (i = 0; i < memslot->npages; ++i) { 1147 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1148 /* 1149 * Note that if npages > 0 then i must be a multiple of npages, 1150 * since we always put huge-page HPTEs in the rmap chain 1151 * corresponding to their page base address. 1152 */ 1153 if (npages && map) 1154 for (j = i; npages; ++j, --npages) 1155 __set_bit_le(j, map); 1156 ++rmapp; 1157 } 1158 preempt_enable(); 1159 return 0; 1160 } 1161 1162 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1163 unsigned long *nb_ret) 1164 { 1165 struct kvm_memory_slot *memslot; 1166 unsigned long gfn = gpa >> PAGE_SHIFT; 1167 struct page *page, *pages[1]; 1168 int npages; 1169 unsigned long hva, offset; 1170 int srcu_idx; 1171 1172 srcu_idx = srcu_read_lock(&kvm->srcu); 1173 memslot = gfn_to_memslot(kvm, gfn); 1174 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1175 goto err; 1176 hva = gfn_to_hva_memslot(memslot, gfn); 1177 npages = get_user_pages_fast(hva, 1, 1, pages); 1178 if (npages < 1) 1179 goto err; 1180 page = pages[0]; 1181 srcu_read_unlock(&kvm->srcu, srcu_idx); 1182 1183 offset = gpa & (PAGE_SIZE - 1); 1184 if (nb_ret) 1185 *nb_ret = PAGE_SIZE - offset; 1186 return page_address(page) + offset; 1187 1188 err: 1189 srcu_read_unlock(&kvm->srcu, srcu_idx); 1190 return NULL; 1191 } 1192 1193 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1194 bool dirty) 1195 { 1196 struct page *page = virt_to_page(va); 1197 struct kvm_memory_slot *memslot; 1198 unsigned long gfn; 1199 unsigned long *rmap; 1200 int srcu_idx; 1201 1202 put_page(page); 1203 1204 if (!dirty) 1205 return; 1206 1207 /* We need to mark this page dirty in the rmap chain */ 1208 gfn = gpa >> PAGE_SHIFT; 1209 srcu_idx = srcu_read_lock(&kvm->srcu); 1210 memslot = gfn_to_memslot(kvm, gfn); 1211 if (memslot) { 1212 if (!kvm_is_radix(kvm)) { 1213 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1214 lock_rmap(rmap); 1215 *rmap |= KVMPPC_RMAP_CHANGED; 1216 unlock_rmap(rmap); 1217 } else if (memslot->dirty_bitmap) { 1218 mark_page_dirty(kvm, gfn); 1219 } 1220 } 1221 srcu_read_unlock(&kvm->srcu, srcu_idx); 1222 } 1223 1224 /* 1225 * HPT resizing 1226 */ 1227 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1228 { 1229 int rc; 1230 1231 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1232 if (rc < 0) 1233 return rc; 1234 1235 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", 1236 resize->hpt.virt); 1237 1238 return 0; 1239 } 1240 1241 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1242 unsigned long idx) 1243 { 1244 struct kvm *kvm = resize->kvm; 1245 struct kvm_hpt_info *old = &kvm->arch.hpt; 1246 struct kvm_hpt_info *new = &resize->hpt; 1247 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1248 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1249 __be64 *hptep, *new_hptep; 1250 unsigned long vpte, rpte, guest_rpte; 1251 int ret; 1252 struct revmap_entry *rev; 1253 unsigned long apsize, psize, avpn, pteg, hash; 1254 unsigned long new_idx, new_pteg, replace_vpte; 1255 1256 hptep = (__be64 *)(old->virt + (idx << 4)); 1257 1258 /* Guest is stopped, so new HPTEs can't be added or faulted 1259 * in, only unmapped or altered by host actions. So, it's 1260 * safe to check this before we take the HPTE lock */ 1261 vpte = be64_to_cpu(hptep[0]); 1262 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1263 return 0; /* nothing to do */ 1264 1265 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1266 cpu_relax(); 1267 1268 vpte = be64_to_cpu(hptep[0]); 1269 1270 ret = 0; 1271 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1272 /* Nothing to do */ 1273 goto out; 1274 1275 /* Unmap */ 1276 rev = &old->rev[idx]; 1277 guest_rpte = rev->guest_rpte; 1278 1279 ret = -EIO; 1280 apsize = hpte_page_size(vpte, guest_rpte); 1281 if (!apsize) 1282 goto out; 1283 1284 if (vpte & HPTE_V_VALID) { 1285 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1286 int srcu_idx = srcu_read_lock(&kvm->srcu); 1287 struct kvm_memory_slot *memslot = 1288 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1289 1290 if (memslot) { 1291 unsigned long *rmapp; 1292 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1293 1294 lock_rmap(rmapp); 1295 kvmppc_unmap_hpte(kvm, idx, rmapp, gfn); 1296 unlock_rmap(rmapp); 1297 } 1298 1299 srcu_read_unlock(&kvm->srcu, srcu_idx); 1300 } 1301 1302 /* Reload PTE after unmap */ 1303 vpte = be64_to_cpu(hptep[0]); 1304 1305 BUG_ON(vpte & HPTE_V_VALID); 1306 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1307 1308 ret = 0; 1309 if (!(vpte & HPTE_V_BOLTED)) 1310 goto out; 1311 1312 rpte = be64_to_cpu(hptep[1]); 1313 psize = hpte_base_page_size(vpte, rpte); 1314 avpn = HPTE_V_AVPN_VAL(vpte) & ~((psize - 1) >> 23); 1315 pteg = idx / HPTES_PER_GROUP; 1316 if (vpte & HPTE_V_SECONDARY) 1317 pteg = ~pteg; 1318 1319 if (!(vpte & HPTE_V_1TB_SEG)) { 1320 unsigned long offset, vsid; 1321 1322 /* We only have 28 - 23 bits of offset in avpn */ 1323 offset = (avpn & 0x1f) << 23; 1324 vsid = avpn >> 5; 1325 /* We can find more bits from the pteg value */ 1326 if (psize < (1ULL << 23)) 1327 offset |= ((vsid ^ pteg) & old_hash_mask) * psize; 1328 1329 hash = vsid ^ (offset / psize); 1330 } else { 1331 unsigned long offset, vsid; 1332 1333 /* We only have 40 - 23 bits of seg_off in avpn */ 1334 offset = (avpn & 0x1ffff) << 23; 1335 vsid = avpn >> 17; 1336 if (psize < (1ULL << 23)) 1337 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) * psize; 1338 1339 hash = vsid ^ (vsid << 25) ^ (offset / psize); 1340 } 1341 1342 new_pteg = hash & new_hash_mask; 1343 if (vpte & HPTE_V_SECONDARY) { 1344 BUG_ON(~pteg != (hash & old_hash_mask)); 1345 new_pteg = ~new_pteg; 1346 } else { 1347 BUG_ON(pteg != (hash & old_hash_mask)); 1348 } 1349 1350 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1351 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1352 1353 replace_vpte = be64_to_cpu(new_hptep[0]); 1354 1355 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1356 BUG_ON(new->order >= old->order); 1357 1358 if (replace_vpte & HPTE_V_BOLTED) { 1359 if (vpte & HPTE_V_BOLTED) 1360 /* Bolted collision, nothing we can do */ 1361 ret = -ENOSPC; 1362 /* Discard the new HPTE */ 1363 goto out; 1364 } 1365 1366 /* Discard the previous HPTE */ 1367 } 1368 1369 new_hptep[1] = cpu_to_be64(rpte); 1370 new->rev[new_idx].guest_rpte = guest_rpte; 1371 /* No need for a barrier, since new HPT isn't active */ 1372 new_hptep[0] = cpu_to_be64(vpte); 1373 unlock_hpte(new_hptep, vpte); 1374 1375 out: 1376 unlock_hpte(hptep, vpte); 1377 return ret; 1378 } 1379 1380 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1381 { 1382 struct kvm *kvm = resize->kvm; 1383 unsigned long i; 1384 int rc; 1385 1386 /* 1387 * resize_hpt_rehash_hpte() doesn't handle the new-format HPTEs 1388 * that POWER9 uses, and could well hit a BUG_ON on POWER9. 1389 */ 1390 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1391 return -EIO; 1392 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1393 rc = resize_hpt_rehash_hpte(resize, i); 1394 if (rc != 0) 1395 return rc; 1396 } 1397 1398 return 0; 1399 } 1400 1401 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1402 { 1403 struct kvm *kvm = resize->kvm; 1404 struct kvm_hpt_info hpt_tmp; 1405 1406 /* Exchange the pending tables in the resize structure with 1407 * the active tables */ 1408 1409 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1410 