xref: /linux/arch/powerpc/kvm/book3s_64_mmu_hv.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20 
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29 
30 #include "book3s.h"
31 #include "trace_hv.h"
32 
33 //#define DEBUG_RESIZE_HPT	1
34 
35 #ifdef DEBUG_RESIZE_HPT
36 #define resize_hpt_debug(resize, ...)				\
37 	do {							\
38 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
39 		printk(__VA_ARGS__);				\
40 	} while (0)
41 #else
42 #define resize_hpt_debug(resize, ...)				\
43 	do { } while (0)
44 #endif
45 
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 				long pte_index, unsigned long pteh,
48 				unsigned long ptel, unsigned long *pte_idx_ret);
49 
50 struct kvm_resize_hpt {
51 	/* These fields read-only after init */
52 	struct kvm *kvm;
53 	struct work_struct work;
54 	u32 order;
55 
56 	/* These fields protected by kvm->arch.mmu_setup_lock */
57 
58 	/* Possible values and their usage:
59 	 *  <0     an error occurred during allocation,
60 	 *  -EBUSY allocation is in the progress,
61 	 *  0      allocation made successfully.
62 	 */
63 	int error;
64 
65 	/* Private to the work thread, until error != -EBUSY,
66 	 * then protected by kvm->arch.mmu_setup_lock.
67 	 */
68 	struct kvm_hpt_info hpt;
69 };
70 
71 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
72 {
73 	unsigned long hpt = 0;
74 	int cma = 0;
75 	struct page *page = NULL;
76 	struct revmap_entry *rev;
77 	unsigned long npte;
78 
79 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
80 		return -EINVAL;
81 
82 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
83 	if (page) {
84 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
85 		memset((void *)hpt, 0, (1ul << order));
86 		cma = 1;
87 	}
88 
89 	if (!hpt)
90 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
91 				       |__GFP_NOWARN, order - PAGE_SHIFT);
92 
93 	if (!hpt)
94 		return -ENOMEM;
95 
96 	/* HPTEs are 2**4 bytes long */
97 	npte = 1ul << (order - 4);
98 
99 	/* Allocate reverse map array */
100 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
101 	if (!rev) {
102 		if (cma)
103 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
104 		else
105 			free_pages(hpt, order - PAGE_SHIFT);
106 		return -ENOMEM;
107 	}
108 
109 	info->order = order;
110 	info->virt = hpt;
111 	info->cma = cma;
112 	info->rev = rev;
113 
114 	return 0;
115 }
116 
117 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
118 {
119 	atomic64_set(&kvm->arch.mmio_update, 0);
120 	kvm->arch.hpt = *info;
121 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
122 
123 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
124 		 info->virt, (long)info->order, kvm->arch.lpid);
125 }
126 
127 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
128 {
129 	long err = -EBUSY;
130 	struct kvm_hpt_info info;
131 
132 	mutex_lock(&kvm->arch.mmu_setup_lock);
133 	if (kvm->arch.mmu_ready) {
134 		kvm->arch.mmu_ready = 0;
135 		/* order mmu_ready vs. vcpus_running */
136 		smp_mb();
137 		if (atomic_read(&kvm->arch.vcpus_running)) {
138 			kvm->arch.mmu_ready = 1;
139 			goto out;
140 		}
141 	}
142 	if (kvm_is_radix(kvm)) {
143 		err = kvmppc_switch_mmu_to_hpt(kvm);
144 		if (err)
145 			goto out;
146 	}
147 
148 	if (kvm->arch.hpt.order == order) {
149 		/* We already have a suitable HPT */
150 
151 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
152 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
153 		/*
154 		 * Reset all the reverse-mapping chains for all memslots
155 		 */
156 		kvmppc_rmap_reset(kvm);
157 		err = 0;
158 		goto out;
159 	}
160 
161 	if (kvm->arch.hpt.virt) {
162 		kvmppc_free_hpt(&kvm->arch.hpt);
163 		kvmppc_rmap_reset(kvm);
164 	}
165 
166 	err = kvmppc_allocate_hpt(&info, order);
167 	if (err < 0)
168 		goto out;
169 	kvmppc_set_hpt(kvm, &info);
170 
171 out:
172 	if (err == 0)
173 		/* Ensure that each vcpu will flush its TLB on next entry. */
174 		cpumask_setall(&kvm->arch.need_tlb_flush);
175 
176 	mutex_unlock(&kvm->arch.mmu_setup_lock);
177 	return err;
178 }
179 
180 void kvmppc_free_hpt(struct kvm_hpt_info *info)
181 {
182 	vfree(info->rev);
183 	info->rev = NULL;
184 	if (info->cma)
185 		kvm_free_hpt_cma(virt_to_page(info->virt),
186 				 1 << (info->order - PAGE_SHIFT));
187 	else if (info->virt)
188 		free_pages(info->virt, info->order - PAGE_SHIFT);
189 	info->virt = 0;
190 	info->order = 0;
191 }
192 
193 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
194 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
195 {
196 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
197 }
198 
199 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
200 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
201 {
202 	return (pgsize == 0x10000) ? 0x1000 : 0;
203 }
204 
205 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
206 		     unsigned long porder)
207 {
208 	unsigned long i;
209 	unsigned long npages;
210 	unsigned long hp_v, hp_r;
211 	unsigned long addr, hash;
212 	unsigned long psize;
213 	unsigned long hp0, hp1;
214 	unsigned long idx_ret;
215 	long ret;
216 	struct kvm *kvm = vcpu->kvm;
217 
218 	psize = 1ul << porder;
219 	npages = memslot->npages >> (porder - PAGE_SHIFT);
220 
221 	/* VRMA can't be > 1TB */
222 	if (npages > 1ul << (40 - porder))
223 		npages = 1ul << (40 - porder);
224 	/* Can't use more than 1 HPTE per HPTEG */
225 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
226 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
227 
228 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
229 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
230 	hp1 = hpte1_pgsize_encoding(psize) |
231 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
232 
233 	for (i = 0; i < npages; ++i) {
234 		addr = i << porder;
235 		/* can't use hpt_hash since va > 64 bits */
236 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
237 			& kvmppc_hpt_mask(&kvm->arch.hpt);
238 		/*
239 		 * We assume that the hash table is empty and no
240 		 * vcpus are using it at this stage.  Since we create
241 		 * at most one HPTE per HPTEG, we just assume entry 7
242 		 * is available and use it.
243 		 */
244 		hash = (hash << 3) + 7;
245 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
246 		hp_r = hp1 | addr;
247 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
248 						 &idx_ret);
249 		if (ret != H_SUCCESS) {
250 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
251 			       addr, ret);
252 			break;
253 		}
254 	}
255 }
256 
257 int kvmppc_mmu_hv_init(void)
258 {
259 	unsigned long nr_lpids;
260 
261 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
262 		return -EINVAL;
263 
264 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
265 		if (WARN_ON(mfspr(SPRN_LPID) != 0))
266 			return -EINVAL;
267 		nr_lpids = 1UL << mmu_lpid_bits;
268 	} else {
269 		nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
270 	}
271 
272 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
273 		/* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
274 		if (cpu_has_feature(CPU_FTR_ARCH_207S))
275 			WARN_ON(nr_lpids != 1UL << 12);
276 		else
277 			WARN_ON(nr_lpids != 1UL << 10);
278 
279 		/*
280 		 * Reserve the last implemented LPID use in partition
281 		 * switching for POWER7 and POWER8.
282 		 */
283 		nr_lpids -= 1;
284 	}
285 
286 	kvmppc_init_lpid(nr_lpids);
287 
288 	return 0;
289 }
290 
291 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
292 				long pte_index, unsigned long pteh,
293 				unsigned long ptel, unsigned long *pte_idx_ret)
294 {
295 	long ret;
296 
297 	preempt_disable();
298 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
299 				kvm->mm->pgd, false, pte_idx_ret);
300 	preempt_enable();
301 	if (ret == H_TOO_HARD) {
302 		/* this can't happen */
303 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
304 		ret = H_RESOURCE;	/* or something */
305 	}
306 	return ret;
307 
308 }
309 
310 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
311 							 gva_t eaddr)
312 {
313 	u64 mask;
314 	int i;
315 
316 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
317 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
318 			continue;
319 
320 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
321 			mask = ESID_MASK_1T;
322 		else
323 			mask = ESID_MASK;
324 
325 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
326 			return &vcpu->arch.slb[i];
327 	}
328 	return NULL;
329 }
330 
331 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
332 			unsigned long ea)
333 {
334 	unsigned long ra_mask;
335 
336 	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
337 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
338 }
339 
340 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
341 			struct kvmppc_pte *gpte, bool data, bool iswrite)
342 {
343 	struct kvm *kvm = vcpu->kvm;
344 	struct kvmppc_slb *slbe;
345 	unsigned long slb_v;
346 	unsigned long pp, key;
347 	unsigned long v, orig_v, gr;
348 	__be64 *hptep;
349 	long int index;
350 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
351 
352 	if (kvm_is_radix(vcpu->kvm))
353 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
354 
355 	/* Get SLB entry */
356 	if (virtmode) {
357 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
358 		if (!slbe)
359 			return -EINVAL;
360 		slb_v = slbe->origv;
361 	} else {
362 		/* real mode access */
363 		slb_v = vcpu->kvm->arch.vrma_slb_v;
364 	}
365 
366 	preempt_disable();
367 	/* Find the HPTE in the hash table */
368 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
369 					 HPTE_V_VALID | HPTE_V_ABSENT);
370 	if (index < 0) {
371 		preempt_enable();
372 		return -ENOENT;
373 	}
374 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
375 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
376 	if (cpu_has_feature(CPU_FTR_ARCH_300))
377 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
378 	gr = kvm->arch.hpt.rev[index].guest_rpte;
379 
380 	unlock_hpte(hptep, orig_v);
381 	preempt_enable();
382 
383 	gpte->eaddr = eaddr;
384 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
385 
386 	/* Get PP bits and key for permission check */
387 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
388 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
389 	key &= slb_v;
390 
391 	/* Calculate permissions */
392 	gpte->may_read = hpte_read_permission(pp, key);
393 	gpte->may_write = hpte_write_permission(pp, key);
394 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
395 
396 	/* Storage key permission check for POWER7 */
397 	if (data && virtmode) {
398 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
399 		if (amrfield & 1)
400 			gpte->may_read = 0;
401 		if (amrfield & 2)
402 			gpte->may_write = 0;
403 	}
404 
405 	/* Get the guest physical address */
406 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
407 	return 0;
408 }
409 
410 /*
411  * Quick test for whether an instruction is a load or a store.
412  * If the instruction is a load or a store, then this will indicate
413  * which it is, at least on server processors.  (Embedded processors
414  * have some external PID instructions that don't follow the rule
415  * embodied here.)  If the instruction isn't a load or store, then
416  * this doesn't return anything useful.
417  */
418 static int instruction_is_store(unsigned int instr)
419 {
420 	unsigned int mask;
421 
422 	mask = 0x10000000;
423 	if ((instr & 0xfc000000) == 0x7c000000)
424 		mask = 0x100;		/* major opcode 31 */
425 	return (instr & mask) != 0;
426 }
427 
428 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
429 			   unsigned long gpa, gva_t ea, int is_store)
430 {
431 	u32 last_inst;
432 
433 	/*
434 	 * Fast path - check if the guest physical address corresponds to a
435 	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
436 	 * instruction all together, then we can just handle it and return.
437 	 */
438 	if (is_store) {
439 		int idx, ret;
440 
441 		idx = srcu_read_lock(&vcpu->kvm->srcu);
442 		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
443 				       NULL);
444 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
445 		if (!ret) {
446 			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
447 			return RESUME_GUEST;
448 		}
449 	}
450 
451 	/*
452 	 * If we fail, we just return to the guest and try executing it again.
453 	 */
454 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
455 		EMULATE_DONE)
456 		return RESUME_GUEST;
457 
458 	/*
459 	 * WARNING: We do not know for sure whether the instruction we just
460 	 * read from memory is the same that caused the fault in the first
461 	 * place.  If the instruction we read is neither an load or a store,
462 	 * then it can't access memory, so we don't need to worry about
463 	 * enforcing access permissions.  So, assuming it is a load or
464 	 * store, we just check that its direction (load or store) is
465 	 * consistent with the original fault, since that's what we
466 	 * checked the access permissions against.  If there is a mismatch
467 	 * we just return and retry the instruction.
468 	 */
469 
470 	if (instruction_is_store(last_inst) != !!is_store)
471 		return RESUME_GUEST;
472 
473 	/*
474 	 * Emulated accesses are emulated by looking at the hash for
475 	 * translation once, then performing the access later. The
476 	 * translation could be invalidated in the meantime in which
477 	 * point performing the subsequent memory access on the old
478 	 * physical address could possibly be a security hole for the
479 	 * guest (but not the host).
480 	 *
481 	 * This is less of an issue for MMIO stores since they aren't
482 	 * globally visible. It could be an issue for MMIO loads to
483 	 * a certain extent but we'll ignore it for now.
484 	 */
485 
486 	vcpu->arch.paddr_accessed = gpa;
487 	vcpu->arch.vaddr_accessed = ea;
488 	return kvmppc_emulate_mmio(vcpu);
489 }
490 
491 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
492 				unsigned long ea, unsigned long dsisr)
493 {
494 	struct kvm *kvm = vcpu->kvm;
495 	unsigned long hpte[3], r;
496 	unsigned long hnow_v, hnow_r;
497 	__be64 *hptep;
498 	unsigned long mmu_seq, psize, pte_size;
499 	unsigned long gpa_base, gfn_base;
500 	unsigned long gpa, gfn, hva, pfn, hpa;
501 	struct kvm_memory_slot *memslot;
502 	unsigned long *rmap;
503 	struct revmap_entry *rev;
504 	struct page *page;
505 	long index, ret;
506 	bool is_ci;
507 	bool writing, write_ok;
508 	unsigned int shift;
509 	unsigned long rcbits;
510 	long mmio_update;
511 	pte_t pte, *ptep;
512 
513 	if (kvm_is_radix(kvm))
514 		return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
515 
516 	/*
517 	 * Real-mode code has already searched the HPT and found the
518 	 * entry we're interested in.  Lock the entry and check that
519 	 * it hasn't changed.  If it has, just return and re-execute the
520 	 * instruction.
521 	 */
522 	if (ea != vcpu->arch.pgfault_addr)
523 		return RESUME_GUEST;
524 
525 	if (vcpu->arch.pgfault_cache) {
526 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
527 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
528 			r = vcpu->arch.pgfault_cache->rpte;
529 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
530 						   r);
531 			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
532 			gfn_base = gpa_base >> PAGE_SHIFT;
533 			gpa = gpa_base | (ea & (psize - 1));
534 			return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
535 						dsisr & DSISR_ISSTORE);
536 		}
537 	}
538 	index = vcpu->arch.pgfault_index;
539 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
540 	rev = &kvm->arch.hpt.rev[index];
541 	preempt_disable();
542 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
543 		cpu_relax();
544 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
545 	hpte[1] = be64_to_cpu(hptep[1]);
546 	hpte[2] = r = rev->guest_rpte;
547 	unlock_hpte(hptep, hpte[0]);
548 	preempt_enable();
549 
550 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
551 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
552 		hpte[1] = hpte_new_to_old_r(hpte[1]);
553 	}
554 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
555 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
556 		return RESUME_GUEST;
557 
558 	/* Translate the logical address and get the page */
559 	psize = kvmppc_actual_pgsz(hpte[0], r);
560 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
561 	gfn_base = gpa_base >> PAGE_SHIFT;
562 	gpa = gpa_base | (ea & (psize - 1));
563 	gfn = gpa >> PAGE_SHIFT;
564 	memslot = gfn_to_memslot(kvm, gfn);
565 
566 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
567 
568 	/* No memslot means it's an emulated MMIO region */
569 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
570 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
571 					      dsisr & DSISR_ISSTORE);
572 
573 	/*
574 	 * This should never happen, because of the slot_is_aligned()
575 	 * check in kvmppc_do_h_enter().