1411 spin_lock(&kvm->mmu_lock); 1412 asm volatile("ptesync" : : : "memory"); 1413 1414 hpt_tmp = kvm->arch.hpt; 1415 kvmppc_set_hpt(kvm, &resize->hpt); 1416 resize->hpt = hpt_tmp; 1417 1418 spin_unlock(&kvm->mmu_lock); 1419 1420 synchronize_srcu_expedited(&kvm->srcu); 1421 1422 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1423 } 1424 1425 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1426 { 1427 BUG_ON(kvm->arch.resize_hpt != resize); 1428 1429 if (!resize) 1430 return; 1431 1432 if (resize->hpt.virt) 1433 kvmppc_free_hpt(&resize->hpt); 1434 1435 kvm->arch.resize_hpt = NULL; 1436 kfree(resize); 1437 } 1438 1439 static void resize_hpt_prepare_work(struct work_struct *work) 1440 { 1441 struct kvm_resize_hpt *resize = container_of(work, 1442 struct kvm_resize_hpt, 1443 work); 1444 struct kvm *kvm = resize->kvm; 1445 int err; 1446 1447 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", 1448 resize->order); 1449 1450 err = resize_hpt_allocate(resize); 1451 1452 mutex_lock(&kvm->lock); 1453 1454 resize->error = err; 1455 resize->prepare_done = true; 1456 1457 mutex_unlock(&kvm->lock); 1458 } 1459 1460 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1461 struct kvm_ppc_resize_hpt *rhpt) 1462 { 1463 unsigned long flags = rhpt->flags; 1464 unsigned long shift = rhpt->shift; 1465 struct kvm_resize_hpt *resize; 1466 int ret; 1467 1468 if (flags != 0) 1469 return -EINVAL; 1470 1471 if (shift && ((shift < 18) || (shift > 46))) 1472 return -EINVAL; 1473 1474 mutex_lock(&kvm->lock); 1475 1476 resize = kvm->arch.resize_hpt; 1477 1478 if (resize) { 1479 if (resize->order == shift) { 1480 /* Suitable resize in progress */ 1481 if (resize->prepare_done) { 1482 ret = resize->error; 1483 if (ret != 0) 1484 resize_hpt_release(kvm, resize); 1485 } else { 1486 ret = 100; /* estimated time in ms */ 1487 } 1488 1489 goto out; 1490 } 1491 1492 /* not suitable, cancel it */ 1493 resize_hpt_release(kvm, resize); 1494 } 1495 1496 ret = 0; 1497 if (!shift) 1498 goto out; /* nothing to do */ 1499 1500 /* start new resize */ 1501 1502 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1503 if (!resize) { 1504 ret = -ENOMEM; 1505 goto out; 1506 } 1507 resize->order = shift; 1508 resize->kvm = kvm; 1509 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1510 kvm->arch.resize_hpt = resize; 1511 1512 schedule_work(&resize->work); 1513 1514 ret = 100; /* estimated time in ms */ 1515 1516 out: 1517 mutex_unlock(&kvm->lock); 1518 return ret; 1519 } 1520 1521 static void resize_hpt_boot_vcpu(void *opaque) 1522 { 1523 /* Nothing to do, just force a KVM exit */ 1524 } 1525 1526 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1527 struct kvm_ppc_resize_hpt *rhpt) 1528 { 1529 unsigned long flags = rhpt->flags; 1530 unsigned long shift = rhpt->shift; 1531 struct kvm_resize_hpt *resize; 1532 long ret; 1533 1534 if (flags != 0) 1535 return -EINVAL; 1536 1537 if (shift && ((shift < 18) || (shift > 46))) 1538 return -EINVAL; 1539 1540 mutex_lock(&kvm->lock); 1541 1542 resize = kvm->arch.resize_hpt; 1543 1544 /* This shouldn't be possible */ 1545 ret = -EIO; 1546 if (WARN_ON(!kvm->arch.hpte_setup_done)) 1547 goto out_no_hpt; 1548 1549 /* Stop VCPUs from running while we mess with the HPT */ 1550 kvm->arch.hpte_setup_done = 0; 1551 smp_mb(); 1552 1553 /* Boot all CPUs out of the guest so they re-read 1554 * hpte_setup_done */ 1555 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1556 1557 ret = -ENXIO; 1558 if (!resize || (resize->order != shift)) 1559 goto out; 1560 1561 ret = -EBUSY; 1562 if (!resize->prepare_done) 1563 goto out; 1564 1565 ret = resize->error; 1566 if (ret != 0) 1567 goto out; 1568 1569 ret = resize_hpt_rehash(resize); 1570 if (ret != 0) 1571 goto out; 1572 1573 resize_hpt_pivot(resize); 1574 1575 out: 1576 /* Let VCPUs run again */ 1577 kvm->arch.hpte_setup_done = 1; 1578 smp_mb(); 1579 out_no_hpt: 1580 resize_hpt_release(kvm, resize); 1581 mutex_unlock(&kvm->lock); 1582 return ret; 1583 } 1584 1585 /* 1586 * Functions for reading and writing the hash table via reads and 1587 * writes on a file descriptor. 