576 	 */
577 	if (gfn_base < memslot->base_gfn)
578 		return -EFAULT;
579 
580 	/* used to check for invalidations in progress */
581 	mmu_seq = kvm->mmu_notifier_seq;
582 	smp_rmb();
583 
584 	ret = -EFAULT;
585 	page = NULL;
586 	writing = (dsisr & DSISR_ISSTORE) != 0;
587 	/* If writing != 0, then the HPTE must allow writing, if we get here */
588 	write_ok = writing;
589 	hva = gfn_to_hva_memslot(memslot, gfn);
590 
591 	/*
592 	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
593 	 * do it with !atomic && !async, which is how we call it.
594 	 * We always ask for write permission since the common case
595 	 * is that the page is writable.
596 	 */
597 	if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
598 		write_ok = true;
599 	} else {
600 		/* Call KVM generic code to do the slow-path check */
601 		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
602 					   writing, &write_ok, NULL);
603 		if (is_error_noslot_pfn(pfn))
604 			return -EFAULT;
605 		page = NULL;
606 		if (pfn_valid(pfn)) {
607 			page = pfn_to_page(pfn);
608 			if (PageReserved(page))
609 				page = NULL;
610 		}
611 	}
612 
613 	/*
614 	 * Read the PTE from the process' radix tree and use that
615 	 * so we get the shift and attribute bits.
616 	 */
617 	spin_lock(&kvm->mmu_lock);
618 	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
619 	pte = __pte(0);
620 	if (ptep)
621 		pte = READ_ONCE(*ptep);
622 	spin_unlock(&kvm->mmu_lock);
623 	/*
624 	 * If the PTE disappeared temporarily due to a THP
625 	 * collapse, just return and let the guest try again.
626 	 */
627 	if (!pte_present(pte)) {
628 		if (page)
629 			put_page(page);
630 		return RESUME_GUEST;
631 	}
632 	hpa = pte_pfn(pte) << PAGE_SHIFT;
633 	pte_size = PAGE_SIZE;
634 	if (shift)
635 		pte_size = 1ul << shift;
636 	is_ci = pte_ci(pte);
637 
638 	if (psize > pte_size)
639 		goto out_put;
640 	if (pte_size > psize)
641 		hpa |= hva & (pte_size - psize);
642 
643 	/* Check WIMG vs. the actual page we're accessing */
644 	if (!hpte_cache_flags_ok(r, is_ci)) {
645 		if (is_ci)
646 			goto out_put;
647 		/*
648 		 * Allow guest to map emulated device memory as
649 		 * uncacheable, but actually make it cacheable.
650 		 */
651 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
652 	}
653 
654 	/*
655 	 * Set the HPTE to point to hpa.
656 	 * Since the hpa is at PAGE_SIZE granularity, make sure we
657 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
658 	 */
659 	if (psize < PAGE_SIZE)
660 		psize = PAGE_SIZE;
661 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
662 	if (hpte_is_writable(r) && !write_ok)
663 		r = hpte_make_readonly(r);
664 	ret = RESUME_GUEST;
665 	preempt_disable();
666 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
667 		cpu_relax();
668 	hnow_v = be64_to_cpu(hptep[0]);
669 	hnow_r = be64_to_cpu(hptep[1]);
670 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
671 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
672 		hnow_r = hpte_new_to_old_r(hnow_r);
673 	}
674 
675 	/*
676 	 * If the HPT is being resized, don't update the HPTE,
677 	 * instead let the guest retry after the resize operation is complete.
678 	 * The synchronization for mmu_ready test vs. set is provided
679 	 * by the HPTE lock.
680 	 */
681 	if (!kvm->arch.mmu_ready)
682 		goto out_unlock;
683 
684 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
685 	    rev->guest_rpte != hpte[2])
686 		/* HPTE has been changed under us; let the guest retry */
687 		goto out_unlock;
688 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
689 
690 	/* Always put the HPTE in the rmap chain for the page base address */
691 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
692 	lock_rmap(rmap);
693 
694 	/* Check if we might have been invalidated; let the guest retry if so */
695 	ret = RESUME_GUEST;
696 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
697 		unlock_rmap(rmap);
698 		goto out_unlock;
699 	}
700 
701 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
702 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
703 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
704 
705 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
706 		/* HPTE was previously valid, so we need to invalidate it */
707 		unlock_rmap(rmap);
708 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
709 		kvmppc_invalidate_hpte(kvm, hptep, index);
710 		/* don't lose previous R and C bits */
711 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
712 	} else {
713 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
714 	}
715 
716 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
717 		r = hpte_old_to_new_r(hpte[0], r);
718 		hpte[0] = hpte_old_to_new_v(hpte[0]);
719 	}
720 	hptep[1] = cpu_to_be64(r);
721 	eieio();
722 	__unlock_hpte(hptep, hpte[0]);
723 	asm volatile("ptesync" : : : "memory");
724 	preempt_enable();
725 	if (page && hpte_is_writable(r))
726 		set_page_dirty_lock(page);
727 
728  out_put:
729 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
730 
731 	if (page)
732 		put_page(page);
733 	return ret;
734 
735  out_unlock:
736 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
737 	preempt_enable();
738 	goto out_put;
739 }
740 
741 void kvmppc_rmap_reset(struct kvm *kvm)
742 {
743 	struct kvm_memslots *slots;
744 	struct kvm_memory_slot *memslot;
745 	int srcu_idx, bkt;
746 
747 	srcu_idx = srcu_read_lock(&kvm->srcu);
748 	slots = kvm_memslots(kvm);
749 	kvm_for_each_memslot(memslot, bkt, slots) {
750 		/* Mutual exclusion with kvm_unmap_hva_range etc. */
751 		spin_lock(&kvm->mmu_lock);
752 		/*
753 		 * This assumes it is acceptable to lose reference and
754 		 * change bits across a reset.
755 		 */
756 		memset(memslot->arch.rmap, 0,
757 		       memslot->npages * sizeof(*memslot->arch.rmap));
758 		spin_unlock(&kvm->mmu_lock);
759 	}
760 	srcu_read_unlock(&kvm->srcu, srcu_idx);
761 }
762 
763 /* Must be called with both HPTE and rmap locked */
764 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
765 			      struct kvm_memory_slot *memslot,
766 			      unsigned long *rmapp, unsigned long gfn)
767 {
768 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
769 	struct revmap_entry *rev = kvm->arch.hpt.rev;
770 	unsigned long j, h;
771 	unsigned long ptel, psize, rcbits;
772 
773 	j = rev[i].forw;
774 	if (j == i) {
775 		/* chain is now empty */
776 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
777 	} else {
778 		/* remove i from chain */
779 		h = rev[i].back;
780 		rev[h].forw = j;
781 		rev[j].back = h;
782 		rev[i].forw = rev[i].back = i;
783 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
784 	}
785 
786 	/* Now check and modify the HPTE */
787 	ptel = rev[i].guest_rpte;
788 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
789 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
790 	    hpte_rpn(ptel, psize) == gfn) {
791 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
792 		kvmppc_invalidate_hpte(kvm, hptep, i);
793 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
794 		/* Harvest R and C */
795 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
796 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
797 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
798 			kvmppc_update_dirty_map(memslot, gfn, psize);
799 		if (rcbits & ~rev[i].guest_rpte) {
800 			rev[i].guest_rpte = ptel | rcbits;
801 			note_hpte_modification(kvm, &rev[i]);
802 		}
803 	}
804 }
805 
806 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
807 			    unsigned long gfn)
808 {
809 	unsigned long i;
810 	__be64 *hptep;
811 	unsigned long *rmapp;
812 
813 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
814 	for (;;) {
815 		lock_rmap(rmapp);
816 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
817 			unlock_rmap(rmapp);
818 			break;
819 		}
820 
821 		/*
822 		 * To avoid an ABBA deadlock with the HPTE lock bit,
823 		 * we can't spin on the HPTE lock while holding the
824 		 * rmap chain lock.