1588 * 1589 * Reads return the guest view of the hash table, which has to be 1590 * pieced together from the real hash table and the guest_rpte 1591 * values in the revmap array. 1592 * 1593 * On writes, each HPTE written is considered in turn, and if it 1594 * is valid, it is written to the HPT as if an H_ENTER with the 1595 * exact flag set was done. When the invalid count is non-zero 1596 * in the header written to the stream, the kernel will make 1597 * sure that that many HPTEs are invalid, and invalidate them 1598 * if not. 1599 */ 1600 1601 struct kvm_htab_ctx { 1602 unsigned long index; 1603 unsigned long flags; 1604 struct kvm *kvm; 1605 int first_pass; 1606 }; 1607 1608 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1609 1610 /* 1611 * Returns 1 if this HPT entry has been modified or has pending 1612 * R/C bit changes. 1613 */ 1614 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1615 { 1616 unsigned long rcbits_unset; 1617 1618 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1619 return 1; 1620 1621 /* Also need to consider changes in reference and changed bits */ 1622 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1623 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1624 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1625 return 1; 1626 1627 return 0; 1628 } 1629 1630 static long record_hpte(unsigned long flags, __be64 *hptp, 1631 unsigned long *hpte, struct revmap_entry *revp, 1632 int want_valid, int first_pass) 1633 { 1634 unsigned long v, r, hr; 1635 unsigned long rcbits_unset; 1636 int ok = 1; 1637 int valid, dirty; 1638 1639 /* Unmodified entries are uninteresting except on the first pass */ 1640 dirty = hpte_dirty(revp, hptp); 1641 if (!first_pass && !dirty) 1642 return 0; 1643 1644 valid = 0; 1645 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1646 valid = 1; 1647 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1648 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1649 valid = 0; 1650 } 1651 if (valid != want_valid) 1652 return 0; 1653 1654 v = r = 0; 1655 if (valid || dirty) { 1656 /* lock the HPTE so it's stable and read it */ 1657 preempt_disable(); 1658 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1659 cpu_relax(); 1660 v = be64_to_cpu(hptp[0]); 1661 hr = be64_to_cpu(hptp[1]); 1662 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1663 v = hpte_new_to_old_v(v, hr); 1664 hr = hpte_new_to_old_r(hr); 1665 } 1666 1667 /* re-evaluate valid and dirty from synchronized HPTE value */ 1668 valid = !!(v & HPTE_V_VALID); 1669 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1670 1671 /* Harvest R and C into guest view if necessary */ 1672 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1673 if (valid && (rcbits_unset & hr)) { 1674 revp->guest_rpte |= (hr & 1675 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1676 dirty = 1; 1677 } 1678 1679 if (v & HPTE_V_ABSENT) { 1680 v &= ~HPTE_V_ABSENT; 1681 v |= HPTE_V_VALID; 1682 valid = 1; 1683 } 1684 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1685 valid = 0; 1686 1687 r = revp->guest_rpte; 1688 /* only clear modified if this is the right sort of entry */ 1689 if (valid == want_valid && dirty) { 1690 r &= ~HPTE_GR_MODIFIED; 1691 revp->guest_rpte = r; 1692 } 1693 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1694 preempt_enable(); 1695 if (!