825 		 */
826 		i = *rmapp & KVMPPC_RMAP_INDEX;
827 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
828 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
829 			/* unlock rmap before spinning on the HPTE lock */
830 			unlock_rmap(rmapp);
831 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
832 				cpu_relax();
833 			continue;
834 		}
835 
836 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
837 		unlock_rmap(rmapp);
838 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
839 	}
840 }
841 
842 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
843 {
844 	gfn_t gfn;
845 
846 	if (kvm_is_radix(kvm)) {
847 		for (gfn = range->start; gfn < range->end; gfn++)
848 			kvm_unmap_radix(kvm, range->slot, gfn);
849 	} else {
850 		for (gfn = range->start; gfn < range->end; gfn++)
851 			kvm_unmap_rmapp(kvm, range->slot, gfn);
852 	}
853 
854 	return false;
855 }
856 
857 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
858 				  struct kvm_memory_slot *memslot)
859 {
860 	unsigned long gfn;
861 	unsigned long n;
862 	unsigned long *rmapp;
863 
864 	gfn = memslot->base_gfn;
865 	rmapp = memslot->arch.rmap;
866 	if (kvm_is_radix(kvm)) {
867 		kvmppc_radix_flush_memslot(kvm, memslot);
868 		return;
869 	}
870 
871 	for (n = memslot->npages; n; --n, ++gfn) {
872 		/*
873 		 * Testing the present bit without locking is OK because
874 		 * the memslot has been marked invalid already, and hence
875 		 * no new HPTEs referencing this page can be created,
876 		 * thus the present bit can't go from 0 to 1.
877 		 */
878 		if (*rmapp & KVMPPC_RMAP_PRESENT)
879 			kvm_unmap_rmapp(kvm, memslot, gfn);
880 		++rmapp;
881 	}
882 }
883 
884 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
885 			  unsigned long gfn)
886 {
887 	struct revmap_entry *rev = kvm->arch.hpt.rev;
888 	unsigned long head, i, j;
889 	__be64 *hptep;
890 	bool ret = false;
891 	unsigned long *rmapp;
892 
893 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
894  retry:
895 	lock_rmap(rmapp);
896 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
897 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
898 		ret = true;
899 	}
900 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
901 		unlock_rmap(rmapp);
902 		return ret;
903 	}
904 
905 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
906 	do {
907 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
908 		j = rev[i].forw;
909 
910 		/* If this HPTE isn't referenced, ignore it */
911 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
912 			continue;
913 
914 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
915 			/* unlock rmap before spinning on the HPTE lock */
916 			unlock_rmap(rmapp);
917 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
918 				cpu_relax();
919 			goto retry;
920 		}
921 
922 		/* Now check and modify the HPTE */
923 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
924 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
925 			kvmppc_clear_ref_hpte(kvm, hptep, i);
926 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
927 				rev[i].guest_rpte |= HPTE_R_R;
928 				note_hpte_modification(kvm, &rev[i]);
929 			}
930 			ret = true;
931 		}
932 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
933 	} while ((i = j) != head);
934 
935 	unlock_rmap(rmapp);
936 	return ret;
937 }
938 
939 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
940 {
941 	gfn_t gfn;
942 	bool ret = false;
943 
944 	if (kvm_is_radix(kvm)) {
945 		for (gfn = range->start; gfn < range->end; gfn++)
946 			ret |= kvm_age_radix(kvm, range->slot, gfn);
947 	} else {
948 		for (gfn = range->start; gfn < range->end; gfn++)
949 			ret |= kvm_age_rmapp(kvm, range->slot, gfn);
950 	}
951 
952 	return ret;
953 }
954 
955 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
956 			       unsigned long gfn)
957 {
958 	struct revmap_entry *rev = kvm->arch.hpt.rev;
959 	unsigned long head, i, j;
960 	unsigned long *hp;
961 	bool ret = true;
962 	unsigned long *rmapp;
963 
964 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
965 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
966 		return true;
967 
968 	lock_rmap(rmapp);
969 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
970 		goto out;
971 
972 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
973 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
974 		do {
975 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
976 			j = rev[i].forw;
977 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
978 				goto out;
979 		} while ((i = j) != head);
980 	}
981 	ret = false;
982 
983  out:
984 	unlock_rmap(rmapp);
985 	return ret;
986 }
987 
988 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
989 {
990 	WARN_ON(range->start + 1 != range->end);
991 
992 	if (kvm_is_radix(kvm))
993 		return kvm_test_age_radix(kvm, range->slot, range->start);
994 	else
995 		return kvm_test_age_rmapp(kvm, range->slot, range->start);
996 }
997 
998 bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
999 {
1000 	WARN_ON(range->start + 1 != range->end);
1001 
1002 	if (kvm_is_radix(kvm))
1003 		kvm_unmap_radix(kvm, range->slot, range->start);
1004 	else
1005 		kvm_unmap_rmapp(kvm, range->slot, range->start);
1006 
1007 	return false;
1008 }
1009 
1010 static int vcpus_running(struct kvm *kvm)
1011 {
1012 	return atomic_read(&kvm->arch.vcpus_running) != 0;
1013 }
1014 
1015 /*
1016  * Returns the number of system pages that are dirty.
1017  * This can be more than 1 if we find a huge-page HPTE.
1018  */
1019 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1020 {
1021 	struct revmap_entry *rev = kvm->arch.hpt.rev;
1022 	unsigned long head, i, j;
1023 	unsigned long n;
1024 	unsigned long v, r;
1025 	__be64 *hptep;
1026 	int npages_dirty = 0;
1027 
1028  retry:
1029 	lock_rmap(rmapp);
1030 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1031 		unlock_rmap(rmapp);
1032 		return npages_dirty;
1033 	}
1034 
1035 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1036 	do {
1037 		unsigned long hptep1;
1038 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1039 		j = rev[i].forw;
1040 
1041 		/*
1042 		 * Checking the C (changed) bit here is racy since there
1043 		 * is no guarantee about when the hardware writes it back.
1044 		 * If the HPTE is not writable then it is stable since the
1045 		 * page can't be written to, and we would have done a tlbie
1046 		 * (which forces the hardware to complete any writeback)
1047 		 * when making the HPTE read-only.
1048 		 * If vcpus are running then this call is racy anyway
1049 		 * since the page could get dirtied subsequently, so we
1050 		 * expect there to be a further call which would pick up
1051 		 * any delayed C bit writeback.
1052 		 * Otherwise we need to do the tlbie even if C==0 in
1053 		 * order to pick up any delayed writeback of C.
1054 		 */
1055 		hptep1 = be64_to_cpu(hptep[1]);
1056 		if (!(hptep1 & HPTE_R_C) &&
1057 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1058 			continue;
1059 
1060 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1061 			/* unlock rmap before spinning on the HPTE lock */
1062 			unlock_rmap(rmapp);
1063 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1064 				cpu_relax();
1065 			goto retry;
1066 		}
1067 
1068 		/* Now check and modify the HPTE */
1069 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1070 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1071 			continue;
1072 		}
1073 
1074 		/* need to make it temporarily absent so C is stable */
1075 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1076 		kvmppc_invalidate_hpte(kvm, hptep, i);
1077 		v = be64_to_cpu(hptep[0]);
1078 		r = be64_to_cpu(hptep[1]);
1079 		if (r & HPTE_R_C) {
1080 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1081 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1082 				rev[i].guest_rpte |= HPTE_R_C;
1083 				note_hpte_modification(kvm, &rev[i]);
1084 			}
1085 			n = kvmppc_actual_pgsz(v, r);
1086 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1087 			if (n > npages_dirty)
1088 				npages_dirty = n;
1089 			eieio();
1090 		}
1091 		v &= ~HPTE_V_ABSENT;
1092 		v |= HPTE_V_VALID;
1093 		__unlock_hpte(hptep, v);
1094 	} while ((i = j) != head);
1095 
1096 	unlock_rmap(rmapp);
1097 	return npages_dirty;
1098 }
1099 
1100 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1101 			      struct kvm_memory_slot *memslot,
1102 			      unsigned long *map)
1103 {
1104 	unsigned long gfn;
1105 
1106 	if (!vpa->dirty || !vpa->pinned_addr)
1107 		return;
1108 	gfn = vpa->gpa >> PAGE_SHIFT;
1109 	if (gfn < memslot->base_gfn ||
1110 	    gfn >= memslot->base_gfn + memslot->npages)
1111 		return;
1112 
1113 	vpa->dirty = false;
1114 	if (map)
1115 		__set_bit_le(gfn - memslot->base_gfn, map);
1116 }
1117 
1118 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1119 			struct kvm_memory_slot *memslot, unsigned long *map)
1120 {
1121 	unsigned long i;
1122 	unsigned long *rmapp;
1123 
1124 	preempt_disable();
1125 	rmapp = memslot->arch.rmap;
1126 	for (i = 0; i < memslot->npages; ++i) {
1127 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1128 		/*
1129 		 * Note that if npages > 0 then i must be a multiple of npages,
1130 		 * since we always put huge-page HPTEs in the rmap chain
1131 		 * corresponding to their page base address.
1132 		 */
1133 		if (npages)
1134 			set_dirty_bits(map, i, npages);
1135 		++rmapp;
1136 	}
1137 	preempt_enable();
1138 	return 0;
1139 }
1140 
1141 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1142 			    unsigned long *nb_ret)
1143 {
1144 	struct kvm_memory_slot *memslot;
1145 	unsigned long gfn = gpa >> PAGE_SHIFT;
1146 	struct page *page, *pages[1];
1147 	int npages;
1148 	unsigned long hva, offset;
1149 	int srcu_idx;
1150 
1151 	srcu_idx = srcu_read_lock(&kvm->srcu);
1152 	memslot = gfn_to_memslot(kvm, gfn);
1153 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1154 		goto err;
1155 	hva = gfn_to_hva_memslot(memslot, gfn);
1156 	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1157 	if (npages < 1)
1158 		goto err;
1159 	page = pages[0];
1160 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1161 
1162 	offset = gpa & (PAGE_SIZE - 1);
1163 	if (nb_ret)
1164 		*nb_ret = PAGE_SIZE - offset;
1165 	return page_address(page) + offset;
1166 
1167  err:
1168 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1169 	return NULL;
1170 }
1171 
1172 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1173 			     bool dirty)
1174 {
1175 	struct page *page = virt_to_page(va);
1176 	struct kvm_memory_slot *memslot;
1177 	unsigned long gfn;
1178 	int srcu_idx;
1179 
1180 	put_page(page);
1181 
1182 	if (!dirty)
1183 		return;
1184 
1185 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1186 	gfn = gpa >> PAGE_SHIFT;
1187 	srcu_idx = srcu_read_lock(&kvm->srcu);
1188 	memslot = gfn_to_memslot(kvm, gfn);
1189 	if (memslot && memslot->dirty_bitmap)
1190 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1191 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1192 }
1193 
1194 /*
1195  * HPT resizing
1196  */
1197 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1198 {
1199 	int rc;
1200 
1201 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1202 	if (rc < 0)
1203 		return rc;
1204 
1205 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1206 			 resize->hpt.virt);
1207 
1208 	return 0;
1209 }
1210 
1211 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1212 					    unsigned long idx)
1213 {
1214 	struct kvm *kvm = resize->kvm;
1215 	struct kvm_hpt_info *old = &kvm->arch.hpt;
1216 	struct kvm_hpt_info *new = &resize->hpt;
1217 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1218 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1219 	__be64 *hptep, *new_hptep;
1220 	unsigned long vpte, rpte, guest_rpte;
1221 	int ret;
1222 	struct revmap_entry *rev;
1223 	unsigned long apsize, avpn, pteg, hash;
1224 	unsigned long new_idx, new_pteg, replace_vpte;
1225 	int pshift;
1226 
1227 	hptep = (__be64 *)(old->virt + (idx << 4));
1228 
1229 	/* Guest is stopped, so new HPTEs can't be added or faulted
1230 	 * in, only unmapped or altered by host actions.  So, it's
1231 	 * safe to check this before we take the HPTE lock */
1232 	vpte = be64_to_cpu(hptep[0]);
1233 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1234 		return 0; /* nothing to do */
1235 
1236 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1237 		cpu_relax();
1238 
1239 	vpte = be64_to_cpu(hptep[0]);
1240 
1241 	ret = 0;
1242 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1243 		/* Nothing to do */
1244 		goto out;
1245 
1246 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1247 		rpte = be64_to_cpu(hptep[1]);
1248 		vpte = hpte_new_to_old_v(vpte, rpte);
1249 	}
1250 
1251 	/* Unmap */
1252 	rev = &old->rev[idx];
1253 	guest_rpte = rev->guest_rpte;
1254 
1255 	ret = -EIO;
1256 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1257 	if (!apsize)
1258 		goto out;
1259 
1260 	if (vpte & HPTE_V_VALID) {
1261 		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1262 		int srcu_idx = srcu_read_lock(&kvm->srcu);
1263 		struct kvm_memory_slot *memslot =
1264 			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1265 
1266 		if (memslot) {
1267 			unsigned long *rmapp;
1268 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1269 
1270 			lock_rmap(rmapp);
1271 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1272 			unlock_rmap(rmapp);
1273 		}
1274 
1275 		srcu_read_unlock(&kvm->srcu, srcu_idx);
1276 	}
1277 
1278 	/* Reload PTE after unmap */
1279 	vpte = be64_to_cpu(hptep[0]);
1280 	BUG_ON(vpte & HPTE_V_VALID);
1281 	BUG_ON(!(vpte & HPTE_V_ABSENT));
1282 
1283 	ret = 0;
1284 	if (!(vpte & HPTE_V_BOLTED))
1285 		goto out;
1286 
1287 	rpte = be64_to_cpu(hptep[1]);
1288 
1289 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1290 		vpte = hpte_new_to_old_v(vpte, rpte);
1291 		rpte = hpte_new_to_old_r(rpte);
1292 	}
1293 
1294 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1295 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1296 	pteg = idx / HPTES_PER_GROUP;
1297 	if (vpte & HPTE_V_SECONDARY)
1298 		pteg = ~pteg;
1299 
1300 	if (!(vpte & HPTE_V_1TB_SEG)) {
1301 		unsigned long offset, vsid;
1302 
1303 		/* We only have 28 - 23 bits of offset in avpn */
1304 		offset = (avpn & 0x1f) << 23;
1305 		vsid = avpn >> 5;
1306 		/* We can find more bits from the pteg value */
1307 		if (pshift < 23)
1308 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1309 
1310 		hash = vsid ^ (offset >> pshift);
1311 	} else {
1312 		unsigned long offset, vsid;
1313 
1314 		/* We only have 40 - 23 bits of seg_off in avpn */
1315 		offset = (avpn & 0x1ffff) << 23;
1316 		vsid = avpn >> 17;
1317 		if (pshift < 23)
1318 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1319 
1320 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1321 	}
1322 
1323 	new_pteg = hash & new_hash_mask;
1324 	if (vpte & HPTE_V_SECONDARY)
1325 		new_pteg = ~hash & new_hash_mask;
1326 
1327 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1328 	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1329 
1330 	replace_vpte = be64_to_cpu(new_hptep[0]);
1331 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1332 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1333 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1334 	}
1335 
1336 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1337 		BUG_ON(new->order >= old->order);
1338 
1339 		if (replace_vpte & HPTE_V_BOLTED) {
1340 			if (vpte & HPTE_V_BOLTED)
1341 				/* Bolted collision, nothing we can do */
1342 				ret = -ENOSPC;
1343 			/* Discard the new HPTE */
1344 			goto out;
1345 		}
1346 
1347 		/* Discard the previous HPTE */
1348 	}
1349 
1350 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1351 		rpte = hpte_old_to_new_r(vpte, rpte);
1352 		vpte = hpte_old_to_new_v(vpte);
1353 	}
1354 
1355 	new_hptep[1] = cpu_to_be64(rpte);
1356 	new->rev[new_idx].guest_rpte = guest_rpte;