(valid == want_valid && (first_pass || dirty))) 1696 ok = 0; 1697 } 1698 hpte[0] = cpu_to_be64(v); 1699 hpte[1] = cpu_to_be64(r); 1700 return ok; 1701 } 1702 1703 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1704 size_t count, loff_t *ppos) 1705 { 1706 struct kvm_htab_ctx *ctx = file->private_data; 1707 struct kvm *kvm = ctx->kvm; 1708 struct kvm_get_htab_header hdr; 1709 __be64 *hptp; 1710 struct revmap_entry *revp; 1711 unsigned long i, nb, nw; 1712 unsigned long __user *lbuf; 1713 struct kvm_get_htab_header __user *hptr; 1714 unsigned long flags; 1715 int first_pass; 1716 unsigned long hpte[2]; 1717 1718 if (!access_ok(VERIFY_WRITE, buf, count)) 1719 return -EFAULT; 1720 1721 first_pass = ctx->first_pass; 1722 flags = ctx->flags; 1723 1724 i = ctx->index; 1725 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1726 revp = kvm->arch.hpt.rev + i; 1727 lbuf = (unsigned long __user *)buf; 1728 1729 nb = 0; 1730 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1731 /* Initialize header */ 1732 hptr = (struct kvm_get_htab_header __user *)buf; 1733 hdr.n_valid = 0; 1734 hdr.n_invalid = 0; 1735 nw = nb; 1736 nb += sizeof(hdr); 1737 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1738 1739 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1740 if (!first_pass) { 1741 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1742 !hpte_dirty(revp, hptp)) { 1743 ++i; 1744 hptp += 2; 1745 ++revp; 1746 } 1747 } 1748 hdr.index = i; 1749 1750 /* Grab a series of valid entries */ 1751 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1752 hdr.n_valid < 0xffff && 1753 nb + HPTE_SIZE < count && 1754 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1755 /* valid entry, write it out */ 1756 ++hdr.n_valid; 1757 if (__put_user(hpte[0], lbuf) || 1758 __put_user(hpte[1], lbuf + 1)) 1759 return -EFAULT; 1760 nb += HPTE_SIZE; 1761 lbuf += 2; 1762 ++i; 1763 hptp += 2; 1764 ++revp; 1765 } 1766 /* Now skip invalid entries while we can */ 1767 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1768 hdr.n_invalid < 0xffff && 1769 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1770 /* found an invalid entry */ 1771 ++hdr.n_invalid; 1772 ++i; 1773 hptp += 2; 1774 ++revp; 1775 } 1776 1777 if (hdr.n_valid || hdr.n_invalid) { 1778 /* write back the header */ 1779 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1780 return -EFAULT; 1781 nw = nb; 1782 buf = (char __user *)lbuf; 1783 } else { 1784 nb = nw; 1785 } 1786 1787 /* Check if we've wrapped around the hash table */ 1788 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1789 i = 0; 1790 ctx->first_pass = 0; 1791 break; 1792 } 1793 } 1794 1795 ctx->index = i; 1796 1797 return nb; 1798 } 1799 1800 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1801 size_t count, loff_t *ppos) 1802 { 1803 struct kvm_htab_ctx *ctx = file->private_data; 1804 struct kvm *kvm = ctx->kvm; 1805 struct kvm_get_htab_header hdr; 1806 unsigned long i, j; 1807 unsigned long v, r; 1808 unsigned long __user *lbuf; 1809 __be64 *hptp; 1810 unsigned long tmp[2]; 1811 ssize_t nb; 1812 long int err, ret; 1813 int hpte_setup; 1814 1815 if (!access_ok(VERIFY_READ, buf, count)) 1816 return -EFAULT; 1817 1818 /* lock out vcpus from running while we're doing this */ 1819 mutex_lock(&kvm->lock); 1820 hpte_setup = kvm->arch.hpte_setup_done; 1821 if (hpte_setup) { 1822 kvm->arch.hpte_setup_done = 0; /* temporarily */ 1823 /* order hpte_setup_done vs. vcpus_running */ 1824 smp_mb(); 1825 if (atomic_read(&kvm->arch.vcpus_running)) { 1826 kvm->arch.hpte_setup_done = 1; 1827 mutex_unlock(&kvm->lock); 1828 return -EBUSY; 1829 } 1830 } 1831 1832 err = 0; 1833 