1357 	/* No need for a barrier, since new HPT isn't active */
1358 	new_hptep[0] = cpu_to_be64(vpte);
1359 	unlock_hpte(new_hptep, vpte);
1360 
1361 out:
1362 	unlock_hpte(hptep, vpte);
1363 	return ret;
1364 }
1365 
1366 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1367 {
1368 	struct kvm *kvm = resize->kvm;
1369 	unsigned  long i;
1370 	int rc;
1371 
1372 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1373 		rc = resize_hpt_rehash_hpte(resize, i);
1374 		if (rc != 0)
1375 			return rc;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1382 {
1383 	struct kvm *kvm = resize->kvm;
1384 	struct kvm_hpt_info hpt_tmp;
1385 
1386 	/* Exchange the pending tables in the resize structure with
1387 	 * the active tables */
1388 
1389 	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1390 
1391 	spin_lock(&kvm->mmu_lock);
1392 	asm volatile("ptesync" : : : "memory");
1393 
1394 	hpt_tmp = kvm->arch.hpt;
1395 	kvmppc_set_hpt(kvm, &resize->hpt);
1396 	resize->hpt = hpt_tmp;
1397 
1398 	spin_unlock(&kvm->mmu_lock);
1399 
1400 	synchronize_srcu_expedited(&kvm->srcu);
1401 
1402 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1403 		kvmppc_setup_partition_table(kvm);
1404 
1405 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1406 }
1407 
1408 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1409 {
1410 	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1411 		return;
1412 
1413 	if (!resize)
1414 		return;
1415 
1416 	if (resize->error != -EBUSY) {
1417 		if (resize->hpt.virt)
1418 			kvmppc_free_hpt(&resize->hpt);
1419 		kfree(resize);
1420 	}
1421 
1422 	if (kvm->arch.resize_hpt == resize)
1423 		kvm->arch.resize_hpt = NULL;
1424 }
1425 
1426 static void resize_hpt_prepare_work(struct work_struct *work)
1427 {
1428 	struct kvm_resize_hpt *resize = container_of(work,
1429 						     struct kvm_resize_hpt,
1430 						     work);
1431 	struct kvm *kvm = resize->kvm;
1432 	int err = 0;
1433 
1434 	if (WARN_ON(resize->error != -EBUSY))
1435 		return;
1436 
1437 	mutex_lock(&kvm->arch.mmu_setup_lock);
1438 
1439 	/* Request is still current? */
1440 	if (kvm->arch.resize_hpt == resize) {
1441 		/* We may request large allocations here:
1442 		 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1443 		 */
1444 		mutex_unlock(&kvm->arch.mmu_setup_lock);
1445 
1446 		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1447 				 resize->order);
1448 
1449 		err = resize_hpt_allocate(resize);
1450 
1451 		/* We have strict assumption about -EBUSY
1452 		 * when preparing for HPT resize.
1453 		 */
1454 		if (WARN_ON(err == -EBUSY))
1455 			err = -EINPROGRESS;
1456 
1457 		mutex_lock(&kvm->arch.mmu_setup_lock);
1458 		/* It is possible that kvm->arch.resize_hpt != resize
1459 		 * after we grab kvm->arch.mmu_setup_lock again.
1460 		 */
1461 	}
1462 
1463 	resize->error = err;
1464 
1465 	if (kvm->arch.resize_hpt != resize)
1466 		resize_hpt_release(kvm, resize);
1467 
1468 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1469 }
1470 
1471 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1472 				     struct kvm_ppc_resize_hpt *rhpt)
1473 {
1474 	unsigned long flags = rhpt->flags;
1475 	unsigned long shift = rhpt->shift;
1476 	struct kvm_resize_hpt *resize;
1477 	int ret;
1478 
1479 	if (flags != 0 || kvm_is_radix(kvm))
1480 		return -EINVAL;
1481 
1482 	if (shift && ((shift < 18) || (shift > 46)))
1483 		return -EINVAL;
1484 
1485 	mutex_lock(&kvm->arch.mmu_setup_lock);
1486 
1487 	resize = kvm->arch.resize_hpt;
1488 
1489 	if (resize) {
1490 		if (resize->order == shift) {
1491 			/* Suitable resize in progress? */
1492 			ret = resize->error;
1493 			if (ret == -EBUSY)
1494 				ret = 100; /* estimated time in ms */
1495 			else if (ret)
1496 				resize_hpt_release(kvm, resize);
1497 
1498 			goto out;
1499 		}
1500 
1501 		/* not suitable, cancel it */
1502 		resize_hpt_release(kvm, resize);
1503 	}
1504 
1505 	ret = 0;
1506 	if (!shift)
1507 		goto out; /* nothing to do */
1508 
1509 	/* start new resize */
1510 
1511 	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1512 	if (!resize) {
1513 		ret = -ENOMEM;
1514 		goto out;
1515 	}
1516 
1517 	resize->error = -EBUSY;
1518 	resize->order = shift;
1519 	resize->kvm = kvm;
1520 	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1521 	kvm->arch.resize_hpt = resize;
1522 
1523 	schedule_work(&resize->work);
1524 
1525 	ret = 100; /* estimated time in ms */
1526 
1527 out:
1528 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1529 	return ret;
1530 }
1531 
1532 static void resize_hpt_boot_vcpu(void *opaque)
1533 {
1534 	/* Nothing to do, just force a KVM exit */
1535 }
1536 
1537 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1538 				    struct kvm_ppc_resize_hpt *rhpt)
1539 {
1540 	unsigned long flags = rhpt->flags;
1541 	unsigned long shift = rhpt->shift;
1542 	struct kvm_resize_hpt *resize;
1543 	long ret;
1544 
1545 	if (flags != 0 || kvm_is_radix(kvm))
1546 		return -EINVAL;
1547 
1548 	if (shift && ((shift < 18) || (shift > 46)))
1549 		return -EINVAL;
1550 
1551 	mutex_lock(&kvm->arch.mmu_setup_lock);
1552 
1553 	resize = kvm->arch.resize_hpt;
1554 
1555 	/* This shouldn't be possible */
1556 	ret = -EIO;
1557 	if (WARN_ON(!kvm->arch.mmu_ready))
1558 		goto out_no_hpt;
1559 
1560 	/* Stop VCPUs from running while we mess with the HPT */
1561 	kvm->arch.mmu_ready = 0;
1562 	smp_mb();
1563 
1564 	/* Boot all CPUs out of the guest so they re-read
1565 	 * mmu_ready */
1566 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1567 
1568 	ret = -ENXIO;
1569 	if (!resize || (resize->order != shift))
1570 		goto out;
1571 
1572 	ret = resize->error;
1573 	if (ret)
1574 		goto out;
1575 
1576 	ret = resize_hpt_rehash(resize);
1577 	if (ret)
1578 		goto out;
1579 
1580 	resize_hpt_pivot(resize);
1581 
1582 out:
1583 	/* Let VCPUs run again */
1584 	kvm->arch.mmu_ready = 1;
1585 	smp_mb();
1586 out_no_hpt:
1587 	resize_hpt_release(kvm, resize);
1588 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1589 	return ret;
1590 }
1591 
1592 /*
1593  * Functions for reading and writing the hash table via reads and
1594  * writes on a file descriptor.
1595  *
1596  * Reads return the guest view of the hash table, which has to be
1597  * pieced together from the real hash table and the guest_rpte
1598  * values in the revmap array.
1599  *
1600  * On writes, each HPTE written is considered in turn, and if it
1601  * is valid, it is written to the HPT as if an H_ENTER with the
1602  * exact flag set was done.  When the invalid count is non-zero
1603  * in the header written to the stream, the kernel will make
1604  * sure that that many HPTEs are invalid, and invalidate them
1605  * if not.