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1834 err = -EFAULT; 1835 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1836 break; 1837 1838 err = 0; 1839 if (nb + hdr.n_valid * HPTE_SIZE > count) 1840 break; 1841 1842 nb += sizeof(hdr); 1843 buf += sizeof(hdr); 1844 1845 err = -EINVAL; 1846 i = hdr.index; 1847 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1848 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1849 break; 1850 1851 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1852 lbuf = (unsigned long __user *)buf; 1853 for (j = 0; j < hdr.n_valid; ++j) { 1854 __be64 hpte_v; 1855 __be64 hpte_r; 1856 1857 err = -EFAULT; 1858 if (__get_user(hpte_v, lbuf) || 1859 __get_user(hpte_r, lbuf + 1)) 1860 goto out; 1861 v = be64_to_cpu(hpte_v); 1862 r = be64_to_cpu(hpte_r); 1863 err = -EINVAL; 1864 if (!(v & HPTE_V_VALID)) 1865 goto out; 1866 lbuf += 2; 1867 nb += HPTE_SIZE; 1868 1869 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1870 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1871 err = -EIO; 1872 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1873 tmp); 1874 if (ret != H_SUCCESS) { 1875 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1876 "r=%lx\n", ret, i, v, r); 1877 goto out; 1878 } 1879 if (!hpte_setup && is_vrma_hpte(v)) { 1880 unsigned long psize = hpte_base_page_size(v, r); 1881 unsigned long senc = slb_pgsize_encoding(psize); 1882 unsigned long lpcr; 1883 1884 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1885 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1886 lpcr = senc << (LPCR_VRMASD_SH - 4); 1887 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 1888 hpte_setup = 1; 1889 } 1890 ++i; 1891 hptp += 2; 1892 } 1893 1894 for (j = 0; j < hdr.n_invalid; ++j) { 1895 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1896 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1897 ++i; 1898 hptp += 2; 1899 } 1900 err = 0; 1901 } 1902 1903 out: 1904 /* Order HPTE updates vs. hpte_setup_done */ 1905 smp_wmb(); 1906 kvm->arch.hpte_setup_done = hpte_setup; 1907 mutex_unlock(&kvm->lock); 1908 1909 if (err) 1910 return err; 1911 return nb; 1912 } 1913 1914 static int kvm_htab_release(struct inode *inode, struct file *filp) 1915 { 1916 struct kvm_htab_ctx *ctx = filp->private_data; 1917 1918 filp->private_data = NULL; 1919 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1920 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1921 kvm_put_kvm(ctx->kvm); 1922 kfree(ctx); 1923 return 0; 1924 } 1925 1926 static const struct file_operations kvm_htab_fops = { 1927 .read = kvm_htab_read, 1928 .write = kvm_htab_write, 1929 .llseek = default_llseek, 1930 .release = kvm_htab_release, 1931 }; 1932 1933 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1934 { 1935 int ret; 1936 struct kvm_htab_ctx *ctx; 1937 int rwflag; 1938 1939 /* reject flags we don't recognize */ 1940 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1941 return -EINVAL; 1942 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1943 if (!ctx) 1944 return -ENOMEM; 1945 kvm_get_kvm(kvm); 1946 ctx->kvm = kvm; 1947 ctx->index = ghf->start_index; 1948 ctx->flags = ghf->flags; 1949 ctx->first_pass = 1; 1950 1951 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1952 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1953 if (ret < 0) { 1954 kfree(ctx); 1955 kvm_put_kvm(kvm); 1956 return ret; 1957 } 1958 1959 if (rwflag == O_RDONLY) { 1960 mutex_lock(&kvm->slots_lock); 1961 atomic_inc(&kvm->arch.hpte_mod_interest); 1962 /* make sure kvmppc_do_h_enter etc. see the increment */ 1963 synchronize_srcu_expedited(&kvm->srcu); 1964 mutex_unlock(&kvm->slots_lock); 1965 } 1966 1967 return ret; 1968 } 1969 1970 struct