1606  */
1607 
1608 struct kvm_htab_ctx {
1609 	unsigned long	index;
1610 	unsigned long	flags;
1611 	struct kvm	*kvm;
1612 	int		first_pass;
1613 };
1614 
1615 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1616 
1617 /*
1618  * Returns 1 if this HPT entry has been modified or has pending
1619  * R/C bit changes.
1620  */
1621 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1622 {
1623 	unsigned long rcbits_unset;
1624 
1625 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1626 		return 1;
1627 
1628 	/* Also need to consider changes in reference and changed bits */
1629 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1630 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1631 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1632 		return 1;
1633 
1634 	return 0;
1635 }
1636 
1637 static long record_hpte(unsigned long flags, __be64 *hptp,
1638 			unsigned long *hpte, struct revmap_entry *revp,
1639 			int want_valid, int first_pass)
1640 {
1641 	unsigned long v, r, hr;
1642 	unsigned long rcbits_unset;
1643 	int ok = 1;
1644 	int valid, dirty;
1645 
1646 	/* Unmodified entries are uninteresting except on the first pass */
1647 	dirty = hpte_dirty(revp, hptp);
1648 	if (!first_pass && !dirty)
1649 		return 0;
1650 
1651 	valid = 0;
1652 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1653 		valid = 1;
1654 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1655 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1656 			valid = 0;
1657 	}
1658 	if (valid != want_valid)
1659 		return 0;
1660 
1661 	v = r = 0;
1662 	if (valid || dirty) {
1663 		/* lock the HPTE so it's stable and read it */
1664 		preempt_disable();
1665 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1666 			cpu_relax();
1667 		v = be64_to_cpu(hptp[0]);
1668 		hr = be64_to_cpu(hptp[1]);
1669 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1670 			v = hpte_new_to_old_v(v, hr);
1671 			hr = hpte_new_to_old_r(hr);
1672 		}
1673 
1674 		/* re-evaluate valid and dirty from synchronized HPTE value */
1675 		valid = !!(v & HPTE_V_VALID);
1676 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1677 
1678 		/* Harvest R and C into guest view if necessary */
1679 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1680 		if (valid && (rcbits_unset & hr)) {
1681 			revp->guest_rpte |= (hr &
1682 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1683 			dirty = 1;
1684 		}
1685 
1686 		if (v & HPTE_V_ABSENT) {
1687 			v &= ~HPTE_V_ABSENT;
1688 			v |= HPTE_V_VALID;
1689 			valid = 1;
1690 		}
1691 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1692 			valid = 0;
1693 
1694 		r = revp->guest_rpte;
1695 		/* only clear modified if this is the right sort of entry */
1696 		if (valid == want_valid && dirty) {
1697 			r &= ~HPTE_GR_MODIFIED;
1698 			revp->guest_rpte = r;
1699 		}
1700 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1701 		preempt_enable();
1702 		if (!(valid == want_valid && (first_pass || dirty)))
1703 			ok = 0;
1704 	}
1705 	hpte[0] = cpu_to_be64(v);
1706 	hpte[1] = cpu_to_be64(r);
1707 	return ok;
1708 }
1709 
1710 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1711 			     size_t count, loff_t *ppos)
1712 {
1713 	struct kvm_htab_ctx *ctx = file->private_data;
1714 	struct kvm *kvm = ctx->kvm;
1715 	struct kvm_get_htab_header hdr;
1716 	__be64 *hptp;
1717 	struct revmap_entry *revp;
1718 	unsigned long i, nb, nw;
1719 	unsigned long __user *lbuf;
1720 	struct kvm_get_htab_header __user *hptr;
1721 	unsigned long flags;
1722 	int first_pass;
1723 	unsigned long hpte[2];
1724 
1725 	if (!access_ok(buf, count))
1726 		return -EFAULT;
1727 	if (kvm_is_radix(kvm))
1728 		return 0;
1729 
1730 	first_pass = ctx->first_pass;
1731 	flags = ctx->flags;
1732 
1733 	i = ctx->index;
1734 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1735 	revp = kvm->arch.hpt.rev + i;
1736 	lbuf = (unsigned long __user *)buf;
1737 
1738 	nb = 0;
1739 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1740 		/* Initialize header */
1741 		hptr = (struct kvm_get_htab_header __user *)buf;
1742 		hdr.n_valid = 0;
1743 		hdr.n_invalid = 0;
1744 		nw = nb;
1745 		nb += sizeof(hdr);
1746 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1747 
1748 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1749 		if (!first_pass) {
1750 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1751 			       !hpte_dirty(revp, hptp)) {
1752 				++i;
1753 				hptp += 2;
1754 				++revp;
1755 			}
1756 		}
1757 		hdr.index = i;
1758 
1759 		/* Grab a series of valid entries */
1760 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1761 		       hdr.n_valid < 0xffff &&
1762 		       nb + HPTE_SIZE < count &&
1763 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1764 			/* valid entry, write it out */
1765 			++hdr.n_valid;
1766 			if (__put_user(hpte[0], lbuf) ||
1767 			    __put_user(hpte[1], lbuf + 1))
1768 				return -EFAULT;
1769 			nb += HPTE_SIZE;
1770 			lbuf += 2;
1771 			++i;
1772 			hptp += 2;
1773 			++revp;
1774 		}
1775 		/* Now skip invalid entries while we can */
1776 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1777 		       hdr.n_invalid < 0xffff &&
1778 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1779 			/* found an invalid entry */
1780 			++hdr.n_invalid;
1781 			++i;
1782 			hptp += 2;
1783 			++revp;
1784 		}
1785 
1786 		if (hdr.n_valid || hdr.n_invalid) {
1787 			/* write back the header */
1788 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1789 				return -EFAULT;
1790 			nw = nb;
1791 			buf = (char __user *)lbuf;
1792 		} else {
1793 			nb = nw;
1794 		}
1795 
1796 		/* Check if we've wrapped around the hash table */
1797 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1798 			i = 0;
1799 			ctx->first_pass = 0;
1800 			break;
1801 		}
1802 	}
1803 
1804 	ctx->index = i;
1805 
1806 	return nb;
1807 }
1808 
1809 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1810 			      size_t count, loff_t *ppos)
1811 {
1812 	struct kvm_htab_ctx *ctx = file->private_data;
1813 	struct kvm *kvm = ctx->kvm;
1814 	struct kvm_get_htab_header hdr;
1815 	unsigned long i, j;
1816 	unsigned long v, r;
1817 	unsigned long __user *lbuf;
1818 	__be64 *hptp;
1819 	unsigned long tmp[2];
1820 	ssize_t nb;
1821 	long int err, ret;
1822 	int mmu_ready;
1823 	int pshift;
1824 
1825 	if (!access_ok(buf, count))
1826 		return -EFAULT;
1827 	if (kvm_is_radix(kvm))
1828 		return -EINVAL;
1829 
1830 	/* lock out vcpus from running while we're doing this */
1831 	mutex_lock(&kvm->arch.mmu_setup_lock);
1832 	mmu_ready = kvm->arch.mmu_ready;
1833 	if (mmu_ready) {
1834 		kvm->arch.mmu_ready = 0;	/* temporarily */
1835 		/* order mmu_ready vs. vcpus_running */
1836 		smp_mb();
1837 		if (atomic_read(&kvm->arch.vcpus_running)) {
1838 			kvm->arch.mmu_ready = 1;
1839 			mutex_unlock(&kvm->arch.mmu_setup_lock);
1840 			return -EBUSY;
1841 		}
1842 	}
1843 
1844 	err = 0;
1845 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1846 		err = -EFAULT;
1847 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1848 			break;
1849 
1850 		err = 0;
1851 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1852 			break;
1853 
1854 		nb += sizeof(hdr);
1855 		buf += sizeof(hdr);
1856 
1857 		err = -EINVAL;
1858 		i = hdr.index;
1859 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1860 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1861 			break;
1862 
1863 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1864 		lbuf = (unsigned long __user *)buf;
1865 		for (j = 0; j < hdr.n_valid; ++j) {
1866 			__be64 hpte_v;
1867 			__be64 hpte_r;
1868 
1869 			err = -EFAULT;
1870 			if (__get_user(hpte_v, lbuf) ||
1871 			    __get_user(hpte_r, lbuf + 1))
1872 				goto out;
1873 			v = be64_to_cpu(hpte_v);
1874 			r = be64_to_cpu(hpte_r);
1875 			err = -EINVAL;
1876 			if (!(v & HPTE_V_VALID))
1877 				goto out;
1878 			pshift = kvmppc_hpte_base_page_shift(v, r);
1879 			if (pshift <= 0)
1880 				goto out;
1881 			lbuf += 2;
1882 			nb += HPTE_SIZE;
1883 
1884 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1885 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1886 			err = -EIO;
1887 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1888 							 tmp);
1889 			if (ret != H_SUCCESS) {
1890 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1891 				       "r=%lx\n", ret, i, v, r);
1892 				goto out;
1893 			}
1894 			if (!mmu_ready && is_vrma_hpte(v)) {
1895 				unsigned long senc, lpcr;
1896 
1897 				senc = slb_pgsize_encoding(1ul << pshift);
1898 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1899 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1900 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1901 					lpcr = senc << (LPCR_VRMASD_SH - 4);
1902 					kvmppc_update_lpcr(kvm, lpcr,
1903 							   LPCR_VRMASD);
1904 				} else {
1905 					kvmppc_setup_partition_table(kvm);
1906 				}
1907 				mmu_ready = 1;
1908 			}
1909 			++i;
1910 			hptp += 2;
1911 		}
1912 
1913 		for (j = 0; j < hdr.n_invalid; ++j) {
1914 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1915 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1916 			++i;
1917 			hptp += 2;
1918 		}
1919 		err = 0;
1920 	}
1921 
1922  out:
1923 	/* Order HPTE updates vs. mmu_ready */
1924 	smp_wmb();
1925 	kvm->arch.mmu_ready = mmu_ready;
1926 	mutex_unlock(&kvm->arch.mmu_setup_lock);
1927 
1928 	if (err)
1929 		return err;
1930 	return nb;
1931 }
1932 
1933 static int kvm_htab_release(struct inode *inode, struct file *filp)
1934 {
1935 	struct kvm_htab_ctx *ctx = filp->private_data;
1936 
1937 	filp->private_data = NULL;
1938 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1939 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1940 	kvm_put_kvm(ctx->kvm);
1941 	kfree(ctx);
1942 	return 0;
1943 }
1944 
1945 static const struct file_operations kvm_htab_fops = {
1946 	.read		= kvm_htab_read,
1947 	.write		= kvm_htab_write,
1948 	.llseek		= default_llseek,
1949 	.release	= kvm_htab_release,
1950 };
1951 
1952 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1953 {
1954 	int ret;
1955 	struct kvm_htab_ctx *ctx;
1956 	int rwflag;
1957 
1958 	/* reject flags we don't recognize */
1959 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1960 		return -EINVAL;
1961 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1962 	if (!ctx)
1963 		return -ENOMEM;
1964 	kvm_get_kvm(kvm);
1965 	ctx->kvm = kvm;
1966 	ctx->index = ghf->start_index;
1967 	ctx->flags = ghf->flags;
1968 	ctx->first_pass = 1;
1969 
1970 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1971 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1972 	if (ret < 0) {
1973 		kfree(ctx);
1974 		kvm_put_kvm_no_destroy(kvm);
1975 		return ret;
1976 	}
1977 
1978 	if (rwflag == O_RDONLY) {
1979 		mutex_lock(&kvm->slots_lock);
1980 		atomic_inc(&kvm->arch.hpte_mod_interest);
1981 		/* make sure kvmppc_do_h_enter etc. see the increment */
1982 		synchronize_srcu_expedited(&kvm->srcu);
1983 		mutex_unlock(&kvm->slots_lock);
1984 	}
1985 
1986 	return ret;
1987 }
1988 
1989 struct debugfs_htab_state {
1990 	struct kvm	*kvm;
1991 	struct mutex	mutex;
1992 	unsigned long	hpt_index;
1993 	int		chars_left;
1994 	int		buf_index;
1995 	char		buf[64];
1996 };
1997 
1998 static int debugfs_htab_open(struct inode *inode, struct file *file)
1999 {
2000 	struct kvm *kvm = inode->i_private;
2001 	struct debugfs_htab_state *p;
2002 
2003 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2004 	if (!p)
2005 		return -ENOMEM;
2006 
2007 	kvm_get_kvm(kvm);
2008 	p->kvm = kvm;
2009 	mutex_init(&p->mutex);
2010 	file->private_data = p;
2011 
2012 	return nonseekable_open(inode, file);
2013 }
2014 
2015 static int debugfs_htab_release(struct inode *inode, struct file *file)
2016 {
2017 	struct debugfs_htab_state *p = file->private_data;
2018 
2019 	kvm_put_kvm(p->kvm);
2020 	kfree(p);
2021 	return 0;
2022 }
2023 
2024 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2025 				 size_t len, loff_t *ppos)
2026 {
2027 	struct debugfs_htab_state *p = file->private_data;
2028 	ssize_t ret, r;
2029 	unsigned long i, n;
2030 	unsigned long v, hr, gr;
2031 	struct kvm *kvm;
2032 	__be64 *hptp;
2033 
2034 	kvm = p->kvm;
2035 	if (kvm_is_radix(kvm))
2036 		return 0;
2037 
2038 	ret = mutex_lock_interruptible(&p->mutex);
2039 	if (ret)
2040 		return ret;
2041 
2042 	if (p->chars_left) {
2043 		n = p->chars_left;
2044 		if (n > len)
2045 			n = len;
2046 		r = copy_to_user(buf, p->buf + p->buf_index, n);
2047 		n -= r;
2048 		p->chars_left -= n;
2049 		p->buf_index += n;
2050 		buf += n;
2051 		len -= n;
2052 		ret = n;
2053 		if (r) {
2054 			if (!n)
2055 				ret = -EFAULT;
2056 			goto out;
2057 		}
2058 	}
2059 
2060 	i = p->hpt_index;
2061 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2062 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2063 	     ++i, hptp += 2) {
2064 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2065 			continue;
2066 
2067 		/* lock the HPTE so it's stable and read it */
2068 		preempt_disable();
2069 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2070 			cpu_relax();
2071 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2072 		hr = be64_to_cpu(hptp[1]);
2073 		gr = kvm->arch.hpt.rev[i].guest_rpte;
2074 		unlock_hpte(hptp, v);
2075 		preempt_enable();
2076 
2077 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2078 			continue;
2079 
2080 		n = scnprintf(p->buf, sizeof(p->buf),
2081 			      "%6lx %.16lx %.16lx %.16lx\n",
2082 			      i, v, hr, gr);
2083 		p->chars_left = n;
2084 		if (n > len)
2085 			n = len;
2086 		r = copy_to_user(buf, p->buf, n);
2087 		n -= r;
2088 		p->chars_left -= n;
2089 		p->buf_index = n;
2090 		buf += n;
2091 		len -= n;
2092 		ret += n;
2093 		if (r) {
2094 			if (!ret)
2095 				ret = -EFAULT;
2096 			goto out;
2097 		}
2098 	}
2099 	p->hpt_index = i;
2100 
2101  out:
2102 	mutex_unlock(&p->mutex);
2103 	return ret;
2104 }
2105 
2106 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2107 			   size_t len, loff_t *ppos)
2108 {
2109 	return -EACCES;
2110 }
2111 
2112 static const struct file_operations debugfs_htab_fops = {
2113 	.owner	 = THIS_MODULE,
2114 	.open	 = debugfs_htab_open,
2115 	.release = debugfs_htab_release,
2116 	.read	 = debugfs_htab_read,
2117 	.write	 = debugfs_htab_write,
2118 	.llseek	 = generic_file_llseek,
2119 };
2120 
2121 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2122 {
2123 	debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm,
2124 			    &debugfs_htab_fops);
2125 }
2126 
2127 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2128 {
2129 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2130 
2131 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2132 
2133 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2134 
2135 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2136 }
2137