debugfs_htab_state { 1971 struct kvm *kvm; 1972 struct mutex mutex; 1973 unsigned long hpt_index; 1974 int chars_left; 1975 int buf_index; 1976 char buf[64]; 1977 }; 1978 1979 static int debugfs_htab_open(struct inode *inode, struct file *file) 1980 { 1981 struct kvm *kvm = inode->i_private; 1982 struct debugfs_htab_state *p; 1983 1984 p = kzalloc(sizeof(*p), GFP_KERNEL); 1985 if (!p) 1986 return -ENOMEM; 1987 1988 kvm_get_kvm(kvm); 1989 p->kvm = kvm; 1990 mutex_init(&p->mutex); 1991 file->private_data = p; 1992 1993 return nonseekable_open(inode, file); 1994 } 1995 1996 static int debugfs_htab_release(struct inode *inode, struct file *file) 1997 { 1998 struct debugfs_htab_state *p = file->private_data; 1999 2000 kvm_put_kvm(p->kvm); 2001 kfree(p); 2002 return 0; 2003 } 2004 2005 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2006 size_t len, loff_t *ppos) 2007 { 2008 struct debugfs_htab_state *p = file->private_data; 2009 ssize_t ret, r; 2010 unsigned long i, n; 2011 unsigned long v, hr, gr; 2012 struct kvm *kvm; 2013 __be64 *hptp; 2014 2015 ret = mutex_lock_interruptible(&p->mutex); 2016 if (ret) 2017 return ret; 2018 2019 if (p->chars_left) { 2020 n = p->chars_left; 2021 if (n > len) 2022 n = len; 2023 r = copy_to_user(buf, p->buf + p->buf_index, n); 2024 n -= r; 2025 p->chars_left -= n; 2026 p->buf_index += n; 2027 buf += n; 2028 len -= n; 2029 ret = n; 2030 if (r) { 2031 if (!n) 2032 ret = -EFAULT; 2033 goto out; 2034 } 2035 } 2036 2037 kvm = p->kvm; 2038 i = p->hpt_index; 2039 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2040 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2041 ++i, hptp += 2) { 2042 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2043 continue; 2044 2045 /* lock the HPTE so it's stable and read it */ 2046 preempt_disable(); 2047 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2048 cpu_relax(); 2049 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2050 hr = be64_to_cpu(hptp[1]); 2051 gr = kvm->arch.hpt.rev[i].guest_rpte; 2052 unlock_hpte(hptp, v); 2053 preempt_enable(); 2054 2055 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2056 continue; 2057 2058 n = scnprintf(p->buf, sizeof(p->buf), 2059 "%6lx %.16lx %.16lx %.16lx\n", 2060 i, v, hr, gr); 2061 p->chars_left = n; 2062 if (n > len) 2063 n = len; 2064 r = copy_to_user(buf, p->buf, n); 2065 n -= r; 2066 p->chars_left -= n; 2067 p->buf_index = n; 2068 buf += n; 2069 len -= n; 2070 ret += n; 2071 if (r) { 2072 if (!ret) 2073 ret = -EFAULT; 2074 goto out; 2075 } 2076 } 2077 p->hpt_index = i; 2078 2079 out: 2080 mutex_unlock(&p->mutex); 2081 return ret; 2082 } 2083 2084 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2085 size_t len, loff_t *ppos) 2086 { 2087 return -EACCES; 2088 } 2089 2090 static const struct file_operations debugfs_htab_fops = { 2091 .owner = THIS_MODULE, 2092 .open = debugfs_htab_open, 2093 .release = debugfs_htab_release, 2094 .read = debugfs_htab_read, 2095 .write = debugfs_htab_write, 2096 .llseek = generic_file_llseek, 2097 }; 2098 2099 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2100 { 2101 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400, 2102 kvm->arch.debugfs_dir, kvm, 2103 &debugfs_htab_fops); 2104 } 2105 2106 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2107 { 2108 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2109 2110 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2111 2112 if (kvm_is_radix(vcpu->kvm)) 2113 mmu->xlate = kvmppc_mmu_radix_xlate; 2114 else 2115 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2116 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr; 2117 2118 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2119 } 2120